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CHAPTER 1

Introduction

In this thesis, we study integrability for nonlinear dynamical systems including differential
equations and discrete equations based on the soliton theory. Furthermore, we study applica-
tions of the soliton theory to numerical algorithms.

1. History of soliton theory

The notion of soliton means the solitary wave that travels stably and preserves its shape after
interactions. The first literature about the soliton equations was presented in 1895 by Korteweg
and de Vries. They presented the differential equation

LA (1.1
which describes the propagation of a shallow water wave. The dispersion term 8°u/dx> causes
the wave to be scattered to many waves that have different phase velocities. The nonlinear
term u Ou/dx varies the velocity of the wave according to the amplitude of the wave, then the
wave stands erect and soon collapses. From those reasons, it was believed that there did not exist
stable solitary wave for nonlinear evolution equations, until Korteweg and de Vries succeeded to
derive the equation that had the exact solution of solitary wave. From the balance of dispersion
and nonlinearity, the solution was obtained. The equation they presented is nowadays called the
KdV equation.

Although the KdV equation was discovered at early year, the next development of it had
not appeared until the research [89] by Zabusky and Kruskal in 1965. Using computers, they
simulated the KdV equation numerically. They set the initial condition as the superposition
of two pulses, both of which were exact solutions of solitary wave of the KdV equation. They
computed a time evolution of the waves with periodic boundary condition. Two pulses moved to
same direction by different velocities, because they had different amplitudes. The higher pulse
traveled faster than the lower one. Zabusky and Kruskal observed the behaviors of interactions
of pulses. From the results of the experiment, they discovered that each pulse preserved its shape
and its velocity after the interactions. Moreover they discovered that positions of pulses were
shifted at the interactions. That phenomenon is called a phase shift. Solitary waves behaved
like particles. Then they named such solitary wave as the ‘soliton’ (a suffix ‘-on’ stands for
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a particle). Their numerical experiments found a new phenomenon for nonlinear evolution
equations. This discovery was also important as an example of contributions of computers to
developments of mathematics.

Next epoch-making discovery was the inverse scattering transform (IST) [23], which was
presented by Gardner, Greene, Kruskal, and Miura in 1967. By the IST, we transform a given
evolution equation to a certain linear integral equation. Then we can solve initial value problem
in principle. Another method for solving soliton equation was developed by Hirota in 1970s
(cf. [29]-[38], [43], [45]). It is called Hirota’s direct method. By the direct method, we can
solve soliton equation directly not via the IST. The direct method firstly transform a given
equation to so-called Hirota’s bilinear form. Then we exactly obtain exact N-soliton solution by
calculating a perturbation of the bilinear form. That solution is also expressed as a determinant.
Such determinantal solution is called the T-function solution. And the bilinear form is reduced
to a certain identity of determinants.

The invention of the direct method also brought to us the techniques to discretize soliton
equations (cf. [39]-[42], [44]). Preserving the structure of the T-function, we do discretize the
evolution equation, the independent variable transformation, the bilinear form, and the solu-
tion, simultaneously. Such discretization is sometimes called an integrable discretization. For
example, the discrete KdV equation [39] is given by
iy o L (1.2)

n n+1 13 !
un+l Uy

u

Many discrete soliton equations are now presented.

In early 1980s, Sato discovered that the r-function of the Kadomtsev-Petviashvili (KP)
equation is closely related to algebraic identities such as determinant identities. Moreover, he
found that the totality of solutions for the KP equation and its higher order equations constitute

an infinite dimensional Grassmann manifold.

2. Integrability conditions

The notion of integrability is rigidly defined for Hamilton systems. If a Hamilton system
of N degree of freedom has N independent and mutually involutive integrals, then the system
of ordinary differential equations (ODEs) is integrable in the sense in which the system can
be linearized in terms of successive canonical transformations. This is the main result in the
Liouville-Arnold theoi'y. For partial differential equations (PDEs), there is no rigid definition
determined yet. However there are candidates for integrability conditions of those systems.
From studies on soliton equations, the following properties are now accepted as definitions of
integrability for PDEs.



(1) Solvability by IST.

(2) Existence of N-soliton solution.

(3) Existence of infinite number of conserved quantities or symmetries.

(4) Existence of Lax pair [53].

(5) Existence of bilinear form.

Generally it is not easy to obtain explicit solutions and conserved quantities for a given
nonlinear equation. So we want to detect whether an equation is integrable or not beforehand.
Thus the following integrability criteria have been proposed:

(a) The Painlevé test for ODE.

(b) The Weiss-Tabor-Carnevale (WTC) method for PDE.
(c) The singularity confinement test for discrete equation.
(d) The algebraic entropy test for discrete equation.

Those criteria are also used for deciding the values of parameters of an equation that has a
possibility of integrability. We shall briefly introduce them.

We first consider ODE. The singularities of a linear ODE all depend on coefficients of the
equation. However the singularities of a nonlinear equation often depend on initial values. We
here consider a simple example

Q+y2=0. (1.3)
dx

The general solution of this equation is given by

1
x=C’
The singularity of y(x) occurs at x = C. Since the constant C is determined by C = —1/y(0), the

y(x) = (1.4)

singular point is moved according to the initial value. Such singular point is called a movable
singular point. If any movable singular point of an equation is not critical point, namely all
movable singular points are poles, then it is called that the equation has the Painlevé property.
The Painlevé property is used for a criterion of integrability of ODE. We shall briefly review
the history of applications of the Painlevé property.

In 1889, Kowalevskya presented a new integrable case of the rigid body about fixed point.
The equation of motion of the rigid body is sixth order ODE with six parameters. People at that
time knew that only two cases of the equations are integrable when the parameters are special-
ized as some values. Those equations are called Euler’s top and Lagrange’s top respectively. In
order to solve the equation, Kowalevskya restricted the solution to no movable singular point
except for movable poles. Under that condition, she specified the parameters and succeeded to
integrate the equation. The equation she presented is now called Kowalevskya’s top.
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In 1900s, Painlevé and co-workers presented so-called the Painlevé equations. They inves-
tigated nonautonomous second order ODEs, and enumerated all equations that had no movable
critical point. They classified the equations and showed that the equations are essentially re-
duced to six types of new equations and known ones. Solutions of those six equations are called
the Painlevé transcendents.

We here show how to check the Painlevé property of a given ODE. Let a movable singularity
of y(x) occur at x = C. Then we expand y(x) around the point x = C by the Laurent series

y(x) = x=CF ) y;j(x=C)'. (1.5)

Jj=0
We first check whether the singularity is a pole. It needs that the leading order a is a finite
negative integer. If the leading order was a rational integer or an infinite integer, then the
singularity became a branch point or an essential singularity. Next we check that the Laurent
coefficients y; have enough ambiguity. It needs that the number of arbitrary constants of y; and
the initial constant C is the same as the time of differentiations of the equation. If @ and y;
satisfy those conditions and the expansion has no inconsistency, then it is said that the equation
passes the Painlevé test.

We next consider PDE case. A conjecture about integrability for PDE was proposed by
Ablowitz, Ramani, and Segur [1, 2, 3]. They stated that:

Every nonlinear ODE obtained by an exact reduction of a nonlinear PDE that is
solvable by IST has the Painlevé property.

Many soliton solutions are known to have this property. The KdV equation is actually reduced
to an equation of elliptic function by a reduction of traveling wave solution. The modified KdV
equation is reduced to the Painlevé equation of type II by a reduction using similarity solution.

However, it is impossible to check the Painlevé property of all ODEs obtained by all re-
duction of a given PDE. Thus Weiss, Tabor, and Carnevale proposed a method to check the
Painlevé property of PDE directly not via reductions. This method is called the WI'C method
[84]. We briefly show the procedure of the WTC method. Let singularities of solution u(x, )
for a nonlinear PDE occur on a manifold ¢(x, ) = 0. We assume that the function ¢(x, ) is an
arbitrary function, and that the solution is expressed as a formal Laurent series

[~

w6 1) = ¢(5,0% D u(6, 0,1y (1.6)

J=0
We check that the leading order a is a finite negative integer, and that the number of arbitrary
functions of u; and ¢ is the same as the order of the differential equation. If a, u; and ¢ satisfy
those conditions and the expansion has no inconsistency, then it is said that the PDE has the
4



Painlevé property. If it is necessary to restrict #; and ¢ to some conditions, then it is said that
the equation has the conditional Painlevé property. An evolution equation that has a conditional
Painlevé property is considered as a near-integrable system. In this thesis, we consider stability
of such an equation.

Next we consider discrete equation. A criterion for discrete systems was first proposed by
Grammaticos, Ramani, and Papageorgiou [25]. Their criterion is based on the property of the
singularity confinement (SC). The SC property means that:

The singularities of a discrete system are movable, i.e., they depend on initial
conditions. And the memory of the initial conditions survives past the singularity
by a few steps.

The property of the SC is accepted as a discrete version of the Painlevé property. The discrete
Painlevé equations and many discrete soliton equation pass the SC test.

The SC test has been a useful criterion. However, Hietarinta and Viallet presented an equa-
tion that passes the SC test but has numerically chaotic property [28]. Then they proposed a
more sensitive criterion. Their criterion is based on the algebraic entropy that is defined by the
logarithmic average of a growth of degrees of iterations. The algebraic entropy test and the SC
test are similar to each.

The SC type criteria are effective in reversible discrete systems such as soliton equations.
However they are ineffective in irreversible discrete systems. For example, the arithmetic-

harmonic mean algorithm [62],

_a,+t b, 2a,b,
Ap+1 = s bp1 = s
2 a, + b,

1.7

has the explicit solution, however does not pass the SC test. We consider in the thesis integra-
bility of such equations.

3. Integrable systems and numerical algorithms

The soliton theory has been developed in mathematics, physics and engineering. The op-
tical soliton communication {26] is a famous example of application of the soliton theory to
communication engineering. There are also applications to mathematical engineering. A close
relationship between soliton equations and numerical algorithms has been pointed out. We
enumerate those numerical algorithms and related integrable systems as follows.

e Matrix eigenvalue algorithms
— 1-step of the QR algorithm is equivalent to time 1 evolution of the ordinary Toda
equation [75] (see [73]).



— The LR algorithm is equivalent to the discrete Toda equation [40] (see [46]).
— The power method with the optimal shift is derived from an integrable discretiza-
tion of the Rayleigh quotient gradient system (see [60]).
o Convergence acceleration algorithms
— The recurrence relation of the g-algorithm [85] (cf. the Shanks transform [70]) is
equivalent to the discrete potential KdV equation (see [68]).
— The p-algorithm [86] is equivalent to the discrete cylindrical KdV equation (see
[68]).
— The n-algorithm is equivalent to the discrete KdV equation (see [56]).
— The n-th term of the E-algorithm is equivalent to the solution of the discrete hun-
gry Lotka-Volterra equation (see [76]).
e Continued fraction algorithms (Padé approximations)
— The recurrence relation of the qd algorithm for calculating continued fraction is
equivalent to the discrete Toda equation.
— The ordinary Toda equation gives a method for calculating Laplace transforms via
the continued fraction (see [61]).
— A new Padé€ approximation algorithm is formulated by using the discrete Schur
flow (see [55]).
e Decoding algorithms
— A BCH-Goppa decoding algorithm is designed by the Toda equation over finite
fields (see [59]).
e Iteration methods having higher order convergence rate
— The recurrence relation of the arithmetic-geometric mean algorithm has the solu-
tion of theta function (see [18]).
— The recurrence relation of the arithmetic-harmonic mean algorithm has the solu-
tion of hyperbolic function (see [62]).

From these results, one may conjecture that a good numerical algorithm is regarded as
an integrable dynamical system. Indeed, eigenvalue algorithms and acceleration algorithms,
which are essentially linear convergent algorithms, pass the SC test of integrability criterion
(cf. {68]). Moreover, they are proved to be equivalent to discrete soliton equations via Hirota’s
bilinear forms. However, some algorithms having higher order convergence rate do not pass
this integrability criterion, as we mentioned in the previous section. It needs more discussions
about integrability for such equations. We consider integrability of algorithms in the thesis.
Furthermore, we develop numerical algorithms using the techniques in the soliton theory.
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4. Outline of the thesis

The thesis is organized as follows.

In Chapter 2, we consider a generalized derivative nonlinear Schrédinger (GDNLS) equa-
tion. The equation is derived by adding two dispersion terms to the nonlinear Schrédinger
(NLS) equation [51, 26], which describes a propagation of pulses in optical fibers. The GDNLS
equation has two parameters. We first construct a traveling wave solution for arbitrary values
of parameters. We next investigate integrability of the GDNLS equation by the WTC method
of the Painlevé test. We show that the equation has the Painlevé property and a conditional
Painlevé property for some conditions of parameters. By numerical experiments, we examine
stability of the traveling wave solutions in interactions.

In Chapter 3, we consider an extension of the Steffensen method [72]. The Steffensen
method is an iteration method for finding a root of nonlinear equations. Its iteration function is
constructed without any derivative function, and it has the second order convergence rate. The
point to devise our extended method is that the iteration function is defined by using the k-th
Shanks transform which is a sequence convergence acceleration algorithm. The convergence
rate is shown to be of order £ + 1. The use of the g-algorithm avoids the direct calculation of
Hankel determinants, which appear in the Shanks transform, and then diminishes the compu-
tational complexity. For a special case of the Kepler equation, it is shown that the numbers of
mappings are actually decreased by the use of the extended Steffensen iteration.

In Chapter 4, we give new determinantal solutions for irreversible discrete equations. The
equations considered are solvable chaotic systems and the discrete systems which are derived
from iteration methods having higher order convergence rates. We deal with the hierarchy of the
Newton type iterations (the Newton method and Nourein method [64]), that of the Steffensen
type iterations (the Steffensen method and the extended Steffensen method in Chapter 3), and
that of the Ulam-von Neumann system [77]. We obtain determinantal solutions for those sys-
tems including solvable chaotic systems in terms of addition formulas derived from some linear
systems.

In Chapter 5, we finally state some remarks and further problems.



CHAPTER 2

Solution and Integrability of a Generalized Derivative Nonlinear

Shrodinger Equation

1. Introduction

In this chapter, we consider the following equation,
1
iU,+§Uxx+|U|2U+ia|U|2Ux+iﬁU2U;=0, 2.1)

where U = U(x,t) is a complex variable and * denotes a complex conjugate. Moreover, a
and B are real parameters. Eq. (2.1) is reduced to the well-known nonlinear Schrodinger (NLS)
equation

1
iU,+§Un+|U|2U=O (2.2)

fora = B = 0. Moreover, Eq. (2.1) yields two types of derivative nonlinear Schridinger
equations which are known to be integrable, namely the case of a : = 1 : 0 [58]

1
iU,+-2- U, +|UPU+ilUPU, =0, (2.3)

andthecaseof ¢ : 8 =2:1 [83]
1
iU,+EUm+|U|2U+2i|U|2Ux+iU2U; =0. (2.4)

Hereafter we call Eq. (2.1) a generalized derivative nonlinear Schrédinger (GDNLS) equation.
We note that the GDNLS equation (2.1) can be regarded as a special case of the higher order
nonlinear Schrédinger equation proposed by Kodama and Hasegawa [51]

1
iUz+5Uxx+IU|2U+ia|U|2Ux+i,3U2U;+iyUm =0 (2.5)

which describes the pulses in optical fibers.

It is remarked that the term |U|>U can be eliminated by a gauge transformation [49]. Egs. (2.3)
and (2.4) without this term are known as the Chen-Lee-Liu (CLL) equation [15] and the Kaup-
Newell (KN) equation [50], respectively. The CLL equation was discussed by using the bilinear
formalism by Nakamura and Chen [58]. Hirota [47] bilinearized the KN equation and showed

8



that the CLL equation and the KN equation have the same bilinear forms. A class of solutions
for the CLL, KN equations and their integrable generalization by Kundu [52]

iU, + -;- Usr + 2y (UPU, + 2i(y = DUUL + (y - Dy = DIUIPU = 0, (2.6)
where 7 1s a real parameter, has been constructed explicitly through the bilinear formalism by
Kakei et al. [49].

We first construct a traveling wave solution of the GDNLS equation (2.1) in Section 2. Moti-
vated by a concrete form of the solution, we investigate the integrability of the GDNLS equation
by using the Painlevé test in Section 3. Finally we examine a behavior of the traveling wave

solution numerically in Section 4. In Section 5, we mention several remarks of this chapter.

2. Traveling wave solution

In this section, we construct a traveling wave solution for the GDNLS equation. Here we
remark that the values of parameters a, 8 in Eq. (2.1) are taken to be arbitrary by the scale
change except for the ratio B/, and hence 8/ can be regarded as a characteristic parameter of
the equation.

Eg. (2.1) is invariant under the following transformation

U(x,H) = —=UX, T)e V&-3D 2.7)

1
vk
where

x=k(X-VT), t=KkT, k=1-Va+VpB (2.8)

and V is an arbitrary constant. Taking this invariance into account, we first construct a stationary
solution. We put

U(x, 1) := r(x)exp(16(x)) expliw?), 2.9

where r(x) and 8(x) are real functions in x, and w is a real constant. Substituting (2.9) into
Eq. (2.1), we get

Fee = 201 =27 + 12 + 2(a - B)r6, (2.10)

from the real part and

0
0, = -2 r"r - 2a +B)rr, .11

9



from the imaginary part, respectively. The following ansatz is crucial for our construction of

solution
6, =«xr, (2.12)

where « 1s a constant. We obtain from Eq. (2.11)

Qk+a+PB)rr,=0, (2.13)
from which we have
(=228 (2.14)
2
Then Eq. (2.10) becomes
1
rxx=2wr—2r3—z(a +B)Ba~38)r. (2.15)
Integrating Eq. (2.15), we obtain
bl +2V2wx
2= i (2.16)

1+2e22V%0x 4 (1 + 2o(a + B)(Bar — 56)) ex4V2ox
Moreover, we get from Eqgs. (2.12), (2.14) and (2.16)

e ?_f_)m_] 1+(1 + 2w(a + BBa - 5p)) e*? V2w , o1
\ 3a- 58 J1+ (e +pBa -~ 5)

where the following conditions should be satisfied that

w=>0, 1+ —i—w(a +B)(B3a—-58)>0 (2.18)

for the reality of r and 6. Substituting Egs. (2.16) and (2.17) into Eq. (2.9), we have the station-
ary wave solution. Then, applying the transformation (2.7)—(2.8), we obtain the traveling wave
solution. The result is expressed as

N+l

Ux,1) = e_f:g;. (Z_Z:g::) - (2.19)
Here we define function ¢(x, t) as
¢=px+ %ipzt +¢9. (2.20)
And we define parameters p, Q, P, Q, and N as
p=(1-Va+VBQ+iV, (2.21)
Q=+Vw, (2.22)

10



P=(1-Va+Vp) (1 +Q \/—%(a +B)3a - 5/3)] : (2.23)

Q=(1-Va+ Vﬂ)(] -Q —%(a' +,B)(3a'—5,3)) ,

_ /3(a+,3)
N= 3a-58

and ¢© and V are arbitrary constants. The condition (2.18) is also necessary here. This solution
is characterized by the parameters w and V for fixed « and 8. The shape of the solution varies

(2.24)

(2.25)

by the value of
2
D=PQ=(1-Va+VB)? {] + é—w(af + B)(Ba - Sﬁ)} (2.26)
In fact, |U| is given by
(p+ p)’et?
U= \/1 +2e#t4" 4 De2ete) 2.27)

If D is sufficiently large, the solution has the soliton-like shape. For D ~ 0, it becomes

1.5 v : :

Ul

0.0 - N
-20.0 -10.0 0.0 10.0 20.0
X
Figure 2.1. Shape of traveling wave solution fora = 1, w = 1/2and V = 1/2.

Solid line: B = 0, D = 0.5. Dotted line: 8 = 0.91355, D = 0.00000976. Dashed

line: B = 0.9135528--- = (-1 + V31)/5,D = 0.
Il



trapezoidal shape and for D — 0, it has the kink-like shape as illustrated in Figure 2.1. Hence
the traveling wave solution (2.19) may behave as a solitary wave.

Here we remark that if we take the limit @, 8 — 0, this solution is reduced to the 1-soliton
solution of the NLS equation. Similarly, in the cases of 8/a = 0 and B/« = 1/2, it gives the
1-soliton solution of Egs. (2.3) and (2.4), respectively.

It should be emphasized that if N, which depends only on the ratio of @ and 3, is an odd
integer, the traveling wave solution (2.19) is rational in exponential functions which is the com-
mon feature of soliton solutions. Thus it might be expected that in such cases, solitary waves of
the GDNLS equation has good properties like that of integrable cases. The ratio of @ and 8 in

such cases are given by

B 3mim+1)

;_W’ m=0,1,2,.... (2.28)

The cases m = 0 and m = 1 correspond to Egs. (2.3) and (2.4), respectively, and they are known
to be integrable as mentioned in the introduction.

Moreover, it should be noted that the 1-soliton solution for Eq. (2.6) obtained by Kakei et
al. [49] has a quite similar form to Eq. (2.19). Indeed, we can check that 1-soliton solution of
equation (2.6) for ¥ = 0,1 equivalent to (2.19) for N = 1,3, respectively, and not for other
cases.

From the observation above, it may be natural to ask whether the cases of m > 1 in Eq. (2.28)
are integrable or not. As for the integrability in a strict sense, the answer is no. In fact, Clarkson

and Cosgrove [17] investigated the Painlevé property to the following equation,
iU, + U +iQun u, +iButu’ +ywu? + 6utu =0, (2.29)

where ¢, B, v, and & are real parameters, and shown that it is integrable only the case when it
is equivalent to Eq. (2.6). However, we may expect some information from integrability test
which distinguish the cases of Eq. (2.28) from other cases. We consider the integrability of the
GDNLS equation (2.1) in the next section.

3. Painlevé test

In this section, we investigate the integrability of the GDNLS equation by using so-called
the Painlevé test proposed by Weiss et al. [84], and show that the GDNLS equation possesses
“conditional Painlevé property” for the cases of Eq. (2.28).

12



Following to the procedure of the test, we regard that ¥ = U and v = U* are independent,
and consider the GDNLS equation as a coupled system

NS U o

1u,+2uxx+uv+1cxuuxv+1ﬁuvx—0, (2.30)
1 ) .

-iv,+§vxx+v2u—1a/vvxu—-1ﬁv2ux=O. (2.31)

We assume the formal Laurent expansion around the zero points of some analytic function
¢(x, 1) for the solution of Egs. (2.30) and (2.31)

u=¢" > ¢, v=¢" > v (2.32)
J=0 =0
In this method, if

(1) there is no movable critical points, namely, the leading orders a and b are finite integers,
(2) the expansion (2.32) has sufficient number of arbitrary functions u; and v,
(3) there is no incompatibilities in the expansion,

then it is regarded that the equation passes the Painlevé test, or it is said that the equation pos-
sesses the Painlevé property. In such case, it is usually believed that the equation is integrable.
We show the concrete analysis in the following.

3.1. Leading order analysis. To get the leading power a and b, we substitute u# ~ up ¢*
and v ~ vg ¢? into Egs. (2.30) and (2.31). We obtain the relation

a+b=-1, (2.33)

to adjust the leading order, and find

1 /3(a/+,3)
a—2[]i 3a-5ﬂ)’ (2.34)

. 3
Ugly = *1 @, \/(a " ﬁ)(3a — Sﬁ) . (235)

Since a and b should be integers, we get the condition

B _ 3mim+1)

__omm+1) - 2.36
@ Smm+D+2’ m=0,12, (2.36)

which is exactly the same as the condition (2.28).
13



3.2. Resonance analysis. The degree jis called resonance when u; or v; becomes an arbi-

trary function. The recurrence relation for u; and v; is given by
A(ﬁ A(D ) F.
[3}» H (T j=01,2.3,.... @37)
Az An)\Y; G;j

Here we define elements AY, AY AY and A(ZQ as

11247122 7321
A(,J? = %(j +a—1)(j+ a)d’ +i{a(j + 2a) + 28bYugvedy » (2.38)
AY = i{ea + B(j + b)ulp. (2.39)
AY) = ~ifab + B(j + a)lide, (2.40)
AY = %( j+ b =1+ b)¢* —i{a(j + 2b) + 2Baluveds - (2.41)

And we define F; and G; as some polynomials of u;, v; and ¢ such that
Fj=Fj(u(),...,uj_],vo,...,vj_|,¢), (242)

Gj=Gj(Ll(),...,Mj-],Uo,...,Uj_|,¢). (243)

Moreover we define u; = v; = O for j < 0.
We shall obtain the resonances. Coefficient u; or v; can be an arbitrary function when the

condition

det[AEj': g)=1¢i(j+1>j(j—2)<j—3)=o (2.44)
AZI AZZ 4

1s satisfied. Hence we find that the resonances are

j = _]70’ 233 . (245)

3.3. Compatibility condition. If the degree j is a resonance, the recurrence relation (2.37)
should satisfy the compatibility condition

AV AP =AD  AD = F;: G, (2.46)

or
F;=0, G;=0. (2.47)
We shall check the compatibility for each resonance. Resonance j = —1 corresponds to the
arbitrariness of ¢. The compatibility condition is not necessary for j = —1. When j = 0, we

14



have Fy = Gy = 0. When j = 2, we next obtain the relation

A_(l?:ﬁ:ﬁ:_,_ 2(2m + Naugy® (2.48)
A A(222) G, ~ (5m*+5m+2)ig, '

Thus we have checked the compatibility for the resonances j = 0,2. The resonance j = 0
corresponds to the arbitrariness of up or vy, and j = 2 to that of u, or v,. For j = 3, if the

condition
vo(m+ 1)(m - 1) 3 2 2 3
¢§(2m + ]) (2¢FX¢I¢X ¢l‘t¢x ¢t ¢xx) - 0 ’ (249)
or
up(m + 2)m _ ) 3
#2m+ 1) (2412005 — Pud; — ¢76x:) =0, (2.50)

is satisfied, then it is shown that the expansion is compatible. Therefore, for m = 0 and 1, the
compatibility conditions are automatically satisfied. However, for m = 2,3,4,.. ., the function
¢(x, t) should satisfy

261:5:x — Pud’: — Sl =0 (2.51)

to pass the test.

From this result, we may conclude that the GDNLS equation (2.1) possesses the Painlevé
property for the cases of m = 0 and 1 in Eq. (2.28) which are known to be integrable. Form > 1,
it does not pass the test in strict sense, but possesses “conditional Painlevé property” [87, 88].
For other cases, it does not pass the test.

It may be interesting to remark here that the condition (2.51) yields the dispersionless KdV

equation
fi=ff=0 (2.52)
by the dependent variable transformation
&
=—. 2.53
f . (2.53)

We also note that exactly the same condition has appeared in the analysis of some system
which describes the interaction of long and short water waves [87, 88]. In [87, 88], Yoshinaga
conjectured that the equation which passes the Painlevé test with the condition (2.51) has “finite-
time integrability”, since the solution of Eq. (2.52) loses analyticity in finite time as is well-
known, and thus the assumption of the Painlevé test breaks.

15



4. Numerical experiments

4.1. Purpose. From the result of the Painlevé test, the GDNLS equation is not integrable
in strict sense except for the cases m = 0 and 1 in Eq. (2.28). However, from the structure of
the traveling wave solution, one may expect that the solitary waves behave like solitons even if
the equation itself is not integrable. Motivated by this, we numerically solve the initial value
problem for the GDNLS equation to check the following points:

(1) Stability of solitary waves in interactions.

(2) Existence of phase shift.

(3) Quantity of ripple which is generated by interactions.

(4) Any phenomenon which implies “finite-time integrability.”

If (1) and (2) are observed, then it can be said that the solitary waves behave like solitons. We
investigate (3) from the following reason: Suppose we observe the interaction of two different
solitary waves. If the equation has a 2-soliton solution, it must approximate the initial state well
at some ¢ with some values of parameters. Then we may expect that the ripple which emerges
through the interaction is quite small. Conversely, if the ripple which is observed for some
values of & and S is small compared to other cases, then we may expect the existence of 2-soliton
solution, or at least, it may be worth in further analysis. Moreover, it might be interesting to
check whether the behavior of solutions differs or not by the cases that the GDNLS equation has
the Painlevé property, the conditional Painlevé property and the other cases. From theoretical
point of view, 8/a = 0.6 might be a critical point, since if the GDNLS equation possesses the
conditional Painlevé property, then 8/a should satisfy 0 < 8/a < 0.6 from Eq. (2.36).

4.2. Method of numerical experiments. We adopt the spectral method for space, and the
Runge-Kutta method for time integration. Range in space is from —50 to 50 and the number
of mesh is 2° = 512 points. Time interval is taken to be 0.01. We take superposition of two
different traveling wave solutions as the initial value and calculate their time evolution. These
two solitary waves are put with sufficient distance at ¢t = 0. Then we fix the value of @ as 1, and
examine the time evolution with different values of 8. The values of characteristic parameters
of the traveling wave solutions are given by w = 0.55 and V = 0.1 for one wave, w = 0.0075
and V = ~2.0 for another wave, respectively. Hereafter we call the former solitary wave pulse-1
and the latter pulse-2.

4.3. Results. Calculations have been performed until the solitary waves interact 10 times.

We have checked the conserved quantity o = f |UJ*dx during the calculation as a measure of



reliability. We see that o is kept with sufficient accuracy. In fact, fluctuation of o~ during the
calculation is at most Ac-/o ~ 1078, as shown in Table 2.1.

TasLe 2.1. Fluctuation of the conserved quantity Ao /o

t B=0 B =< =05625 B=0.38

42 0 0 1.6755916945128 x 1078
89  9.3196098838920 x 10710 1.9700283767298 x 10~° 1.9287796510011 x 107%
136 1.9166390124162 x 107  2.7629271109169 x 107 2.0984692295199 x 1078
230 3.9552707787706 x 107  4.2005398496527 x 10° 2.3408647116396 x 107%
466 8.8452799018246 x 107  7.6076397313715 x 107 2.7791032609452 x 10~%

Figures 2.2 and 2.3 shows the behavior of solitary waves for the integrable case 8 = 0, and
the case of 8 = 0.5625 = 9/16 (m = 1 in Eq. (2.28)), respectively. For small 3, the solitary
waves are stable in interaction. As 8 becomes larger, the change of the shape of solitary waves
becomes large, which is illustrated in Figure 2.4.

Changes of heights of peaks and velocities for solitary waves after 10 times interactions for
different 8 are shown in Figures 2.5 and 2.6, respectively.

Phase shifts in interaction are also observed for any 8 as shown in Figure 2.7. We note that
the amounts of phase shift are measured by average of 10 times interactions.

Figure 2.8 shows the quantity of ripple after 10 times interactions of solitary waves. Here,
it is measured by the ratio of integrated values of ripple to the conserved quantity 0. We see
that the ripple 1s quite small for the integrable cases (8 = 0, 0.5), as was expected. But it looks
that it does not differ by the cases that the equation has the conditional Painlevé property (filled
circles in Figure 2.8), and other cases (circles in Figure 2.8).

We have mentioned that 8 = 0.6 might be a critical point, but it looks that there is no drastic
change in behavior of solitary waves at 8 = 0.6.

From these results, we may conclude that solitary waves are stable and behave like solitons
at least for small 8. Difference of behavior between the cases that the GDNLS equation has
the conditional Painlevé property and the other cases was not observed in our calculations. In
other words, we may conclude that soliton-like behavior of the solitary waves is the common
property of the GDNLS equations regardless of the parameter 8/a, as far as it is small.

As for the “finite-time integrability,” we could not observe any such phenomenon that im-
plies “finite-time integrability,” e.g., break down of solitary waves in our numerical calculations.

17
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Ficure 2.2. Behavior of solitary waves fora =1, 8= 0.
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Ficure 2.6. Velocities of solitary waves after 10 times interactions. Circle:
pulse-1, triangle: pulse-2. Initial velocities are 0.1 and —2.0, respectively.

5. Concluding remarks

In this chapter, we have considered the GDNLS equation (2.1), and constructed a traveling
wave solution (2.19) which is valid for any values of parameters. Motivated by the explicit
form of the solution, we have applied the Painlevé test to the GDNLS equation, and shown that
it possesses the Painlevé property in strict sense only for the known integrable cases, and the
conditional Painlevé property for the cases of Eq. (2.36).

Numerical results imply that the traveling wave solution is stable in the interaction and
behaves like a soliton for small 8, regardless of the possession of the Painlevé property. Re-
markable difference in the behavior of solitary waves between integrable and non-integrable
cases was not observed, except that quantity of ripple generated by the interaction of solitary
waves was small for integrable cases, as was expected.

As for the behavior of solitary waves for larger B, we could observe the change of shapes of
solitary waves by the interaction. However, it looks that it is still insufficient to conclude that
the solitary waves are not stable. Further theoretical analysis on stability may be necessary.

22



-0.5 1

A AAAAAM%@M me

0.00 0.20 0.40 0.60

Ficure 2.7. Quantity of position shift (phase shift) per one interaction. Circle:

pulse-1, triangle: pulse-2.

In conclusion, it is expect that the soliton-like behavior of solitary waves for the GDNLS
equation may be a “robust” property. Such behavior may be observed regardless of the value of

parameter B8/, at least, as far as it is comparably small.
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CHAPTER 3

An Extension of the Steffensen Iteration and Its Computational

Complexity

1. Introduction

In this chapter, we consider iteration methods for finding a root of a single nonlinear equa-
tion f(x) = 0.

The Newton method is based on a first order approximation of the function f(x). The
sequence given by it generically converges locally and quadratically to a root @ of f(x). There
have been many attempts to accelerate the Newton method. For example, some methods are
designed based on a higher order approximation (cf. [20]), on a composition of the Newton
iteration [66], on a Padé approximation [64, 16], on a modification of f(x) in such a way that
the convergence rate is increased [22, 24], and so on.

The Steffensen method [72] is an iteration method which is applied to a nonlinear equation
of the form x = @(x). It also has the second order convergence rate, and its iteration function
®(x) has no derivative of ¢(x). The Steffensen method can be regarded as a discrete version
of the Newton method. There are so many extensions for the Newton method, however, a few
extension for the Steffensen method. The aim of this chapter is to develop a new iteration
method of the Steffensen type having a higher order convergence rate.

In Section 2, we consider a relationship of the Newton method and the Steffensen method.
In Section 3, we note that the Steffensen iteration function ®(x) is congruent with the Aitken
transform [5]. In Section 4, we introduce the k-th Shanks transform [70] which is a natural
extension of the Aitken transform. When & = 1, the Shanks transform is reduced to the Aitken
transform. In Section 5, we propose an extension of the Steffensen method in terms of the
k-th Shanks transform. In Section 6, it is proved that the extension has the (k + 1)-th order
convergence rate provided that ¢’(a) # 0,+1. When ¢(a) = O, the iterated sequence has the
(k + 2)2%!-th order convergence rate. In Section 7, some numerical examples are given which
demonstrate the efficacy of the extended Steffensen iteration. For a special case of the Kepler
equation, it is shown that the numbers of mappings are actually decreased by the extended

Steffensen iteration. In Section 8, we state the remarks of this chapter.



2. The Newton method and the Steffensen method

Let us consider the Newton iteration for the equation f(x) = 0. The Newton iteration is
given by
J(xn)
)’
where the initial approximation x; is sufficiently close to a root . The function f(x) should be
in C?-class on an interval I such that @ € I. If f’(a) # 0 and max |[N’(x)| < 1 on I, then the

Xne1 = N(xp) 1= Xp n=0,1,..., 3.D

sequence xop, X1, X2, . . . converges to « quadratically.

To introduce the Steffensen iteration [72], we consider the equation x = ¢(x) by setting

o(x) :=x+ f(x). (3.2)

We prepare the sequence {y;} generated by the simple iteration

Yis1 = 8yj), j=0,1,.... (3.3)

If the sequence {y;} converges to a number a, then it follows from a = ¢(a) that f(a) = 0. The
contraction principle guarantees the convergence provided that max |¢’(x)| < 1. Furthermore,
the convergence rate of the sequence {y;} is linear if ¢’(a) # 0. Let us call such ¢(x) the simple
iteration function.

The Steffensen iteration is an iteration method for finding a root of the nonlinear equation
of the form x = ¢(x). There is no derivative in the Steffensen iteration function. Let us define

the recurrence formula

2
(¢(~xn) - xn)

B(P(xn)) — 20(xn) + x4 ’

where ¢(x) is defined by (3.2). Here ®(x) is the iteration function of the Steffensen iteration

Xpr1 = DO(x,) :=x, — n=01,..., 34

which generates the sequence xo, X;, X2, .. .. If x, = @ as n — oo, then @ is a root of x = ¢(x).
Even if the sequence {y;} given by the simple iteration (3.3) diverges, the Steffensen iteration
(3.4) may converge to @ more faster than does linear order method provided that ¢(x) is in
C'-class, xo € I and ¢'(@) # 1. Especially, if ¢(x) is in C2-class, the rate is quadratic, or
equivalently, of the second order. The condition max |¢'(x)] < 1 is not necessary in this case
[66, pp. 241-246]. Furthermore, a global convergence theorem is given in [27, pp. 90-95]. See
for an abstract form of the Steffensen iteration [65]. An extension of the Steffensen iteration for
systems of nonlinear equations is proposed in [27, p. 116] and a local convergence theorem is
shown in [63].

The Steffensen iteration has its origin in a linear interpolation formula of f(x). Let us
briefly review this geometrical feature. A root @ of f(x) = O is the intersection point of the
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curve y = f(x) and the x-axis in xy-plain (see Figure 3.1). We consider the line through the two
points (ay, f(ap)) and (ay, f(a;)) on the curve. Here a, is defined by

a; := ¢(ao). 3.5)

The intersection point & of the line and the x-axis gives an approximation of «. It follows from
a; — ap = f(ap) that

2
] F(ao) (¢(@0) ~ ao)
g =g , 3.
GERT TG = fla) | 0T $@lao)) ~ 26(ao) + ao 36)
ay —qp

Thus this approximation formula gives rise to the Steffensen iteration function (3.4). Let us set
h := a; — ag. Taking the limit that the line approaches to the tangential line at (ao, f(ap)), i.e.,

a; — ag, we derive

- f(ao) _ flao)
a=ag Flao+ ) — fao) - a Fag) as h—0. 3.7
h

In this limit, & goes to the estimation of @ by the Newton method (3.1). Thus we can regard the
Steffensen iteration as a discrete version of the Newton method. This leads us to believe that an

acceleration of the Steffensen iteration is a meaningful problem.

Ficure 3.1. Graphical explanation of the Steffensen iteration
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3. The Steffensen method and the Aitken transform
Let us introduce the Aitken transform [5]. It is a sequence transform to accelerate the

convergence of a given sequence {y;}. The Aitken transform is given by

G =y — Y —y)°
T Y2y tyy

i=0,1,2,.... (3.8)

If the sequence {y;} converges to a finite limit y.., then the sequence {j;} converges to the same
limit y.. faster than {y;}. In general (cf. [10, pp. 1-2]), we consider some sequences {S ;}, {T},
and a sequence transform such that A : §; — T;. If the sequences {S ;} and {T;} converge to the
same limit ¢ and satisfy the condition

T, -«

lim sj =0, (3.9)
)00 J —a

then the sequence transform A is called sequence convergence accelerator.
The Steffensen iteration function ®(x,) is equivalent to the Aitken transform of the three
numbers x,, #(x,) and ¢(P(x,)). Namely, we have

- (1 — 90)?
OCr) = o = o— ——L2 e go=x., P =¢(x), =8B  (3.10)
Yy2—2y1+yo
for each n = 0,1,.... It should be noted that the sequence {j;} accelerated by the Aitken

transform is different from the sequence {x,} generated by the Steffensen iteration (3.4). We
can find that x,,; = Jo and x,4» # ¥, in general, even if x, = yo. In order to use the Aitken
acceleration, we must prepare the whole sequence {y;}. Moreover, if the convergence rate of
{y;} is linear, then the convergence rate of {#;} is so (cf. [6]). The Aitken acceleration only
guarantees that the sequence {j;} converges faster than {y;} does in general. This property is in
sharp contrast to the Steffensen iteration.

4. The Shanks transform and the -algorithm

The k-th Shanks transform [70] is a natural extension of the Aitken transform. It is defined
by aratio of Hankel determinants of 2k + 1 numbers yj, ..., Y2 by

AU)
e K i=0 3.11
el(yj)‘__'(-};, ]_ ,]’2’---- (' )
Bk
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Here we define the numerator Aiﬁ as a Hankel determinant of y;, ..., Y. by

k+1
Y Y - Yk
) WY k]
A;(L—ﬁ = yj.+l y,.+ . !/J+.+ , (3.12)
Yjrk Yjerar - Yjak

and the denominator BY as a Hankel determinant of A2y;, ..., A%y;.2-2 by

k

Azyj AZ!/ TSR Azy k=1
Bi-ﬂ - Azgm Azy:j+2 : Azl{j-rk , (3.13)
Aot DY - AWjner
where A is the forward difference operator such that
Ay; =y —Yj, N’y = Y2 = 2Yjn + Y- - G14

When k& = 1, the Shanks transform is reduced to the Aitken transformation (3.8). Computation
of determinants usually needs a plenty of multiplications and additions. In order to decrease
the amount of the computations and to avoid the cancellation in the calculation of the Hankel
determinants, we make use of the e-algorithm [85], [9, pp. 40-51]. The sequence {ex(y;)|j =
0,1,...} of the Shanks transform is determined directly by the recurrence relation

92 =0, g(()f)zyj, i=0,1,2,..., (3.15)
: 1
(D _ D . .
En=E Yo i=0,1,2,..., i=0,1,2,..., (3.16)
Si _Si
through
ex(y)) = &5, » j=01,.... (3.17)

The amount of computations (3.16) to get ex(y;) is only k(2k + 2n +1). 1t should be remarked
that the g-algorithm has a numerical szability.

5. An extension of the Steffensen iteration

The Shanks transform is originally a sequence convergence accelerator for a given sequence.
We apply the Shanks transform to define an iteration function, where the sequence {y;} 1s re-
placed by that of the simple iterations (3.3). Let xp be an initial approximation of a root & of a

29



nonlinear equation x = ¢(x). For a fixed natural number k, we introduce the following iteration

function
Xpat = Dpl(x,) = ‘;28:; n=012,.... (3.18)
Here we define Ay(x) and By(x) as
do(x) d1(x) - lx)
Ar) = fb:(x) sz(x) fbm(x) , (3.19)
&(x) Grn(x) -+ Pulx)
go(x)  ¢(x) - (%)
Bu(x) i= f52¢1(x) f52¢2(x) - f$2¢k(x) (3.20)
P (x) Ph(x) -+ P a(x)

The number x,,; becomes a new starting value for the next iteration. Here ¢ ;(x) and 5% i(x) are

compositions of the simple iteration function ¢(x) and their linear combinations defined by

J

e e .
Go(X) i=x,  ¢;(x) 1= PY(--$(x)---)), =1,2,3,...,2k, (3.21)
626;(0) 1= j12(2) = 20111 (%) + ¢;(), j=0,1,...,2k -2, (3.22)
respectively. If a denominator in the formula (3.18) happens to be zero, we set x,.1 = X,.

Especially, ®@,(x) 1s just the Steffensen iteration function (3.4). Let us call (3.18) the extended

Steffensen iteration.

6. Convergence rate of the extended Steffensen iteration

We now consider the convergence rate of the extended Steffensen iteration (3.18). The main

results in this chapter are as follows.

THEOREM 3.1. If ¢(x) is in C**'-class and ¢'(a) # 0, £1, then the extended Steffensen iter-
ation has the (k + 1)-th order convergence rate. Namely, |x,.1 — | < Clx, — af**! for some

constant C.

Proof. 'Without loss of generality we can assume a = 0 where « is a root of x = ¢(x). We
shall compute the leading term of the Taylor expansion of the iteration function ®;(x) around
x=0.

30



Let us perform the following operations to the determinants A;(x), Br(x). Setting

d"¢(0
Cp = al ), n=12,..., (3.23)
dxn

we first subtract the i-th row multiplied by ¢; from the (i + 1)-th row for i = 1,2,.... On the

next step, we subtract the i-th row multiplied by c;? from the (i + 1)-th row for i = 2,3,.... We
do the similar operations recursively. Then we can express the Hankel] determinants (3.19) and
(3.20) as

ao(x) a(x) Tt a i (x)
a; (x a(x <o A (x
A) = 2,1.( ) 2,:7:( ) . 2,I\+.l( ) ’ (3.24)
A1 k(X)) Qe p+1(X) 0 Grrr k()
bio(x) bii(x) -+ bip(x)
byi(x) bra(x) --- bailx
Bu(x) = 2,1.( ) 2,2.( ) . z,k.( ) (3.25)
bri1(x) bix(x) -+ bru—2(x)
Here we define a,, j(x) and by, j(x) as
ay, j(x) = ¢;(x), j=0,1,...,2k, (3.26)
am+l,j(-x) = am,j(x)—(”mam’j_](x), m= ]929-'-7k7 j=m9m+ ]’-0',2k, (3-27)
by j(x) := 6% (%), i=0,1,...,2k-2, (3.28)

Bt j(X) 1= b j(X) = 1" i (X), m=1,2,..., k=1, j=mm+1,...,2k=2. (3.29)

First we consider the Steffensen case where k = 1. By the Taylor expansion of A;(x) we see

1
aio(x) = x, a(x) =c x+ 36 P T (3.30)
1 1
a;(x) = -2-czx2 +---, az7(x) = Eclzcz XA, (3.31)

Obviously, we have
1
Ai(®) = seiler - Dea X ++-, (3.32)
1
Bl(x)=(C|—])2x+§(c|2+c| —Der X+ (3.33)

It follows from the condition ¢; # 0,1 that ®,(x) = O(x?) as x — 0. This proves the quadratic
convergence.
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Next we show that ®;(x) = O(x**") for any natural number k. The functions a,, ;(x) take the

form

m-1
a0 =0+ Y BPe(r),  FP=(-1) D artETTL (334
i=1

O<py<-<pi<m
This can be checked by using the recurrence relation (3.27). We consider the n-th order deriva-
tive of the composition ¢;(x) = ¢;-1(¢(x)), which is expressed as

d"¢;(x) Z"; d’¢j-1(9) ZC(' d7¢(x)  d¥¢(x)
’ ’ r}

3.35
ax" de¢” dx? dxar (3.35)

q1+-+gr=n
q12+29r>0

r=1
forn=1,2,.... Here C(qi,...,q,) are unique constants. We define the constants C(g;, ¢y, . . .)
forg; €{0,1,2,...},i=1,2,.., as follows:
(1) C(ql, . aq_}’O) = C(QI,- --,Qj),
i) C(..,qi...,.95..)=0ifgi < g,
@) C(1) =1,
C(qa,...,qr)=ZKC(q|,-..,q,~._;,qi-l,q,-+.,...,qr)ifqr>0,

i=1
where « is the number of the non-negative integers having the same values as ¢; — 1 in the set

{q1,...,9i-1,9i — 1, gis15 . . ., q,}, namely,
k=#n=qg-1l|nelq,...,q1,9 - I,Qi+1,~-~,4r}}- (3.36)
By use of (3.35) and C(1,..., 1) = 1, we write ¢, (0) := d"¢,(0)/dx" as

$70) = c; ¢<"’,(0)+Zy">¢(”,(0) Y= Y C@gr-8)cqC - (B3T)

gy +-+qr=n
q12-2¢r>0

Using (3.34) and (3.37), we see for a(”) (O) = d"a,, j(0)/dx" as follows:

m-1
a,(0) = ¢ (0) + ZBE”’>¢§-’?,.(0)

m=1
"¢, (0) + Z YOS, @ + > B ( "6 (©0) + Z y<">¢‘}’_>,._,(0))
i=1

o/ (¢§-’1’1 ©0) + Zﬂ?”’%ﬁﬁ”),_,-(mj + Z 7 (¢<’). © + Zﬁ(”%i”, ,<0>]

r=1

=a” fZ)J_.(O)+27‘") ni(0). (3.38)
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We insert (3.38) into the n-th order derivative of (3.27) to derive

a?, (0= (" - ¢ 5,7),_,(0>+Z D _(0). (3.39)

Assume that a,, j(x) = O(x™), namely,

an© =0, for n<m, (3.40)
a0 #0, for n=m. (3.41)

The right hand side of (3.39) is equal to 0 for n < m. While a_;X(0) is not equal to 0 when
¢i # 0, 1. Then it follows that

i, (0) = for n<m+1, (3.42)
am (O #0, for n=m+1. (3.43)

This implies that a4 ;j(x) = O(x™"). By induction we find that a,, ;(x) = O(x™) for any natural

number m. Therefore, the Taylor expansion of a,, ;(x) is given by
O j(X) = @i (0) X7 + - - - . (3.44)
On the other hand, we can easily find that
bmj = Amjr2—20mjs1 + Amj m=12...k, j=m-1,m,...,2k-2 (3.45)

from the definition (3.29). Then we obtain

b(0) =0, for n<m, (3.46)
bI(0) = (" = 1’al(0) £ 0, for n=m (3.47)

from (3.38), (3.44), (3.45) and the condition ¢; # +=1. Hence we have
b (%) = BI(O) X7 + - - (3.48)

for any natural number m.
Finally we consider the determinants A;(x) and B;(x). Let S, be the set of permutations
o= ( 0 1w nl ) of n-items. By virtue of (3.24), (3.25), (3.44) and (3.48), we see

ip i1 ipm
Ak(x) = Z SgN O - Ay ;,A2,1+i, ** * Ck+1,k+ip — Lx(k+‘)(k+2)/2 + .., (349)
€Sk
Bi(x) = Z sgn o - by b4y brkor4i, = M EDZ (3.50)
TS,
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Here we define constant L as

ay© a0 a;(0)
(2) (2) (2)
a)(0) (0) Q)
I = 21( . oy 1( ’ (3.51)
i‘:l‘z(m ai.‘;*,',zﬂ ©) 2‘;';(0)
and M as
oy (M
b0 b)) (0) by, ,(0)
b3 (0 b(z) 0 b0
u=| O PO (O 552
bi.“ ,(0) b‘“(0) b, 2(0)
This means that ®;(x) = O(x**'). The extended Steffensen iteration defined by the k-th Shanks

transform has the (k + 1)-th order convergence rate.

O

In Theorem 3.1, we use the sequence generated by the simple iteration (3.3) with the it-
eration function (3.2). In the remaining part of this section, we replace the iteration function
(3.2) by the Newton iteration function (3.1). To this end, let us set the function ¢(x) in (3.18) as
#(x) := N(x) = x — f(x)/f'(x). If f(x)isin C?-class on the interval I and satisfy f’(@) # 0 and
f"(@) # 0, then the function ¢(x) satisfies ¢’(a) = 0 and ¢ (a) # 0 and the Newton iteration
{yjs1 = é(y;)} locally converges to o quadratically. We have

THEOREM 3.2. If ¢(x) is in C*+22" 0, ¢”(a@) # O, then the extended

Steffensen iteration has the (k + 2)2¥'-th order convergence rate. Namely, |x,,, — a| < C|x, —
a|<k+2)2"-‘

-class and ¢'(@) =

for some constant C.

Proof. 'We restrict ourselves to the case where @ = 0, for simplicity. Along the line which
is similar to Theorem 3.1, we shall compute the Taylor coefficients ¢§.”)(0) of ¢;(x). From (3.37)
and the conditions ¢; = 0, ¢; # 0, it 1s tumed out that

$0)=0, for n<2/-1, (3.53)
¢ 0 #0, for n=2’ (3.54)
Then we find ¢;(x) = O(x?’) and 6°¢;(x) = O(x?’). We consider the Hankel determinant
AR = ) sen o Gidindre, B, (3.55)
OES k41

Bres, = O(F0++2°%) which has the
h=k-2,...,

The leading term of A;(x) is given by the term ¢; @144, - -
minimal degree in x. The degree becomes minimal when iy = &k, i} = k—1,
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i, =0. It follows that A;(x) = O(x**"2"). Similarly, Bi(x) = O(x**"). Consequently, we see
®y(x) = O(**D27") which completes the proof of Theorem 3.2. |

In the book of Ostrowski [66, p. 252] a composition of the Newton iterations is formulated
which has third-order convergence. The iteration in Theorem 3.2 with £k = 1 provides third-
order convergence. The extended Steffensen iteration in this case is also a composition of the

Newton iterations, however, it is rather different from that in [66].

7. Numerical examples and computational complexity

In this section we present explicit examples to demonstrate how the extended Steffensen
iteration acts. The computational complexity is also discussed.

All results of the numerical experiments are computed on the Intel Pentium Pro Processor
200 MHz. In Example 1 and 2, we examine the new iteration methods by use of the Mathe-
matica version 3 (Wolfram Research, Inc.). In Example 3, we program them by the GNU C
compiler version 2.7.2.

Example 1. The nonlinear equation to be solved is
J(x) = exp(=x) —x =0, (3.56)
which has the unique solution @ = 0.56714329040978104129 - - -. In order to apply Theorem
3.1, we set the iteration function ¢(x) as
P(x) = exp(—x). 3.57

It should be noted that ¢’(@) # 0,+1 and ¢(x) satisfies the condition of Theorem 3.1. We
compare several iteration methods. They are the simple iteration (3.3), the Steffensen itera-
tion (3.4), and the extended Steffensen iteration (3.18) with k = 2,3,4. We choose the initial

approximation as xp = 0, and generate the sequence {x,} until the condition
|fOe)l < 1077, r = 1000 (3.58)

is satisfied. Then x,. gives an approximation of the solution a. We compute the sequences in
the multi precision arithmetic. In Figure 3.2, the quantity log,, | f(x,)| is illustrated to estimate

the error. In Table 3.1, we give the number n* of iterations and an estimation of the convergence

rate,
Xpr—] — Xpr
logg —_x‘ z—X-'
e ., (3.59)
log Xpr-3 = Xpr I
510
Xpr-3 = Xpe

by using four numbers x,._3, X,s-2, Xr-) and Xpe.
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It is shown that the iteration numbers »n” crucially depend on the iteration methods. On the
convergence rate in Table 3.1, the estimated values are very close to the theoretical values for

all iterations.

Example 2. Let us consider the same equation f(x) = exp(—x) —x = 0 as in Example 1.
We here replace the iteration function ¢(x) by the Newton iteration function

exp(—x) — x
exp(—=x) +1°

o(x)=x+ (3.60)

Obviously, ¢'(a) = 0, ¢”(a) # 0. Namely, ¢(x) holds the condition in Theorem 3.2. Set the
initial approximation as x, = 0. The sequences are computed in the multi precision arithmetic.
In Figure 3.3 and Table 3.2, the Newton method (3.1) and the extended Steffensen iteration
(3.18) with k = 1,2,3,4 are illustrated. The estimated convergence rates seem to be good
approximations of the theoretical rates.

TasLe 3.1. Number of iterations and convergence rate. (Example 1)

. - ) convergence rate
number n* of iterations - -
numerical | theoretical

simple iteration 4059 1.00" 1
Steffensen iteration 10 2.00 2
extended Steffensen iteration, k = 2 7 3.00 3
extended Steffensen iteration, k = 3 5 4.00 4
extended Steffensen iteration, k = 4 4 5.00 5

+ This value is obtained by x;,x;+1,%i+2 and x,» for i = 10, 11,...,4045. For i > 4045, the estimation of

the convergence rate is quite different from 1.00.

TaeLe 3.2. Number of iterations and convergence rate. (Example 2)

) ) convergence rate
number n* of iterations -
numerical | theoretical
Newton method 11 2.00 2
extended Steffensen iteration, k = 1 7 3.00 3
extended Steffensen iteration, k = 2 4 8.00 8
extended Steffensen iteration, k = 3 3 20.04 20
extended Steffensen iteration, k = 4 2 —3 48

i Since x,+_3 dose not exist, it is impossible to estimate the convergence rate.
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Figure 3.2. A comparison of log;,|f(x,)| of several iteration methods when
¢’ (@) # 0,+1. (Example 1) Solid line: simple iteration. Dashed line: Stef-
fensen iteration. Circles, squares and triangles denote the extended Steffensen
iteration for k = 2, 3, and 4, respectively.
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FiGure 3.3. A comparison of log,,|f(x,)| of several iteration methods when
@) =0, ¢"(@) # 0. (Example 2) Dashed line: Newton method. Pluses,
circles, squares and triangles denote the extended Steffensen iteration for k =

1,2, 3, and 4, respectively.
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Example 3. To discuss the computational complexity and the convergence property we
solve the Kepler equation

f(x) =x~1—esin(x)=0 (3.61)

for various / and e, by using the simple iteration, the Newton method, the Steffensen iteration
and the extended Steffensen iteration with k£ = 2. The Kepler equation appears in orbit determi-
nation in celestial mechanics and x, [ and e are the eccentric anomaly, the mean anomaly and the

TasLE 3.3. Number of iterations and total numbers of mappings. (Example 3)

number n” of iterations total numbers of mappings
average | maximal | /= 22 | average | maximal | /= &
e=0095 e =0.95
simple iteration 45.94 2903 33 45.94 2903 33
Newton method 10.18 886 30 20.36 1772 60
Steffensen iteration | 3.88 30 30 7.76 60 60
extended Steffensen | 3.87 632 7 15.48 2528 28
iteration, k = 2
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Figure 3.4. The parameters (/, ) for which the Newton iterations do not con-

verge. (Example 3)
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eccentricity, respectively. We solve the Kepler equation for x, where the remaining parameters
l and e are fixed such that 0 </ < 1, 0 < e < 1. Let xo = [ be the initial value. Let us set

#(x) := [+ e sin(x) and insert ¢(x) into the iteration functions of the Steffensen and the extended

1.0

T T M T T N T

BTN

Q .
o o]

- -

o
=)
T
1

N
KN
T
1

eccentricity e

©
[\
T
!

0.0 L 1 L 1 1
0 30 60 90 120 150 180

mean anomaly / [deg]
Ficure 3.5. The parameters (I, ¢) for which the Steffensen iterations do not con-
verge. (Example 3)
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FiGure 3.6. The parameters (/, e) for which the extended Steffensen iterations
for k = 2 do not converge. (Example 3)
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Steffensen iterations. We use |f(x,.)| < 107'® as the stopping criterion in the double precision
arithmetic.

We first show the convergence property of the iterations. The simple iteration always con-
verges for any pair of / and e. The marks in Figures 3.4, 3.5, and 3.6, indicate the pairs (I, e)
for which the iterations do not converge. The mesh sizes of / and e in the figures are 0.017/180
and 0.001, respectively. We see that the Steffensen type iterations converges in more cases than
the Newton method. There are some parameters for which the Steffensen iteration converge but
the extended Steffensen iteration does not. The ratios of the number of all grid points to that of
the marks in Figures 3.4, 3.5, and 3.6 are 0.06400% (Newton method), 0.02732% (Steffensen
iteration) and 0.03536% (the extended Steffensen iterations), respectively.

Next, we illustrate the computational complexity with Table 3.3. We solve the Kepler
equation for all parameters (/,e) such that / = in/180,i = 0,1,...,180 and e = 0.01 j,
j=1,2,...,100. The maximal and averaged numbers of iterations of each iteration method are
shown in Table 3.3. The amount of computations of the g-algorithm in the extended Steffensen
iteration is negligible as compared with that of the mapping ¢. Thus the total numbers of map-
pings are essential as well as the numbers of iterations in order to estimate the computational
complexity. The simple iteration, the Newton method, the Steffensen iteration and the extended
Steffensen iteration (k = 2), respectively, needs 1, 2, 2 and 4 mappings in one iteration. The to-
tal numbers of mappings are also shown in Table 3.3. The averaged and maximal total numbers
of mappings of the Steffensen iteration is less than those of any other methods. However, the
Steffensen iteration is the worst when [ = 187/180, ¢ = 0.95. While the extended Steffensen
iteration works well. For these special parameters, the extended Steffensen iteration is superior
than other iterations.

8. Concluding remarks

In this chapter, we consider an extension of the Steffensen iteration in terms of the Shanks
transform. The resulting iteration method does not need any derivatives and has a higher order
convergence rate. If {¢(y;)} converges linearly, then the sequence {®;(x,)} defined by using the
k-th Shanks transform has the (k + 1)-th order convergence rate (see Theorem 3.1). Here @, (x)
is just the Steffensen iteration function. On the other hand, if {¢(y;)} converges quadratically,
like the Newton sequence, then the iterated sequence {®;(x,)} has remarkably the (k +2)2%'-th
order convergence rate (see Theorem 3.2). These theoretical convergence rates can be found in
numerical examples (Examples 1, 2).

For the implementation of the extended Steffensen iteration, the stable g-algorithm is espe-
cially useful to decrease the amount of computations in the calculation of Hankel determinants.
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Consequently, the numbers of mappings take a major part of the computational complexity. It
is shown (Example 3) that the extended Steffensen iteration with k = 2 has the minimal num-
bers of mappings in a special case of the Kepler equation. Moreover, the extended Steffensen
iteration converges for more cases of parameters than the Newton method.

After the completion of this research the authors are told the references [10], [48] by Pro-
fessor N. Osada, which considers a generalized Steffensen iteration without any discussion on
computational complexity. The idea in [48] is essentially the same as that in this thesis, however,
there is no explicit numerical examples and no comparison to other iteration methods.
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CHAPTER 4

Determinantal Solutions for Solvable Chaotic Systems and Iteration

Methods Having Higher Order Convergence Rates

1. Introduction

The singularity confinement (SC) is a useful integrability criterion for discrete nonlinear
dynamical systems [25]. The discrete Painlevé equations and many discrete soliton equations
pass the SC test. However the SC test is not sufficient to identify integrability. In the literature
[28], Hietarinta and Viallet presented a discrete dynamical system which passes the SC test but
possesses a numerically chaotic property. Then they proposed a more sensitive integrability test
[28, 8] using the algebraic entropy. The algebraic entropy is defined by the logarithmic average
of a growth of degrees of iterations. Both test are similar to each, and the algebraic entropy test
is a more precise criterion than the SC test.

Many of good numerical algorithms are deeply connected to the nonlinear integrable sys-
tems. For example, the recurrence relation of the qd-algorithm, which is used for calculating
a continued fraction, is equivalent to the discrete time Toda equation. And the recurrence rela-
tion of the g-algorithm [85], which is a sequence convergence accelerator, is equivalent to the
discrete potential KdV equation. From these results, one may conjecture that good numerical
algorithms can be regared as integrable dynamical systems. Indeed, many of linearly convergent
algorithms such as eigenvalue algorithms and sequence accelerators pass the SC type criteria
(cf. [68]), and they are proved to be equivalent to soliton equations. However, the algorithms
having higher order convergence rates, which give irreversible dynamical systems, do not pass
the SC type criteria. The techniques in the nonlinear integrable systems cannot be directly
adapted to them.

The arithmetic-harmonic mean (AHM) algorithm [62] is an irreversible system having an
explicit solution, however does not pass the SC type criteria. According to the setting of initial
conditions, it behaves as an algorithm having the second order convergence rate, or as a solvable
chaotic system. In this chapter, we investigate such discrete dynamical systems and obtain their
determinantal solutions. We deal with the Ulam-von Neumann (UvN) system [77] which is
a solvable chaotic system, and with the discrete dynamical systems derived from the Newton
method, an extension of the Newton method, the Steffensen method [72], and the extended
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Steffensen method proposed in Chapter 3, which are iteration methods having higher order
convergence rates.

In Section 2, we show the trigonometric solutions for the AHM algorithm and the UvN
system in terms of addition formulas. Moreover we show the hierarchy of the UVN system.
The AHM algorithm is equivalent to the Newton method for a quadratic equation. In Section
3, we introduce the Newton method and the Nourein method [64, 16] which is an extension of
the Newton method. Applying these methods to a quadratic equation, we present the hierarchy
of the Newton type iterations. In Section 4, we give addition formulas of the determinants of
certain tridiagonal matrices. In Section 5, we show determinantal solutions for the discrete Ric-
cati equation. In Section 6, we obtain determinantal solutions for the hierarchy of the Newton
type iterations. In Section 7, determinantal solutions for the hierarchy of the UvN system are
derived. In Section 8, we obtain determinantal solutions for the hierarchy of the Steffensen type

iterations. In Section 9, we give some remarks.

2. Trigonometric solutions for solvable chaos systems

In this section, we introduce solvable chaotic systems which have trigonometric solutions.
We shall show that these solutions are obtained in terms of some addition formulas.
Firstly, we consider the iteration

a,+b, b 2ayb,
Apy1 = 1=
n+ 2 ’ n+ an + bn B

n=01,2,..., 4.1)

which is called the arithmetic-harmonic mean (AHM) algorithm [62]. The AHM algorithm has

the following solutions. For the case ag > by > 0, we have

a, = Nycoth(2"0y) , b, = N, tanh (2"07) . 4.2)
For the case ag > 0, by < 0, we have

a, = N,cot(2"o) , b, = ~N, tan (2"0,) . 4.3)

Here the positive constants N, N,, 0y and 0, are uniquely determined by the initial values ag
and by. The solutions (4.2) and (4.3) are derived from the double angle formulas of coth(x) and

cot(x),
SR P
cot(2x) = c—mfi)-'z-‘i“-r-‘ﬁx—) tan(2x) = % 4.5)
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respectively. The AHM algorithm has the conserved quantity I = a,b,, which can be easily
checked by (4.1). Thus I = apby. Using the conserved quantity I, we introduce the variable u,,
such that u, = a, = 1/b,. Then we have the discrete dynamical system
1 I

Une) =5 (u,, + u—n) . 4.6)
The system (4.6) can be also derived by applying the Newton method to the quadratic equation
f(z) = 22 — I = 0. The behaviors of u, are illustrated in Figures 4.1 and 4.2. When the case
I = agby > O, the sequence u, quadratically converges to the positive root of I (see Figure

1 Y T T T T T T T

0.9 —

T n T
6

o
o
=

n

Ficure 4.1. Behavior of the Newton method (4.6) for the case I = apby > 0.

[ T ! T ] ' T
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Ficure 4.2. Behavior of the Newton method (4.6) for the case I = agbp < 0.
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4.1). When the case I = apbg < 0, it behaves as a solvable chaotic system (see Figure 4.2). Its
invariant measure is u(dx) = dx/(n(1 + x)), and its Lyapunov exponent is log 2 (cf. [79)).
Next, we consider the solvable logistic map, or the Ulam-von Neumann (UvN) system [77],

O<up<1t, Upyy = du,(1 —u,), n=0,12,.... 4.7
A solution for (4.7) is obtained by
u, = sin’(2"c3), (4.8)
which is derived from the double angle formula of sin(x),
sin?(2x) = 4sin®(x)(1 — sin®(x)). v (4.9)

Here the constant o5 is determined by the initial value ug. The invariant measure of the UvN
system is u(dx) = dx/(x yx(1 — x)), and the Lyapunov exponent of it is log2 (cf. [79]). By
virtue of the n-tuple angle formulas of trigonometric functions, the higher order systems of the
UvN system are given by

Uy = 4uP(1 —ud), (4.10)
Wl = uPG - 4udY, @.11)
Ul =16uP1 —uf( - 24P, (4.12)
Uy = u(S - 4ud(S — 4ud)’, (4.13)

and so on (cf. [80]). The superscripts m of u™ denote the order of the hierarchy. Their invariant
measures are all u(dx) = dx/(n v/x(1 = x)), and their Lyapunov exponents are respectively log m
form = 3,4,5,.... Another generalization of the UVN system having Jacobi or Weierstrass
elliptic function solution is discussed in [78].

An aim of this chapter is to obtain determinantal solutions for the discrete dynamical sys-
tems (4.6), (4.7) and their hierarchies. The hierarchy of (4.6) is introduced in Section 3, and the
hierarchy of (4.7) already appear above.

3. The Newton method and the Nourein method

In this section, we introduce the Newton method (cf. [13]) and an extension of the Newton
method for finding a root of an equation f(z) = 0. Furthermore we present a hierarchy of
discrete dynamical systems given by the Newton type iterations.
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The Newton method is given by

Unsi = N(un), n=0,1,2,..., (4.14)
f@
=7— , 4.
N@) =z IZ0) (4.15)

Here the prime denotes f'(z) = df(x)/dz. The Nourein method [64, 16], which is an extension
of the Newton method based on the Padé approximation, is given by

Ups1 = Np(up) , n=0,12,..., (4.16)
H,(2)
Ny(2) = 2~ fQ)=2~, 4.17
»(2) I )Hp+1(z) (4.17)
where H,(z) are defined by
¢ Co 0 o --- 0
) Iof Co o --- 0
HO(Z)=]’ Hp(z)= E ; E E " E ? p=]72’39'-°’ (4'18)
Cp-1 Cp2 Cp-3 Cpg -+ Co
Cp Cp1 Cp2 Cp-3 --° Cj
and c(z) denote
_1df) .
cj(z)—ﬁ o j=0,1,2,.... (4.19)

The convergence rate of the Nourein method is of order p + 2. When p = 0, 1, and 2, then the
Nourein method (4.16) is reduced to the Newton method, the Halley method (cf. [19, pp. 220-
221}, [64]), and the Kiss method (cf. [64]), respectively.

Applying the Newton method (4.14) and the Nourein method (4.16) to the quadratic equa-

tion
f@R) =7 +2bz+c=0, (4.20)

we obtain the following discrete dynamical systems for p =0, 1,2,...,

(03}
@ _ (U, ¥ —c

n+l T 2uf,2)+2b’ 4.21)
® ) = 3cu) - 2bc
n+l = 3) 2 3) 5 ’ (4.22)
3(uy,’)> +6bu,’ +(4b*—c)
(€] O] @
@ _ Wy = 6¢ (u,)’y* — 8bcu,’ — (4b* — c)c @.23)

U4 WO 4126 (@) + 44b% — ) u® + 4b2b? - ¢)
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and so on. The superscripts m := p + 2 of ul™ denote the order of the hierarchy. In Section 6,

we shall obtain determinantal solutions for the hierarchy of the discrete systems (4.21)-(4.23).

4. Addition formula for tridiagonal determinant

In order to get solutions for the discrete dynamical systems corresponding to iteration meth-
ods and solvable chaotic systems, we derive an addition formula for tridiagonal determinants,
which is an extension of addition formula for trigonometric function.

In this section, we present four lemmas for determinants. Let us consider the sequence of
determinants of tridiagonal matrices,

—
e B
1 a .
Ty 1= ' ' , n=1273,..., 4.24)
. . ﬂ
I «a
where @ and S are arbitrary complex constants. We set 7_; := 0 and 74 := 1. It should be noted

that 7, is a monic polynomial of & of degree n. We can prove the following elementary lemmas.
Lemma 4.1 (Three-term recurrence relation).
1'_|=O, ‘1'0:], 1',,+,=a'1',,—ﬁ7',,_1, n=0,1,2,.... (425)

Proof. In terms of the expansion of the determinant 7,,, with respect to the last row, we
dernive (4.25). ]

Here let us assume that § is a real positive constant. Setting

Tn-2 n=1,2,..., (426

Tn
™ w1

o %
=35

we obtain the recurrence relation
To(x) =1, Ti(x) =x, Thy(x) = 2xT,(x) — Tp_1(X), n=12..., 4.27

from (4.25). The functions T,(x) are the Chebyshev polynomials of the first kind. The Cheby-
shev polynomials can be also expressed as

T,(x) := cos(n arccos(x)) . (4.28)
Thus the determinants 7, can be related to the trigonometric functions.
Lemma 4.2 (Addition formula).
Thnem = TnTm =B Tn-1Tm-1, nm=0,1,.... 4.29)
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Proof. Formula (4.29) is a consequence of the Laplace expansion (cf. [71]) for the deter-
minant T,,, with respect to the first n rows. We give an alternative proof here. Let us assume

that 7, # 0. From a determinant partitioning formula for block matrices, it follows that

-1
a B a B
1
1 1 o .
Toum = Ty @ - o em.  (430)
1 «a 1 «a
v
We then have
@ —Brpa/tn B
1 a .
Tntm = Tn . . . 4.31)
.. .. ﬁ
1 «
Expanding the first row, we obtain
Tnem = Tn(aTm—l —)BTm—Z) _ﬂrn—le-l . (432)
Using Lemma 4.1, we derive (4.29). We have proved Lemma 4.2. a
Lemma 4.3 (Linear-bilinear identity).
2T Ty — Tim-1Tnst — Tms1 Tamt
=B"Q2Tm-n — € Tm-n-1), m2>n, n=0,1,2,.... 4.33)
Proof. From Lemma 4.2, it follows that
ZTan —Tm-1Tn+t — Tm+1Tp—1 = B(sz—lTn—l — Tm-2Tp — Tan-Z) . (434)

Note that the indices of the right hand side of this relation are decreased by 1 rather than those
of the left hand side. Calculating this relation recursively, we have

ZTan = Tm-1Tn+1 — Tm+1Tp-1 = ﬂ”(ZT,-,,_,,To — Tm-n-1T1 — Tm—n+lT—]) . (435)

From 7_; = 0, 79 = 0 and 7y = a, this relation becomes to (4.33). We have proved Lemma 4.3.

m|
Lemma 4.4 (Differential relation). If 8 is independent of a, then
ot, Oty
_aaﬂ"ﬂaa =(n+2)Thi n=0,1,.... (4.36)
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If @ and B depend on the same parameter t then

a;,,:z —,86(;" = (n+ 2)%rn+, —(n+ 1)%% n=01,.... (4.37)
Proof. A partial differentiation with respect « leads to
5;,;2 = i‘l’j?’nﬂ_}-. (4.38)
=0
From Lemma 4.2, it follows that
Orr n n-1
2 = (1 + 2T +ﬁ; TirTn = (1 + 2Tpny +,3; TiTaotj - (4.39)
From (4.38), we obtain
O0Tni2 or

=n+2)T +0 (4.40)

Oa da
Thus we have proved (4.36). The relation (4.37) can be proved by a similar line of thought. O

5. Determinantal solution for the discrete Riccati equation

In order to get solutions for the discrete dynamical systems corresponding to the Newton
type iterations and the Steffensen type iterations, we give the determinantal solution for the
discrete Riccati equation.

Let us consider the discrete Riccati equation

ax,+b
cx,+d’

n=0,1,2,..., (4.41)

Xp+t =

where x, is a complex variable, and a, b, ¢ and d are complex constants. When we set the

parameters as
x,=X(f), t=né, a=1+Bs, b=Cs, c=-A5, d=1-B5, (4.42)

and take the limit as 6 — 0, then we have the differential Riccati equation

%Ei) =AX@)?+2BX@t)+C (4.43)

with the constant coefficients A, B and C.
A determinantal solution for Eq. (4.41) is obtained by

n— d-b n-
x,,=xOT (xo )T 1, n=0,12,.... 4.44)
Tp—(a— X0 C) Tn-i
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Here 7, is the determinant of the degree n defined by

n

B

a B
1 «a
71 =0, =1, T, = , n=12,3,..., (4.45)

where a and B denote @ =a+d, 8 =ad — bc.

From Lemma 4.1, the determinants 7, satisfy the linear difference equation
7_1=0, T=1, tw-(a+d)yt,+@d-bo)t,.; =0, n=0,1,2,.... (4.46)

Substituting (4.44) into (4.41) using (4.46), we check that (4.44) gives a solution.

6. Determinantal solutions for hierarchy of the Newton iteration

In this section, we obtain determinantal solutions for the hierarchy of the Newton type
iterations (4.21)—(4.23). The hierarchy is derived by applying the Newton type methods (4.14),
(4.16) to the quadratic equation f(z) = 22 +2bz + c.

6.1. Determinantal solutions. We begin to consider the following discrete Riccati equa-
tion
vn+l=;,7-l:?:)l:;—-;2b), n=0,1,2,..., (4.47)
where b, ¢ and v, are arbitrary complex values. Note that the initial value vy 1s included in the
coefficients of the recurrence relation. From the determinantal solution for the discrete Riccati
equation in Section 5, we obtain a solution for (4.47)
Foy
F,’
Here A and B denote A = f’(v), B = f(vp), and F, are the determinants defined by

n

v, =0o— B n=0,1,2,.... (4.48)

A B

1 A B

F.,=0, Fo=1, F,= ) n=123,.... (4.49)

1 A B
1 A

Next, we consider addition formulas for v,, which are resulted from the following theorem.
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TueOREM 4.1 (Addition formula). The solution v, (4.48) for Eq. (4.47) satisfies the relation

Umn-1Up-1 — C

m+Dn-1 = . N =1,2, e s 4,
D+ 1yn=1 Upn-1 + Up-1 + 2b . 3 (4.50)
This relation gives the m-tuple addition formulas
Umn-1 = Np_a(Un_1), m=2,3,4,..., n=012,..., (4.51)
where we define functions N,(z) by
H,(2)
Ny(2) = z— f(2) =2, =0,1,2,..., (4.52
»(2) f( )H,,+l(z) p )
P
f @ f@
1 @ f@
Ho(z) :=1, Hy(z):= . g (4.53)

1 @ f@
1 @

Proof. First we shall prove the relation (4.50). From Lemmas 4.1 and 4.2, the determinants

Finiiyn-2 and Fpi1y,- are given by

Fonstm-2 = Fpt Fooy = By 2F 5, (4.54)
F(m+])n-—] =A an-—an—l - Ban—IF -2 Ban—ZF -1 - (4~55)

Inserting (4.54) and (4.55) into

F _
Um+1yn—1 = Up — pltminZ (4.56)

Finstyn-1
we have
an—lF -1 _Ban—ZF -2

o w_B , 457
Pim+in-1 % AFup1Fny = BEpy2Fyy — BFpn-1Fp-2 ( )

Rearranging (4.57), we obtain

an—2 Fn—Z
- B—= - B -
(UO an—l )(UO Fn—l ) ¢

Uim+n-1 = .
Fone F.
(vo—B e 2)+(v0—BF 2)+2b

mn-1

(4.58)

The relation (4.58) leads to the proof of (4.50).
Next we shall prove the addition formulas (4.51). When m = 2, the formula (4.51) can be
easily shown by using (4.50). Let us assume that v,,- satisfy (4.51) for a certain m > 2. Then
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we shall check that vg,.1),-; satisfy the relation (4.51). From the assumption, we rewrite (4.50)
as

— Nm—Z(vn—l) Un-t —C
Um+Dn-1 = N o) + 0oy + 25 4.59)

From (4.52) it follows that
S 1) Hp_1(Up-1)

Uim+ =1 = Un=i = . (4.60)
et = @0y + 26)Hine 1 (0p1) = f 01V Hin2(01)
Since H,(z) satisfy
Hy(2) = f(@) Hp-1(2) — f(D) Hp2(2), (4.61)
we have
_ m—l(vn 1)
Vimsn=1 = Un1 — J( n—l)—‘_ Np-1(Un-1) - (4.62)
m( Up— l)
By induction, the addition formulas (4.51) are proved. m]
Finally, we introduce the variables (™ defined by
U™ = vy, m=23,4,..., n=012,.... (4.63)
Thus let us consider the map
("’) = b U =v, P u(z”') =V P u(3'") =0y > . (4.64)

By virtue of the m-tuple addition formulas (4.51), we thus obtain the hierarchy of the discrete
dynamical systems

@ _ (u(z))Z —c

Sy ZC 4.65
2P+ 2 (¢
® @3 = 3cu® - 2bc

Unet = 23 ® . (4.66)

3u) + 6b ul) + (462 — ¢)
@ _ @) — 6c(ui?)? — 8bcul? — (4b% — c)c 46N

u - ’
4Oy + 126 (W) + 4462 - ul? + 4b2(2b% - ¢)
and so on. These discrete systems are the same as the Newton type iterations (4.21)-(4.23).

Therefore we obtain the determinantal solutions for the hierarchy of the Newton iterations by

Fpo-
U™ = ul — B-F——Z, m=2734,..., n=0,1,2,..., (4.68)
mt—1

from (4.48), (4.49), (4.63)and A = f'(ul"), B = ful™).
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It is to be remarked that the determinantal solution (4.68) is also expressed as the continued
fraction

(m u(m)

W =P - - — — (4.69)

6.2. Other solutions. In the previous subsection, we have constructed the determinantal
solutions (4.68) in terms of only four arithmetic operations. Here we ease this restriction. Let
us allow to use the operation of square root. Then solutions of other type are obtained as follows,

m m
m_ m NN —nhn _
u,” =uy — g n=012,.... 4.70)
Here r; and r, are the roots of the characteristic equation
x*-Ax+B=0, A=fu™, B=ful™, (4.71)

which is given by the three-term recurrence relation of F,. When we use the roots 4;, A, of
f(2) = 0, then we have

D @” = 7" = 4 S = A)™

(m) _

u —~ - — n=0,1,2,.... 4.72)
" g” = 4y = (ug” = Ao)™
The solution (4.72) is also expressed as

U™ = (Y~ o R," o )™, (4.73)

where we define the functions R(z), ¥(z) as

-1
Rn@):=2", W(z) = —2L. (4.74)
- /12

This result implies that the map N, is conjugate with the map R,,, namely
Npa=y¢ ' oR,o. (4.75)
The relation (4.75) yields the Julia set of the map N,,_, by
J(Nn-2) = (wlw =y~ (2), 1z = 1,z € C}. (4.76)

The relation (4.75) with m = 2 was originally found by Cayley in 1879 (cf. [67]) for the Newton
method.
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7. Determinantal solutions for hierarchy of the Ulam-von Neumann system

7.1. Determinantal solutions. We begin to consider the following linear difference equa-

tion
vy =2, vp=A, Ups1 — AU, +Bu, =0, n=0,1,2,..., 477

where A, B are arbitrary complex constants. A determinantal solution for Eq. (4.77) is obtained
by

Up = n+]-‘BFn—-]9 n=0,],2,..., (4.78)

where F, is the determinant of the degree n defined by

F._1=O, Fo N n=l,2,3,.... (479)

It
ok
.
!

!

Next we consider addition formulas for v,, which are given by the following theorem.
Tueorem 4.2 (Addition formula). The solution v, for Eq. (4.77) satisfies the relation
Vomsin=1 = Umn-1Un-1 — B" Vm-1yn—1 » m=1,23,..., n=1273,.... (4.80)
This relation gives the m-tuple addition formulas
Umn-1 = Gu(Un_1) = B" Gp2(Upy) s m=2,3,4,..., n=1,23,..., (4.81)

where G,,(2) are defined by

z B
1 z B
Go(@) =1, Gn(2) = , m=1,2,3,.... (4.82)
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Proof. First we shall prove the relation (4.80). From (4.78) and Lemma 4.2, it follows that

Um+n-1 = Fonin — BF(mnTl)+(n—l) (4.83)
= (anFn ~BFp,1Fp1) —B(Fpp-1Fp-1 — BF,,2F,3)
= (an —BFp 2)(Fp— BF, 3) = BQ2Fp, 1 Fp ) — FopnoFn—FpyFp3).

From (4.78) and Lemma 4.3, we have
Vmsyn-1 = Upn1Vn-t = B"QFppn —AFpp_pn_1) . (4.84)
From (4.78) and Lemma 4.1, we obtain
Voms1yn-1 = Umn—1Un-1 — B Vim-1yn—1 - (4.85)

Thus we have proved (4.80).

Next we shall prove (4.81). When m = 2, we can easily check (4.81) by (4.80). We assume
that v, satisfy (4.81) for a certain m > 2. Then we shall show that vy, 1),—1 satisfy (4.81).
From (4.80) and the assumption, we have

Um+1n-t = Umn—1Up-1 — B Vim-1)n—1 (4'86)
= Up-1(Gn(Un=1) = B"Gp2(U4-1)) = B*(0n-1G 1 (V1) — B"Gp_3(Vy-1))
= Wn=1Gm(Un-1) = B’ Gt (Un-1)) = B"(0n-1Gm-2(Vn-1) — B"Gy—3(Vn-1)) .

Since G,,(z) satisfy

G1(2) = 2Gn(2) — B" Gy (2), (4.87)

we obtain
Umatin=1 = Gma1(Un-1) — B Gt (Un-1) - (4.88)
By induction, we have proved (4.81). O

In this paragraph, we finally derive the UvVN hierarchy. We introduce the variables 4™ such

that

U™ = vy, m=2,3,4,..., n=0,1,2,.... (4.89)

n

Namely, we consider the map

(m) _

ul™ = v — u(lm) _ (m) _ (m)

SUnl P Uy Sl P Uy =y = o (490)

55



By virtue of the m-tuple addition formulas (4.81), we derive a hierarchy of nonautonomous
discrete dynamical systems

U = ) 28", (4.91)
uph = ) = 38", (492)
u® = u®)* - 4B" Wy + 2B, (4.93)
u, = @y = 5B" ) + 5B u? (4.94)

and so on. We remark that determinantal solutions for systems (4.91)—(4.94) can be obtained
from (4.78) and (4.89). When we set B = 0 and replace the variable uf,z) such that

u® —1-2u,, (4.95)
we derive a solvable logistic map
Uns1 = 2Un(1 — uy), n=0,1,2,.... (4.96)

The system (4.96) is not chaotic system for initial value 0 < uy < 1, and it converges to 1/2

exponentially. Next we set B = 1 and replace the variables u™ such that

Ul — 2(1 - 2ul™). (4.97)

Then we obtain the UvN hierarchy from (4.91)—(4.94) by

u®) = 4uP - u), (4.98)
ugl - ugs)(3 _ 4u23))2 , , (4.99)
) =16uP(1 —uP)(1 - 24P, (4.100)
u®, = uPG - 4uD(5 - 4uP)), (4.101)

and so on. Furthermore we obtain the determinantal solutions for the UvN hierarchy by

I 1
ufzm)=5—Z(an—an‘2)’ m=2,3,4,..., n=0,1,2,..., (4.]02)

where A = 2(1 — 24", B = 1 and F, are defined by (4.79).

Relationship to the known determinantal solution [11] and the analytic solution [69] of the
logistic map is not clear. The determinants which appear in [11] look rather different from F..
Indeed, the value of the parameter u of the logistic map u,,; = pu,(1 — u,) is not specified in
[11] and [69]. Recently the quadratic map (4.7) in real and complex domains is reviewed in
[54].
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7.2. Lyapunov exponents. Let us restrict the initial value u('") to real values such that 0 <

(m)
0

explicit invariant measures. Let us write ”f:)x = P forn = 0,1,2,.... The Lyapunov

u,” < 1. We shall compute the Lyapunov exponents of the UvN hierarchy without use of

exponents are expressed as

T’(ug."”)[ : (4.103)

]n—]
= ] - ]
A nl—{?on;, og

Here we consider the partial differentiation of ‘I’(u(”’)) with respect to u(”') which are given by

a\}'(ug."')) ¥ (u (m))au“") (4.104)
(m) ( :
auo'" 0’")

From (4.104) and & = (u{"), it follows that

(™)
au(()m)
oY (m) )

(m)
Ouy,

lP'(uj."") j=0,1,2,...,n-1. (4.105)

From (4.105) and 4™ = ‘I’(u(’") ), the Lyapunov exponents (4.103) are written as

1 oul™
A=lim-1 —| . 4.
fim 2 log (@.106)
Inserting the solution (4.102) into (4.106), we obtain
.1 O(Fpn — Fpn_
2= lim ~ 10g |2 — il (4.107)
n—eo 1l Ou,
Using Lemma 4.4, we have
1 1
A= lim ;100|m Fopn_ 1|—logm+]1m—-100IF,,,a 1l . (4.108)
Since F, satisfy the second order linear difference equation
Fur1 =2(1 —ul™ Fy+ Fpoy = 0, (4.109)
the determinants F, can be also expressed as
Fo=an"+eon'. (4.110)
Here r;, r; are the roots of the characteristic equation
¥ =20-uyx+1=0, 4.111)
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and ¢, ¢, are determined by the initial condition. From the condition 0 < ug") < 1, it follows

that |r| = |r;] = 1. Thus there exists a positive constant M such that 0 < [F,| < M. Moreover
we remove the zeros of F,,,n_l(ug”) = O from the 1nitial region 0 < uf)'") < 1, then we have
0 < |F,| < M. Therefore we obtain Ly < log|F»~_;| < L,, where Ly and L, are certain positive
constants. It is concluded that

o1

lim - log|Fm] =0. (4.112)

n—oo N

We can state:

(m) < ].

THEOREM 4.3. Let us restrict the initial values ug") to real values such that 0 < Uy

Then the Lyapunov exponents of the UvN hierarchy are log m.

8. Determinantal solutions for hierarchy of the Steffensen iteration

In this section, we give determinantal solutions for the discrete dynamical systems corre-
sponding to the extended Steffensen method which is proposed in Chapter 3.
Let us consider the quadratic equation

f@=2+2bz+c=0, (4.113)

where z is a complex variable, and b, ¢ are some complex constants. Rearranging Eq. (4.113),
we have the equation,

_(a-b)z-c
T z+(@+b)

=: ¢(2), (4.114)

where a is an auxiliary and arbitrary constant. We write the right hand side of Eq. (4.114)
as ¢(z). We consider the extended Steffensen method (3.18) for Eq. (4.113) with the simple
iteration function ¢(z). The hierarchy of the Steffensen type iterations are given by

u? = @ (™), m=23,4,..., n=0,1,2,..., (4.115)

n+1

from (3.18). In [6, 7], Arai, Okamoto, and Kametaka find a new addition formula for cot(x) in
terms of addition formulas for a three parameter family of functions. The aim of this section is
to obtain determinantal solutions for the hierarchy (4.115) by using a theorem in [6, 7].

To find solutions, we begin to consider the simple iteration
(a=byv,—c

, 1=0,1,2,.... 4,116
v, + (@+b) J ( )

Unt1 = $(Un) =

We present addition formulas of v,, which are resulted from the following theorem.
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THEOREM 4.4 (Addition formula). Let the auxiliary parameter a be set by a = b + vy. The

sequence v, generated by the iteration (4.116) satisfies the m-tuple addition formulas

m+1

0 1 1 1
Un—1 Un U Un+m-2
] Un-1 Un Unem~2
Un Un+1 T Unim-1
Um(ntm=1)-1 = / 1 Un Untt " Unem-1],  (4.117)
Un+m-2 Un+m-1 " Uns2m-3
1 Unim=2 Upam—1 """ Uni2m-3

form=2,3,4,...andn=1,2,3,...

Proof. In order to prove it, we first introduce the theorem in the literature [6, 7]. Let p(z)
be the three parameter family of functions defined by

PQ) = p(a,B,7:2) = ay—ﬁ# (4.118)

with & — 8 # 0, ¥ # 0. Then functions p(z) satisfies the addition formula
pxi+txa+ -+ Xpt Y+ Y2+t Yy) =

0 1 1 1
I p(xi+y) pxi+y) -+ pxi+yn)
1 plxa+y1) plaa+y) -+ pa+ym)|, (4.119)

pxi+y) p(xi+y2) --- p(Xi+Ym)
pla+y) p(xa+ys) - pxa+ym) /

PEm+11) PEm+y2) - POmtyn)| |, . . .
m Y mT Iz 1 p(xm+y1) pXm+y2) - PXm+Ym)

provided that y**%/ # 1.

We remark that p(z) satisfies the relations
(ey-Bp)—aBly—-1)
(y—-Dp(2) + (@ -By)

p(X)py) — off
p(xX) + py) — (@ +B)
In order to adapt the addition formula (4.119) to v,, we compare the recurrence relations (4.116)

piz+1) = , (4.120)

plx+y = (4.121)

with (4.120). From the comparison, we set the parameters as
_2a+a-B
Y e+ B’

Thus we obtain v, = p(n + ng), where the integer ng is determined by an initial condition. Here

a+pB=-2b, af=c, (4.122)

we choose ng = 1, namely, vy = p(1). Then we should restrict the auxiliary parameter a as
a=b+u. (4.123)
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Inserting x; = n+i—~1, y; = j—1 into (4.119), we therefore obtain the addition formulas (4.117).
O

Next we assume that there exists a natural number / for which '™ = v_, holds for each step

n. From Theorem 4.4 and the assumption, the iteration (4.115) is rewritten as

U = O 1 (U™) = Oy 1 (V1) = Vmitem—1)-1 (4.124)

n+l

for each step n. We shall determine a natural number [ for each step n. Starting uf)"') = pp and

I =1, and computing the relation (4.124) recursively, we have

U™ = Oppos(U3”) = Bp1(00) = B ifi=1, (4.125)
u(zm) = (Dm—l(u(]m>) = Oy 1 (Vm2-1) = Updomomet 5 ifI=m’, (4.126)
u(3m) = (Dm—l(u(zm)) = DQp | (Un3im2-m=1) = Uppimdom=1 » if l=m’ +m’ —m > (4.127)

and so on. By induction, we obtain
U = Uyt et = Vit 1ymr—1) » n=0,1,2,.... (4.128)

The relation (4.128) yields the map

uf)”’) =1 = uﬁm) = Ven+1ym=1) = u(zm) = Dim+ ym?~1) = T (4.129)
which is the extended Steffensen iteration.

We finally obtain determinantal solution. Since the recurrence relation (4.116) is a discrete
Riccati equation (4.41), the determinantal solution for v, can be obtained from (4.44) and (4.45).
By virtue of (4.128), we finally obtain the determinantal solution for (4.115) by

F(m+})(m"—l)—l

ui’")zué’")—B R n=0,1,2,..., (4.130)

F e tymr-1y

where A = f' ™), B = f(ul”) and

F.,=0, Fo=1, F,= , n=123,.... (4.131)




It should be noted that the determinantal solution (4.130)—(4.131) is also expressed as the
continued fraction

(m) _ (m)_il_ﬂ..._ﬂ
u" = u, 'A IA |A . (4.132)
(m+1)(m"~1)

We have constructed the determinantal solution (4.130)—(4.131) by only using four arith-
metic operations. Here we ease this restriction. Let us allow to use the operation of square root.
Another type solution for (4.115) is obtained by

(m) u(()”') ~ /12 n+1 n
wwW=pli, A, ——;m"" +m" —m (4.133)
n (m)
uo —/1]

from (4.118), (4.122), (4.128) and v, = p(n+1). Here 1, and A, denote the roots of the equation
f(@=0.

9. Concluding remarks

In this chapter, we have obtained the determinantal solutions for irreversible discrete equa-
tions. We have dealt with the hierarchy of the UvN system, and the hierarchies of discrete dy-
namical systems which are derived by applying the Newton type iterations and the Steffensen
type iterations to a quadratic equation. According to the setting of parameters and initial condi-
tions, these systems give rise to algorithms having higher order convergence rates, or solvable
chaotic systems. For all cases, we have constructed the explicit solutions in a unified way.

Firstly, we have obtained the determinantal solutions v, for the second order linear differ-
ence equation and the discrete Riccati equation. We have derived the addition formulas for the
solutions v, (Theorems 4.1, 4.2, 4.4). At the next step, we have focused only on the values v,
for integers m > 2. Then we have introduced the new variables u0™ = v, for each m. Finally,
we have showed that the addition formulas yield the irreversible dynamical systems of u%™. As
a result, we have derived the hierarchies of new solvable irreversible dynamical systems and
have obtained their determinantal solutions simultaneously.

From the determinantal solutions for the UvN hierarchy, we have obtained the Lyapunov

exponents of them without explicit use of invariant measures (Theorem 4.3).
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CHAPTER 5

Concluding Remarks

In this thesis, we have studied integrability of a continuous evolution equation and some
discrete equations. As an application of the soliton theory, we have proposed a numerical
al gdrithm based on the techniques in the nonlinear integrable systems.

In Chapter 2, we have considered the GDNLS equation. We first have constructed the trav-
eling wave solution which is valid for any real values of parameters. We have applied the
Painlevé test to the GDNLS equation for detecting integrability. We have shown that the equa-
tion possesses the Painlevé property in a strict sense only for the known integrable cases of
parameters. Therefore we have shown that it possesses a conditional Painlevé property for an
infinite number of cases of conditions for parameters, which is the same condition as that of
the single-valued property of the traveling wave solution. When the GDNLS equation has the
conditional Painlevé property, it is necessary for the function ¢(x, ¢) to satisfy an equation which
is transformed to the dispersionless KdV equation. We remark the interesting fact that the same
condition for ¢(x, t) appeared at the Painlevé analysis of the long and short wave interaction
equation by Yoshinaga {87, 88]. Next we have examined stability of the solitary wave by the
numerical simulation. Remarkable difference between integrable case and non-integrable case
has not been observed, except for the quantities of ripples generated by interactions. The travel-
ing wave solution is stable in interactions and behaves like a soliton. In conclusion, the GDNLS
equation is a near-integrable system which has a conditional Painlevé property and a stable
‘soliton-like traveling wave solution. Further theoretical analysis on stability may be necessary.

In Chapter 3, we have proposed an extension of the Steffensen iteration for finding a root &
of the nonlinear equation x = ¢(x). We have developed the extended Steffensen method in terms
of the k-th Shanks transform which is a sequence convergence acceleration algorithm. The re-
sulting iteration method does not need any derivative. And it has a higher order convergence
rate, although the Shanks transform is originally a linearly convergent algorithm. If the equation
satisfies ¢’(a) # 0, =1, then the sequence generated by the extended Steffensen method has the
(k + 1)-th order convergence rate (Theorem 3.1). On the other hand, if the equation satisfies
¢’ (a) = 0, then the extended Steffensen iteration has remarkably the (k +2)2*~'-th order conver-

gence rate (Theorem 3.2). These theoretical convergence rates have been verified in numerical

62



examples (Examples 1, 2). For the implementation of the extended Steffensen iteration, the
g-algorithm is especially useful to decrease the amount of computations in the calculation of
Hankel determinants. This algorithm is stable for errors and equivalent to the discrete potential
KdV equation. Consequently, computation due to the numbers of mappings takes a major part
of the computational complexity. We have shown that the extended Steffensen iteration with
k = 2 has the minimal numbers of mappings in a special case of the Kepler equation (Example
3). Moreover, the extended Steffensen iteration converges for more cases of parameters than the
Newton method.

In Chapter 4, we have obtained the determinantal solutions for irreversible discrete equa-
tions. We have dealt with the hierarchy of the UVN system, and the hierarchies of discrete
dynamical systems which are derived by applying the Newton type iterations and the Stef-
fensen type iterations to a quadratic equation. According to the setting of parameters and initial
conditions, these systems give rise to algorithms having higher order convergence rates, or solv-
able chaotic systems. For all cases, we have constructed the solutions in a unified way. Firstly,
we have obtained the determinantal solutions v, for some linear systems. We have derived the
addition formulas for the solutions v,. At the next step, we have focused only on the values vy
for integers m > 2. Then we have introduced the new variables u™ = v,,» for each m. Finally,
we have showed that the addition formulas yield the irreversible dynamical systems of ul. As
a result, we have obtained the hierarchies of new solvable irreversible dynamical systems and

their determinantal solutions simultaneously.
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