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Effects of Sampling Bandwidth in MR Imaging
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Department of Radiology, Osaka University Medical School
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Phantom and volunteer study was performed with spin-echo sequences of different sampling
bandwidths to evaluate the narrow bandwidth signal acquisition technique. Our results demonstrated
the characteristics of the narrow bandwidth sequence as follows: SNR improvement, sensitive to the
field inhomogeneity and motion, loss of edge definition for short T2 tissues, and prominent chemical
shift artifacts. Narrow bandwidth sequence with flow compensation was suitable for brain T2
weighted images because of its high SNR and less artifacts. In spite of the improvement of SNR, the
narrow bandwidth technique may be inappropriate for short T2 tissues such as muscle, because of
prominent chemical shift artifacts and loss of edge definition. Consequently, sampling bandwidth is
one of the parameters which can be manipulate a to improve MR image quality.
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Table 1

Sampling Rate  (Sampling Time)

Sequence A 133.3 KHz ( 1.92 msec)
Sequence B 66.7 KHz ( 3.84 msec)
Sequence C 33.3 KHz ( 7.68 msec)
Sequence D 16.7 KHz (15.36 msec)
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Fig. 1 The relation of sampling time to read-out gradient.
a): narrow bandwidth sequence, b): wide bandwidth sequence. In order to
maintain pixel size, the product of sampling time and strength of read-out

gradient should be constant.
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Fig. 2 Images of a resolution phantom with a piece of iron.
a) : sequence A, b) : sequence B, c) : sequence C, d) : sequence D. Images were
obtained with TR=>500msec ¢, TE=30msec, Slice thickness=10mm, Matrix=
256 %256, NEX =1. Distortion of the image becomes greater as sampling time.
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Fig. 3 Dental metal artifact in a clinical case.
a) : sequence D, b) : sequence B. Images were obtained with TR =500msec, TE=
30msec, slice thickness=10mm, matrix =256<256, NEX=:2. Compared to (b),
exaggerated metal artifact is observed in (a) which was obtained with the
narrower bandwidth sequence.
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Fig. 4 T2 weighted images of the brain

mean-window to emphasize noise (B).

(a) : sequence D, (b) : sequence C, (c)

. Normal mean-window (A} and altered

: sequence IV, (d) : sequence C'. All the

images were obtained with TR=2,000msec, TE=90msec, slice thickness=10
mm, matrix =256 X256, and NEX =1. The regions of interest are shown in (C) ;
S : mean signal intensity of the white matter in the frontal lobe. N1 : root mean
square of signal intensities of the region including phase-shift artifacts due to
CSF motion as well as background thermal noise. N2: root mean square of
signal intensities of the laterally placed region affected by only background
thermal noise. In the image obtained with flow compensated narrow bandwidth
sequence (c), both systemic and statistical noise were reduced in comparison

with other conditions.

Table 2

% Noise Ratio

statistical systematic total

noise noise noise

Sequence C 3.84 8.03 11.87
Sequence D 2.84 19.19 22.02
Sequence C’ 3.81 4.53 8.34
Sequence D’ 2.83 4.13 6.96
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Fig. 5 T2 weighted irages of femoral muscles.
(a) : sequence B (NEX =1), (b) : sequence D (NEX=1), (c) : sequence B (NEX =
4). Images were obtained with TR=2,000msec, TE=60msec, slice thickness=10
mm, matrix =256 X 256, and NEX=1. The SNR of (b) is as twice as greater as
that of (a), and equivalent to that of (c). However, anatomical details such as
minute fat planes in muscles observed in (¢) cannot be recognized in (b).
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