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ABSTRACT

In the design theory of relational databases, functional dependencies
(FDs) and multivalued dependencies (MVDs) are the most fundamental and
important constraints, In this thesis, we deal with three topics on these
dependencies.

(1) Database scheme design: Recently, the representative instance has
been proposed as a suitable model for representing the "current" value of a
database scheme under the weak universal instance assumption. Let R =
{<R1,F1>, evuy <Rn,Fn>} be a database scheme, where each Ry is a set of
attributes and F; is a set of FDs over Ry. We show that (a) it can be
determined in O(niF!|Fll) time whether R is consistent, where F =
FyU ...V F, IFl is the number of FDs in F, and |Fl| is the size of the
descbiption of F, and that (b) given a subset V of Ry U... VU R,, we can
construct in O(n!FiIF}}) time a relational expression whose value is the
total projection of the representative instance onto V for every database
instance of R, provided that R is consistent,

(2) Dependency implication: Let R. be a set of attributes and 1let
Up F eeo €Uy $ Uy SR, Let D= FUMUM,V ... UM, where (a) F is a set
of FDs Z +» W satisfying Z & Ug or WNUy =08, (b) M is a set of MVDs Z ++ W
over T satisfying at 1least one of 1Z SUOS T, WnN UO = @, and
(T-(ZUW)NUy = 8, and (c) each My, 1 (i ¢ n, is a set of MVDs over
Ui' ‘Let d be an MVD X »+ Y over \I.(or an FD X » Y),. We present the
following results on the problem of detebmining whether D implies d.

If X,y S V< Uy, then the problem is solvable. If X,¥ <V SU,, then
the problem can be solved in O(|Dl.!Y - X!) time. If XS U, and

n

X,Y €V £ Uy, then the problem can be solved in

o(IDy2.tu, - Xt. & (lug - U

\ .
o4+ 1)) time,
i=1 i i+1



(3) View dependency implication: A query can be formulated in terms of a
relational algebra expression using projection, selection, restriction,
cross product, and union, We show that it is NP-complete to determine
whether given a database scheme R, a database I of R, and a relational
expression E, view E(I) 1is not empty. And we show that (a) it is
NP-complete to determine whether given a database scheme R, a database I of
R, a relational expression E, and a tuple u, view E(I) contains up, but that
(b) if E contains no projection, then it can be determined in polynomial
time,

Next, we consider the problem of determining whether a given dependency
d is valid in a given relational expression E over a given database schemg
R, and present the following results.

Casel: The case where each relation scheme in R is associated with FDs
and d is an FD. Then the complement of the problem is NP-complete. If E
contains no union, then the problem can be solved in polynomial time. Under
the condition that at most two distinct values occur in any database
instahce of R, the complement of the problem is NP-complete (even if E
contains no union).

Case?2: The case where each relation scheme in R is associated with FDs
and full MVDs and d is an FD or a full MVD. Then the problem is solvable,
Even if E consists only of selections and cross products, the problem is
NP-hard. If E contains no union and each relation scheme name in R occurs

at most once in E, then the problem can be solved in polynomial time.
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CHAPTER 1
INTRODUCTION

In relational databases, the notion of dependency, which is a

constraint on relations, is central"to the design of database schemes.

Functional dependencies (FDs) [Codd 70] [Armstrong T4] and multivalued

dependencies (MVDs) [Fagin 77] [Zaniolo 76] are the most fundamental and

important dependencies. In this thesis, we deal with the following three
topios' on FDs and MVDs: (1) database scheme design, (2) dependency
implication, and (3) view dependency implication. These are described

below.

1.1 Database Scheme Design

In the design theory of relational databases, the "real world" is
modeled by a single universal relation scheme <U,D>, where U is a set of
attributes and D is a set of constraints over U. The database scheme
repfesenting the real world is definedrby an ordered set R = {<R1,D1>, veey
<R,,D, >} of relation schemes, where U = Ry U ... UR, and each D; is a set
of constraints that is "ipherited" from D [Beeri et al 78]. Then an ordered
set I = {r1, cesy rn} of relations is called a database of R if each ry is a
relation over R;. Furthermore, if each ry satisfies D;, then I is called a
database instance of R. It can be considered that a database instance of R
represents the "current" value of the universal relation scheme <U,D> in
somefway. It has been often assumed that for a database instance I = {r1,
veey rn} of R, there must be a singlé relation r over U, called a pure

universal instance for I, such that (1) r satisfies D and (2) each ry

coincides with the projection of r onto Ri‘ Then the relation r is

considered as the "current" value of the universal relation scheme <U,D>.



However, the pure universal instance assumption is controversial and there
are some criticisms [Beeri et al 78] [Kent 811]. Recently, a weakened
version of this assumption has been proposed, which states that for a
database instance I = {r'1, sses T} of R, there must be a single relation r

over U, called a weak universal instance for I, such that (1) r satisfies D

and (2) each r; is contained in the projection of r onto Ry [Honeyman 82]
[Sagiv 81] [Ullman et al 82]. Under the weak universal instance assumption,

the representative instance of I is a suitable model for representing the

"current" value of <U,D> [Ullman et al 82], It is known that there is a
weak universal instance for a database instance I of R if and only if thé
representative instance of I satisfies D [Honeyman 82] [Ullman et al 821].
In this thesis, we assume a weak universal instance, but not a pure
universal instance.

An important principle for designing a database scheme R = {<R1,D1>,
vy <Rn,Dn>} from a given universal relation scheme <U,D> is that for every
database instance of R, there is a weak universal instance; that is, the
representative instance of every database instance of R always satisfies D.
Because if so, then the global consistency of a database I = {r'1, ve vy r'n}

of R depends only on the local consistency of each relation r that is,

i
there is no interrelational constraint among the relation scheme in R
{Beeri et al 78] [Maier et al 80].

Consider the case where only FDs are given as constraints, and a cover
of the FDs is embodied in the database scheme. That is, for given universal
relation scheme <U,F> and database scheme R = {<R1,F1>, essy <Ry, F >3, a

cover of F is equiValent to that of F, U eee U F,, where F, Fis evey Fy are

n
sets of FDs. We say that a database scheme R = {<R;,F;>, ..., <R, ,F >} is
consistent if the representative instance of every database instance I =
{r{y <..; r,} of R always satisfies Fq U .o UFy, The notion of

consistency is equivalent to the notion that "local consistency implies



global consistency” in [Sagiv 83] and the notion that "R is independent with
respect to F; U oo U F," in [Graham and Yannakakis 82]. In this thesis, we
consider the following two problems,

(1) Determine whether R is consistent.

(2) Given a subset V of R4 U ... U Rn and a database instance I of R, how

can we compute efficiently the total projection of the representative

instance onto V?

The computation of the total projection is important for evaluating a
query-that refers to the set V with respect to the representative instance
[Sagiv 83] [Ullman et al 82].

§agiv [Sagiv 83] showed some results on these problems., As for problem
(1), ﬁe showed a necessary and sufficient condition, called the uniqueness
condition, for R to be consistent under the restriction that each <Ry,Fy> is
a Boyce-Codd normal form scheme, that ié, the left-hand side of every FD in
F; is the key of Ry, As for problem (2), he showed a quadratic algorithm
for constructing a relational expression whose value is the total projection
of the representative instance onto V for every database instance I of R,
provided that R satisfies the uniqueness condition. The relational
expression consists of projections, extension joins [Honeyman 80], and
unions, and thus its value for a database instance of R can be computed
efficiently. And then he showed a quadratic algorithm for minimizing the
number‘ of unions and joins of the relational expression, The following
negative results on a Boyce-Codd normal form are known
[Beeri and Bernstein 79],

(a) There is a universal relation scheme that can not be transformed into
any Boyce-Codd normal form database scheme. And it is NP-hard to determine
whether a given wuniversal relation scheme can be transformed into a
Boyce-Codd normal form database scheme. -

(b) It is NP-complete to determine whether a given relation scheme is not



a Boyce-Codd normal form scheme,

As for problem (1), Graham and Yannakakis [Graham and Yannakakis 82]
and, independently, the authors [Ito et al 83b] showed polynomial time
algorithms for determining whether a given database scheme'ﬁ is consistent
with no restriction on R. The algorithm of [Graham and Yannakakis 82]
requires repeated tableau computations, The basic idea of the. authors’
algorithm is essentially the same as that of theirs, but the authors’
algorithm is simpler and easier to implement, since no tableau computation
is needed.

In this thesis, we.show the following results, which are based on
[Ito et al 83b] [Iwasaki et al 82].

(1) It can be determined in O(n!F![Fll) time whether R is consistent,
where F = F; U ... UF,, IFi is the number of FDs in F, and |IFll is the size
of the description of F,

(2) We can construct in O(n|F}||Fll) time a relational expression whose
value is the total projection of the representative instance onto V for
every database instance of R, provided that R is consistent. The relational
expression consists of projections, extension joins, and unions.

(3) The relational expression above can be transformed in O(n!F}|IF|]) time
into a "simplified" relational expression in which (i) the relational
expression contains neither redundant unions nor redundant joins and (ii)
the projections of the relational expression are executed as early as
possible when evaluating the relational expression for a database instance
of R. Note that the time and space for‘evaluating the relational expression
can be saved by executing the projections as early as possible,

The topic of this section is discussed in Chapter 2. Result (1) above
is shown in Section 2.2. Results (2) and (3) are shown in Sections 2.3.1

and 2.3.2, respectively.



1.2 Dependency Implication

Implication problem for dependencies is the problem of‘ detefmining
whether a given set D of dependencies implies another given dependency d,
that is, whether whenever a relation satisfies D, it alwéys satisfies d.
The importance of this problem is summarized in {[Ullman 81}, Implication

problém for FDs can be solved in linear time [Beeri and Bernstein 79], and

implidation problem for FDs and full MVDs can be solved in polynomial time
[Beeri 80] [Galil 82] [Hagihara et al 79] [Sagiv 80]. To the author’s
knowledge, however, it is open whether‘implication problem for embedded MVDs
is sdlvable. The following possibly negativelresults on this problem are
known, and it seems difficult to solve this problem completely.

(a) There is no finite set of inference rules that is complete for
embedded MVDs [Parker and Parsaye-Ghomi 80] [Sagiv and Walecka 82]. Note
that there is a complete set of inference rules for FDs and full Mvﬁs
[Beeri et al 77].

(b) Implication problem for template dependencies is unsolvable
[Gurevich and Lewis 82] ([Vardi 82]. Note that a template dependency is a
generalization of embedded MVDs [Sadri and Ullman 82].

In this thesis, we show some restricted solutions on the implication
problem for FDs and embedded MVDs, which are based on [Ito et al 80]
[Ito et al 83al.

We denote an MVD over a set V of attributes by X ++ Y(V). Let R be a
set of attributes and let U, & ... EU; $Uy SR, Let D =
FUMU M1tJ R M,, where

(i) F is a set of FDs Z » W satisfying vz SUyor WN U, = @,

(ii) M is a set of MVDs Z ++ W(V) satisfying at least one of Z S Uy €V,
WNUy =@, and (V - (ZU W) N U,y = @, and
(iii) each M; for 1 ¢ i ¢ n is a set of MVDs over Uj.

Note that M may contain full MVDs. Then we have the following three



results.

(1) Let X,YC V CUy. It is decidable whether X ++ Y(V) (or X » Y) is
implied by D.

(2) Let X,Y SV ZU,. It can be determined in O(|D}.}Y - X!) time
whether X ++ Y(V) (or X » Y) is implied by D,

(3) Let X SU, and let X,YSV &U,. It can be determined in
o(Ipl®.tu, - X}.EI:(lUi - Uj,q! + 1)) time whether X »» Y(V) (or X »Y) is
implied by D.

The topic of this section is discussed in Chapter 3. Result (1) is
shown in Section 3.,2.1. Results (2) and (3) in the case of X »+ Y(V) are
shown in Sections 3.2.2 and 3.2.3, respectively; Results (2) and (3) in the
case of X » Y are shown in Section 3.,2.4, Finally in Section 3.3.2, an
extension of result (1) to a class of functional and template dependencies

is shown, which is based on [Ito et al 81b].

1.3 View Dependency Implication

Relational algebra 1is known as a query language for relationai
databases. It has six operators on _relations; projection, selection,
restriction, cross product, union, and set difference [Codd 72]. A query
can be formulated in terms of a relational expressioﬁ consiting of the above
six operators and relation séheme némes in a given database scheme as
operands [Ullman 80]. 1In this thésis, set difference is not considered. A
relational expression E is considered as a mapping from databases I to

relations E(I) called views.

We first consider the following two decision problems on views, wheih
are the most fundamental problems in query processing.
(a) View nonemptiness problem: Given a database scheme R, a database I of

R, and a relational expression E, determine whether view E(I) is not empty.

(b) Tuple membership problem: Given a database scheme R, a database I of



R, a relational expression E, and a tuple u, determine whether y is in E(I).

We show the following results, which are based on [Ito et al 82].

(1) Both problems are NP-complete in general.

(2)va E contains no projection, then the tuple membership problem can be
solved in polynomial time,

Let R = {<R1,D1>, veey <Rn’Dn>} be a database scheme, let E be a
relational expression, and let d 'be a dependency. Then d is said to be
valid in E over R if for every database instance I = {r1, very rn} of R,
view E(I) always satisfies d. We consider the problem, called the
implication problem for view dependencies, of determining whether a given
dependency d is wvalid in a given relational expression E over a given
database scheme R. This problem can be divided into the follewing two
cases.

Casel: Each relation scheme in R is associated only with FDs (that is, R
is of the form {<R;,F;>, ..., <R ,F >}) and d is an FD.

Case2: Each relation scheme in R is associated with full MVDs as well as
FDs (that is, R is of the form {<Ry,FqU M>, oou, <R, F,U M >}) and d is
an FD or a full MVD.

The importance of the implication problem for view dependencies is
stated in [Klug 80] and [Klug and Price 82]. Klug [Klug 80] showed that in
Casel, this problem is solvable (that is, it is decidable whether d is valid
in E over R). And then Klug and Price [(Klug and Price 82] and,
independently, the authors [Ito et al 8#] showed that in Case2, this problem
is still solvable. As for this problem, we show thebfollowing results,
which are based on [Ito et al 81a] [Ito et al 82] {Ito et al 83c].

(3) In Case2, the implication problem for view dependencies is solvable.

(4) In Casel, the complement of the implication problem for view
dependencies is NP-complete. That is, it is NP-complete to determine

whether d is not valid in E over R.



(5) In Case2, even if E consists only of selections and cross products,
the implication problem for view dependencies is NP-hard. (The only known
algorithm for solving this problem 1is exponential in time and space
[Maier et al 79].)

(6) In Casel, if E contains no union, then the implication problem for
view dependencies can be solved in polynomial time.

(7) In Case2, if E contains no union and each relation scheme name Ry in
R ocdurs at most once in E, theh the implication problem for view
dependencies can be solved in polynomial time.

A scheme design method in relatiqnal databases is to decompose a given
relation scheme <R,D> into a set {<R1,D1>, vesy %Rn,Dn>} of smaller relation
schemes (cf. [Beeri 79] [Beeri et al 78] [Rissanen 771). It is important to
examine whether the decomposition preserves the original constraints D
[Beeri 79] ([Maier et al 80}, " This examination can be generalized as the
problem of determining whether a Sgiven dependency d is wvalid in
Ry M ... M R, where Ry M Rj is the natural join of Ry and Ry. It is known
that in Casel above, this problem 'can be solved in polynomial time
[Rissanen 77] [Maier et al 80]. However, in Case2, it has not been known
whether this problem can be solved in polynomial time., As a corollary of
result (7) above, we show the following result.

(8) In Case2, it can be determined in polynomial time whether a given FD
or a full MVD is valid in Ry X ... NRA.

When considering the implication problem for (view) dependencies, we
usually assume that the domains of the values in databases are infinite,
However, in practice, we must often consider finite domains (e.g., domain
{male, female} or {sunday, monday, ..., saturday}). We say that d is
k-valid in E over R if for every database instance I of R in which at most k
distinect values occur, view E(I) satisfies d. It is possible that d is not

valid but k-valid in E over R. Theoretically, 2-validity is the simplest



case in finite domains, since if .only one value occurs in a database
instance I of R, then E(I) trivially satisfies any dependency d, and thus
t-validity is meaningless, Finally we show the following result,

(9) In Casel, even if E consists only of selections, restrictions, and
cross products, the problem of determiping whether d is not 2-valid in E
over R is NP-complete., (Note result (6) above,) |

The topic of this section is discussed in Chapter 4, Results (1) and
(2) are shown in Sections Y4.2.1 and 4.2.2, respectively. Results (3)
through (6) are shown in Sections 4.3.1 through U.3.4, respectively;
Results (7) and (8) are shown in Section 4.3.5. Result (9) is shown in

Section 4,3.6.



CHAPTER 2
SOME RESULTS ON THE REPRESENTATIVE INSTANCE

In this chapter, we discuss the topic of the representative instance.
In Section 2.1, we provide basic definitions., In Section 2,2, we present a
polynoMial time algorithm for determining whether a given database scheme is
consistent. In Section 2.3, we present a polynomial time algorithm for
constructing a relational expression whose value is the total projection of
the representative instance onto a given set of attributes, provided that
the "database scheme 1is consistent. And then a polynomial time

simplification method of the relational expression is presented.

2.1 Definitions

A relation r over a set R = {A,, ..., A} of attributes is a finite set
of tuples that are members of the Cartesian product dom(A1) X wus X'dom(Am),
where dom(Ai) is the domain of values of A;. A relation can be viewed asla
table such that each row is a tuple and each column is labeled by an
attribute., Let u be a tuple of r, For an attribute A in R, ul[A] denotes
the value of u in A column. For a subset X of R, ul[X] denotes the values of
p in X columns. We use A, B, C, ... for attributes, and ..., X, Y, Z for
sets of attributes. We often write A for the singleton set {A}, and XY for
the union X U Y,

’A functional dependency (over R) [Armstrong 74] [Codd 70], abbreviated
to FD, is a statement X + Y, where X and Y are subsets of R. A relationr
is said to satisfy X + Y if for all tuplgs w and v of r, ulX] = v[X] implies
ulY] = v[Y]. A set F of FDs is said to imply an FD f if whenever a relation
satisfies all FDs in F, it also satisfies FD f. For a set X of attributes,

the closure of X with respect to F is a set of attributes defined by F(X,F)

10



= {A | F implies X + A}, We can compute F(X,F) in 1linear time
[Beeri and Bernstein 79].

In the following we often consider a relation with variables. That is,
a tuple of a relation may contain variables in some columns, For two tuples
u and v, plA] = v[A] if and only if y and v have either the same constant or
the same variable in A column. We say that y and v agree in X columns if
ulX] = vlX].

Lét r be a relation that may contain variables and let F be a set of
FDs. The chase of r under F is a relation obtained by applying FD-rules,
which are defined below, for F to r until no rule can be applied anymore
[Aho ét al 79] [Maier et al 79]. An applicétion sequence of FD-rules for F
to r is called a chase process of r undér F.

FD-rules: An FD X » Y in F has an associated rule as follows, Suppose
thatvthere are two tuples yu and v that agree in X columns. FD-rule for
X » Y executes the following for eéch attribute A in ¥ - X,

(1) If u (or v) has a variable v in A column and v (or u) has a constant
¢ in that column, then replace allroccuhfences of v in A column with c.

(2) If p and v have different variables vy and v, in A column, then
replace all occurrences of vq in A column with Vo

If y and v have different constants in A column, then y and v are said
to conflict (for X » Y). In this case, the chase of r under F does not
satisfy F. By FD-rule for X - Y, y and v will be equated in Y columns
unless y and v conflict, The chase of.r under F satisfies F if and only if
no confliction occurs.by any chase process of r under F. If the chase

satisfies F, then it is unique up to renaming of variables [Maier et al T79].

A relation scheme is a pair <R,F> of a set R of attributes and a set F

of FDs over R. A database scheme over a set U of attributes is an ordered

set R = {<R{,Fy>, ..., <B,,Fp>} of relation schemes such that U =

RyV ... UR,. An ordered set I = (ry, ..., rn} of relations is called a

11



database of R if each ry is a relation over Ri‘ Furthermore if each'r'i
satisfies F;, then I is called a database instance of R. In this chapter,
we mainly consider database instances, and assume that no database of R
contains any variable,

We assume that F (= Fy V... U Fn) is a cover of all the FDs imposed on
the database by the user, that is, a cover of the FDs is embodied in the
database scheme. Given a universal relation scheme <U,F> and a
decomposition {R1, vevy Rn} of U, it can be determined in polynomial time
whethé.r' a cover of F is embodied by the decomposition, that is, whether
there is a database scheme R = {<R1’F1.>’ seey <Rn,Fn>} over U such that a
cover of Fq Uees U F, 1is equivalent to that of F [Beeri and Honeyman 81].
This assumption implies Assumption2.i below.

Assumption2,1: If an FD X + Y is imfslied by F and XY S Ry, then X + Y is
also implied by Fi'

Let I = {rqy, «ssy ry} be a database instance of R. Each ry can be
viewed as a relation over U, denoted augU(r'i), by adding columns for the
attributes in U - Ry that contain distinet variables. That is, for each
tuplé u of ry, there is a tuple of augU(ri), denoted augU(u), that agrees
with u in Ri columns and has distinct variables (that do not appear in any
other tuple) for the attributes in U - Rj. We define augy(I) =
augU(r'1) V... U augU(rn)‘ We assume that each variable occurs once in only
one t‘uple of augU(I). The representative instance of the database I,
denoted rep(I), is defined as the chase of augU(I) under F [Honeyman 82]
[Sagiv 81] [Vassiliou 80]. The database scheme R is said to be consistent
if"fdr" every database instance I of R, rep{(I) satisfies F, that is; no
confliction occurs by any chase process of 'augU(I) under F,.

For simplicity, we have the following two assumptions,

Assumption2,.2: Each Fi satisfies the following conditions., For all X + Y

in Fy,

12



(a) Y = F(X,F;) - X,
(b) X.» Y is not implied by F; - {X + Y}, and
(¢) for no proper subset X“ of X, X » Y is implied by Fy.
A quadratic algorithm for transforming a set of FDs into the set
satisfying conditions (a), (b), and (c) above is known [Bernstein 76].
Assumption2,3: Let X » Y and Z + W be FDs in F, 1If XY € ZW, then X + Y
and Z » W are in the same set (that is one of F,, ..., Fr)e
Note that it can be determined in O({F![Fl}) time whether F satisfies
Assumptionz.3. If F does not satisfy Assumption2.3, then R is not
consistent, as explained below. Suppose that ﬁhere are two FDs X + Y and
Z » W such that (1) XY & ZW and (2) X + Y and Z + W are in different sets Fy
and Fj, respectively. Then Fj as well as Fi imply X + Y by Assumption2.1.
Consider a database instance 1 = {r{, ooy rn} of R such that (1) ry
consists of only one tuple that has a constant ¢ in all the columns, (2) rj
consists of only one tuple that has the constant ¢ exactly in X columns (and
another constants in Rj - X columns), and (3) any other relation is empty.

Then a confliction for X + Y occurs in augU(I), and thus R is not

consistent.

2.2 Testing Consistency of a Database Scheme

- In this section we present an algorithm for determining whether a given

database scheme is consistent.

2.2.,1 Conditions for consistency of a database scheme

Let R = {<R1,F1>, eevy <R,,F >} be a database scheme over U, 1In this
section we present some conditions that are useful for developing an
algorithm for determining whether R is consistent.

Let I = {rq, ..., rn} be a database instance of R. Consider a chase
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process of augU(I) under F., If a tuple p of augU(I) is transformed into a
tuple p” by a‘number of applications of FD-rules for-F, then u is said to be
extended to u° by F, and u° is called an extension of u. An application of
FD-rule for an FD X - Y in Fi to u and v that agree in X columns is said to
be reétricted if either u or v is an extension of a tuple of augU(ri). If u
is the extension, then v is equated to u in Y columns by the restricted
application unless y and v conflict, and u remains unchanged. Let v’ be the
resulting tuple. Then v’ agrees with v in U - Y columns and agrees with u
in XY columns. We denote the restricted application by v {215 v’ (or
simply v 3245 ), 1f u and v confliet for X - Y in Fy (that is, u and v
agree in X columns but have different constants in A column for an attribute
A in Y) and if either u or v is an extension of a tuple of augU(ri), then
the confliction is said to be restricted. Then we have the following lemma,

whose proof is given in Appendix 1.

[Lemma2.1] If R is not consistent, then there is a database instance I of
R such that a restricted confliction occurs by extending only one tuple of
augU(I) by only restricted applications of FD-rules for F and leaving all

other tuples unchanged. []

For a relation scheme <R;,F;>, a sequence X1 * Yq, eevy X +» Y, of FDs
in F - F; 1is called a derivation of a subset V of U from Ry if

+ Y

Xk E RiY1...Yk_1 f‘or‘ 1 § k s m and V £<RiY1.‘.Ym. If X] hd Y“’ s 9y Xm m

is a derivation of V from R;, then the set {X; > Y,, ..., X, » Y } implies.
Ry + Yl"‘Ym‘ And then Ri + Y1...Ym implies Ri + V., Thus it holds that
V& F(Ry,F). In this section, we consider only the case where V is a

singleton set {A} and Y, contains A, Such a derivation 1is called a

derivation of A from Ri‘

A derivation Xy > Yy, «eey Xp > Yy of A from R; is said to be close if

14



it satisfies the following property.

Property2,i: For each X, + Y with 1 { k ¢ m, if there is an FD X + Y in

F such that XY & X, Y, and X c RyY{eso¥y_4, then there is an FD X, » Yﬂ,l such
that 1§ & ¢ k-1 and XY € XY .

Pﬁoperty2.1 is restated as follows., For an FD X + Y in Fj, we define

cover(X »Y) = {Z+W | Z+ W is in Fj and ZW € XY}. Suppose that X + Yy

is in Fj and let Hgk) be the intersection of F‘j and {X‘ * Yy eeey

Xgo1 * Yp_q}. We define cover(Hgk)) = U H(.k)cover'(x +Y). Then

X+ Y in
Property2.1 is equivalent to the condition that for each X * Yy with

1

[ 172N

k<{<m, if there is an FD X + Y in Fj such that XY s"XkYk and

X < RiYqeeoXp_¢s then X +Y is in cover(Hgk)). That is, X, + Y, is a
. ) (k) e
minimal FD in Fj - cover'(Hj ) satisfying X - RyYqeouYp 4.

Let Xy > Yiy veey X > Y, be a derivation of A from Ry . Suppose that.

the last FD X, +~ Y, is in Fj and let ‘Hgm) be the intersection of Fj and
Xy > Yy, wuvy Xpoq > Y4l X, * ¥, 1is said to be irreducible (with
respect to the derivation X1 + YT’ eves ‘Xm > Yy of A from Ri) if Xy * A is

not implied by cover‘(Hg-m)).

[Lemma2,2] If R is not consistent, then one of the following holds.
(i) There is a close derivation Xy * Y4y eusy Xy + Y, of an attribute in

Ri from Ri itself such that Xm +> Ym is irredudible.

(ii) There are two close derivations Zy > Wyy wesy Zg > Wy and Py > Qq,

esey Pp + Qp of an attribute in U from :Ri such that Zy + Wy and Py » Q are

irreducible and different,

(Proof) If R is not consistent, then there is a database instance I =
{r'1, ey rn} of R that satisfies condition of Lemma2.1. Suppose that a

tuple vv1 of augU(ri) is extended to a tuple v by restricted applications of

m

FD-rules for X4 + Y4, ..o, X + ¥Y,_1 in this order and suppose that v

m-1 m
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restrictedly conflicts with a tuple y, of augU(rj) for an FD X, + Y in Fj.

That is, v, and u, agree in X  columns but have different constants in A

v X, - Y
column for an attribute A in Ym‘ The chase process is denoted vy S S N
. ¢ H
X, = Y X + Y 1
Vo z€-==28> ,,, =U=l.-.20=1y vye For 1. k ¢ m, v, has constants exactly in
Ho Hp-1 '

R{Y{sesYy_¢ columns and X, < R;Y;...Yy ¢, as explained next. Initially v,

has constants exactly in Ri columns. If v, has constants exactly in

and Xk _C_ RiY1“‘Yk—1 by \)k =-==:=_> \’k+1‘ ThUS it hOldS that
Xph € RyY ... Y, ; and sequence X; > Y;, ..., X, > Y  is a derivation of A

from Ri. In the following we show that the derivation can be éssumed to be
close without loss of generality.

For FD X, + Y., if there is an FD X + Y in F such that X S RyY .. Yy ¢
and XY & XYy, then X + Y and X, + Y, are in the same set by Assumption2.3.
If uy and v, do not conflict for X + Y, then there is a chase‘process Vi
8=2-4> __===¥5> v', Clearly v" coincides with vy, .. Thus the original
sequence Xy > Yy, oev, X + Y, can be reblaced by the sequence X, *‘Y1, veny
Xpat > Ypoqs X > Y, Xp > Yy wuey X Ym‘ If u, and vy conflict for X + Y,
then the confliction is restricted, and thus the original sequence can be
replaced by the sequence X1 * gy eeey Xp g Yy gy X > Yo By repeating the
process above, we assume without loss of generality that the sequence

Xy Yqy v, Xp > ¥ is close.

m

(m) {
Let Hj be the intersection of F; and Xy Y9, weuy Xpoq > Ypoqle

Then relation rj v {Vm[Rj]} satisfies cover(Hgm)) (if each variable of

vm[Rj] is considered as a constant), by the following reason. Let Z + W be
an FD in cover‘(Xk -+ Yk), where X, = Yk.is in Hgm). By v i SRS ¢
tuple . agrees with Vi1 (and also vm) in X, Y, columns, especially in ZW

columns. Since r, satisfies Z + W and wglRsl is din r relation

J
rj v {vm[Rj]} satisfies Z - W.

j!
Since (1) v

n agrees with w, in X, columns, (2) “m[Rj] is in rj and (3)
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ryu {vm[Rj]} satisfies cover(Hgm)), vy agrees with yu_ in 3(Xm,cover(H§m)))
columns;__ Since v, and u, héve. different constants in A coluﬁn,
B(Xm,cover(Hgm))) does not contain A, that is, cover(Hgm)) does not imply
Xp * A.b Thus X, » Y, is irreducible. If Ry contains A, then condition (1)
of Lemma2.2 follows, Suppose that Ri does not contain A and let Xk + Yk be
the first FD such that Y, contains A. Since v, has constants exactly in
RiYq{es.Y, ¢ columns, RiYqieaoXp 4 contains A, and thus it holds that k ¢ m-1.
Then subsequence X; + Y., ..., X+ Yy is a close derivation of A from Ry
such that X, + Y, is irreducible by the fact that none of Y., ..., Y, 4

contains A, If Xy > Y, is not in Fj, then X + Y, and X, + Y,  are

m
different, and thus condition (ii) of Lemma2.2 follows, If X, + Y, is in
Fj, then it is also in Hgm). Since X + Y, is not in cover(Hgm)), Xy * Yy

and X, + Y, are different. Thus condition (ii) of Lemma2.2 follows. []
Conversely we have the following lemma.

[Lemma2.3] If there is a derivation X1 Yy eees X > Y, of an attribute
A in U from R; such that (1) R;Y;...Y, . contains A and (2) the last FD
Xn * Yo is irreducible, then R is not consistent.

(Proof) Suppose that X + Y, is in Fjo Let Hgm) be the intersection of
Fy and {X; + Yy, wue, Xp_q > Yp_(}. We denote H{™ by {(z; + W, ...,
g » ws}. In the following we show that there is a database instance I of R
such that a restricted confliction occurs by extending only one tuple by
restriéted applications of FD-rules for X1 +> Y1, ooy X

+ Y We

m-1 m-1*

define I = {ry, ..., r,} as follows,

(1) Each r, except ry consists of only one tuple that has a constant ¢ in

all the columns.

(2) rj = {uys +sey ug, ul, where each tuple u, for 1 ¢ k ¢ s has the
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constant ¢ in kak columns and distinct constants (that do not appear in any
other thple) in all other coiumns, and uy has the constant ¢ in
3(Xm,cover(H§m))) columns and distinct constants in all other columns.

Then I is a database instance of R by the following reason, It
suffices to show that r; satisfies FJ. Suppose that for an FD X + Y in Fj,

there are two tuples Hie and v of rj that agree in X columns, where v 1is one
of Mys eves Mg 19 Hpgpqs ey Hgy Ho Then My and v have the constant ¢ in X
columns, and thus X & ZyWes Thus Z, + W, and X + Y imply Z, » W XY, It
follows from Assumption2.2(a) that XY E.kak‘ If v = u, then it holds that
XY € ZgW, by the same reason. If v = w, then it holds that

XYy € B(Xm,cover(Hgm))), since (1) X € 3(X¢,cover(H§m))) and (2) XY € Z,W,

implies that X - Y is in cover(Hgm)). Thus My and v have the constant ¢ in

Y columns, that is, u and v satisfy X +~ Y.

Let 1, be a tuple of augU(ri). Then there is a chase process T,

eee ==Zd=z===z=d - such that Ty for 1 ¢ k ¢ m has the

constant ¢ exactly in RyY;...Y, 4 columns, as explained next. Since i # j,
initially T4 has the constant ¢ exactly in Ri columns., Suppose that Xk + Yk
is in ij and that 1, has the constant c exactly in R;Yy...Y, 4 columns, If
jk = j, then we can choose a tuple of augU(rj) that has the constant c¢

exactly in XkYk columns as Vs and otherwise Vi has the constant c exactly
. Xk + Yk
in Rjk columns. Thus by Ty =-=3;=_> Ta1? tuple s has the constant ¢

exactly in R;Yq...Y, columns. Since X, € RyYq...Y, 4, T, agrees with

augU(u) in Xm columns. But since cover(Hgm)) does not imply X + A by the
irreducibility of Xm +> Ym, augU(u) does not have the constant ¢ in A column.

Thus 1, restrictedly conflicts with augU(u) for X, + Y and thus R is not

m’

consistent. []
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2.2.2 Thée method
[Algorithm2,1]
input: A database scheme R = {<R1,F1>} vesy <Rn'Fn>}‘
method: If there is a number i such that the following procedure EXAM(Ri)
returns "no", then R is not consistent, and otherwise (that is, if for all

i, EXAM(Ry) returns "yes") R is consistent.

procedure EXAM(Ri)

begin
(1) Let S = Ry (that is, assign Ry to S). For 1 $J ¢ n, let Gy = g.
(2) while there is a number j (£ i) such that Fj - Gj contains an FD
X+ Y with X €3
do begin
(2-1) Select an FD X + Y from Fy - Gj such that X €S and X + Y is
minimal (that is, there is no FD Z + W in Fj - Gj such that Z €S and
W & XY).

(2-i1i) If the FD X + Y selected in step (2-i) satisfies the following
condition, then return "no",

Conditioni: SNY - E(X,Gj) £ d.

(2-iii) If the FD X + Y does not satisfy Conditioni, then let S = SU Y
and G; = G; U cover(X +~ Y).

-J J
end while

(3) (The case where step (2) terminates without returning "no") return

"yes" .

‘We show that Algorithm2.1 correctly determines whether R is consistent.
We denote the values of 3, Gis weey G, at the p-th execution of step (2-i)

by S(p), Ggp), ve vy Ggp), respeetively. We denote the FD selected at the
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p-th execution of step (2-i) by X(P) » y(P)_  Then since x(P) ¢ s(P) .
RiY(1)...Y(p'1), sequence x{1) . y(1), e, x(P) Y(P) is a derivation of
each attribute in Y(P) from R;. suppose that x(P) » y(P) is in Fy and let
ng) be the intersection of Fy and . {x{1) » Y L., x(e=1) oy (-1
Then it holds that Ggp) = cover(ng)). And since x(P) 5 y(P) ig minimal in
Fy - Ggp), the derivation is close.

Suppose that EXAM(Ri) returns "no" at the p-th execution of step
(2-ii), that is, sPY A y(P) E(X(p),Ggp)) 4 @. Let A be an attribute in
sP)n y(P) 3(X(p),G§-p)). Then XM » y(V) .., xP) 4 y(P) 15 2 close
derivation of A from Ri. Since the fact that .F(X(p),Ggp)) does not contain
A implies that cover(ng)) does not. imply X(p) + A, FD X(p) > Y(p) is
irreducible, Since S(p) (= RiY(1)...Y(p'1)) contains A, R is not consistent
by Lemma2.3.

In order to prove the converse, we present ﬁwo lemmas below, The

proofs are given in Appendix 1.

[Lemma2.,4] Let Xy Yy, oo, X3 > Y, be a close derivation of A from Ry
such that the last FD X » Y in Fj is irreducible., For a subet G of Fj, if
G does not contain X+ Y , then G does not imply X ~+ A, that is, A is not

in F(X,G). [

[Lemma2.5] Let Xg * ¥y, oeoy X > Y, be a close derivation of an
attribute in U from Hi such that the last FD Xp * Y in Fj is irreducible.

If X, » Y, is not selected in step (2-1) during the execution of EXAM(Ri),

then EXAM(Ri) returns "no"., []

Suppose that R is not consistent. By Lemma2.2 there are two cases to

be considered.

Casel: Suppose that there is a close derivation X1 - Y1, ooy Xp * Yo of
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an attribute A in Ri from Ri itself such that the last FD Xm + Ym in Fj is

irreducible, By Lemma2.5, it suffices to consider the case where Xp * Ym:is

is selected at the p-th

selected in step (2-1). Suppose that X  + Y_

execution of step (2-i). Since Xg * Y

- is irreducible arid Ggp) does not

contain Xp * Yo R(Xm,Ggp)) does not contain A by Lemma2.4. Since Ry
contains A and R; € S‘P), it holds that P vy - .;(xm,cgp)) 4 @. Thus
EXAM(Ri) returns "no" by Conditionl in step (2-ii).

Case2: Suppose that there are two clbse derivations Z1 Wiy eeey Zg Wy
and Py >~ Qq, 4e., Py + Qg of an attribute A in U from a relation scheme Ry
such that Zs > ws and Pt +> Qt are irreducible and different. By Lemma2.5,
it suffices to consider the case where both Zg * Wy and P, + Qi are selected
in step (2-i). We assume without loss of generality that Zg  + Wy is
selected at the p-th execution of step (2-i) after P, + Q. has been
selected., Suppose that Zs + wS is in Fj. Since ZS + ws is irreducible and
Ggp) does not contain Z_ > Wg, .E(ZS,Ggp)) does not contain A by Lemma2.l4.
Since Q, contains A and Qy € S‘P), it holds that s{P)n W - jw(zs,cgp)) y

#. Thus EXAM(R;) returns "no" by Conditioni in step (2-ii).

We estimate the time complexity of Algorithm2.1. We assume that as the
input of Algorithm2.1, each attribute in U is represented by an integer and

all given sets of attributes (e.g., R1,-..., R, and X, Y for X + Y in F) are

n
represented by increasing sequences of integers. Before executing the
procedure EXAM(R;), we execute the following (a), (b), and (c). (These can

be executed in O(|F}IFlj) time.)

(a) For each X + Y in Fj with 1 ¢ j ¢ n, list all the FDs 2 > W in Fy
such that 2ZW & XY, that is, cover(X + Y).

(b) For each A in U, list all the FDs X + Y in F such that X contains A,

(¢) For each X » Y in F, we introduce variable count(X + Y) and let the

initial wvalue of count(X + Y) be IRi - Xi. We use count(X - Y) for
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examining whether S contains X.

When EXAM(Ri) is executed, the loop of step (2) is most expensive. The
loop is repeated at most |F| times., Consider how to select an FD X + Y in
step (2-i). For each execution of the loop, if an attribute A is added to
S, then we decrease the value of count(X + Y) by one for each X + Y such
that X contains A. This can be done in the time proportional to the number
of FDs in F whose left-hand sides contain A (such FDs have been listed in
step (b) above). If count(X + Y) = 0, then X is contained in 8. Since for
each attribute A in U and each X + Y in F whose left-hand side contains A,
the value of count(X » Y) is decreased by one at most once, this process caﬁ
be executed in O(J|F)) time as a whole, Since we have listed cover(X + Y)
for each X + Y in F. in step (a), we can test in O(EFj}) < O(IFi) time

J

whether X » Y is minimal in Fj - Gj.

O(IF}Z) time as a whole. Next in step (2-ii), we can examine Conditioni in

This process can be executed in

O(HFJH) time, since .F(X,Gj) can be computed in O("GjH) < O("Fj”) time
[Beeri and Bernstein 79}, Note that we examine Conditioni for each FD at
most once, By the discussions above, EXAM(R;) can be executed in O(IF![FI)
time.v Thus we have the following theorem,

[Theorem2,1] Let R = {<Ry,F{>, ousy <R, ,F >} be a database scheme. It
can be determined in O(n|F!Fl}) time whether R is consistent, where F =

FqU .. UF,. (]

2.3 Computing the Total Projection

Let r be a relation over R and let V be a subset of R, The projection
of r onto V is a relation over V defined by r[Vv] = {ulV] | uis inr}, Ifr
contains variables, then the total projection of r onto V is defined by

r[V-total] = {ulv] | u is in r and contains no variable in V columns}. Let
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ry and ry be relations over R1 and R2, respectively. The (natural) Jjoin of
ry and r, is a relation over R1lJ R, defined by ry M r, = fu | u[R1] is in
r, and “[Rz] is in r2}. If r, satisfies FD R, N Ry + R, - Ry, then the join

ry M r, is called an extension _Jjoin [Honeyman 80]. Unlike usual joins,

extension joins can be computed efficiently [Honeyman 80]. In this section,
only the extension joins are considered.

Let R = {<Ry,F>y oeu,y <R,,F,>} be a database scheme over U. In this
section, we assume that R is consistent unless otherwise stated. A

relational expression consists of R1, weey R_ as operands and projection,

n
union and join as operators. Formally a relational expression is defined as
follows.

(1) Ri is a relational expression by itself.

(2) If E; and E, are relational expressions, then so are E,[V], E; M E,,
and E1lJ E,.

The value of a relational expression E for a database (not necessarily

database instance) I = {r;, ..., r,} of R, denoted E(I), is computed by

substituting ryy eesy rp for Ry, ooy R respectively, and applying the

n n?

operators according to the definitions. Two relational expressions E1 and
E, are said to be equivalent if E1(I) = E2(I) for every database instance I
of R. And E; is said to include E, if E5(I) & E{(I) for every database
instance I of R.

In Section 2.3.1, we show how to construct in O(n|F||Fl]) time a
relational expression E whose value is the total projection of the
representative instance onto V, that is, E(I) = rep(I)[V-total] for every
databse instance I of R, provided that the database scheme R is consistent.
The expression E is of the fornm g Ei[V], where each E; is a sequence of
extension joins, and thus rep(I)[V-total]l can be computed efficiently, In
Section 2.3.2, we show how to obtain a simplified relational expression from

E in O(niFIFll) time.
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2.3.1 The method
Let R = {<R1,F1>, ve sy <Rn,Fn>} be a consistent database scheme over U,
Let 1 =‘{r1, v oy rn} be a database instance of R and let V be a subset of

U. We have the following lemma, whose proof is given in Appéndix 1.

{Lemma2.6] Let augU(I)* be a relation obtained by only restricted
applications of FD-rules for F to augU(I) until no FD-rule can be
restrictedly applied anymore. Then it holds that rep(I){V-total] =

augy(1)*[V-totall. (]

Let u[V] be a tuple of rep(I)[V-total]l, where u is an extension of a

X, + Y
tuple ugy of augU(ri). By Lemma?.,6 there is a chase process Ko s P PN Hq
X2 + Y2 Xm + Y :
=€===2¢> ,,, =U====D> M such that M, agrees with ¢ in V columns.

) . X1 + Yl X, + Y
Conversely, if there is a chase process g =d====4> ., =@====@} M such

that w, has constants in V columns, then um[V] is in rep(I)[V-total]. Note
that sequence X1 > Y1, vooy Xp * Yo is a derivation of V from Ry. However,

the derivation X; + Yy, ..., X, ~ Y, may be dependent on ulVv]. In the

following we show that for a derivation Zy " W1, seey Ly + Wy of V from Ry

s
29 2 Wy o
that depends on only Ri and V, there is a chase process Mg =dz====22> Hy
Z, + W Z. > W, .
=€z==z=€> ,,, =8z:z==2> 37, By the consistency of R, u. agrees with u_ (and
s 1 Mg m

also p) in V columns., Suppose that Zt +> wt is in th for 1 ¢ t { s. Then
ug is in relation ry M ry [Z{W ) ..o ry [2g0s].  Thus a tuple ulv],
wheré u is an extension of a tuple of augU(ri), is in rep(I)[V-total] if and
ooly if wlV] is in (R;M Ry [Z(H7]1M ..o MRy [ZgW 1)IVI(T).  Note that
expression RiP4 Rj1[z1w1]pq... M st[zsws] is a sequence of extension
joins.

Let Xy +» Y4, oo, Xp > Y, be a derivation of V from R;. We introduce

three operations on derivations as follows,

(1) Addition: For an FD X, + Yy with 1 (¢ k (¢ m, add an FD X » ¥ in
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cover(Xk + Yk) to the last of the derivation. Note that the resulting

sequence X; + Y4, ..., X, > Y, X » Y is a derivation of V from Ry, |

(2) Deletion: Delete an FD X, + Y, with 1 ¢ k ¢ m from the derivation
under the condition that the resultiﬁg sequence X; + Y., Jie, Xp 4 * Y 49
Xppt * Tppqs ooes Xy > Y, is a derivation of V from Ry.

(3) Exchange: Exchange Xk + Yk for xk+1 + Yk+1 under the condition that
the rgsulting sequence X1 + Y1, eeey Xk+1 + Yk+1’ Xk > Yk, ooy Xm + Ym is a
derivation of V from Ry. |

We have the following lemma, whose proof is given in Appendix 1.

[Lemma2.7] Let Zy » Wyy wevy Zg > Wy De é derivation of V from Ry that is

obtained by a number of applications of the operations above. For a tuple

X + Y X, + Y
Hg of augU(ri), if there is a chase process Mo =l====l> Hy =§====§> -
E@:Z:E@) Mps then there is a chase .process Ho §1=:=El u{ E§=:=!§> v
E§=:=E§> Mg Note that ué agrees with ﬁm in V columns by the consistency of
R. ]

For an FD X + Y in Fy, we define proper-cover(X + Y) = {Z + W | Z » W

is in Fy and ZW & XY}. A derivation X; > Yy, ..., X, * Y, of V from Ry is

said to be minimal if there is no FD Xk -+ Yk with 1 ¢ k ¢ m such that Ri + V

is  implied by Xy ¥y wees Mg > Voqr o Xggq > Yiaqs o e

Xm + Ym}lJ proper—cover(xm +> Ym). .We have the following lemma, whose proof

is given in Appendix 1.

> ws be a minimal derivation of V from

[Lemmaz's:l Let Z1 hd th’ v 9 g ZS

Ry. Every derivation Xy » Y4, veu, Xp » Y of V from R; can be transformed

into the wminimal derivation Z1 + w1, sevy Iy 7 Ws by a number of

applications of the operations: addition, deletion, and exchange, []
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By Lemmas 2.6, 2.7, and 2.8, we can construct a relational expression E
such that E(I) = rep(I)[V-total] for every database instance I of R by the

following algorithm,

{Algorithm2.2]

(1) For each Ry such that #(Ry,F) contains V, construct the term E; as
follows. Compute a minimal derivation Zy * Wy evey, Zg > Wy of V from Ry,
where. each FD Zg » W, for 1¢t¢{s is in th. Let E; =
Ry M le[z1w1] M ... M st[zsws]. |

(2) Let E be the union of all the terms E;[V], where E; is constructed in

step (1) above. []

Note that if E(Ri,F) does not céntain V, then no extension of any
tuple of augU(ri) has constants in V columns, and thus there is no tuple
ulv] of rep(I)[V-total] such that y is an extension of a tuple of augU(ri).

We estimaté the time complexity of Algorithm2.2. The key is how to
find a minimal derivation of V from Ry for each R; such that 3(R;,F)
contains V.

"Suppose that in the execution of procedure EXAM(Ri) of Algorithm2.1,
the loop of step (2) is repeated p times and le£ G = {X(1) + Y(1), voesy
xP) . y(P)} . Note that if k < &, then x(M)y(®) _ x(K)y(k) 4 5. 4 minimal

derivation of V from R; is computed by the following algorithm,

[Algorithm2,.3]
(1) Let G' =G (= {X(T) hd Y(1)’ ee sy X(p) > Y(p)})o

(2) for k = p step -1 until 1

do begin
(3) 1r ¢° - (xX6) 5 y(K)y implies Ry » v, then delete XK} & y(K) prop

’

G°. And otherwise, leave x(k) 5 (k) 4y g,
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(4) For the final value of G’ in step (2) that implies Ry + V, construct

a der'lvatlon of V from R by reorder'ing the FDs in G". []

We show that Algorithm2.3 correctly computes a minimal derivation of V

from Ry. First we prove the following lemma.

[Lemma2.9] For a subset V of 3(Ry,F), every minimal derivation of V from

Ry consists of only some of the FDs in G.

(Pr'b_of‘) Let 2, + Wy, ..., + Wy be a minimal derivation of V from Ry.

Zg
Suppose that Zy ~ wt is in Fj' By Assumption2.2(b), there is an attribute A
in Wt such that Fj - {Zt + wt} does not imply Zt + A. Since the derivation
is minlmal, there is no FD Z, + W, with 1 ¢ k ¢ t-1 such that tht £ 2y W,
Thus subsequence Z1 * Wiy eeey Zp > W i1s a derivation of A from R; such

that zt+wt is irreducible. By . inserting some of the FDs in

Uj¢kg gproper-cover(Z, + W.), the derivation Z, + W;, ..., Zy *+ W can

be transformed into a close derivation of A from Ry. Since F‘j - {Zt -+ wt}

does not imply Zt + A, the 1last FD Zt + Wy is still irreducible. By

Lemma2.5, Z, + Wy is selected in step (2-1) of EXAM(Ry). []

Let Gpipg) be the final value of G° in Algorithm2.3. Suppose that

x¢V » v 45 in G0, and that Ry » V is implied by (Gya -

{X(l) -+ Y(y’)}) 0] pr'oper'-cover(x(g') + Y““)). By Lemma2.9 we assume without
loss of generality that Ry = V is implied by (Gf"inal -
{X“') + Y(R’)}) U (N proper’-cover(X(L) +> Y(R’))). Since there is no FD
x(6) (k) yith a4t ¢ kg p sueh that x$K)y(K) e y(y(®) | gr contains

G N proper-cover(x(“ *> Y(l)) when k = & in step (2)., Thus when k = 2, G~ -

x5y} would imply Ry + v, and thus x(%) + Y(®) nust be deleted from
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G . Contradiction. Thus Algorithm2.3 correctly computes a minimal

derivation of V from Ri. |
The set G is obtained in OCiFilFl) time by EXAM(R;). Thus a minimal

derivaiion of V from Ry can be computed in 0(plcl) ¢ OCIFIFY) time by

Algorithm2.3. Thus we have the following theorem.

[Theorem2.2] Let R = {<R1,F1>, cees <Rn,Fn>} be a consistent database
scheme over U and let V be a subset of U, We can construct a relational
expression E such that E(I) = rep(I)[V-total] for every database instance I

of R in O(n|FiIFI) time. (]

2.3.2 Simplification of the relational expression
Let E be the relational expression of Theorem2.2,
Stagel: We consider how to remove a'redundant term from E. Suppose that
E  contains a term E4[V] and that Ey is of the form
Ry M Rj1[Z1W1] M ... N RJS[sts]' where sequence Z; > Wq, .o.; 25+ Wy is a
minimal derivation of V from Ry. Let H = {21 > Wiy oeesy g WS}.' Then we

have the following lemma, whose proof is given in Appendix 1.

[Lemma2.10]} If there is an FD Zy * Wy in H such that Z, W, + V is implied
by cover(H) U Fi’ then E 1is equivalent to the expression obtained by

removing the term E;[V] from E, []

By the following algorithm, redundant terms can be removed from E.

[Algorithm2.4]
(1) Let E” = E.
(2) for i = 1 until n

do begin
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(3) If E° contains term E;[V] (= (Ry W Rj1[z1w1]bd oo M st[zsws])[v])
and there is an FD Z; » Wy with 1 { t { s such that (i) ZyWe + V is implied
by cover(H)\J F;, where H = {Z, ~W;, ..., 25 + W}, and (ii) E° contains
term Ejt[V], then remove the term E{[V] from E’.

end []
We have the following lemma, whose proof is given in Appendix 1.

[Lemma2.11] Let Epy,.; be the final value of E’ by Algorithm2.4. Then

Efipa] COntains neither redundant union nor redundant join. []

Stage2: After executing Algorithm2.4, we can remove redundant attributes

from each term in Efinal as follows,

Suppose that Efinal contains a term Ei[V] and that Ei is of the form
RiM Rj1[Z1W1] N e N st[sts]. For 1 g t g S, let Wt =
Wt n (Zt_'_“voonV), and let Ei = RiN Rj1[Z1W1] N su N st[zsws]u Then
Ei[V] is equivalent to Ei[v], as explained below,.

Let vy be a tuple of augU(ri). Suppose that there is a chase process

1.2 29205
Vg =======2 > ees =¥zzz=¥ > vge Then for 0 { t ¢ s, tuple v has constants
exactly in RiWqeo Wy columns., But in order to execute v E§$l=:=¥§él> .o
E§=:=!§> vg, the values of vy in (RyWi...Wy) N (Z¢ {...25V) columns are
sufficient.

Stage3: The reason above also implies that the expression Ei[V] can be
transformed into an equivalent expression Eg[v] without changing the order

of join sequence of Ei in such a way that the projections are executed as

early as possible, as follows. Let Py = Ry N (Z1...ZSV) and Py

(RiWiueuW() N (Zy, 400.25V) for 1 ¢t < s, Note that Pj = V. Let g

R;[Py) and ey = (ey_4 M Rjt[ztwgl)[Pt] for 1 { t ¢ s. Then EY(V] is defined

as the expression €gs that is, Eg[V] is of the form
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(.o (Ry[PGEI W Rj1[z1w;])[P1] M LL)IPg (1N st[zsw;))[PS].

We estimate the time for the simplification of E. In Stagetl, it can be
determined in O(sllcover(H) U Fill) ¢ OCIFI|IF|) time whether there is an FD
Z, * Wy in H such that Z. W, +V is implied by cover(H) V Fy. Thus
Algoriﬁhm2.u can be executed in O(n|F}lIFll) time., In Stage2, each term E4 (V]
in Egipqa) Can be transformed into E{[V] in O(slHll) time. 1In Stage3, E{[V]
can be transformed into EY[V] in O(sllHll) time. Thus we have the following

corollary of Theorem2.2,

[Corollary2.1] The relational expression E of Theorem2.2 can be
transformed in O(n!F||Fll) time into an equivalent relational expression E’
such that (1) E’ contains neither redundant union nor redundant join and (2)
the projections are executed as early as possible when evaluating E(I) for

a database instance I of R. []
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CHAPTER 3
IMPLICATION PROBLEM FOR FUNCTIONAL AND EMBEDDED MULTIVALUED DEPENDENCIES

In this chapter, we consider implication problem for functional and
embedded multivalued dependencies, In Section 3.1, we provide basic
definitions and a result from [Sadri and Ullman 80], which is useful for
this problem. In Section 3.2, we show some results on this problem. 1In
Section 3.3, we give some extensions of these results, especially an
extension of a decidability result of this problem to a class of functional

and template dependencies.

3.1 Definitions

Let R be a set of attributes and let V be a subset of R, A multivalued
dependency over V {Fagin 77] [Zaniolo 76)], abbreviated to MyD, is a
statement X »+ Y(V), where X and Y are éubsets of V. A relation r over R is
said to be satisfy X ++ Y(V) if whenever r contains two tuples u and v such
that u[X] = v[X], r also contains a tuple 1 such that <[XY] = u[XY] and
t[X(V-Y)] = v[X(V-Y)]. It is easy to see that r satisfies X ++ Y(V) if and
only if r[V]) = r[XY] N r[X(V-Y)]. If V coincides with R, then X »+ Y(V) is
saidvto be full., (If V is a proper subset of R, then X ++ Y(V) is usually
called an embedded multivalued dependency.)

Let <R,D> be a relation scheme, where D is a set of FDs and MVDs
(possibly containing full MVDs), Let X € V € R. The dependency basis of X
over V with respect to D, denoted m(X,V,D), is a partition {Py, ..., Py} of
v such.that (1) D implies X ++ P; for 1 ¢ 1 ¢ & and (2) D implies an MVD
X »+ Y(V) if and only if the right-hand side Y coincides with a union of
some of the blocks P;. Thus if %Q(X,V,D) is known, then it is easy to

determine whether a given MVD X +» Y(V) is implied by D. If D consists of
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FDs and only full MVDs, then there are several polynomial time algorithms
for corﬁputing M(X,R,D) for any X [Beeri 80] [Galil 82] [Hagihara et al 79]
[Sagiv 80].

Let r be a relation over R consisting of only variables, which is
callédva tableau over R, FD-rule for each FD in D can be applied to r.
Furthebmore, MVD-rule for each MVD in D, which is defined below, can be also
applied to r. |

MVD-rule: An MVD X ++ Y(V) in D has associated rule as follows. Suppose
that r does not satisfy X »+ Y(V). Then there are tuples y and v of r and =
not of r such that <[X] = wulX] = v[X], <[XY) = ulxY)l (# v[XY]), and
[V - XY] = [V - XY] (¢ ulv - XY]). MVD;rule for X »+ Y(V) adds to r a
tuple t° that agrees with 1 in V columns and has distinet variables (that do
not appear in r) in R - V columns, Each variable of t° in R - V columns is
said to be unigue.

It is known that if a chase process.of r under D terminates (that is, a
tableau satisfying D 1is obtained by ﬁhe chase process), then any chase
process of r under D always terminates and the resulting tableau is unique
up to. renaming of variables [Maier et al 79]. The resulting tableau is
called the chase of r under D and denoted chase(r,D). Note that if D
consists of FDs and only full MVDs, then any chase process of r under D
always terminates ([Maier et al 79). However, if D contains two or more
MVDs, then there may be an infinite chase process of r under D, that is, we
may not obtain a finite tableau satisf‘yi.ng D by any chase process of r under
D.

In the following we often consider a tableau consisting of two tuples
that agree exactly in X columns, which is called an X-agreed tableau. The

following lemma is obtained from Theorems 1 and 4 of [Sadri and Ullman 80].

[Lemma3.1] Let <R,D> be a relation scheme and let r = {u, v} be an
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X-agreed tableau over R.

(1) D implies an MVD X ++ Y(V) if and only if we obtain a tableau
containing a tuple t such that «[X] = ul[X] = v(X], <[Y] = ulY], and
[V - XY] = v[V - XY} by a chase process of r under D. The tuple t is said
to witness X ++ Y(V).

(2) D implies an FD X + Y if and only if we obtain a tableau in whiéh

u{Y]l and v[Y] are identified by a chase process of r under D. []

Lemma3,1 implies that if a chase process of r under D terminates, then
chase(r,D) contains all the imformation about FDs and MVDs with the
left-hand side X that are implied by D. We have the following two

corollaries of Lemma3.1.

[Corollary3.1] Let <R,D’> be another relation scheme. If chase(r,D) and
chase(r,D”) are the same (up to renaming of variables), then U(X,V,D) =

mix,v,np ). [

[Corollary3.2]} Let P be a block in 9(X,V,D) and let t be a tuple of
chasé(r,D)‘ If for all attribute A in V, t agrees with either y or v in A

column, then t agrees with either y or v in V columns., []

3.2 Implication Problem
Let R be a set of attributes and let U, & ..o $ Uy ©Uy SR, 1In this
section, we consider a relation scheme <R,FU MV MV ... L’Mn> such that
(1) F is a set of FDs Z » W satisfying 2 S Uy or WN U, = 0,
(2) M is a set of MVDs Z +» W(V) satisfying at least one of 2 S-Uo Ccv,

W N U

@, and (V - ZW) N Ug = @, and

(3) each Mi for 1 ¢ 1 { n is a set of MVDs over Ui‘
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Note that M may contain full MVDs. For simplicity, we denote

FUMUM U ... UM, by D,

3.2.1 A decidability result
For a relation scheme <R,D> and a subset U of R, we define
DI[U] ={Z+WNU) Z+ Wis in D and Z & U}
UILZ »» WNUWANU) | 2+ WV) is in D and Z £ U},
Note that if a relation r over R satisfies D, then r[U] satisfies D[U], and
thus D implies D[U]. DI[U] can be considered as the "projection" of D onto

U. Then we have the following lemma,

[Lemma3.2]) Let <R,D> be a relation scheme, Suppose that a subset U of R
satisfies |

(1) ZSUor WNU-=@ for all Z » W in D, and

(2) at least one of 2SS U, WNU = @, and (V - ZW NU = @ for all
Z ++ W(V) in D.
Then an MVD X »+ Y(V) (or an FD X + Y) over a subset V of U is implied by D

if and only if it is implied by D[U].

(Proof) Since D implies D[U], the "if" part is trivial, For the "only
if" part, suppose that X ++ Y(V) is noﬁ implied by D[U]. Then there is a
relation r over U that satisfies D[U] but does not satisfy X ++ Y(V). The
relation r can be extended to a relation over R by adding columns for the
attributes in R - U such that all tuples of the new relation agree in R - U
columns., Since the new relation satisfies FD @ + R - U, it is easy to show
that the new relation satisfies D but does not satisfy X »» Y(V), Thus

X ++ Y(V) is not implied by D, The same argument applies also to FbPs. []

Consider the relation scheme <R,D > defined above. Since U, satisfies
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condition of Lemma3.2, it follows that an MVD X »» Y(V) (or an FD X » Y)
over a subset V of U0 is implied by D, if and only if it is implied by

D,lUpl. For the relation scheme <R,D,[U5]>, we have the following lemma.

[Lemma3.3] Let rg be a tableau over R. Then any chase process of

under Dn[UO] finally terminates,

(Proof) Suppose that there is an infinite chase process of‘,r'0 under
Dn[UOJ. Then it can be considered that an "infinite" tableau r is obtained
by the chase process., There is at 1ea§t one attribute A in'U0 such that r
has infinite distinct variables in A_'column.. However, we show that any
tableau r obtained by any chase procéés of rgy under Dn[Uo] has a finite
number of variables in all columns by induction on the order U,, ..., U1;
Ups Re Thus Lemma3.3 will follow. For convenience, let U_; = R and let M,
= M[Uy]l. Note that Mb is a set of MVDs over Uj.

Basis: Since U, £ V for all Z - W(V) in D,[U4], r has no unique variable
in Unf columns. Thus for all attribute A in U,, the number of distinct
variébles of r in A column is at most that of rg in A column.

Induction: Suppose that for all attribute A in Uj, r has at most py
variables in A column, Since Uy & Uj.1s it suffices to show thay for all‘
attribute A in U;_; - Uj, r has finite vér'iables in A column.

Since U, € ... &€ Uy, it follows that V < U,

;4 for all Z »» W(V) in

M, V... v M; and that U; SV for all Z ++ W(V) in M; 1 V... VMO. Thus
each unique variable of r in Ui-1 - Ui columns has been added by MVD-rule

for an MVD in M_ U ... UMi. Since the number of distinct tuples of r’[Ui]

—3

10,
is at most pi' 1 by the induction hypothesis, the number of applications of

) Uy !
MVD-rules for the MVDs in M, U ... UMi is also at most pj . Thus for

all attribute A& in U;_, - Uj, the number of unique variables of r in A

‘ 1041
column is at most py . [1]
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By Lemmas 3.1, 3.2, and 3.3, we have the following theorem,

[Théor'em3.1] Consider the relation scheme <R,Dn>. It 1is decidable
whether a given MVD X +» Y(V) (or a given FD X » Y) over a subset V of Ug is

implied by D . []

By Theorem3.1, M(X,V,D,) for X £ V € U, can be, in principle, obtained
but the theorem suggests no efficient procedure for computing fm(X,V,Dn).
However, if X & Un’ then On(X,V,Dn) can be computed efficiently. In the
following we will present a procedure for cdmputing M(X,V,Dn) in two cases:

(1) XS VvVEU, and (2) XS U

n , and X SV €U,

3.2.,2 The case where X €V C Uy

For a partition I of U and a subset V of U, we define n[V] = {(BN V | B
is in T and BNV # @}. Note that n[V] is a partition of V. Then we have

the following lemma.

[Lemma3.4] Let <R,D> be a relation scheme. Suppose that a subset U of R
satisfies the condition that U S W for all Y ++» Z(W) in D. Then M(X,V,D) =

m(x,vu,D)[V] for any X €V S R.

(Proof) Let P and Q be blocks in 7(X,V,D) and 7(X,VU,D), respectively,
such that P € Q. It suffices to show that P = QN V. Letr = {u, v} be an
X-agreed tableau over R, Consider a chase process of r under D and let Tt be
a tuple that witness X ++ P(V). For all attribute A in U, t agrees with
either u or v in A column, since no unique variable is introduced in U
columns by the assumption. Thus t actually witness X »+ PS(VU), where S S U

- V. But Q& PS, and thus QN V =P. []
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For the relation scheme <R,D,[Uy]>, since U, satisfies condition of
Lemma3.4, in order to obtain -M(X,V,Dn[UO]) for X €V SUO, it suffices to
obtain M(X,VU,,D,[Uy]). The fonowihg lemma shows that ?(X,U,,D,[U4]) can
be computed using a technique for full MVDs. Thus m(X,Ur;,Dn[UO]) can .be
computed efficiently., For an attribute A in U; and My with 1 ¢ 1 ¢ n, we
define

£(A,Mg) = {Z + W(Ug) | Z »» W(Ui) is in M; and A is not in W}
U {Z »» Uy - W(Up) | 2 »> W(Ug) is in My and A is ink W}.

Note after the definition of f(A,M;) that f(A,M;) implies M;.

[Lemma3.5] Consider the relation scheme <R,D >. Let A be in U, and let P
be a subset of U, that contains A, Then P is in M(X,U,,D,[Uy]) if and only

if P is in ¢(X,U,,FIU4] V MUGI U £(B,MV Lo U £(A,M)).

(Proof) Induction on the number n,

Basis: If n = 0, then this lemma holds trivially.

Induction: Let P be a block in Wl(X;Un,Dn[Uo]) that contains A, Let r =
{u, v} be a (Un - P)-agreed tableau over Uge The fact that P is in
M(X,U,,D,[Ug]) implies that P is also in M(U, -~ P,Un,bn[Uo]), and thus it
follows from Corollary3.2 that every tuple of chase(r‘,Dn[UO]) agrees with
either w or v in W, columns. Thus chase(r',Dn[Uo]) satisfies f‘(A,Mn), and so
P is in ‘m(Un - P’Un'Dn-1[UO]U f‘(A,Mn)), where Dn_1{UO] = Dn[UO] - My,
Sinc»e" D,lUG] implies X »+ P(U,), Dn-1[UC] U £(A,M,) also implies X »+ P(U,).
Thus the fact that P is in (U, - P,U,,D,_4[U,] U £(4,M,)) implies that P
is also in Mm(X,0,,D,_4l0,1 V £(a,M ). For the relation scheme

<R,D,_4[U4] YV £(A,M,)>, since U satisifes condition of Lemma3.4, it

n-1
follows that 70.(X,U,,D,_;[Uy) V £(a,M)) =

M(X,U,_1:D,_41[Ug] U £(a,M, 1)U, ], ‘'Thus there is a block Q in
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On(X,Un_1,Dn_1[U0] U f(A,M,)) such that P = QN Uy By the induction
hypothesis, Q is in

M(X,0,_;,(F[U5] U M[U5] v £(A,M) U ... UV £(A,M, 1)) U £(A,M))). Thus P is
in M(X,U,,FLUGT U MIUGI U £(A,M) U L. U £(A,M)) (=

m(X,U,_;,FIUG] U MIUGI V £(A,M) U oo Vea,M U 1), [

For simplicity, let D, = F[U5] UMIUGIV £(a,M) U ooo Ue(a,m).
Consider the relation scheme <UgsDp>e Since Dy consists of FDs and only
full MVDs, On(X,UO,DA) can be computed by a known algorithm for full MVDs,
Furthermore since U, satisfies condition of Lemma3.4, it follows that

vn(X,Un,DA) = Wz(X,UO,DA)[Un]. Thus we have the following algorithm,

[Algorithm3,1]
input: <R,D,>, and X and V such that X SVvV¢E Upe
output: = = M(X,V,D,) - {{A} | A is in X}.
method:
procedure FIND(A)
(A is an attribute in Un - X. This procedure computes a subset P of Un’
such that A is in P and P is in 7(X,U,,D,).)
begin
(1) Make QUEUE empty.
(2) Let P = Uy - X.
(3) For each dependency in D, [U,], if its left-hand side is disjoint from
P, then put the dependency on QUEUE.

(4) while QUEUE is not empty

do begin
(4-i) Remove a dependency from QUEUE, There are two cases to be

considered.

Casel: Suppose that the dependency is an FD Z + W, If A is in W, then
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return {A} and terminate FIND(A). Otherwise, let P = P - W.

Case2: Suppose that the dependency is an MVD Z -+~ W(Ui) with
0¢i s n, If Ais in W, then let P = P - (U; - W). Otherwise, let P=P -
W, '

(4-1ii) For each dependency in Dn[Uoj, if its left-hand side is disjoint
from P and the dependency has not been on QUEUE, then put the dependency on
QUEUE.

end while

(5) Return P N Ups

end FIND.

begin (main procedure)
(6) Compute Dn[UO] from D, .
(7) Make w empty.

(8) Let Q = W, - X.

n
(9) while Q is not empty
do begin
(9-1i) Select an attribute A in P,
(9-ii) Execute FIND(A) and let the result P be a new block in .
(9-iii) Let Q = Q - P.
end while

end main procedure, []

After Algorithm3.1 terminates, the value of ¢ coincides with
m(xX,U,,D,) - {{A} | A is in X}. Note that each attribute A in X itself
constitutes a block in QN(X,Un,Dn). The procedure FIND(A) of Algorithm3.1
is eséentially an extended version of the procedure "FIND(B)" of [Sagiv 80].
The differences between them are as follows.

(1) In Sagiv’s procedure, only full MVDs (and FDs) are considered. This
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corresponds to the case where every MYD is of the form Z »+ W(Ug).
(2) Sagiv’'s procedure does not consider the projection. Thus, Sagiv’s
one has return statement "Return P" in step (5) of Algorithm3.1.

The reason we adépt Sagiv’s proéedur‘e is that given an attribute A, we
do not have to construct the whole dependency basis ‘m.(X,UO,DA) but we need
only a block in 9M(X,Uy,Dy)[U,] that contains A.

We estimate the running time of Algorithm3.1., Let s be the number of‘
blocks in the output = and let k be the number of dependencies in Dn[Uo].
Then Algorithm3.1 terminates in O(blan[UO]l‘l.min{k,logzs}) time [Galil 82]-:
If we assume that each attribute in R is represented by an integer, then
D,[Uy] can be computed from D, in O("Dn") time. And M(X,U,,D, [U,1)[V] can
be computed from M(X,U,,D,[Uy]) in 0CiU,Y) € OCID,[U4N) time. Thus we

have the following theorem.

[Theorem3.2] Consider the relation scheme <R,D,> and let X <V U,
Then M(X,V,Dn) can be computed in O(”Dn[UO]”.min{k,logzs} + HDDU) time,
where s is the number of blocks in M(X,U ,D,) - {{A} | A is in X} and k is

the number of dependencies in D, [Uyl. []

-’Consider the implication problem. In order to determine whether a
given MVD X ++ Y(V) over a subset V of U, is implied by D,, we need only
blocks in M(X,V,Dn) that intersect Y. If there is a block P in m(X,V,Dn)
such that PA Y # @ and P - Y # @, then X »+» Y(V) is not implied by D,, and
other'Wise it 1is implied by Dy Thﬁs it can be determined in
O(||Dn[U0]||.min{k,logzs'} + lanll) time whether X »» Y(V) is implied by D,
where s’ is the number of blocks in m(X,V,Dn) - {{A} } A is in X} that

intersect Y (cf., [Galil 821).
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3.2.3 The case where X S U, and X €V €U,
In the following we often write X ++ P1{...!PS for a set {X +» P1(U),
eesy X +> P(U)} of MVDs such that {X, Py, ..., Pg} is a partition of U. We

have the following lemma, whose proof is given in Appendix 2.

[Lemma3.6] Let <R,D> be a relation scheme and let X S U< V<SR, Suppose
that D implies X ++ Pii...iPg, where {X, Py, ..., Pgl is a partition of U,
Then a subset Q of V is in (X,V,D) if and only if Q is a minimal set (in
the sense of set inclusion: & ) such that for all i with 1 $i¢s,Qis é

union of some of the blocks in M(U - P4,V,D). []

Lemma3.6 shows that 9(X,V,D) can be obtained from (U - P;,V,D), ...,

m(u - Pg,V,D) by the following algorithm.

[Algorithm3.2]

input: Iy = M(U - P{,V,D), ...y Og = (U - P, V,D).
comment: D implies X +» P13...{PS, where {X, Py, .., P,} is a partition of
u. |
output: I = 9n(X,V,D).
method:
procedure MIN(A)
(This procedure computes a minimal set Q such that (i) Q contains A and (ii)
for all i with 1 { i ¢ s, Q is a union of some of the blocks in “i‘)
begin

(1) Let Q = {A}.

(2) while there is a block in I, U ... U g that intersects Q

do begin
(2-i) Select and delete all blocks frém Iy U ... U @Ig that intersects Q.

(2-ii) Let S be the union of all blocks selected in step (2-i).
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(2-iii) Let Q = QU S,
end while
(3) Return Q.

end MIN,

begin'(main procedure)
(4) Make I empty.
(5) Let T = V.,

(6) while T is not empty

do begin
(6-i) Select an attribute A in T.
(6-ii) Execute MIN(A) and let the result Q be a new block in 1,
(6-iii) Let T = T ~ Q.
end while
end main procedure., []

Since iy e, Ig are partitions of the same set V and each block in

s
I; U ... U, is used at most once, Algorithm3.2 terminates in 0(s.iVi)
time,

The following lemma implies that 9M(X,V,D [Uy]) for X U, and

XEvE UO can be computed by a recursive procedure.

[Lemma3.7] Consider the relation scheme <R,D,>. Let X SUn and
XEVE Ug. Let P be a block in M(X,U,,D,[U4]) - {{A} | A is in X}. Then
it holds that (U, - P,VU,,D [U,]) = (U, - P,VU,,D,_,[Uy]), where

Dn_1[Uo] = Dn[U0] - Mno

(Proof) Let r = f{u, v} be a _(Un - P)-agreed tableau. Since

Dn_l[UO]S; D,[Uy] and the fact that P is in qn(x,un,on[uol) implies that P
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is also in m(u, - P,U,,D [Ugl), it follows from Corollary3.2 that every
tuple of chase(r,Dn_1[U0]) agrees with either w or v in U, columns,  Let
Z »» W(U,) be in M,. If PNZ = @, then either PE W or PNAW = 0
(othefwise P would not be in %(X,U,,D,[Uy1)), and thus chase(r,Dn_1[U0])
satisfies 2 -+ w(un). Thus chasé(r,Dn_T[Uo]) = chase(r,Dn[Uo]) and it

follows from Corollary3,1 that 0n(un - P,VUn,Dn[UO])

w

m(u, - P,VU,,D,_4lU0s1). T[]

For convenience, we consider Dy = FU M, Let {P;, ..ey Pg} =
M(X,U,,D,[04]) - {{a} | A is in X}, Then M(X,VU,,D,[Uy]) is obtained from
Mm(U, - Pq,VU,,D,_4[UD), ..o, M(U, - Pg,VU,,D,_4[Uy]) by Lemma3.7 and
Algorithm3.2., If n = 0, then it follows from Lemma3.4 that M (S,T,D,[U,]) =
M(S,Uq,DglUgD)[T] for any S ST S Uy. Furthermore M(S,U,,D3(Ugl) can be
computed by a known algorithm for full MVDs. Thus we have the following

algorithm,

[Algorithm3,3]

input: <R,D >, and X and V such that X € U, and X €V & U,.

n
output: qn(X,V,Dn[UO]) (= m(X,v,D,) by Lemma3.2).
method: |
procedure COMPUTE-7M(S,T,D;[Uy])
(This procedure computes M (S,T,D;[Uyl) for S < Uj and S © T & Uj.)
begin

(1) If i = 0, then compute Qn(S,UO,DO[Uo]j by a known algorithm for full
MVDs and return On(S,UO,DO[UO])[T].
(Consider the case where i ) 1.)

(2) Compute 4n(S,Ui,Di[UO]) - {{A} | A is in S} by applying Algorithm3.1
to <R,D;[Uy]> and S. Let {P;, ..., Pg} = 7(S,U;,D4[U4T) - {{A} | A is in

St.
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(3) For each Py with 1 ¢ J ¢ s, execute COMPUTE- M(U; - Pj,TUi,Di_1[UO})

and assign the result to I (By Lemma3.7, the value of nj coincides with

i
m(u; - Py,T0;,D;[U4D))
(4) Compute M(S,TU;,D;[U4]) by applying Algorithm3.2 to‘n1, cevs Tga
(5).Return 7n(S,TUi,Di[U0])[T]. (It follows from Lemma3.4 that
m(s,T0;,D;[UDIT] = m(S,T,D;[UsD).)

end COMPUTE- M.

begin (main procedure)
(6)‘Compute D,LU4) from D .
(7) Execute COMPUTE-M(X,V,D,[U4]).

end main procedure. []

We estimate the running time of Algorithm3.3. Let TIME(n) be the time
for step (7) of Algorithm3.3 and let TIME(i) for 0 § i ¢ n-1 be the time for
executing a recursive call in step (3) of Algorithm3.3 to the procedure cali
COMPUTE-M with Di[Uo] as the thiéd argument. Let Sy be the maximum number
of blocks obtained in step (2) for Ui, Dy[Uy], and some subset S of Uj. It
follows from the following four facts that TIME(i) = O(si.NDi[UOJH) +
81 +TIME(i-1) + 0(sy.iU41) for 1 2 1,

(a) By Theorem3.2, step (2) can be executed in O(si.HDi[Uo]H) time, Note
that.min{k,logzs} $ 84

(b) In step (3), COMPUTE-M is called s; times and each call needs
TIME(i~1) time., Thus step (3) can be executed in si.TIME(i-1) time,

(c) Since each IIj is a partition of TUi, step (4) can be executed in
0(s;.1TU;1) ¢ 0(sy.1Uqi) time by Algorithm3.2,

(d) step (5) can be executed in O(IT!) ¢ 0(iUp}) time.

It is clear that s, < iU, - Xi, because S = X when step (2) is executed

for U, and D, [Uy]. Consider a call COMPUTE-M(U; - PysTU;,Dy_¢[Up]) in step
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(3), where Py is in Mm(s,0;,D;[U4]) - {{A} | A is in S}. This call results

in the computation of "M(U; - Pj,U;_4,D;_1[Up]) - {{A} | A is in U - Py} in

step (2). P; must be contained in one block of m(u; - Pj,Ui_1,Di_1[U0])
(otherwise P would not be in Mm(S,U;,D;[Ug])). Thus the number of blocks
in m(Uy - Pj,U5_4,D3_4[Ug)) - {{A} 1 A is in U; - P5} is at most
=Ui-1 - Ui{ + 1, that iS, Si-s- =Ui-1 - Ui‘ + 1 for 1 g ig n"'1‘

If i = 0, then M(Y,UyDylU4]) for any Y S Uy can be executed in
0iDgluyll.min{k,log,s}) time by the algorithm of [Galil 82], where s is the
number of blocks in 7n(Y,UO,DO[Uo]) and k is the number of dependencies in
DylUpl. Thus TIME(O) ¢ O(IDLIUGIN.min{k,log,s}) .

By the disccusions above, we have'TIME(n) =

n-1
0((ID,LULIN + TIME(O) + 1U4) .MU, - Xbe X (10 - Ugpqf + 1)) Since DylUo]
is computed from D, in O(ID,ll) time and U4l < ID,[U4]]], we have the

following theorem,

[Theorem3.3] Consider the relation scheme <R,D, >, Let X € U, and
XSV Uy, Then M(X,V,D,) can be computed in
n-1
o((Ip,[UyIN + TIME(CO)).iU, - X!.il=11(lUi = Ugql + 1) + D) time, where
TIME(O) is the time for computing 9n(Y,UO,DO[UO]) for a subset Y of Ug,. []

3.2.U‘Treatments of functional dependencies

The following lemma can be proved in the same way as Lemma3.5.

(Lemma3.8] Consider the relation scheme <R,D,>., Let X be a subset of U,
and let A be an attribute in Un‘ Then X + A is implied by Dn[UO] if and

only if it is implied by F[U4]U MIUGI VU £(A,M) U ... U £(A,M). []

By the proof of Theoremiit of [Sagiv 80], X + A is implied by

FlUgl U MIUGI YV £(a, M) U ... U f(A,M)) if and only if a call FIND(A) of
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Algorithm3.1 returns {A} in Casel of step (2-i). Let X and Y be subsets of
Uy Then testing whether X + Y is implied by D, can be done in
o(lY -:XI.HDn[Uo]H + IID ) time by checking whether for each attribute A in
Y - X, a call FIND(A) returns {A} in Casel of step (2-i). '

The following lemma follows from Lemma3.6 and an inference rule for FDs

and MVDs [Beeri et al 77].

[Lemma3,9) Let <R,D> be a relation ._scheme and let X S U &R, Suppose
that D implies X »» P;i...iPg, where {X,P;, ..., Pg} is a partition of U.
Then D implies X » A if and only if D implies {U - P; + A, ...,

U"Ps"A}o []
The follwing lemma can be proved in the same way as Lemma3.,7.

[Lemma3.10] Consider the relation scheme <R,D>. Let X U, and let P be
a block in M(X,0,,0,[U0g]) - {{A} | A is in X}. For an attribute A in Uy,
FD U, - P> A is implied by Dn[Uo] if and only if it is implied by

D,_4[Ug] ]

Let XS U,. By Lemmas 3.2, 3.9, and 3.10, JF(X,D ) N U, can be
computed in the time for computing On(X,UO,Dn) by modifying Algorithm3.3, as
shown below, Thus if X S U, and Y S’UO, then it can be determined in

n

: n-1
oD, (UGl + TIMECO)).1U, - x%.‘n1(:ui - Ugq) + 1) + lipll)  time whether
1=

X+ Y is implied by Dn‘

(Algorithm3.4]
input: <R,D,> and X S U,.
output: F(X,D,[U4]) (= F(X,D,) NUy by Lemma3.2).

method:
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procedure COMPUTE- B(S,Di[UO])
(This procedure computes $(S,D;[Uy]) for S & Us.)
begin

(1)>If i = 0, then compute 3WS,DO[U0]) by a known algorithm for FDs and
full MVDs and return F(S,DylUy]).
(Consider the case where i 2 1.)

(2) Compute On(S,Ui,Di[UOJ) - {{A} | A is in S} by applying Algorithm3.1
to <R,D;[Uy1> and S. Let {Py, «us, Pg} = 7(S,U4,D4[U4]) - {{A} | A is in
S}.

(3) For each Py with 1 ¢ j ¢ s, execute COMPUTE-F(U; - Py,D;_4[Uy]) and
assign the result to Qj. (By Lemma3.10, 'Qj coincides wiﬁh
F(U; - Py,D;[U4D) )

coincides with

(4) Return Q; N ... N Qg. (By Lemma3.9, Qq N ... N Qg

(8,010 )

end COMPUTE- .

begin (main procedure)
(5) Compute D, [Uyl from D, .
(6) Execute COMPUTE-,BKX,Dn[Uo]).

end main procedure, []

3.3 Some Extensions
3.3.1 Extensions of Theorems 3,2 and 3.3

Consider the relation scheme <R,Dn$ and let Uy .4 €x < Uy» In order to
obtain M(X,V,D,), every MVD Z »+ W(U) in D, - Dy (= My, U ... UM,) can be
ignored, because U SU;,1 S X. That is, it follows that Oﬂ(k,V,Dn) =

M(X,V,D;). Consequently, we have the following two facts as corollaries of

Theorems 3.2 and 3.3, respectively.
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(1) For 0 ¢ i ¢ n-1, if U cxXceveu

< i1 = then On(X,V,Dn) can be

i1
computed in O("Di[Uo]".min{k,logzs} + IIpsll) time, where s is the number of
blocks in 9M(X,U;,D,) =~ {{A} | A is in X} and k is the number of
dependencies in D4(U4l.

(2) For 0 ¢ i ¢ n-1, if U; 1 & X SUy and X SV SU,, then 7(X,V,D,) can
be computed in OC(HD;[UyI + TIME(O)).iU; - x%.jl-:t:(:uj - Ujqt + 1) + ipglD

time,

3.3.2 An extension of Theorem3.1 to functional and template dependencies

Theorem3.1 can be extended to a class of functional and template
dependencies. In the following we present the result, The detailed proof
is found in [Ito et al 81b], and will be omitted here.

A template dependency over R [Sadri and Ullman 80)], abbreviated to TD,

is a statement (t1,,..,tp)/t, where the ti's and t are tuples of variables
over R, No variable may occur in two distinct columns among the ti's and t,

but one variable may occur in the same column of some of the ti's or t. The

ti's are called the hypothesis rows, and t is the conclusion row. A

variable of the conclusion row is said to be unigue if it does not occur in
the hypothesis rows. A variable of the hypothesis rows is said to be
repeated if it occurs in two or more of the hypothesis rows. For a TD d
over R, non-unique(d) is defined as the set of attributes for which the
conclusion row contains non-unique variables, and repeated(d) is the set of
attributes for which at least one repeated variable occurs. Note that an
MVD X ++ Y(Z) can be represented by a D d:(tq,t5)/t such that (1) {t,, t,}
is an X-agreed tableau, (2) {t, t;} is an XY-agreed tableau, and (3) {¢, to}
is an X(Z - Y)-agreed tableau. Thus non-unique(d) = Z and repeated(d) = X,
A relation r over R is said to satisfy a TD d:(t1,...,tp)/t over R if
whenever there is a mapping h from variables of the hypothesis rows to

entries of r such that h(t;) is a tuple of r for all i, r[non-unique(d)]
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contains tuple h(t[non-unique(d)]), where h(vqV,...v,) is defined to be
h(v1)h(v2).‘..h(vn). Intuitively, r satisfies TD d if whenever we find
tuples Hys ooy By of r with certain specific equalities among the entries
of these tuples, we can find a tuple p that has certain of its entries equal
to certain of the entries in His evey Hpy and other entries of u may be
arbitrary.

We generalize the relation scheme <R,D,> defined in Section 3.2 to a
class of FDs and TDs as follows. Let U, & . GU; &$Uy €SR and let C, =
FUT UT1 V... UT,, where

(1) F is a set of FDs Z + W such that Z S Uy or WN U, = @,

(2) T is a set of TDs 'd:(t1,...,tp)/t such that
repeated(d) € Uy & non-unique(d) or there is a tuple ty of the hypothesis
rows that agrees with t in Uy N non-unique(d) columns, and

(3) each T; for 1 (i ¢ n is a set of TDs d such that non-unique(d) = Uy
and repeated(d) & Ug- |

Then we have the following theorem, which is a generalization of Theorem3.1.

[Theorem3.4] Consider the relation scheme <R,C, > above, It is decidable
whether a given TD d over R with non-unique(d) C Uy (or a given FD X » Y

with XY € Ugy) is implied by C,. []

We give a brief proof of this theorem below. Let d:(t1,...,tp)/t be a
TD over R and let U be a subset of R. Then d{U] 4is defined to be
(t4[U0T,.v0,t,lUD)/78[U].  If repeated(d) £ U, then d implies d[U] by an
inference rule for TDs (weakening) [Sadri and Ullman 82]. Let <R,C> be a
relation scheme, where C is a set of FDs and TDs. We define
clUl ={z+WAU! 2+ WisinC and Z S U}
U {dl[u] | d is in C and repeated(d) < U}.

Then we have the following lemma, which is a generalization of Lemma3.2.
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[Lemma3.11] Let <R,C> be a relation scheme. Suppose that a subset U of R
satisfies

(1) for al1 FD Z + Win C, ZSU or WN U = &, and

(2) for all TD d:(t1,...,tp)/t in C, repeated(d) € U or the conclusion
row t- agrees with a tuple of the hypothesis rows in U N non-unique(d)
columns.
Then é TD d over R with non-unique(d) & U (or an FD X » Y with XY SU) is

implied by C if and only if it is implied by C[U]. []

Note that for a TD d:(t1,...,tp)/t over R, if the conclusion row t
agrees withla tuple of the hypothesis rows in U N non-unique(d) columns,
then d[U N non-unique(d)] is a trivial TD, that is, any relation satisfies
it [Sadri and Ullman 82]. Since U, satisfies condition of Lemma3.11, it
follows that a TD d over R with non-unique(d) SUO (or an FD X » Y with
XYy € UO) is implied by Cn if and only if it is implied by Cn[UO]‘

For a relation scheme <R,C> and abtableau r over R, a chase process of
r under C can be defined [Sadri and Ullman 80], Let d be a TD (t1,...,tp)/t
over R, It is known that C implies d if and only if we can obtain a tuple
t"that agrees with t in non-unique(d) columns by a chase process of {t1,
ey tp} under C [Sadri and Ullman 80]. Thus if the chase process
terminates, then it can be determined whether C implies d (and also a given
FD). For the relation scheme <R,Cn[U0]>, we have the following lemma, which
is a generalization of Lemma3.3. Thus Theorem3.4 will follow from the

discussions above, Lemmas 3.11 and 3.12.

[Lemma3.12] Let rg be a tableau over R. Then any chase process of ry

under C,[Uy] finally terminates. []
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CHAPTER 4
IMPLICATION PROBLEM FOR VIEW DEPENDENCIES

In this chapter, we consider implication problem for view dependencies.
In Section 4.1, we briefly provide some definitions, 1In Section 4.2, we
consider two decision problems on views: view nonemptiness problem and tuple
membership problem, In Section 4.3, we consider implication problem for

view dependencies,

4,1 Definitions

In this chapter, we often consider c¢ross products or unions of
relations, Thus it is convenient to refer to columns of relations (or
tuples) by integers, called column numbers, instead of attributes. For
example, u[i) denotes the value of u in the i-th column, If a relation r
consists of m columns, then r is said to have degree m.

A value equality [Klug 80), abbreviated to VEQ, is a statement A = ¢,

where A is a column number and ¢ is a constant. A tuple u is said to
satisfy A =z ¢ if ul[A] = ¢. A relation r is said to satisfy A = ¢ if every
tuple of r satisfies A = ¢.  The selection of a relation r by A = ¢ is a
relation defined by r[A ze¢] = {pu | u is in r and satisfies A = c}. We

often write A ...A, = cq...c, for a set {A1 2 Cqy seuy A c,} of VEQs.

n

A domain equality [Klug 80}, abbreviated to DEQ, is a statement A = B,

where A and B are column numbers., A tuple u is said to satisfy A = B if
u[A) = u[Bl. A relation r is said to satisfy A = B if every tuple of r
satisfies A = B. The restriction of a relation r by A = B is a relation
defined by r[A = B} = {u | u is in r and satisifes A = B}, We often write
Aj...8, = By...B for a set {A; = By, ..., A, = B} of DEQs.

Let ry, ..., r, be relations of degrees My, ese, My, respectively. The
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¢ross product of r4, ..., r, is a relation defined by r, X ess X r, =

{ug X wee X uy i w; is in ry for 1 ¢ i ¢ n}, where uy X <. X uy is the

n
concatenation of uy, ..., w,. Note that r, X ... X r, has degree .x1m
. is
. k-1
a column number A is in {1, ..., m}, then column number ‘z1mi + A for
1l=
ry X eee X r, corresponds to column number A for r,, that is, for each tuple

o If

u of ry X «oe X r

k-1
ns there is a tuple u, of r, such that ul my + Al =

i=1

uk[A], and vice versa, For simplicity, we denote I my + A by A(k).
Similarly, for a subset X = {A, ...,'Az} of {1, ..., m}, we denote {:é1mi
T VI E:mi + ag) by x4 = @R, L, alkn,

Let R = {<Ry{,FqU M, oou, <Ry, F, U MD>) be a database scheme, where
each F; and M; are sets of FDs and fuli MVDs, respectively. In this
chapter, we consider only FDs and full MVDs as constraints, Thus we assume
that "MVD" means "full MVD", and we simply write X ++ Y for X ++ Y(Y). With
each.Ri is associated a degree, denoted deg(Ri). For a database I = {r1,
eesy Ty} of R, each ry has degree deg(Ri). Let E be a relational expression
consisting of Ry, ..., Ry and five operations: projecﬁion, selection,
restriction, cross product, and union, For every database I of R, relation
E(I) has the same degree. Thus we define degree of E, denoted deg(E), to be
degree of E(I) for a database I of R. 1In the following, E(I) is often
called a view (of I with respect to E). Two relational expression E1 and Es
are said to be strongly eguivalent if E1(I) = EZ(I) for every database I of

R. (In Section 2.3 before, we have defined that E1 and E2 are equivalent if

E1(I) = EZ(I) for every database instance (not database) I of R.)

4,2 Decision Problems on Views
In this chapter we consider the following two problems on views,
(1) View nonemptiness problem: Given a database scheme R, a database I of

R, and a relational expression E, determine whether E(I) is not empty.
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(2) Tuple membership problem: Given a database scheme R, a database I of

R, a relational expression E, and a.tuple u, determine whether u is in ECI).
We show that both problems are NP-complete in general, but if E
contaihs no projection, then the tuple-membership problem éan be solved in

polynomial time.,

h,2.1 NP—completeneés results
[Lemmal.1] Let R be a database scheme, let I be a database of R, and let
E be a relational expression consisting only of restrictions and cross

products., It is NP-hard to determine whether E(I) is not empty.

(Proof) We transform the 3-satisfiability problem [Garey and Johnson 79]
into this problem. Let P = Q;A ... AQ, be a conjunctive normal form
Boolean expression, where each clause Q; contains exactly three literals.
Let x4, «.., X, be all variables occurring in P, We construct a database
sche@e R, a database I of R, and a relational expression E consisting of
restrictions and cross products such that E{(I) is not empty if and only if P
is satisfiable.

Pet Xi1s X425 X43 be three variables occurring in Q. Let {6%%), 6§;),
6%%)}, cony {6§1), 6§g), dgg)} be the seven truth assignments to {x;4, X;,,
x;3} that make Q; true. Then we defipe r; = {6§q)s§g)5§§) (I S I )
Let u (= 611612613.‘.6m16m26m3) be. a tuple of the cross product
ry X vos X rh. Then p can be considered to be a truth assignment to {x11,
X101 X435 eves Xpqs Xpo, xm3} that makes Qq, ..., Q true "independently".
In order for u to represent a truth assignment to {x1,“..., xn}, it is
necessary and sufficient that for each variable Xy with 1 < i ¢ n, v has the
same value in all the columns, each which corresponds to a position of X4

occurring in P. That is, if the k-th variable of Qg and the 2-th variable

of Qg are the same, then 6§, and 6., must be equal. If u satisfies the
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property, then u is said to be assignable to {x1, vsey xn}. Clearly, P is
satisfiable if and only if ry X ves X.rm contains a tuple that is assignable
to {Xqy «euy X,t.

Let the 3m positions 1, 2, ..., 3m of variables occurring in P
correspond to column numbers 1, 2, ..., 3m, respectively. We can choose all
tuples that are assignable to {x1, ey xn} from rq X eos X rn by
restrictions as follows. Let ¢ = ¥, U ... U ¥, be a set of DEQs such that
for each Xy if Py eeey Pj are all the positions of Xy occurring in P, then
vy = Py = Poy weey Py = pj}. Then relation (ry X ... X ry)[v] consists of
exactly all tuples that are assignable to {x1, veuy xn}.

Let B = {<Ry,08>, ..., <R;,0>}, where deg(R;) = 3 for all Ry. Let I =
{ry, +vs, rp} and let E = (Ry X ... X RV, Since E(I) =
(r'1 X ses X r)le], relation E(I) is not empty if and only if r{yX ... Xr

m

contains a tuple that is assignable to {x1, esey X }. Thus P is satisfiable

n
if and only if E(I) is not empty. Since R, I, and E can be constructed from

P in polynomial time, Lemmal,1 follows. []

[Lemmak,2] Let R be a database scheme, let I be a database of R, let E be
a relational expression, and let u be a tuple. It can be determined in

nondeterministic polynomial time whether u is in E(I).

(Proof) Let R = {<Ry,8>, ..., <R,,#>} and let I = {ry, ..., r }. Suppose
that u.is in E(I). Since E can be transformed into a strongly equivalent
relational expression E1‘J e U Ep such that each term Ej coﬂtains no
union, we assume that u is in E;(I). Such an expression E; can be obtained
in noﬁdeterministic polynomial time by repeating the operation of choosing
nondéterministically either Eg or Ey for each union ES(J Ey appearing in E.

Since E; contains no union, E; can be transformed into a strongly

equivalent relational expression (Rk1 X «eu X Ry JIZ = AJ[P = Q1{V]) in
s
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O(EEi}Z.# deg(E;)) time [Klug 80] [Smith and Chang 75] [Ullman 80]. Let E{
= (Rk1 X eoe X Rks)[z = A)(P = Q). Since u is in E;(I), there is a tuple u’
of E{(I) that agrees with u in V columns and satisfies Z = 4 and P = Q.
Such al tuple u’ can be obtained in nondeterministic poiynomial time by
choosing nondeterministically deg(E{)_- deg(Ei) elements from the set qf
constants in 1 as deleted columns, Since E{ contains no projection, it can
be determined in OUIE{|.(}E{} + I} + deg(E{))) time whether n’ is in E{(I)

by Théorem4.3 described below. Thus Lemmal,2 follows. []

(Lemma4.3] The view nonemptiness problem can be transformed into the

tuple membership problem in polynomial time.

(Proof) Let R = {<Ry,8>, ..., <R,,8>} be a database scheme, let I = {r,,

and let E be a relational expression., Let

seey Tyl be a database of R
<Ry,@> be an additional relation scheme and let R" = {<Ry,8>, <Ry,0>, 0.,
<R,,8>}. We assume that deg(Ro) = 1. Then let u be a unary tuple and let

’

I = {{u}, rqy, .., r,} be a database of R’ Let E’

(Ry X E}[1]. Since
E'(I7) = ({n} X E(I))[1], if E(I) is empty, then so is E'(I’), and if E(I)
is not empty, then E°(I°) = {u}. That is, E(I) is not empty if and only if
E°(I") contains u. Since R°, I°, E°, and u can be constructed from R, I,

and E in polynomial time, LemmaX4.3 follows. Here, we note that E° can be

obtained from E by adding one cross product and one projection. []

By Lemmas 4,1, 4,2, and 4,3, we have the following two theorems,

[Theoreml,.1] Let R

be a database scheme, let I be a database of R, and
let E be a relational expression., It is NP-complete to determine whether
E(I) is not empty. Even if E consists only of restrictions and cross

products, the problem is still NP-complete. []
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[Theoreml4,2] Let R be a database scheme, let I be a database of R, let E
be a relational expression, and let u be a tuple. It is NP-complete to
determine whether p is in E(I). Even if E consists only of restrictions,

cross products, and one projection, the problem is still NP-éomplete. []

4,2.2 A polynomial time algorithm

(Theorem4.3] Let R = {<R;,8>, ..., <R,,@>} be a database scheme, let I =
{r1, ve vy rn} be a database of R, let E be a relational expression with no
projécpion, and let u be a tuple. It can be determined in O(IE|.(|E} + I}

+ deg(E))) time whether p is in E(I).

(Proof) The problem can be solved by the following recursive way.

R

(1) 1If E then examine whether p is in rs.

i

(2) If E

E1[$], where ¢ is a VEQ or a DEQ, then examine whether u is in
E,(I) and satisfies v.

(3) If E = Eq X E,, then examine whether ul12...deg(E{)] is in E1(I) and
uldeg(E ) +1...deg(E,)+deg(E;)] is in E5(I).

(4) If E = Eq4 U E,, then examine whether u is in E1(I) or u is in E5(I).

We estimate the time for so0lving the problem. The problem can be

divided into one or two subproblems by one of cases (1) through (4) in O(}E}
+ {ul) ¢ O(IE! + deg(E)) time, and then a solution of the problem can be
obtained from solutions of subproblems in a constant time, Since for each
operation in E, the problem is devided into at most two subproblems, the
total number of subproblems is O(JEi{). 1In case (1), it can be examined in
0Ciryl) ¢ 0(iIl) time whether u is in ry. 1In case (2), it can be examined
in 0(ju}) < 0(deg(E)) time whether u satisfies . Thus the problem can be

solved in OCJE}.(IE} + {I! + deg(E))) time, []
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4,3 Implication Problem for View Dependencies
Let R = {KR{,Fq{U M{>, ...y <B,,F,U M >} be a database scheme, let E

be a relational expression, and let d be one of FD, MVD, VEQ, and DEQ. Then

d is said to be yvalid in E over R if for every database instance I of R,
E(I) satisfies d. In a special case where E = R;, d is valid in E over R if
and only if d is implied by Fill Mio In this section, we often consider a
chase process of a relation r under a set M of MVDs, Then chase(r,M) is
definéd as the unique minimum relation that contains r and satisfies M
[Maier et al 79]. That is, if a relation r’ contains r and satisfies M,

then r’ also contains chase(r,M).

4.,3.1 A decidability result

In this section we show that it is decidable whether a given FD or MVD
d is valid in a given relational expression E over a given database scheme
R. The basic idea is that in order to determine whether d is not valid in E

over R, it suffices to examine whether there is a database instance I of R

such that E(I) does not satisfy d in a finite set of database instances of R
defined by R and E.
(Lemmali.4] Let R = {<Rq,FqU Mp>, ..o, <R, ,FyU M>} be a database

scheme, let E be a relational expression, and let d be an FD or MVD, If d
is not valid in E over R, then there is a database instance I of R such that
(1) E(I) does not satisfy d and (2) the number of distinct constants of I is

at mpst 2 X cp X max, <2 g n{deg(Rz)'}, where cp is the number of

occurrences of R1, «sey Ry in E.

(Proof) For simplicity, we denote U; = {1, ..., deg(R{)} for 1 (i ¢ n.
We shall consider the case where d is an MVD X ++ Y. The same argument

applies also to FDs. Suppose that X ++ Y is not valid in E over R. Then
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there is a database instance I = {ry, ..., r,} of R such that E(I) does not

satisfy X -+ Y. Let U

{1, +«s, deg(E)} and let Z = U - XY. Since E(I)
does not satisfy X ++ Y, there are tuples y and v of E(I) and t not of E(I)

such that ulx] = v[X] [X], u[Yi = (Y] (¢ v[Y]), and v[Z] = <[2] (¢

u[z]); In the following we shall show that there is a database instance I’
of R defined only by u and v such that E(I') contains u and v but does not
contain 1.

E can be transformed into a strohgly equivalent relational egpression
E,V ... UE, such that each term E; contains no union.  Since E(I) =
E(D)V ...V Ep(I), we assume that u is in E{(I) and v is in EJ(I)
(possibly, i = j). Since E; contains no union, E; can be transformed into a
strongly equivalent relational expression
(Rk1 X eos X Rks)[z = AJ[(P = QJ[V], where Z = A and P = Q are sets of VEQs
and DEQs, respectively. For simplicity, let Ei =
(R, X ove X Re )[Z = A][P = Q. There is a tuple u’ of E{(I) that agrees
with p in V columns. We define that the projection mapping of u” with
respect to E; is the minimum database 1,7 = {ri, «.s, rp} of R such that ry
contains u’[Uﬁz)] for 1§ tgs. That is, if R, ..., R o are all
occurrences of R, in E;, then r;'= {u'[U§t1)], cosy u'[Uth)]}. Since u” is
the concatenation u'[Uﬁl)] X ves X ﬁ'[Uﬁz)], Ei(Iu') contains u’,
Similarly, Ej can be transformed into a strongly equivalent relational
expression Ej[v'], and there is a tuple v’ of Ej(I) that agrees with v in VvV’
columns. Let I - = {r{, ..., rj} be the projection mapping of v’ with
respect to Ej, Then it holds that (1) r, contains r;\J ri for 1 ¢ & ¢ n,
(2) E;(17) contains u, and (3) EJ(I')vcontains V.

We define I° = {chase(r; U rf,M1), ..., chase(r, U r#,M )}. Then we

have the following fact, whose proof is given in Appendix 3,

[Factl4.1] I° is a database instance of R, and E(I’) does not satisfy
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X+ Y. []

The number of distinect constants of I° is equal to that of p” and v’,
and thps at most deg(E{) + deg(Ei). The number s of occurrences of Ri, veey
R, in E{ is at most the number cp of occurrences of Ry, ..., R, in E. Thus,
deg(E{) = t§1deg(Rkt) $ cg X max, e g pldeg(R,)}. similarly, deg(E3) <

CE X max 4 <

L

A

nideg(R )}, Thus, deg(E]) + deg(Ej) <

2 X cg X maxq ¢ < n{deg(Rz)}. Thus Lemmal.4 follows., []

174N

By Lemmall,4, we have the following theorenm.

[Theorem4 . 4] Let R = {<R1,F1(J M1>, seey <Ry, Fo UMD} be a database
scheme, let E be a relational expression, and let d be an FD or MVD. It is

decidable whether d is valid in E over R.

{Proof) We shall consider the case where d is an MVD X »+ Y, Suppose
that X »+ Y is not valid in E over R. For simplicity, 1let k =
2 X cp X maxq <t g nldeg(R,)}. By LemmaN.U, there is a database instance I
of R such that E(I) does not satisfy X ++ Y and the number of distinct
constants of I is at most k. Each consﬁant of I either appears in E (as the
right-hand side of a VEQ) or does not appear in E. Here, the number of
distinct constants not appearing in E is at most k.

Let S be the union of the set of constants appearing in E and another k
constants. By the discussions above, if X ++ Y is not valid in E over R,
then there is a database instance I of.ﬁ such that each constant of I is in
S and E(I) does not satisfy X ++ Y. Conversely, if there is such a database
instance I of R, then X »+ ¥ is not valid in E over R. Since S is finite,
the number of database instances of R consisting of S is also finite. Thus

Theoreml 4 follows, []
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4,3,2 An NP-completeness result
In this section we show that if R contains only FDs as constraints,
then it is NP-complete to determine whether a given FD is not valid in a

given relational expression over R.

[Lemmal.5] Let B = {<Ry,F;>, u.., <R ,F >} be a database scheme, let E be
a relational expression, and let d be an FD X = Y, It can be determined in

nondeterministic polynomial time whether d is not valid in E over R.

(Proof) Suppose that X + Y is not valid in E over R. In the proof of
Lemmald .4, it is shown that I~ = {chase(r{ljqu,M1), .se, chase(r U ri,M )}
is a database instance of R such that E(I°) does not satisfy X »+ Y (and
thus, does not satisfy X + Y). 1In this case, since R contains no MVD, it
follows that I" = {r{ Url, .., r; Urjll is a database instance of R such
that E(I") does not satisfy X + Y. Here, the size of the description of I"
is bounded by 2 X ¢ X max, <8¢ n{dég(Rm)}. Thus we can determine in
nondeterministic polynomial time whether X + Y is not valid in E as follows.

(1) Let k = 2 X cp X max, <L g nldeg(R,)}. Let S be the union of the
set of constants appearing in E and another k constants.

(2) Guess a number k°~ within k. Construct a database instance I of R by
choosing nondeterministically k° elements from S. Note that given a
database I = {ry, ..., r } of R, we can examine in polynomial time whether I

is a database instance of R by checking whether each relation re satisfies

Fl‘ |
(3) Construct two deg(E)-tuples u and v such that u[X] = v[X] and u[Y] #
v[Y] by choosing nondeterministically 2 X deg(E) elements from S.
(4) Examine whether both u and v are in E(I). This can be done in

nondeterministic polynomial time by Lemmal,2. {]
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The difficulty of implication problems is mainly caused by the fact
that if a given relational expreséion E is transformed into a, strongly
equivalent relational expfession E1U... UEp such that each term Ey
contains no union, then the size of E, U...U Ep may be exponential to that

of E. In fact, we have the following lemma,

[Lemma¥.6] Let R = {<Ry,F>, uuuy <R,,F,>} be a database scheme, let E be
a relational expression consisting only of selections, cross products, and
unions, and let d be an FD., It is NP-hard to determine whether d is not

valid in E over R.

(Proof) E is said to be sound under R if there is a database instance I
of R such that E(I) is not empty. First we transform the 3-satisfiability
problem into the problem of determining whether E is sound under R, called
the soundness problem for E. Let P = Q1 A cse A Qm be a conjunctive normal
form Boolean expression, where each clause Q; contains exactly three

literals. Let x4, ..., x, be all variables occurring in P, We denote Q;

13“1 v x12 \4 xl§3, where w;, 1is either zero or one and x]lk = Xq, and xgk

Xike We construct a database scheme R containing only FDs and a relational
expression EP consisting of selections, cross products, and unions such that
Ep is sound under R if and only if P is satisfiable.

Let R = {<R1,{1 + 21>, vee, ,<Rn’{1 + 2}>}, where deg(Ri) = 2 for
1¢i¢n., Let Ep = Gy X ... X G, where each G; corresponds to clause Q;

and Gi = 1[12 = 02 w }UR 2[12 = 020 " ] URi3[12 = 020(‘)13}‘ For

example, if P = (x1v x v x3)/\ (x1 v x3 \Y) Xll) A (?1 V x5 qu),

then Ep = (R1[12 0201] v R2[12 0200] UR3[12 = 0201])

X (Ry[12

n
n
{11}

coeq] U R3l12 = epeq] V Ry[12 = epep])

X (Ry[12 = cyepl U R2[102 cpeq] URyL12 = eyeq D).

Let 0 be a truth assignment to {x1, eevy xn}. We define a database instance
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I, = {31, +sey rp} of R such that under the truth assignment o, if Xy = 1,
then.rj‘= {0201}, and otherwise ry = {czco}. Clearly if P is true under the
truth assignment o, then EP(IU) is notvempty, and otherwise EP(Io) is empty.
Conversely, let I = {r1, vo oy rn} be a database instance of B such that each
r; contains c,cq or 0260. Since ry can not contain both cycq and cyey by FD
1 » 2, we define a truth assignment o = {§;, ..., 8,} to {x1, esey Xy} such
that if r; contains c,cq, then Gj = 1,>and if r; contains CyCns then 6j = 0.
Clearly if EP(I) is not empty, then P is true under the truth assignment o,
and otherwise P is not true. Thus the soundness. problem for E is NP-hard..
The soundness problem for E can be transformed into the complement of
the implication problem as follows. Let <R0,ﬂ> be an additional relation
scheme, where deg(Ry) = 2, and let R° = {<R;,®, <Ry, {1+ 2>, ,
<R,,{1 » 2}>}. Consider relational expression E = Ry X Ep and FD 1 » 2,
Since 1 + 2 is not valid in Ry over R’, if there is a database instance I’
of R such that E(I’) is not empty, then 1 » 2 is not valid in E over R’.
Conversely, if there is no such database instance I° of R", then 1 + 2 is
trivially valid in E over R°. Clearly, there is a database instance I’ of
R’ such that E(I”) is not empty if and only if there is a database instance

I of R such that EP(I) is not empty. Thus, FD 1 + 2 is not valid in E over

R* if and only if Ep is sound under R. Thus LemmalX.6 follows. []
By Lemmas 4.5 and 4.6, we have the following theorem.

[Theoreml,5] Let R = {<R1,F1>, eeey <R F >} be a database scheme, let E
be a relational expression and let d be an FD. It is NP-complete to
determine whether d is not valid in E over R. Even if E consists only of
selections, cross products, and unions, the problem is still

NP-complete. []
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4,3.3 An NP-~-hardness result
In this section we show that even if a given relational expression E
consists only of selections and cross products, it is NP-hard to determine

whether a given FD or MVD is valid in E over a given database scheme.

[Lemmal,7] Let r be a relation and let M be a set of MVDs. The problem:

"Determine whether chase(r,M) does not satisfy a given FD d" is NP-hard.

(Proof) We transform the 3-satisfiability problem into this problem. Let

P = QAN A Q where Q. = xmi1 xwi2v xwi3 Let x X,, be all
= 1 . e m? i - 11 V 12 . i3 » 1, s ey n

variables occurring in P, We construct a relation r, an FD d, and a set M
of MVDs such that chase(r,M) does not satisfy d if and only if P is
satisfiable,

Let U = {1, ..., n+2m+ 1} be a set of column numbers. For
simplicity, we denote 1, ..., n;j D+ 1, euy, D +m; N +m+ 1, sue, D + 2m;

n+2m+1byx1, ..‘,X'

n’ Y“’ ve e g Y

Zys seey Ly; W, respectively, Each

m? m’

Xj for 1 < J ¢ n corresponds to variable xj, and each Yi and Zi for

1 <1 ¢ mcorrespond to clause Qi' Let r be a relation of degree n + 2m + 1
with (7Tm + 3) tuples as follows,
(i) r' = {HO, 111, UZ} U T1 UT2U LN ] UTm‘

(ii) XyeouXy YooYy 290002 W

Hg: CessC Teodl CessC \4
u“: 1..‘1 b".b bl‘.b u
uz: Onooo booob bou‘b u
(iii) Each T, for 1 ¢ i sponds to cl Q = x3ity x.42\ x i3
i for 1 ¢ 1 ¢ m corresponds to clause Q; = X37 V X43°V 137+
Let {Gg}), sgg), 6§%)}, veey {ng), Ggg),'6§%)} be the seven truth
assignments to {xi1, X504 Xi3} tﬁat make Q; true. Then Ty has seven

tuples v esvy V7 that correspond to the seven truth assignments,

i1

‘respectively, as follows,
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(a) vik[Xi1X12Xi3] = 6§$)6§§)6§g), and vy, has constant b in all other
X columns,

(b) vy [Y;] = 1, and vy hés constant b in all other Y columns.

(e) vy [24] = ay,, and vy, has constant b in all other Z columns.

(d) vyplwl = u,

The following table illustrates Ti'

L 4 Xi1 L 2B 2 xi2 *e v Xi3 LR N *e Yi LA * oo Zi LA w

. (1 (1 (1)
vipt b 620 82 &f2b b 1 b b oa,b

vigr b 6{D b 6D b &{D) b b 1 b b agg b U
Here we assume that 0, 1, b, ¢, u, v, Q115 sesy Byq are distinct constants.
Let d‘be FD Y1...Ym + W, Let M be a set of MVDs consisting of the following
(n + m) MVDs.
MVDy: YiuuoYpZieaoZy ++ X,y

MUDt YieasYpZquaaZy ++ X

n n

MVDpyq: XyqXqXyg > Y424
MVDpm? Xm1xm2xm3 > Ynly
Note that r, d, and M can be constructed from P in polynomial time.

If part: We show that if P is satisfiable, then chase(r,M) does not
satisfy FD d., Suppose that a truth assignment {84, wouy 81 to {xy, oo,
Xp} makes P true.

Since (1) u1[Y1.--YmZ1.-.Zm] = u2[Y1..'YmZ1‘..Zm] = bOOOb’ (2)
U»‘[X]‘f‘.xn] = 10-01 and (3) 112[X1..‘Xn] = 0...0, the Chase Of {u‘l’ 112} Under'

{MVD,, ..., MVD_ } consists of 2" tuples as follows.
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X“0.0Xn Y“O‘OYm Z“Oi.zm w

040200  buesb  bu.b u
O“‘01 b‘..b b".b u

0‘0010 bﬁ..b boonb u

1“'11 b.“b b“‘b u
That is, all possible truth assignments to {x1, ey xn} appear in X1"‘Xﬁ
columns of the chase., Thus the chase contains tuple 61...5nb...bu, denoted
T. Thus chase(r,M) also contains tuple T, For 1 < i (¢ m, since {xi1, Xios
xi3} = {511, 612, 613} makes Q; true, there.is a tuple viki of Ty such that
Vlkl[Xl1X12Xl3] = T[X11X12Xi3]; where 1§ ki g T. Noting that V1k1[Y1Z1] =
1a1k1, cees mGm(YmZm] z 1amkm, we have tuple 61“'6n1“‘1a1k1"‘amk u,
m
denoted T°, by the chase of {t, v1k1, cevr Vo } under {MVDn+1, evey
m

MVD, Y. Thus chase(r,M) also contains tuple 1t°, Since “0[Y1“‘Ym] =
t'[Yl...Ym], uo[w] = v, and 1t [W] = u, we conclude that chase(r,M) does not
satisfy YooYy + W

Only if part: We show that if chase(r,M) does not satisfy FD d, then P is
satisfiable. Let ¥ = r - {ugl. Then we have the following two facts, whose

proofs are given in Appendix 3.

[Factl,2] If chase(r,M) does not satisfy FD d, then chase(T,M) contains a

tuple"t such that T[Y].tuym] = 1eeul, []

[Fact4.3] Let v~ be a tuple of chase(F,M). If t’[Y,;] = 1, then {1°[Xy,],

r'[Xiz], t'[XiB]} is a truth assignment to {xi1, X401 xi3} that makes Qq

true. []

Suppose that chase(r,M) does not satisfy FD d. By Fact}4.,2, chase(r,M)

contains a tuple T such that T[Y1...Ym] = 1...1. By Fact4.3, for 1 < i ¢ m,
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{515 X304 %33} = (1[X44], (X550, ©(X 3]} makes Q; true, and thus {xy, ...,

X} = {r[X1], e vy T[Xn]} makes P true. []
By Lemmal.7, we have the following theorem,

[Theoreml,6] Let R = {<Rq,FqU M>, .ooy <R ,F UMD} be a databa;e

scheme, let E be a relational expression consisting only of selections and

cross. products, and let d be an FD or MVD, It is NP-hard to determine

whether d is valid in E over R.

(Proof) We transform the problem of Lemmal.7 (i.e., given a relation r =
{v1, svsy V), an FD d, and a set M of MVDs, to determine whether chase(r,M)
does not satisfy d) into the complement of the soundness problem, |

Let R = {<R,{d} U M>}, where deg(R) is equal to degree of r, and let E
= R[U-E vl X R[U = v,] X ... X R[U = v, ], where U = {1, ..., deg(R)}., Then
chase(r,M) does not satisfy FD d if and only if E is not sound under R, as

explained below.
Suppose that chase(r,M) satisfies FD d. Then chase(r,M) satisfies
f{d} UM, and thus I = {chase(r,M)} is a database instance of R such that

E(I) is not empty. Thus E is sound under R. Conversely, suppose that there
is a database instance I = {r’} of R such that E(I) is not empty. ‘Since r’
must contain the k tuples Vis esey Vi, r’ contains r, Furthermore since r’
satisfies {d} UM, it follows from the definition of the chase that r’
contains chase(r,M). Since r’ satisfies FD d, chase(r,M) also satisfies FD
d.

By Lemmali.7, the complement of the soundness problem for E is NP-hard.
The soundness problem can be transformed into the complement of the

implication problem as presented in the proof of Lemmali,6, Thus Theoremi.6

follows., []
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Let E be a relational expression that may contain unions. By Lemmal.6,
it is NP—hard to determine whether a given FD or MVD is not valid in Ezover
R. Thus by Theoremli.,6, it is NP-hard and co-NP-hard to determine whether a
given FD or MVD is valid in E over R. This fact suggests that it is not
likely that there is a nondeterministic polynomial time algorithm for
determining whether a given FD or MVD is valid (or not valid) in E over R
(cf. [Garey and Johnson 79]). It is;not known whether there is such_a

nondeterministic polynomial time algorithm if E contains no union.

4,3.4 A polynomial time algorithm (1)

Let R = {<R1,F1>, ey <Rn,Fn>} be a database scheme, For simplicity,
we denote U; = {1, <oy, deg(Ri)} for 1 {1 ¢ n. Let E be a relational
expression and let U = {1, ..., deg(E)}., Let X be a subset of U. Then we
can define the closure 3F(X,E) of X with respect to E over R, that is,
F(X,E) = {A | X » A is valid in E over R}, Note that F(X,Ry) = F(X,Fy).
In this section, we consider the case where E contains no union,

Suppose that E contains no union; Then E can be transformed into a
strongly equivalent relational expressidn (Rk1 X eee X Rks)[z = AJ[P = Q][V]
in O(IE!? + deg(E)) time, Let X be a subset of V., It follows from the
definition of FDs that F(X,E) = 5‘(}(,(Rk1 X vou X Rks)[Z = AJ[P = Q]) N V.
Thus without loss of generality we consider only the case where E is of the
form (Rk1 X veo X Rks)[Z = AJ[P = Q].

Let £(E) be a partition of U such that for all A and B in U, DEQ A = B
is valid in E if and only if A and B are in the same block in &(E). That
is, E(E) is the equivalence class with respect to all valid DEQs in E. If
E is not sound under R, then any dependency is trivially valid in E, and
thus for any subset X of U, F(X,E) coincides with U. First, we show that
the soundness problem for E can be solved in polynomial time and &(E) can

be computed in polynomial time, Next, we show that F(X,E) can be computed
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in polynomial time in the case where E is sound under R. (In order to solve
the soundness problem for E and compute F(X,E), it is useful to compute

&(E).)

Soundness test and computation of the eguivalence class
Considering the following two facts (a) and (b), it is easy to see that

Algorithml.1 described below generates a refinement of &(E) (that is, if A
and B are in the same block in thé partition obtained by Algorithmi,.1, then
DEQ A = B is valid in E). By fact (c) below, the soundness test for E can
be done. We shall show in Lemmad,8 that the partition obtained by
Algorithml#.1 coincides with &(E) and that ﬁhe soundness test 1s correct,

(a) If A =c and B = ¢ with the same constant ¢ are in Z = A, .then DEQ
A = B is valid in E.

(b) Let r be a relation and let y be a tuple of r X r. If r satisfies
X - A and u[X(1)] = u[X(z)], then it follows from the definition of FDs that
wla{7 = wa€2)1,  Generally for relational expression E, if (1) Rki = Rks

= R, (that is, R and R are occurrences of the same R,), (2) DEQ
L ki kj 2

X(i) = X(j) is valid in E, and (3) Fo implies X + A, then so 1is DEQ
A1) A(j).

(c) Let PL be a refinement of &(E). PL is said to be compatible with
respect to Z = A if there are no VEQs A = c and B = ¢  with c # ¢ in Z = &
such that A and B are in the same block in PL. If PL is not compatible with

respect to Z = A, then E is not sound under R.

[Algorithmi,1]

input: R F >}, and

n*'n

{<Ry,Fy>, wuuy <R

E = (Rk1 X vos X Rks)[Z al{p = Ql.
output: & (E).

method:
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(1) Let PL = {{1}, ..., {deg(E)}}.
(2) For each DEQ A = B in P = Q, merge the block LA containing A and the one
Lp containing B. That is, delete L, and Lg from PL and add L, U Lg to
PL. Repeat this step until no bloéks can be merged anymore. ‘
(3) For each pair A = ¢ and B = c.with the same constant ¢ in Z = A, merge
the block containing A and the one containing B, (DEQ 4 = B is valid in
Ebe fact (a).) Repeat this step gntil no blocks can be merged anymore.
(4) Repeat the following steps (i) through (iii) for each Rki and Rkj such
thgt Rki = Rkj = Ry (14 J) until no blocks can be merged anymore.
(1) Let W = {A | A is in U,, and A1) ang 403 are in the same block in
PL}. (For such a set W, DEQ wll) 2wl 15 valid in E.)
(ii) Compute F(W,F ).
(iii) For each A in ‘?(W’FL)’ merge‘the block containing A1) and the one
containing A(j). (DEQ A(i) = A<j) is valid in E by fact (b).)
(5) If PL is compatible with respect tQHZ z A, then output PL as &(E). (In

this case, E is sound under R as will be shown in Lemmal,8,) Otherwise,

E is not sound under R, (This decision is correct by fact (c).) []

[Lemmal4,.8] Let PLpipngy be the final partition obtained by Algorithmi, 1,
If Pheipgy 18 compatible with respect to Z = A, then E is sound under R and

PLripa1 Coincides with E(E).

(Proof) By the disccussions above, it suffices to show that there is a
database instance I of R such that if A and B are in different blocks in
PLyinals then E(I) does not satisfy DEQ A = B. Let u be a deg(E)-tuple
satisfying the following two conditions, (There is such a tuple u, since
PLping) 18 compatible with respect to Z = AL)

(1) For all A and B in U, if A and B are in the same block in PLeinays then

ulA]l = u[B], and otherwise u[A] # ufB].
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(2) ulz2] = a.

Let Ip'= {r1, ey rn} be the projection mapping of u with respect to E.
Since u is the concatenation u[Uﬁl)] X vou X u[UﬁZ)] and each relation rki
in Iu-contains tuple u[U&i)], relation E(Iu) contains tuple u. Condition
(1) means that if A and B are in different blocks in PLpy..q, then E(Iu)
does not satisfy DEQ A = B. Moreover,_Iu is a database instance of R by the

following fact, whose proof is given in Appendix 3. Thus Lemmal.8 follows.

[Fact4.4] Each relation r, in Iu satisfies F,. ]

We estimate the time complexity of Algorithmi.i. Steps (1) through (3)
can be executed in O(!E!° + deg(E)) time. Step (5) can be executed in
0(1z12) < 0(!E!%) time. Considering the following three facts, the loop of
step (4) can be executed in 0(deg(E).|E!2.IR|) time as a whole.

(i)_Since mergings of blocks in PL are executed at most deg(E) times, the
loop repeats at most deg(E) times.
(ii) The number of pairs of the same occurrences in Rk1' sevs Rks is at
most-%—s(s - 1), that is, 0(s®) (§ 0(!E{?)).
(iii) For a subset W of U, , ZF(W,F ) can be computed in OCiF |) < OCfRID

time [Beeri and Bernstein 79].

Computation of the closure

In the following we consider the case where E is sound under R. For
relational expression E = (Rk1 X «us X R )Z = a][P = Ql, let F =
s

Ff{l)u UFI({S) U{g >z} Vi{a~L, | L, is in &(E) and A is in L,},

s
where Fé?) = {X(i) - Y(i) ! X »Y is in Fki} for 1 {1 { s. Then we have
i

the following lemma.

[Lemma4.9] F(X,E) = F(X,F).
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(Proof) Clearly all FDs in F‘ are valid in E. Thus it holds that
F(X,F) & F(X,E). In order to prove the converse, we shall show that ﬁhere
is a détabase instance I of R such that E(I) does not satisfy X + A for any
A in U - F(X,F). For simplicity, let S = F(X,F). Let u; and u, be
deg(E)~tuples satisfying the following fhree conditions.

(1) Hy and u, agree exactly in S columns.

(2) pr all A and B in U, if A and B are in the same block in &(E), then
uylA] = u [B] and u,[A] = uy[B], and otherwise n;[A) # u;[B] and uy[A] #
uy[BJ.

(3) wylz] = uylZ] = A

Since (a) S is a union of some of the blocks in C(E) by FDs {A -+ Ly ' L, is

in &(E) and A is in Ly} and (b) C€(E) is compatible with respect to Z

a,
there are such tuples u; and uy. Let Iu1 = {rqyy; sy r,} and qu = {r{,
;'., ré} be the projection mappings of Hq and Uy with respect to E,
respecﬁively. Let I = {r,v r{, soey Py U rg}. Then relation E(I) contaiﬁs
both u; and u, by conditions (2) and (3) above. Condition (1) means that
E(I) does not satisfy X » A for any A in U - S. Moreover, I is a database
instance of R by the following fact, whose proof is given in Appendix 3.

Thus Lemmal,9 follows.
(Fact4.5] Each relation r, U r; in I satisfies F. []

We have polynomial time algorithms for solving the soundness problem

for E and for computing F(X,F). Thus we have the following theorem.
[Theorem4.,7] Let R = {<R1,F1>, eess <R ,F >} be a database scheme, let E

be a relational expression with no union, and let d be an FD, It can be

determined in polynomial time whether d is valid in E over R. []
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4.3.5 A polynomial time algorithm (2)

Let B = {<Ry,F,U M>, ...y <R ,F, UMD} be a database scheme. For
simplicity, we denote U; = {1, ..., deg(R;)} for 1 ¢ i ¢ n. Léﬁ E be a
relational expression and let U = {1, f;" deg(E)}. Let X be a subset of U.
Then wé can define the dependency basis M (X,E) of X with respect to E over
R, that is, 7(X,E) is a partition {L;, ..., Ly} of U such that (1) X »+ Ly
is valid in E over R for 1 ¢ i { q and (2) X +» Y is valid in E over R if
and only if the right-hand side Y coincides with a union of some of the
blocks;Li.

In the following we show how to compute efficiently F(X,E) and 7U(X,E)
for a subset X of U and a relational expression E such that (1) E contains
neither union nor projection and (2) each Ry occurs at most once in E. And
then we extend the result to the case where E contains projections. Wé
assume without loss of generality that E 1is of the form
(Ry X «v. X RIZ

al(P = QJ.

Soundness test and computations of the equivalence class and the glosure
Algorithm4.1 correctly computes E(E) by itself, as explained below.

Let PLeinal be the final partition and suppose that PLfinal is compatible
with respect to Z = A, Clearly if A and B are in the same block in PLfinal’
then DEQ A = B is valid in E over R, Conversely, consider the projection
mapping Iu = {r1, ve ey rn} defined in the proof of Lemmal.8., Since each Ri
occurs once in E, each relation ry consists of exactly one tuple, and thus
ry trivially satisfies FilJ M;. Thus Iu is a databaée instance of R such
that E(Iu) contains the tuple u. Thus if A and B are in different blocks in
PLpinals then E(Iu) does not satisfy DEQ A = B, that is, DEQ A = B is not
valid .in E over BR. The soundness problem for E can be also solved by

Algorithmi.1.

We consider the case where E 1is sound under R. For relational
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expression E = (R1 X eve X Rn)[Z = A)J(P = Q], let F =
ROU L UM Ue>2yua+1, Ly is tn E(E) and A is in L) and M
MV u.oumu@s-uf, ., 8+ 0"}, Then we have the

following lemma.,
(Lemma4.10] F(X,E) = F(X,FU M).

(Proof) F(X.FUM) € F(XE): Let E* = (Ry X .oo X R)[Z = A) and F’ =

an V..oV Fr(]n) UV {@ + 2}, It is easy to see that F'U M is valid in E’
over R, Since E(I) = E'[P = Q)(I)E E'(I) for any database I of R, if E(I)
satisfies an FD d, then E(I) also satisf’ies vd. That is, all valid FDs in E’
are also valid in E over R, Furthermore, all FDs in {A =+ Ly ! Ly is in
C(E) and A is in L,} are valid in E over R by the definition of E(E).
Thus 'all FDs implied by FUM are valid in E over R. Thus,
FEX,FUM & FEK,E).

F(XLE) € F(X,FU M): We shall show that there is a database instance I

of R such that E(I) does not satisfy X + A for any A in U - F(X,FU M).
For simplicity, let S = F(X,FU M). Consider the database I = {r,V r1',
sesy THU r'r'l} of R defined in the proof of Lemmal,9, We can show that each
relation r'iU r'j" satisfies all FDs implied by Fy v Mi in the same way as the
proof of Factl.5. (Since each Ry occurs once in E, it suffices to consider
only Case2 in the proof of Factl.5.) Since each R; occurs once in E,
ry v r'i consists of exactly two tuples, Here, by the completeness proof of
a set of inference rules for FDs and MVDs in [Beeri et al 771, we can show
that for any relation r consisting of‘A'cwo tuples and any sets F and M of FDs
and MVDs, respectively, if r satisfies all FDs implied by F U M, then
chase(r,M) satisfies F UM, Thus chase(rj U r{,M;) satisfies F; U M;, and
thus I° = {chase(r, U risMidy eeuy chase‘(rn U r,,M,)} is a database instance

of R. Since E(I) contains the two tuples Mg and Mo E(I°) also contains
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these tuples. By the definiti_on of My and Hos E(I°) does not satisfy X + A

for any A in U - S. []

Computation of the dependency basis
We consider the case where E is sound under R. Let S = F(X,E). Then
it holds that M(X,E) = M(S,E) and each A in S is a block in M(S,E) by
itself., For relational expression E = (Rqy X ... X R)[Z = AJ[P = Q], 1let F’
POV L UFM U szt and M= DU LouwP Ui s oY, L
g »+ Ur(]n)}. The following lemma sta'tes a simple process for computing
M(S,E) from M(S,F°U M) (there is a known algorithm for computing the
lattef). The same process does not wofk for computing MAX,E) from

M(X,F"U M), The latter does not have a sufficient information for FDs.

[(Lemma}4.11] M(S,E) - {{A} | A is in S} can be obtained from 7(S,F U M)
- {{A} | A is in S} by the following process.

Let DB = M(S,F'U M) - {{A} | A is in S}. For each DEQ A = B in P = Q,

merge two blocks L, and Lp in DB such that L, and Lp contain A and B,

respectively. Repeat this step until no blocks can be merged anymore.

(Proof) Let M(S,F'V M) - {{a} I“A is in 8} = {L{, ..., L(;}. Let
DBeinal = {L1, eevy Lp} be the final partition obtained by the process
above. It suffices to show that (i) S »» Ly is valid in E over R for
1< 1i¢ pand (ii) § +» Ei is not valid in E over R for any Ei such that @ #
L; & Ly.

(1) Let B” = (Ry X ..o X R))[Z = 8], It is easy to see that F U M is

[11]

valid in E’ over R, Thus S ++ Lj is valid in E” over R for 1 ¢ J  q. We
can show that S »» L; is valid in E'[P = Q) (= E) over R for 1 gli { p by

repeated applications of the following fact, whose proof 1is given in

Appendix 3.
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[Facty.6] Let E; be a relational expression. If X »+ Y and X ++ W are

valid in Ey over R, then X ++ YW is valid in EO[A = B] over R, where Y and W

—_—f

contain A and B, respectively. []

(ii) Consider the database I = {ryU r{, ..., r,U r;} of R defined in

the pi‘oof‘ of Lemmal.9, As stated in the proof of Lemmal.10, I ° =

{chase(r, U ri,M1), «vs, chase(r Vv r'r'],Mn)} is a database instance of R.

For the database instance I, relation E'(I°) is of the form

Lz L;
TR {”‘[ ‘,]} X eeu X {"‘[ ‘}]}.

Here the order of columns of My and u, are rearranged. Suppose that there
is a DEQ A1 = A2 in P = Q such that L{ contains A1 and L2' contains A2. Then
since .uq[A] # uy[A] for all A in U - S by the definition of u,; and u,,

relation E'(I')[A1 = A,] (= E'[A1 = A2](I')) is of the form

L8] ¥ uﬂL{Lé]} y {u1[L§]} Ly it
‘ uylLiL3] uplL3] uolLg]

Thus E'[P = QJ(I’) (= E(I")) is of the form

p [L,] u (L]
uolLy] uyolL))
Using the technique of [Beeri et al 77], we can show that E(I”) does not

satisfy MVD S +~» Li for any Li such that @ # Eif,él..i. Thus DBgypa3

coincides with M(S,E) - {{A} | A is in S}, []

Suppose that X €V €U, It is easy to see that 7U(X,E[V]) = {LNV | L
is in IMM(X,E)}. Evidently, X »+> Ly N V is valid in E[V] over R for every

block in M(X,E) - {{A} | A is in F(X,E)} [Fagin 77]. The database

75



instance I° of R in the proof of Lemmal.i11 is an example which shows that
E(I)[(V] does not satisfy X ++ Ei for any Ei such that @ £ Ei < Ly NV,

As a summary of this section, we present an algorithm for computing
EZ(X,E) and M(X,E) for a relational expression E (=
(Ry X cee X R,)[Z = a)(P = Q]J[V]) and a subset X of V, which can be executed

in polynomial time.

[(Algorithm4, 2]

input: R

{Ri<mq,Fq U My>, wou, R<m ,Fp U MDY,
E = (Ry X «o. X R)I[Z = a)[P = Q][V], and
X (<€),

output: F(X,E),

M(X,E) - {{A} | A is in F(X,E)}.

method:

(1) For simplicity, let E’ = (Ry X oou X Rn)[z z AJ[P = Q). Compute &(E”)
bj the following steps (i) through (iii). Note that step (U) of
Algorithml,1 is not executed for E°, since each Ri occurs once in E”,
(i) Let PL = {{1}, ..., {deg(E’)}}.

(ii) For each DEQ A = B in P = Q, merge two blocks Ly, and Lg in PL such
: that LA and LB contain A and B, respectively. Repeat this step
until no glocks can be merged anymore.

(iii) For each .pair A = ¢ and B

m

¢ with the same constant c¢ in 2

4,

merge two blocks LA and LB in PL such that LA and LB contain A and

B, respectively. Repeat this step until no blocks can be merged
anymore.

(2) Suppose that E° (and also E) is sound under R. Compute F(X,F U M) by a

known method, where F = Fg1) Voees L/an) Vg + 2z} VI{A>L, | Ly is i

&(E*) and A is in Ly} and = M{D U LLumPlUgs e oD, L,

g +» 0{M)}. Then F(X,F U M) A V coincides with F(X,E).
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(3) Let 3 = F(X,FU M), Compute M(S,F'U M) - {{A} | A is in S} by a
known method, where F’ = F%” V... UFr(]n) Vg + z}.

(4) Let DB = M(S,F"U M) - {{A} | A is in S}, For each DEQ A = B in P = Q,
merge two blocks Ly and Ly in DB such that L, and Ly contain A and B,
respectively. Repeat this step until no blocks can be merged anymore.

(5) Let DBripgy be the final partition obtained in step (4). Then {LNV |

L is in DBpjp )} coincides with 7(X,E) - {{A} | A is in F(X,E)}. []

Thus we have the folloing theorem.

[Theoreml, 8] Let R = {<Ry,F;U M, oouy <Ry, FoU MD>} be a database
scheme, let E be a relational expression such that (1) E contains no union
and (2) each Ri occurs at most once in E, and let d be an FD or MVD, It can

be determined in polynomial time whether d is valid in E over R. []

Since join R1 M R2 Moo M Rn can be transformed into an expression of

the form (Ry X ... X R))[P = Q}{V] (in polynomial time) [Ullman 80], we have

the following corollary of Theoremi,8,

[Corollaryl,.1] It can be determined in polynomial time whether a given FD

or MVD is valid in RyM R, M ... MR, over R. []

4,3,6 An NP-completeness result under finite domains

Let R = {<R{,Fy>, ..., <R,,F,>} be a database scheme, let E be a
relational expression, and let d be an FD. Let S = {01, co ey ek} be a set
of k constants. Then d is said to be k-valid in E over R if for every
database instance I of R consisting of‘Sk, E(I) satisfies d. In a special
case where E = Ry, d is 2-valid in over R if and only if d is valid in E

over R (that is, F; implies d) [Sagiv 80]. By Theoreml.7, if E contains no
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union, then it can be determined in polynomial time_whether d is valid in E
over B.' However, it is NP-complete to determine whether d is not 2-valid in
E over R, as shown below,. Note thét if only one constant occurs in a
database instance I of R, then E(I) is empty or has only one'tuple, and thus
E(I) tfivially satisfies any dependenéy d. That is, it is meaningless to
consider whether d is 1-valid in E over R. Thus, 2-validity is

theoretically the simplest case in finite domains.

[Theorem4.9] Let R = {<R;,Fy>, ...,‘<Rn,Fn>}-be a database scheme, let E
be avrelational expression consisting onlylof selections, restrictions, and
cross broducts, and let d be an FD, Let Sy = {01, 02} be a set of 2
constants., It is NP-complete to determine whether d is not 2-valid in E

over R.

(Proof) By Lemmal4.,5, it can be determined in nondeterministic polynomial
time whether d 1is not 2-valid in E over R. We transform the
3-satisfiability problem into the problem of determining whether there is a
database instance I of R consisting of 82 such that E(I) is not empty. This
problem can be transformed into the problem of determining whether d is not
2~-valid in E over R, as presented in the proof of Lemmal,6, Thus Theoremi.9
will follow.

;Let P = QA ... AQ,, where eaéh clause Q; contains exactly three
literals. Let x4, ..., X, be all variables occurring in P. We construct a
daﬁabase scheme R and a relational expression E consisting only of
selections, restrictions, and cross products such that there is a database
instance I of R consisting of 82 such that E(I) is not empty if and only if
P is satisfiable.

Let R = {<Ry,{123 » 41>, ..., <Ry,{123 + 4}>}, where deg(R;) = 4 for

all i, For S, = {01, 02}, we assume that c¢; corresponds to "true" and cy
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corresponds to "false". Let Xi{, Xyo, X353 be the three variables occurring

in Q;. Let {6(1), 6§;)1 5§%)}’ 2oy {ng)

, 6§Z), 6§§)} be the seven truth
assignments to {Xj;, Xj,, X3} that make Q; true, and let {5§§)’ 5§g)’ Ggg)}
be the truth assignment to {xy,, xi2, Xy3} that makes Q; false. Then we
define

ry = (6] s{1)s{]) s$D6{Ds{De,, s{8)5{8)s{8c,}, and

01, ev vy
By = Ry[1234 = sg})6§;)6§%)01] X ovs X Ry[1234 = 6%1)6§5)6§§)01]
x R(1238 = 6{8)5{8)s{8)c 1. Let 1y = (ry, ..., ryl. Then we have the

following fact, whose proof is given in Appendix 3.

[Fact4.7] Let Eg = E; X ..s X Eys  Then Iy is the only database instance

of R consisting of S, such that ES(IO) is not empty. I[]

Let Et = (R1[)4 = 01] X ev 9 X Rm[u

ciD)[v], where v = ¥, U ... U ¥, is
a set of DEQs that chooses exactly all tuples that are assignable to {x1,
covy xn} from ry X vos X rps as presented in the proof of Lemmald,1. That
is, ¢ is defined as follows., Let the first, second, and third positions of
variables of Q; correspond to the first, second, and third columns of the
occurrense of R, in E;, respectively. That is, let the position 3(i-1) + ¢

in P correspond to the column number 4(i-1) + & in Ey, where 1 { i { m and

1< 2 < 3. For each X35 if Pys «es; Py are all the positions of xj
oceurring in P, then vy = {a; = a5y, «vey qq = q}, where py, ...y Py
corresponds to 44, ..., Qq, respectively. Then for each rjy in I,, since
(1)4(1) (1)
811783278437

“e v g

6§Z)6§5)6§§)c1 are all the tuples that have the
. . . - _ (1) g(1)5(1)
constant ¢, in 4 column, it holds that R[4 = ¢ ](Iy) = {84, Giz §53°Cq,
ey 6§Z)G§g)6§§)c1}. The first three columns of thses tuples represent the
seven truth assignments to {xi1, X{0s xi3} that make Q4 true, Thus we can
show in the same way as the proof of Lemmali,1 that P is satisfiable if and

only if Et(IO) is not empty.
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Now we consider relational expression E = Es X Et' which consists only
of selections, restrictions, and c‘ross products., By Factd4.7 and tvhe
discussions above, P 1is satisfiable if and only if there is a database
instance I of R consisting of S, such that E(I) is not empty. Since R and E
can be constructed from P in polynomial time, Theoremiy,9 has been

proved. []
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CHAPTER 5
CONCLUSION

In Chapter 2, we have showﬁ that (a) it can be determined in polynomial
time whether a given database scheme R over U is consistent and that (b)
given a sebset V of U, we can construct a relational expression whose value
is rep(I)[V-total]l for every databasevinstance of R, provided that R is
consistent. There are some remaining problems.

(1) Is it decidable whether given a universal relation scheme <U,F> and a
decomposition {R;, ..., Ry} of U, a database scheme R = {<R4,Fy>, ooy
<Rn,Fn>} over U is consistent? Here, each Fy is a cover of {X+Y | F
implies X + Y and XY € Ri}. In this thesis, we have assumed that a cover of
F is equivalent to that of F1 U ... L}Fn. Then the decomposition is said to
preserve F, However, it 1is possible that the decomposition does not
preserve F, but R is consistent. We note that given a universal relation
scheme <U,F> and a decomposition {R,, “ses R,} of U, if the decomposition
preserves F, then the database scheme R = {<R1,F1>, ev oy <Rn'Fn>} can be
computed in polynomial time, but if the decomposition does not preserve F,
then finding a cover for F1 V... U Fn is NP-complete
[Beeri and Honeymén 81].

(2) For the representative instance, the notion of boundedness has been
recently proposed [Ullman et al 82], Intuitively, a database scheme R =
{<R1,F1>, ev ey <Rn’Fn>} over U is bounded if for every database instance I
of R such that rep(I) satisfies Fq V ,..lJ F,, any tuple of rep(I) can be
obtained from augU(I) by a fixed number of applications of FD-rules for
FqV ... UF,. If R is bounded, then rep(I)[V-total] for any subset V of U
can be computed efficiently [Ullman,et al 82), Theorem2.2 implies that if R

is consistent, then R is bounded., However, it is possible that even if R is
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‘not consistent, R is bounded., 1Is it decidable whether a given inconsistent

database scheme is bounded?

(3) In Chapter 2, we consider only FDs as constraints, We do not know

how t§ define the consistency of a database scheme with FDs énd full MVDs.

In Chapter 3, we have shown some restricted solutions on implication
problem for FDs and embedded MVDs, The most attractive but difficult
problém is to determine whether impliéation problem for embedded MVDs is
solvable. |

Ih Chapter 4, we have shown that both the view nonemptiness and the
tupler.membership problem are NP-complete, but if the given relational
expression contains no projection, theh the tuple membership problem can be
solved in polynomial time. And then we have shown some results on
implication problem for view dependencies. As for implication problem fof
view dependencies, we consider only FDs and full MVDs as constraints. The
deeidability result for this problem (Theoreml.l4) can be extended to a class
of FDs and TDs, such that any chase process of any tableau under a given se£
of FDs and TDs always terminates, For example, consider the relation scheme
<R,Cn[Uo]> in Section 3.3.2. Then any chase process of any tableau under
Cn[Uo] always terminates by Lemma3.12. Thus for a given database scheme R =
A<R¢,D4>, «.s, <R,,D>}, if each Dy is the same form as C,[U,], then it is
decidable whether a given FD or TD is valid in a given relational expression
over B. There are some remaining problems for the implication problem,

(f) In Section 4,3.3, we have shown an NP-hardness result for the problem
(Theoremi,.6). But we do not know whethér it is NP-complete,

(2) In Section 4,3.5, we have shown a polynomial time algorithm for the
problem in the case where the given relational expression E contains no
union and each R; occurs once in E. But we do not know whether the result
still holds, if each R; may occur twice in E. Note that if the number of

occurrences of Ry is not bounded, then the problem is NP-hard by Theoremi.6,
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APPENDIX 1

Proofs of Lemmas in Chapter 1

Proof of LemmaZ2,1: First we prove the following fact.

(FactA.1] If R is not consistent, then there is a database instance I of
R such that a restricted confliction occurs by only restricted applications

of FD-rules for F to augU(I).

(Proof) There must be a database instahce I = {r1, vevy rn} of R such
that a confliction occurs by a chase process of augU(I) under F. Consider
the chase process until the first confliction occurs. Suppoée that the
chase process consists of k non-restricted and a number of restricted
applications of FD-rules for F, We assume that if the confliction is
restricted, then it is considered as a restricted application of FD-rule for
F, and otherwise it is considered as a non-restricted one, We prove FactA.1
by induction on the number k.,

Basis: If k = 0, then FactA.1 follows trivially.

Induction: Suppose that a confliction occurs by a chase process that
consists of k non-restricted and a number of restricted applications of
FD-rules for F to augy(I). Consider the first non-restricted application of
FD-rule in the chase process, that is, suppose that augU(I) is transformed
into a relation r by only restricted applications of FD-rules for Fland then
FD-rule for an FD X + Y in F‘j is applied to two tuples u and v of r, where
neither y nor v is any extension of any tuple of augU(rj). Consider the
chase - of rj v {u[Rj]} under Fj. If it does not satisfy FJ, then a
restricted confliction occurs by only restricted applications of FD-rules

for Fj to u and extensions of tuples of augU(rj), and thus FactA.1 follows.
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Suppose that the chase of ry U {u[Rj]} under Fy satisfies Fj and let u’ be
the tuple obtained by replacing all the va}iables of the final extension of
u[RJJ in the chase of rj v {u[Rj]} under Fj with distinct constants. Let I°
= {ry, oee, ryVy {u’}, «eu, r}. We can obtain the relation r, especially
the tuples u and v, by only restricted applications of FD-rules for F to
augU(If). Since FD-rules for F are only restrictedly applied to augU(I),
each variable occurs once in only one tuple of r, and thus u[X] = v[X]
implies that p and v have the same consténts in X columns, Thus FD-rule for
X +Y can be restrictedly applied to u and ang(u') (and also to v and
augU(u')) instead of the original non-restricted application to u and v.
That is, the first non-restricted application of FD-rule is transformed inpo
two restricted applications by adding a tuple to I. If a confliction occurs
in this time, then the confliction is restricted, since X + Y is in Fj and
u” is in r; U {u’}. Thus FactA.1 follows. Suppose that no confliction
occurs, Then we can show that a confliction occurs by following the rest of
the original chase process, as explained below,

Suppose that by the non-restricted application of FD-rule for X + Y to
u and v, the resulting tuples have the same variable v in A column for an
attribute A in Y and suppose that by the restricted applications of FD-rule
for X » Y to u and augU(u') (and to vAand augU(u')), the resulting tuples
have the same constant ¢ in A column, If v is replaced with another
variable v’ (or v’ is replaced with v) in the original chase process, then
v’ is replaced with the constant ¢ in the new chase process. If v is
replaced with a constant ¢’ (# ¢) in“the original chase process, then a
confliction occurs in the new chase process. In this case, a confliction
occurs by the new chase process earlier than by the original one. Since
the rest of the original chase process consists of k-1 non-restricted and a
number of restricted applications of FD-rules for F, FactA.1 follows from

the induction hypothesis. []
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Suppose that R is not consistent. By FactA.1, there is a database
instance I = {r'1, ve oy rn} of R such that a restricted confliction éccur‘s by
only restricted applications of FD-rules for F to augU(I). Suppose that an
extension v of a tuple v of augu(ri) restrictedly conflicts with an
extension p of a tuple Ko of augU(r‘j) for an FD X - Y in Fj. Since v
restrictedly conflicts with vy as well as y for X + Y and v can be obtained
by extending Vo by a number of restricted applications of FD-rules for F

without changing any other tuple of augU(I), Lemma2.1 follows.

Proof of Lemma2,l4: First we prove the following fact.

[FactA.2] If X » Y is in Fj and X » V is implied by Fy - {X + Y}, then
there 'is a subset {Z; » Wy, ..., Zg > W} of Fy - {X + Y} such that (1)

V EXW;...Wg and (2) Z W, & XY and 2y € XWq.uuWy_q for 1 ¢ t < s,

(Proof) Suppose that X + V is implied by F. - {X + Y}. Then there is a

J
subset {2y + Wy, ...y, Zg > Wg} of Fj - {X » Y} such that V & XW,...Wg and
Zy € XWi.auWy_4 for 1 ¢t { s [Beeri and Bernstein 79]. Since X » WyeaolWg
is implied by {Z; » Wy, ..., Zg > W,}, which is a proper subset of Fj, it
follows from Assumptions 2.2(a) and 2.2(b) that Wies Wy % XY. Thus FactA.?

follows., []

In order to prove Lemma2.,4, it suffices to show that Xm + A is not
implied by F;) - {)(m + Yol Suppose that X + A 1is implied by F:J -
{X, + ¥Y,}. By FactA.2, there is a subset H = {Zy > Wyy weey Zg Wgl of Fj

- {X, + Y} such that (1) Wy contains A and (2) 2. W, & X, ¥, and

(m)
g € XpWieooWy 4 for 1 ¢t ¢85, Let Hj be the intersection of Fj and

{X1 > Vi) eeey Xpoq @ Ym-1}' Since the derivation Xy * Yy ooe, Xp > Y 18
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close, cover(Hgm)) must contain H. Since H implies Xy * A, cover(Hgm)) also

implies Xp A, This, however, contradicts that Xp > Yp is irreducible,

Proof of Lemma?,5: Suppose that EXAM(Ri) returns "yes"., We denote the

-’

final values of S, G1, weey G Dy S, G1', esey Gr'], respectively. Since

n

RiY{esoY, S F(R;,F) and S” = F(Ry,F), it holds that X S 5" for 1 { k ¢ m,
and thus X, + Y, is in G1' U ... UG,. Suppose that X + Y 1is not selected
in step (2-1i). Then there is an FD X(p? + Y(p) in Fj such that
Xgly € X(PVY(P) and that X, » v, 1s added to G; at the p-th exection of step
(2-111). Then it holds that (1) x(P) S P} (2) x(P) , y(P) 45 ninimal in

F: - Ggp), and (3) X, + Y

j is in F; - Ggp). In the following we prove

m J
LemmaZ2.5 by induction on the number m,

Basis: Consider the case where m = 1. Then X, SRi implies Xmg. S(p),
and t.hus x(P)y(p) ¢ XY, by the minimality of x(P) L y(p) Since
XX, S X(p)Y(p), it holds that x(P)y(P) X ¥ . There is an attribute A in
Xy such that X(p) + A is not implied by Fj - {X(p) + Y(p)}. Because if
there is no such attribute A, then X(P) » X is implied by Fy -
{X(p) + Y(p)}, and thus X(p) > Xp¥n (= X(p)Y(p)) is implied by X(p) + X, and
Xp * Yoo This, however, contradicts Assumpion2.2(b). Note that A is in
Y(p). Since ) o p= S(p) and Xp contains A, S(p) contains A. Since Ggp) does
not contain x(P) s y(P), 3’(X(p),G§p)) does not contain A. Thus it holds
that 5PV A ¥(P) _ Fx(P) 6{P)) 4 9. Thus EXAM(R;) returns "no" by
Condiﬁion1 at the p-th execution of step (2-ii).

Induction: If XmS S(p), then EXAM(Ri) returns "no" by the same reason

above. Suppose that X, - S(P) £ . since X, € RyY ...Y there is an FD

m-1?*
Xk + Yk with 1 $ k ¢ m-1 such that Yk contains an attribute B in Xm - S(p).
Note that X, » Y, is different from X(P) » ¥(P) by the irreducibility of

Xm + Ym. Let Xk +> Yk be the first FD in the derivation such that Yk
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contains B. Then subsequence X; + Y,, ..., X, » Y, is a close derivation of
B from Ry such that the last FD X * Y, is irreducible by the fact that none
of Y;y ..., Y,_; contains B. Thus‘Xk + Y, is selected in step (2-1) by the
induction hypothesis, Suppose that Xk + Yk is in FQ and that Xk -+ Yk'is
selected at the g-th execution of step (2-i)., Since (1) s(P) does not
contain B but S(9*1) contains B and (2) x(P) .+ y(P) apg X > Yy are
different, it holds that p < q. Thus S{P*1) € 5(a) | and thus s¢9) contains
B. Since Ggq) does not contain X# + Y, and X, + Y, is irreducible,
,E(Xk,Ggq)) does not contain B by Lemma3.4, Thus it holds that s(a) Y, -
% (X,,63)) # 8. That is, EXAM(R,) returns "no" by Conditioni at the q-th

execution of step (2-ii).

Proof of Lemmama2,6: It suffices to show that no variable in augU(I)*
is replaced with any constant by applying any FD-rules for F to augU(I)*.
There are two cases to be considered.

Casel: Consider the case where for augU(I)*, a variable is replaced with
a constant by an application of FD-rule for an FD in F. That is, suppose
that there are two tuples u and v of augU(I)* and an FD X - Y in Fj such
that (1) u and v have the same constants in X columns, (2) u has a variable
in A column, and (3) v has a constant ¢ in A column, where A is an attribute
in Y. Let u° be a tuple over Ri that is obtained by replacing all the
variébles of u[Ry] with distinct constants (that do not appear in any other
tuple). Then relation ri(J {n’} satisfies Fi' Because if it does not
satisfy an FD Z + W in Fsiy then there is a tuple 1 of ry that agfees with u’
in Z columns but does not agree with u” in W columns. Then in augU(I)*,
FD-rule for Z + W must be restrictedly applied to u and an extension of

augU(r), but this contradicts that no FD-rule can be restrictedly applied to

augU(I)*. Let I = {ry, oo, ry U {u'}, essy Tt Since augU(I') =
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aug;(I) U augu(u'), we can obtain augU(I)* v augU(u') by a chase process of
augy(I°) under F. Note that the relation contains the tuple v. Since p’[A]
# ¢, tuple v conflicts with augy(s’) for X » Y, This, however, contradicts
that R is consistent,

Case2: Consider the case where after a number of variables have been
replaced with other variables by a number of applications of FD-rules in F
to augU(I)*, a variable is replaced with a constant by an application of
FD-rule for an FD in F. That 1is, suppose that we obtain a relation r by a
number of non-restricted applications of FD-rules for F to augU(I)*, where
each épplication replaces variables with other variables. Then suppose that
there'are two tuples 1 and v of r and an Fb X +Y in Fj such that (1) 1 and
v agree in X columns, (2) 1 has a variable in A column, and (3) v has a
constant ¢ in A column, where A is an attribute in Y., If 1 and v have the
same constants in X columns, then this case is reduced to Casel above,
Suppose that t and v have variables in X columns. Since by the technique of
the proof of Lemma2.1, each non-restricted application of FD-rule can be
transformed into two restricted applications of the FD-rule by adding a
fuple to I, we can obtain a database instance E of R (by adding some tuples
to I) such that each non-restricted application of FD-rule in the chase
process from augU(I)* to r is replaced with two restricted applications of
the FD-rule. Then augu(f)* has the extensions of 1t and v that have the same

constants in X columns. Thus this case is reduced to Caset1 above,.

‘ X + Y
Proof of Lemma2,7: Suppose that there is a chase process Ho =l====l> cee

v
X -+ Y 1
ot 1N Hye Lemma2.7 follows from the following three facts (1), (2), and
v

(3).
(1) Addition: Suppose that X, + Y, is in F; and let X » Y be an FD in

cover(X, + Y, ). Consider a derivation X; + Y;, «.ey Xp + ¥, X+ Y of V
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' : X, + ¥
from Ry. Since u, 4 s SR X u, and R is consistent, tuple v, agrees with
A\
k .
Hy in X Yy columns, so in XY columns, Thus FD-rule for X = Y can be

r‘estridtedly applied to M and Ve Clearly M remains unchanged by the

. X1 - Yl X +Y
application, That is, there is a chase process ug ======2> .., =0----0) ¥
X+Y . vy Vi
z=====> U,_.

Vi . m
(2) Deletion: Suppose that  sequence X; + Y,, ey et * Yoy

X1 * Yoo seoy Xp > Y, is a derivation of V from R;. Then clearly there

X, = Y X +Y X + Y .
is a chase process =do--=1y ., =skslo-ocksly M1 =kl - "kl Hp veo
X +» Y 3 , Vi Vk-1 Vi1
i p—. Mo such that My agrees with 1 in V.columns.
N .

m
(3) Exchange: Suppose that sequence Xy -_»Y1,' eovy X1 * Yiprs X v Yy
evvy Xp > Y is a derivation of V from R; and that X + Y, and X, 4 + Y 4

are in Fy and F,, respectively. Since (i) Xp, i S Ryj¥i.. ¥ g, (41) my

> Ugets
‘ Xge1 > Vi "1k+1 ,
tuple v, 4 agrees with y,_4 in X, . columns, so uj_4 =ft2-zo28E2> §’,  Since
X > Yy , Vk+1
X SRiYq .e0.Y,  and wp_, =-=:==-> Hg, tuple u° agrees with v, in X,
X, + Y k
columns, so u’ S N u". Clearly u" coincides with Wg,1+ Thus there is
koxy e Y Y1t Y1y, - Rl Mk
a chase process u ====z=z2> L., I} =8t -8tly u =8z=z=8)>
0 vy k-1 Via ] Vi k+1
+
Te.llwe, |, Yol
m
Vk+2 ¥m

Proof of Lemma?,8: It suffices to show that for all zt+wt with

1§ t¢s, there is an FD X,  + Y with 1 ¢ k ¢ m such that Wy _C_:XkYk.

Because if so, then the derivation Xy > Yqy vy Xp* Yp is transformed into

a der"ivation X1 hd Y1, vvey X + Y

w* Yme 27+ Wy, ev., Zg > Wy by s addition

S

operations, and then it is transformed into a derivation Z1 + w1, vevy

Zg * Wy, Xq * Y4, «evy, Xp > Y, by a number of exchange operations, and

m m

finally it is transformed into the minimal derivation Z; + Wy, ..., Zg + Wy

by m deletion operations. First we prove the following fact.
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[FactA.3] For the last FD Z; * Wy, there is an FD X, + Y, with 1 ( k ¢ m

<
such that sts L= XkYk‘

(Proof) Suppose that there is no FD Xk + Yk such that sts C kak‘ Then
we will show that R is not consi’stent. Suppose that ZS + ws is in FJ.
There is an attribute A in V N Wy such that Z5 + A is not implied by FJ -
{z +iws}. Because if there is no such attribute A, then Z, + VAW  is

implied by FJ - {Zs + ws}, and thus by FactA.2 in the proof of Lemma2.4, the

derivation Z1 + W1, veey 2

s * Wg can not be minimal., Sequence )(1 + Y1, ceey

Xp > Ype 29 > Wyy wuey Zg + Wy 1s a derivation of A from Ry such that
RiY1.._.Ym contains A, since V & RiY1...Ym. Let Hj be the intersection of Fi
and {Xy > Yy, o.ey Xy > Yo, Zy > Wy, ..., Zg_ 4 > Wg_q}.  Since the
derivation Zy * Wyy eesy IZg > Wy is minimal, there is no FD Z; + W, with

1

[[ZaY

t ¢ s-1 such that sts_C_tht. And there is no FD X, + Y, with

1 ¢ k { m such that sts = XkYk by the assumption. Thus cover(Hj) does not
contain Z, + Wg. Since Zg, + A is not implied by Fj - {ZS + WS}, Zg *» Wg is

irreducible, Thus R is not consistent by Lemma2.3., []

The minimality of the derivation Z, + Wy, ..., Zg > Wy of V from Ry
implies that subsequence Z1 + w1, ey Zs—-1 + Ws_1 is a minimal derivation
of Z4(V - Wy) from R;. Since V& RiY{e. Yy and Z W, S XY, for an FD

Xk + Yk by FactA.3, sequence X1 + Y1, eeey Xp Yo is a derivation of
ZS(V - Ws) from Rj. By FactA.3 there is an FD X, + Y, such that
Zg_4Ws_y € X Y,. In general, for each FD Z, + W,, there is an FD X, + Y,

such that Zg W < X Yy. Thus Lemna2.8 has been proved.

Proof of lLemma2,10: Suppose that Z W, + V 1is implied by cover(H) U Fi.

Let H® be a subset of cover(H) U Fi that implies tht + V and assume that no
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proper subset of H' implies Wy ~ V. We denote H' = {X1 Y ey,
Xy + Yo}, where X + Y  is in Fpk for 1 ¢ k ¢ m, Then H® implies
2 Wy ,,”Y1...Ym and V & ZWeYqeaoYps H® is disjoint from FJt. Because if an
FD X . Y in th is in H', then H' implies Z W, ~ XY, Thén Z,W, + XY and
Zy » W implies Z; + XY, and thus XY c Z W, by Assumption2,2(a). Thus H® -
{X » Y} would imply Z,W, + V, a contradiction of the minimality of H’.
Since H® implies Z W, + V and Z;W, < Rjt’ there is a derivation of V from
Rjt consisting of the FDs in H®, Thus E contains a term Ejt[V]. We assumé
without loss of generality that _X1 + Y1, e ey Xm + Ym is a derivation of V
from Rjt. By the following four facts, Ejt[V] includes E;[V], that is, E is
equivalent to the expression obtained by rerﬁoving the term Ei[v] from E.

(1) By Lemmas 2.7 and 2.8, Ejt[V] includes
(Rjtbq Rp1[X1Y1] M ... M Rpm[XmYm])[V]‘v

(2) Since H® implies not only Wy > V but also R: =+ V,
(Rjtbd Rp1[x,Y1] M ... N Rpm[mem])v[V] _ is equivalent to
(Rjt‘[ztwt] M Ry [Xy¥q) M. Rpm[mem]')[vJ.

(3) Let H; = H' N cover(H) and H, = H N Fy. Note that H; and H, are
disjoint and H® = H,VU H,. We denote Hy = {P; » o;, esss Py + Q,) and H, =
{S1 * Ty veey Sy * T,}, where Py + Q, for 1 ¢ & £ u is in Fql. By the fact

that H, C cover(H), the derivation Zy * Wyy weoy Zg + Wy is transformed into

s
a derivation Z, + Wy, ..., Zg > Wg, Py > Qq, .ov, Py > Q, by u addition
operations. By Lemma2.7, ‘
(R; M Rj1[Z1w1J M...N Ry [ZsWg] M Rq1[P1Q1] M ... MRq [P,Qu1)IV] includes
Ei[V]; - Since expression Ry is equivalent to Ry M Ri[S1T1] M... M Ri[SvTv],
expression R; M Ry L2440 M weu MRy [ZgW,] M Rq, [P1Q4] M ... MR [PQ,] is
equivalent to Ry M Ry[S;T;1 N ... M R;[S,T,] N Rj1[z1w1] M...NM st[zsws]
™ Rq1[P1Q1] M ... N un[Puou], which ' is trapnsformed into expression
Ry M le[z1w1] M ... M Rjt_1[zt_1wt_1] NRjt+1[zt+1wt+1] M. M st[zsws]

M Rjt[ztwtj M Rp1[X1Y1] M... M Rpm[XmYm], denoted E, by a permutation of

91



the join sequence, Note that join operation is commutative and associative,

Thus E[V] includes E{[V].
(4) Since Rjt[tht] M Rp1(X1Y1] M ... M Rpm[mem] is a subexpression of

E, expression (Rjt[ztwt] M Rpl[X1Y1] M oo bdRpm[XmYm])[V] includes E[V].

Proof of Lemma2,11: Suppose that Efinal contains a term Ei[V] and that Ey

is of the form R; X Rj1[Z1W1]N “‘MRjS[sts]“ Let H = {Zy + Wy, ...,

ZS + ws}. We show that there is a databaselinstance I of R such that

Ei[V](I) contains a tuple u and no other Ej[V](I) in Efinal(l) contains the
tuple u. We define I = {ry, ..., r,} as follows. (We can show that I is a

database instance of R in the same way as the proof of Lemma2.3.)

(1) ry consists of only one tuple. that has a constant ¢ in all the

columns,

(2) For 1 ¢ j ¢s with j # i, let {P; +Qq, ..., P  +Q} be the

p p
intefsection of Fj and {Z1 > Wiy wewy Zg * Wil Then let rj = {u1, ey

1.}, where each tuple Hq for 1 { q < p has the constant ¢ in Pqu columns

p
and distinect constants in all other columns.

Let vy be a tuple of augU(ri). Then there is a chase process v
=dz=zzd> vy =€z=z==26> L, =Z==z28> v such that v has the constant c exactly

in RyW;...Wg columns, Thus Ei[V](I) contains a tuple u that has the

constant ¢ in all the columns. Suppose that Ej[v](I) with jJ # i contains

. ‘ | Xy > Y X, + ¥,
the tuple u, that is, there is a chase process Tg =======> T4 =-=§==-> ves
[\
X +Y : 1 2
=Q=§==@> Ty, Such that t, agrees with w in V columns, where 15 is in
m

augU(rj). Then Ty has the constant c exactly in Wy columns for some t

such that Zt + wt is in Fj. Suppose that X, + Y. is in F , for 1 ¢ k ¢ m,

p
If p, = 1, then X + Y,  is in Fy and §, has the constant c exactly in Ry

columns, and otherwise §, has the constant c exactly in Zq W, columns for

k 9%
some q .
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By the fact that each constant except ¢ occurs at most once in the
database I, TO[X1] = 61[X1] implies that &; has the constant c in X4
columns, and thus X, & Z W,. If p; =1, thenm X, » Y, is in Fy. If py # i,

then it holds that X, CZ W and thus zq1 + W

a,%q, and Xy > Yy implies

9
7. +W. X.Y,. It follows from Assumption2.2(a) that XY €72 W.. Thus
94 q4 171 41794
Xy » ¥, is in cover(H). That is, X4 * Y, is in cover(H) U Fy. In general,
it holds that X, S Z,W,Y,...Y, 4 and X, + Y, is in cover(H) U F;. That is,
cover(H) U F; implies Z,W, > Y,...Y , so cover(H) U Fy implies Z;W, » V.
The fact that Ef"inal contains the term Ei[V] implies that Ef‘inal does
not contain the term Ej[v] by step (3) of Algorithm2,4. Thus Epq, .9
contains no redundant union. Since the derivation 7, + Wis veey Zg * Wy 1s
minimal, all the joins in E; are necessary in order to extend vy to vg.

Thus E” contains no redundant join,
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APPENDIX 2
Proof of Lemma3.6 in Chapter 3

First we present a new inference rule for MVDs, called Rulel.
Rulei: {X ++ Y!Z, XY »» W(V), XZ »> W(V)} implies X ++ W(V),
Let Y1 = YNW, Y2 =Y - Y1, Z1 = ZNVW, 22 = 7 - Z1, U1 = W~ YZ, and
U = V. - XYZW. Then Rulet vis restated as X e Y4Y512425,
XY1Y2 > Z1U1IZ2U2, XZ122 >+ Y1U1§Y2U2}. implies X +~» Y1Z1U1=Y222U2." The
validity of Rulel follows from Figure'A.I below, In Figure A,1, we use
another inference rules for MVDs: Rule2 ([Delobel 78] [Tanaka et al 79],
Projection, and Augmentation [Fagin 77]‘[Zaniolo 761].
Rule2: {X »+ Y!Z, XY +> Z|W} implies X ++> Z|YW.
Préjection: X ++ Y|ZW implies X »+ Y|Z,

Augmentation: X ++ Y|ZW implies XZ ++ Y|W.

In order to prove Lemma3.6, it suffices to show that (1) D implies
X ++ Q and (2) there is no nonempty proper subset Q° of Q such that D
implies X ++ Q7. Since X »+ P,l...iP; dimplies U - PP, ++ P(IP, Dy
Augmentation,

]

U - Py +» Q(V) implies U - PP, ++» Q(V) by Rulet,

U - Py + Q(v)
Since X ++ P13...!Ps implies U - PyPyP3 P1P2!P3 by Augmentation and
another inference rule for MVDs (Union) [Fagin 77) [Zaniolo 76],

U - PyPoP3 ++ P;P,iP3

U - Py »» Q(V) implies U - PP,P3 ** Q(V) by Rulet.

U - PyP, ++ Q(V)

By repeating this process, we have finally U - P1P2...Ps ++ Q(V). Thus D
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implies X ++ Q(V). If there is a nonempty proper subset Q  such that D
implies X »+ Q'(V), then D implies {U - P; +» Q'(V), ..., U - Py +» Q"(V)}
by Augmentation. Thus for all i with 1 ¢ i ¢ s, Q" is a union of some of
the blocks in M(U - Pi,V,D). This, however, contradicts the minimality of

Q.

X +» Y1Y2|Z 22 XY Y2 ++ 7 U1|Z202 XZ1Z2 hdad Y1U1lY2U2

PPOJeCtl;;:;:::>x<i:::ijojeCtlog\\\\\\\\\\s

X Y YZ'ZZ XY Y2 ++ 7 U1|Z2 X+ Y Y2|Z1 XY Y2 +> Z1|22U2

N e,/

X »» Y1Y2Z1U1I22 X »+ Z]lY Y2Z2U2
l Projection k J Projection
y
t
Augmentation
\

XZy ++ Z41Y,U,

\\\ \\N Rule?2

Rule2 /

Figure A,1 Derivation of Rulel
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APPENDIX 3

Proofs of Facts in Chapter U

Proof of Factl,1: It suffices to show the following two facts.

(1) For each & with 1 ¢ & ¢ n, chase(r;LJ r;,ML) satisfies Foo

(2) E(1°) contains pu and v but does not contain t.
Firstlﬁe prove fact (1). Since I = {ri, «ssy ry} is a database instance of
Ry ry satisfies FE v Mz' Furthermore, éince r contains r; V) r;, it follows
from the definition of the chase that r  contains chase(r; U r;,ME). Since

r, satisfies FL’ chase(r; v PR’ML) satisfies Fl. Next we prove fact (2),.

By the_definition of Iu' and Iv', E(Iuo) contains yu and E(Iv') contains v.
Thus E(I°) contains u and v. Since r, contains chase(r; U i), E(I)
contains E(I°). Since E(I) does not contain v by the assumption, E(I’) does

not contain rt.

Proof of Facth#,2: Since (1) for each of column numbers X,, ..., X,, Zq,

ssey Lpyy tuple Hp has a different constant ¢ from all other tuples of r and

(2) the left-hand side of each MVD in M contains at least one column number

of Xi5 weuy X Ziy seey 2 it holds that chase(r,M) - {uo} = chase(Tr,M).

n? m?

Furthermore since all tuples of T have the same constant u in W column, all

tuples of chase(r,M) also have the same constant u in W column. That is,

H

chase(r,M) satisfies FD d: Y,.,.Y + W. By the fact that uol¥qeno¥y)
1eeel and uglW)} = v, chase(r,M) (= chase(T,M) Ll{uo}) does not satisfy FD d
if and only if chase(T,M) contains a tuple t such that «[Y;...Y, ] = 1...1.

Thus Factld.2 follows.

Proof of Factli,3: We show that if r'[Yi] = 1, then for some Kk, T'[Zi] =
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aj, and t'[Xi1X12Xi3] = viul[X14X45X33] by induction on the pumber of
applications of MVD-rules for M when computing chase(T,M) from ¥, Note that
{x41s Xi04 xi3} = vy [X54], Qik[xiz]’ “ik[xi3]} makes Qg true,

Basis: Obvious,

Induction: Let r” be a relation obﬁained by a number of applications of
MVD-rules for M to r., Suppose that for every tuple 1’ of r’, if r'[Yi] = 1,
then ©’[2;] = a;, and r’[xﬂxizxﬂl = Vi [X11X15Xy3] for some k. Consider
an appiication of MVD-rule for an MVD in M to r’, There are two cases to be
considered,

Casel: (An application of MVD-rule for MVDj with 1 ¢ j ¢ n) Suppose that
we have a new tuple T’ by the Iapplication of MVD-rule for

J
Suppose that T'[Yi] = 1¢ Since u[YC‘.o-YmZ1.‘oZm] = V[Y1oooYmZ1oooZm]

MVDj: Yqueu¥pZqeesZy > X5 to u and v of r’,

T’[Y1f.‘YmZ1...Zm] by the definition of MVD-rules, it holds that “[Yi]
v[Y;] = 1 and wul2;] = v[Z;]. Thus it follows from the induction hypothesis
that u[Xi1X12Xi3] = v[Xi1X12Xi3] = Vik[xi1X12xi3] and ulz;] = v[Zy] = ayy,
and thus t'[Xi1X12Xi3] = vy (X4 1X;5X43] and (241 = aj, by the definition

of MVD-rules, Thus Factl,3 follows in this case.

Case2: (An application of MVD-rule for MVD; with n+1 ¢ i { n+m) Suppose
that we have a new tuple 1 by the application of MVD-rule for
MVDy: XiqXjoXi3 +* Y325 to w and v of r’,

Suppose that t'[Yj] = 1. It follows from the definition of MVD-rules
that if i = j, then = [Xj1xj2xj3Yij] = u[Xj1Xj2XJ3Yij], and otherwise
T [Xj1X32Xj3Yij] = v[leijXj3Yij]. In both cases, Factl.3 follows from

the induction hypothesis.

Proof of Factl.li: Suppose that F, 'implies an FD Y + A and that r,

contains two tuples v and t such that v[Y]} = t{Y]. It suffices to show that
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v[A] = +[A]. Since r, contains two tuples v and 1, there are two
ocecurrences Rki and Rkj of R, in ﬁ SQQh that v = u[U&i)] and 1 = u[Uég)].
since Y] = (Y] implies w[Y‘1)] = w¥(31, BL) ang B(I) for each B in ¥
are in the same block in PLfinal by the definition of u, Thus it holds that
Y € W, where W is the set defined in step (4-i) of Algorithm4.1. Since
Y+ A and Y S W imply W+ A, A is in F(W,F,). By step (4-iii) 6f
Algorithml .1, A(i) and A(j) must be in the same block in PLgy, .. Thus

w817 = 4(a€3)] by the definition of u, that is, v[A] = <[Al.

’,

2

Proof of Factl,5: Suppose that Fg implies an FD Y + A and that rllJ r
contains two tuples v and t such that v[Y] = 1[Y]., It suffices to show that
v[A] = t[A). There are three cases to be considered,

Casel: Suppose that v = u1[Uﬁi)] and 1 = u1[U£q)] (£ # j). Then v[Y] =
t[Y] implies u1[Y(i)] = u1[Y(J)]. Thus ﬁ1[A(i)] = u1[A(j)] by Factl.l, that
is, vtA] = t[A]. Similarly, if v = ué[U&i)] and 1 = u2[U£§)], then v[A] =
t[Al.

Case2: Suppose that v = u1[U£i)J and 1 = u2[U§i)]. Then v[Y] = [Y)
implies u1[Y(i)] = uZ[Y(i)]. Thgs Y(i)E S by the definition of u, and u,.
Since F, implies Y + A, Fi{) (and also F) implies Y(1) » a(1)  mnys
Y(i) + A(i) and Y‘jj € s imply S -+ A(i), and thus %(S,F) contains A(i).

Since S = F(X,F) = F(S,F) by the definition of closures, S contains all),

Thus w[A8)] = w,0a1)] by the definition of wy and w,, that is, v[A]

t[Al.

Casé3: Suppose that v = u1[Uﬁi)] and Tt = uz[Uﬁq)] (L # 3). Then v[Y]

(Y] dmplies (Y3 = o ry30 hus vy = rv(3)7 = 0y

uE[Y(j)] by the definition of u; and u,. Thus u1(A(i)] = u1[A(j)]

uz[A(i)] = uz[A(j)] by Cases 1 and 2 above, that is, v[A] = <[A].

98



Proof of Factd4,6: Let I be a database instance of R. Let U = {1, ...,
deg(Eo)} and let Z = U - YW, Suppose that EO[A = B]J(I) contains two ‘tuples
u and ; such that u(X] = v[X], u[YW]si v[YW] and u[z] # v[Z]. It suffices
to show that EqglA = B]J(I) contains a tsple t such that t[X] = u[X] = v[Xj,
t(2] = ul2] and <[YW] = v[YW], that is, Ej[A = B]J(I) satisfies X ++ YW.

Since EglA = BI(1) &€ EO(I), relation EO(I) contains u and v. Since
X ++ Y and X »+ W imply X ++ Z by inference rules for MVDs [Beeri et al 77],
Eg(I) satisfies X ++ Z, and thus EO(I) contains a tuple t such that «[X] =
ulX] = v[X], (2] = ulZ] and <[¥YW] = v[YW]. Since tuple v of EO[A = BI(I)
satisfies DEQ A = B, tuple 1 also satisfies DEQ A = B. Thus t is in

Proof of Factl,7: Since for no tuples p and v of ri, u and v agree in 123

columns, r; satisfies FD 123 » 4, and thus I, is a database instance of R.
Since:ri contains exactly all the tuples that are defined by VEQs appearing
in By, Ej(r;) = 6{Pe{Ds{Be; .6 Ta{Ds{T)e 6{805{8)6(8)c ), ana thus
E(Ig) (= E1(r1) X «oe X Ep(rp)) is not empty.

‘Suppose that I” = {r{, ..., rg} is‘a database instance of R consisting
of 82 such that ES(I') is not empty. Since ri must contain all the tuples
that are defined by VEQs appearing ih Ei' ri contains ri. If ri is
diffebent from r;, then there is a tupie T of ri that is not in ry. Since
ri[123] contains all the possible eight tuples consisting of 82 by the
definition of ry, there is a tuple 17 of ry that agrees with t in 123
columns, Since t° is different from t, t° does not agree with t in U
column, and thus t and t° does not sétisfy FD 123 + 4, This, however,
contradicts that ri satisfies FD 123 + U, Thus ri coincides with ri. By
the discussions above, I, is the only database instance of R such that

ES(IO)‘is not empty.
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