<table>
<thead>
<tr>
<th>Title</th>
<th>X線管電圧および管電流波形の写真効果（第2報）被写体透過X線量および増感紙傾蛍光量におよぼす効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>金森, 仁志</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 23(5) P.565-P.573</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1963-08-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/19282</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Radiographic Effects Due to the Waveforms of X-ray Tube Voltages and Currents
Part 2 Effects to Transmitted X-rays Through Object and to Fluorescence-Brightness of an Intensifying Screen

By
Hitoshi Kanamori
Radiation Apparatus Division, Shimadzu Seisakusho Ltd. Kyoto, Japan

Uniform radiographs are not only made by kVp and mAs of X-ray radiography. Not only inaccuracy of kVp nor ununiformity of efficiency of X-ray generation cause this, but also by such variation of waveforms of tube-voltages and currents as stated in Part 1.

In part 2, effects due to the 3 kinds of waveforms,—single-phase, three-phase, and constant—were studied experimentally. Transmitted dose-rates were measured by Victorean’s Radcon cr Condenser-R-Meter, and brightness of fluorescence by means of the integration of photo-current in a photomultiplier 931 A. Both indications were calibrated by the data given in Fig. 1 and Fig. 3 respectively. Experiments were made on one X-ray tube connected to the single-phase or to the 3-phase apparatus used in Part 1. The two apparatus were used separately such that data on single and 3-phase waveforms were obtained with them respectively. Smoothing capacitors were connected to the 3-phase apparatus for producing constant waveform in addition to cable-capacities. Tube-currents were selected for each kVp such that the tube-voltage pulsation rates in the three kinds of waveforms took 1.0, 0.3 and 0 respectively. Phantoms were placed at the mid-point between focus and chamber, to remove the effects of secondary radiation. Aluminum- and acrylite-plates were selected as objects.

A typical screen, Shimadzu FD, is used for the data on fluorescence.

Fig. 10 and Fig. 11 show transmitted dose-rates and fluorescence of a screen produced by them respectively. The both figures facilitate investigation of radiographic effects. This will be discussed in Part 3.

The figures show that :

1. Constant waveform generates harder quality and larger quantity of radiation than
single-phase waveform does, when the same kVp is used. This is well known but has not been measured accurately.

2. The difference in hardness decreases as kVp increases and it becomes almost equal when kVp exceeds 80.

3. The difference in quantity also decreases as kVp increases.

The above characteristics may be caused by the soft radiation absorption rate of objects. The radiation produced by a single-phase waveform may have larger rate of soft radiation than a constant waveform radiation. This difference is remarkably evident when kVp decreases.

4. Transmitted radiation is hardened as thickness increases. This appears more remarkably on aluminium than on acrylicite. Acrylicite has flatter absorption coefficient characteristics to photon energy than aluminium has (Fig. 4), so that soft radiation may absorbed more rapidly by aluminium than by acrylicite.

Using the data in Fig. 10 and 11, moreover, it was found that the efficiency of fluorescence e-generation depends only on H.V.L. or effective kV of radiation as shown in Fig. 12.

Above experimental results could be reduced theoretically from eq. (6), if the spectral distribution of radiation intensity and that of absorption coefficients were known. However, spectral intensity-distribution is not exactly known when 30-150 kV is used as in the case with diagnoses. Therefore, Kutlenkampf’s equation, eq. (1), which had been given to 7-12 kV radiation produced by constant waveform, was applied as a trial. Calculated distribution for the 3 waveforms are shown in Fig. 5 and Fig. 6. The measured waveform (Part 1) were used for 3-phase and single-phase waveform. Whereas, the standard absorption coefficients, taken from a handbook, are as shown in Fig. 4.

The area under a spectral-intensity curve shows a relative dose-rate. In Fig. 7, the areas under curves (3) in Fig. 5 were compared with air-dose rates at a distance of 1.8 m in front of the tube-focus. In Fig. 8, the areas under curves in Fig. 6 were compared with transmitted dose-rates. All of the experimentally obtained characteristics, 1-4, agree with the calculated results in tendencies, but do not agree in quantity. The experimental dose-rate may have harder quality of X-rays in all cases. This suggests that the second term of Kutlenkampf’s equation, which expresses the self-hardening effect of an anode, should be estimated greater for higher tube-voltages.

I. 緒 言

最近，X線撮影の自動化、写真の品質管理等の要求が生じるために、撮影条件が問題になってきているが、撮影条件を kVp と mAs で表現する従来の方法に、まだ多くの問題点が残されてい る。たとえば、単相、3相、コンデンサー等の電源方式によって撮影条件が異なることは當然であるとし て、同種の電源方式の装置で同一の kVp, mA, sec を繰り返しても装置が異れば写真が異り、さら に、一つの装置で kVp と mAs を等しくしても mA と sec の組合せが異れば線量も写真も異ることは、日常、経験されている。この原因は、装置に表示されている kVp の精度、X線管の効率のばらつきのほかに、管電圧、管電流、波形 が単調な波形ではなくて、kVp と mA が変 れて著しく変ることにある。一方では、「良い写 真」とは如何なるものであるかと云うことも明確 に定義されておらず、経験的な概念が通用してい
る。このような状態では、自動化や品質管理を押し、すすめるにはほど遠いので、その基礎として、
X線の発生から被写体の波形までをfailureすることが必要になった。そのためには、つぎの段階も踏
なければならないう。1)

① 管電圧・管電流波形（第1報）
② 投射 X線と被写体透過 X線の線量、線質
③ 増感紙の発光

④ 良い被写体の意味と写真効果の表示

第2報においては①②③の相関関係に関する発
べるが、それに先立って、他の研究者の成果を展
望してみる。まず、波形と放射 X線、透過 X線の関
係については若干の実験的研究がなされている
3-6)。X線のスペクトル分布と吸収係数がわか
っておればこの関係を理論的に求めることがで
るが、診断に使用する30〜150 kVp に対するス
ペクトル分布はまだ明らかにされていない。Ul-
rey の曲線7)、Kulenkampff の実験式8)、Kramers
の理論式9)をいずれも診断用の電圧範囲に置け
る不充分である。これらをもとに計算されたスペク
トル分布曲線の面積と、線量の測定値は一致しな
いことが報告されている10)。また、このような
過去のデータは、発生装置、管球、管球容器の構
造が、現在のものと著しく異なる上に、kVp、波
形、線量計の精度も問題であるから、現在の装置
を適用することはできない、増感紙の感光度特
性については、撮影条件に制限するデータが数多
く発表されているが11-14)、まとめも基礎的な持
性に関する研究がなされていないので、X線のス
ペクトル分布、あるいは透過 X線の線質と結びつ
けることができなかった。以上は、線量測定器
がなくてもフィルム法で測定していたので、この方
面の研究があなたっても考えられる。

つきに、最近の装置に関しては、小柳氏は、単
相装置の kVp と線量、線質、線量について詳細
な研究をおこなっている15)。しかし波形との関
係は論じていない。波形から写真効果までを結び
つける試みもなされており、中野氏は3相とコン
デンサ装置を Kulenkampff のスペクトルの式を
もとにした理論的な比較をおこなっている16)。内田、山
根両氏は高圧と低圧の波形を混合したときの写真
効果について17)20)、青柳氏は、単相装置において
て、波形と感光度の関係に関して実証的研究をお
こなっている21)。

筆者は、第1報までのべたように、単相および3
相全波整流型装置における管電圧・管電流波形と
kVp 値について、理論的なおよび研究的に研究
した結果、まず、電気的な条件を正確に把握する
ことができるか、一つの代表的な組合わせにつ
いて、波形から写真効果までを一貫してまとめ
ることができた。組合わせが変わっても、同じ方法を
ういれば、最終結果を導くことができる。

3. 第2報における研究方針

X線源より放射されるX線の線質・線量は、電
圧・電流波形によって著しく影響される。しか
し、管球フィルタと被写体を透過すると、線量が
吸収されてしまうためこの関係が簡単になり、波
形の歪曲の変化を考えなくてもよい。kVpと
露出面に対するデータと mAピーク値の効果を
補正するデータ（単相全電圧制電流のとき）とが
あるれば透過X線の特性がわかる。（第3報14)4)
を参照されたい。）で、この方法で、平滑化され
るときの代表として定電圧波形を選び、単相と
相の代表的な波形を各kVpに対して1つ（mAを
1つ）選んで、3相の管電圧波形によって発
生するX線の、被写体通過性、感感紙感光度の特
性、ならびに被写体の関係を実験的に検討する。理
論的には、X線スペクトル分布があきらかにされ
ていないので、線量測定特性を計算で正確に求め
ることができないが、7〜12 kVpで得られた Kul-
enkampff の実験式を診断の電圧領域に拡張して
スペクトル分布を計算した結果と、線量測定結果
を比較して、この実験式を検討してみる。総
に、写真効果の関係を推定しやすいように透過X
線量と増感紙感光度の特性と絞を表現する方法をのべ
て、第3報の準備とする。

3. 測定装置と方法

人体の直接撮影を対象として、幾何学的な条件を
固定し、電気的条件と被写体の厚さだけをかえる
ようにした。以下、その概要を述べる。

3.1. 電気的条件

定電圧、3相、単相の波形を比較するために第
1 頭の実験に用いた単極および 3 相装置と X 線管を使用した。一つの X 線管に標準ケーブルを接続して、2 つの装置を交互に切換えたので、X 線管からあとの幾何学的条件をかえずに比較することことができた。各波形に 対して、kVp をかえても管電圧脈動率が変わらないように、mA を kVp に応 じて調整した。

(1) 単極波形——平滑化されないように 100 mA とした。

(2) 3 相波形——管電圧に 3 相不平衡の影響が現れず、脈動率が 0.30 ± 0.02 になるように、35 kVp ～ 120 kVp 対してそれぞれ mA を 70 ～ 250 に切換えた。

(3) 定電圧波形——3 相装置で X 線管の両端とアースの間にコンデンサーを接続して管電流を 5 mA 以下とし、脈動率を 0.03以内に抑えた。

3.3. ファントーム
アクアライトと Al を用いた。アクアライトのときの、特定診断研究協議会ファントームにならって、その厚さと同じだけの空間を中央に作つた。

3.3.1. 管球よりあとの幾何学的条件
管球フィルタを 1.4mmAl、距離 (F.F.D.) を 1.8m一定とした。直接線だけを問題としたので、照射野をできるだけ狭めた。

3.4. 線量測定法
Victorone 製コンデンサー電流計 (0.25 f) と同社製 Radocon の 1r/min 月 (613 型) を使用して両観測をカバーすることができた。この 2 つの電離槽は同形で、Fig. 1 のような線質依存性を示す。そこで、Al 減弱曲線の傾斜 から線質を求めて、20 ～ 35 kVep 対に対しては、減弱曲線の修正をくりかえして、線量を較正した。ファントームからの 2 次線の影響を最小にするために Fig. 2 のように、中央にファントームをおいて鉛スリットで散乱線を除去した。

3.5. 増感紙増量光量の測定法
増感紙として、島津製 D を使用し、光電子増倍器 931 A で検出した増光量を時間的に積分する装置を試作した。その時間特性と感光度について較正したときの指示の直線性は、それぞれ、Fig. 3 (a) (b) のようである。図図(b)の横軸の傾角は、

Fig. 1 Calibrating Coefficients of Ionization Chambers used in this Paper

Fig. 2 Geometries in front of X-ray Tube

kVp, mA, X 線管と増感紙の相互関係を一定にして発光させ、光電子増倍器までの距離を 4 種類にかえて逆 2 軸法則で算定した値である。増感紙照度を東芝 5 号型照度計で測定したが、発光スペクトル分布は紫外領域においても変わらないので 15, 増感紙は盤光量の相対値を示す。この測定器を、Fig. 2 の線量計の位置において盤光量を測定した。

4. Kulenkampff の式によるスペクトル分布と算出
4.1. 発生 X 線のスペクトル分布
連続 X 線のスペクトル分布に関して、1962年に Kulenkampff が 7 ～ 12kV の範囲の定電圧・定電流波形について実験を行い、1923年に Kramers が理論的に
比例定数を算出したが、当時は結晶試料を用いていたので、管電圧の範囲が制限されている。最近、NaIシンチレータを使った波高分析装置で、管電圧の連続X線スペクトルの測定が行われるようになったが、撮像装置の定数を基準として、実験値を与えられていないので、つきのKulenkampffの式でスペクトルを算定するとする。

$$J_0(r) = \frac{C(Z \lambda(1-z^2) + z^2 b)}{r} \quad r \leq r_0$$

ただし

$$J_0(r)$$: 透過度/sec/\text{cm}^2

C: 管電流に比例する定数
Z: 吸収核の原子番号、現在はタンクステンを使用しているので74である。

$$\rho: 0.0025 \times 10^{18}$$

$$\nu_0$$: 最大規則没数/sec-1

放射源のスペクトル分布は幅の中に光子のエネルギーをとって、いわゆるエネルギー分布の形で表すのが普通である。規則没数の光子のエネルギーはEinsteの関係式によってつぎのようにあらわされる。

$$E = h \nu / c, h: プランク定数, c: 電子帯$$

発振器の定数をつぎのようにする。

$$E(keV) = 4.11 \times 10^{-18} \nu(sec^{-1})$$

また、管電圧$$V(kV)$$のX線の最大エネルギーは$$E(keV)$$であるから$$\nu$$と$$\nu_0$$の間に同じ関係が成立つ。これより(1)式はつぎのように関係がえられる。

$$J_0(E, \nu) = C \left[Z \nu_0(E, \nu) + 0.010352 \right]$$

ただし、$$J_0(E, \nu)$$: 管電圧$$V(kV)$$のときの、エネルギー$$E(keV)$$における線量率と管電流の比 [mr/mAs]

$$C$$: 比例定数

管電圧、管電流波形がそれぞれ$$\nu(t), i(t)$$のときは、各瞬間のスペクトルの合成であるから、次式が成り立つ。

$$J(E) = \int_0^1 J_0(E, \nu) i(t) dt/\int_0^1 i(t) dt$$

ただし、$$J(E)$$: 能源エネルギー$$E(keV)$$における線量率と管電流の比 [mr/mAs]

T: 波形の一周周 [sec]

4.2 被写体入射X線と透過線のスペクトル分布

単色X線が物質を透過するときは、つぎのように変形する。

$$I = I_0 \exp(-\mu X)$$

ただし$$I$$: 透過線量、$$I_0$$: 入射線量、$$\mu$$: 光子のエネルギーと物質によって異なる吸収係数である。よって、入射X線と透過X線のスペクトル分布$$I(E)$$は(4)(5)式より求められる。

$$I(E) = I_0 \left[E \exp(\mu X) \right]$$

ただし、$$\mu$$、$$X$$は途中の物質の吸収係数と厚さである。

吸収係数は、広いエネルギー範囲にわたって求められており、Al、Acryl、空気についてはFig.4のようにある。

以上の所論によって、管電圧、および3.1のよ

Fig. 4 Absorption Coefficients to Photon Energy

Fig. 5 Spectral Distributions of Radiated X-rays, Calculated from Kulenkampff's Equation
ような条件における3相と単相の実測波形（第1報で測定した波形）に対して計算したスペクトル分布の代表例をFig.5に示す。まず、管球焦点より発生するX線（①）は脈衝が増加すると、硬い方の成分（高エネルギー）が著しく減少することがわかる。この発生線は、管球壁のガラス、絶縁油、放射源の樹脂で吸収されて②のように15 keV以下はなくなる。さらに、管球フィルタ1.4 mm-Alを通じて少し硬くなり、空気の吸収をうけて③のようにになって被写体に入射する。空気における減衰率はTable 1のようにである。吸収の方が多く吸収されるが、散乱の幅が少ないので全体としての線量の変化は無視することができる。すなわち、距離をかえても線量に変化せず、線量は距離の逆2乗則にしたがって減少すると考えても実用上はしかねえ。

Table 1 距離 1.8 m のときの空気による吸収

<table>
<thead>
<tr>
<th>keV</th>
<th>吸収率</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14.1%</td>
</tr>
<tr>
<td>30</td>
<td>11.3</td>
</tr>
<tr>
<td>40</td>
<td>5.08</td>
</tr>
<tr>
<td>50</td>
<td>4.40</td>
</tr>
<tr>
<td>60</td>
<td>2.91</td>
</tr>
<tr>
<td>80</td>
<td>2.55</td>
</tr>
<tr>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>120</td>
<td>3.26</td>
</tr>
</tbody>
</table>

Al およびアクリライトによって吸収されたX線のスペクトルも、(6)式で計算できるが、この計算結果の代表例をFig.6に示した。実線・点線はそれぞれAl アクリライトを透過した後のスペクトルである。吸収物質が厚くなるにしたがって、ピークが右方に寄るのは、線量が大きくなることを示す。アクリライト10 cm（脇部）を透過すると、約30 keV以下の線はなくなることがわかる。

5. 線量測定によるスペクトル分布の考按

スペクトル分布曲線の面積は線量に比例するので、この面積と線量測定結果を比較してみる。

Fig.7は、吸収物質がないときの線量とFig.5の曲線の面積に相当する。計算結果では、線量はkVpの3.8～4.8乗に比例しているが、実測結果では1.7～2.1乗である。ここで、一致しない理由を考えようと。

Fig. 5 Spectral Distributions of Transmitted X-rays through Objects Calculated from Kulenkampf's Equation

Fig. 6 Air Doses at the Distance of 1.8 m from Focus

(1)式における第1項は陽極が薄い場合（thin target）に対して成立することが理論的に導かれているが、実際のX線管では陽極に厚さがあるので（thick target）、自己吸収がある。このような場合に関しては、理論的取扱がまだされていない。（1）式の第2項は、自己吸収によって吸収線の増加を増やすことをもたらす補正項であるが、電圧に無関係な定数で表現されているので高電圧に拡張したときは殆ど無視される。そこで第1項だけを考えると、Fig. 5の実験①のようになって、発生線量
は kVp の 2 倍に比例する。よって、kVp の値はさらに増加する。しかし補正項が大きければ、kVp の値は減少する。電圧に対する X 線スペクトルに関しては、M. Ehrlich が、50 および 100kV の定電圧波形について NaI の波高分析装置で測定して各種の被正をほどこした曲線を発表している。これを Fig. 9 に示す。このスペクトルは決定的なものではないが、これを Fig. 5 の(1)のかわりに使って(3)をかきなおして面積を求めるとき、kV の 2.5 倍になる。補正項が大きくなるので kV の値は減じて実測值に少し近づいてくる。実際のスペクトル分布は、さらに高い線の割合が多くて補正項が大きいと考えられる。実測結果に近づいてくる。

Fig. 8 は、Al, Acrylite の厚さに対する透過率を示す線量減弱曲線である。式の対数をとれば

\[
\log (1/I_0) = -\mu x
\]

であるから、半価厚 X 線では勾配 μ の直線になり、線質が硬いほど傾斜がゆるい。ところが実際 X 線では、軟い線が先に吸収されて線質が硬くなるので、減弱曲線の勾配が徐々にゆるくなる。

さて、Fig. 8 で、計算値は Fig. 6 の透過 X 線スペクトルの面積を求めたものである。計算値と実測値の傾斜は一致するが、実測値の方が透過率が少ない。この現象も、実際の X 線スペクトル分布が、Kellerkampf の示すと同様に硬い線が多いと考えれば説明することができる。正確なスペクトル分布の決定は、測定装置の開発に負うところが大であるから、今後の研究期待されている。

Fig. 8 Absorption Curves

6. 写真効果を推定するための透過特性の表現

Fig. 10 に、実測した直接線の透過特性の代表例を示す。Fig. 7 の実測曲線は、このデータから求

Fig. 9 Spectral Distributions from M. Ehrlich

Fig. 10 Transmitted Doses through Objects

めたものである。写真効果を推定するときには、この図のような表現をおこなうのが便利である。
X 線写真の濃度レベルと対照度はそれぞれ線量と曲線の傾斜（線質）に関係するからである。Fig. 10 において、kVp が低いほど波形による差が顕著に現れるのが見られ、80 kVp 以上では、曲線を平行移動すればするほど線質には差がないとみなしてよい。線量の差も、低圧ほど大きくなる。脈動率が大きくなると吸収されやすい低線の割合が多くなるので、早く吸収されるが、kVp が高くなると低線の割合少なくなくて差がなくなるからである。Al のときには、アクリライトよりも
曲線が曲曲する。これは、吸収係数と波長との関係が Fig. 4 のようになっているので、Al の方が散乱を早く吸収するからである。これらの現象の傾向は、前項のスペクトルによる計算結果と一致している。

7. 透光 X 線による増感紙感量の特性
X 線を、増感紙で可視光線と紫外線に変換してフィルムに感光させるので、写真効果を導き出すためには透過 X 線による感光量を求めておかねばならない。

7.1 測定結果
Fig. 2 の線量計の位置に感光量測定値をとれば直接線による感光量が求められる。その測定結果の代表例を Fig.11 に示した。これは Fig.10 図の透過線量と対応する。両者は同じ傾向を示すが、感光量の方は低圧における弱い曲線の曲り方が少なく、これは、X 線の特性が軽いほど発光効率が低いためである。

7.2 線量と感光量の関係
増感紙の特性は数多く発表されているが、11) - 17) いずれも、特別な被写体に対して一定濃度を導くに要する kVp, mAs, mr の関係を示した実用的データであって、線質と感光量の関係、あるいは単色 X 線に対する発光特性を求めた基礎データが発表されていない。理論的資料も満足すべきものがない。そこで、筆者は、Fig.10 と Fig. 11 によって、感光量の線質依存性をプロットしてみた。積算は、減弱曲線より求めた Al 半厚層および実用電圧である。半厚層と（感光量/線量）の相対値との関係を Fig.12 に示すが、管電圧波形に関係なく、一の線にまとめることができる。Acrylite を通過した X 線について Al 半厚層を測定した結果も同じく線の上にくる。9 mm Al を基準にした感光係数は、図の縦軸の k となるので、線量と感光量はつきの関係であらわされる。

\[
3.88 \times 10^{-3} k = \text{感光量 (Gr. x sec)}
\]

(8)

以上の結果、線量から感光量を求めるときの線質係数が、Al 半厚層あるいは実用電圧で表現されることがわかったので、写真効果を求めるための基礎データを一数追加し得ることができた。

8. 階層
写真効果を求めるための基礎データとして、単相、三相、および定電流波形に対する透過 X 線ならびに感光量の特性を実験的に求め、その過程と結果において、つきの結論を得た。
（1）Kulenkampff の実験式と、管電圧、管電流源を組合わせて発生X線および被写体への入射X線のスペクトル分布を計算して、エネルギー分布の形式で図示した。その結果、脈動率が悪くなるほどエネルギー一部が著しく減少すること、管球壁と管球フィルタによって20 keV以下の光子がほとんど吸収されることがわかった。

（2）上の分布と、吸収係数によって、被写体のX線スペクトル分布を計算して図示した。これによって、被写体が厚くなるほど、高エネルギーの光子の割合が増加する様子がわかる。たとえば、アクリライト100mmを通過すると30 keV以下の光子は吸収されるので、50 kV以下の電圧はX線写真に寄与しないことがわかる。

（3）スペクトル分布曲線の面積を計算した結果、面積を測定した結果とを比較すると、kVp値、管電圧の脈動、被写体の厚さの変化に対して、計算値の方が大きくて変動する。この現象は、陽極の自己吸収によって、実際の分布がKulenkampffの式で表されるよりも狭くなっていると考えれば定性的に説明される。最近、別の方法で求められたスペクトル分布が、筆者の説明を裏書きしている。

（4）総量透過特性の実験結果によれば、80 kVp以下の脈動の大きい方が線質が軟く、80 kVp以上のものほとんどわからない。AIはアクリライトよりも、厚さに対する線量の硬化が大きい（線量曲線の曲り方が大きい）。波形の変による透過線量の差はkVp値が高いほど大きく、これらの現象の傾向は、スペクトルの計算結果と一致する。

（5）X線量と感度紙の感光性との関係は明らかにされていないが、筆者は、本研究の過程において、感光性と線量の相関が、総量（AI付帯層あるいは実効電圧）によってきまることを実験的に見出して、高電圧波形と写真効果を結びつけるための基礎データを一つ追加し、空白を埋めることができた。

（6）写真効果と結びつけるのに便利のように透過特性を図示した。感光性特性については、（4）の線量透過特性と同じことが示され、波形による回り方が減少し、厚さの薄いところでは、kVp値が低いほど波形による差が線量のときどきより大きくなる。

管球壁、管球容器の構造、および陽極のX線発生効率が大きいかれば、それぞれ線量、線量を異なるが、波形の差に対する線質、線量の相互関係は、この実験結果から求めることができる。

文 献