u

) <

The University of Osaka
Institutional Knowledge Archive

A Study on Protocol Design and Combinatorial

Tl Optimization in Resource Assignment Type
Problems on the Basis of Net Theory and Genetic
Algorithms

Author(s) |&E=H, BRAN

Citation |KFRKZ, 1996, EHIHwX

Version Type|VoR

URL https://doi.org/10.11501/3110162

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



A Study on Protocol Design and Combinatorial Optimization
in Resource Assignment Type Problems
on the Basis of Net Theory and Genetic Algorithms
(BRSNS BEBEICHT Sy MEREBETNTINITY XAIZED<
70k a)LEEt S RECICEAT 5HR)

Morikazu NAKAMURA

A dissertation
submitted to the Graduate School of Engineering of
Osaka University in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in
Engineering

October 1995



ABSTRACT

Resource assignment type problems constitute the classical, essential
core to computer sciences, and their solutions can be applied to a wide
range of industrial situations. With recent advances in the computer
technology, such as the appearance of high performance computers, the
evolution of the computing environment from "centralized" to
"distributed", the emergence of new methodologies like genetic
algorithms (abbreviated as GA), etc., the quality as well as the quantity
of research topics associated with these problems has been expanded.

This dissertation considers three kinds of resource assignment
type problems: the mutual exclusion problem in distributed
environments, the stable marriage problem, and the multiprocessor
scheduling problem, and describes new results for these problems by
means of the net theory (a combination of graph theory and Petri nets)
and genetic algorithm techniques.

In Chapter 1, backgrounds and objects of this research work are
outlined, stressing mainly on three primary subjects; the mutual
exclusion problem in distributed environments, the stable marriage
problem, and the multiprocessor scheduling problem.

Chapter 2 explains collectively fundamental concepts and
notations, to be used in this dissertation; graphs and Petri nets, genetic
algorithms, lattice structure, and NP-completeness.

In Chapter 3, a solution is proposed for protocol design of the
mutual exclusion problem in distributed environments. The proposed
protocol realizes mutual exclusion for the network resources by
applying virtually a dynamic sequence of acyclic graphs, called an
acyclic graph evolution, to the distributed environment. A topological
condition and algorithmic schemes are proposed for determining the
initial acyclic directioning, which is to ensure exactly one source node at
any stage of the acyclic graph evolution.



Chapter 4 extends the proposed protocol in Chapter 3 to the case
of multiple resources. A sufficient topological condition and algorithmic
schemes are proposed for determining the initial acyclic directioning,
which is to ensure less than k source nodes at any stage of the acyclic
graph evolution, as an extension to the case of multiple resources. The
validity and the properties of the protocol are analyzed by using graphs
and Petri nets

Chapter 5 formulates a gender-fair matching in the stable
marriage problem, and discusses a solution scheme by using a genetic
algorithm. ‘

Gale and Shapley originally proposed the stable marriage in
which two groups to be matched are represented by a men group and a
women group. Real applications range over matching software
processes to CPUs, matching autonomous robots to battery charger
devices, and matching members of two sets of autonomous robots to
each other for pairing up in a cooperative work. The gender-fair stable
marriage problem is one of the important open problems among stable
marriage problems. The main result consists in a procedure constructed
for applying a genetic algorithm (GA) to the gender-fair problem, in
which the gender-fair marriage problem is transformed into a graph
theoretic problem. This graph theoretic representation is more
amenable to the application of GA, since it admits easier coding, and
more efficient definition of genetic operators. Computer experiments
confirm the effectiveness of the GA solution.

Chapter 6 proposes a genetized-knowledge genetic algorithm
(abbreviated as gkGA), and discusses its application to multiprocessor
scheduling problems. In this approach, the heuristic itself is represented
by genes, and by means of GA selection superior heuristics survive for
a given problem, while others die out during the selection process.
Moreover, by the crossover of heuristic genes themselves, hybridized
heuristics can also be generated. This is a novel strategy in the GA field
of combinatorial problems; although the idea of reinforced GAs was
already proposed, heuristics have not yet been explicitly genetized.
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The effectiveness of our proposed strategy for multiprocessor
scheduling problems is proved through computer evaluation.

Chapter 7 summarizes the main results of this dissertation and
discusses future research topics.
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Chapter 1

Introduction

In this dissertation, we consider three kinds of resource assignment type
problems, namely the mutual exclusion problem in distributed
environments, the stable marriage problem, and the multiprocessor
scheduling problem. These problems are classic ones, but constitute the
essential core of the computer science [1-3]. New solutions are proposed
based on net theory (graphs and Petri nets), and genetic algorithm
techniques. In this chapter, we explain the background and summary of
results for each problem, and outline the overall organization of this
dissertation.

1.1 Mutual Exclusion Problem

First, we consider the mutual exclusion problem in a distributed
environment and give a net-based solution of protocol design. This
solution provides a communication structure and a protocol on the basis
of analysis of graph theory and Petri nets. That is, the protocol realizes
mutual exclusion for the network resources by virtual application of a
dynamic sequence of acyclic graphs, called an acyclic graph evolution,
to the distributed environment. The validity and properties of the
protocol are also analyzed by using graphs and Petri nets.

The mutual exclusion problem is basic in computer operating systems
[4] and has been extensively studied by many researchers. We treat first
the mutual exclusion problem for a distributed network of autonomous
nodes for the ordinary case of a single-kind/single-quantity network
resource, and then extend to the case of multiple kinds of shared
resources. The former has been treated by many researchers [5-12] but
the latter by only a few.

There exist some distributed mutual exclusion protocols for the single
shared resource case as follows:

(a) A logical ring of the nodes is constructed on a given network. The
privilege of mutual exclusion is represented by a special message, called



a 'token, which is transferred from one node to another around the ring
[51.

(b) A node requiring to enter the critical section sends a request
message containing a time stamp to all other nodes. If more nodes than
one request the entry, the node sending the oldest time stamp acquires
the privilege [6-8].

(c) Let C={Q,0,,....0x} be a collection of node subsets such that
0; N Qj # ¢, i#j, where C is called a coterie and Q; a quorum. The

node waiting to enter the critical section chooses one quorum from the
coterie and collects the consensus of the nodes in the quorum. There are
many interesting studies of the composition of a coterie [9,10] and
relevant protocol design [10-11].

The protocol proposed in this dissertation uses the idea of a dynamic
sequence of acyclic graphs, called acyclic graph evolution, devised by
Chandy & Misra [13]. Using graph and Petri net theory, we extend their
idea and propose a protocol which is suitable for distributed
autonomous environments and applicable to the multiple shared
resources case. First, let us explain the details of the Chandy-Misra
approach and then describe the properties of our protocol.

Chandy and Misra proposed a mutual exclusion protocol for a single
shared resource in a distributed network. Before the protocol starts,
acyclicity with a single source and single sink is virtually introduced,
on the bilateral communication graph G that is tacitly assumed
completely connected with logical edges not necessarily physical, by
communicating the existence of two special tokens (messages), one fork-
token and one request-token placed at the terminal nodes of each edge.
That is, the tokens are distributed over the node set of the
communication graph G such that a directed graph G obtained from G
by replacing each edge by diedge (directed edge) from the fork to the
request is acyclic.

Henceforth, the start-node of each diedge is understood to possess the
higher priority for the shared resource usage than its end-node. Since
the edge direction is acyclic globally, a total order relation is induced on
the graph, and so only a single node becomes the source node. From this
singleness, the privilege for using the single shared resource can be



given to the source node. Just after releasing the resource after using it,
message exchange taking place between the source node and its neighbor
nodes triggers reversal of the directions of all the diedges incident to the
source node. We use a neutral term "to fire a source node" instead of
"to use the resource and release it". By the edge reversal, the source
node will turn into a sink node and a new source node will emerge (note
that only a single source node should appear). This process of source
firing is to be iterated.

The protocol ensures mutual exclusion with fairness and liveness.
That is, there exists only one source node at any instant of the acyclic
graph evolution in which every node become firable in turn (fairness)
and deadlock cannot occur (liveness). We must note that in the Chandy-
Misra model a given graph is assumed completely connected and so any
of its acyclic directioning produces always a single source node.
However, in the distributed environment, this is not so, as each node is
not necessarily connected to all the others.

We extend the Chandy-Misra model to allow the graph to be only
partially connected. In general an acyclic directioning of Chandy-Misra
type on a partially connected graph, induces just a partial order relation.
In the partial order relation, plural source nodes may appear at some
stage of an acyclic graph sequence. We therefore introduce a condition
which ensures the existence of only a single source on the acyclic graph
evolution for the single shared resource. We then proceed to utilize the
natural initial plurality of source nodes, and extend the protocol to
cover the problem of mutual exclusion in the case of multiple shared
resources.

In Chapter 3, we describe the complete mutual exclusion protocol,
called Distributed MUTEX, present a topological condition and
algorithmic schemes to determine the initial acyclic directioning which
will ensure exactly one source node at any stage of the acyclic graph
evolution.

In Chapter 4, we go on to present a sufficient topological condition
and algorithmic schemes to determine the initial acyclic directioning
which will ensure less than k& source nodes at any stage of the acyclic



graph evolution, which means an extension to the case of multiple
resources.

1.2 Gender-fair Stable Marriage Problem
We next consider the stable marriage problem. This is another resource
assignment type problem, originally proposed in a seminal paper by
Gale and Shapley [17]. The basic problem is explained as follows:
We consider two sets of equal size n, the men group and the women

group,

m={m;,my,...,m,}

w={w;,wy,....,w, }.
Each member in both sets possesses a strictly ordered preference list
PL, containing all the members of the opposite sex. Let p be a person
(man or woman) and g, r be members of the opposite sex to p. A
person p prefers q to r if g precedes r on p's preference list. Two
pairs (/m;, w;) and (m;, w;) are said to be "unstable" if conditions

m; prefers w; to w;, and

w; prefers m; to m;

hold. When unstable, there is a high probability of break-up and of a
new pair formation (m;, w;). A matching M ={(m;,w;),(my,w,),...,

(m, ,w,)} is considered "stable" if no two pairs in M are unstable.

Real applications range over matching software processes to CPUs,
matching autonomous robots to battery charger devices, and matching
members of two sets of autonomous robots to each other for pairing up
in a cooperative work. In each case preference lists may be constructed
according to environment parameters such as cost, distance, capacity,
and efficiency. The stability is evaluated by monitoring various
properties of the environment. For example, let us consider a matching
between two kinds of autonomous robots in which they want to find the
nearest partner to them. The preference list is then constructed
according to the distance between possible partners. The stability means
that after determining the set of matching partners, for any robot p,
there is no robot g nearer to p than p's current partner to which p is
nearer than ¢'s current partner. Therefore, no robot tries to approach a
robot which is not its partner.



'Gale and Shapley proposed an algorithm to find a stable matching in
their paper [17]. The stable matching found by their algorithm is
extremal among the many possible stable matchings in that each member
of the men group gets the best partner over all stable matchings, and
then each woman gets the worst partner. We say Gale-Shapley
algorithms can search for the man-optimal (or woman-pessimal) stable
matching. Equally, by exchanging the roles, it produces the woman-
optimal (or man-pessimal) stable matching. Finding a fair stable
matching (fair to both genders) is an interesting problem, listed in
[18,19] as one of the important open problems related to the stable
marriage problem, and there are no known polynomial time algorithms
for it.

If we are searching for a stable matching with a particular property,
like gender-fairness, then a brute force algorithm that examines all
stable matchings requires exponentially increasing time in the worst
case, since the number of stable matchings can grow exponentially with
the size of the groups to be matched [18]. In [20] an algorithm is
proposed to find an "egalitarian" stable matching which minimizes the
sum of the assigned partner's preference rank (or position) in each
person's PL. However, it is still possible for one sex to fare much better
than the other in the egalitarian stable matching.

We define the gender-fair stable marriage problem, an open problem
[18,19], and describe a genetic algorithm solution to it. The problem of
obtaining the gender-fair matching is again difficult by brute
computation since we have to select certain matchings from among an
exponentially increasing number of possible matchings. The use of
genetic algorithms (abbreviated as GA hence after) has drawn attention
recently as a new methodology for combinatorial optimization [14-16].
We propose a method for adapting GA to solve this particular problem.
The main result consists in a procedure constructed for applying a
genetic algorithm (GA) to the gender-fair problem, in which the
gender-fair marriage problem is transformed into a graph theoretic
problem. This graph theoretic representation is more amenable to the
application of GA, since it admits easier coding, and more efficient
definition of genetic operators.



" In Chapter 5, we define and discuss a gender-fair stable matching that
possesses the fairness property, that is, the sum of the male scores (rank
of the partner in PL) is as close as possible to the sum of the female
scores, and present a method for adapting GA to the gender-fair stable
marriage problem. The performance evaluation by computer
experiment shows that for randomly generated marriage instances, the
proposed method produces the best fair solutions with high probability.

1.3 Multiprocessor Scheduling Problem

Lastly we consider the multiprocessor scheduling problem, again a
resource assignment problem of classical reputation. The aim is to find
the optimum schedule for assigning software tasks to individual
processors. It is a classical problem and has been treated by many
researchers [3]. We propose here a new methodology to solve the
problem using genetic algorithms (GA).

Various researchers [14-16,21] have pointed out that genetic
algorithms are good at global searches but not at local ones, and have
then proposed a reinforcement of genetic algorithms with a heuristic
technique tuned for local search effectiveness (so-called hybrid GAs in
[14-16]). In a reinforced GA, a prescribed domain knowledge is
employed to produce an efficient string (or a chromosome; a candidate
of the solution, is represented by a string in genetic algorithms) that
leads to better solutions than those obtained by simple GA. In this
dissertation we develop a novel GA in which domain knowledge is
genetized (represented as genes) and is included in a string (a
chromosome). A given set of heuristic search techniques constitutes a
gene pool of knowledge, and crossover of knowledge genes A and B
generates a hybrid gene AB. The new method is called "genetized-
knowledge GA," abbreviated as gkGA.

The multiprocessor scheduling problem is known to be NP-hard,
even when various restrictions are added to simplify the problem [22-
24]. Therefore many researchers have tried to develop approximation
algorithms in preference to absolute optimization [25-27]. Over many
years of research, most effective solutions found have been based on the
list scheduling scheme [22,27]. In this scheme the quality of a schedule is



known to depend strongly on a prescribed priority list of tasks; several
methods for organizing these priority lists have been proposed and are
summarized in [22]. The critical path (CP) method organizes a priority
list such that tasks are arranged in a sequence according to their time
depth [22]. Kasahara [27] proposed a modified CP method, called
CP/MISF(Critical Path / Most Immediate Successors First ), in which a
task having the most number of immediate successors has higher
priority over multiple tasks possessing the same time depth. Nakasumi
[28] tried ordering tasks of the same time depth by appealing to genetic
algorithms. These modified CP algorithms were reported to produce
good quality schedules for a wide range of task graphs [22,27,28].
However, it was revealed that for certain kinds of task graphs, even
these modifications were led to local optimum schedules.

In Chapter 6, we propose the gkGA. The search heuristic is expressed
as a gene in the string, and a hybrid gene, a product of the crossover
process, offers a new heuristic that may prove to be more efficient for a
given task graph. This is a novel strategy in GA research; although
reinforced GAs are treated in the literature [14-16], but the heuristic is
not genetized. By computer experiment, we prove that the proposed
gkGA 1is capable of generating uniformly better schedules over a variety
of task graph instances compared with the CP/MISF and Nakasumi's GA
although at the expenditure of more computation time.

1.4 Organization

The organization of this dissertation is as follows: In Chapter 2, we
describe the primary concepts which form the base of the following
chapters. In Chapter 3, we describe a net-based mutual exclusion
protocol for the single resource case. In Chapter 4, we analyze the
concurrency of the network protocol proposed in Chapter 3 and extend
the protocol to the multiple shared resource case. In Chapter 5, we
define a gender-fair stable matching and propose a method to adapt GA.
In Chapter 6, we propose a novel strategy for scheduling problems,
named genetized-knowledge GA. We finish in Chapter 7 with some
concluding remarks.



Chapter 2

Fundamental Concepts and Notations

In this chapter, we explain collectively fundamental concepts and
notations, to be used in this dissertation; graphs and Petri nets, genetic
algorithms, lattice structure, and NP-completeness, for improving the
readability of this dissertation. See references on each topic for more
information.

2.1 Net Theory: Graphs and Petri nets [29-31]
We use the term "net theory" in a sense of a combination of graph
theory and Petri net theory.

A (undirected) graph is denoted by G(V,E), where V and E are the
sets of nodes and edges; if edge e is incident to a node u and v, then it
is represented by the unordered pair of nodes <u,v>. A directed graph
(digraph) G(V,E ) 1s a structure that consists of the sets of nodes V and
directed edges (diedges) E. We denote a diedge e directed from u to v
by the ordered pair e=(u,v). The graph G(V,E) generated by
replacing each diedge (u,v) with undirected edge <u,v> in a digraph
G(V,E) is said the underlying graph of G(V,E).

A circuit of length k(=2) in a graph G, c=(V_,E,), V.cV,
E.CE, |V,|=|E, =k, is a subgraph of G such that there is a path on
¢ between any two nodes in V, and, for each node v; in V,, the
number of its incident edges in c(but not in G) exactly equals 2. Let ¢
be a circuit in the underlying graph of a digraph G, and let ¢ be a
subgraph of G corresponding to c¢. If each diedge on ¢ is directed in
the same orientation, the ¢ is called a cycle of G.

A set of circuits Q={c;,c,, -, }, 1s said a circuit-cover of G if any
node v of G is contained in at least one circuit from Q but no proper
subset of €2 has this property. A graph G is said connected when there
exists at least one path between any two nodes in G. A connected graph
G is said circuit-connected if every node in G belongs to some circuit.



' When a directed graph does not contain any cycle, it is called acyclic
or acyclicly directed. Let *u={wl(w,u)e E}, u*={vl(u,v) e E}, for
each ue V. If I*ul=0(or lu*1=0), then u is called a source ( or a sink)
of G, where 1*ul denotes the number of elements in set *u.

A Petri net is a graphical and mathematical modeling tool. Many
concurrent / asynchronous / distributed / nondeterministic systems have
been effectively modeled and analyzed by this tool. Structures and
dynamic behaviors of systems can be expressed graphically in the form
of the token distribution. A Petri net is also amenable to mathematical
analysis, since they are algebraically representable which allow
numerical as well as symbolic manipulations.

A Petri net is a directed bipartite graph, with initial marking, M,.
The net consists of two kinds of nodes, called places and transitions, in
which arcs either from a place to a transition or from a transition to a
place. Fig. 2.1(a) shows an example of a Petri net. Places are drawn as
circles, transitions as bars or boxes.

P
t P3
P,
(a) Before firing
1
t P3
I
(b) After firing

Fig. 2.1 Example of Petri nets



' The behavior of a system is simulated by tracing changes of markings
in the Petri net model. A marking of a Petri net changes itself in accord
with the following firing rule:

(1) A transition ¢ is said to be enabled if each input place p of ¢ is
marked.

(2) An enabled transition may or may not fire.

(3) A firing of an enabled transition ¢ removes one token from each
input place p of ¢, and adds one token to each output place g of .
In Fig. 2.1(a), transition #, is enabled, and Fig. 2.1(b) shows the state

or marking after firing ¢,.

2.2 Genetic Algorithms [14-16]

Genetic algorithms (abbreviated as GA) were first introduced by
Holland's paper "Adaptation in natural and Artificial Systems" in 1975,
and can be regarded as a scheme for probabilistic searching, learning,
and optimization. Recently, many researchers reported efficiency and
robustness of GAs when applied to the combinatorial optimization
problems [14-16].

A solution candidate of a problem is represented by a string (or a
chromosome). A string consists of a sequence of genes. We have to find
methods of encoding, that is, how to represent a solution candidate by a
string, in which each gene is carefully structured to reflect problem
semantics. Performance of a string to the environment is evaluated by a
fitness function. The return value of the fitness function is called a
fitness value, which expresses a degree of the string or solution
candidate's adaptability to a given environment. Lager the value means
more fitted to the environment. In GA, maintenance of he gene variety
is vitally important because genetic operations are repeatedly applied
onto a pool of strings, in order to generate population of gene varieties
from which the fittest are selected to survive. The number of the strings
in a population is said population size.

A genetic algorithm is a Generate-and-Test type algorithm and
generally composed of three genetic operations, selection, crossover,
and mutation: Selection determines which strings to survive in the string
pool depending on their fitness values. The roulette selection is a

10



standard in which strings with lager fitness value are selected for
survival with higher probability. Crossover combines the genes of two
parent strings to generate two offsprings by swapping corresponding
parts of the parent genes. There are several ways of performing
crossovers, one-point crossover, two-point crossover, OX-method, and
so on. Mutation arbitrarily changes one or more genes of a selected
string randomly with a probability equal to the mutation rate.
A GA is usually explained as follows:

Generate the initial population of strings

Evaluate each string by the fitness function

Select which strings to survive

Perform Crossover operations onto the string pool

Mutation

goto Step 2 unless the condition for the termination hold.
Usually, the initial population at Step 1 is randomly generated. Each
iteration is called generation in a GA execution. The fitness value of
strings in the population will grow lager at later generations. Finally, a
string that has the largest fitness value in the population of the last
generation is the best candidate among those searched in the GA
execution.

o

[-]

o

o

-]

]

A AW

2.3 Miscellaneous [18,23]

[Distributed Lattice] A distributed lattice is a partial order in which
(1) each pair of elements a, b has a greatest lower bound, or meet,
denoted by a A b, so that anb=<a, aAb=<b, and there is no element ¢
such that ¢<a, c<b and anb=<c.

(2) each pair of elements a, b has a least upper bound, or join, denoted
by av b, so that a<av b, b=<av b, and there is no element ¢ such that
a<, b=<c and c<avb.

(3) the distributed law holds, that is, av (bAc)=(avb)a(avc) and
an(bvce)=(anb)v(anc).

[Proof -Technique of NP-completeness] To prove that a problem P
is NP-complete, we merely show that

(1) PeNP,

11



(2) some NP-complete problem P' can be reduced to P in polynomial
time.

12



Chapter 3

A Topological Design of Mutual Exclusion
Protocol for Single Shared Resource in
Distributed Environments of Autonomous Nodes

In this chapter we treat a mutual exclusion problem, which is
formulated for a single shared resource in distributed environments of
autonomous nodes. The most important property of the network treated
in this chapter is its membership variability, that is, frequent occurrence
of entries of new nodes and exits of old nodes. Thus, when the network
is of large-scale, keeping up the information of all other nodes is not
possible for each node. Therefore, distributed protocols in such
environments should be established by only local message
communication but not global one. We in this chapter design a mutual
exclusion protocol for distributed environments of autonomous nodes,
which is established by message communication between neighbors. The
proposed protocol, called Distributed MUTEX, is based on Chandy-
Misra protocol for Dining Philosopher(diners) problem. We consider
requirements of the communication topology that makes mutual
exclusion possible, and propose entry- and exit- protocols for each node
to act them individualistically and autonomously.

3.1 Introduction

The mutual exclusion problem is basic in computer operating systems[4]
and has been extensively studied by many researchers. The solutions for
this problem are classified, by the system architecture on which the
problem is to be formulated [32,33], as follows:

(1) Centralized systems in which processes can communicate each other
using shared-memory: a) Dijkstra's semaphore [34] and its variant [38],
b) Implementation by hardware instructions, test-set {35], lock [36], and
replace-add [37].

13



(2) Distributed networks in which processes can communicate only
through message passing: a) A logical ring of the nodes is constructed
on a given network. The privilege of mutual exclusion is represented by
a special message, called the token, which is transferred from one node
to another around the ring [5]. b) A node requiring to enter the critical
section sends a request message containing a time stamp to all other

nodes. If more nodes than one request to enter, the node sending the
oldest time stamp acquires the privilege[6-8]. c) Let C={Q;,0;,...,0;} be
a collection of node subsets such that Q, NQ;#¢, i#], where C is

called a coterie and @; a quorum. The node waiting to enter the critical

section chooses one of the quorums and collects the consensus of the
nodes in the quorum. There are many interesting researches of
composing a coterie[9,10] and protocol design[10-12]. d)Using message
communication, a virtual acyclic graph is constructed on a given
network. By the partial-order relations induced by this kind acyclic
graphs, the privileged node is selfchosen sequentially. This method was
devised by Chandy-Misra[13].

This chapter treats the mutual exclusion problem for a distributed
network of autonomous nodes. The network considered in this chapter
belongs to the category (2) of distributed networks. However, the
characteristic of the network is different from those considered in [4],
and explained below:

«Distributed Networks of Autonomous Nodes»
Each node is assumed to possess only a local view of the network
topology and network communication, and behaves individualistically in
accord with its own preference. There is no central manager in the
network and all nodes are equal in behavior and capability. The most
notable characteristic is its self-centered but rational attitude of the node
toward any regulation and protocol, and its variability of the network
size, that is, frequent occurrence of entries of new nodes and exits of
old nodes. Therefore, when the network is large-scale, each node is only
possible to possess a local view of topology, identity, communication
and state change. In summary, a distributed network of autonomous
nodes is characterized by individualism of the node, the variability of
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the network structure, and needs of explicit message exchange for
information gain.

We in this chapter consider the mutual exclusion (MUTEX) problem
only for, the ordinary case, a single-kind/single-quantity network
resource, even though similar problems for multiple resources are
possible and will be treated in the next chapter. Chandy-Misra
protocol[13] is used as a basis of mutual exclusion control, but must be
extended, in which an edge between two nodes x and y is interpreted
as x and y being in competition for the exclusive use of the shared
network resources. If there is only one resource in the network, the
network must be sufficiently well connected. In the distributed
environment, however, the edge set cannot be so because each node does
not know identity of all other nodes being in competition for the same
resource. This limitation must be overcome when the initial acyclic
graph is set up, which is the heart of the mutual exclusion mechanism
we are going to design in Section 3.4. This set-up actually determines
the entire course of the network behavior. Our model treats two edge
types, built-in and free, where a built-in edge (x,y) represents a real
hardware/software mutual exclusion requirement of x and y, due to
some internal reason, but a free edge can be added to the network for
cooperation as necessity arises.

Our protocol to be developed may be interpreted as a distributed and
autonomous implementation of the well-known token-ring[5]. The
token-ring method is well suited for distributed environments, because
it does not need the addresses of all other nodes except just two
neighbors, provided network fluctuation caused by node entry/exit is
correctly handled.

We first formally define the model in Section 3.2 and 3.3, and
secondly analyze the feasibility condition of the single resource mutual
exclusion for a given network in Section 3.4, and thirdly propose entry
and exit protocols of autonomous nodes in Section 3.5, and then design a
dynamic mutual exclusion algorithm in Section 3.6. Finally we discuss
the algorithm verification in Section 3.7.

3.2 Distributed Environments of Autonomous Nodes
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Suppose a network N =(V,E) of the node set V and the edge set E is
given with the following interpretation: Each node represents an
autonomous element, that is, an independent but cooperating process.
Each edge denotes a logical link in a sense that there is a communication
path between the two endpoints of the edge and they know each other's
identification ID, say telephone number. Knowing the mutual ID is a
necessary condition for the two nodes to be able to communicate. That
is, even when there is a physical link between two nodes, they cannot
communicate if they do not know each other's ID. Thus, the edge in our
network does not mean a physical link but a logical relationship of
knowing each other's ID. Communication between nodes is effected by
message exchange and messages are carried by an independent
communication operator.

In the mutual exclusion protocol, to be described in Section 3.3, the
node is assumed fully agreed with engaging in cooperation to achieve
the common goal, and hence the edge now represents the alternation
constraint in the sense that any two nodes connected by an edge cannot
use the shared resource at a same time, but alternately.

We have two kinds of edges, built-in edges, and free edges. Two
nodes are connected by a built-in edge because of certain internal
reasons( hardware or software constraints) that prohibit access to the
shared network resource at the same time, while connected by a free
edge due to necessity of cooperation in achieving the mutual exclusion.
At first, there are only built-in edges in the given network. As to be
described in Section 3.4, the feasibility of the mutual exclusion may
require more edges than built-in edges. The edges to be added for
mutual exclusion control should be called free edges, because there is
some freedom to choose.

A simple example of the network is shown in Fig. 3.1, where the
printers are shared network resources and computers A,B,C, and D are
nodes. The A and B cannot use the printer simultaneously because of the
shared-bus between them even if two printers are available. We connect
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Switch

Printers

(@) (b)

(c) (d)

Fig. 3.1 An illustrative example of free edges, built-in edges
and networks.

nodes A and B by a built-in edge(solid line) but leave nodes C and D
isolated, as shown in Fig. 3.1(b). As to be shown in Section 3.4, when
the number of the shared network resources is one, the mutual exclusion
control is possible if and only if there exists a Hamiltonian circuit in the
network. So we need to add three free-edges(dotted lines) as in Fig.
3.1(c) or Fig: 3.1(d).

3.3 Mutual Exclusion Protocol: Distributed MUTEX
In this chapter, we propose a new solution for the mutual exclusion

problem fitted to a distributed network of autonomous nodes based on
Chandy-Misra protocol for the diners problem.
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' Chandy-Misra[13] expanded the original problem of Dijkstra[34] as
follows: A philosopher at each node in the network repeats thinking,
hungry, and eating. A fork is placed on each edge. Each fork is shared
by two philosophers at both sides of the edge. When a philosopher eats,
he needs the forks on the all incident edges. Chandy-Misra protocol
determines autonomously the order of eating, based on the partial-order
relation produced by initially setting up an acyclic graph on the given
network, and by maintaining the acyclicity of evolving subsequent
graphs.

In this chapter, we consider shared network resources in the network,
which are not treated in [13]. At most k£ philosophers can eat at a same
time when there are available k shared network resources. In the
sequel, a node's eating corresponds to its using the shared network
resources. In our model, each node acts independently in accord with
the following protocol which is called "Distributed MUTEX". A
thinking period is assumed finite and an eating period must be finite.
Then, the fairness of our model is guaranteed, that is, any hungry node
can eat in a finite time. An example of the protocol execution is shown
in Fig. 3.2.

«Distributed MUTEX»

Initialization: Each edge in the network is given a direction so that
the graph representing the structure of the network becomes acyclic.
Each fork placed on the edge has one of two states, dirty and clean. A
dirty fork is placed on the endpoint and a request token on the startpoint
of each directed edge, respectively. First, all philosophers are in
thinking. This situation is called the initial set-up that influences future
behaviors of the network.

A philosopher who becomes hungry: If the philosopher has
request tokens at hand, he sends them to the corresponding philosopher
and waits for the responses.

A hungry philosopher who has received all clean forks: The
hungry philosopher becomes the source of the acyclic graph and can
start eating immediately. Then, the forks used by him become dirty,
which implies that all incident edges turn the direction reversed. So, the
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(a) Initialization
A, B, C are thinking

(b) A has become hungry.
B has become hungry.
C is still thinking.

(c) A has received all forks then
starts eating.
B cleansed the fork and sent
itto A. later B sent the request
token to A.
C has sent the clean forks to A, B.

(d) A has become the sink.
B is waiting the fork from A.
C is still thinking.

(e) A sent the clean fork to B.
B has received the fork from A.
C has become hngry and sent
request tokens to A, B.

(f) A sent the clean fork.
B starts eating.
C is waiting the fork from B.

® : A request token

J : A clean fork
K A dirty fork

Fig. 3.2 A simple example of Distributed MUTEX

corresponding node becomes the sink. Any message sent to the
philosopher is not processed during his eating.

A philosopher who is not eating: When he receives a request
token, he cleans the corresponding fork and sends it back as the

response to the request token.
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Iterations: Each philosopher is assumed to repeat the cycle of

thinking, hungry, and eating in a bounded time.

Chandy-Misra protocol is so simple, easy for understanding that the
following facts are readily obtained using graph theoretical analysis.

(1) After the initial set-up, the philosopher at a source node can collect
all clean forks that he needs since he holds all request tokens at hand.
A source node has the highest priority.

(2) The philosopher at a source node can start eating in a finite time.
Then, he turns around the direction of all incident edges and then
becomes a sink node, that is, all forks used by him change the states
into dirty. A sink node has the lowest priority.

(3) The direction of the edge between two nodes a and b is from a to
b if and only if (i)a holds the fork shared by a and b, and the fork
is clean, (i1)b holds the fork, and the fork is dirty, and (iii)the fork is
in transit from b to a.

(4) The network maintains its acyclicity anytime even if a source node
turns into a sink node. Then, another node becomes a new source
node.

(5) When the thinking period is finite, the protocol avoids deadlocks and
guarantees fairness.

3.4 Initial Acyclic Set-Up

From now on, we use a neutral word fire instead of eat or use
resources. An initial set-up of a network seems to determine the entire
course of future node firing, as acyclic graph evolves in a sequence. We
have to answer the following two questions:

(1) Does the mutual exclusion protocol work?

(2) If so, are the shared resources efficiently used?

When the number of the shared network resources is just one, the
mutual exclusion protocol does not work if more nodes than one
become the source in the same graph or if there exists a node never
becomes a source. On the contrary, for multiple quantity resources,
they are not efficiently used if the source nodes are fewer in number
than the resources.
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‘In general the multiple resource case must be treated, but here we
only consider the initial set-up that makes mutual exclusion possible for
the single-resource case. Other cases will be discussed in Chapter 4. Any
acyclic graph derived from the initial one must have a single source
node and any node must become a source of a some later graph. We
now show the main theorem.

Theorem 3.1: Setting up an initial acyclic graph in which any acyclic
graph evolved from the initial one is possible possesses always a single
source node if and only if the given undirected network G =(V,E) has
a Hamiltonian circuit.

Proof: necessity: Let us denote the single source node in the initial
acyclic graph G, by s,, and let the source node after s;'s firing be s,
for each i>0. Then, the trace of source nodes, sg,s,... continues
indefinitely because Chandy-Misra protocol never halts and keeps the
graph acyclic forever. We suppose that s;, i>1, is the first node that

appears twice at j-th, j>i, in the sequence of the source node trace,
that is, s; =s;. Let us denote the sequence of the acyclic graphs by
Gy, G, ..., that is, s, is the source node of G,, s; the source node of
G,-. Since él is generated by turning around all incident edges of s; in
Gy, the directed edge (sy,s;) exists in G,. Inductively, the directed
edges (sg,5k41), 0 <k < j, can be shown to be in G,. G, is depicted in
Fig. 3.3. Now, we examine topology of the trace. In Gj_l, as shown in
Fig. 3.4(a), s;_; is the source node but the directed edge (s;_;,s;) exists.

In Gj, as shown in Fig. 3.4(b), s;_; becomes the sink by its firing and

the directed edge (s;_;,s;) still exists. Therefore, in G;, s; =s; cannot

J
be the source node, contradiction. This is because we supposed i>1.
Consequently, we must deduce i =0, that is, s, must be the first node

that appears twice in the sequence of the source trace (sq,s;,5;,...)-
What we have to prove next is that all other nodes except s, appear
in the trace between the first and second s, =s;. Suppose some nodes

have not appeared yet in the trace. Denote the set of these unappeared
nodes by U # ¢. Then, in é,-, the edges between U and U are all

directed from U to U as shown in Fig. 3.5 where U denotes the
complementary set of U. However, then, s, must be a source by
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Fig. 3.3 The initial graphéo and trace (Sg, Sy, s S, +0s S5, +2)

&»(}‘@\

0

®) G,

Fig. 3.4 Topology oféj_l ancf;j . S; is not a source
in G; contrary to the assumption.
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assumption just made but not the only one because there is no directed
cycle in G; and there should exist another source node in U. This is
contradiction to the singleness assumption of the source. Therefore, all
nodes except s, appear once in the trace between the first and second
so = s;. Consequently, the trace of the source node constitutes a
Hamiltonian circuit in the original G.

Sufficiency: We specify a Hamiltonian circuit H = (xy,x[,...,X,_1, X,
on G, assign the number i to x;, and draw edge direction (x;,x;) from

x; to x; when i > j. We have formed the initial acyclic graph Gy (if not

acyclic we can contradict). We prove by induction that any acyclic
graphs evolved from GO by the protocol have the one and only one
source node without starvation of any node.

(1) In GO, Xq 1s the unique source node.

(2) Assume now that the statement holds for no greater than i, we also
show that it must hold for i+1. The situation of G,,, is shown in Fig.
3.6. Showing the following facts is easy.

(1) The directed path xg,x,,...,x; exists and let V| ={xy,x,...,x;}.

(2) The directed path x.,,x,3,....,%,; exists and let
Vo = {2 Xigzsee s Xy -

(3) The edges between V; and V, are directed from V, to V.

(4) x;,, is a source node.

Since (X;,9,X;435++05 X1, X0, X]5...,X; ) is a directed path, x;,; must be
the only one source node of G,,;. Q.E.D.

In the evolution of acyclic graphs, the source node moves along the
Hamiltonian cycle. In the case there exist more than one Hamiltonian
circuit in the original network G, any one of them can be chosen.

The method of initial acyclic set-up used in the previous proof is of

theoretical interests. The current acyclic network should be considered
as an outgrowth of a history of node entry/exit processes applied onto a
small scale network made acyclic at the start. Entry and Exit Protocols
will be described in Section 3.5.
Corollary 3.1: When the built-in edge set of the original G is not
enough for providing a Hamiltonian circuit, the free edges should be
introduced in order to assure existence of at least one Hamiltonian
circuit.
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; where Sy=S; and U = ¢.

Fig. 3.6 Topology of Giﬂ.

«Initial Acyclic Set Up for A Single Resource MUTEX »

1° Select a Hamiltonian circuit of G.

2° Choose arbitrarily a node on the circuit.
3° Assign a node number to each node such that there is a monotone

sequence of node numbers either increasing or decreasing along the
circuit starting from the chosen node.
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4° Assign the edge direction so that the startpoint of any arrow
corresponds to the node with a smaller number.

3.5 Entry and Exit Protocols

A distributed network of autonomous nodes varies its structure by
frequent occurrence of entries of new nodes and exits of old nodes.
Entry/exit protocol is essential in such an environment. In this section,
we design an entry/exit protocol that keeps MUTEX functioning intact
and endows the network non-consecutive node sequence fault tolerance
in a sense that any non-consecutive node sequence breakdown does not
give a fatal damage to MUTEX. The fault tolerance, however, is not a
main topic of this chapter and hence not well-discussed.

We describe non-consecutive node sequence fault tolerant networks in
more detail in Subsection 3.5.1, and propose Entry/Exit Protocols in
Subsection 3.5.2 .

3.5.1 Non-Consecutive Node Sequence Fault Tolerant
Networks

We, in our model, consider node breakdowns but not edge breakdowns

because edges in the network are considered as logical entity.

If a node breaks down, it must be detected and eliminated from the

network, which may affect the mutual execution protocol. Theorem 3.1,
as we have seen, says that a Hamiltonian circuit is needed on the
network for the single-resource mutual exclusion, in other words, the
mutual exclusion protocol does not work if there is no Hamiltonian
circuit on the network. Let us examine effects of node breakdowns to
the protocols.
(1) First, let us consider the simple ring network shown in Fig. 3.7(a).
It is the simplest network which has a Hamiltonian circuit. Suppose that
a node breaks down as shown in Fig. 3.7(b). Then, there is no longer a
Hamiltonian circuit. As a result, the mutual exclusion protocol cannot
function correctly and hence damage will be incurred. Moreover, a new
Hamiltonian circuit must be established with much costs for adding new
free edges.
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A Hamiltonian circuit

(a) Before breakdown

(b) After breakdown

Fig. 3.7 Non fault tolerant network.

A Hamiltonian circuit

(a) Before breakdown

(b) After breakdown

Fig. 3.8 Non-consecutive node sequencce fault tolerant network
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(2) We consider a network which has four neighbor nodes, two nodes
immediately preceding, the others two immediately succeeding on the
current Hamiltonian circuit as shown in Fig. 3.8(a). We suppose that a
node breaks down like Fig. 3.8(b). There is still a Hamiltonian circuit
on the network even if the breakdown node and its incident edges are
removed. Moreover, It is easy to understand that there is one source
node in any acyclic graphs derived from the remaining network.
Therefore, we can say that one node breakdown does not affect the
protocol in this type network.

Next, we consider plural nodes breakdown. In this case, we can easily
obtain the following facts.
(1) A set of node breakdowns in which any two are not consecutive on
the current Hamiltonian circuit does not affect the protocol in the
network.
(2) Any consecutive breakdowns disconnect the Hamiltonian circuit and
cause the protocol malfunction.

In this chapter, networks in which the above two properties hold are
called non-consecutive node sequence fault tolerant networks.

Generally, k-consecutive node sequence breakdown at the current
Hamiltonian circuit does not give a fatal damage to MUTEX if and only
if each node in the network has at least 2(k+1) neighbor nodes, the first
k+1 are the immediate preceding nodes, the others the immediate
succeeding nodes on the current Hamiltonian circuit.

3.5.2 Entry and Exit Protocols
What we do here is, anticipating future problems, to construct a
network of at least non-consecutive node sequence fault tolerance. To
make description simple, all edges are assumed free. When some node
has built-in edges, necessary modification in the description is self-
evident and hence not mentioned.

Let us denote four adjacent node of p along the current Hamiltonian
circuit by

bp (before p), bbp(before bp), ap(after p), aap(after ap).

These nodes are located on the current Hamiltonian circuit HC in the
order of
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bbp, bp, p, ap, aap.

Each node possesses ID, say telephone number, of such adjacent nodes
in its own memory as well as those of nodes associated to built-in edge.
Since we are assuming non-existence of built-in edges, all edges are free
and allowed to connect points of necessity. The set of IDs of the adjacent
nodes is called "the adjacent nodes information(ANI)". Let us denote the
ID of a node x by #x. Then, the ANI of p is represented by a 4-tuple,

(#bbp #bp #ap,#aap).
The entry and exit protocols are presented below with their processes
illustrated in Fig. 3.9, Fig. 3.10, respectively.
«Entry Protocol»
For node x which wants to enter the network:

1° Choose any friendly node P as a host HOST and send an Entry
message to it. The node x will join the MUTEX cycle in front of
HOST.

2° Choose another node as a HOST. When a Welcome message is
received, wait. When a Busy tone is heard, try again some time later
when the Sorry message is received.

3° Receive from the HOST data #bbP #bP #aP. Send a Hello message
containing ID of HOST to each node corresponding to

#bbP #bP #aP.
4° On receiving Welcome messages from nodes to which x has sent a

Hello, modify the ANI as follows.

(#bbP ##HOST #aP).

And send a Ready message to HOST.

5% Upon receiving a Complete message from HOST, place the request
token on every new edge just established, and send a Thank message
to all node involved.

For node P which has received an Entry message from x:

If P is waiting for its exit, P sends x a Sorry message, if P is using
the resource, a Busy, otherwise a Welcome and enqueue the Entry
message. When P becomes enable, P processes the Entrys in its queue
as follows, where enable means that P has all clean forks on his incident
edges.
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) 4

Fig. 3.9 Message exchange in the entry process of node x.
1) ->@2)->@)->#)

The Entry(x) is accepted on the first-come first-served basis but not
handled before P becomes firable. On becoming firable, the actual
firing is put off until the HOST action of the following is completed.
1° Send #bbP,#bP #aP to x.
2° On receiving a Ready from x, and Welcomes from the neighbors,

reestablish the Hamiltonian neighborhood by performing a remove

the edge (P,bbP) and reassignments #bbP:=#bP, #bP:=#x. The
entry of x is now completed with the request token at x and the clean
fork at the Hamiltonian neighbor of x. Send a Complete message to
all.

3° The Entry process completes when a Thank message is received.
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Fig. 3;10 Message exchange in the Exit process of node x.

4° When all Entrys in waiting are processed, P is ready to fire for

itself.
For node Q which has received a Hello message containing #40ST:
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1° Send a Welcome message to x and the HOST. Then, an edge is
established between x and Q where one clean fork is assigned at the
side Q and one Request Token at the side x.
If HOST=aaQ, delete the edge between Q and HOST.
2° Modify the ANI according to the following rule.
case when #aaQ=#HOST:
Reassign, #aaQ:=#x;
Remove the edge(Q,HOST).
case when #aQ=#HOST:
Remove the edge(Q, aaQ);
Reassign, #aaQ:=#aQ #aQ =#x.
case when #bQ=H#HOST:
Remove the edge(Q, bbQ);
Reassign, #bbQ :=#x.
The Entry process completes when a Thank is received.
«Exit Protocol»
For node x which wants to exit: When x wants to exit, it sends an
Exit to itself, that is, puts the Exit into its queue. After the Exit, any
received message are responded with Sorry. Then, x behaves as he is
hungry in order to become enable, that is, requests all clean forks of the
incident edges. When x becomes enabled, the messages in the queue are
processed sequentially. When dequeue=Exit, x executes the following
protocol.
1° Send to each neighbor node an Exit message containing information ¢
defined below:
case when the neighbor node = bbx
assign, t:=#ax.
case when the neighbor node = bx
assign, t:=#aax.
case when the neighbor node = ax
assign, t:=#bbx.
case when the neighbor node = aax
assign, t:=#bx.
2° On receiving a Bye message from the neighbor, send back a Thank
message for acknowledgment.
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3° When the Thanks is sent to all the neighbor, the exit is completed.
For node @ which has received an Exit message from x:

1° Receive an Exit and store the information ¢.

2° Establish an edge (Q, ).

3° Remove the edge (Q, x) by transmitting a Bye message to x.

4° The exit is completed when a Thank is received.

3.6 Dynamic MUTEX Algorithm

We present a design of the dynamic MUTEX algorithm that links the

entry protocol that enables each autonomous node to enter the network,

the Distributed MUTEX enabling each node to join the MUTEX

process, and the exit protocol enabling each node to exit the network.
«Dynamic MUTEX algorithm for each node P »

1° When P wants to enter the network, choose a HOST and send an

Entry request message to the HOST and follow the Entry Protocol.
2° Once entered the network, follow the basic Chandy-Misra MUTEX

protocol.
3° When P wants to exit the network, send an Exit request message to

-itself and then follow the Exit Protocol.

The detail state transition diagram of the Dynamic MUTEX
Algorithm is depicted in Fig. 3.11, 3.12, 3.13, 3.14. The node travels
the diagram by starting from Entry, circling around the MUTEX cycle,
and reaching to Exit state.

The notation has the following meaning:

-MSG: message MSG is sent.

+MSG: message MSG is received.

MSG*: all message MSGs are sent to or received from all incident

edges.

+Hello( y): message Hello is received from y.

-Welcome: message Welcome is sent out.

-EntryProtocol: Entry Protocol is initiated.

+EntryProtocol(dequeue): Entry request message is taken out of the

queue and is processed in accord with the Entry Protocol.
+Fork*: all forks are received from neighbors.
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Fig. 3.11 State transition diagram of dynamic MUTEX algorithm
for node P.

+EntryProtocol(dequeue)*: Entry requests in the FIFO queue are

before Exit all processed.

enqueue: the received message is put into the FIFO queue.

dequeue: the message is fetched from top the FIFO queue.

Other messages are similarly interpreted, and hence their descriptions
omitted. The main diagram Fig. 3.11 is composed of the entry path, the
MUTEX cycle, the exit path, and the house-keeping message loops as to
be explained below.
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( Entry ’

+Sorry

( Host Selected )

+—Entry

+Sorry

-Entry

HOST Communicated

+Busy +Welcome(HOST)

@ntry AcceptecD
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y
(Neighbor Known) ) -Hello

-Hello*

(Neighbor Commnicated 5 ) +Welcome

+Welcome*

CNew Edges InstalD,

-Ready

HOST fires.
Node x entered
as Thinking State.

Fig. 3.12 State transition diagram of +EntryProtocol for node x.

(I) Entry path: An autonomous node can enter the network by
performing -EntryProtocol at the Entry state. See Fig. 3.12 for the
state transition diagram. The node is entered as Thinking state.

(2) MUTEX cycle: The node that has entered the network now
circulates around the MUTEX cycle containing the edge labeled by

+EntryProtocol(dequeue)*
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dequeue

dequeue
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Wait for New Wait for New
Edge install Edge install

+Ready(x) +Ready(x)

Neighborhood Neighborhood
Modified Modified
queue=EMPTY \ J queue=EMPTY

P:Fire Ready P:Exit Begins

Fig. 3.13 State transition diagram of -EntryProtocol(dequeue)*
for node P.

that represents repeat of the EntryProtocol applied to Entry messages
fetched from the queue until exhausted. The state transition diagram
is depicted in Fig. 3.13.

(3) Exit path: The node can exit the network by issuing Exit request
message to itself, which is put into the queue, and by traversing the
path to Exit state. The path contains edges labeled by

+EntryProtocol(dequeue)*
+ExitProtocol(dequeue),
where the latter represents application of ExitProtocol to the Exit
request message fetched from the queue. See Fig. 3.14 for the state
transition diagram.
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dequeue=Exit
Exit Begins

-Exit*
Wait for Neighborhood
modification
+Bye*
dequeue
Incident Edges Removed.
Exit Ready
-Sorry

dequeue=Empty

CExit Completes)

Fig. 3.14 State transition diagram of +EntryProtocol for node x.

(4) House-keeping message loops: The loop is a cycle of at most
two edges attached to a state or a composite of several states, that
performs a house-keeping task of the following:

1) (+Req, -Fork) loop at Thinking or Hungry sends back a cleansed
fork if the fork is dirty( recall the fork is dirty) upon receipt of the
request token from a hungry neighbor.

2) (-Req,+Fork) loop at Hungry performs just the opposite mentioned
above, seen from the hungry P itself.

3) (+dequeue,-Sorry) loop at the composite state including Exit
Completes in Fig. 3.11 informs, those wanting to enter, that
another HOST must be chosen because P itself is leaving the
network.

4) (+Entry(x),-Busy) loop at the composite of Enabled,Fire
Ready,Fired sends back busy-tone when called by those x wanting
the entry.

5) There are four loops at the composite of Thinking, Hungry, Exit
Waited. This composite state is a main waiting state where
messages needing cooperation come in.
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‘(+Hello(y),-Welcome*) loop cooperates y's entry, at non-HOST node,
~ by installing new edges for the modified Hamiltonian neighborhood.
(+Exit(y),-Bye*) loop cooperates y's exit by installing new edges for
restoring Hamiltonian neighborhood to be restored.

(+Entry(x), -welcome.enqueue) loop acknowledges request of y to act as
HOST for y's entry. This entry request is put into the waiting queue
for later processing.

3.7 Verification of Dynamic MUTEX Algorithm

A distributed algorithm based on message passing is interaction of

concurrent processes and best analyzed by the diagram of its state

transitions caused by issue/receipt of messages or internal
actions/evolutions.
The verification items of the algorithm are the following.

(1) Progress: The algorithm never reaches a dead state from where no
transition is possible in contrary to the specification.

(2) Fairness: Any one can enter/exit the network within a finite time.
Moreover, within the network, any one has the equal access to the
resource.

(3) Correct Implementation: Necessary and sufficient number of
states must be distinguished and defined. This induces, in a natural
way, design of message types and their task assignments. The
component processes must work correctly and their interactions must
achieve the specification without ill side-effects.

3.7.1 Progress Property

The progress property can be verified by checking the state transition

diagram on the following items.

(1) Every issued message must be received by the intended receiver and
vice versa. That is, (- MSG) must be matched by (+MSG) and vice
versa. The verification process is exhaustive but tedious check on
every message label on the edge. This has been done.

(2) The message scheduled to be issued must actually be issued. That is,
-MSG must take place. For example (-Req) at Hungry is capable to
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take place because a hungry node eventually possesses a request token
according to Chandy-Misra protocol. (-Welcome) at New Edge
installed is capable of taking place, because node P is in the idle state
and cooperative, and (+Hello( y)) contains all necessary node IDs for
installing new edges. The exhaustive check can be carried out on
every message label.

(3) The message scheduled to be received must be actually received. For
example (+Fork) at Hungry occurs eventually due to Chandy-Misra
protocol. (+Fork*) at Enabled means all forks are received from the
neighbor nodes, and occurs eventually because Chandy-Misra
protocol is progressive. (+Exit(y)) at neighborhood modified occurs
since node P is idle (hungry or thinking) and obliged to receive and
process any Exit message which contains all necessary node IDs to
modify neighborhood of the Hamiltonian circuit.

A special treatment is necessary for composite edges, shown by bold
lines in the diagram of Fig. 3.11, whose labels are: -

-EntryProtocol from Entry to Thinking, whose state transition diagram

is shown in Fig. 3.12;

+EntryProtocol(dequeue) from Enabled(or Exit & Enabled) to Fire

Ready(or Exit begins), whose state transition diagram is shown in Fig.

3.13;

+ExitProtocol(dequeue) from Exit Begins to Exit Ends, whose diagram

is in Fig. 3.14.

By checking the diagrams of Fig. 3.12, 3.13, 3.14 we can prove that
those are progressive and occur in a finite time.

(4) The message must contain enough information to cause the state
change, and the state change must settle in a finite time. Change from
Thinking to Hungry is internal action, and assumed to take place in a
finite time.

Now we are in position to conclude,

Theorem 3.2 Dynamic MUTEX algorithm is progressive and a node

takes a finite time to traverse from Entry to Exit if the number of the

MUTEX cycling (i.e. resource usage) is finite.

3.7.2 Fairness Property
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The resource usage takes place at node by node along the Hamiltonian
circuit. Hence one cycling is called the MUTEX round, and the cycling
time is called the round time. Fairness has three components, entry,
resource-usage, exit. The entry position is just before the HOST on the
Hamiltonian circuit with the lowest priority, that is, as the sink, and all
entries waiting are processed when the HOST is enabled and before the
HOST fires. Hence the entry succeeds within a single MUTEX-round
time. The resource usage is known fair due to Chandy-Misra protocol.
Similarly, the exit succeeds within a single MUTEX-round time.
Hence we can conclude,

Theorem 3.3 Dynamic MUTEX algorithm is fair to every
autonomous node, with respect to entry, resource-usage, and exit.

3.7.3 Correct Implementation of Concurrent Processes

Each node engages in one of four processes at any time instant; Idle
process, Entry process, MUTEX process, and Exit process, cyclically in
this order. The nodes are asynchronously operating one of these
processes disregards of others. Now a question arises, do they correctly
run as intended? We answer this question positively.

- First we note that MUTEX processes are serial in a sense that only a
single node has the highest priority in the message handling and such a
node moves along the Hamiltonian circuit.

Node P executes the HOST role only when it is enabled and before it
uses the resource for oneself or it executes its own exit process, where
the latter two are exclusive events. Exit process is executed only when
P is enabled. So in the whole network it is clear only a single process is
executing at any instant of time.

Theorem 3.4 The processes of Dynamic MUTEX Algorithm are
serialized and hence are correctly running as intended.

Serialization of the three processed is admittedly conservative and
deliberately adapted in order to avoid ill-effects of parallelization.
There is some room for parallelizing. Entry and Exit with respect to
MUTEX which introduces added complexity so not mentioned in this
dissertation.
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3.8 Concluding Remarks

A distributed network of autonomous nodes is characterized by
autonomy of the node, the variability of the network structure, and need
of explicit message exchange for information gain. In this chapter, we
have designed a dynamic mutual exclusion algorithm for distributed
autonomous environments based on Chandy-Misra protocol for diners
problem[13], which realizes a distributed implementation of the token
ring method[5]. We have obtained the communication feasibility
condition that makes mutual exclusion possible and proposed entry and
exit protocols for individual nodes.
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Chapter 4

Concurrency Analysis of Acyclic Graph
Evolution and Extension of Distributed MUTEX
to Multiple Shared Resource Cases

We discuss properties of acyclic graph evolution driven by node-firing.
We introduce a new notion "canonical circuit-cover”, and show the
condition that the maximum concurrency of an acyclic graph evolution
is no more than a given desired value, k. Using the theorem, the initial
acyclic graph can be established in which the maximum concurrency of
the acyclic graph evolution initiated is no more than k. A marked
graph, a subclass of Petri nets, is often utilized as a proof tool in
analysis.

From theoretical interests, we also consider a problem to establish the
initial acyclic graph for a given graph. To find a canonical circuit-cover
whose cardinality is & is difficult theoretically. In order to show this
difficulty, we define the decision version of the problem and show its
NP-completeness, and then we propose a method using a genetic
algorithm to solve it.

By using results of the concurrency analysis, the Distributed MUTEX
is extended to the multiple shared resource case. Entry & exit protocols
for the case are omitted since they can be extended straightforwardly
from those of the single resource case and are not important topics.

4.1 Introduction

We discuss in this chapter properties of acyclic graph evolution driven
by node-firing proposed in the previous chapter. The idea of the acyclic
graph evolution was originated in the paper [13] by Chandy and Misra.
(We in this chapter use a word "graph" for "directed graph" or
"undirected graph” if no confusion arises.)
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" Chandy and Misra proposed a mutex exclusion protocol for the single
shared resource in a distributed network. Before the algorithm starts,
acyclicity with single source/sink is virtually introduced, on a given
(bilateral) communication graph G which is tacitly assumed completely
connected, by communicating two special tokens (messages), one fork-
token and one request-token placed at the terminal nodes of each edge.
That is, the tokens are distributed over the edge set of the
communication graph G such that a directed graph G obtained from G
by replacing each edge by diedge from fork to request is acyclic. Hence
after, for each diedge, its start node is understood to possess the higher
priority for the shared resource usage than its end node. Since the edge
direction is acyclic globally, a total order relation is induced on the
graph, and hence only a single node becomes the source node. From this
singleness, the privilege for using the single shared resource can be
given to the source node. Just after releasing the resource after using it,
message exchange taking place between the source node and its neighbor
nodes triggers reversal of the directions of all the diedges incident to the
source node. In this chapter, we use a neutral term "to fire a source
node" instead of "to use the resource and release it". By the edge
reversal, the source node will turn into a sink node and a new source
node will emerge (note that only a single source node should be
appeared). This process of the source firing is to be iterated. The
algorithm ensures mutual exclusion with fairness and liveness. That is,
there exists an only single source node at any instance of the evolution
trajectory emanating from the given initial acyclic graph in which every
node can be firable(fairness) and deadlock cannot occur(liveness). We
must note that in the Chandy-Misra model a given graph is assumed
completely connected and hence any of its acyclic directioning produces
a single source (i.e., firable) node only.

We extended the Chandy-Misra model to allow the graph only
partially connected. An acyclic directioning of Chandy-Misra type on a
partially connected graph, in general, induces just a partial order
relation. In the partial order relation, multiple source nodes may appear
at some stages of an evolution of acyclic graphs. In the previous
chapter, we presented a topological condition and algorithmic schemes
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of the initial acyclic directioning that ensure exactly one source (i.e.,
firable) node at any instance of the acyclic graph evolution. This
extension leads to k-mutual exclusion problems in which k& resources
are available, each for exclusive use throughout the network nodes.
Some additional graph theoretical properties were presented as well,
which are interesting in its own right. A marked graph, a subclass of
Petri nets, is often utilized as a proof tool in analysis. There is a wealth
of net theory, contributed from Petri net community[31,39-49], readily
available for our research.

T. Murata et al [47-49] introduced the token distance matrix to be
used in concurrency investigation of marked graph and presented a
method for finding "optimum" initial markings to produce a desired
concurrency. In this line of thought, we present here the notion, first
proposed in author's paper{50], of canonical circuit-cover, discuss firing
concurrency (the number of firable nodes), and investigate topological
conditions for controlling the concurrency below a some fixed constant
k, at any instance of the evolution trajectory.

Before proceeding to discussion, we present an illustrative example of
an acyclic graph evolution for assisting readability of our presentation.
Example 4.1: We use in this chapter a neutral term "to fire a source
node" instead of "to use the resource and release it". In Fig. 4.1, 4.2,

and 4.3, the nodes represented by the shaded circle are sources and
firable. '

0,@
’ ‘ (a) Underlying undirected graph
oo

Fig. 4.1 Examplel: Evolution trajectory (bcde)*
Underlying graph is completely connected.
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. (a) Underlying undirected graph

Fig. 4.2 Example2: Evolution trajectory. (bcde)*
Underlying graph is NOT completely connected.
There is only single source at any stage of the evolution.

Fig. 4.3 Example3: Evolution trajectory b(cd)*.
Underlying graph is NOT completely connected.
Multiple sources exists at some stage and
all of them are fired simultaneously.

Fig. 4.1 shows an example of the Chandy-Misra model and its
evolution trajectory of acyclic graphs. Note the given undirected graph
in Fig. 4.1.(a) is completely connected. Fig. 4.1(b) presents an initial
acyclic directioning of the given graph from which a periodic sequence
of acyclic graphs evolves by source node firing. Note that any
acyclicdirection of the completely connected graph always produces a
single source. By the source-firing, the node 1 reverses the direction of
all its incident edges. Then the node 2 becomes a new source as shown
in Fig. 4.1(c). The evolution trajectory is represented by (bcde)* where
* denotes the repeated concatenation.
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" Fig. 4.2 and 4.3 show other examples. The underlying graph for
these examples is partially connected as shown in Fig. 4.2(a). Note that
there is just a single source at any instance of the evolution trajectory
(bcde)* originated from this particular acyclic direction of Fig. 4.2(b).
But in Fig. 4.3(b), the underlying graph is the same but the initial
acyclic direction is different on the edge <3,4> . This seemingly trivial
difference in the initial direction causes a great difference in the
evolution trajectory of acyclic graphs. That is, there can appear multiple
sources nodes at some instances even when the initial graph has a single
source. (Fig. 4.3 shows an example that all multiple sources fire
simultaneously. This firing rule will be defined as the unison firing in
Section 4.2.)

As far as the authors aware, the notion of acyclic graph evolution is
novel and the associated literature is almost non-existent even though the
acyclicity itself is well-known.

During course of investigation, we found the Petri net (marked
graph) model provides a good mathematical tool for stating and proving
dynamic behaviors but the acyclic graph model is more appealing to
wider audience. For this reason we decide that definitions and theorems .
should be stated in the acyclic graph model. We first formally define the
evolution model and describe the conversion rule of acyclic graphs into
equivalent Petri net in Section 4.2. In Section 4.3 we present graph
theoretical properties, and finally discuss constructive schemes of initial
acyclic directioning that ensures a stated concurrency. In Section 4.4 we
propose a method to design an initial acyclic graph for desired
concurrency. In Section 4.5 we extend the proposed protocol,
Distributed MUTEX, in Chapter 3 to multiple shared resource cases.

4.2 Basic Concepts and Notations of Acyclic Graph Evolution
In this section, we show basic concepts and notations of acyclic graph
evolution. We assume that the reader is familiar with graph and Petri

net theory ( see Refs.[29,30] for graph theory, and [31] for Petri nets).

4.2.1 Acyclic Graph Evolution
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A (undirected) graph is denoted by G(V,E), where V and E are the
sets of nodes and edges; if edge e is incident to node u and v, then it is
represented by the unordered pair of nodes <u,v>. Edge direction «
is a function that defines a direction on each edge in E. A directed
graph G(V,E) 1s a structure which consists of the sets of nodes V and
diedges E. We denote a diedge e directed from u to v by the ordered
pair e=(u,v). Subsequently, we denote G(V,E) by G%, or simply G if
no confusion arises where o is the edge direction for E.

When a directed graph does not contain any cycle, it is called acyclic
or acyclicly directed. Let *uz{wl(w,u)eE'}, u*={vl(u,v)eE}, for
each ue V. If [*ul=0(or lu*l=0), then u is called a source ( or a sink)
of G. If G% is acyclic, & is called acyclic directioning. Henceafter we
assume the edge direction o be acyclic unless otherwise stated.

Let éo be an initial acyclic graph and let SO(G,) be the set of the
sources in Gy. Since G, is acyclic, SO(G,)# @. Firing of the sources
in Sy(c SO(GO )) is an event in which the direction of every diedge
incident to S, is reversed. It is easy to show that the acyclic graph after
simultaneous firing of S, is acyclic again. Let f(G,,S;) = G,,,, for any
i, denote the graph after firing of a source set S;(c SO(G,-)) in Gi. All
nodes in s; are turned into sinks in f(G;,S;)=G,,,. We call a sequence
of G;, i=0,1,2,3,---, such that G, = f(G;,S;), S;cSO(G;) an
evolution trajectory of firing activity and denote it by tr(éo:d) A
G,G,G, ---, where o= So515, ---. The evolution trajectory takes a
different course when the source selection S,S;S, --- is made different.
The set of acyclic directed graphs appearing in tr(GO:O') is denoted by
#tr(éo :0). EV(GO)=U 0#tr(é():a) is called the evolution set emanated
from G,.

If the firing node set s; of each step of 0=.5,S5,5, --- uniformly equals
to SO(G,-) then we say o is in the unison firing mode(UF), otherwise in
the free firing mode (FF). We should note that in the unison firing
mode UF, only a single trajectory emanates from GO but infinitely
many trajectories in the free firing mode FF. When the unison firing

trajectory is infinite in length, it is necessarily periodic as to be proved
shortly.
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Lemma 4.1 Let us define that an evolution trajectory completes in

finite length iff SO(G,.)=¢ for some i. Then any evolution trajectory

emanated from an acyclic graph is infinite in length. In UF mode, the
trajectory eventually falls into a cycle.

Proof: The followings are true: ~

(1) An evolution trajectory tr(Gy:0) initiated from acyclic graph G
is infinite since SO(G,)=¢ for any i.

(2) The number of acyclic graphs based on G is finite.

(3) Let G be an acyclic graph in the evolution set #tr(GO 0). In UF
mode, the graph G,,, generated after firing of all the sources SO(G;)
in G, is unique.

Therefore, an evolution trajectory tr(G,:0) initiated from G, should

be periodic in UF mode. Q.E.D.

4.2.2 Petri net (Marked Graph) Representation

The firing activity of an acyclic graph can be equivalently representable
by that of a marked graph, a subclass of Petri nets, where each place has
at most one input transition and at most one output transition. For
simplicity, we use the directed graph expression of marked graphs
where a node becomes firable iff all of its input edges possess at least
one token. The marked graph corresponding to GO is denoted by
MG(G,MO) or MG, for short, where G is the directed graph and M,
is a marking, a placement of tokens, which expresses the initial edge
direction. A node of G is firable on M, when there is a token on every
incident edge of the node. Let us show the conversion rule of G, into
MG,: for each e=(v,u) in GO, it is replaced by the parallel of paired
diedges (v,u) and (u,v) in G of MG(G,M,). The direction of the
diedge in éo is translated into placement of the token. That is, the
diedge from v to u in éo is translated in G by a single token on edge
(u,v) and no token on edge (v,u). In both representations, it is meant
that the node v has a higher priority of firing than u, that is, v can fire
before u. Therefore the source nodes in G, are converted into the

firable nodes in MG(é,MO). Fig. 4.4 summarizes the conversion rule.
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O—5—0

L0

(b) MG

Fig. 4.4 Conversion Rule of G into MG

Note that a firing in M|, effects a change in M|, such that each token on

all the input edges of the firing node is removed and one token is added
on each of its output edges, resulting in a new marking M,. Therefore a

firing in MG(G,MO) is an event corresponding to one step move of
each enabling token across the firing node.

4.3 Concurrency Analysis of Acyclic Graph Evolution

Concurrency is the number of firable nodes in acyclic graph instance C_;i
of an evolution trajectory, |SO(Gi)!. In this section, we discuss

concurrency behaviors of firing activity in a trajectory of acyclic graph
evolution driven by the source firing. Concurrency analysis is of
primary importance for execution control of parallel / distributed
systems. K-mutual exclusion protocols should not allow more than %
nodes to be firable simultaneously at any instance. Concurrency
behavior is strongly dependent on the network structure. Given
(undirected) graph G and a positive number k, is it possible to find an
acyclic directioning that ensure k-mutual exclusion? When k=1, we
showed in Chapter 3 that if and only if there is a Hamiltonian circuit in
a graph, there exists an acyclic directioning of G that ensures the
concurrency of the evolution be exactly unity. To extend this result for
case k=2, we introduced in preliminary work [50] a notion of
canonical circuit-cover and show that an initial acyclic graph can be set
up for a given graph G to ensure the concurrency below k if there
exists canonical circuit-cover of cardinality £ for G. We will show that
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the decision problem of finding any canonical circuit-cover is NP-
complete.

The main analysis in this section is for the upper bound of
concurrency, but we also treat the lower bound. We are interested in the
lower bound from graph theoretical point of views. In concrete, we
discuss in this section the following firing concurrency bounds of a
trajectory of acyclic graph evolution in FF mode:

max_ 'SO(Q)I = The Upper bound of Concurrency in EV(GO),

G;€EV(Gy)

Urc(Go),
_ min_ ISO(G,- )I = The Lower bound of Concurrency in EV(GO),
G;eEV(Gy)

Lpc(Gy).

Definition 4.1 A circuit of length k(=2) in a graph G, ¢=(V_,E,),
IVCI = IEc] =k, is a subgraph of G such that there is a path on ¢ between
any two nodes in V_, and, for each node v; in V,, the number of its
incident edges in c(but not in G) exactly equals 2. ¢ oriented by S,
written as (c,f3), is a cyclic permutation of the nodes and the edges of ¢
in whose order a path goes through the nodes and the edges in ¢. There
are two orientations, clockwise and anti-clockwise.

In order for Chandy-Misra type 1-mutual exclusion to be feasible, the
graph G must possess a Hamiltonian circuit. Moreover, we introduce a
concept "circuit-cover”, for k(=2)-mutual exclusion, which requires
that each node is contained in a circuit. These suggest an assumption of
G that every node in G belongs to some circuit. In this chapter we treat
only a connected graph. Therefore we consider a connected graph G
such that every node in G belongs to some circuit. We call such a graph
"circuit-connected graph". The assumption will simplify a discussion,
theorem statements, and their proofs. Great deal this situation is
particularly the case when k=>2. Henceafter, we concentrate our
discussion on circuit-connected graphs unless explicitly stated otherwise.

4.3.1 Upper bound of Firing Concurrency in the FF mode

We first consider the upper bound of firing concurrency in the FF
mode. We introduced a notion of canonical circuit-cover[50]. Based on
this notion the initial acyclic direction can be constructed such that the
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maximum concurrency is bounded by the cardinality of the circuit-
cover. Before describing this notion, we introduce some additional
notations as necessity arises, but liberally use basic graph theoretical
terms.

We distinguish term "direction" from "orientation". The term
"direction" is used for "edge" as "diedge", on the other hand,
"orientation" is for "circuit" as "oriented circuit". But we have the
term, "dicircuit" composed of a sequence of diedges in the same
orientation. Since the orientation of an oriented circuit has no relation
with a direction on the edge in the circuit, we have to distinguish
"oriented circuit" from "dicircuit".

Example 4.2: Fig. 4.5 shows examples of an oriented circuit, a
dicircuit.

(a) Oriented Circuit (c,) 1-2-3-4-5-6-7  (b) Oriented Circuit (c, B) 1-2-3-4-5-6-7
on Undirected Graph on Directed graph

c

(c) Dicircuit 1-2-3-4-5-6-7

Fig. 4.5 Example 2: Oriented Circuit and Dicircuit
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Fig. 4.6 Example 4.3:"compatible”
(c1,B1) and (cp,Bp) are compatible.

Fig. 4.7 Example 4.4: A set of compatible oriented circuits.
{(c1,B1), (c2,B2), (c3,B3)} is not compatible but

{(c1,B1), (c2,B2), (c4,B4)} is.

Definition 4.2 Two oriented circuits, (c¢;,;) and (c,,5,) are said
compatible if the ordering of the nodes appearing in both ¢; and ¢, in
(cy,B;) is the same as that in (c,,[3, ).

Example 4.3: In Fig. 4.6, (c;,;) and (c,,,) are compatible.
Definition 4.3 Let QF ={(cy,B1).(cy,B2),- (¢, . Br)} be a set of
oriented circuits of undirected graph G, we say that the orientation,
B={B1.B,, By}, is compatible if any pair (c;,;) and (c;,3;) from
0F is compatible.

51



Example 4.4: In Fig. 4.7, {(¢c;.;),(¢5,5,),(c3,85)} is not compatible
but {(c;,B4),(¢cy,0,),(cy,B4)} is compatible.

Definition 4.4 Suppose graph G be circuit-connected. A set of
circuits of G, Q={c;,c,, --c;}, 1s said a circuit-cover of G if any node
v of G is contained in at least one circuit from €2 but no proper subset
of €2 has this property.

Definition 4.5 A node numbering 7 that assigns a unique positive
integer to each node of G is said compatible with an oriented circuit-
cover QF ={(c;,B1),(cy,B2), (¢, By} if sequence (N(v)),n(v,), -+
n(v,)) assigned to any c¢ in L, c={v;,v,,---,v,} is cyclically monotone,
i.e., for some cyclic permutation g of c={v,v,,--,v,}, 1(g(v)))<
n(g(vy)) <---<n(q(v,)) holds.

Example 4.5: In Fig. 4.8, the numbering is compatible with (c;,f,),
(c3.8,), and (c4,B4).

6

@ Q7@

(8 9

O O -O—0
4 A 10
(ca,B4)
A N
U/ J
3 11

(Cl’ﬂl):lﬂ 4: 5, 6’ 7: 8
(c2:$2):2,6,7,8,9,10
(C4'ﬁ4): 3? 41 5’ 677, 81 9, 10, 11

Fig.4.8 Example 4.5: Canonical Node-Numbering.
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1 2 3 6 7
16 ? (c1, B1)
>

15 14 @————@

Fig. 4.9 Example 6: Circuit-cover {(ct, B1), (c2, B2)}
is not canonical

Definition 4.6 Suppose G be circuit-connected. Let Q ={c;,c,, - ¢;}
be a circuit-cover and its orientation Qf = {CeysB1)s (a5 B5) - (cp s B )}
be compatible. An edge may or may not be contained in ¢; in Q. If an
edge is not be contained in any c;, remove it from G. Let G(cjc, -+~ ¢;)
be the graph generated by this removal. Each edge in G(cic, ---¢;) is
made uniquely directed by the compatible orientation of QF. Now
(¢;,B;) becomes a dicircuit ¢;. The result is a directed graph denoted by
G(cic, -+ ¢)-

Definition 4.7 Let Q={c¢,c,,"-:c;} be a circuit-cover and its
orientation Q° be compatible. Q7 is said "canonical" if there exists an
acyclic graph A which is made by removal of a certain edge é,=(4;,7;)
from each dicircuit ¢ of G(G,G, -6, ), A=G(E\Cy -+ T, )-{61,85,..,8; ).

We denote a path ¢; —¢; by (v, =V;,v;,v;,,~--v; =i;), where v; is
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the head node of the orientation. We call the edge set, {&,,€,,...,6;}

canonical feed back edge set.
Example 4.6 For a graph shown in Fig. 4.9, a circuit-cover is not
canonical since there does not exist an acyclic graph A as defined in
Definition 4.7.

Now we show two lemmas before a main theorem.
Lemma 4.2 Let G be a circuit-connected graph. If G possesses a
canonical circuit-cover, QP ={(c;,B1),(cy,B2),-(cy, Br)}, then there

exists a node-numbering scheme 1) of G, compatible with QP

Proof: We construct a particular node-numbering 7], that is known as
the topological node number of acyclic graphs, step by step as follows:
1° Consider A as defined in Definition 4.7. Initially all nodes are

unassigned. Let A be A, and i =0.
2° Find the set of sources of Al-, SO;. Assign remaining young positive
integers in any manner to each node in SO,. A, :=A; — SO, and stop
if A,,; is null
3° return to 2° with i:=i+1. _
We prove the node-number 7} so constructed is indeed desired one.
Let &=(4;,9;), ¢;—&=(v;, =V;,v;,v;, v, =1;) be node expression
where arrangement (v, =7;,v;,v;,-+,v, =#;) in accord with ¢;'s
orientation f3; constitutes a dipath. All we have to show is monotonicity,
ﬁ(v,-o )< f](v,-l <o < ﬁ(v,-r ).
The inequality comes from well-known property of the topological
node numbering: It is clear from the above construction that v € SO,-O,

vileSOil, ey W

i, €50, ,, v €50, and index inequality

g <ij <--- <, hold.rSince the younger node number is assigned to the
younger indexed source set, the index inequality implies the desired
monotonicity. Q.E.D.
Lemma 4.3 Let QF ={(c,,B,),(cs.B,),---(c;,B;)} be a canonical
circuit-cover of circuit-connected G and let ) be a compatible node-

numbering as constructed in Lemma 4.2. Introduce to each edge
e=<u,v> of G direction from u to v if f(u)< f)(v) holds. Then the

resulting directed graph G is acyclic.
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Proof: Once a unique node-numbering is introduced and the edge
direction is defined as in the lemma, a dicircuit (or a cycle) can not
appear in G. Suppose & = (Vi,v9,-- V) be a cycle. Then it demands
Nvy) < A(vy)<---<f(v,) and Av)<f(vy), which is self
contradictory. Q.E.D.
Definition 4.8 The node-numbering 7] so constructed in Lemma 4.2
is said canonical, and the acyclic graph G so generated by 7 is also said
"canonical".

Theorem 4.1 Suppose circuit-connected G possess a "canonical”
circuit-cover of the compatible orientation, QB = {CeysB1).(e5,87)s
(¢, Bi)}- Then we can design an acyclic graph éo such that the
maximum number of firable nodes at any instance of the acyclic graph
evolution starting from éo is at most k, under any free firing mode.
That is U FC(G) = k. Moreover, unless there exists a feed back edge set,
{61,85,....,6,}, in G(G\&, -+~ &) such that the end node ¥, of each edge
é; is unique, the concurrency cannot be k by any firing schedule.
Proof: By Lemma 4.2, we have a compatible node-numbering 7]. Let
GO be the canonical acyclic direction of G induced by 7} as constructed
in Lemma 4.3. Let Gj be the j-th acyclic graph of a given free firing

evolution.

Let él::(ﬁl’ﬁl)’ C; —é: Vv :6 1%

1 Iy 1’ il’v ",V'

Iy

expression where arrangement v, =9i,v,~l,v,-2,---,v

o =1;) be node

i =4;) 1n accord
with ¢;'s orientation f; constitutes a dipath. As shown in Lemma 4.2,
ﬁ(vi0)< ﬁ(v,-l)<~--< f](vir) holds. Thus there exists a single source
node ¥; in each oriented circuit in QF when G, is generated.
Moreover, only single edge, that is, €; in an oriented circuit ¢; has the

direction opposite to the orientation f3; in G, and é; is connected to the
source node ; of oriented circuit ¢;. By firing of the source of c;, the
two incident edges in ¢; reverse their directions. Then only single edge

in the circuit ¢; has the direction opposite to f3; in Gy. This means there
is only one source node in each circuit ¢; at any time. Since node v

cannot be firable in G; unless v is a source simultaneously with respect

to individual oriented circuit in QP that covers v, the number of the
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sources in éj is necessarily not larger than the cardinality of QF, that

1s, k. .

Suppose there exists no canonical feed back edge set, {¢,,é,,...,¢;}, in
G(G,C, --- ;) such that the end node ¥; of each edge é; is unique. Then
there is no initial acyclic graph with k source nodes, which means that
no acyclic graph reachable from an initial acyclic graph has k source
nodes. Q.E.D.

Theorem 4.1 says that if we find a canonical circuit-cover of a given
graph with the feed back edge set, we can set up an initial acyclic graph
such that the concurrency of the evolution trajectory is bounded by the
cardinality of the circuit-cover k.

Example 4.7: Fig. 4.10 shows a process of canonical acyclic
direction.

The next theorem gives a method to find a circuit-cover, say the
depth first search.
Theorem 4.2 Let G(V,E) be a circuit-connected graph. The
maximum cardinality of canonical circuit-covers is |E|-|VI+1, that is,
Urc (GO) < |EI-IVI+l, where Gyis generated by the canonical
numbering as stated in Lemma 4.3. By the Depth First Search (DFS) we
can construct a initial acyclic graph Gy with Upc(Gy)< |EI-IVI+1 in
O(|V|+|E]) time.
Proof: We show that at most |EI-I1VI+1 circuits can cover all the

edges. Let |El-IVI+1=k.Then these k circuits can cover all the nodes.
Suppose at least A(>k) circuits C={c;,c,,~,c,} are needed for

covering all the edges in G. Then, there exists an edge ¢;, i=1,2,-~, h ,
not contained in any circuit ¢;, j #i. Now remove such edges from G.
Let C’={cp.1,Cpsns »Cper} be the set of the remaining circuits of the
remaining graph G’. If C’#J, remove edges so that the graph after
the removal become a tree of G. All the removal edges must compose
the set of chords for the tree. However, the cardinality of a chord set is
k.We have now contradiction.

By DFS we can find a fundamental circuit set FC ={c;,c;,...,¢;} in
which each visited node is numbered a positive integer in ascending
order. Note that the numbering is compatible. A subset of FC, €2, is a
circuit-cover of G, that is, every node is contained in some circuit of
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Fig. 4.10 Example 4.7: Process of Canonical Acyclic Direction
: Source Nodes.
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Q. Let Q={c; ,c; ,....c; } and let QP ={(c;,B;),(c3,B,),(c;.. By )} be
a canonical circuit-cover in which each orientation ,B,-j is the same as the

ascending order of the node numbers in Ci; By removal of the chords,

found in the DEFS, we can obtain a tree, that is an acyclic graph.
Therefore € is a canonical circuit-cover and its size below |El-IVI]+1.
Note that we do not need to construct £ from FC so as to set up the
initial acyclic graph GO since the numbering is canonical. Therefore we
can obtain G, from G in O(V|+|E|) time, which is the time
complexity for DFS[29], since the edge directioning based on the
numbering requires only O(|E)|). : Q.E.D.
For a given graph, the problem to find a canonical circuit-cover with
the minimum size is of prime importance but its computational
complexity is suspected NP-hard. We define the following decision
problem CC(k) which associates with just circuit-cover but not
canonical one and show its NP-completeness.
Definition 4.9 A decision problem of Circuit-Cover, CC(k), is
defined as follows:
Instance: A circuit-connected graph G, a positive integer k.
Question: For a given graph, is there a circuit set in which every node
belongs to at least one circuit from the set whose cardinality is not
greater than k 7
By the above definition we can easily know CC(1) is Hamiltonian
Circuit problem, HC.
Theorem 4.3 The decision problem CC(k) is NP-complete for a
circuit-connected graph.

Proof: It is easy to see that CC(k) € NP, since a nondeterministic

algorithm needs only to guess a subset V; in which UV; =V and an

ordering in each subset and check that all the required edges connecting
adjacent nodes belong to the edge set E in polynomial time. Let us
transform HC to CC(k). Let G(V,E) be an arbitrary instance of HC.
We will define the instance of CC(k), G'(V',E’). We prepare k
isomorphic graphs of G(V,E), G,,G,, --,G,. Choose two nodes each

from the graphs G;,2 <i<k—1, denote the nodes by v; and v;, and
one node each from the graphs G;, i=1,k, v{ and v;. Now we define
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the instance of CC(k), G'(V’,E’), connecting all the graphs G,
1<i<k by identifying v; with v}, for 1<i<k-1. An instance of
CC(k) is generated in polynomial time since k is a constant. If there
exists a Hamiltonian circuit ¢ in G, then each G; has a Hamiltonian
circuit ¢;. Therefore G’(V’,E’) has a circuit-cover Q ={c|,¢,,...,¢; }
where 1Ql=k. Conversely, suppose G'(V’,E’) has a circuit-cover
Q={c,cy,...,c;-} where 1QI=k’<k. Since k=21 and G’(V’,E’) has
k-1 cut nodes and no circuit across G; and G,,, is possible, 1Q2l=k and
each G; has a Hamiltonian circuit ¢;. Therefore G has a Hamiltonian
circuit. - Q.E.D.

By Theorem 4.3 it is difficult to find a circuit-cover with the desired
cardinality. It should mean that the problem for canonical circuit-cover
is also difficult.

4.3.2 Lower Bound of Firing Concurrency in FF mode
Knowing an upper bound of firing concurrency, our interest now shift
to its lower bound. We show a theorem which states Lp-(Gy)=1. The
theorem is proven by using properties of marked graphs. We need some
preparation to state it.

The shortest token-distance matrix of a marked graph MG is an
nXn symmetric matrix D =[d;;] defined by:

min M (13,-]- ): if directed path 13,-1- exists fromnode i tonode j.
d; = oo :otherwise,
0 :ifi=j

where M (f’ij) is the total number of tokens on dipath 13,-j in marking

M . Then we have the following lemma by [31].

Lemma 4.4[31] A node j is firable under a marking M if and only if
every element of the j-th column of D(M), except its diagonal, is
positive.

When node i fires, the shortest token-distance matrix of MG(G,M )
changes itself as follows: Let node i be fired in marking M, whose
shortest token-distance matrix is D(M). Then the new distance matrix
D(M") after i's firing is obtained by: _

(1) subtract 1 from each element of the i-th column of D(M).
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(2) add 1 to each element of the i-th row of D(M).
Theorem 4.4 Let G be circuit-connected and let GO be any of its
initial acyclic direction. Then, Lp-(Gy)=1.
Proof: Let MG, be the marked graph expression of GO. Since MG is
strongly connected, the shortest token distance matrix of MG, does not
include any infinite element. Let |SO(MG)| be the set of firable nodes
of MG.

i) Suppose that ISO(MG)l=k(=2). Choose arbitrarily one node s
among k firable sources. Keep firing other firable nodes except s, then
the firing eventually comes to stop. To prove this, let M’ be any
marking reachable from the initial marking M. Then se SO(MG")
holds, since the directions of all the incident edges of s are never
changed. If SO(MG’) contains node v other than s, continue firing v.

Since firing v reduces all elements of v-th column of D matrix by one,
eventually d; for all i will be reduce to zero. Then, s becomes the only
source.

ii) Suppose that SO(MG, )= ¢ for some MG’, that is, there is no
firable node in MG’. This is contradiction to the fact that MG, is live.

Therefore, Lp-(G,)=1. QE.D.

4.4 Method to Design Initial Acyclic Graph

In this section, we propose a method for design of initial acyclic graph
for desired concurrency. The method proposed in this section is
composed of two steps generally, to find a compatible circuit-cover,
QF = {(cy,B1), --(c.By)}, and to find a feedback edge set, F, |FI<k.
Since the problem to find a (compatible) circuit-cover is NP-hard, there
must not exist deterministic polynomial time algorithms for it.
Therefore we propose, in Section 4.4.1, a method applying genetic
algorithms to find a compatible circuit-cover.

For a general directed graph, the problem to find a feedback edge set
with the desired cardinality is NP-hard. However, for directed graphs
based on compatible circuit-covers generated in the step 1, this problem
is not NP-hard. We show, in Section 4.4.2, we have a polynomial
deterministic algorithm for the problem.
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4.4.1 Method to Find Compatible Circuit-Cover

In this subsection, we propose a method to find a compatible circuit-
cover applying genetic algorithims. We explain our method by dividing
into the following five steps of genetic algorithms.

(1) Coding of Circuit-covers

Using the GA method, we have to first decide how to map circuit-
covers in searching space to chromosomes in GA space, that is, coding.
We describe coding here.

Circuit-covers are represented by two tables, the node table and the
edge table in a GA space. A row vector of the node table corresponds to
one circuit. A circuit-cover is composed of all the row vectors. Each
entry of a row, corresponding to a node in the graph, shows the order
of the node in the corresponding circuit. We can construct a circuit-
cover by tracing the orders. The edge table is prepared to check
efficiently the compatibility between two circuits. A row vector of the
edge table also corresponds to one circuit. Each entry of a row,
corresponding to an edge in the graph, has one value of 0, 1, -1. It
depends on whether the edge is directed from the smaller of the node
identifier to the other, or opposite direction, or not included in the
circuit, where the comparison of node identifiers is based on the
alphabetic order.

Example 4.8: Examples of coding for a given graph are shown in Fig.
4.11.

(2) Initial Population
In the previous section, we showed that by the Depth First Search (DFS)
we can construct an initial acyclic graph GO with the cardinality no
more than |El-IVI+1 in O(V|+|E]) time. Therefore, by one execution
of the DFS, we can obtain one compatible circuit-cover with the
cardinality no more than |EI-IVI+1. We generate, as the initial
population, compatible circuit-covers of the number of the population
size by the DFS in which it chooses randomly one, if multiple choices,
at each node.

«Generating Initial Population»
1° By the DFS, number to each node of a given graph.
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cl
c2
c3

|la b ¢ d e £f g h i j
cd 2 1 3 4 5 6 7
c5 11 2 3 4 5 7 6
cb 1 4 2 3

(b) Compatible Circuit-cover Cp & Its node table.

Fig. 4.11 Examples of Compatible Circuit-covers
and Node Tables

2° Make the node table and the edge table with respect to the

numbering at 1°.
3° Return 1° if less than the number of the population size.
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Fig. 4.12 Compatible Circuit-cover C3 & Its node table.
Crossover result between C1 and C9 in Fig. 4.11.

(3) Crossover
The crossover operation is as follows:
«Crossover»

1° From the GA space, choose randomly two chromosomes. Let us
denote them by P;, P,.

2° From P,, choose randomly one row vector, that is, one circuit. Let
us denote it by c.
3° Collect from P, all the circuits that are compatible with c;.
4 Collect from P, all the circuits that are compatible with the circuits
collected at 3°.
5° Let c¢; and the collected circuits at 3° and 4° be in the set s.
6° Construct a compatible circuit-cover ¢, from s.
7° Change the roles between P, and P, and similarly construct c,.
Example 4.9: Fig. 4.12 is a result of the crossover operation between
two chromosomes in Fig. 4.11(a), (b).
(4) Mutation
The mutation operation is as follows:
«Mutation»
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1° From the GA space, choose randomly one chromosome. Let us

denote them by P.

2° Reverse the direction of every edge.

(5) Fitness Function

We use the following function as the fitness function:
fF(C)=IEI-VI+1 - the number of the circuits.

By the proposed method we can obtain compatible circuit-covers
QP = {(cy5By),(cy,B), - (ck, By )} for a given graph G(V,E). Then we
construct the directed graph 6(6162 -+ C;) from QP and G(V,E) (See
Definition 4.6).

4.4.2 Method to Find Feedback Edge Sets
For a general directed graph, the problem to find a minimum feedback
edge set is known to be NP-hard[23]. However, for planar graphs the
problem is solvable in polynomial time. In this section we show, for a
directed graph based on compatible circuit-covers, the problem is in the
class P though not planar graphs, that is, there are polynomial time
algorithms.
Theorem 4.5 For a directed graph based on a compatible circuit-cover
with its cardinality k circuits, the problem to find a feedback edge set
with the cardinality k is in P.
Proof: There are at least k circuits on the directed graph. A feedback
edge set should include an edge in each circuit of the circuit-cover. All
we have to do is to check a set that includes just one edge from each
circuit. The number of such sets is less than 1 EI*. Since & is a constant,
we can solve the problem in polynomial time. Q.E.D.
For a directed graph based on a compatible circuit-cover, we can
find, in polynomial time, a feedback edge set with the cardinality k if
exists. Unless there is a feedback edge set with the cardinality & in the
directed graph, we can know the fact in polynomial time also. The later
case requires to try to find a feedback edge set again for another
directed graph. Therefore, the first step of our method should generate
more than one directed graphs based on compatible circuit-covers. The
GA method of the first step satisfies the requirement.

64



4.5 Mutual Exclusion for Multiple Shared Resource Cases

In Chapter 3, we have proposed a mutual exclusion protocol for a single
resource case, Distributed MUTEX. In this section, we extend the
protocol to multiple shared resource cases using the results in Section
4.3 and 4.4.

[Mutual Exclusion Problems] Let us consider a network
environment N =(G,R,U), where G =(V,E) represents the network
structure, R the set of the shared resources, and U the resource
requirement list. Then, design an initial acyclic graph such that the
Distributed MUTEX works well under N =(G,R,U).

In this section, we consider the cases of the shared resources, (1) the
single kind and the single quantity (given in Chapter 3), (2) the single
kind and the multiple quantity, and (3) the multiple kinds and the single
quantity. '

(1) Single Kind and Single Quantity

This case is represented by R={r}, Irl=1, U ={U,}. Without losing
generality, we assume that every node uses the resource r, that is,
U, = V. The solution is given as a corollary of Theorem 3.1.
Corollary 4.1 Let us consider a network N =(G,R,U), R={r},
Irl=1, U={U,}, U, =V. We can have an initial acyclic graph such that
the Distributed MUTEX works correctly under N =(G,R,U), if and
only if there exists a Hamiltonian circuit on G =(V,E).

(2) Single Kind and Multiple Quantity

This case is represented by R={r}, lrl=k(=2), U={U,}. Without
losing generality, we assume that every node uses the resource r, that
is, U, = V. The solution is given as a corollary of Theorem 4.1.
Corollary 4.2 Let us consider a network N =(G,R,U), R={r},
Irl=k(=2), U={U,}, U, =V. We can have an initial acyclic graph
such that the Distributed MUTEX works correctly under N =(G,R,U),
if there exists a canonical circuit-cover with the cardinality k,
QP ={(c;,B1),(c2.B,), (¢ Br)} on G =(V,E).

(3) Multiple Kinds and Single Quantity
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This case is represented by R={r;,ry,....,r;}, U={U, Ir; € R}, Ir;l=1,
U, cV, i=12,..,h. The solution is given as a corollary of Theorem

4.1.
Corollary 4.3 Let us consider a network N=(G,R,U), R=
{risrgseesry), U={U,Mr; e R}, Inl=1, U, cV, i=12,...h. We can

have an initial acyclic graph such that the Distributed MUTEX works
correctly under N =(G,R,U), if there exists a canonical circuit-cover
with the cardinality k, Qﬂ={(cl B1)s(cy,B0), (e, i)} on G=(V,E),
where each oriented circuit (c;,[3;) is composed of the nodes in U, and

the edges needed for the circuit.

4.6 Concluding Remarks

We have analyzed concurrency of an acyclic graph evolution from
graph theoretical point of views, and investigated topological conditions
for assuring the number of source nodes less than or equal to k using a
new concept, canonical circuit-cover. We have showed that CC(k), "For
a given graph, is there a circuit set in which every node belongs to at
least one circuit from the set whose cardinality is not greater than k ?",
is NP-complete, proposed a method to find a canonical circuit-cover
using a genetic algorithm. Moreover, we have extended the Distributed
MUTEX to the multiple resource case.
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Chapter 5

Adaptation of a Genetic Algorithm to Gender-fair
Stable Marriage Problems

We consider the stable marriage problem. Gale and Shapley originally
proposed this problem in which two groups to be matched are
represented by a men group and a women group. Real applications
range over matching software processes to CPUs, matching autonomous
robots to battery charger devices, and matching members of two sets of
autonomous robots to each other for pairing up in a cooperative work.
In each case, preference lists may be constructed according to
environment parameters such as cost, distance, capacity, and efficiency.
The stability is evaluated by monitoring various properties of the
environment.

In this chapter, we consider a gender-fair matching in the stable
marriage problem. The gender-fair stable matching defined in this
dissertation has the property that the sum of partners' ranks for
individual men in their preference lists is as close as possible to the sum
of partners' ranks for individual women in their preference lists. The
gender-fair stable marriage problem is one of the important open
problems among stable marriage problems. The main result consists in a
procedure constructed for applying a genetic algorithm (GA) to the
gender-fair problem, in which the gender-fair marriage problem is
transformed into a graph theoretic problem. This graph theoretic
representation is more amenable to the application of GA, since it
admits easier coding, and more efficient definition of genetic operators.
Computer experiments confirm the effectiveness of the GA solution.

5.1. Introduction

We consider the gender-fair matching in the stable marriage problem.
Gale and Shapley introduced this problem in 1962 in their seminal
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paper [17] "College Admissions and the Stability of Marriage". This
problem must be regarded as a fundamental problem of resource
management, such as job assignment in employment markets, dancing
pairs of boys and girls, software processes and CPUs, autonomous
robots and battery charger devices, even members of two sets of
autonomous robots pairing up for cooperative work, and many other
combinatorial problems. The most famous application is to match, as
interns, graduating medical students with hospitals in USA. Many
researchers in computer sciences, mathematics, economics, and
operations research dealt with this problem in various ways [18,19].
There are many variations of the basic problems, a marriage instance of
unequal size, declaration of unacceptable partners, existence of
indifference, and so on [18].

The basic problem is explained as follows: We consider two sets of
equal size n, the man group and the woman group,

m={m;,m,,...,m,}
w={w;,wy,....,w, }.

Each member in both sets possesses a strictly ordered preference list
PL, containing all the members of the opposite sex. Let p be a person
(man or woman) and g, r be members in the opposite sex of p. A
person p prefers g to r if g precedes r on p's preference list. Two
pairs (m;,w;) and (m;,w;) are said to be "unstable” if conditions

m; prefers w; to w;, and

w; prefers m; to m;

hold. When unstable, there is a high probability of break-up and a new
pair formation (m;, wj). A matching M ={(m;,w;),(my,wy),...,
(m,,w,)} is said to be "stable" if no two pairs in M are unstable.
Example 5.1 An instance of the problem is shown in Fig. 5.1. For
example, the top of m;'s PL is ws, the second w,. The top of w,'s PL
is m,, the second my, and so on. Let

M, ={(1,1),(2,5),(3,2),(4,3),(5,6),(6,8),(7,7),(8,4)}, and

M, ={(1,5),(2,1),(3,2),(4,3),(5,6),(6,8),(7,7),(8,4)}.
Since pairs (1,1),(2,5) are unstable, matching M, is not stable. On the
other hand, since no two pairs in M, are unstable, M, is a stable

matching.
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' Gale and Shapley presented an algorithm to find a stable matching in
their paper [17]. The stable matching found by their algorithm is
extremal among many (for the worst case, in exponential order) stable
matchings in such that each member in the male group gets the best

ms2864173 wi24583716
my14362785 w74163528
m3y25743186 w313748256
ms3 4518276 wa86471352
ms15674382 wsd43165287
med 1857632 we31756248
m17546283 w;46578132
mg4 6857312 W52618473
(a) Preference List PL

Mo = {(15), (2,3, (3,2, (43), (5.6, (6,8, (77), (84)}
My =1{(15), (2,), 3.2, (43), (5,7, (6.8, (7.6), (84)}
M; ={(1,2), (2,), (3,3, (43), (5.9, (6,8, (17), (§4)}
M ={(15), (2,), (3,2, (43), (5.8, (6,7, (76), (8§4)}
My ={(12), (2,), (3.3, (43), (5,7, (6,8, (76), (§4)}
Ms ={(12), (2,3, (3,3, (45), (5.6, (6,3, (77), (84}
Ms = {(1,2), (2,), 3.3, (43), (5.8, (6,9, (76), (84)}
M7 ={(10), (2,), (3,3, (43), (5,7, (6,8, (72), (§4)}
Mg = {(12), (2,), 3,3, (45), (5,3, (6,8, (76), (§4)}
My ={(16), (2,D, 3,3, (43), (5.8, (6,7, (72), (84}
Mio={(16), (2,D, 3,3, (45), (5,3, (6,8, (72), (84)}
My =1{(12), 2,D, (3,3, (45), (5,8, (6,7, (76), (§4)}
Miz={(13), (2,), (3,6, (45), (5,3, (6,8, (72), (§4)}
M;3=1{(1,6), (2,], (3,3, (45), (5.8, (6,7, (72), (§84)}
Mia={(13), (2,, 3.9, (45), (5.8, (6,7, (72), (84)}
(b) All Stable Matchings
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sm sSwW  sm+sw Ism-swi

My : 13 25 38 12
M, 17 23 40 6
M, 15 22 37

M;:22 20 @ 42 2
My 19 20 39 1
Ms :20 19 39 1
Mg 124 17 41 7
M, 122 17 39 5

Ms 121 17 41 7
My :27 14 41 13
Myg: 27 14 41 13
My :29 14 43 15
My : 34 12 46 22
Ms3: 32 11 43 21
Mi4: 39 9 48 30

(c) Evaluations

Fig. 5.1 Instance of Size 8

partner over all stable matchings, and then each female gets the worst
partner. We say Gale-Shapley algorithm can search the man-optimal(or
woman-pessimal) stable matching. On exchanging each other's role
between men and women, this same algorithm produces the woman-
optimal(or man-pessimal) stable matching. Therefore it is quite
interesting to find a fair stable matching(fair to the both genders),
which is listed in [18,19] as one of important open problems related
with the stable marriage problem, and there are no known polynomial
time algorithms for it.

If we are searching a stable matching with a particular property, like
gender-fair, then a brute force algorithm that examines all stable
matchings requires exponential time complexity in the worst case since
the number of stable matchings can grow exponentially with the group
size of the marriage instance [18]. In [20] an algorithm is proposed to
find an "egalitarian" stable matching which minimizes the sum of the
partner's preference rank(or position) in each person's PL. However, it
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is still possible for one gender to fare much better than the other in the
egalitarian stable matching.

We in this chapter define and discuss a gender-fair stable matching
that possesses the fairness property, that is, the sum of the men scores
(rank of the partner in PL) is as close as possible to the sum of the
women scores.

Example 5.2 All stable matchings of the marriage instance in Fig.
5.1(a) are shown in (b). Fig. 5.1(c) shows score evaluations of each
stable matching. The column indicated by sm (sw) represents the sum

of the rank of every man's (woman's) partner in his (her) preference
for each matching. M, is man-optimal since it minimizes sm and

maximizes sw. On the contrary, M;, is woman-optimal. M, is the
solution of the egalitarian stable matching since it minimizes sm + sw.
M, and M are the gender-fair stable matchings since they minimize
lsw-sml. Note that in general the egalitarian stable matching is not
gender-fair.

In this chapter, we present a method for adapting GA to the gender-
fair stable marriage problems. The performance evaluation by
computer experiment shows that for randomly generated marriage
instances, the GA obtained the best solutions with high probability.

In Section 5.2 the preliminaries for this problem are given. Almost of
all contents in Subsection 5.2.2 are from the book [18]. In Section 5.3,
the main of this chapter, we give a method using a genetic algorithm
(GA) for the gender-fair problems, that is, propose a method for
adapting GA to the problem. In the method we transform the gender-
fair stable marriage problem into combinatorial problem of graphs.
This transformation makes application of GA easier and more effective.
In Section 5.4, the performance of the GA solution is evaluated with
computer experiment. Our approach provides a good example of GA
strategy in that GA should be applied, not to the original but to the
transformed problem of combinatorial natures.

5.2. Preliminaries
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In this section, the preliminaries of this chapter, we define formally the
gender-fair stable matching and summarize one of the most notable
known results of the stable marriage problem, a lattice structure of all
stable matchings, described in [18]. In the next section, we transform the
gender-fair stable marriage into graph problem using the properties of
the lattice structure.

5.2.1 Gender-fair Stable Matching
As stated in the previous section, the number of stable matchings can
grow exponentially with its size n in the worst case. The Gale-Shapley
algorithm finds the man( or woman)-optimal stable matching over all
stable matchings. We in this chapter are interested in the gender-fair
stable matching in which the sum of the man scores is as close as
possible to that of the woman scores.

We define the man score, sm(M), and the woman score, sw(M), in
the stable matching M as follows:

sm(M)A Y mr(m,w)
(mw)eM

sw(M)A Y wr(m,w),
(mw)eM
where mr(m,w) means the rank of w in m's PL and wr(m,w) the rank
of m in the w's PL. Then, the man-optimal matching minimizes sm(M)
and maximizes sw(M) over all stable matchings. The woman-optimal

matching does the reverse. Moreover we define the score of matching
M, s(M), to be
s(M)Asw(M)—sm(M) .
We now can define a gender-fair matching.
Definition 5.1 Let the gender-fair stable matching be the matching M
giving
min|s(M)),

where M is the set of all stable matchings.
5.2.2 The Structure of All Stable Matchings
In [18,19] it is shown that the set of all stable matchings forms a

distributed lattice under a natural ordering relation, and that the man-
optimal and the woman-optimal matchings represent the minimum and
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the maximum elements of the lattice, respectively. Therefore Gale-
Shapley algorithm can find the extremes of the stable matchings, the
man-optimal or the woman-optimal. The other stable matchings are
situated between these two extremal matchings in a lattice structure to
be explained shortly. We are now interested in gender-fair stable
matchings that should be located in the middle of the structure.
Definition 5.2 Stable matching M is said to dominate stable matching
M’ represented by M <M’, if every man either prefers the partner in
M to in M’ or has the same partner.

Theorem 5.1[18,19] For a given instance of the stable marriage
problem, the partial order (M, <) forms a distributive lattice, with the
meet and join of M and M’ denoted by M AM’ and M ~v M’, where
MAM (MvM’)is the stable matching in which each man receives
the better (poorer) of his partners in M and M’.

As described above, the man-optimal matching and the woman-
optimal matching represent the minimum and the maximum of the
lattice, respectively.

Example 5.3 The lattice structure of the instance in Fig. 5.1 is shown
in Fig. 5.2. Each stable matching is described by a vector of length 8,
where the number in position i of the vector indicates the partner of m;

in the stable matching. Below is a vector indicating the rank of the
partner of m; in his PL. Each edge denotes a dominate relation. The
label on each edge should be ignored for now.

Definition 5.3 Let M be a stable matching. For any man m let
sy (m) be the first woman w on m's PL such that w strictly prefers m
to her partner in M. Let next,;(m) be the partner in M of woman
Sy (im).
Definition 5.4 Let us define the rotation p be a sequence of pairs,
(mg,wqy)(my,wy)...(m,_;,w,_;), in a stable matching M such that, for
each my;, m; .4, 15 nexty (m;). '

As shown in [18], if M is a stable matching and if p is a rotation in
M, then the matching, denoted by M/p, in which each man m;
appearing in p matches Wy .4, and the others match the same

partners as in M, is stable and dominated by M.
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M3 117551 ‘T21214351 Ms 1533321
! ) P4 2 Po

538764 61537824 21357864

Ms 3 My My
217551 41214361 2153435.1

3
2 p3
P4 5 pa p2

61538724 61357824 21358764

Mo Mo Mu
1217561 41534361 21537551

31657824 61358724
M M3
81834361 41537561
P Ps

31658724
81837561

Man-pessimal
matching

Fig. 5.2 Lattice structure of the instance in Fig. 5.1

Lemma S5.1[18] If p is any rotation in a stable matching M, then
M /p is a stable matching dominated by M .

Example 5.4 Fig. 5.2 shows the lattice structure of the stable

matchings shown in Fig. 5.1 and the label on each edge represents a
rotation. We can see that M =M / py, M,=(My /py)/ p;, and so on.

The rotation digraph G is acyclic and composed of the set of all
rotations in the instance (as the node set), and the edge set which is
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defined in [18]. The definition of the edge is omitted in this chapter
since we do not need it. The rotation digraph is obtained from
preference lists in O(nz) time, where n is the instance size. The detail
is described in [18].

Definition 5.5 A subset S of the node set of G is said to be closed if
there is no element, in the complementary set of S, that precedes an
element in S.

The following lemma [18] is one of the most important results in the
stable marriage problem.

Lemma 5.2[18] There is a one-one correspondence between the closed
subsets of G and the stable matchings of M, where M is the set of all
stable matchings.

In the lattice structure of an instance, for each stable matching M,

the rotations on the path from M, to M constitutes the closed subset
corresponding to M.
Example 5.5 The rotation digraph G of the instance of Fig. 5.1 is
shown in Fig. 5.3. A closed subset {p,,p;} corresponds to M,. The
rotations in this subset corresponds to the path from M, to M, in Fig.
5.2

Fig. 5.3 Rotation digraph of the instance in Fig. 5.1
The number beside each node represents
its weight
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5.3. Adaptation of a Genetic Algorithm

In this section, we propose a method to adapt GA to the gender-fair
problem. In Subsection 5.3.1, we transform the gender-fair marriage
into a graph problem. In APPENDIX, we define a decision problem,
CCS, associated with the gender-fair problem and show its NP-
completeness. However, the graph problem representation is very
suitable for GA solution because of the stability being transformed into
combinatorics of the closed subset of graphs. In 5.3.2, we show a GA
solution and its effectiveness.

5.3.1 Graph Problem Representation
For a rotation p = (mg,wy)(m;,wy)...(m,_;,w,_;), we define the weight
of p, s(p), to be

r-1

S(PYA S Omr (i, Wistma) = mren;, ;)
r—1

__zb(wr(mi’wiﬂmodr) —wr(m;,w;)).
Note that s(p) =2 when p is not empty.
Example 5.6 In Fig. 5.3, the number beside each node represents the
weight of a rotation.
We have the following lemma.
Lemma 5.3 If p is a rotation of a stable matching M, then
s(M /p)=s(M)~-s(p).
Proof: By Lemma 5.1,
M /p=M\{(my,wg),(m,wy),....,(m,_;,w,_;)}
U{(mg,wy), (my,wy),....(m._;,wy)}.
Therefore,

S(M 1 p) = s(M) = S (wr(my w;) — mr(m;, w.)

i=0
r-1
+ ‘Eb(wr(mi sWitimodr ) - mr(mi »Witlimod r ))
= s(M) - s(p) Q.E.D

76



By the fact that there is a one-one correspondence between the stable
matching M and the closed subset, CS, of the rotation digraph G, the
following lemma is immediately obtained.

Lemma 5.4 If CS is a closed subset of G associated with stable

matching M, then

s(M)=s(My)— Xs(p;).
pieCS

Proof: It is obvious by Lemma 5.2, 5.3. Q.E.D.
By Lemma 5.4 and Definition 5.1, we have the following theorem.
Theorem 5.2 The gender-fair stable matching is the matching
generated by a closed subset of G, CS, such that Xp.ccsS(P;) is as close
as possible to s(M,).

Example 5.7 In Fig. 5.3, we can find closed subsets {pg,p;} and
{p1,p3} whose weight sum, 11 and 13, respectively, are closest to
s(My)(=12).

For a given marriage instance, we can get its rotation digraph in
O(n?*) time. However, there is no known polynomial time algorithm
for the gender-fair matching. In the next subsection, we show a genetic
algorithm as an approximate algorithm.

5.3.2 A Genetic Algorithm for Gender-fair Matching

In APPENDIX, we show the decision problem CSS which is associated
with the gender-fair marriage is NP-complete. It means that it is
difficult to solve the gender-fair stable matching problem. In this
section we show a GA for obtaining approximate solutions of the
gender-fair stable matching. Since genetic algorithms have received
much attention for various optimization problems [14,15], we attempted
first to apply GA to the original gender-fair stable marriage problem
without success, due primarily to coding difficulty of stability property.
The graph problem representation is found much more suitable for GA
solution than the original.

For a given marriage instance, that is, PLs, first we obtain the
rotation digraph and the man-optimal solution M,,. Secondly, the GA
tries to find the closed subset CS such that 2 pecsS(P;) is as close as

possible to s(M,). Thirdly we generate in polynomial time the
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corresponding stable matching from the CS and M,, (See Lemma 5.2,

Example 5.5, and Ref.[18] for the detail).
The most important point of GA is to design the string representation
for the search objects. The string representation used in this chapter is

simple: Each node in an obtained directed graph G (rotation digraph)
corresponds to a bit in the string. A node i corresponds to bit b;, i-

th(starting from zero) component of the bit string b = (by,b,...,b,_;).
If node i belongs to a closed subset CS, b; equals 1. We regard every
predecessor j of a node i such that b, =1 as also included in the CS.

This is for that every string representation in the GA space should
correspond to a legal search object, that is, a CS. If not so, there may
occur numerous bit-strings corresponding to illegal search objects, that
is, non-closed subsets. Note that a bit corresponding to such a
predecessor remains zero though we define that the corresponding
nodes belong to the CS. These bits are called "hidden zero bits", which
may be a part of better solutions in future generations.
Example 5.8 For an instance in Fig. 5.3, there are 6 rotations and
hence 6 nodes in G, bit representations 100110, 110110 correspond to
the same closed subset { py,p;,03.04}. The second bit b, of the first
string is a hidden zero bit.

The fitness function typically represents the objective function that we
want to optimize in the problem. The function in this chapter is defined
as follows:

F(CS) =[s(My) = Zp, ccs55(P;)

The reproduction in this chapter is based on the roulette wheel selection.
Thus, CS with a lesser value of the fitness function will survive with
higher probability.

In this chapter, crossover and mutation are used as the genetic
operators.
Crossover: Let us consider two strings P, and P,. (1) Select randomly
crossover point where we cut the string into two parts for each string.
(2) Exchange the bottom parts of P; and P,. The new two strings are

generated.
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by b, by bs|by bs by by by bs|by bs
Pl=1 110{00 P3=111 0|1 0
—

P2=1 0 0 1|1 O P4=1 0 0 110 O

Fig. 5.4 Crossover Operation

Example 5.9 An example of the crossover is shown in Fig. 5.4. The
crossover point is between b; and b, of P, and P,. The new strings P,

and P, are created.

Mutation: Let us consider a string P. (1) Select randomly a mutation
point. (2) Reverse the bit of the selected point.
The GA in this chapter is simple and consists of the following steps:
«The Genetic Algorithm»
1° Initialization: An initial population is randomly generated.
2° Evaluation of the fitness function: The fitness value of each string
is calculated according to the fitness function.
3° Genetic operations: For randomly selected strings, the crossover
and/or the mutation are applied.
4° Reproduction: The population for the new generation is generated
by the roulette wheel selection.
5° If time is up, stop and return the best string, if not, go to 2°.

5.4. Experimental Evaluation

We evaluate the performance of the GA by experiments on a Sun
workstation ELC. The GA evaluation system is implemented by C
language. One hundred marriage instances, that is, 100 sets of 30x30
men-to-women and women-to-men PLs, are generated randomly. For
each marriage instance, the rotation digraph is obtained by the method
described in [18] with O(n®) time complexity. And the following
parameters are used throughout the experiment:

* population size = 50

* crossover probability = 1.0
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Conditions
* population size = 50
* crossover probability = 1.0
* mutation probability = 0.3
* generation span = 50

abcissa: deviation from the best solution
(average of 10 times executions)
ordinate: frequency in 100 instances

Fig. 5.5 Evaluation of the GA

* mutation probability = 0.3

* generation span = 50
For each rotation digraph, the GA is executed 10 times. The
computation of one execution for one marriage instance required less
than 1.0 second (for this case, a brute force algorithm required more
than 5.0 minutes). At every marriage instance we could get the best
solution at least once during 10 executions. Fig. 5.5 shows the number
of instances for each deviation (average of 10 times) from the best
solution. There are 88 percents of 100 marriage instances for the
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deviation O exactly, that is, every execution could obtain the best
solution and 97 percents for the deviation below 3.

5.5. Concluding Remarks

In this chapter we discussed a gender-fair matching in the stable
marriage problem. The stable matching is defined gender-fair when the
sum of the man scores is as close as possible to the sum of the woman
scores. We proposed a method for adapting GA to the gender-fair
marriage. By experimental evaluation, we showed the effectiveness of
the GA.

APPENDIX

We define a decision problem associated with the gender-fair stable
matching problem and show its NP-completeness.

Definition 5.A1 A decision problem CSS is defined as follows:
Instance: An acyclic directed graph G in which every node is weighted
with positive integer, a positive integer B.

Question: Is there a closed subset CS of G such that the sum of the
individual weights of nodes in CS is equal to B ?

Definition 5.A2 A decision problem SS (Subset Sum) is defined as
follows:

Instance: Finite set A, weight w(a)eZ™ for each acA, positive
integer b.

Question: Is there a subset S such that the sum of the weights of
elements in S is exactly b?

SS is well known to be NP-complete[23]. We will transform SS to
CSS for proving NP-completeness of CSS in a proof of the following
theorem.

Theorem S5.A1 The decision problem CSS (Closed Subset Sum) is NP-
complete. _

Proof: Since there exists a nondeterministic algorithm that needs
polynomial time to assemble a closed subset CS of G and to check its
weight sum of the nodes in CS is equal to B, CSS is in NP.
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. Next, we transform in polynomial time SS to CSS. The elements of A
are nodes of G. The weight of each element is transformed to the
weight of its corresponding node. Let node p with weight one be
introduced as a node of instance of CSS. Define G by introducing a
directed edge from p to the others. That is G =(V,E) where
V=Au{p}, E={(p,a)lNaeA}. And B=b+1. Now we have an
instance of CSS.

Suppose there be a subset S of A such that the sum of the element
weights in S is exactly b, a solution of SS. Then the sum of the node
weights in S {p} is exactly B. Moreover SU {p} is a closed subset of
G.

Suppose there be a closed subset CS=S U {p} such that the sum of the
node weights in CS is exactly B. Note that S is a subset of A. Since
the weight of p is one, the sum of the element weights in S is exactly
b, say SS solution. Q.E.D.
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Chapter 6

Genetization of Heuristic-Knowledge in Genetic
Algorithms and Its Application to Multiprocessor
Scheduling Problems

We propose a genetized-knowledge genetic algorithm (abbreviated as
gkGA), and discuss its application to multiprocessor scheduling
problems. In this approach, the heuristic itself is represented by genes,
and by means of GA selection superior heuristics survive for a given
problem, while others die out during the selection process. Moreover,
by the crossover of heuristic genes themselves, hybridized heuristics can
also be generated. This is a novel strategy in the GA field of
combinatorial problems; although the idea of reinforced GAs was
already proposed, heuristics have not yet been explicitly genetized.
The effectiveness of our proposed strategy for multiprocessor
scheduling problems is proved through computer evaluation.

6.1 Introduction

By many studies [14,16,51,52], genetic algorithms have been proved to
possess potentialities for combinatorial optimization problems, like the
multiprocessor scheduling. Some papers [14,16,21,51] pointed out
genetic algorithms are good at global searches but not at local one, and
then proposed a reinforcement of genetic algorithms with a heuristic
technique tuned to local search effectiveness, so-called hybrid GAs.

In a reinforced GA, a prescribed domain knowledge is employed to
produce an efficient string that leads to better solutions compared with
ordinary solutions by a simple genetic algorithm. In this chapter we
develop a novel GA in which domain knowledge is genetized and is
included in a string as genes. A given set of heuristic techniques
constitutes a gene pool of knowledge, and crossover of knowledge genes
A and B generates hybrid genes, AB. The new method is called
"genetized-knowledge GA," in short gkGA.
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" The multiprocessor scheduling problem is known NP-hard even if
various restrictions are added to simplify the problem [22-24].
Therefore, many researchers have tried to develop approximation
algorithms rather than to exact the optimization [21,25,26]. From many
years' research, most effective solutions are known to be based on the
list scheduling scheme[22,26]. In this scheme quality of a schedule is
known greatly dependent on a prescribed priority list to be used, and
several methods for organizing priority lists were proposed as
summarized in [22]. The critical path (CP) method organizes a priority
list in such that a task is arranged in a sequence according to its time
depth [22]. Kasahara [27] proposed a modified CP method, called
CP/MISF(Critical Path / Most Immediate Successors First ), in which a
task having the most number of immediate successors has higher
priority over multiple tasks possessing the same time depth. Nakasumi
[28] tried ordering tasks of the same time depth by appealing to genetic
algorithms. These modified CP algorithms were reported to produce
good quality schedules for wide range of task graphs [22,27,28].
However, it was revealed that for certain kinds of task graphs, these
modifications were led to not good schedules. We in this chapter
propose a better solution to the problem over much wider range of task
graphs even though it dissipates more computation time.

We first introduce four reinforced GA based on four heuristics from
ordinary idea of scheduling research. No heuristics of these are
uniformly superior to the others, because performance of the heuristics
is problem dependent. In the gkGA, the heuristics are represented as
genes in the string, and hybrid genes generated by the crossover process
offer new heuristics that may prove to be more efficient to a given task
graph. This is a novel strategy in the GA field although there are
studied some reinforced GAs in which heuristics are not genetized.
Moreover, our new method uses a modified list scheduling rather than
the original one to overcome its weakness and to be more suitable for
GA-based methods. By computer experiment, we prove the proposed
gkGA can generate better schedules compared with the CP/MISF and
Nakasumi's GA.
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" This chapter is composed of five sections. In Sect. 6.2 we give the
formal description of the problem and a small example for readability.
In Sect. 6.3, we introduce four heuristics and explain how to generate a
schedule. In Sect. 6.4, we propose the genetized-knowledge GA, the
gkGA. The conclusion is described in Sect.6.5.

6.2 Preliminaries

6.2.1 Problem Definition

A process is represented by an acyclic digraph (directed graph) of a
single sink called a task graph, TG=(V,E) with a set of vertices, V={T],
T2, .., Tk}, and a set of directed edges, E={eij}. Each vertex, T7j,
represents a task to be executed, and is given its execution time, #;. An
edge represents a precedence relation between its two incident vertices.
The edge from T to Tj means a precedence relation (>), Ti >Tj ,
meaning 7; must be completed before T; is initiated. The
multiprocessor scheduling is to assign each task of the graph to a free
processor from the pool of p processors in such that each processor
executed only one task at a time without preemption while maintaining
the precedence relation. The time to the last task(sink) completed is
called the finish time of the schedule. The multiprocessor scheduling
problem requires to construct the schedule of the earliest finish time.
Example 6.1: Figure 6.1(a) shows an example of a task graph. A
number attached to a vertex represents the execution time of its
associated task. When the number of processors is two, Figure 6.1(b) is
the optimum schedule, that is, the schedule giving the earliest finish
time.

In a task graph, the path that includes the maximum number of tasks,
among the paths from a task 77 to the sink task T, is called the deepest
task path of 77j , and this maximum number is called "the depth of 74,"
denoted by d(Ti). The longest timed path of a task 7} is a path from T;
to the sink 7z such that the sum of the execution times of the tasks on
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(a) Task Graph
the number beside a node: its execution time
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(b) The Optimal Schedule
(2 processors)

Fig. 6.1 Problem Instance

the path is largest. The largest sum for a task 7; is called "the time

depth of 77 ," and denoted by td(Tj).

6.2.2 Task Assignment Scheme TAS

In this subsection, we describe first the conventional list scheduling, and
next show a method suitable for our purpose. The list scheduling
scheme assigns an available task to the processor that becomes free
earliest. If multiple tasks are available to assign, the prior task in a
given priority list is first assigned. The rule is iterated until all the tasks
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are assigned. The original list scheduling scheme is likely to yield good,
even optimal, schedules with a high probability when it is given an
appropriate priority list.

However, there are some weak points of its own as pointed out in

[22]. In the original list scheduling scheme, when a processor becomes
idle, the standard rule dictates the processor must be assigned an
executable task when possible. This "no-forced-idle" rule sometimes
leads to a bad schedule.
Example 6.2[22]: Figure 6.2 shows an example. Figure 6.2(a) is the
task graph, 6.2(b) the schedule generated by the original list scheduling
from the priority list organized by the CP/MISF, and (¢) the optimum
schedule. Note that for the task graph the -original list scheduling cannot
generate the optimum for any priority list.

To remedy this hindsight of "no-forced-idleness," we use a simple
scheme, denoted by "TAS."

«TAS»
1° Let ¢ = the top of the priority list PL and remove it from PL.
2° If all the predecessors of ¢ are already assigned, ¢ is assigned to an
idle processor available. The initiating time of ¢ is defined by:
max(min; {idle_t(PEj)}, maxj{c_t(Tj|Tj is an immediate predecessor
task of t}) where idle_t(PEi) is the time that PE; becomes idle and
c_t(Tj) is the time that Tj is completed. Otherwise, exit with failure.
3° If PL is empty, we have a schedule. Otherwise, return 1°.
Example 6.3: For the task graph shown in Fig. 6.2, TAS generates the
optimum schedule when we use a priority list:
1234587609.
Note that the original list scheduling scheme produces a schedule that is
not optimum. Showing that every schedule generated by the original one
is also generated by TAS is easy. As to be described in Sect. 6.3, every
priority list organized by our proposed method can be converted into a
schedule by TAS, that is, no failure at Step 2. Since more priority lists
should be converted into one schedule by the original list scheduling
method than by TAS, TAS can generate more variety of schedules from
the strings in GA pool than the original one. Moreover, TAS has lesser
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Fig. 6.2 Weak Point of the List Scheduling[1]

computational complexity than the original one. Therefore, we can say
TAS is more suitable to methods using genetic algorithm techniques.

6.3 Four Reinforced Genetic Algorithms
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Fig. 6.3 Outline of the Proposed Method

In this section we introduce four heuristic reinforcements of GA as
prelude to the gkGA. In Sect. 6.4, the main part of this chapter, we
propose the gkGA by genetizing a knowledge pool of heuristics.

Figure 6.3 shows the outline of our solution. The strings in the GA
pool (population) are converted and reshaped by a conversion scheme
based on a heuristic into a priority list, and then a schedule is
constructed by TAS.

By experimental evaluation, we prove that the proposed
reinforcement GAs performs generally better than the CP/MISF and
Nakasumi's method.

6.3.1 String Representation and Genetic Operations

(1) String Representation and Initial Population

A gene can be a task identifier or knowledge. However, in this section
we consider only a task identifier. We call a string in this section a task
string since a string is sequence of the task identifiers. For a given task
graph, the strings in the initial population are randomly generated in
such that the task identifier is arranged monotonously in a sequence in
accord with the depth of the task, the largest the first. This is called the
depth monotonicity. That is, for a string T}, 72, ..., Tk, d(T]) 2d(T2)=
o 2d(Tk).
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Example 6.4: The following is an example of the task string for the
task graph in Fig. 6.1:
13215417618
Here the vertical bar represents the border between adjacent two
different depths. The tasks in {1,3,2} are of depth 4, those in {5,4} of
depth 3, and so on.
(2) Crossover of Two Strings
We use the OX method [16,51], as a crossover operation, to maintain
the depth monotonicity of the generated strings. In the OX method,
given a randomly generated 0-1 mask pattern, new two strings of the
depth monotonicity are generated from given two initial strings.
«OX method»
1° Choose two strings randomly from the GA population. Let us denote
them by P1 and P2, and create a new empty string C1 of the same
length.
2° Generate randomly a 0-1 bit pattern of the same length as the string
(equal to the number of tasks).
3° For each task identifier of Pj, if the bit corresponding to the task is
one, then the task is copied into the same gene place of a new string
Cl.
4 ° Pick up the tasks corresponding to the zero bits of the mask from
P].
5° Copy the picked up genes to the empty gene place of Cj in the same
order in P2.
6° Generate a new string C2 by exchanging the roles of P and P2.
Example 6.5: An example of the OX method is as follows: Here M

represents a randomly generated mask pattern.
P :12345678

P2 :21354768
M :00010011
C] :21345678
C2 :12354768
(3) Mutation
«Mutation»
1° Choose randomly one string, say P, from the GA population.
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2° Choose randomly two genes, say Tj and Tj, of P at the same depth.
3° Exchange the places of T; and Tj.

Lemma 6.1: For an initial population satisfying the task monotonocity,
the operations of crossover and mutation preserve the depth
monotonicity.

Proof: It is obvious since no change of tasks beyond task depth
boundaries occurs in the crossover and the mutation. Q.E.D.

6.3.2 Conversion of Strings into Priority Lists by Heuristics
In this subsection, we describe how to convert a string, s, to a priority
list P. We in this chapter use the following four conversion schemes
based on heuristics.
«Scheme O»
1° Let P=s. That is, a string is simply a priority list.
«Scheme A»
1° Decompose a string s into substrings sJ, s2, ..., sk such that the genes
in s; have the depth i. Note that s=s7 | 52 I...| sk, where " | " denotes
concatenation. Put the genes of s; into a queue g; from the left to
right, for 1<i<k.
2° Make P empty.
3 Choose the top of each gj, I< i <k, whose predecessors are already
assigned.
4°  Append the task, Tj, that has the longest execution time, #(T}),
among the tops chosen at 3° to the tail of P. Remove 7 from the
associated queue.
5° Unless every substring is empty, return 3°.
«Scheme B»
Scheme B is the same as Scheme A except for Step 4.
4°  Append the task, Tj, that has the most immediate successor tasks,
suc(Tj), among the tops chosen at 3° to the tail of P. Remove 7T} from
the associated queue.
«Scheme C»
Scheme C is the same as Scheme A except for Step 4.
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4°  Append the task, Tj, that has the largest time depth, ¢d(7}), among
the tops chosen at 3° to the tail of P. Remove 7j from the associated
queue.

For any two tasks in a priority list, when the task at more left side is
not a successor of the other in the task graph, the priority list is called
"sequentially left executable list." Apparently, a schedule can be
generated from a sequentially left executable priority list by TAS.
Lemma 6.2: A priority list is sequentially left executable when it is
arranged monotone decreasing of task depth.

Proof: Suppose the j-th task in the priority list be a predecessor task of
the i-th task, i<j. This is contradiction for the monotonous decreasing of
their depth. Q.E.D.
Theorem 6.1: The strings generated by the crossover and the mutation
defined in Sect. 6.3.1 are converted into sequentially left executable
priority lists by Scheme O, A, B, and C.

Proof: For Scheme O, it is obvious by Lemma 6.1, 6.2. For A, B, and
C, we check the predecessor relation at step 3 of each scheme. Q.E.D.

6.3.3 Fitness Function and Description of the Reinforced GA
The strings generated by one of the schemes shown in 6.3.2 are
converted into priority lists. Then, by TAS, schedules are generated
from the priority lists. In our method, the fitness function of the GA is
defined by the length of a schedule as follows:
f(s)=Large_num-max tpj
where s is a string, fpj denotes the complete time of a processor PEj in
the schedule generated from s, and Large_num means a large positive
number. Apparently, larger value of the fitness corresponds to better
schedule.
Now we have the description of the proposed GA as follows:
«Reinforced GA» 7
1° Initialization: An initial population of task strings is randomly
generated by (1) in 6.3.1.
2° Evaluation of the fitness function: The fitness value of each string is
calculated according to the fitness function defined above.
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3° Genetic operations: For randomly selected strings, the crossover (2)
in 6.3.1 and/or the mutation (3) in 6.3.1 is applied.

4° Reproduction: The population for the new generation is generated by
the roulette wheel selection[26].

5° If time is up, stop and return the best string, if not, go to 2°.

6.3.4 Experimental Evaluation .
We evaluate experimentally our methods and compare with the
CP/MISF and Nakasumi's method. The evaluation system is constructed
on Sun SS5(75MHz) workstation by C language. In the experiment, for
the two cases, the number of tasks = 50 and 100, task graphs in which
each task has from 1 to 5 successors are randomly generated. The
parameters are as follows:

The number of processors = 4, 6,

The number of populations = 50,

The generation span = 50,

The crossover probability = 1.0,

The mutation probability = 0.03, 0.06.
The computation time of the CP/MISF method is less than 1.0 seconds,
and those of our methods are about 15 seconds. Tables 6.1, 6.2, 6.3,
and 6.4 show the results for randomly picked up eight from generated
problems, task50.1-5 for the number of tasks =50, and task100.1-3 for
that of tasks = 100. The contents of the tables shows the length of the
schedules. These are the average of 10 times executions. The shaded
values mean the optimal among 7 solutions. The gkGA is to be proposed
in Sect. 4, therefore, its results should be ignored for now.

We can observe that (i) our methods generally obtain better schedules
than the CP/MISF and Nakasumi's method, and (ii) performance of our
four methods depends on the problem instance. The reason of (i) is that
our method can search wider searching space because Nakasumi's
method does try to search only the schedules generated from the
priority list having monotonous property of time depth. From (ii) we
need a new methodology of automatically heuristic adaptation to any
problems. In this line of thought, we propose in the next section a new
strategy, the genetized-knowledge GA.
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Table 6.1 Experimental Evaluation (mutation_rate=0.03, 4 processors)

CP/MISF | Nakasumi | Scheme O | Scheme A | Scheme B SCIELne C gkGA
task50.1 142 140 140 136 140 | 135 | 135
task50.2 158 152 152 147 152
task50.3 149 147 146 148 150 146
task50.4 128 126 126 122 | 126 122
task50.5 128 126 26 | 122 | 126 126 122
task100.1 273 272 272 | 26 272 272 268
task100.2 | 263 261 261 | 255
task100.3 265 260 | 260 | 261

Table 6.2 Experimental Evaluation (mutation_rate=0.03, 6 processors)

CP/MISF | Nakasumi | Scheme O | Scheme A | Scheme B | Scheme C
task50.1 101 98 98 94 98
task50.2 111 107 107 102 107
task50.3 115 115 115 115 115
task50.4 128 89 89 84 89
task50.5 128 89 89 85 89 _
task100.1 187 184 185 181 185 184 181
task100.2 | 183 179 79 | 173 | 179 180 | 173
task100.3 | 181 175 s we [LlEe i s
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Table 6.3 Experimental Evaluation (mutation_rate=0.06, 4 processors) '

CP/MISF | Nakasumi | Scheme O | Scheme A | Scheme B | Scheme C gkGA
task50.1 142 140 140 136 140 i35 | 135
task50.2 158 152 152 146 152
task50.3 149 147 147 149 149
task50.4 128 126 126 | 122 | 126 126 122
task50.5 128 126 126 | 122 | 126 126 122
task100.1 | 273 272 m | 261 | o 272 268
task100.2 263 261 261 255 261 261 255
task100.3 265 260 260 - 2000 | a2000 0] 260 | 260

Table 6.4 Experimental Evaluation (mutation_rate=0.06, 6 processors)

CP/MISF | Nakasumi | Scheme O | Scheme A | Scheme B | Scheme C gkGA
task50.1 101 98 98 97 98 )3 94
task50.2 111 107 107 101 108 108
task50.3 115 115 115 116 115 115
task50.4 92 89 89 84 89 89
task50.5 92 89 89 89
task100.1 187 184 185 182
task100.2 183 179 179 173
task100.3 182 175 175 | 176
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6.4 Genetized-Knowledge Genetic Algorithm: gkGA

In this section, we propose a novel strategy for constructing a priority
list and its execution. This strategy is amalgam of the genetic algorithm
as an execution engine and a set of multiple heuristics as the knowledge
pool, called the genetized-knowledge GA and in short, gkGA.

6.4.1 Basic Idea of the gkGA

In Sect. 6.3, we have proposed reinforced GAs for the multiprocessor
scheduling problems. In each reinforced GA, one string conversion
scheme based on a heuristic is applied to the strings for converting into
a priority list. We have observed that performance of four schemes is
problem dependent and that there could not be found uniformly best.
The new strategy to be proposed in this section is based on automatic
selection of a string conversion scheme best suited for a given problem,
realized by the genetic adaptation mechanism of GA. That is,
information on heuristics also is represented as genes and even
heuristics is evolved by hybridizing multiple heuristics during the GA
execution. This idea of the new strategy is applicable to not only the
multiprocessor scheduling problems but also other GA applications.

In the method proposed in Section 6.3, a string is composed of a
sequence of the task identifiers. We prepare three binary genes and
attach them before the string representation described in Section 6.3 to
represent four heuristic schemes O, A, B, and C. We call the first three
genes of the strings "heuristic substrings" and the rest "task substrings."
The genes in a heuristic substring corresponds to Scheme A, B, or C
from left to right, respectively. For example, 100-xxxx..XxX
corresponds to the priority list converted by applying Scheme A to the
string xxxX..xxx. The substring 000- corresponds to Scheme O.
Furthermore, we introduce here hybridizing of heuristics. The string
110- means applying hybrid heuristics of Scheme A and B, say Scheme
AB. We hope that such hybridized heuristics may convert to a more
appropriate priority list than a simple one. The following shows how to
convert a string into a priority list by hybrid heuristics.
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~ «Converting Strings into Priority Lists by Hybridized Heuristics»

Let the heuristic substrings = xagXbXc-.

1° Decompose a task substring s into substrings sJ, 52, ..., sk such that
the genes in s; have the depth i. Note that s=s] | s2 I...] sk, where " | "
denotes concatenation. And put the genes of s; into a queue g; from
the left to right, for 1<i<k.

2° Make P empty.

3° Choose the top of each gj, I< i <k whose predecessors are already
assigned.

4° Sort the chosen tasks by descending order of the execution time and
for each T3, define the score, St( Tj), as the position of Tj in the above
sort. And sort them by descending order of the number of the
immediate successor tasks and define the score, Ssuc( Tj), as the
position of 7Tjin the previous sort. And sort them by descending
order of the number of the time depth and define the score, Std(Tj),
as the position of 7j in the previous sort. Let SCORE(T}) = xq*St(T})
+ xp* Ssuc(Tj)+xc*Std(Tj).

5° Append the smaller SCORE(T]) task, Tj, among the tasks chosen at
3” to the tail of Q. Remove Tj from the associated queue. When tie
occurs, the deeper task first.

6° Unless every substring is empty, return 3°.

Note that if the heuristic substring = 000, then the scheme behaves as
Scheme O.

6.4.2 Genetic Operations

We define genetic operations for new strings in the new strategy. In the
new strategy, different operations for both substrings are defined. For
task substrings, we use the same operations as the method described in

Section 6.3. Therefore, here we define them only for heuristic
substrings. '

(1) Initial Populations

Initial population is randomly generated such that only one or no bit
should be "1" in the heuristic substrings and for the task substrings,
follow (2) in Section 6.3.1.

(2) Crossover for heuristic substrings
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The following two -points crossover[16] is used for heuristic substings.
«Two-points Crossover»

1° Choose two strings, say P] and P2, randomly from the GA pool.

2° Determine randomly two crossover points gJ and g2 on the heuristic
substring. These two may not be distinct.

3° Exchange the genes between g and g2 in P] and P2.

4° We now have new substrings C] and C2.

Example 6.6: Let P = 100- and P2 = 010-, corresponds to Scheme A

and B, respectively. If g7 =1 and g2 =2 then we have C; = 110- and C2

= 000-, they correspond to AB and O, respectively.

(3) Mutation for heuristic substrings

The mutation is defined as follows:

«Mutation for Heuristic Substrings»

1° Choose a mutation point ¢ randomly on the heuristic substring.

2° The bit of the g-th gene is reversed.
Now we have the description of the new strategy as follows:

«gkGA»

1° Initialization: An initial population is randomly generated by (1) in
Sect. 6.4.2.

2° Evaluation of the fitness function: The fitness value of each string is
calculated according to the fitness function (5) in Section 6.3.3. (A
string is converted into a priority list by the scheme in Sect 6.4.1.)

3° Genetic operations for task substrings: For randomly selected strings,
the crossover (3) in Section 6.3.1 and/or the mutation (4) in Section
6.3.1 is applied.

4° Genetic operations for heuristic substrings: For randomly selected
strings, the crossover (2) in Sect. 6.4.2 and/or the mutation (3) in
Sect. 6.4.2 is applied.

5° Reproduction: The population for the new generation is generated by
the roulette wheel selection[26].

6° If time is up, stop and return the best string, if not, go to 2°.

6.4.3 Experimental Evaluation

We evaluate the new strategy by experiment. The parameters of GA are
set as follows:
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The number of processors = 4, 6,

The number of populations = 50,

The generation span = 50,

The crossover probability for task substrings = 1.0,

The mutation probability for task substrings

= 0.03, 0.06,

The crossover probability for heuristic substrings = 0.0,

The mutation probability for heuristic substrings = 0.0.
We set the probabilities for heuristic substrings to 0.0. In this case, no
hybridizing of multiple heuristics takes place, that is, Schemes AB, BC,
ABC, etc., were not generated but only O, A, B, and C. In preliminary
experiment, we set the probabilities for heuristic substrings to some
positive real numbers, and then we got the almost same result as the case
0.0 with more computation time. However, we guess for more complex
and larger problems effectiveness of the operations for the heuristic
substrings appears clearly.

Tables 6.1, 6.2, 6.3, and 6.4 include the results, not described in Sect.
6.3. We can observe that the new strategy obtains uniformly best
schedules for every instance of the problem, which should be
effectiveness of genetizing heuristics.

6.5 Concluding Remarks

We have proposed a genetized-knowledge genetic algorithm
(abbreviated as gkGA), and discussed its application to multiprocessor
scheduling problems. In this approach, the heuristic itself is represented
by genes, and by means of GA selection superior heuristics survive for
a given problem, while others die out during the selection process.
Moreover, by the crossover of heuristic genes themselves, hybridized
heuristics can also be generated. This is a novel strategy in the GA field
of combinatorial problems; although the idea of reinforced GAs was
already proposed, heuristics have not yet been explicitly genetized.
The effectiveness of our proposed strategy for multiprocessor
scheduling problems has been proved through computer evaluation. As
a future problem, we have experimental evaluation of the gkGA with
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non-zero probabilities for heuristic substrings for more complex and
larger problem instances.
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Chapter 7

Concluding Remarks

We have considered three kinds of resource assignment type problems,
the mutual exclusion problem in distributed environments, the stable
marriage problem, and the multiprocessor scheduling problem. New
results have been derived using net theory and genetic algorithm
techniques.

First, we treated the mutual exclusion problem in distributed
environments in Chapters 3 & 4.

In Chapter 3, we considered a mutual exclusion problem in an
autonomous distributed environment. The environment is characterized
by autonomy of the node, the variability of the network structure, and
needs of local message exchange for information gain. We have
designed a dynamic mutual exclusion protocol, called Distributed
MUTEX, based on the Chandy-Misra protocol, that is, the privilege of
resource use is given in accord with the partial order relation induced
by an acyclic graph logically set up by means of message token
distribution. We have obtained the communication feasibility condition
that makes mutual exclusion possible, namely that a Hamiltonian circuit
must exist in the graph G representing the communication structure in
order to be able to design the initial acyclic graph for mutual exclusion
of a single shared resource. Moreover, we have proposed entry and exit
protocols for individual nodes.

In Chapter 4, we discussed properties of the evolution of acyclic
graphs. The mutual exclusion protocol proposed in Chap 3, Distributed
MUTEX, is based on the evolution of acyclic graphs. We have analyzed
the concurrency of an acyclic graph evolution using graph theory, and
investigated topological conditions for assuring the number of source
nodes is less than or equal to k throughout the evolution by using a new
notion, canonical circuit-cover of the communication graph G. We have
shown that a decision problem CC(k), "for a given graph, is there a
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circuit set in which every node belongs at least to one circuit from the

set whose cardinality is not greater than k?", is NP-complete, and

proposed a method to find a canonical circuit-cover using a genetic
algorithm. Moreover, we have extended the Distributed MUTEX to the
mutual exclusion problems for multiple resource cases.

The following items require future attention:

(1) Control of concurrency by other means than canonical circuit-cover.
Concurrency analysis should be performed, by using not only the
notion of the canonical circuit-cover as we did in this dissertation but
also, for example, by means of the independent set of the graph.
Development of multiple synthesis techniques is beneficial for
providing multiple design options coupled with various cost-
performance criteria.

(2) Analysis of the periodicity of an acyclic graph evolution.

The period of an evolution trajectory represents how often each node
is scheduled to fire. Given the number of shared resources, the initial
acyclic set-up determines the entire course of the evolution trajectory
starting from 1t, and hence the period is decidable. The quality of a
given initial set-up is measurable by its period, shorter the better.

(3) Implementation of fault tolerance in the Distributed MUTEX.

Is it possible for the Distributed MUTEX to function correctly if a
node/ link breaks down physically or logically? Fault tolerance is
important for protocols in distributed environments. The analyses in
Chapter 3 need to be extended and the fault tolerance mechanism
should be to meet certain criteria added to.

(4) Development of network software for implementing the Distributed
MUTEX.

We have only discussed theoretical aspect of this protocol. The
development of software and its evaluation in a real system are next
steps we are currently undertaking.

Secondly, we defined and treated the gender-fair stable marriage
problem in Chapter 5. We have proposed a method for adapting a
genetic algorithm to its solution. In this method we transform the
problem into a graph problem, a closed subset sum problem, whose
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decision version is shown to be NP-complete. The graph representation
reflects the lattice structure of the stable matchings and facilitates GA
application, by allowing easier encoding, and more effective definition
of genetic operators. Computer experiment has confirmed the
effectiveness of the GA solution.
Areas for future study include:
(5) Introduction of fuzzy theory into preference lists.
The preference list in the original problem is required to be strictly
ordered. However, preference is seldom so well-defined, and is more
fuzzy in nature. We should devise a design methodology of arriving
at more natural preference by means of fuzzy theoretic
measurements.
(6) Extension of the matching protocol to distributed environments.
In the distributed stable marriage problem, each member only
possesses his or her own preference list. Members must find stable
partners by message exchanges. This extension improves privacy and
widens the range of possible applications.
(7) Parallelization of the GA execution.
A genetic algorithm is safely said to have opened up a new
methodology for solving combinatorial optimization. Many papers
have reported its superior efficiency over classical methods.
However, GA execution is quite time consuming and its high
computation overhead must be relieved. Parallelization of GA
execution is one of the immediate cures.

Thirdly, we have considered multiprocessor scheduling problems and
their GA solution in Chapter 6. We have proposed genetized-knowledge
GA, gkGA. The heuristic technique itself is also represented as genes,
and by means of GA selection superior heuristics for a given problem
survive and others die out during execution. Moreover, by the
crossover of heuristic genes, hybridized heuristic techniques can also be
generated. This is a novel strategy in the GA field, extending the idea of
reinforced GAs. Experimental evaluation proved the effectiveness of
our proposed strategy.

Future extensions of this work include:
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(8) More performance evaluations comparing with other conventional
methods.
In addition to the comparison made here of gkGA with conventional
approaches such as CP/MISF and Nakasumi's GA method, we should
compare with other methods such as branch-and-bound searching.

(9) Application of the gkGA to other problems.
We have demonstrated the gkGA's uniformly better performance
over a wide range of problem instances when applied to the
multiprocessor scheduling problem, but the gkGA methodology is
easily applicable to other combinatorial optimization problems.
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