

Title	超原子価ヨウ素試薬を用いるフェノール誘導体への炭 素求核種導入反応の開発とその応用
Author(s)	有澤,光弘
Citation	大阪大学, 1999, 博士論文
Version Type	VoR
URL	https://doi.org/10.11501/3155318
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

超原子価ヨウ素試薬を用いるフェノール誘導体 への炭素求核種導入反応の開発とその応用

有 澤

1999年

光弘

超原子価ヨウ素試薬を用いるフェノール誘導体 への炭素求核種導入反応の開発とその応用

1999年

有 澤 光 弘

緒論
本論
 第1章 超原子価ヨウ素 (III) 試薬: PI カップリング反応の開発とAu 第1節 Norbelladine 誘導体の位置選 とcrinine-type Amaryllidaceae 第2節 PIFAを用いる galanthamine-t 第1項 Norbelladine 誘導体の位置。 第2項 Galanthamine-type Amaryllida 第3項 Galanthamine-type Amaryllida
 第2章 PIFAを用いるビアリールカッ 第1節 PIFAを用いる分子内ビアリ 第2節 テンプレートの選択的除去
結論
謝辞
実験の部
第1章の実験 第2章の実験
引用文献

目 次	
1	l
6	5
A を用いるフェノール誘導体の酸化的 aryllidaceae akaloids の合成	5 7 2 4 6 7
プリング反応 19 -ルカップリング反応 20 24)) 1
25	5
26	6
27	7
27	7
50	6

1886年に Willgerodt らによって 3 価の超原子価ヨウ素試薬が合成されて以来、1) 数多 くの超原子価ヨウ素試薬が合成されたが、有機合成反応に有効に利用されるようになっ たのは、1980年代に入ってからのことである。すなわち、超原子価ヨウ素試薬が、水 銀(II)、タリウム(III)、鉛(IV)等の重金属酸化剤と比較的類似した反応性を示し、且つ、 それらと比較して毒性が低いことから、一躍これらの化合物が注目を集めるようになっ た。

bistrifluoroacetate (PIFA)) 等を用いて、種々の新反応を開発している。¹⁰⁾ 一方、フェノール誘導体における炭素-炭素結合形成反応は合成化学的だけでなく生 上に置換される Type II の反応に分けることができる (Scheme 1)。

Scheme 1

OCOCF3 Ph-L OCOCF3 phenyliodine (III) bis (trifluoroacetate) R' Nu (PIFA)

-1-

緒 論

特に、1980年代後半から今日までの発展には目を見張るものがあり、数々の有用な反 応が開発され、天然物合成等の場でも利用されてきた。これらの詳細については、 Varvoglis、²⁾ Koser、³⁾ Moriarty、⁴⁾ 落合、⁵⁾ 北、⁶⁾ Stang、⁷⁾ 北村⁸⁾ を始めその他幾つかの 研究者"により優れた総説としてまとめられている。著者の研究室では、1980年代前半 から超原子価ヨウ素試薬である PhI(OCOCH₃)₂ (iodosobenzene diacetate または phenyl iodine diacetate (PIDA)), $PhI(OCOCF_3)_2$ (iodosobenzene bis(trifluoroacetate) $\ddagger t$ the phenyl iodine

合成機構的にも、極めて重要な反応である。超原子価ヨウ素試薬を用いるフェノール誘 導体の炭素-炭素結合反応については著者の研究室を含め幾つかのグループにより報告 されているが、大別すると、フェノール (R=H)の酸素原子と超原子価ヨウ素試薬の ヨウ素中心が反応し、これに炭素求核種がフェノールの para 位へ攻撃しシクロヘキサジ エノン体を与える Type Iの反応と、電子豊富なフェノールエーテル類の芳香環と超原子 価ヨウ素試薬が反応してカチオンラジカル中間体を生成し、これに炭素求核種が芳香環

R=Hの Type Iの反応は、フェノールの酸素原子と試薬のヨウ素中心が反応して、活 性な中間体 (i)を生成し、これに炭素求核種である電子豊富な芳香環、¹¹⁾ あるいはオレ フィン¹²⁾がフェノール誘導体の芳香環に導入されている。代表的な例を Scheme 2 に示 した。元来、生合成類似のフェノール誘導体の酸化的カップリング反応は天然物合成の 分野で極めて重要な反応であり、このような反応を起こさせるのに、タリウム(III)、バ ナジウム(V)等の重金属酸化剤が汎用されてきたが、¹³⁾これら重金属酸化剤の重篤な毒 性が大きな問題となっていた。1980年にSzántayらが morphine の重要中間体の合成に、^{lla)} また 1983 年に White らが codeine、^{11b)} pretazetin^{11c)}の合成に重金属酸化剤の代わりに毒 性の少ない超原子価ヨウ素 (III) 試薬である PIDA を使用している。この反応剤は重金属 酸化剤に代わり、多数の天然物が部分構造に持つスピロ炭素の構築に有用と期待された が、低収率、基質特異性等の点で問題が多く、その後ほとんど関心が払われなくなった。 著者の所属する研究室ではこれらの問題を反応溶媒として求核性が低く高極性の 1,1,1,3,3,3-hexafluoro-2-propanol ((CF₃),CHOH) や 2,2,2-trifloroethanol (CF₃CH₂OH) を用い ることで解消し、超原子価ヨウ素試薬を用いる反応が収率良く進行し一般性の高い実用 的な反応となることを明らかにした。110 続いて、この反応剤を用いて抗癌活性海洋性 天然物 discorhabdin C¹⁴⁾の全合成を達成している。^{11f)}

Scheme 2

Type Iの反応を利用し、これまでに炭素求核種以外の導入可能な求核種としてアルコール、¹⁵⁾アミド、¹⁶⁾カルボン酸、¹⁷⁾オキシム、¹⁸⁾フッ素、¹⁹⁾水²⁰⁾等との反応が報告されている。

一方、著者の所属する研究室では、フェノールエーテル類の場合にはフェノール類と は異なる Type II の反応が起こることを初めて見出している。すなわち、電子豊富な芳 香環と PIFA との反応によりカチオンラジカル中間体 (ii) が生成し、これに炭素求核種 である β – ジケトン、²¹⁾ 窒素求核種であるアジドアニオン、²²⁾ 酸素求核種であるアセト キシアニオン、²¹⁾硫黄求核種であるフェニルチオアニオンやチオシアノアニオン等²³⁾ が 導入できることを報告している。Type II の反応による、炭素求核種の導入としては、 ジケトンのみに限られていたが (Scheme 3)、著者は他の炭素求核種の導入反応に興味を 抱いた。

-3-

Scheme 3

このような背景下、著者はフェノール及びフェノールエーテル誘導体と超原子価ヨウ 素試薬として PIFA を用いて、Type I、Type IIの反応を用いる炭素-炭素結合形成反応 の開発とその応用研究に着手した結果、以下の1)~3)の新知見を得ることができた。 すなわち、

1) Type Iの反応を応用して、norbelladine 誘導体の para-para' 位での位置選択的酸化 的カップリング反応を開発し、 crinine-type Amaryllidaceae alkaloid、(+)-maritidine 合 成における鍵化合物の合成に成功した(第1章第1節)(Scheme 4)。

2) Norbelladine 誘導体の para-ortho' 位での位置選択的酸化的カップリング反応を開発 し、得られたカップリング体を効率良く galanthamine-type Amaryllidaceae alkaloids へ 導き、アルツハイマー病治療を指向したアセチルコリンエステラーゼ阻害薬とし て近年注目されている galanthamine-type Amaryllidaceae alkaloids の簡便な合成法の開 発に成功した(第1章第2節)(Scheme 5)。²⁴⁾

Scheme 5

た(第2章) (Scheme 6)。²⁵⁾

Scheme 6

-5-

Y = CH₂, O ; Z = OH, CHO, Me ; n = 0,1

3) Type II の反応を応用して、二つの芳香環をテンプレートで結んだ基質の分子内ビ アリールカップリング反応の開発に成功し、カップリング体からテンプレートを 脱離することにより、収率良く対称及び非対称ビアリール体を得る方法を見出し

 $R^{1-6} = H$, OMe, OCH₂O, OAc etc. ; X = CH₂, NCOCF₃, SiR₂, SO, O etc. ;

論 本

フェノール誘導体の酸化的カップリング反応は、Morphine alkaloid (モルヒネアルカロ イド)、Amaryllidaceae alkaloid (ビガンバナアルカロイド)を始めとする天然物の生合 成上、重要な反応である。¹³⁾Barton と Cohen が diphenolic benzyltetrahydroisoquinoline 前駆 体を酸化反応に付すと aporphine の A 環及び D 環を形成できるであろうとの仮説を立て たのは 1957 年のことであった。その後、この仮説の正しいことが植物生化学及び有機 合成化学の両面から証明されるようになると、²⁶⁾ Amaryllidaceae akaloid の合成を指向し たフェノール誘導体の生合成類似酸化的カップリング反応がタリウム (III) 塩、²⁷⁾ バナ ジウム (V) 塩²⁸⁾ 等の重金属酸化剤を用いて盛んに行われるようになった。しかし、重金 属酸化剤を用いるこの種の反応は、選択性や収率が低いといった問題の他に、タリウム (III) 塩、バナジウム (V) 塩には重篤な毒性があるので細心の注意を払って実験しなけれ ばならないという大きな問題を抱えていた。1980年代初頭、いくつかのグループが超 原子価ヨウ素 (III) 試薬を用いるフェノール誘導体の酸化的カップリング反応を報告して いるが、^{IIa-c)}それらのほとんどは適用できる基質に制限があったり、収率が低い等、更 なる検討を要するものであり、その後この試薬はあまり用いられなかった。

このような状況下、著者の所属する研究室では超原子価ヨウ素 (III) 試薬である PIFA や PIDA を用いるフェノール誘導体の酸化的カップリング反応を極性が高く、求核性が 低い溶媒、2,2,2-trifloroethanol (CF₃CH₂OH) や 1,1,1,3,3,3-hexafluoro-2-propanol ((CF₃),CHOH)を用いて行うことにより、実用的なフェノール誘導体の酸化的カップリン グ反応になることを見い出し、^{11d.f.h.j.29)} 簡便な azacarbocyclic spirodienoens の合成法を開 発した。当研究室では、この反応を用いて抗癌活性海洋性天然物 discorhabdin C の全合 成を達成している。115)

著者は上記のように実用的な超原子価ヨウ素(III) 試薬をフェノール誘導体の酸化的カッ プリング反応に応用し、様々な生理活性の面で近年注目を集めている Amaryllidaceae akaloid³⁰⁾の合成を指向し、研究に着手した。その結果、超原子価ヨウ素(III) 試薬を用 いるフェノール誘導体の位置選択的酸化的カップリング反応を開発し、crinine-type Amaryllidaceae alkaloid 、galanthamine-type Amaryllidaceae alkaloid 双方を簡便に与える新合 成法の開発に成功した。

なお、Amaryllidaceae alkaloid は生合成上 norbelladine を共通の前駆体としており、 norbelladineの分子内酸化的カップリングの進行部位によって、多様な構造を生じる。 norbelladineの分子内酸化的カップリング部位という観点から構造を大別すると galanthamine-type (para-ortho' カップリング)、crinine-type (para-para' カップリング)、 lycorine-type (ortho-para' カップリング) に分けることができる (Scheme 7)。

既知の方法^{28a)}を参考にして norbelladine 誘導体(1)を合成し、どのような1 がより効率 良くフェノール誘導体の位置選択的酸化的カップリング反応を進行させ得るかを検討し た。まず、用いる溶媒について検討した (Table 1)。その結果、1aは PIFA と CF3CH2OH 中-40度で反応し、カップリング体(2a)を61%の収率で与えることを見出した。本反 応は極性が高く求核性の低い溶媒である (CF3CH2OH や (CF3), CHOH) 中では良好に進行 し、極性が高く求核性の高い溶媒 (CH,CN) 中ではカップリング体 (2a) (50%) の他に、 acetamide 誘導体(3)も得られる。その他の溶媒を使用するとカップリング体は全く得ら れない。

第1節 Norbelladine 誘導体の位置選択的 para-para' カップリング反応の開発と crinine-type Amaryllidaceae alkaloid (+)-maritidine 合成鍵化合物の合成

次に、norbelladine 誘導体の2級アミンの保護基について検討した(Table 2)。その結果、 N-acyl 体や N-alkoxycarbonyl 体は目的のカップリング体を与えるが、N-alkyl 体や無保護 の化合物はカップリング体を予想通り与えなかった。

Table 2. Phenolic Coupling Reaction of 1 Protected as an Amide or a Carbamate

次に、norbelladine 誘導体の C-3' 位及び C-4' 位のフェノール性水酸基について検討し た。その結果、trialkylsilyl 基で保護した化合物 (1i、1j、1k) の方が alkyl 基で保護した 化合物 (1a、1h、1l) よりも、若干収率が低くなること、acetyl 基で保護した化合物 (1m、1n、1o) は更に収率が低くなること、無保護の化合物 (1p、1q、1r) はほとん どカップリング体を与えないことが明らかとなった (Table 3)。 Table 3. Phenolic Coupling Reaction of Norbelladine Derivatives

enone Cou	OH		, en adme 1	0	
	4'.OF	32	PIFA		OR ²
(N.	3'0	OR ¹ C	F ₃ CH ₂ OH -40°C	N-	TOF
F ₃ COC	1a - r			F3COC	2a - r
Entry	Substrate	R ¹	R ²	Product	Yield(%)
1	1a	Me	Me	2a	61
2	1h	— c	H ₂ —	2h	56
3	1i	TBDMS	Me	2i	42
4	1j	TBDMS	TBDMS	2j	42
5	1k	Me	TBDMS	2k	35
6	11	PhCH ₂	Me	21	49
7	1m	Me	^t BuCO	2m	32
8	1n	Me	CH ₃ CO	2n	37
9	10	CH ₃ CO	Me	20	trace
10	1p	Н	Me	2p	19
11	1q	Me	н	2q	trace
12	1r	н	н	2r	trace

2aのアセチル基は炭酸カリウム、³¹⁾ **2b**のアルコキシカルボニル基は塩酸で容易に除 去でき、それぞれ (±)-oxomaritidine (4)、5 を与えた (Scheme 8)。

得られた結果を基に、L-tyrosine methyl ester と isovanilin より合成した norbelladine 誘導体(6)と PIFA を CF₃CH₂OH 中、-40 度で反応させると、カップリング体(7) が良好な収

率で得られた。7 は (+)-maritidine 合成の重要中間体^{27b)}であり、重金属酸化剤である Tl(OCOCF₃)₃を用いて達成されてきた7の合成が毒性の低い PIFAの使用により可能で あることが明らかとなった (Scheme 9)。

Norbelladine 誘導体の C-4 位のフェノール性水酸基についても検討した。その結果、 tialkylsilyl 基で保護した化合物 (**8a**、**8b**) は **2a** を良好な収率で与えるのに対し、alkyl 基 で保護した化合物 (**8d**、**8e**) は 5,6,7,8-tetrahydrobenzoazocine 環 (**9d**、**9e**) を与えること が分かった (Table 4)。

最後に、norbelladine 誘導体の C-3' 位のフェノール性水酸基をmethyl 基や trialkylsilyl 基 で保護した基質 (10) を合成し、CF₃CH₂OH 中で PIFA と反応させた。その結果、選択性 が高くはないものの、*para-para*' カップリング体 (11) と *para-ortho*' カップリング体 (12) の両方が得られた (Table 5)。

本反応のメカニズムは以下のように考えている (Scheme 10)。 R=Hのフェーノール誘 導体の場合は、水酸基の酸素原子と超原子価ヨウ素試薬のヨウ素中心とが反応した中間 体(A)を経て反応が進行しており、R=alkylのフェノールエーテル誘導体の場合は、 ラジカル中間体(B)を経てスピロジエノン体(C)を生成し、Cのオキシム塩の O-R 結 合が開裂すれば2を生じ (route a)、ジエノンーフェノール型の転位反応を起こせば9を 生じる (route b) ものと思われる。

-10-

Table 5. Phenolic Coupling Reaction of Substrates Bearing a Methoxy or Silyloxy Group at the

-11-

第2節 PIFA を用いる galanthamine-type Amaryllidaceae alkaloids 簡便合成法の開発

第1節で収率良く進行した norbelladine 誘導体の位置選択的 para-para' カップリング反 応(Type I反応)を para-ortho'位で選択的に進行させることができるなら、 galanthamine-type Amaryllidaceae alkaloid の新合成法となるのではないかと考え、研究に 着手した。なお、galanthamine (13)の生合成経路は、著者の所属する研究グループとドイ ツ、ミュンヘン大学の Zenk 教授との共同研究によって、Scheme 11 のように提唱するこ とができた。32)

今回著者が標的にした galanthamine-type Amaryllidaceae alkaloid には鎮痛活性、アセチル コリンエステラーゼ阻害活性を始めとする興味深い生物活性33)が報告されており、大き な注目を集めている。それらの中でも galanthamine (13) とその類縁化合物はそれらの持 つアセチルコリンエステラーゼ阻害活性の故、アルツハイマー病治療薬として期待さ れており、13は臨床開発中の化合物である。34)

このように活性に富む galanthamine 型 Amaryllidaceae alkaloid 及びその誘導体の合成は 化学的にも薬理学的にも大きな興味の持たれるところであり、現在までに、数多くの化 学者がこれらの合成を試みてきた。Galanthamine (13)、³⁵⁾ narwedine (14)、³⁶⁾ lycoramine (15)、³⁶⁾ norgalanthamine (16)³⁷⁾の合成例は報告されているが、フェノール性水酸基を 持つ sanguinine (17)、³⁸⁾ leucotamine (18)^{38a) 39)}の合成は達成されていない。また、既知 の合成法では、重金属酸化剤を用いなければならない上に、酸化的カップリング反応の 位置選択性が低い、化学収率が低い等の問題が残っており、様々な種類の galanthaminetype Amaryllidaceae alkaloid 誘導体を簡便に合成できる新しい合成法の開発が待たれてい た。

著者は、norbelladine 誘導体の位置選択的 para-ortho' カップリング反応の開発、簡便な

galanthamine 型 Amaryllidaceae alkaloid 誘導体合成法の構築、galanthamine (13)、narwedine (14)、lycoramine (15)、norgalanthamine (16) 及び sanguinine (17) の合成に成功した (Scheme 12)。なお、16及び17は従来法では特に合成が困難と考えられるアルカロイ ドである。

17 : sanguinine R¹: OH, R²: H, R³: Me 18 : leucotamine R1:OCOCH2CH(OH)CH3

15 : lycoramine R¹: OH, R²=R³: Me

第1項 Norbelladine 誘導体の位置選択的 para-ortho' カップリング反応の開発

para' 位が無保護の norbelladine 誘導体を超原子価ヨウ素試薬と反応させると、 para-ortho' カップリング体は全く得られない。著者は norbelladine 誘導体の位置選択的 para-ortho' カップリング反応を開発するべく、norbelladine 誘導体の para' 位及びカテコー ル基を様々な置換基で保護した基質(19a~19k)を tyramine と対応するアルデヒド (22a ~ 22k) から合成した (Scheme 13)。このようにして合成した 19a ~ 19k と PIFAとの反応を種々の溶媒中で検討した。その結果、CF₃CH₂OH が溶媒として適して いるが、benzeneや dichloromethane は全くカップリング体を与えなかった。Table 6 に示 したように、para' 位を trialkylsilyl 基、カテコール基を methylenedioxy 誘導体で保護した norbelladine 誘導体 (19e~19g、19j、19k) が para-ortho' カップリング体を中程度の 収率で与えることを見出した。興味深いことに、これらの基質は既知法で用いられてい る酸化剤(K₃FeCN₆、Mn(acac)₃)とは全く反応しない化合物類である。

Table 6. Intramolecular Coupling Reaction Using PIFA

本反応は Type I のメカニズムで進行すると推察される。すなわち、フェノール性水酸 基の酸素原子と、超原子価ヨウ素試薬のヨウ素中心が反応し、酸素原子から芳香環に電 子が流れることにより、本分子内閉環反応が進行している。

Scheme 13

第2項 Galanthamine-type Amaryllidaceae alkaloid 骨格の構築

第1項で得られた para-ortho' カップリング体を galanthamine-type Amaryllidaceae alkaloid 骨格へ導くべく種々検討した。その結果、20f、20g、20j、20kのみが目的の骨格を 与えることを見出した。すなわち、20f、20g、20j、20kはトリフルオロ酢酸で処理 すると、para' 位の trialkylsilyl 基と、カテコール基の diphenylmethylene が容易に脱離し、 生成したフェノール性水酸基のジェノンへの分子内 Michael 付加を経て、galanthaminetype Amaryllidaceae alkaloid 骨格 (27)を与えること、27のメチル化により、N-demethyl-N-(trifluoroacetyl) narwedine (28) を定量的に与えることを見出した (Scheme 14)。

また、**20f** を水系溶媒中で炭酸カリウムと反応させると、trifluoroacetyl 基 が脱離し、 生成した 2 級アミンがスピロジエノン部と分子内 Michael 付加した crinine-type *Amaryllidaceae* alkaloid 骨格 (**29**) を与えること、**20f** を濃塩酸、あるいは BCl₃ と反応させ ると、脱 silyl 体 (**30**) を与えること、**20f** を 5 規定塩酸ーエタノール、あるいは BBr₃ と 反応させると、ジエノンーフェノール転位を経て、環状 biphenyl 体 (**31**) を与えること も明らかにした (Scheme 15)。

Scheme 15

TMS

F3COC

-16-

第3項 Galanthamine-type Amaryllidaceae alkaloids のラセミ合成

得られた galanthamine-type Amaryllidaceae alkaloid 骨格 (27) から、galanthamine (13)、 narwedine (14)、lycoramine (15)、norgalanthamine (16) 及び sanguinine (17) のラセミ合成 に成功した。すなわち、narwedine (14) は 27 のフェノール性水酸基のメチル化、 trifluoroacetyl amide の加水分解と還元的メチル化を経て合成した。14 のカルボニル基を 立体選択的に還元して、galanthamine (13) を得た。13 のオレフィンを接触水素還元し、 lycoramine (15)を合成した。Norgalanthamine (16) は 27 の trifluoroacetyl amide の加水分解 とカルボニル基の還元により合成した。なお、16 の2 級アミン部位を還元的にメチル 化すると、13 と一致した。sanguinine (17) は 27 のフェノール性水酸基の TBDMS 化、 trifluoroacetyl amide の加水分解とカルボニル基の立体選択的還元、還元的メチル化を経 て合成した (Scheme 16)。

F3COC TMS 31

-17-

本合成法は、これ迄報告された合成法に比して、以下の点で優れた特徴を有している。

- 1) これ迄の合成法は norbelladine 誘導体の位置選択的 para-ortho' カップリング反応で 毒性の強いK₂Fe(CN)^{35b, c, f)}等の重金属酸化剤を用いていたが、本合成法は緩和で 毒性の低い酸化剤 phenyliodine(III) bis(trifluoroacetate) (PIFA)を用いており、且つ収 率も高い。
- 2) Galanthamine 骨格の二つのフェノール性水酸基とアミンの修飾が従来法に比して 容易なので、より多くの galanthamine-type Amaryllidaceae alkaloid 誘導体を簡便に合 成できる。

最近、光学活性な galanthamine ((-)-13)は tyramine の代わりに光学活性な tyrosine を用 いる方法、35d.e)(±)-13の光学分割35b)、また、この種のアルカロイド合成の重要中間体で ある (-)-14 あるいは (+)-14 は (±)-14 の動的光学分割376) 40) によりそれぞれ合成された。 したがって、光学活性な galanthamine-type Amaryllidaceae alkaloid は、今回著者が開発し た合成法とこれら上記の既知の不斉合成法を組み合わせることにより可能と考えられる。

第2章 PIFAを用いるビアリールカップリング反応

ビアリールを部分構造に持つ生理活性天然物 (polyketide、terpene、lignane、 coumarin、flavonoid、tannin等)は数多い。⁴¹⁾ 今日、ビアリール体はこれら天然物の重 要な合成シントンとして、また不斉触媒として注目されており、42)天然型、非天然型を 問わずその新規合成法の確立は極めて意義深い。 既知のビアリール体の合成法は以下の二つに分類できる。

- (1) Ullmann カップリングに代表される還元的手法。
- (2) 重金属酸化剤を用いる(生合成類似の)フェノール類の酸化的カップリング反 厅
- (1)の還元的手法は更に以下のように分類できる。 <A>ハロゲン化アリールと銅を用いる Ullmann カップリング。43) <A>で銅の代わりに化学当量のニッケル(0)を用いる Semmelhack 法。44) ウム等の還元剤存在下反応させる方法。45)

 - 媒存在下ハロゲン化アリールと反応させる Kharash 反応。46)
 - ゲン化アリール類と反応させる方法。47)
 - <F>オキサゾリンを用いる Meyers の方法。48)

<G>シテン化銅を用いる方法。49) クロスカップリング体は<C>~<F>の反応により収率良く得られる。

一方、フェノールエーテル誘導体の分子内酸化的ビアリールカップリング反応を用い てもクロスカップリング体は合成が可能である。タリウム(III)、バナジウム(V)、ルテ ニウム (IV)、鉄 (III) 等の重金属酸化剤を用いて、aporphine alkaloid、lignan、tannin が生 合成類似に合成されている。50)

しかし、高度に置換された対称及び非対称ビアリール体の合成は上記の(1)酸化的、 (2) 還元的いずれの手法を用いても成功していない。更に問題なことに、重金属酸化 剤は毒性が強く、取り扱いに注意を要する。これらの問題を解決すべく、著者は毒性が 低く取り扱いの容易な超原子価ヨウ素(III) 試薬を用いる酸化的ビアリールカップリング 反応を検討した。

既に著者の所属する研究室では、(CF,),CHOH 或いは CF,CH,OH 中 PIFA を用いると、 電子豊富な芳香環に窒素、炭素、酸素、硫黄求核種が導入されることを見出している (Scheme 17、緒論では Type IIに分類)。²¹⁾

<C>ハロゲン化アリールと触媒量の低原子価ニッケルを亜鉛や水酸化ナトリ

<D>Grignard 試薬あるいは有機亜鉛試薬をニッケル(あるいはパラジウム)触

<E>有機ホウ素試薬(或いは有機すず試薬)をパラジウム触媒存在下、ハロ

著者は本反応を応用して、フェノールエーテル誘導体の酸化的分子内ビアリールカッ プリング反応を開発し、得られたカップリング体をホルミル基、メチル基、フェノール 性水酸基の置換した2,2'-二置換ビアリール体へ首尾良く誘導することに成功した (Scheme 18) o

N, S, O containing

heterocyclic compounds

第1節 PIFAを用いる分子内ビアリールカップリング反応

用いて合成し、PIFAと様々な溶媒中 で反応させた。何も添加剤も加えない 場合、フェノールエーテル誘導体の分 子間反応同様、極性が高く求核性の低 い溶媒である ((CF₄),CHOH、 CF₃CH₂OH)が良好な収率でビアリー ルカップリング体を与えた。一方、三 フッ化ホウ素エーテル錯体 (PIFAの トリフルオロアセトキシリガンドに配 位し、PIFA 自身の活性を向上させる) を添加した場合、カップリング体の収

率が大きく向上した。特にこの効果は dichloromethane 中で著しく、91% という高収率 でカップリング体が得られ、PIFAを効率良く反応させる新しい反応系を見出した (Table 7)0

次に、本反応の一般性と汎用性を検討するため、様々な1,3-diarylpropane (32b-32e)、 N-benzyl-N-phenethylamine 誘導体 (33a - 33c)、N,N-dibenzylamine 誘導体 (34a - 34e) を 既知法52)を参考に合成し、それぞれ本ビアリールカップリング反応に付した(Table 8)。 その結果、いずれの基質でも収率良くビアリールカップリング体が得られ、本法が有用 であることが明らかとなった。

Table 8. Biaryl Coupling Reaction of 32 - 34 with PIFA

R ³ -	R	5 X	R ²	2 E CH	PIFA 3F ₃ •Et 1 ₂ Cl ₂ ,	420 -40°C	R ⁴ R ³		5-37
32-34	R ¹	R ²	R ³	R ⁴	R ⁵	n	Х	35-37	Yield (%)
32a	OMe	Н	OMe	OMe	Н	1	CH ₂	35a	91
32b	-00	H ₂ O-	-OCH	H2O-	н	1	CH ₂	35b	91
32c	OMe	OMe	OMe	OMe	н	1	CH ₂	35c	99
32d	OMe	OMe	OMe	OMe	OMe	1	CH ₂	35d	92
32e	OMe	OMe	OMe	OTBS	н	1	CH ₂	35e	75
33a	OMe	н	OMe	OMe	н	2	NCOCF3	36a	89
33b	OMe	OMe	OMe	OMe	н	2	NCOCF3	36b	68
33c	OMe	OMe	OMe	OMe	OMe	2	NCOCF3	36c	52
34a	-00	H ₂ O-	-OCH	H2O-	н	1	NCOCF3	37a	94
34b	OMe	OMe	OMe	OMe	н	1	NCOCF3	37b	85
34c	OMe	OMe	OMe	OMe	OMe	1	NCOCF3	37c	85
34d	OMe	OMe	OMe	OTBS	н	1	NCOCF3	37d	64
34e	OMe	OMe	OMe	OAc	Н	1	NCOCF3	37e	60

この結果を受け、二つの芳香環を結ぶテンプレートを本ビアリールカップリング反 応後に容易に除去可能なテンプレートに変えて検討を加えた。すなわち、 dibenzo heterocyclic 化合物、silaketal 誘導体 (38a - 38f)、dibenzyl sulfide (39)、dibenzyl sulfoxides (40a - 40d)、dibenzyl sulfones (41a、41b)、dibenzyl ethers (42a - 42f) のそれぞれを Scheme 19 に示した方法で合成し、PIFA-BF3・Et,Oを用いてビアリールカップリング反応 を試みた。

Scheme 19 MeO OMe 1) Et₃N MeO 2) ^tBu₂Si(OTf)₂ OMe OMe DMF, 80°C .OMe 0 Si 38a ^tBu 1) phenols But 2) Et₃N 3) ^tBu₂Si(OTf)₂ OH unsymmetrical silylene DMF, 80°C compounds (38) OMe MeC OMe m-CPBA sulfoxide MeO Na2S-9H2O (40) CH₂Cl₂, 0°C OMe EtOH, rt OMe 30%H2O2 sulfone 39 AcOH, reflux (41) 1) NaOH 2) ArCH₂SH unsymmetrical CH₂Br sulfoxides and sulfones sulfides EtOH, rt (40, 41) OMe MeO OMe OMe 1) NaH MeO-OMe 2) benzyl bromides unsymmetrical or ethers (42) CH₂OH THF, rt

結果は Table 9 に示したが、38a - 38f は対応するカップリング体 (43a - 43f) を良い収率で与えた。これらの中でも di-tert-butyl silaketal 誘導体 (38d - 38f) の収率は高い。元来、 silaketal は二つのアルコール性水酸基を結ぶ基質として Diels-Alder 反応等の場で利用されてきた保護基であるが、 53 今回フェノール性水酸基の架橋にも適用可能であることが 明らかとなった。なお、反応中、silaketal の脱離は確認されなかった。

42a

含硫黄フェノールエーテル誘導体 (39-41)の中では、sulfoxides (40a-40d)、sulfone (41a、41b) が良い収率で対応するビアリールカップリング体を与えたが、sulfide (39) は全くカップリング体を与えなかった。これは恐らく sulfide が PIFA と敏感に反応し、 様々な酸化反応が進行するためと考えられる。

42a-42f も対応するカップリング体 (46a-46f) を与えた。なお、ベンジル位の酸化 は全く観察されず、目的のカップリング反応のみが選択的に進行した。 Table 9. Biaryl Coupling Reaction of Compounds 38 - 42 with PIFA

R ¹	$R^2 R^3 R'$		5 - R ⁶	PIFA		R ² F	R ³ R ⁴	R ⁵ R ⁶
		-		CH _a Cla	40°C	-	7	<u>_</u>
	X-Y-1	38-	42	0112012,	10 0	,	(-Y-X	43-46
38-42	$R^1 R^2$	R ³	R^4	R ⁵ R ⁶	Х	Y	43-46	Yield(%)
38a	OMe OMe	н	н	OMeOMe	0	Si ⁱ Pr ₂	43a	56
38b	-0CH20-	н	н	-0CH20-	0	Si ⁱ Pr ₂	43b	69
38c	OMe OMe	н	н	-OCH2O-	0	Si ⁱ Pr ₂	43c	46
38d	OMe OMe	Н	н	OMeOMe	0	Si ^t Bu ₂	43d	81
38e	-0CH20-	н	Н	-OCH2O-	0	Si ^t Bu ₂	43e	89
38f	OMe OMe	н	н	-OCH2O-	0	Si ^t Bu ₂	43f	83
39	OMe OMe	н	н	OMeOMe	CH ₂	S		
40a	OMe OMe	н	н	OMeOMe	CH ₂	SO	44a	73
40b	-OCH2O-	н	н	-0CH20-	CH ₂	SO	44b	71
40c	OMe OMe	н	н	-0CH20-	CH ₂	SO	44c	59 (73) ^{a)}
40d	OMe OMe	OMe	н	OMeOMe	CH ₂	SO	44d	42 (73) ^{a)}
41a	OMe OMe	н	н	OMeOMe	CH ₂	SO ₂	45a	78
41b	-OCH2O-	Н	Н	-OCH2O-	CH ₂	SO ₂	45b	72
42a	OMe OMe	Н	н	OMeOMe	CH ₂	0	46a	85
42b	-OCH2O-	н	н	-OCH2O-	CH ₂	0	46b	80
42c	OMe OMe	н	н	-OCH2O-	CH ₂	0	46c	51
42d	OMe OMe	OMe	н	OMeOMe	CH ₂	0	46d	50
42e	OMe OMe	OMe	OMe	OMeOMe	CH ₂	0	46e	38

a) Yields based on the reacted substrates are given in parentheses.

本ビアリールカップリング反応は先に著者の属する研究室で開発したフェノールエー テル類の分子間求核種導入反応²¹⁾と同様のメカニズムで進行しているものと考えている。 すなわち、電子豊富な芳香環と PIFA-BF₃・Et₂O 試薬がカチオンラジカル中間体を形成し、 もう一方の芳香環が求核種として導入され生成物を与える (Scheme 17 参照)。 第2節 テンプレートの選択的除去

第1節で得られたビアリールカップリング体のテンプレートを選択的に除去し、2. 2' -二置換ビアリール体へ誘導した (Table 10)。

B: Raney Ni (w-1)/EtOH, reflux. 6h: C: DDQ/CH2Cl2-H2O (18:1), reflux, 24h.

すなわち、silaketal体(43d-43f)をテトラブチルアンモニウムフルオリドと反応させ ると脱 silaketal 化が進行し、2, 2' 一二水酸化ビフェニル体 (47d-47f) が、sulfoxide 体 (44b) を ethanol 中 Raney ニッケルと反応させると加水素分解が進行し、2, 2' -二 メチルビフェニル体 (48b) がそれぞれ良い収率で導かれる。44b 以外の sulfoxide 体は ethanol に対する溶解性が悪く、あまり反応が進行しなかった。

また、dibenzyl ethers 体 (43d-43f) を DDQ⁵⁴⁾ と反応させると2, 2' - ニホルミルビ フェニル体(47d-47f)が中程度の収率で導かれた。

著者はフェノール及びフェノールエーテル誘導体と超原子価ヨウ素試薬である PIFA を用いる新たな炭素炭素結合形成反応の開発を検討した結果、以下に示す新知見を得る ことができた。

- 1) Norbelladine 誘導体(1)と PIFA を CF₃CH₂OH 中 -40 度で反応させると、 para-para' 化合物の合成に成功した。
- した。
- 3) 二つの芳香環をテンプレートで結んだ基質の分子内ビアリールカップリング反応 ビアリール体を得る方法を見出した。

結 論

位での位置選択的酸化的カップリング反応が進行することを見出した。更に、本 手法を応用して、 crinine-type Amaryllidaceae alkaloid、(+)-maritidine 合成における鍵

2) 1) での知見を応用し、norbelladine 誘導体の para-ortho' 位での位置選択的酸化的 カップリング反応の開発に成功した。得られたカップリング体から、アルツハイ マー病治療を指向したアセチルコリンエステラーゼ阻害薬として近年注目されて いる galanthamine-type Amaryllidaceae alkaloids の簡便な合成法を開発することに成功

の開発に成功し、フェノールエーテル誘導体の芳香環へ電子豊富な芳香環も炭素 求核種として導入可能であることを明らかにした。また、得られたカップリング 体のテンプレートを選択的に脱離することにも成功し、収率良く対称及び非対称

謝 辞

本研究に際して終始御懇篤なる御指導と御鞭撻を賜りました、恩師、大阪大学大学院 薬学研究科、北泰行教授に深く感謝致します。

実験に際し、種々の御指導と御助言を戴きました、高田 威 博士、御協力戴きました、 業天 倫代 修士、中島 麻記子 修士、濱田 竜爾 修士、内海 沙織 学士に感謝致します。 種々御助言、御便宜戴きました、大阪大学大学院薬学研究科、当麻 博文 博士、藤岡 弘道 助教授、赤井 周司 博士の他、分子合成化学分野の皆様に感謝致します。

天然より単離した norgalanthamine、galanthamine、sanguinineの NMR スペクトルを御 供与戴きました、徳島大学薬学部、小林 茂 名誉教授、木原 勝 教授に感謝致します。 元素分析ならびに質量分析を測定して戴きました、大阪大学大学院薬学研究科、元井 律子 技官、千原 容子 技官、藤原 久美子 技官に感謝致します。

奨学金を貸与頂いた日本育英会に感謝致します。

最後に、ながきに亘る学生生活をあらゆる面から支援してくれた友人、そして家族に 感謝します。

実験の部

融点 (mp) はすべて未補正であり、柳本微量融点測定器を用いて測定した。赤外線吸収 (IR) スペクトル は島津 FTIR-8100 型を用いて測定した。核磁気共鳴 (¹H NMR) スペクトルは VARIAN VXR-200 型 (200 MHz)、JEOL JNM-EX270型 (270 MHz)、JEOL JNM-AL300型 (300 MHz) または JEOL JNM-GX500型 (500 MHz)を用い、tetramethylsilan (SiMe₄) または chloroform (CDCl₃) を内部標準物質として測定した。質量分 析 (MS) スペクトル、および高分解能質量分析 (HRMS) スペクトルは、 JEOL JMS-D300 型を用い、 20 eV または 70 eV の直接法で測定した。 紫外、可視吸収 (UV-Vis) スペクトルは、島津 UV-2100 型 または 島津 UV-2200 型を用いて測定した。カラムおよびフラッシュカラムクロマトグラフィーの吸着剤は、各々 Merck Kieselgel 60 (70-230 mesh ASTM)、Fuji Silysia Chemical silica gel BW-300 を使用した。分取用薄層ク ロマトグラフィー (prep. TLC) は Merck pre-coated TLC plates, silica gel 60 Frsa を使用した。抽出液は無水硫 酸マグネシウム、または無水硫酸ナトリウムを用いて乾燥した。 反応試薬として用いた phenyliodine(III) bis(trifluoroacetate) (PIFA) は、市販のphenyliodine(III) diacetate (PIDA)を、trifluoroacetic acid から再結晶することにより合成した。また、PIFA は、和光純薬工業株式会 社、東京化成工業株式会社、Aldrich 社、Lancaster 社、および Fluka 社より市販されている。 (CF₃)₂CHOH、および CF₃CH₂OH は市販品を再精製を行わず、そのまま使用した。

1a、1g、1h、1p、6は文献既知の方法^{28a)}で合成した。32a、32c、33a、41b、42aも文献既知 の方法52)で合成した。

第1章第1節の実験

tert-Butyl N-(3,4-dimethoxybenzyl)-N-(4-hydroxyphenethyl)carbamate (1b) の合成

1g (1.83 g, 6.36 mmol) と sodium carbonate (674 mg, 6.36 mmol) の H₂O (15 mL)-dioxane (15 mL) 懸濁液に di-tert-butyl dicarbonate (1.53 g, 7.00 mmol)を0 ℃ で加え、1 時間激しく撹拌した。反応液に H,O を加え、 ethyl acetate (AcOEt) で抽出し、brine で洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 2:1) で精製すると1b (2.42 g, 98%) が無色油状物として得られた。 **1b** : IR (KBr) 3350, 1690, 1670 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.48 (s, 9H), 2.67, 2.72 (brs, 2H), 2.28, 3.37 (brs, 2H), 3.84 (s, 3H), 3.86 (s, 3H), 4.30 (brs, 2H), 4.98 (s, 1H), 6.73-6.80 (m, 5H), 6.97 (brs, 2H); HRMS (EI) calcd for C22H29NO5 (M⁺) 387.2046, found 387.2070.

2-(Trimethylsilyloxy)ethyl N-(3,4-dimethoxybenzyl)-N-(4-hydroxyphenethyl)carbamate (1 c) O 合成

1g (224 mg, 0.779 mmol) と sodium carbonate (72.0 mg, 0.857 mmol)の H₂O (2.0 mL)-dioxane (5.0 mL) 溶液に 2-(trimethylsilyl)ethyl 4-nitrophenyl carbonate (242 mg, 0.857 mmol) を室温で加え、12 時間撹拌した。反応 液に H₂O を加え、AcOEt で抽出し、sat. NaHCO₃ 水溶液、H₂O、brine で洗浄し、濃縮留去した。得られ た残渣をカラムクロマトグラフィー (SiO2, n-hexane/Et2O=1:1) で精製すると 1c (264 mg, 78%) が無色結晶 として得られた。

1 c : mp 95-96 °C (from Et₂O/n-hexane); IR (KBr) 3350, 2836, 1671 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.04 (s, 9H), 1.02 (t, 2H, J = 8.6 Hz), 2.69 (brs, 2H), 3.34 (brs, 2H), 3.84 (s, 3H), 3.86 (s, 3H), 4.22 (brs, 2H), 4.32 (s, 2H), 5.59 (s, 1H), 6.73-6.82 (m, 5H), 6.98 (d, 2H, J = 7.6 Hz). Anal. Calcd for C₂₃H₃₃NO₅Si: C, 64.01; H, 7.71; N, 3.25. Found C, 63.89; H, 7.54; N, 3.29.

Ethyl N-(3,4-dimethoxybenzyl)-N-(4-hydroxyphenethyl)carbamate (1d) の合成

1g (374 mg, 1.30 mmol) と potassium carbonate (K₂CO₃) (1.08 g, 7.81 mmol) の acetone (12 mL) 懸濁液に ethyl chloroformate (0.499 mL, 5.21 mmol) を加え、1.5 時間室温で撹拌し、12 時間加熱還流した。反応液を空冷 後、溶媒を濃縮留去し、カラムクロマトグラフィー (SiO, n-hexane/AcOEt = 2:1) で精製すると、N,O-

-27-

diprotected compound が得られた。得られた N, O-diprotected compound と NaOH (201 mg, 5.03 mmol)の EtOH (6.4 mL)-H₂O (0.50 mL) 溶液を 70 ℃で 30 分撹拌した。 空冷後、反応液に sat. NH₄CI 水溶液を加え、 濃縮留去した。AcOEtで抽出し、H2O、brineで洗浄し、濃縮留去した。得られた残渣をカラムクロマト グラフィー (SiO₂, *n*-hexane/AcOEt = 3:2) で精製すると 1d (397 mg, 85%) が無色油状物として得られた。 1d : IR (KBr) 3350, 1695, 1671 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 1.27 (t, 3H, J = 7.3 Hz), 2.70 (brs, 2H), 3.35 (brs, 2H), 3.85 (s, 3H), 3.86 (s, 3H), 4.18 (brs, 2H), 4.32 (s, 2H), 5.31 (s, 1H), 6.73-6.82 (m, 5H), 6.99 (brs, 2H); HRMS (EI) calcd for C20H25NO5 (M⁺) 359.1733, found 359.1745.

N-(3,4-Dimethoxybenzyl)-2,3,4,5,6-pentafluoro-N-(4-hydroxyphenethyl)benzamide (1e) の合成

1g (142 mg, 0.495 mmol)の pyridine (2.0 mL) 溶液に 0 ℃で pentafluorobenzoyl chloride (0.21 mL, 1.46 mmol) を加え、45 分撹拌した。反応液に H2O を加え、methylene chloride (CH2Cl2) で抽出し、H2O、brine で洗浄 し、濃縮留去し、残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt = 3:1) で精製すると、N,Odiprotected compound が得られた。得られたN,O-diprotected compound (57.6 mg, 0.0852 mmol)の MeOH (6.0 mL)-H₂O (3.0 mL)-CH₂Cl₂ (2.0 mL) 溶液を1時間撹拌し、溶媒を濃縮留去した。得られた残渣をカラムク ロマトグラフィー (SiO2, n-hexane/AcOEt = 3:2) で精製すると 1e (18.2 mg, 44%) が無色油状物として得られ た。

1e : IR (KBr) 3350, 1653 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 2.66 and 2.89 (t, 2H, J = 7.3 Hz), 3.28 and 3.63 (t, 2H) = 7.3 Hz), 3.28 and 3.63 (t, 2H) = 7.3 Hz 2H, J = 7.3 Hz), 3.84 and 3.86 (s, 3H), 3.87 and 3.89 (s, 3H), 4.08 and 4.69 (s, 2H), 4.84 and 4.88 (s, 1H), 6.54 (s, 0.5H), 6.58 (dd, 0.5H, J = 8.5, 1.8 Hz), 6.70-6.88 (m, 5H), 7.09 (d, 1H, J = 8.5 Hz); HRMS (EI) calcd for C24H20NO4F5 (M⁺) 481.1311, found 481.1311.

4-{2-[(3,4-Dimethoxybenzyl)(methyl)amino]ethyl}phenol (1f) の合成

1g (442 mg, 1.54 mmol)の MeOH (20 mL) 溶液に室温で formaldehyde (37% solution in H2O, 6.3 mL)を加え、 1.5 時間撹拌した。空冷後、反応液に NaBH。(1.05 g, 27.7 mmol) を徐々に加え、懸濁液を 30 分撹拌した。 溶媒を減圧留去し、H2Oを加え、AcOEtで抽出し、brineで洗浄し、減圧留去した。得られた残渣をカラ ムクロマトグラフィー (SiO2, AcOEt)で精製すると、1f(423 mg, 91%) が無色油状物として得られた。 1f: IR (KBr) 3400 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.28 (s, 3H), 2.58-2.64 (m, 2H), 2.71-2.77 (m, 2H), 3.50 (s, 2H), 3.83 (s, 3H), 3.87 (s, 3H), 6.72 (d, 2H, J = 8.2 Hz), 6.80 (s, 2H), 6.86 (s, 1H), 7.03 (d, 2H, J = 8.2 Hz); HRMS (EI) calcd for C₁₈H₂₃NO₃ (M⁺) 301.1678, found 301.1668.

N-Trifluoroacetylated Compounds (1h - 1o、8b、8e、10a、10b) 合成の一般法

Norbelladine 誘導体 (NH 体、1.00 mmol)の pyridine (5.0 mL) 溶液に窒素雰囲気下 0 ℃で (CF₃CO)₂O (2.00 -3.00 mmol) を加え、30 分撹拌した。反応液に H₂O を加え、AcOEt で抽出し、10% HCI、H₂O、brine で 洗浄し、減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt) で精製すると 対応する N-trifluoroacetylated compound が高い収率で得られた。

N-(3-tert-Butyldimethylsilyloxy-4-methoxybenzyl)-2,2,2-trifluoro-N-(4-hydroxyphenethyl)acetamide (1 i)

NH 体 (704 mg, 1.82 mmol)、 pyridine (5.0 mL)、 (CF₃CO)₂O (0.51 mL, 3.64 mmol) より合成。 1 i (722 mg, 82%): 無色油状物; IR (KBr) 3400, 1670 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.14 (s, 6H), 0.98 and 0.99 (s, 9H), 2.68-2.82 (m, 2H), 3.41-3.46 (m, 2H), 3.79 and 3.80 (s, 3H), 4.29 and 4.55 (s, 2H), 5.31 (s, 1H), 6.65 (d, 0.5H, J = 2.0 Hz), 6.70 (dd, 0.5H, J = 8.3, 2.0 Hz), 6.74-6.83 (m, 4H), 6.97 (d, 2H, J = 8.3 Hz). Anal. Calcd for C24H32NO4F3Si: C, 59.61; H, 6.67; N, 2.90. Found C, 59.30; H, 6.64; N, 2.84.

N-[3,4-Bis(tert-butyldimethylsilyloxy)benzyl]-2,2,2-trifluoro-N-(4-hydroxyphenethyl)acetamide (1j)

NH 体 (2.26 g, 4.63 mmol)、 pyridine (15 mL)、 (CF3CO)2O (1.3 mL, 9.26 mmol) より合成。

for C₂₀H₄₄NO₄F₃Si₂: C, 59.66; H, 7.60; N, 2.40. Found C, 59.65; H, 7.39; N, 2.46.

N-(4-tert-Butyldimethylsilyloxy-3-methoxybenzyl)-2,2,2-trifluoro-N-(4-hydroxyphenethyl)acetamide (1k)

NH体(271 mg, 0.698 mmol)、pyridine (2.0 mL)、(CF3CO)2O (0.20 mL, 1.40 mmol) より合成。 1k (200 mg, 63%): 無色油状物; IR (KBr) 3400, 1640, 1630 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.15 (s, 6H), 0.99 (s, 9H), 2.69-2.80 (m, 2H), 3.44-3.48 (m, 2H), 3.77 and 3.78 (s, 3H), 4.34 and 4.58 (s, 2H), 5.12 and 5.14 (s, 1H), 6.62-6.83 (m, 5H), 6.97 (d, 2H, J = 8.6 Hz). Anal. Calcd for $C_{24}H_{32}NO_4F_3Si$: C, 59.61; H, 6.67; N, 2.90. Found C. 59.44; H. 6.70; N. 3.01.

N-(3-Benzyloxy-4-methoxybenzyl)-2,2,2-trifluoro-N-(4-hydroxyphenethyl) acetamide (1)

NH体(328 mg, 0.902 mmol)、pyridine (1.5 mL)、(CF₃CO)₂O (0.25 mL, 1.80 mmol)より合成。 11 (409 mg, 99%): 無色油状物; IR (KBr) 3400, 1686 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.62-2.71 (m, 2H), 3.30-3.37 (m, 2H), 3.88 and 3.89 (s, 3H), 4.24 and 4.51 (s, 2H), 4.94 and 4.97 (s, 1H), 5.13 (s, 2H), 6.61 and 6.76 (d, 1H, J = 1.7 Hz), 6.68 and 6.78 (dd, 1H, J = 7.7, 1.7 Hz), 6.74 and 6.76 (d, 2H, J = 8.6 Hz), 6.84 and 6.85 (d, 1H, J = 7.7 Hz), 6.93 (d, 2H, J = 8.6 Hz), 7.27-7.41 (m, 5H); HRMS (EI) calcd for $C_{25}H_{24}NO_4F_3$ (M⁺) 459.1658, found 459.1666.

4-{[(4-Hydroxyphenethyl)(2,2,2-trifluoroacetyl)amino]methyl}-2-methoxyphenyl pivalate (1m)

NH体(170 mg, 0.476 mmol)、pyridine (1.5 mL)、(CF₃CO)₂O (0.20 mL, 1.43 mmol)より合成。 1H), 6.65-6.79 (m, 4H), 6.95-6.98 (m, 3H); HRMS (EI) calcd for C₂₃H₂₆NO₅F₃ (M⁺) 453.1763, found 453.1741.

N-[4-(tert-Butyldimethylsilyloxy)phenethyl]-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide(8b)

60.34; H, 6.89; N, 2.81. Found C, 60.12; H, 6.78; N, 2.81.

N-(3,4-Dimethoxybenzyl)-2,2,2-trifluoro-N-(4-methoxyphenethyl)acetamide (8e)

NH体(470 mg, 1.56 mmol)、pyridine(1.5 mL)、(CF3CO)20 (0.66 mL, 4.68 mmol)より合成。 60.45; H, 5.58; N, 3.52. Found C, 60.24; H, 5.47; N, 3.53.

2,2,2-Trifluoro-N-(4-Hydroxyphenethyl)-N-(3-methoxybenzyl)acetamide (10a)

NH体(199 mg, 0.774 mmol)、pyridine(1.5 mL)、(CF3CO)2O(0.33 mL, 2.32 mmol)より合成。 **10a** (247 mg, 90%): 結晶; IR (KBr) 3400, 1688, 1682 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.75-2.83 (m, 2H), 3.45-3.51 (m, 2H), 3.79 (s, 3H), 4.36 and 4.62 (s, 2H), 5.09 and 5.12 (s, 1H), 6.66 (s, 0.5H), 6.72 and 6.80 (m,

1 j (2.31 g, 85%): 無色結晶; mp 107-108 ℃ (from Et₂O/n-hexane); IR (KBr) 3400, 2955, 1678 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.17 and 0.19 (s, 12H), 0.96 and 0.97 and 0.98 (s, 18H), 2.69-2.80 (m, 2H), 3.41-3.46 (m, 2H), 4.26 and 4.52 (s, 2H), 4.76 and 4.79 (s, 1H), 6.60 and 6.67 (m, 1H), 6.64 (d, 0.5H, J = 2.6 Hz), 6.72-6.81 (m, 3.5H), 6.98 (d, 2H, J = 8.6 Hz); HRMS (EI) calcd for C₂₀H₄₄NO₄F₃Si₂ (M⁺) 583.2761, found 583.2775. Anal. Calcd

1 m (203 mg, 94%): 無色結晶; mp 72-73 ℃ (from Et₂O/n-hexane); IR (KBr) 3450, 1755, 1690 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 1.36 (s, 9H), 2.73-2.84 (m, 2H), 3.44-3.51 (m, 2H), 3.76 (s, 3H), 4.33 and 4.59 (s, 2H), 4.99 (brs,

NH体(168 mg, 0.418 mmol)、pyridine (1.0 mL)、(CF3CO)20 (0.088 mL, 0.627 mmol)より合成。

8b (200 mg, 96%): 無色油状物; IR (KBr) 2950, 1692 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 0.17 (s, 6H), 0.97 (s, 9H), 2.72-2.84 (m, 2H), 3.43-3.51 (m, 2H), 3.85 and 3.87, (s, 6H), 4.28 and 4.57 (s, 2H), 6.61 and 6.76 (d, 1H, J = 1.8 Hz), 6.65-6.85 (m, 2H), 6.77 (d, 2H, J = 8.5 Hz), 6.98 (d, 2H, J = 8.5 Hz). Anal. Calcd for C₂₅H₃₄NO₄F₃Si: C,

8e (635 mg, quant.): 無色油状物; IR (KBr) 1690 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.72-2.87 (m, 2H), 3.43-3.52 (m, 2H), 3.79 (s, 3H), 3.85 (s, 3H), 3.89 (s, 3H), 4.33 and 4.59 (s, 2H), 6.62-6.86 (m, 5H), 7.05 (d, 2H, J = 8.4 Hz); HRMS (EI) calcd for $C_{20}H_{22}NO_4F_3$ (M⁺) 397.1501, found 397.1503. Anal. Calcd for $C_{20}H_{22}NO_4F_3$: C,

-29-

1H), 6.75-6.78 (m, 2.5H), 6.83-6.87 (m, 1H), 6.99 (d, 2H, J = 8.6 Hz), 7.25 and 7.28 (m, 1H); HRMS (EI) calcd for C₁₈H₁₈NO₃F₃ (M⁺) 353.1238, found 353.1256.

N-[3-(tert-Butyldimethylsilyloxy)benzyl]-2,2,2-trifluoro-N-(4-hydroxyphenethyl)acetamide (10b)

NH体(1.32g, 3.68 mmol)、pyridine(5.0 mL)、(CF₃CO)₂O(1.0 mL, 7.36 mmol)より合成。

10b (1.59 g, 96%): 無色油状物; IR (KBr) 3400, 1682 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 0.18 (s, 6H), 0.97 (s, 9H), 2.72-2.84 (m, 2H), 3.43-3.51 (m, 2H), 4.33 and 4.60 (s, 2H), 4.76 and 4.79 (s, 1H), 6.61 and 6.70 (d, 1H, J = 1.8 Hz), 6.69-6.82 (m, 2H), 6.76 and 6.76 (m, 2H), 6.99 and 7.00 (m, 2H), 7.17-7.26 (m, 1H). Anal. Calcd for C₂₂H₃₀NO₃F₃Si: C, 60.90; H, 6.67; N, 3.09. Found C, 60.71; H, 6.63; N, 3.07.

4-{[(4-Hydroxyphenethyl)(2,2,2-trifluoroacetyl)amino]methyl}-2-methoxyphenyl acetate (1n) O 合成

tert-Butyldimethylsilyloxytyramineと vanilin より合成した NH 体を上記の一般法により N-COCF₃体 (1.33 g, 97%) へ誘導した。N-COCF, 体 (1.31 g, 2.71 mmol) を常法により O-acetyl 化した (1.28 g, 90%)。得られた N-COCF₃ O-diCOCH₃ 体 (41.3 mg, 0.0786 mmol)の THF (0.50 mL)、AcOH (14.2 mg, 0.236 mmol) 溶液に tetra-n-butylammonium fluoride (1.0 M solution in THF, 0.086 mL)を加え、5分間撹拌した。反応液の溶媒を 減圧留去し、得られた残渣をカラムクロマトグラフィー (SiO2, CH2Cl2/MeOH = 50:1) で精製すると 1n (30.5 mg, 94%)が無色油状物として得られた。

1n : IR (KBr) 3400, 1767, 1685 cm⁻¹; ¹H NMR (250 MHz, CDCl₂) δ 2.31 and 2.32 (s, 3H), 2.74-2.85 (m, 2H), 3.45-3.54 (m, 2H), 3.79 (s, 3H), 4.34 and 4.59 (s, 2H), 5.48 and 5.50 (s, 1H), 6.67 and 6.74 (s, 1H), 6.73 and 6.75 (d, 2H, J = 8.5 Hz), 6.79-6.82 (m, 1H), 6.95-7.03 (m, 3H); HRMS (EI) calcd for $C_{20}H_{20}NO_5F_3$ (M⁺) 411.1290, found 411.1284. Anal. Calcd for C₂₀H₂₀NO₅F₃: C, 58.39; H, 4.90; N, 3.40. Found C, 58.05; H, 4.95; N, 3.67.

N-[4-(tert-Butyldiphenylsilyloxy)phenethyl]-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide (8c)の合成

1a (159 mg, 0.415 mmol) と imidazole (57.0 mg, 0.830 mmol)の DMF (1.5 mL) 溶液に窒素雰囲気下 tert-butyldiphenylsilyl chloride (1.60 mL, 0.622 mmol) を室温で加え、1時間撹拌した。反応液にH₂Oを加え、 Et₂Oで抽出し、brineで洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 10:1) で精製すると 8c (236 mg, 91%) が無色油状物として得られた。

8 c : IR (KBr) 1690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.09 (s, 9H), 2.67-2.76 (m, 2H), 3.36-3.43 (m, 2H), 3.79 and 3.81 and 3.86 (s, 6H), 4.13 and 4.48 (s, 2H), 6.54 (d, 0.5H, J = 1.7 Hz), 6.57 (d, 0.5H, J = 7.7 Hz), 6.69-6.71 (m, 3H), 6.78 and 6.79 (d, 1H, J = 7.7 Hz), 6.85 (d, 2H, J = 8.6 Hz), 7.33-7.42 (m, 6H), 7.68-7.71 (m, 4H); HRMS (EI) calcd for C35H38NO4F3Si (M⁺) 621.2522, found 621.2522. Anal. Calcd for C35H38NO4F3Si: C, 67.61; H, 6.16; N, 2.25. Found C, 67.45; H, 6.14; N, 2.34.

N-(4-Benzyloxyphenethyl)-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide (8d) の合成

1a (164 mg, 0.429 mmol) と K₂CO₃ (65.2 mg, 0.472 mmol) の EtOH (3.0 mL) 懸濁液に benzyl bromide (0.057 mL, 0.472 mmol)を加え、30分撹拌した。反応液を濾過し、母液の溶媒を減圧留去した。得られた残渣を カラムクロマトグラフィー (SiO2, n-hexane/AcOEt = 3:1) で精製すると 8d (197 mg, 97%) が無色油状物とし て得られた。

8d : IR (KBr) 1690 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.72-2.86 (m, 2H), 3.43-3.53 (m, 2H), 3.85 (s, 3H), 3.88 (s, 3H), 4.32 and 4.59 (s, 2H), 5.05 (s, 2H), 6.65-6.93 (m, 5H), 7.05 (d, 2H, J = 8.4 Hz), 7.29-7.44 (m, 5H). Anal. Calcd for C₂₆H₂₆NO₄F₃: C, 65.95; H, 5.53; N, 2.96. Found C, 65.74; H, 5.45; N, 2.93.

Norbelladine 誘導体の PIFA を用いる酸化的環化反応の一般法

Norbelladine 誘導体 (0.100 mmol) の CF₃CH₂OH (1.0 mL) 溶液に PIFA (0.110 mmol) の CF₃CH₂OH (4.0 mL)

溶液を窒素雰囲気下 -40 ℃ で加え、10 分撹拌した。 溶媒を濃縮留去し、得られた残渣をカラムクロマト グラフィーあるいは prep. TLC で精製すると、カップリング体が良い収率で得られた。

7,8-Dimethoxy-2,3,4,5-tetrahydro-2-(2,2,2-trifluoroacetyl)-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2a)

1a (22.2 mg, 0.0579 mmol)、PIFA (27.4 mg, 0.0637 mmol)、CF3CH2OH (1.0 + 1.5 mL) より合成。 2a (13.4 mg, 61%): 無色結晶; mp 162-163 °C (from Et2O/n-hexane, lit.27b) 159-160 °C); IR (KBr) 1690, 1667, 1626 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.35-2.43 (m, 2H), 3.72 and 3.87 and 3.88 (s, 6H), 3.91-3.98 (m, 2H), 4.77 and 4.81 (s, 2H), 6.31 and 6.32 (d, 2H, J = 10.2 Hz), 6.52 (s, 1H), 6.61 and 6.80 (s, 1H), 6.94 and 7.05 (d, 2H, J = 10.2 Hz); ¹³C NHR (67.8 MHz, CDCl₃) δ 33,8, 35.8, 42.6, 45.2, 45.3, 48.1, 48.3, 48.4, 48.6, 48.7, 112.6, 112.7, 113.1, 114.1, 116.2 (q, J = 288 Hz), 127.1, 127.2, 127.8, 127.9, 128.0, 148.1, 148.6, 148.7, 152.5, 152.9, 156.3 (q, J = 35 Hz), 185.0, 185.2; HRMS (EI) calcd for $C_{19}H_{18}NO_4F_3$ (M⁺) 381.1185, found 381.1168.

tert-Butyl-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-diene-4'-one-2-carboxylate (2b)

1b (50.2 mg, 0.130 mmol)、PIFA (61.3 mg, 0.143 mmol)、CF₃CH₂OH (1.0 + 4.0 mL)より合成。 2b (24.4 mg, 49%): 無色結晶; mp 148-149 ℃ (from Et₂O); IR (KBr) 1694, 1665, 1625 cm⁻¹; ¹H NMR (500 MHz, CDCl3) & 1.36 and 1.47 (s, 9H), 2.26-2.29 (m, 2H), 3.73 (s, 3H), 3.76-3.78 (m, 2H) 3.87 (s, 3H), 4.50 and 4.62 (s, 2H), 6.29 (d, 2H, J = 10.3 Hz), 6.52 and 6.82 (s, 1H), 6.64 and 6.75 (s, 1H), 7.00 and 7.03 (d, 2H, J = 10.3 Hz); ¹³C NHR (62.9 MHz, CDCl₃) δ 28.2, 35.6, 43.5, 44.3, 47.6, 48.4, 48.6, 55.7, 79.9, 80.1, 112.7, 112.8, 113.2, 126.5, 127.7, 131.4, 147.4, 147.7, 153.7, 154.4, 154.8, 185.4. Anal. Calcd for C22H27NO5 C, 68.55; H, 7.06; N, 3.63. Found C, 68.48, H, 7.03; N, 3.62.

2-(Trimethylsilyloxy)ethyl-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-diene-4'-one-2-carboxylate (2c)

1c (53.7 mg, 0.124 mmol)、PIFA (58.9 mg, 0.137 mmol)、CF₃CH₂OH (1.0 + 4.0 mL)より合成。 2c (28.9 mg, 54%): 無色結晶; mp 167-169 °C (from Et₂O/CH₂Cl₂); IR (KBr) 1694, 1666, 1626 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 0.01 and 0.02 (s, 9H), 0.89-1.03 (m, 2H), 2.26 (brs, 2H), 3.70 (s, 3H), 3.75-3.82 (m, 2H), 3.86 (s, 3H), 4.09-4.22 (m, 2H), 4.57 and 4.64 (s, 2H), 6.27 (d, 2H, J = 10.1 Hz), 6.48 and 6.50 (s, 1H), 6.64 and 6.74 (s, 1H), 6.99 and 7.01 (d, 2H, J = 10.1 Hz); ¹³C NHR (62.9 MHz, CDCl₃) δ -1.5, 17.8, 35.6, 35.8, 44.1, 48.1, 48.7, 55.9, 63.9, 112.9, 113.3, 126.7, 130.9, 147.7, 148.0, 153.7, 155.7, 185.5. Anal. Calcd for C23H31NO5Si: C, 64.31; H, 7.27; N, 3.26. Found C, 64.13; H, 7.06; N, 3.27.

Ethyl-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-diene-4'-one-2-carboxylate (2d)

1d (204 mg, 0.566 mmol)、PIFA (268 mg, 0.623 mmol)、CF3CH2OH (4.0 mL) より合成。 2d (97.8 mg, 49%): 無色結晶; mp 92-94 ℃ (from Et₂O); IR (KBr) 1700, 1667, 1624 cm⁻¹; ¹H NMR (270 MHz, J = 10.1 Hz); HRMS (EI) calcd for C₂₀H₂₃NO₅ (M⁺) 357.1576, found 357.1603.

7,8-Dimethoxy-2-(2,3,4,5,6-pentafluorobenzoyl)-2,3,4,5-tetrahydro-1H-[2]benzazepine-

5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2e) 1e (32.1 mg, 0.0667 mmol)、PIFA (31.5 mg, 0.0733 mmol)、CF3CH2OH (2.0 mL)より合成。 2e (17.8 mg, 56%): 無色結晶; mp 188-190 ℃ (from Et₂O); IR (KBr) 1667, 1652 cm⁻¹; ¹H NMR (500 MHz,

CDCl3) & 1.17-1.30 (m, 3H), 2.28 (brs, 2H), 3.72 (s, 3H), 3.76-3.83 (m, 2H), 3.88 (s, 3H), 4.09-4.19 (m, 2H), 4.58 and 4.66 (s, 2H), 6.29 (d, 2H, J = 10.1 Hz), 6.52 and 6.53 (s, 1H), 6.66 and 6.76 (s, 1H), 7.02, 7.03 (d, 2H,

CDCl₃) & 2.32-2.45 (m 2H), 3.67 (s, 3H), 3.74 and 3.75 (s, 3H), 3.92 (s, 1H), 4.08 (t, 1H, J = 6.0 Hz), 4.49 and 4.94 (s, 2H), 5.97 and 6.52 and 6.55 and 6.86 (s, 2H), 6.29 and 6.34 (m, 2H), 7.01 (d, 2H, J = 10.3 Hz); Anal. -31-

Calcd for C₂₄H₁₈NO₄F₅: C, 60.13; H, 3.78; N, 2.92. Found C, 59.92; H, 3.74; N, 2.93.

2-(2,2,2-Trifluoroacetyl)-7,8-methylenedioxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2h)

1h (30.8 mg, 0.0839 mmol)、PIFA (39.7 mg, 0.0923 mmol)、CF₃CH₂OH (1.0 + 1.0 mL) より合成。 2h (17.3 mg, 56%): 無色結晶; mp 143-145 ℃ (from Et₂O, lit.^{27b)} 138-142 ℃); IR (KBr) 1690, 1667, 1626 cm⁻¹; ¹H NMR (200 MHz, CDCl₁) & 2.34-2.43 (m, 2H), 3.89-3.98 (m, 2H), 4.74 and 4.76 (s, 2H), 5.94 and 5.96 (s, 2H), 6.30 and 6.31 (m, 2H), 6.55 (s, 1H), 6.63 and 6.81 (s, 1H), 6.90 and 7.00 (m, 2H); ¹³C NHR (67.8 MHz, CDCl₃) δ 33.7, 35.7, 44.2, 45.2, 45.3, 48.2, 48.3, 48.5, 48.6, 48.7, 101.7, 101.8, 109.7, 109.9, 110.0, 111.3, 117.3 (m), 127.1, 127.4, 129.0, 129.1, 129.3, 129.4, 147.2, 147.9, 148.0, 152.3, 152.7, 157.0 (m), 184.9, 185.1; HRMS (EI) calcd for C₁₈H₁₄NO₄F₃ (M⁺) 365.0875, found 365.0880.

8-(tert-Butyldimethylsilyloxy)-2-(2,2,2-trifluoroacetyl)-7-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2 i)

1i (54.4 mg, 0.119 mmol)、PIFA (56.5 mg, 0.131 mmol)、CF₃CH₂OH (1.0 + 5.0 mL) より合成。 2i (22.5 mg, 42%): 無色結晶; mp 154-155 ℃ (from Et₂O); IR (KBr) 1692, 1671 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) & 0.13 and 0.14 (s, 6H), 0.97 and 0.98 (s, 9H), 2.33-2.41 (m, 2H), 3.65 (s, 3H), 3.90-3.94 (m, 2H), 4.71 and 4.74 (s, 2H), 6.29 and 6.32 (d, 2H, J = 10.1 Hz), 6.48 and 6.49 (s, 1H), 6.62 and 6.79 (s, 1H), 6.95 and 7.06 (d, 2H, J = 10.1 Hz). Anal. Calcd for C₂₄H₄₀NO₄F₃Si: C, 59.86; H, 6.28; N, 2.91. Found C, 59.69; H, 6.24; N, 2.93.

7,8-Bis(tert-butyldimethylsilyloxy)-2-(2,2,2-trifluoroacetyl)-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2j)

1j (146 mg, 0.250 mmol)、PIFA (108 mg, 0.250 mmol)、CF₃CH₂OH (3.0 mL)より合成。 2i (60.5 mg, 42%): 無色結晶; mp 174-175 °C (from Et₂O); IR (KBr) 1692, 1671 cm⁻¹; ¹H NMR (500 MHz, CDCl₂) & 0.10 and 0.18 and 0.19 (s, 12H), 0.90 and 0.91 (s, 18H), 2.33-2.40 (m, 2H), 3.92-3.95 (m, 2H), 4.69 and 4.73 (s, 2H), 6.29 and 6.30 (d, 2H, J = 10.3 Hz), 6.53 and 6.54 and 6.60 and 6.76 (s, 2H), 6.92 and 7.02 (d, 2H, J = 10.3 Hz); HRMS (EI) calcd for C₂₉H₄₂NO₄F₃Si₂ (M⁺) 581.2604, found 581.2620. Anal. Calcd for C₂₉H₄₂NO₄F₃Si₂: C, 59.87; H, 7.28; N, 2.41. Found C, 59.71; H, 7.04; N, 2.35.

7-tert-Butyldimethylsilyloxy-2-(2,2,2-trifluoroacetyl)-8-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2k)

1k (89.9 mg, 0.186 mmol)、PIFA (87.9 mg, 0.204 mmol)、CF₃CH₂OH (3.0 mL) より合成。

2k (31.6 mg, 35%): 無色結晶; mp 140-141 ℃ (from Et₂O/n-hexane); IR (KBr) 1692, 1669 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.08 (s, 6H), 0.92 (s, 9H), 2.32-2.40 (m, 2H), 3.80 and 3.81 (s, 3H), 3.90-3.97 (m, 2H), 4.76 and 4,79 (s, 2H), 6.29 and 6.30 (d, 2H, J = 10.0 Hz), 6.52 (s, 1H), 6.59 and 6.77 (s, 1H), 6.91 and 7.02 (d, 2H, J = 10.0 Hz); HRMS (EI) calcd for C24H30NO4F3Si (M⁺) 481.1896, found 481.1900. Anal. Calcd for C24H30NO4F3Si: C, 59.86; H, 6.28; N, 2.91. Found C, 59.97; H, 6.21; N, 2.87.

8-Benzyloxy-2-(2,2,2-trifluoroacetyl)-7-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (21)

11 (61.6 mg, 0.134 mmol)、PIFA (63.4 mg, 0.147 mmol)、CF3CH2OH (1.0 + 4.0 mL)より合成。 21 (29.9 mg, 49%): 無色結晶; mp 172-174 ℃ (from CH2Cl2/n-hexane); IR (KBr) 1692, 1667 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.33-2.40 (m, 2H), 3.73 and 3.74 (s, 3H), 3.88-3.94 (m, 2H), 4.69 and 4.76 (s, 2H), 5.13 (s, 2H), 6.31 and 6.32 (d, 2H, J = 9.9 Hz), 6.54 and 6.56 (s, 1H), 6.65 and 6.88 (1H, s), 6.93 and 7.05 (d, 2H, J = 9.9 Hz), 7.31-7.40 (m, 5H); HRMS (EI) calcd for $C_{25}H_{22}NO_4F_3$ (M⁺) 457.1501, found 457.1520.

2-Trifluoroacetyl-8-methoxy-4'-oxo-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-

2',5'-dienyl-7-pivaloate (2m)

1m (22.1 mg, 0.0487 mmol)、PIFA (23.1 mg, 0.0536 mmol)、CF₃CH₂OH (0.50 + 2.0 mL)より合成。 3.10. Found C, 61.11; H, 5.33; N, 3.26.

2-(2,2,2-Trifluoroacetyl)-8-methoxy-4'-oxo-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dienyl-7-acetate (2n)

1n (31.0 mg, 0.754 mmol)、PIFA (356 mg, 0.829 mmol)、CF₃CH₂OH (3.5 mL)より合成。 Found C, 58.64; H, 4.48; N, 3.43.

2-(2,2,2-Trifluoroacetyl)-8-hydroxy-7-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (2p)

for C₁₈H₁₆NO₄F₃ (M⁺) 367.1032, found 367.1007.

N-[2-(1-Acetylamino-4-oxo-2,5-cyclohexadien-1-yl)ethyl]-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide (3a)

1a (22.7 mg, 0.0592 mmol)、PIFA (28.0 mg, 0.0651 mmol)、CH₃CN (1.0 mL) より合成。 3a (6.8 mg, 27%): 無色非定形結晶; IR (KBr) 3350, 1690, 1673, 1628 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 149.6, 170.1, 184.7; HRMS (EI) calcd for C₂₁H₂₃N₂O₅F₃ (M⁺) 440.1559, found 440.1566.

(3S)-(+)-Methyl 2-(2,2,2-trifluoroacetyl)-7,8-dimethoxy-4'-oxo-2,3,4,5-tetrahydro-1H-[2]benzazepine-5'-spiro-1'-cyclohexa-2',5'-diene-3-carboxylate (7)

6^{27b)} (22.0 mg, 0.0498 mmol)、PIFA (23.6 mg, 0.0548 mmol)、CF₃CH₂OH (0.75 + 0.50 mL)より合成。 6.49 and 6.62 (s, 2H), 6.77 and 6.78 (d, 1H, J = 10.0 Hz), 6.94 and 6.95 (d, 1H, J = 10.0 Hz).

8a、8bの PIFA を用いるスピロ環化反応

8a (61.2 mg, 0.134 mmol)、PIFA (63.6 mg, 0.148 mmol)、CF3CH2OH (2.0 mL)から 2a (29.3 mg, 57%)が得 られた。

2m (7.0 mg, 32%): 無色結晶; mp 188-190 ℃ (from Et₂O); IR (KBr) 2975, 1755, 1694, 1667, 1625 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.32 (s, 9H), 2.35-2.42 (m, 2H), 3.81 and 3.82 (s, 3H), 3.93-3.98 (m, 2H), 4.81 and 4.84 (s, 2H), 6.30 and 6.32 (m, 2H), 6.68 and 6.70 and 6.89 (s, 2H), 6.92 and 7.04 (d, 2H, J = 10.3 Hz); HRMS (EI) calcd for C₂₃H₂₄NO₅F₃ (M⁺) 451.1606, found 451.1607. Anal. Calcd for C₂₃H₂₄NO₅F₃: C, 61.19; H, 5.36; N,

2n (114 mg, 37%): 無色結晶; mp 153-155 ℃ (from Et₂O); IR (KBr) 1767, 1694, 1667, 1625 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) & 2.27 (s, 3H), 2.33-2.43 (m, 2H), 3.84 and 3.85 (s, 3H), 3.92-4.01 (m, 2H), 4.82 and 4.85 (s, 2H), 6.15 and 6.31 (d, 2H, J = 10.3 Hz), 6.72 and 6.74 and 6.92 (s, 2H), 6.92 and 7.03 (d, 2H, J = 10.3 Hz); HRMS (EI) calcd for C₂₀H₁₈NO₅F₃ (M⁺) 409.1137, found 409.1137. Anal. Calcd for C₂₀H₁₈NO₅F₃: C, 58.68; H, 4.43; N, 3.42.

1p (22.1 mg, 0.0598 mmol)、PIFA (28.3 mg, 0.0658 mmol)、CF₃CH₂OH (0.75 + 0.50 mL) より合成。 2p (4.1 mg, 19%): オフホワイト色非定形結晶; IR (KBr) 1690, 1665, 1620 cm⁻¹; ¹H NMR (270 MHz, CDCl₄) δ 2.35-2.43 (m, 2H), 3.75 and 3.76 (s, 3H), 3.89-3.97 (m, 2H), 4.74 and 4.77 (s, 2H), 5.58 and 5.60 (s, 1H), 6.31 and 6.32 (d, 2H, J = 10.2 Hz), 6.51 (s, 1H), 6.74 and 6.91 (s, 1H), 6.94 and 7.05 (d, 2H, J = 10.2 Hz); HRMS (EI) calcd

1.84-2.38 (m, 2H), 1.98 and 2.00 (s, 3H), 3.20-3.37 (m, 2H), 3.87 and 3.88 and 3.90 (s, 6H), 4.53 (s, 2H), 6.25 and 6.31 (m, 2H), 6.68 (s, 1H), 6.74 and 6.91 (m, 2H), 6.79 and 6.86 (d, 2H, J = 7.9 Hz); ¹³C NMR (68.7 MHz, CDCl₃) & 23.5, 36.5, 42.0, 51.9, 54.5, 56.0, 110.5, 111.3, 120.5, 125.9, 129.3, 130.0, 147.0, 149.2, 149.5,

7 (13.9 mg, 64%): 無色結晶; mp 176-179 °C (from Et₂O/n-hexane, lit.^{27b)} 176.5-177.5 °C); IR (KBr) 1750, 1690, 1667, 1626 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.42 (dd, 1H, J = 14.8, 4.6 Hz), 2.85 (dd, 1H, J = 14.8, 13.5), 3.71 and 3.73 (s, 3H), 3.80 and 3.82 (s, 3H), 3.89 and 3.90 (s, 3H), 4.75 (d, 1H, J = 17.5 Hz), 4.94 (d, 1H, J = 17.5 Hz), 5.11 (dd, 1H, J = 13.5, 4.6 Hz), 6.26 and 6.30 (d, 1H, J = 10.0 Hz), 6.39 and 6.39 (d, 1H, J = 10.0 Hz), 6.46 and 8b (29.1 mg, 0.0585 mmol)、 PIFA (27.7 mg, 0.0643 mmol)、 CF₃CH₂OH (1.2 mL) から 2a (14.8 mg, 66%) が得られた。

1-[11-tert-Butyldiphenylsilyloxy-2,3-dimethoxy-7,8-dihydrodibenzo[c,e]azocin-6(5H)-yl]-2,2,2-trifluoro-1-ethanone (9c)

8c (49.9 mg, 0.0803 mmol)、PIFA (38.0 mg, 0.0883 mmol)、CF₃CH₂OH (1.5 mL) より合成。 9c (6.0 mg, 12%、2a (7.1 mg, 23%) も生成): 無色結晶; mp 213-214 ℃ (from Et₂O); IR (KBr) 1690 cm⁻¹; 'H NMR (500 MHz, CDCl₃) δ 1.11 (s, 9H), 2.31 (dd, 1H, J = 14.5, 10.3 Hz), 2.89 (dd, 1H, J = 14.5, 6.8 Hz), 3.14 (dd, 1H, J = 14.5, 10.3 Hz), 3.22 (d, 1H, J = 13.7 Hz), 3.75 (s, 3H), 3.90 (s, 3H), 4.20 (dd, 1H, J = 14.5, 6.8 Hz), 5.12 (d, 1H, J = 13.7 Hz), 6.41 (s, 1H), 6.66 (d, 1H, J = 2.6 Hz), 6.81 (dd, 1H, J = 8.6, 2.6 Hz), 6.98 (d, 1H, J = 5.12 7.7 Hz), 7.33-7.42 (m, 7H), 7.70-7.74 (m, 4H); HRMS (EI) calcd for C35H36NO4F3Si (M⁺) 619.2366, found 619.2340.

1-[11-Benzyloxy-2,3-dimethoxy-7,8-dihydrodibenzo[c,e]azocin-6(5H)-yl]-2,2,2-trifluoro-1-ethanone (9d)

8d (79.7 mg, 0.168 mmol)、PIFA (79.6 mg, 0.185 mmol)、CF₃CH₂OH (2.0 mL) より合成。

9d (38.1 mg, 48%): 無色結晶; mp 134-136 ℃ (from Et₂O); IR (KBr) 1686 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.40 (dd, 1H, J = 14.9, 10.6 Hz), 2.98 (dd, 1H, J = 14.9, 6.9 Hz), 3.19 (dd, 1H, J = 14.2, 10.6 Hz), 3.31 (d, 1H, J = 14.9, 10.6 Hz), 3.8 13.9 Hz), 3.87 (s, 3H), 3.94 (s, 3H), 4.26 (dd, 1H, J = 13.9, 7.3 Hz), 5.11 (s, 2H), 5.18 (d, 1H, J = 13.5 Hz), 6.76 (s, 1H), 6.94 (d, 1H, J = 2.6 Hz), 7.00 (dd, 1H, J = 8.6, 2.6 Hz), 7.18 (d, 1H, J = 8.3 Hz), 7.31-7.47 (m, 6H). Anal. Calcd for C₂₆H₂₄NO₄F₃: C, 66.24; H, 5.13; N, 2.97. Found C, 66.24; H, 5.17; N, 2.99.

2,2,2-Trifluoro-1-[2,3,11-trimethoxy-7,8-dihydrodibenzo[c,e]azocin-6(5H)-yl]-1-ethanone (9e)

8e (27.8 mg, 0.0700 mmol)、PIFA (33.1 mg, 0.0770 mmol)、CF3CH2OH (1.0 mL)より合成。 9e (13.1 mg, 47%): 無色結晶; mp 134-136 °C (from AcOEt/n-hexane); IR (KBr) 1686 cm⁻¹; ¹H NMR (270 MHz, $CDCl_3$) δ 2.41 (dd, 1H, J = 14.7, 9.7 Hz), 2.99 (dd, 1H, J = 14.7, 7.1 Hz), 3.19 (dd, 1H, J = 14.2, 10.6 Hz), 3.31 (d. 1H, J = 13.9 Hz), 3.85 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 4.26 (dd, 1H, J = 12.7, 6.4 Hz), 5.19 (d, 1H, J = 13.9 Hz), 6.82 (s, 1H), 6.86 (d, 1H, J = 2.6 Hz), 6.93 (dd, 1H, J = 8.6, 2.6 Hz), 7.18 (d, 1H, J = 8.6 Hz), 7.40 (s, 1H); ¹³C NHR (62.9 MHz, CDCl₃) δ 34.0, 48.4, 48.8, 55.4, 56.0, 112.0, 113.8, 114.0, 115.2, 118.9 (m), 127.1, 130.5, 131.2, 133.0, 140.9, 148.6, 148.8, 156.5 (m), 158.3; HRMS (EI) calcd for $C_{20}H_{20}NO_4F_3$ (M⁺) 395.1341, found 395.1338. Anal. Calcd for C₂₀H₂₀NO₄F₃: C, 60.76; H, 5.10; N, 3.54. Found C, 60.56; H, 5.07; N, 3.55.

2-(2,2,2-Trifluoroacetyl)-8-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (11a)

10a (38.0 mg, 0.109 mmol)、PIFA (51.6 mg, 0.120 mmol)、CF₃CH₂OH (1.0 + 1.0 mL)より合成。 11a (16.4 mg, 43%): 無色結晶; mp 149-150 °C (from Et₂O/CH₂Cl₂); IR (KBr) 1694, 1669, 1620 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) & 2.36-2.42 (m, 2H), 3.80 (s, 3H), 3.93-3.99 (m, 2H), 4.80 and 4.84 (s, 2H), 6.29 and 6.30 (m, 2H), 6.72-7.04 (m, 3H), 6.92 and 7.04 (d, 2H, J = 10.3 Hz); ¹³C NMR (67.8 MHz, CDCl₃) δ 33.9, 35.9, 44.3, 45.4, 45.5, 47.8, 48.1, 49.0, 49.2, 49.3, 55.3, 113.6, 114.0, 116.0, 116.3 (q, J = 278 Hz), 116.7, 127.0, 127.1, 127.7, 131.1, 131.6, 136.6, 152.5, 152.8, 156.7 (q, J = 37 Hz), 158.8, 158.9, 185.2, 185.4; HRMS (EI) calcd for C18H16NO3F3 (M⁺) 351.1083, found 351.1084. Anal. Calcd for C18H16NO3F3: C, 61.54; H, 4.59; N, 3.99. Found C, 61.33; H, 4.71; N, 3.91.

2-(2,2,2-Trifluoroacetyl)-6-methoxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (12a) 上記の反応で生成。

12a (6.6 mg, 17%): 無色結晶; mp 135-137 ℃ (from Et₂O/n-hexane); IR (KBr) 1690, 1663, 1622 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 2.35-2.41 (m, 2H), 3.58 and 3.59 (s, 3H), 3.86-3.95 (m, 2H), 4.86 and 4.89 (s, 2H), 6.30 (d, 3.98.

10bのスピロ環化反応

acetylnarwedine (3.9 mg, 0.0115 mmol) が得られた。

Hz). Anal. Calcd for C₁₇H₁₄NO₃F₃: C, 60.54; H, 4.18; N, 4.15. Found C, 60.31; H, 4.29; N, 4.12.

(±)-7-Demethoxy-N-trifluoroacetyInarwedine: 無色非定形結晶; IR (KBr) 1687, 1590 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.09-2.26 (m, 2H), 2.77 (ddd, 1H, J = 18.0, 6.8, 3.4 Hz), 3.10 (d, 1H. J = 18.0 Hz), 3.39 (dd, 0.5H, J = 12.8, 12.0 Hz), 3.73-3.79 (dd, 0.5H, J = 14.5, 13.6 Hz), 4.19 (d, 0.5H, J = 15.4 Hz), 4.37 (d, 0.5H, J = 15.4 Hz), 4.60 (d, 0.5H, J = 16.3 Hz), 4.68 (d, 0.5H, J = 2.6 Hz), 4.77 (d, 0.5H, J = 13.7 Hz), 4.95 (d, 0.5H, J = 16.2Hz), 5.35 (d, 0.5H, J = 14.5 Hz), 6.07 (dd, 1H, J = 11.1, 10.3 Hz), 6.78 (d, 2H, J = 8.6 Hz), 6.81 (m, 0.5H), 6.87 (dd, 0.5H, J = 10.3, 1.8 Hz), 6.93 (d, 0.5H, J = 6.8 Hz), 7.16 (d, 1H, J = 7.7 Hz); HRMS (EI) calcd for C₁₇H₁₄NO₃F₃ (M⁺) 337.0926, found 337.0923.

(±)-Oxomaritidine (4) の合成

れた。

4: IR (KBr) 1682, 1516, 1261, 1221 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.15-2.25 (m, 1H), 2.37-2.55 (m, 2H), 2.74 (dd, 1H, J = 16.8, 5.8 Hz), 3.00-3.10 (m, 1H), 3.55-3.64 (m, 1H), 3.70 (dd, 1H. J = 13.0, 5.6 Hz), 3.84 (s, 3H), 3.86 (d, 1H, J = 16.8 Hz), 3.91 (s, 3H), 4.46 (d, 1H, J = 16.8 Hz), 6.12 (d, 1H, J = 10.2 Hz), 6.56 (s, 1H), 6.91 (s, 1H), 7.70 (d, 1H, J = 10.2 Hz); HRMS (EI) calcd for C₁₇H₁₉NO₃ (M⁺) 285.1365, found 285.1361.

7,8-Dimethoxy-2,3,4,5-tetrahydro-1H-[2]benzazepinium-5-spiro-1'-cyclohexa-2',5'-dien-4'-one chloride (5) の合成

2b (392 mg, 1.02 mmol)の MeOH (10 mL) 溶液に氷冷下 10% HCl (5.0 mL) を氷冷下加え、40 分室温で撹 拌した。反応液に氷冷下 10% HCl (5.0 mL)を加え、更に 30 分室温で撹拌した。反応液に 10% HCl (15 mL)を室温で徐々に加え、一晩撹拌した。反応液の溶媒を減圧留去し、減圧乾燥すると 5 (337 mg, quant.) が無色固体として得られた。

(d, 2H, J = 10.1 Hz).

2H, J = 10.3 Hz), 6.78-6.99 (m, 2H), 6.89 and 6.94 (m, 2H), 7.25 and 7.26 (d, 1H, J = 8.0 Hz); ¹³C NMR (67.8 MHz, CDCl₃) δ 36.9, 38.2, 44.9, 45.5, 45.6, 47.5, 47.8, 48.1, 49.1, 49.2, 55.7, 55.8, 112.4, 123.2, 124.2, 125.4, 127.6, 129.7, 137.6, 137.7, 154.0, 154.2, 159.6, 159.7, 186.2, 186.3; HRMS (EI) calcd for C₁₈H₁₆NO₃F₃ (M⁺) 351.1083, found 351.1074. Anal. Calcd for C18H16NO3F3: C, 61.54; H, 4.59; N, 3.99. Found C, 61.77; H, 4.64; N,

10b (40.0 mg, 0.0882 mmol) の CF₃CH₂OH (1.0 mL) 溶液に PIFA (41.7 mg, 0.0970mmol) の CF₃CH₂OH (1.0 mL) 溶液を窒素雰囲気下、-40 ℃ で加え、30 分撹拌した。溶媒を濃縮留去し、prep. TLC で精製すると、 11b と 12b の混合物 (15.9 mg, 40%) が得られた。得られた混合物を THF (1.0 mL) に溶解し、氷冷下 tetra-n-butylammonium fluoride (1.0 M solution in THF, 0.040 mL)を加え、30 分撹拌した。 溶媒を濃縮留去 し、得られた残渣を prep. TLC で精製すると 11c (8.0 mg, 0.0237 mmol) と (±)-7-Demethoxy-N-trifluoro-

2-(2,2,2-Trifluoroacetyl)-8-hydroxy-2,3,4,5-tetrahydro-1H-[2]benzazepine-5-spiro-1'-cyclohexa-2',5'-dien-4'-one (11c): 無色結晶; mp 220-222 ℃ (from EtOH); IR (KBr) 3220, 1690, 1686, 1662 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.34-2.40 (m, 2H), 3.93-3.97 (m, 2H), 4.77 and 4.80 (s, 2H), 6.29 and 6.31 (d, 2H, J =10.3 Hz), 6.68-6.71 (m, 1.5H), 6.86 (d, 0.5H, J = 2.6 Hz), 6.92 and 7.04 (d, 2H, J = 10.3 Hz), 6.95 (d, 1H, J = 8.6

2a (11.4 mg, 0.030 mmol)の MeOH (2.0 mL)溶液にK2CO3 (41.4 mg, 0.300 mmol)とH2O (5.0 mL)を加え、 5分室温で撹拌した。MeOHを減圧留去し、AcOEtで抽出し、brineで洗浄し、濃縮留去した。得られた 残渣をprep. TLC (SiO₂, AcOEt/MeOH = 10:1) で精製すると 4 (8.4 mg, 98%) が無色非定形結晶として得ら

5: mp >300 °C; IR (KBr) 3382, 2150, 1663 cm⁻¹; ¹H NMR (250 MHz, CD₃OD) δ 2.40 (t, 2H, J = 5.0 Hz), 3.55 (t, 2H, J = 5.0 Hz), 3.75 (s, 3H), 3.87 (s, 3H), 4.55 (s, 2H), 6.34 (d, 2H, J = 10.1 Hz), 6.67 (s, 1H), 7.00 (s, 1H), 7.41

-35-

第1章第2節の実験

3,4-Dihydroxybenzoic acid methyl ester (23) の合成

3,4-Dihydoxybenzoic acid (4.62 g, 30.0 mmol)のMeOH (60 mL) 溶液に conc. sulfuric acid (3.0 mL)を徐々に加 え、9時間加熱還流した。空冷後、溶媒を減圧留去し、H2Oを加え、AcOEtで抽出し、brineで洗浄し、 溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO, n-hexane/AcOEt = 1:1) で精製する と、23 (4.82 g, 28.7 mmol, 96%) が無色プリズム状結晶として得られた。

23: mp 137.0-139.0 °C (from AcOEt, lit.⁵⁵⁾ 138.5-139.5 °C); ¹H NMR (250 MHz, CDCl₃) δ 3.87 (s, 3H), 5.87 (brs, 2H), 6.89 (d, 1H, J = 8.5 Hz), 7.56 (dd, 1H, J = 8.5, 2.0 Hz), 7.61 (d, 1H, J = 2.0 Hz); LRMS (EI) m/z 168 (M⁺); HRMS (EI) calcd. for C₈H₈O₄(M⁺) 168.0422, found 168.0425.

(6-Bromo-2,2-diphenylbenzo[1,3]dioxol-5-yl)methanol (24) の合成

23 (101 mg, 0.600 mmol) に窒素雰囲気下、α,α-dichloro-diphenylmethylene (142 mg, 0.12 mL, 0.600 mmol) を加え、170-180 ℃の油浴で10 分間撹拌した。反応液を空冷し、H₂O を加え、AcOEt で抽出し、brine で 洗浄し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 10:1) で精製すると、 2,2-diphenylbenzo[1,3]dioxole-5-carboxylic acid methyl ester (216 mg, 0.65 mmol, quant.) が無色 針状結晶として得られた。

2,2-Diphenylbenzo[1,3]dioxole-5-carboxylic acid methyl ester: mp 98.0-99.5 °C (from AcOEt); IR(KBr) 1717, 1495, 1447, 1366 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 3.84 (s, 3H), 6.88 (d, 1H, J = 8.1 Hz), 7.34-7.67 (m, 12H); ¹³C NMR (62.5 MHz, CDCl₂) § 52.0, 108.0, 109.6, 117.9, 124.1, 125.3, 126.1, 128.3, 129.2, 139.6, 147.2, 151.0, 166.4; LRMS (EI) m/z 332 (M⁺), 255 (M⁺-Ph), 165 (M⁺-CHPh₂); HRMS (EI) calcd. for C₂₁H₁₆O₄(M⁺) 332.1048, found 332.1043. Anal. Calcd. for C₂₁H₁₆O₄: C, 75.89; H, 4.85, Found: C, 75.85; H, 4.58.

LiAlH₄(230 mg, 6.00 mmol)の diethyl ether (2.0 mL) 溶液に窒素雰囲気下2.2-diphenylbenzo [1,3]dioxole-5-carboxylic acid methyl ester (1.33 g, 4.00 mmol)の diethyl ether (2.0 mL) 溶液を氷冷下徐々に滴下し、室温 で1.5 時間撹拌した。反応液に AcOEt 、 sat. Rochelle salt を加え、AcOEt で抽出し、brine で洗浄し、濃縮 留去した。得られた残渣をカラムクロマトグラフィー (SiO, n-hexane/AcOEt = 3:1) で精製すると、 (2, 2-diphenylbenzo[1,3]dioxol-5-yl)methanol (1.26 g, 4.15 mmol, quant.) が無色油状物として得られた。 (2,2-Diphenylbenzo[1,3]dioxol-5-yl)methanol: IR(KBr) 3300, 1497, 1445 cm⁻¹; ¹H NMR (200 MHz, $CDCl_3$) δ 4.45 (s, 2H), 6.74 (d, 1H, J = 7.8 Hz), 6.78 (d, 1H, J = 7.8 Hz), 6.88 (s, 1H), 7.30-7.35 (m, 6H), 7.53-7.59 (m, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 65.0, 107.9, 108.2, 116.7, 120.5, 126.2, 128.2, 129.0, 134.8, 140.1, 146.6, 147.3; LRMS (EI) m/z 304 (M⁺), 227 (M⁺-Ph); HRMS (EI) calcd. for C₂₀H₁₆O₃(M⁺) 304.1089, found 304.1099.

(2,2-diphenylbenzo[1,3]dioxol-5-yl)methanol (55.7 g, 0.180 mol) 溶液の DMF (100 mL) 溶液に窒素雰囲気下、 NBS (32.6 g, 0.180 mol)のDMF (100 mL)溶液を室温で徐々に加え、2 時間撹拌した。反応液にH₂O を加え、 AcOEt で抽出し、brine で洗浄し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 2:1) で精製すると、24(67.8 g, 0.177 mol, 98%) が無色非定形結晶として得られ to

24: mp 99.0-99.5 °C (from AcOEt); IR(KBr) 3340, 1483, 1450 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 4.63 (d, 2H, J = 6.2 Hz), 7.03 (s, 1H), 7.06 (s, 1H), 7.35-7.42 (m, 6H), 7.51-7.57 (m, 4H); ¹³C NMR (67.5 MHz, CDCl₃) δ 64.9, 109.2, 112.7, 113.0, 117.9, 126.2, 128.3, 128.4, 133.2, 139.6, 147.1, 147.3; LRMS (EI) m/z 383 (M⁺), 382 (M⁺-H), 306 (M⁺-Ph), 305 (M⁺-H-Ph); HRMS (EI) calcd. for C₂₀H₁₅O₃Br (M⁺) 382.0205, found 382.0203. Anal. Calcd. for C₂₀H₁₅O₃Br: C, 62.68; H, 3.94; Br, 20.85. Found: C, 62.71; H, 4.01; Br, 20.70.

(6-Bromo-2,2-dimethylbenzo[1,3]dioxol-5-yl)methanol (25) の合成

23 (840 mg, 5.00 mmol) と phosphorous pentoxide (1.06 g, 7.50 mmol) の toluene (10.0 mL) 溶液に窒素雰囲気

下、acetone (0.730 mL, 10.0 mmol)を 75 ℃ で加え、75 ℃ で 1 時間撹拌した。反応液に 25% aqueous NaOHを加え、AcOEt で抽出し、brineで洗浄し、減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt = 5:1) で精製すると 2,2-dimethylbenzo[1,3]dioxole-5-carboxylic acid methyl ester (784 mg, 3.77 mmol. 75%)が黄色油状物として得られた。 2,2-Dimethylbenzo[1,3]dioxole-5-carboxylic acid methyl ester: IR(KBr) 1721 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.69 (s, 6H), 3.87 (s, 3H), 6.74 (d, 1H, J = 8.2 Hz), 7.38 (d, 1H, J = 1.6 Hz), 7.61 (dd, 1H, J = 8.2, mean statement of the statement 1.6 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 25.8, 51.9, 107.7, 109.3, 119.1, 123.5, 124.8, 147.4, 151.4, 166.6; LRMS (EI) m/z 208 (M⁺), 193 (M⁺-Me); HRMS (EI) calcd. for C₁₁H₁₂O₄(M⁺) 208.0732, found 208.0735.

LiAlH₄ (1.00 g, 26.4 mmol)の tetrahydrofuran (THF) (13.2 mL) 溶液に窒素雰囲気下、2,2-dimethylbenzo[1,3]dioxole-5-carboxylic acid methyl ester (3.66 g, 17.6 mmol)の THF (13.2 mL) 溶液を氷冷下滴下し、室温で3時 間撹拌した。反応液に AcOEt、 sat. Rochelle salt を加え、AcOEt で抽出し、brine で洗浄し、濃縮留去し た。得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt = 3:1)で精製すると、 (2,2-dimethylbenzo[1,3]dioxol-5-yl)methanol (2.83 g, 15.7 mmol, 89%)が黄色油状物として得られた。 (2,2-Dimethylbenzo[1,3]dioxol-5-yl)methanol: IR(KBr) 3300 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.67 (s, 6H), 4.55 (s, 2H), 6.68 (d, 1H, J = 8.0 Hz), 6.76 (d, 1H, J = 8.0 Hz), 6.77 (s, 1H); ¹³C NMR (67.5 MHz, CDCl₃) δ 25.8, 65.4, 107.8, 108.0, 117.9, 120.0, 134.2, 147.0, 147.6; LRMS (EI) m/z 180 (M⁺), 165 (M⁺-Me); HRMS (EI) calcd. for C₁₀H₁₂O₃(M⁺)180.0799, found 180.0786.

(2,2-Dimethylbenzo[1,3]dioxol-5-yl)methanol (2.83 g, 15.7 mmol)の DMF (14.4 mL) 溶液に窒素雰囲気下、 NBS (2.79 g, 15.7 mmol)の DMF (14.4 mL) 溶液を室温で加え、室温で3時間撹拌した。反応液にH2Oを 加え、AcOEt で抽出し、brine で洗浄し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 5:1) で精製すると、25 (3.06 g, 11.8 mmol, 75%) が無色針状晶として得られた。 25: mp 81.0-81.5 °C (from AcOEt); IR(KBr) 3338 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 1.67 (s, 6H), 4.63 (s, 2H), 6.87 (s, 1H), 6.91 (s, 1H); ¹³C NMR (67.5 MHz, CDCl₃) δ 25.8, 65.1, 109.2, 112.5, 112.6, 119.3, 132.3, 147.4, 147.7; LRMS (EI) m/z 258 (M⁺), 243 (M⁺-Me); HRMS (EI) calcd. for C₁₀H₁₁O₃Br 257.9693, found 257.9692. Anal. Calcd. for C10H11O3Br: C, 46.36; H, 4.28; Br, 30.84. Found: C, 46.38; H, 4.20; Br, 30.59.

2,2-Diphenyl-6-(trimethylsilyl)benzo[1,3]dioxole-5-carbaldehyde (22f) の合成

24 (3.15 g, 8.20 mmol) と hexamethylphosphoric triamide (8.0 mL)の溶液に窒素雰囲気下、sodium methoxide (1.33g, 24.7 mmol) と hexamethyl disilane (3.61 g, 5.05 mL, 24.7 mmol) を氷冷下加え、室温で 2 時間撹拌し た。反応液に sat. NH₄Cl を加え、AcOEt で抽出し、brine で洗浄し、濃縮留去した。得られた残渣をカラ ムクロマトグラフィー (SiO2, n-hexane/AcOEt = 5:1) で精製すると [2,2-diphenyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol (1.73 g, 4.59 mmol, 56%) が無色プリズム状結晶として得られた。 [2,2-Diphenyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol: mp 130.0-131.0 °C (from AcOEt); IR(KBr) 3330, 1451, 1180 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.30 (s, 9H), 4.67 (d, 2H, J = 5.9 Hz), 7.02 (s, 1H), 7.05 (s, 1H), 7.35-7.38 (m, 6H), 7.55-7.60 (m, 4H); LRMS (EI) m/z 376 (M⁺), 361 (M⁺-Me), 302 (M⁺-TMS+H), 299 (M⁺-Ph); HRMS (EI) calcd. for C₂₃H₂₄O₃Si(M⁺) 376.1502, found 376.1522. Anal. Calcd. for C₂₃H₂₄O₃Si: C, 73.37; H, 6.42. Found: C, 73.24; H, 6.49.

n-hexane/AcOEt = 5:1) で精製すると、22f (1.71 g, 4.56 mmol, 86%) が無色プリズム状結晶として得られ た。

22f: mp 85.0-86.5 °C (from AcOEt); IR(KBr) 1698, 1450, 1210 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.34 (s, 9H), 7.18 (s, 1H), 7.26 (s, 1H), 7.38-7.40 (m, 6H), 7.55-7.57 (m, 4H), 10.07 (s, 1H); ¹³C NMR (67.5 MHz, CDCl₃) δ

[2,2-Diphenyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol (2.00 g, 5.30 mmol) の benzene (10.0 mL) 溶液 に manganese oxide (MnO2, activated for organic oxidation, 1.10 g, 12.7 mmol) を加え 20 時間加熱還流した。反応 液を空冷後、Celite 535 で濾過し、減圧留去した。得られた残渣をカラムクロマトグラフィー (SiO2,

-37-

0.7, 110.4, 114.7, 118.1, 126.2, 128.3, 129.4, 129.6, 136.5, 140.5, 148.5, 151.3, 190.7; LRMS (EI) m/z 374 (M⁺), 359 (M⁺-Me), 300 (M⁺-TMS+H), 297 (M⁺-Ph); HRMS (EI) calcd. for C₂₃H₂₂O₃Si (M⁺) 374.1338, found 374.1361. Anal. Calcd. for C23H22O3Si: C, 73.76; H, 5.92. Found: C, 73.54; H, 5.94.

2,2-Dimethyl-6-(trimethylsilyl)benzo[1,3]dioxole-5-carbaldehyde (22g) の合成

25 (1.30 g, 5.00 mmol)の hexamethylphosphoric triamide (5.0 mL) 溶液に窒素雰囲気下、sodium methoxide (810 mg, 15.0 mmol) と hexamethyl disilane (3.07 mL, 15.0 mmol) を氷冷下加え、氷冷下 10 分、室温で 2 時間撹拌した。反応液は黄色から次第に濃褐色に変化した。反応液に sat. NH₄Cl を加え、Et₂O で抽出し、 brine で洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 5:1) で精製すると、 [2,2-dimethyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol (537 mg, 2.13 mmol, 43%) が黄 色油状物として得られた。

[2,2-Dimethyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol: IR(KBr) 3300, 1250 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.31 (s, 9H), 1.67 (s, 6H), 4.66 (s, 2H), 6.88 (s, 1H), 6.91 (s, 1H); LRMS (EI) m/z 252 (M⁺), 237 (M⁺-Me); HRMS (EI) calcd. for C₁₃H₂₀O₃Si(M⁺) 252.1163, found 252.1173.

[2,2-Dimethyl-6-(trimethylsilyl)benzo[1,3]dioxol-5-yl]methanol(807 mg, 3.20 mmol)のbenzene (7.8 mL)溶液に manganese oxide (MnO₂, activated for organic oxidation, 652 mg, 7.68 mmol) を加え、11.5 時間加熱還流した。 反応液を Celite 535 で濾過し、母液を濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO, n-hexane/AcOEt = 10:1) で精製すると、22g (769 mg, 3.07 mmol, 96%) が無色針状晶として得られた。 22g: mp 79.0-80.5 °C, IR(KBr) 1663, 1447, 1177 cm⁻¹; ¹H NMR (270 MHz, CDCl₂) & 0.35 (s, 9H), 1.71 (s, 6H), 7.03 (s, 1H), 7.35 (s, 1H), 10.07 (s, 1H); ¹³C NMR (67.5 MHz, CDCl₃) δ 0.7, 26.0, 110.1, 114.4, 119.4, 134.0, 136.1, 148.7, 151.8, 190.8; LRMS (EI) m/z 250 (M⁺), 235 (M⁺-Me); HRMS (EI) calcd. for C₁₃H₁₈O₃Si (M⁺) 250.1025, found 250.1027. Anal. Calcd. for C13H18O3Si: C, 62.37; H, 7.25,. Found: C, 62.28; H, 7.01.

2,2-Diphenyl-6-(triethylsilyl)benzo[1,3]dioxole-5-carbaldehyde (22j) の合成

24 (7.67 g, 20.0 mmol) & manganese oxide (activeled for organic oxidation, 4.17 g, 48.0 mmol) D benzene (50.0 mL) 溶液を 14 時間加熱還流した。反応液を Celite 535 で濾過し、母液を濃縮留去した。得られた残渣を カラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 10:1) で精製すると、6-bromo-2,2-diphenylbenzo-[1,3]dioxole-5-carbaldehyde (7.27 g, 19.0 mmol, 95%) が淡黄色プリズム状結晶として得られた。

6-Bromo-2,2-diphenylbenzo[1,3]dioxole-5-carbaldehyde: mp 91.0-93.0 °C; IR(KBr) 1684 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.11 (s, 1H), 7.44 (s, 1H), 7.36-7.54 (m, 10H), 10.16 (s, 1H); ¹³C NMR (75.0 MHz, CDCl₃) δ 108.4, 113.4, 119.5, 121.6, 126.1, 128.0, 128.4, 129.6, 138.9, 147.7, 152.8, 190.4; LRMS (EI) m/z 380 (M⁺); HRMS (EI) calcd. for C₂₀H₁₃O₃Br (M⁺) 380.0048, found 380.0049. Anal. Calcd. for C₂₀H₁₃O₃Br: C, 63.01; H, 3.44; Br, 20.96, Found: C, 63.08; H, 3.55; Br, 20.82.

6-Bromo-2,2-diphenylbenzo[1,3]dioxole-5-carbaldehyde (5.89 g, 15.5 mmol)の benzene (40.0 mL)溶液に、 ethylene glycol (1.72 mL, 30.9 mmol) と p-toluenesulfonic acid monohydrate (53.0 mg, 0.278 mmol) を加え、 dean stark を使用し、110 ℃ で 2 時間加熱還流した。反応液に aq. NaHCO₃ を加え、AcOEt で抽出し、 brine で洗浄し、濃縮留去した。得られた残渣を結晶化 (from AcOEt) させ、更に母液をカラムクロマトグ ラフィー (SiO2, n-hexane/AcOEt = 10:1)で精製すると、6-bromo-3,4-[(diphenylmethylene)dioxy]benzaldehyde ethanediyl acetal (5.12 g, 78%)が淡黄色プリズム状結晶として得られた。

6-Bromo-3,4-[(diphenylmethylene)dioxy]benzaldehyde ethanediyl acetal: mp 150.0-152.0 °C; IR(KBr) 1152, 1080 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.00-4.16 (m, 4H), 6.00 (s, 1H), 7.05 (s, 1H), 7.13 (s, 1H), 7.35-7.53 (m, 10H); ¹³C NMR (75.0 MHz, CDCl₃) δ 65.4, 102.6, 107.8, 112.8, 114.0, 118.2, 126.3, 128.3, 129.3, 129.9, 139.5, 147.1, 148.6, ; LRMS (EI) m/z 424 (M⁺), 347 (M⁺-Ph); HRMS (EI) calcd. for C₂₂H₁₂O₄Br(M⁺) 424.0310, found 424.0319. Anal. Calcd. for C22H17O4Br: C, 62.13; H, 4.03. Found: C, 61.82; H, 4.05.

6-Bromo-3,4-[(diphenylmethylene)dioxy]benzaldehyde ethanediyl acetal (851 mg, 2.00 mmol) の THF (15.0 mL) 溶 液に窒素雰囲気下、n-butyl lithium の n-hexane 溶液 (1.38 mL, 2.20 mmol) を -100 ℃ で加え、-100 ℃ で 10 分撹拌した。反応液に triethylchlorosilane (0.37 mL, 22.0 mmol)を加え、徐々に室温まで昇温させなが ら1時間撹拌した。反応液に H₂O を加え、AcOEt で抽出し、brine で洗浄し、濃縮留去した。生成物を acetone: H₂O (1:1) に溶解させ、20 分間 100 ℃ で加熱還流した。反応液に aq. NaHCO₃ を加え、AcOEt で 抽出し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt =9:1)で精製 すると、22j (739 mg, 1.77 mmol, 89%) が無色プリズム状結晶として得られた。 22 j: mp 57.0-58.0 °C; IR(KBr) 1684, 1451 1210 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.85-0.97 (m, 15H), 7.13 (s, 1H), 7.37-7.59 (m, 11H), 10.08 (s, 1H); ¹³C NMR (75.0 MHz, CDCl₃) δ 5.1, 7.6, 109.1, 126.1, 128.4, 129.4, 137.4, 138.2, 139.7, 148.5, 151.5, 190.7; LRMS (EI) m/z 416 (M⁺), 387 (M⁺-Et); HRMS (EI) calcd. for C26H28O3Si(M⁺) 416.1808, found 416.1797. Anal. calcd. for C26H28O3Si : C, 74.96; H, 6.77. Found: C, 74.66; H, 6.85.

Aldehyde (22) からnorbelladine 誘導体 (19) 合成の一般法 22g (444 mg, 1.77 mmol)と tyramine (244 mg, 1.77 mmol)の MeOH (6.0 mL) 溶液を3時間加熱還流した。 反応液を空冷し、NaBH4 (356 mg, 9.40 mmol)を氷冷下加え、氷冷下 30 分撹拌した。反応液に sat. NH4CI を加え、溶媒を濃縮留去し、AcOEtで抽出し、brineで洗浄し、濃縮留去した。生成物に pyridine (3.0 mL) と trifluoroacetic anhydride (0.55 mL, 3.88 mmol) を氷冷下加え、1.5 時間撹拌した。反応液に sat. NH₄Cl を 加え、AcOEt で抽出し、brine で洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO₂, n-hexane/AcOEt = 3:1) で精製すると、19g (795 mg, 1.70 mmol, 96%) が無色非定形結晶として得ら れた。

19g: IR(KBr) 3400, 1690, 1516, 1491, 1252, 1233, 1208, 1169, 1148 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.33 and 0.23 (s, 9H), 1.65 and 1.58 (s, 6H), 2.86 and 2.80 (t, 2H, J = 7.4 Hz), 3.50 and 3.48 (t, 2H, J = 7.4 Hz), 4.74 and 4.50 (s, 2H), 6.48 and 6.45 (s, 1H), 6.76 and 6.74 (d, 2H, J = 8.5 Hz), 6.88 and 6.85 (s, 1H), 7.02 and 6.97 (d, 2H, J = 8.5 Hz); ¹³C NMR (75.0 MHz, CDCl₃) δ 0.4 and 0.2, 25.9, 34.8 and 31.9, 49.7 and 49.4, 51.3 and 49.9, 106.2 and 106.1, 113.9 and 113.9, 115.7 and 115.6, 116.5(m), 118.3 and 118.2, 129.3 and 128.8, 129.8, 129.9 and 129.7, 134.1 and 133.9, 146.5 and 146.4, 149.0 and 148.9, 154.8 and 154.7, 157.6(m); LRMS (EI) m/z 467 (M⁺), 452 (M⁺-Me); HRMS (EI) calcd. for C₂₃H₂₈NO₄F₃Si(M⁺) 467.1739, found 467.1744.

19f: 無色非定形結晶; IR(KBr) 3551, 1694, 1485, 1250, 1221, 1208, 1145, 1021 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 0.33 and 0.23 (s, 9H), 2.83 and 2.80 (t, 2H, J = 7.3 Hz), 3.51 (m, 2H), 4.73 and 4.48 (s, 2H), 6.63 and 6.59 (s, 1H), 6.72 and 6.71 (d, 2H, J = 8.0 Hz), 6.94 and 6.92 (s, 1H), 7.01 and 6.99 (d, 2H, J = 8.0 Hz), 7.32-7.56 (m, 10H); ¹³C NMR (75.0 MHz, CDCl₃) δ 0.3 and 0.1, 31.8 and 31.5, 49.3 and 34.7, 51.3 and 49.8, 106.4 and 106.2, 114.1, 115.6 and 115.6, 117.8(m), 120.1, 126.2 and 126.1, 128.2, 128.5, 129.5, 129.9 and 129.6, 130.6 and 130.0, 134.9 and 134.6, 140.1, 146.2, 148.7, 155.0 and 154.9, 157.6(m); LRMS (EI) m/z 591 (M⁺), 576 (M⁺-Me), 514 (M⁺-Ph); HRMS (EI) calcd. for C₃₃H₃₂NO₄F₃Si (M⁺) 591.2052, found 591.2065. Anal. Calcd. for C₁₃H₃₂NO₄F₃Si: C, 66.99; H, 5.45; N, 2.37. Found: C, 66.89; H, 5.61; N, 2.29.

HRMS (FAB) calcd. for C₃₆H₃₀NO₄F₃Si(M⁺+H) 634.2601, found 634.2609.

19; 無色非定形結晶; IR(KBr) 3430, 1694, 1680, 1516, 1487, 1450, 1248, 1221, 1208, 1167, 1148, 1046, 1021 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃) δ 0.67-0.99 (m, 15H), 2.84 and 2.81 (t, 2H, J = 8.0 Hz), 3.52 (t, 2H, J = 8.0 Hz), 4.71 and 4.46 (s, 2H), 6.62 and 6.57 (s, 1H), 6.74 and 6.73 (d, 2H, J = 8.0 Hz), 6.96 and 6.92 (s, 1H), 6.99 and 6.97 (d, 2H, J = 8.0 Hz), 7.33-7.58 (m, 10H); ¹³C-NMR (75.0 MHz, CDCl₃) δ 4.1 and 4.3, 7.4 and 7.6, 31.9 and 34.8, 49.3 and 49.7, 50.0 and 51.3, 106.1, 115.1, 115.5 and 115.6, 116.4 (q, J = 287 Hz), 116.9 and 117.0, 126.1 and 126.2, 126.9 and 127.4, 128.3, 129.0, 129.8 and 128.8, 129.7 and 129.9, 135.3 and 135.0, 140.2 and 140.3, 146.2, 148.6, 154.7 and 154.8, 157.6 and 157.7 (q, J = 36.0 Hz); LRMS (FAB) m/z 634 (M⁺+H), 604 (M⁺-Et);

-39-

Norbelladine 誘導体 (19)の PIFA を用いる酸化的カップリング反応の一般法

19g (530 mg, 1.14 mmol)の trifluoroethanol (10.0 mL) 溶液に窒素雰囲気下、PIFA (537 mg, 1.25 mmol)の trifluoroethanol (10.0 mL) 溶液を -40 ℃で加え、1.5 時間撹拌した。反応液は瞬時に濃紺になった。溶媒を 濃縮留去し、得られた残渣をカラムクロマトグラフィー (SiO,, n-hexane/AcOEt=2:1)で精製すると、20g (245 mg, 0.524 mmol, 46%) と **21g** (53.3 mg, 0.141 mmol, 12%) が共に褐色非定形結晶として得られた。

20g: IR(KBr) 1694, 1667, 1495, 1242, 1142 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.35 (s, 9H), 1.42 (s, 6H), 2.30 (t, 2H, J = 6.1 Hz), 3.84 (t, 2H, J = 6.1 Hz), 4.87 (s, 2H), 6.23 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.77 (s, 1H), 6.79 (d, 2H, J = 10.2 Hz), 6.71 (s, 1H), 6.71 (s, 1H), 6.71 (s, 1H), 6.71 (s, 1H)), 6.71 (s, 1H), 6.71 (s, 1H)), 6.71 (s, 1H), 6.71 (s, 1H)), 6.71 (s, 1H)),10.2 Hz); ¹³C NMR (75.0 MHz, CDCl₃) δ 0.8, 25.7, 35.6, 45.0, 46.2, 48.2, 108.2, 113.2, 115.0 (m), 117.5, 118.2, 128.0, 133.4, 134.3, 146.4, 147.8, 150.5, 156.1 (m), 185.9; LRMS (EI) m/z 465 (M⁺), 450 (M⁺-Me); HRMS (EI) calcd. for C₂₃H₂₆NO₄F₃Si(M⁺) 465.1583, found 465.1589.

21g: 褐色非定形結晶; IR(KBr) 1700, 1670, 1499, 1244, 1146 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 1.64 and 1.63 (s, 6H), 2.34 and 2.35 (t, 2H, J = 6.2 Hz), 3.94 and 3.91 (t, 2H, J = 6.2 Hz), 4.75 and 4.72 (s, 2H), 6.29 and 6.28(d, 2H, J = 10.2 Hz), 6.41 and 6.44 (s, 1H), 6.70 and 6.25 (s, 1H), 7.01 and 6.91 (d, 2H, J = 10.2 Hz); LRMS (EI) m/z 393 (M⁺), 378 (M⁺-Me); HRMS (EI) calcd. for $C_{20}H_{18}NO_4F_3$ (M⁺) 393.1188, found 393.1186.

20f: 褐色非定形結晶; IR(KBr) 1700, 1665, 1453, 1240, 1144, 1021 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.42 (s, 9H), 2.39 (t, 2H, J = 5.9 Hz), 3.91 (t, 2H, J = 5.9 Hz), 4.93 (s, 2H), 6.41 (d, 2H, J = 9.9 Hz), 6.91 (d, 2H, J = 9.9Hz), 7.01 (s, 1H), 7.30-7.39 (m, 10H); ¹³C NMR (75.0 MHz, CDCl₃) δ 0.8, 35.7, 45.0, 46.3, 48.1, 113.5, 116.0(m), 117.9, 125.6, 126.1, 128.3, 129.2, 134.4, 134.8, 140.2, 146.2, 147.3, 150.6, 156.5(m), 185.6; LRMS (EI) m/z 589 (M⁺), 574 (M⁺-Me), 512 (M⁺-Ph); HRMS (EI) calcd. for C₃₃H₃₀NO₄F₃Si (M⁺) 589.1896, found 589.1898. Anal. calcd. for C₃₃H₃₀NO₄F₃Si: C, 67.22; H, 5.13; N, 2.38. Found: C, 67.50; H, 5.05; N, 2.26.

21f: 褐色非定形結晶; IR(KBr) 1669, 1626, 1497, 1451, 1242, 1199, 1167, 1146, 1046, 1021 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.37 and 2.33 (t, 2H, J = 6.0 Hz), 3.92 and 3.89 (t, 2H, J = 6.0 Hz), 4.75 and 4.92 (s, 2H), 6.29 and 6.28 (d, 2H, J = 10.0 Hz), 6.61 and 6.60 (s, 1H), 6.86 and 6.69 (s, 1H), 7.00 and 6.89 (d, 2H, J = 10.0 Hz), 7.35-7.37(m, 6H), 7.51-7.52 (m, 4H); LRMS (EI) m/z 517 (M⁺), 440 (M⁺-Ph); HRMS (EI) calcd. for C₃₀H₂₂NO₄F₃ (M⁺) 517.1501, found 517.1510.

20j: 褐色非定形結晶; IR (KBr) 1700, 1667, 1453, 1262, 1238, 1206, 1181, 1144, 1049, 1021 cm⁻¹; ¹H NMR $(300 \text{ MHz, CDCl}_3) \delta 0.95-0.97 \text{ (m, 15H)}, 2.37 \text{ (t, 2H, } J = 6.0 \text{ Hz}), 3.89 \text{ (t, 2H, } J = 6.0 \text{ Hz}), 4.91 \text{ (s, 2H)}, 6.42 \text{ (d, 2H)},$ 2H, J = 10.0 Hz), 6.92 (d, 2H, J = 10.0 Hz), 6.96 (s, 1H), 7.27-7.42 (10H, m); ¹³C NMR (75.0 MHz, CDCl₃) δ 4.5, 7.6, 35.7, 44.9, 46.3, 47.8, 114.2, 117.2 (m), 117.9, 125.5, 128.1, 128.2, 128.9, 131.4, 135.2, 140.3, 146.1, 147.1, 150.8, 156.4 (q, J = 36.0 Hz), 185.7; LRMS (FAB) m/z 632 (M⁺+H); HRMS (EI) calcd. for C₃₆H₃₇NO₄F₃Si (M⁺) 632.2444, found 632.2427.

para-ortho' カップリング体 (20f) と各種試薬との反応

20f (59.0 mg, 0.100 mmol)の MeOH (1.0 mL)溶液にK2CO3 (138 mg, 1.00 mmol)と H2O (1.0 mL)を加え、 2.5 時間室温で撹拌した。MeOHを減圧留去し、AcOEtで抽出し、brineで洗浄し、濃縮留去した。得られ た残渣をprep. TLC (SiO₂, CH₂Cl₂) で精製すると 29 (8.0 mg, 16%) が無色非定形結晶として得られた。 **29**: IR (KBr) 1696, 1495, 1233, 1210 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.25 (s, 9H), 2.17-2.29 (m, 1H), 2.40-2.56 (m, 2H), 2.68-2.77 (m, 1H), 2.90-3.03 (m, 1H), 3.47-3.63 (m, 1H), 3.68-3.79 (m, 1H), 3.94 (d, 1H. J = 16.6 Hz, 4.48 (d, 1H, J = 16.6 Hz), 6.10 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 6.95 (s, 1H), 7.27-7.63 (m, 10H), 8.53 (d, 1H, J = 10.2 Hz), 8.53 (d, 1H, J = 10.2 Hz)), $8.53 \text{ (d, 1H, } J = 10.2 \text$ 10.2 Hz); LRMS (EI) m/z 493 (M⁺); HRMS (EI) calcd for C₃₁H₃₁NO₃Si (M⁺) 493.2073, found 493.2050.

20f (29.5 mg, 0.050 mmol)の THF (2.0 mL) 溶液にconc. HCl (5.0 mL) を加え、8 時間室温で撹拌した。反

応液に sat. NaHCO₃ を加え、AcOEt で抽出し、brine で洗浄し、濃縮留去した。得られた残渣をprep. TLC (SiO₂, n-hexane/AcOEt = 1:1) で精製すると 30 (18.0 mg, 70%) が無色非定形結晶として得られた。 **30**: IR (KBr) 1694, 1626, 1445, 1250, 1202 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.37-2.43 (m, 2H), 3.90-3.93 (m, 2H), 4.78 (d, 2H. J = 4.4 Hz), 6.42 (d, 2H, J = 8.2 Hz), 6.45-6.95 (m, 4H), 7.28-7.42 (m, 10H); HRMS (EI) calcd for $C_{30}H_{22}F_3NO_4(M^{+})$ 517.1501, found 517.1504.

として得られた。

Si(M⁺) 589.1896, found 589.1896.

N-Demethyl-N-trifluoroacetylnarwedine (28)の合成

結晶として得られた。

m/z 367 (M⁺); HRMS (EI) calcd. for C₁₈H₁₆NO₄F₃(M⁺) 367.1031, found 367.1024.

Narwedine (14) の合成

(Al₂O₃, AcOEt only)で精製し、14 (2.5 mg, 0.0088 mmol, quant.)を無色結晶として得た。 LRMS (EI) m/z 285 (M⁺); HRMS (EI) calcd. for C₁₇H₁₉NO₃(M⁺) 285.1365, found 285.1332.

Galanthamine (13) の合成

mg, 0.011 mmol, quant.) が無色結晶として得られた。

20f (6.0 mg, 0.010 mmol) の 5 N HCl/EtOH (3.0 mL) 溶液を 2 時間室温で撹拌した。反応液を濃縮留去し、 得られた残渣をprep. TLC (SiO₂, n-hexane/AcOEt = 5:1) で精製すると 31 (6.0 mg, 88%) が無色非定形結晶

31: IR (KBr) 1763, 1688, 1451, 1206 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.01 and 0.03 (s, 9H), 2.46-2.59 (m, 1H), 2.99-3.07 (m, 2H), 3.12-3.26 (m, 1H), 4.21-4.25 (m, 1H), 5.15 (d, 1H. J = 13.4 Hz), 6.90 (d, 1H, J = 8.0 Hz), 7.07-7.34 (m, 4H), 7.37-7.70 (m, 10H); LRMS (EI) m/z 589 (M⁺), 512 (M⁺-Ph); HRMS (EI) calcd for C₃₃H₃₀F₃NO₄

20f(11.8 mg, 0.020 mmol)の trifluoroacetic acid (4.0 mL) 溶液を室温で 45 分撹拌した。溶媒を濃縮留去し、 acetone (5.0 mL)、K2CO3 (5.5 mg, 0.040 mmol)、 dimethyl sulfate (0.0080 mL, 0.080 mmol) を加え 1.5 時間 加熱還流した。反応液に sat. NaHCO, を加え、AcOEt で抽出し、濃縮留去した。得られた残渣をカラムク ロマトグラフィー (SiO, n-hexane/AcOEt = 1:1) で精製すると 28 (7.5 mg, 0.020 mmol, quant.) が無色非定形

28: IR(KBr) 1693, 1512, 1439, 1281, 1252, 1208, 1169, 1143 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.13-2.21 (m, 1H), 2.80 and 2.71 (t, 1H, J = 2.6 Hz), 3.26 and 3.17 (d, 1H, J = 2.6 Hz), 3.36-3.80 (m, 1H), 3.86 (s, 3H), 4.63 and 4.36 (d, 1H, J = 15.8 Hz), 4.55 and 4.14 (d, 1H, J = 15.8 Hz), 4.75 and 4.74 (s, 2H), 5.32 and 4.92 (d, 1H, J = 15.8Hz), 6.11 and 6.09 (d, 1H, J = 10.4 Hz), 6.93-6.92 (m, 3H); ¹³C NMR (75.0 MHz, CDCl₃) δ 37.1 and 37.1, 37.8 and 34.8, 46.9 and 46.7, 48.8 and 48.8, 52.9 and 52.0, 56.0, 87.8 and 87.7, 112.1, 116.3 (m), 122.4 and 121.2, 126.6 and 126.1, 128.1 and 127.9, 129.5, 142.6 and 142.1, 144.9, 147.7 and 147.6, 156.4 (m), 193.6; LRMS (EI)

28 (3.2 mg, 0.0088 mmol)の H₂O (1.0 mL)と MeOH (1.0 mL)の溶液に K₂CO₃ (12.2 mg, 0.088 mmol)を加え、 室温で2時間撹拌した。AcOEtで抽出し、濃縮留去した。生成物にH₂O (2.0 mL)、HCOOH (0.0018 mL, 0.044 mmol)、35% HCHO (0.0011 mL, 0.0097 mmol)を加え 10 時間加熱還流 した。反応液に sat. NaHCO: を加え、AcOEtで抽出し、brineで洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー

14: mp 185-188 °C (from Et₂O, lit.^{35g)} 187-188 °C); IR(KBr) 1690, 1685, 1509, 1439, 1283 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.85 (d, 1H, J = 15.0 Hz), 2.28 (dt, 1H, J = 15.0, 4.0 Hz), 2.44 (s, 3H, NMe), 2.75 (dd, 1H, J = 15.0 Hz), 2.75 (dd, 2Hz), 2.75 (dd, 2H 15.0, 4.0 Hz), 3.19 (m, 3H), 3.75 (d, 1H, J = 15.0 Hz), 3.84 (s, 3H, OMe), 4.09 (d, 1H, J = 15.0 Hz), 4.73 (brs, 1H), 6.04 (d, 1H, J = 10.0 Hz), 6.65 (d, 1H, J = 8.0 Hz), 6.70 (d, 1H, J = 8.0 Hz), 6.95 (d, 1H, J = 10.0 Hz);

14 (3.0 mg, 0.011 mmol)の THF (0.50 mL) 溶液に窒素雰囲気下、 L-selectrideの THF (0.040 mL, 0.040 mmol) 溶液を -78 ℃ で加え、 -78 ℃で 2 時間、氷冷下 30 分撹拌した。反応液に H₂O を加え、AcOEt で 抽出し、濃縮留去した。得られた残渣を prep. TLC (SiO₂, CHCl₃/MeOH = 10:1) で精製すると、13 (3.2)

13: mp 119-120 °C (from Et₂O, lit.⁵⁶⁾ 127-129 °C); IR(KBr) 1507, 1439, 1283, 1266, 1048 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.58 (m, 1H), 1.99-2.04 (m, 1H), 2.06-2.11 (m, 1H), 2.40 (s, 3H, NMe), 2.68 (d, 1H, J = 15.0 Hz), 3.05 (d, 1H, J = 14.0 Hz), 3.27 (t, 1H, J = 14.0 Hz), 3.68 (d, 1H, J = 15.0 Hz), 3.83 (s, 3H, OMe), 4.09 (d, 1H, J = 15.0 Hz), 4.13 (t, 1H, J = 5.0 Hz), 4.61 (brs, 1H), 6.02 (dd, 1H, J = 10.5, 5.0 Hz), 6.07 (d, 1H, J = 10.5Hz), 6.62 (d, 1H, J = 8.0 Hz), 6.66 (d, 1H, J = 8.0 Hz); LRMS (EI) m/z 287 (M⁺); HRMS (EI) calcd. for $C_{17}H_{21}NO_{31}$ (M⁺) 287.1521, found 287.1517.

Lycoramine (15) の合成

13 (1.8 mg, 0.0060 mmol)の AcOEt (3.0 mL)溶液に Pd-C (3.0 mg)を加え、水素雰囲気下 (4.0 atm)室温で 4 時間撹拌した。Pd-Cを濾過し、濃縮留去すると、15 (2.0 mg, 0.006 mmol, quant.) が無色結晶として得ら れた。

15: mp 101-102 ℃ (from Et₂O, lit.^{36c)} 98-102 ℃); IR(KBr) 3607, 2900, 1622, 1507, 1437, 1280, 1032 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.58-2.04 (m, 7H), 2.37 (s, 3H, NMe), 2.51 (t, 1H, J = 15.8 Hz), 3.06 (d, 1H, J = 14.0Hz), 3.24 (t, 1H, J = 14.0 Hz), 3.64 (d, 1H, J = 14.8 Hz), 3.86 (s, 3H, OMe), 4.04 (d, 1H, J = 14.8 Hz), 4.61 (brs, 1H), 4.08-4.14 (m, 1H), 4.38 (t, 1H, J = 2.8 Hz), 6.60 (d, 1H, J = 8.0 Hz), 6.67 (d, 1H, J = 8.3 Hz); LRMS (EI) m/z 289 (M⁺), 288 (M⁺-H); HRMS (EI) calcd. for C₁₇H₂₃NO₃ (M⁺) 289.1678, found 289.1674.

Norgalanthamine (16) の合成

28 (6.4 mg, 0.017 mmol)の H₂O (1.0 mL)と MeOH (1.0 mL)の溶液に K₂CO₃ (24.0 mg, 0.17 mmol)を加え室 温で2時間撹拌した。AcOEtで抽出し、濃縮留去した。生成物の THF (2.0 mL) 溶液に窒素雰囲気下、 L-selectrideの THF (0.070 mL, 0.070 mmol) 溶液を -78 ℃ で加え、-78 ℃ で 2 時間、氷冷下 2 時間撹拌した。 反応液に H₂O を加え、AcOEt で抽出し、濃縮留去した。得られた残渣を prep. TLC (SiO₂, CHCl₂/MeOH = 5:1) で精製すると、16 (3.8 mg, 0.014 mmol, 82%) が無色結晶として得られた。

16: mp 158-159 °C (from Et₂O, lit.^{37b)} 156-158 °C, lit.^{37a)} 149-152 °C, lit.^{37c)} 152.5-153 °C, lit.^{37d)} 171-173 °C, lit.^{37e)} 156-158 °C); IR(KBr) 1506, 1437, 1280, 1265 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.73-2.04 (m, 3H), 2.70 (d, 1H, J = 15.0 Hz), 3.23 (t, 1H, J = 14.0 Hz), 3.37 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 1H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe)), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe)), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe)), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe)), 3.96 (d, 2H, J = 14.0 Hz), 3.84 (s, 3H, OMe)), 3.96 (d, 2H, J = 14.0 Hz))15.0 Hz, 4.03 (d, 1H, J = 15.0 Hz), 4.14 (t, 1H, J = 5.0 Hz), 4.61 (brs, 1H), 6.01 (dd, 1H, J = 10.5, 5.0 Hz), 6.06 Hz $(d, 1H, J = 10.0 \text{ Hz}), 6.62 (d, 1H, J = 8.0 \text{ Hz}), 6.65 (d, 1H, J = 8.0 \text{ Hz}); \text{LRMS (EI) } m/z 273 (M^{+}); \text{HRMS (EI)}$ calcd. for C₁₆H₁₉NO₃ (M⁺) 273.1365, found 273.1390.

Sanguinine (17)の合成

20f (95.0 mg, 0.161 mmol) に trifluoroacetic acid (4.0 mL) を加え、室温で 45 分撹拌した。溶媒を濃縮留去 L, DMF (1.5 mL), imidazole (27.0 mg, 0.403 mmol), t-buthyldimethylsilyl chloride (29.0 mg, 0.192 mmol) を加え、室温で2時間撹拌した。反応液に sat. NaHCO3 を加え、AcOEt で抽出し、濃縮留去した。得られ た残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt = 1:1) で精製すると、N-demethyl-O-demethyl-O-tert-butyldimethylsilyl-N-trifluoroacetylnarwedine (54.0 mg, 0.115 mmol, 72%) が無色非定形結晶として得ら れた。

N-Demethyl-O-demethyl-O-tert-butyldimethylsilyl-N-trifluoroacetylnarwedine: IR(KBr) 2932, 1694, 1507, 1435, 1310, 1285, 1252, 1206, 1169, 1146 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 0.07-0.17 (m, 6H), 0.86-0.98 (m, 9H), 2.08-2.25 (m, 2H), 2.79 and 2.73 (m, 1H), 3.14 and 3.08 (d, 1H, J = 2.5 Hz), 3.73 and 3.35 (m, 1H), 4.54 and 4.13 (d, 1H, J = 15.8 Hz), 4.66 and 4.65 (s, 1H), 4.75 and 4.34 (d, 1H, J = 15.1 Hz), 5.29 and 4.88 (d, 1H, J = 15.8 Hz), 6.05 and 6.07 (d, 1H, J = 10.0 Hz), 6.60-6.89 (m, 3H); ¹³C-NMR (75.0 MHz, CDCl₃) δ 194.0 and 194.1, 156.3(m), 149.7 and 149.8, 142.4 and 142.8, 140.4, 129.8 and 129.8, 127.5 and 127.7, 126.9 and 127.3, 121.0 and 122.2, 121.6, 116.2(q, J = 287 Hz), 86.9 and 87.0, 51.9 and 52.8, 48.9 and 49.0, 46.7 and 46.8, 32.3 and 37.5, 34.5, 25.5, 18.3, -4.7; LRMS (EI) m/z 467 (M⁺); HRMS (EI) calcd. for C₂₃H₂₈NO₄F₃Si (M⁺) 467.1739, found 367.1710.

N-Demethyl-O-demethyl-O-tert-butyldimethylsilyl-N-trifluoroacetylnarwedine を THF (10.0 mL) に 溶解し、 L-selectrideの THF (0.48 mL, 0.485 mmol) 溶液を -78 ℃ で加え、-78 ℃ で 2 時間、氷冷下 30 分撹拌した。 色結晶として得られた。

HRMS (FAB) calcd. for C₁₆H₂₀NO₃(M⁺+H) 274.1444, found 274.1461.

反応液に H₂O を加え、AcOEt で抽出し、濃縮留去した。得られた残渣に H₂O (2.0 mL)、HCOOH (0.020 mL, 0.538 mmol)、35% HCHO (0.010 mL, 0.118 mmol)を加え、12 時間加熱還流した。反応液に sat. NaHCO, を加え、AcOEt で抽出し、brine で洗浄し、濃縮留去すると 17 (29.0 mg, 0.109 mmol, 68%) が無

17: mp 210.0-215.0 °C (from acetone, lit.^{38b)} 211.5-213.0 °C); IR(KBr) 2926, 1506, 1456, 1300, 1258, 1044 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.52 (d, 1H, J = 13.4 Hz), 1.91 (d, 1H, J = 13.4 Hz), 2.05 (t, 1H, J = 12.0 Hz), 2.38 (s, 3H, NMe), 2.43 (d, 1H, J = 15.3 Hz), 2.63 (s, 1H), 3.03 (d, 1H, J = 14.6 Hz), 3.23 (t, 1H, J = 13.4 Hz), 3.64 (d, 1H, J = 15.0 Hz), 4.05 (d, 1H, J = 15.0 Hz), 4.17 (t, 1H, J = 4.0 Hz), 4.48 (brs, 1H), 5.90 (dd, 1H, J = 10.4, 4.9Hz), 6.03 (d, 1H, J = 10.4 Hz), 6.50 (d, 1H, J = 7.9 Hz), 6.59 (d, 1H, J = 7.9 Hz); LRMS (EI) m/z 273 (M⁺);

第2章の実験

1,3-Diarylpropane (32) 合成の一般法

1,3-Diarylpropane (32) は文献⁵¹⁾を参考に対応する benzaldehyde と acetophenone 誘導体から合成。

5-[3-(1,3-Benzodioxol-5-yl)propyl]-1,3-benzodioxole (32b): 無色結晶; mp 70-72 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.85 (qui, 2H, J = 7.6 Hz), 2.55 (t, 4H, J = 7.6 Hz), 5.92 (s, 4H), 6.61 (dd, 2H, J = 7.8, 1.6 Hz), 6.67 (d, 2H, J = 1.6 Hz), 6.72 (d, 2H, J = 7.8 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 33.4, 35.0, 100.7, 108.1, 108.8, 121.1, 136.1, 145.5, 147.5; HRMS (EI) calcd for C₁₇H₁₆O₄ (M⁺) 284.1048, found 284.1049.

5-[3-(3,4-Dimethoxyphenyl)propyl]-1,2,3-trimethoxybenzene (32d): 無色非定形結晶; ¹H NMR (270 MHz, CDCl₃) δ 1.94 (qui, 2H, J = 7.6 Hz), 2.59 (t, 2H, J = 7.6 Hz), 2.62 (t, 2H, J = 7.6 Hz), 3.82 (s, 3H), 3.85 (s, 3H), 3 6H), 3.87 (s, 3H), 3.88 (s, 3H), 6.40 (s, 2H), 6.71-6.75 (m, 2H), 6.81 (d, 1H, J = 7.9 Hz); ¹³C NMR (67.9 MHz, CDCl₃) & 33.0, 35.0, 35.7, 55.7, 55.8, 55.9, 60.7, 105.2, 111.1, 111.7, 120.1, 134.7, 138.0, 147.1, 148.7, 153.0; HRMS (EI) calcd for C₂₀H₂₆O₅(M⁺) 346.1780, found 346.1784.

tert-Butyl{4-[3-(3,4-dimethoxyphenyl)propyl]-2-methoxyphenoxy}dimethylsilane (32e): 無色油 状物;¹H NMR (200 MHz, CDCl₃) δ 0.14 (s, 6H), 0.99 (s, 9H), 1.91 (qui, 2H, J = 7.8 Hz), 2.59 (t, 4H, J = 7.8 Hz), 3.79 (s, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 6.62-6.81 (m, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ -4.7, 18.4, 25.7, 33.3, 35.0, 35.1, 55.5, 55.8, 55.9, 111.2, 111.8, 112.5, 120.2, 120.5, 120.6, 135.0, 135.8, 142.9, 147.1, 148.7, 150.6; HRMS (EI) calcd for C₂₄H₃₆O₄Si (M⁺) 416.2383, found 416.2387.

N-Benzyl-N-phenethylamine 誘導体 (33)、N.N-Dibenzylamine 誘導体 (34) の一般合成法 N-Benzyl-N-phenethylamine 誘導体 (33) と N.N-dibenzylamine 誘導体 (34) は文献52) を参考に対応する benzaldehyde と tyramine 誘導体 (あるいは benzylamine 誘導体)から合成。

N-(3,4-Dimethoxybenzyl)-N-(3,4-dimethoxyphenethyl)-2,2,2-trifluoroacetamide (33b): 無色結晶; mp 68-69 °C; IR (KBr) 1690 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.75-2.86 (m, 2H), 3.46-3.54 (m, 2H), 3.85 and 3.86 and 3.87 and 3.88 (s, 12H), 4.31 and 4.59 (s, 2H), 6.61-6.68 (m, 3H), 6.76-6.85 (m, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 32.5, 34.9, 48.3, 48.5, 49.8, 51.7, 55.8, 56.1, 60.8, 104.2, 105.0, 111.3, 111.5, 111.7, 111.9, 116.5 (J = 287 Hz), 116.7 (J = 287 Hz), 120.6, 120.7, 129.8, 130.3, 130.7, 130.9, 147.8, 148.1, 149.0, 149.2, 153.6, 156.9 (J = 36 Hz); HRMS (EI) calcd for C₂₁H₂₄F₃NO₅ (M⁺) 427.1606, found 427.1608; Anal. Calcd for C₂₁H₂₄F₃NO₅: C, 59.01; H, 5.66; N, 3.28. Found C, 59.08; H, 5.69; N, 3.30.

N-(3,4-Dimethoxyphenethyl)-2,2,2-trifluoro-N-(3,4,5-trimethoxybenzyl)acetamide (33c): 無色結 晶; mp 100-101 ℃; IR (KBr) 1690 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.78-2.88 (m, 2H), 3.49-3.57 (m, 2H), 3.83 and 3.84 and 3.86 (s, 15H), 4.30 and 4.58 (s, 2H), 6.30 and 6.42 (s, 2H), 6.62-6.83 (m, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 32.1, 34.5, 48.1, 49.4, 51.3, 55.5, 55.7, 60.4, 104.0, 104.6, 111.0, 111.2, 111.4, 111.6, 116.2 (J = 288 Hz), 116.4 (J = 288 Hz), 120.3, 129.6, 130.0, 130.4, 130.7, 137.4, 137.5, 147.5, 147.7, 148.7, 148.8, 153.3, 156.4 (J = 35 Hz), 156.9 (J = 36 Hz); Anal. Calcd for C₂₂H₂₆F₃NO₆: C, 57.76; H, 5.73; N, 3.06. Found C, 57.88; H, 5.73; N, 3.10.

N,N-Bis(1,3-benzodioxol-5-ylmethyl)-2,2,2-trifluoroacetamide (34a): 無色結晶; mp 109-110 ℃; IR (KBr) 1692 cm⁻¹; ¹H NMR (270 MHz, CD₃OD) δ 4.43 and 4.50 (s, 4H), 5.93 and 5.96 (s, 4H), 6.62-6.84 (m, 6H); ¹³C NMR (50.3 MHz, CDCl₃) δ 47.4, 48.9, 101.1, 101.3, 107.6, 108.2, 108.4, 108.7, 116.7 (J = 288 Hz), 121.1, 122.0, 127.9, 128.7, 147.4, 147.6, 148.0, 148.3, 157.1 (J = 36 Hz); Anal. Calcd for C₁₈H₁₄F₃NO₅: C, 56.70; H, 3.70: N. 3.67. Found C. 56.62: H. 3.83: N. 3.69.

C₂₀H₂₂F₃NO₅: C, 58.11; H, 5.36; N, 3.39. Found C, 58.17; H, 5.29; N, 3.45.

56.98; H, 5.45; N, 3.20.

(m, 4H), 6.78-6.87 (m, 2H); HRMS (EI) calcd for C₂₅H₃₄F₃NO₅Si (M⁺) 513.2158, found 513.2158.

3.22.

対称 silaketal 誘導体 (38a、38b、38d、38e) の一般合成法 られた。

Bis(3,4-dimethoxyphenoxy)diisopropylsilane (38a) mL, 1.08 mmol)、DMF (2.5 mL)より合成。 62.83; H, 7.63.

Bis(1,3-benzodioxol-5-yloxy)diisopropylsilane (38b) Diisopropyldichlorosilane (0.050 mL, 0.27 mmol) , 3,4-methylenedioxyphenol (sesamol) (149 mg, 1.08 mmol) , Et_aN (0.15 mL, 1.08 mmol)、DMF (2.5 mL) より合成。 38b (62.0 mg, 59%): 無色結晶; mp 90-91 ℃; ¹H NMR (200 MHz, CDCl₃) δ 1.07 (d, 12H, J = 6.2 Hz), 1.20 (m,

N,N-Bis(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide (34b): 無色結晶; mp 91-92 ℃; IR (KBr) 1690 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.84 and 3.86 (s, 6H), 3.88 and 3.90 (s, 6H), 4.46 and 4.47 (s, 4H), 6.66-6.76 (m, 4H), 6.82 and 6.87 (m, 2H); 13 C NMR (50.3 MHz, CDCl₃) δ 47.7, 49.0, 55.9, 110.3, 111.0, 111.2, 111.5, 116.8 (J = 288 Hz), 120.0, 121.0, 126.7, 127.5, 148.8, 149.0, 149.2, 149.4, 157.3 (J = 35 Hz); Anal. Calcd for

N-(3,4-Dimethoxybenzyl)-2,2,2-trifluoro-N-(3,4,5-trimethoxybenzyl)acetamide (34c): 無色結晶; mp 126-128 °C; IR (KBr) 1692 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.82 and 3.84 and 3.85 and 3.87 and 3.89 and 3.91 (s, 15H), 4.45-4.50 (m, 4H), 6.37 (s, 2H), 6.68 and 6.68 (d, 1H, J = 7.8 Hz), 6.73 (s, 1H), 6.82 and 6.87 (d, 1H, J = 7.8 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 47.7, 47.9, 49.0, 55.1, 55.3, 60.0, 103.8, 104.8, 109.9, 110.5, 110.7, 111.0, 116.2 (J = 288 Hz), 119.5, 120.4, 126.1, 127.1, 127.6, 129.5, 130.3, 137.0, 137.1, 148.3, 148.4, 148.6, 148.8, 152.8, 153.1, 156.6 (J = 36 Hz); Anal. Calcd for $C_{21}H_{24}F_3NO_6$: C, 56.88; H, 5.46; N, 3.16. Found C,

N-(4-tert-Butyldimethylsilyloxy-3-methoxybenzyl)-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoro-

acetamide (34d): 無色油状物; IR (KBr) 1692 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.16 and 0.17 (s, 6H), 0.99 and 1.00 (s, 9H), 3.76 and 3.78 (s, 3H), 3.83 and 3.85 (s, 3H), 3.88 and 3.90 (s, 3H), 4.43-4.45 (m, 4H), 6.59-6.73

N-(4-Acetoxy-3-methoxybenzyl)-N-(3,4-dimethoxybenzyl)-2,2,2-trifluoroacetamide (34e): 無色結 晶; mp 86-87 °C; IR (KBr) 1692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.32 and 2.33 (s, 3H), 3.79 and 3.81 (s, 3H), 3.84 and 3.86 (s, 3H), 3.89 and 3.91 (s, 3H), 4.50 (s, 4H), 6.67-7.08 (m, 6H); 13 C NMR (75.5 MHz, CDCl₃) δ 20.6, 47.6, 48.1, 49.0, 49.1, 49.3, 49.4, 55.8, 55.9, 110.3, 111.0, 111.3, 111.5, 112.4, 116.7 (*J* = 288 Hz), 119.5, 120.0, 120.6, 121.0, 122.9, 123.1, 126.5, 127.3, 133.4, 134.0, 139.5, 139.6, 148.9, 149.0, 149.3, 149.5, 151.4, 151.6, 157.4 (J = 35 Hz); Anal. Calcd for C₂₁H₂₂F₃NO₆: C, 57.14; H, 5.02; N, 3.17. Found C, 57.05; H, 5.05; N,

Alkoxyphenol (0.0500 mmol) と EtaN (0.150 mmol)の DMF 溶液に窒素雰囲気下、dialkyldichlorosilane もし くは dialkylsilyl bis(trifluoromethanesulfonate) (0.100 mmol) を室温で加え 60 ℃ で 3 時間撹拌した。反応液 を空冷し、H₂Oを加え、Et₂Oで抽出し、 brine で洗浄し、濃縮留去した。得られた残渣をカラムクロマト グラフィー (SiO2, n-hexane/AcOEt) で精製すると対応する silaketal 誘導体 (38a、38b、38d、38e) が得

Diisopropyldichlorosilane (0.050 mL, 0.280 mmol) , 3,4-dimethoxyphenol (167 mg, 1.08 mmol) , Et₃N (0.150

38a (66.0 mg, 58%): 無色油状物; ¹H NMR (200 MHz, CDCl₃) δ 1.10 (d, 12H, J = 5.8 Hz), 1.19 (m, 2H), 3.77 (s, 6H), 3.82 (s, 6H), 6.48-6.53 (m, 4H), 6.71 (d, 2H, J = 8.4 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 12.5, 17.1, 55.7, 56.2, 104.4, 110.3, 111.6, 143.9, 148.8, 149.5; Anal. Calcd for C22H32O6Si: C, 62.83; H, 7.67. Found C,

2H), 5.91 (s, 4H), 6.42 (dd, 2H, J = 8.2, 2.4 Hz), 6.52 (d, 2H, J = 2.4 Hz), 6.65 (d, 2H, J = 8.2 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 12.4, 17.0, 101.2, 102.0, 108.0, 111.2, 142.2, 148.0, 149.5; Anal. Calcd for C₂₀H₂₄O₆Si: C, 61.83; H, 6.23. Found C, 61.96; H, 6.18.

Di-tert-butyl-bis(3,4-dimethoxyphenoxy)silane (38d)

Di-tert-butylsilyl bis(trifluoromethanesulfonate) (0.066 mL, 0.180 mmol) , 3,4-dimethoxyphenol (111 mg, 0.720 mmol)、Et₃N (0.10 mL, 0.720 mmol)、DMF (3.0 mL) より合成。

38d (66.0 mg, 81%): 無色結晶; mp 76-77 ℃; ¹H NMR (250 MHz, CDCl₃) δ 1.10 (s, 18H), 3.73 (s, 6H), 3.83 (s, 6H), 6.52-6.54 (m, 4H), 6.71 (d, 2H, J = 9.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.6, 27.8, 55.7, 56.2, 104.7, 110.7, 111.6, 143.7, 149.3; Anal. Calcd for C24H36O5i: C, 64.25; H, 8.09. Found C, 64.30; H, 8.02.

Bis(1,3-benzodioxol-5-yloxy)-di-tert-butylsilane (38e)

Di-tert-butylsilyl bis(trifluoromethnesulfonate) (0.083 mL, 0.203 mmol), sesamol (127 mg, 0.920 mmol), Et₃N (0.13 mL, 0.920 mmol)、DMF (4.0 mL)より合成。

38e (74.0 mg, 78%): 無色結晶; mp 75-77 ℃; ¹H NMR (250 MHz, CDCl₃) δ 1.07 (s, 18H), 5.91 (s, 4H), 6.42 $(dd, 2H, J = 8.5, 2.5 Hz), 6.53 (d, 2H, J = 2.5 Hz), 6.65 (d, 2H, J = 8.5 Hz); {}^{13}C NMR (67.9 MHz, CDCl_3) \delta 21.7,$ 27.8, 101.2, 102.4, 107.9, 111.6, 141.9, 147.9, 150.0; Anal. Calcd for C22H28O6Si: C, 63.44; H, 6.78. Found C, 63.59; H. 6.82.

非対称 silaketal 誘導体 (38c、38f)の一般合成法

3,4-Dimethoxyphenol (0.200 mmol) と Et,N (0.200 mmol)の DMF (1.0 mL) 溶液に窒素雰囲気下、 diisopropyldichlorosilane あるいは di-tert-butylsilyl bis(trifluoromethane-sulfonate) (0.200 mmol) を室温で加え、 60 ℃ で 30 分撹拌した。反応液に sesamol (0.200 mmol) と Et₃N (0.200 mmol) のDMF (1.5 mL) 溶液を加え、 60 ℃ で 4 時間撹拌した。H₂O を加え、Et₂O で抽出し、brine で洗浄し、濃縮留去した。得られた残渣を カラムクロマトグラフィー (SiO, n-hexane/AcOEt) で精製すると対応する silaketal 誘導体 (38c、38f) が得 られた。

(1,3-Benzodioxol-5-yloxy)(3,4-dimethoxyphenoxy)diisopropylsilane (38c)

Diisopropyldichlorosilane (0.050 mL, 0.280 mmol) 、 3,4-dimethoxyphenol (42.0 mg, 0.280 mmol) 、 Et₃N (0.038 mL, 0.280 mmol) 、 DMF (1.0 mL) 、 sesamol (37.0 mg, 0.280 mmol) 、 Et₃N (0.038 mL, 0.280 mmol) 、 DMF (1.5 mL)より合成。

38c (52.0 mg, 48%): 無色油状物: ¹H NMR (200 MHz, CDCl₃) δ 1.09 (d, 12H, J = 5.2 Hz), 1.20 (m, 2H), 3.78 (s, 3H), 3.83 (s, 3H), 5.91 (s, 2H), 6.38-6.50 (m, 2H), 6.53 (d, 1H, J = 2.2 Hz), 6.54 (d, 1H, J = 2.2 Hz), 6.65 (d, 1H, J = 2.2 Hz), 6.65 (d, 2H), 6.65 (1H, J = 8.4 Hz), 6.71 (d, 1H, J = 8.4 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 12.4, 17.1, 55.7, 56.2, 101.2, 102.1, 104.4, 108.0, 110.2, 111.3, 111.7, 142.0, 143.9, 148.0, 148.8, 149.5, 149.6; Anal. Calcd for C₂₁H₂₈O₆Si: C, 62.35; H, 6.98. Found C, 62.34; H, 6.89.

(1,3-Benzodioxol-5-yloxy)-di-tert-butyl-(3,4-dimethoxyphenoxy)silane (38f)

Di-tert-butylsilyl bis(trifluoromethne-sulfonate) (0.21 mL, 0.570 mmol) 、 3,4-dimethoxyphenol (88.0 mg, 0.570 mmol), Et₁N (0.080 mL, 0.570 mmol), DMF (3.0 mL), sesamol (79.0 mg, 0.507 mmol), Et₁N (0.080 mL, 0.570 mmol)、DMF (3.0 mL)より合成。

38f (117 mg, 48%): 無色結晶; mp 72-73 ℃; ¹H NMR (250 MHz, CDCl₃) δ 1.08 (s, 18H), 3.75 (s, 3H), 3.83 (s, 3H), 5.91 (s, 2H), 6.45 (dd, 1H, J = 8.5, 2.5 Hz), 6.50-6.56 (m, 3H), 6.65 (d, 1H, J = 8.5 Hz), 6.72 (d, 1H, J = 8.5 Hz); ¹³C NMR (67.9 MHz, CDCl₃) δ 21.7, 27.8, 55.7, 56.3, 101.2, 102.4, 104.7, 107.9, 110.6, 111.6, 141.9, 143.7, 148.0, 149.3, 150.1; Anal. Calcd for C23H32O6Si: C, 63.86; H, 7.46. Found C, 63.95; H, 7.45.

Bis(3,4-dimethoxybenzyl) sulfide (39)の合成

3.4-Dimethoxybenzyl bromide (792 mg, 3.43 mmol) に Na₂S ·9H₂O (659 mg, 2.74 mmol) の EtOH (10 mL) 溶液 を室温で加え、1.5時間加熱還流した。反応液を空冷し、濃縮留去し、H2Oを加え、AcOEtで抽出し、 brine で洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt)で精製 すると39 (518 mg, 90%) が無色結晶として得られた。 **39**: mp 94-96 °C ; ¹H NMR (200 MHz, CDCl₃) δ 3.58 (s, 4H), 3.88 (s, 12H), 6.80 (s, 4H), 6.85 (s, 2H); ¹³C NMR $(67.9 \text{ MHz}, \text{CDCl}_3) \ \delta \ 35.2, \ 55.6, \ 55.7, \ 110.6, \ 111.8, \ 120.9, \ 130.4, \ 147.8, \ 148.8; \ \text{HRMS} \ (\text{EI}) \ \text{calcd for } C_{18} H_{22} O_4 S$ (M⁺) 334.1238, found 334.1243.

Bis(3,4-dimethoxybenzyl) sulfoxide (40a) の合成

が無色結晶として得られた。 8.97.

Bis(1,3-benzodioxol-5-vlmethyl) sulfoxide (40b) の合成

CH,Cl,/MeOH) で精製すると 40b (93.0 mg, 48%) が無色結晶として得られた。 10.07. Found C, 60.38; H, 4.51; S, 10.05.

1,3-Benzodioxol-5-ylmethyl 3,4-dimethoxybenzyl sulfoxide (40c) の合成

48%)が無色結晶として得られた。

C17H18O5S: C, 61.06; H, 5.43. Found C, 60.62; H, 5.34.

3,4-Dimethoxybenzyl 3,4,5-trimethoxybenzyl sulfoxide (40d) の合成

3,4,5-Trimethoxybenzylthiol (152 mg, 0.710 mmol)の EtOH (10 mL) 溶液に sodium hydroxide (28.0 mg, 0.710 mmol) を加え、室温で数分撹拌後、反応液に 3,4-methylenedioxybenzyl bromide (164 mg, 0.710 mmol) を加 え、室温で3時間撹拌した。反応溶媒を濃縮留去し、AcOEtで抽出し、brineで洗浄し、濃縮留去した。

39 (62.0 mg, 0.370 mmol)の CH₂Cl₂ (2.0 mL) 溶液に氷冷下 m-chloroperbenzoic acid (80.0 mg, 0.370 mmol)を 加え、室温で24時間撹拌した。反応液にaq.K,CO,を加え、CH,Cl,で抽出し、brineで洗浄し、濃縮留去 した。得られた残渣をカラムクロマトグラフィー (SiO2, CH2Cl2/MeOH) で精製すると 40a (52.0 mg, 80%)

40a: mp 146-148 °C; ¹H NMR (200 MHz, CDCl₃) δ 3.86 (m, 4H), 3.89 (s, 12H), 6.82-6.87 (m, 6H); ¹³C NMR (67.9 MHz, CDCl₃) δ 55.9, 55.9, 57.1, 111.3, 112.9, 122.5, 149.1; HRMS (EI) calcd for C₁₈H₂₂O₅S (M⁺) 350.1188, found 350.1188. Anal. Calcd for C18H22O5S: C, 61.70; H, 6.33; S, 9.15. Found C, 61.57; H, 6.30; S,

Bis(3,4-methylenedioxybenzyl) sulfide^{52c)} (183 mg, 0.580 mmol)の CH₂Cl₂ (3.0 mL) 溶液に氷冷下、 m-chloroperbenzoic acid (124 mg, 0.580 mmol)を加え、室温で 48 時間撹拌した。反応液に aq. K2CO3 を加え、 CH₂Cl₂で抽出し、brineで洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO₂,

40b: mp 128-130 °C; ¹H NMR (270 MHz, CDCl₃) δ 3.77 (d, 2H, J = 12.9 Hz), 3.84 (d, 2H, J = 12.9 Hz), 5.97 (s, 4H), 6.72-6.82 (m, 6H); ¹³C NMR (67.9 MHz, CDCl₃) δ 57.0, 101.3, 108.6, 110.2, 123.5, 123.6, 147.8, 148.1; HRMS (EI) calcd for C₁₆H₁₄O₅S (M⁺) 318.0570, found 318.0562; Anal. Calcd for C₁₆H₁₄O₅S: C, 60.37; H, 4.43; S,

3,4-Dimethoxybenzylthiol (203 mg, 1.10 mmol)の EtOH (5.0 mL) 溶液に sodium hydroxide (44.0 mg, 1.10 mmol)を加え、室温で数分撹拌後、反応液に 3,4-methylenedioxybenzyl bromide (237 mg, 1.00 mmol)を加え、 室温で1.5時間撹拌した。反応溶媒を濃縮留去し、AcOEtで抽出し、brineで洗浄し、濃縮留去した。得 られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt) で精製すると、1,3-benzodioxol-5-ylmethyl 3,4-dimethoxybenzyl sulfide (183 mg, 52%)が得られた。1,3-benzodioxol-5-ylmethyl 3,4-dimethoxybenzyl sulfide (183 mg, 0.580 mmol)の CH2Cl2 (3.0 mL) 溶液に m-chloroperbenzoic acid (124 mg, 0.580 mmol) を氷冷下加 え、室温で 48 時間撹拌した。反応液に aq. K₂CO₃ を加え、 CH₂Cl₂ で抽出し、brine で洗浄し、溶媒を濃 縮留去した。得られた残渣をカラムクロマトグラフィー (SiO2, CH2Cl2/MeOH) で精製すると 40c (93.0 mg,

40 c: mp 148-150 °C; ¹H NMR (200 MHz, CDCl₃) δ 3.80-3.86 (m, 4H), 3.89 (s, 6H), 5.98 (s, 2H), 6.78-6.86 (m, 6H); ¹³C NMR (67.9 MHz, CDCl₃) δ 55.9, 56.0, 57.0, 101.3, 108.6, 110.3, 111.4, 112.9, 122.4, 122.5, 123.6, 123.6, 147.8, 148.1, 149.2; HRMS (EI) calcd for C17H18O5S (M⁺) 334.0875, found 334.0880; Anal. Calcd for

得られた残渣をカラムクロマトグラフィー (SiO, n-hexane/AcOEt)で精製すると、 3,4-dimethoxybenzyl 3,4,5-tetramethoxybenzyl sulfide (181 mg, 70%)が得られた。3,4-dimethoxybenzyl 3,4,5-tetramethoxybenzyl sulfide (181 mg, 0.500 mmol)の CH2Cl2 (3.0 mL)溶液に m-chloroperbenzoic acid (107 mg, 0.500 mmol)を氷冷 下加え、室温で 30 時間撹拌した。反応液に aq. K2CO3 を加え、 CH2Cl2 で抽出し、brine で洗浄し、溶媒 を濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO2, CH2Cl2/MeOH) で精製すると 40d (98.0 mg, 52%)が無色結晶として得られた。

40d: mp 127-128 °C; ¹H NMR (250 MHz, CDCl₃) δ 3.82-3.91 (m, 4H), 3.85 (s, 3H), 3.86 (s, 6H), 3.89 (s, 6H), 6.50 (s, 2H), 6.83 (s, 1H), 6.84 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 55.8, 55.9, 56.0, 57.5, 57.8, 60.7, 106.9, 111.3, 112.8, 122.3, 122.4, 125.8, 137.9, 149.1, 153.3; HRMS (EI) calcd for C19H24O6S (M⁺) 380.1293, found 380.1285; Anal. Calcd for C19H24O6S: C, 59.98; H, 6.36; S, 8.43. Found C, 59.83; H, 6.28; S, 8.48.

Bis(3,4-dimethoxybenzyl) sulfone (41a) の合成

39 (208 mg, 0.620 mmol)の AcOH (10 mL) 溶液に 30% H₂O₂ (237 mg, 1.12 mmol) を室温で加え、室温で 30 分撹拌した。反応液へ更に 30% H₂O₂ (392 mg, 1.87 mmol) を加え、100 ℃ で 30 分撹拌した。反応液へ aq. NaOHを加え、AcOEtで抽出し、brineで洗浄し、濃縮留去した。得られた残渣をカラムクロマトグラ フィー (SiO₂, n-hexane/AcOEt) で精製すると、41a (71.0 mg, 31%) が無色結晶として得られた。 **41a**: mp 164-166 °C; ¹H NMR (250 MHz, CDCl₃) δ 3.90 (s, 12H), 4.08 (s, 4H), 6.88-6.93 (m, 6H); ¹³C NMR

(67.9 MHz, CDCl₃) δ 53.4, 55.9, 56.0, 57.6, 111.1, 113.5, 119.7, 123.4, 149.2, 149.5; HRMS (EI) calcd for C₁₈H₂₂O₆S (M⁺) 366.1138, found 366.1139.

Dibenzyl ether 誘導体 (42) の一般合成法

Dibenzyl ether 誘導体 (42) は文献57) を参考に対応する alkoxy benzylalcohol と alkoxybenzylbromide から合成。

Bis(1,3-benzodioxol-5-ylmethyl) ether (42b): 無色結晶; mp 41-43 ℃; ¹H NMR (200 MHz, CDCl₃) δ 4.42 (s, 4H), 5.95 (s, 4H), 6.78 (s, 4H), 6.86 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 71.6, 100.9, 108.0, 108.5, 121.3, 132.0, 147.1, 147.7; HRMS (EI) calcd for C16H14O5 (M⁺) 286.0841, found 286.0826; Anal. Calcd for C16H14O5: C, 67.13; H, 4.93. Found C, 67.06; H, 5.00.

1,3-Benzodioxol-5-ylmethyl 3,4-dimethoxybenzyl ether (42c): 無色油状物; ¹H NMR (250 MHz, CDCl₃) & 3.88 (s, 3H), 3.89 (s, 3H), 4.43 (s, 2H), 4.46 (s, 2H), 5.95 (s, 2H), 6.78-6.91 (m, 6H); ¹³C NMR (50.3 MHz, CDCl₃) δ 55.7, 55.8, 71.7, 100.9, 108.0, 108.5, 110.8, 111.0, 120.3, 121.3, 130.7, 132.1, 147.0, 147.7, 148.5, 148.9; HRMS (EI) calcd for C₁₇H₁₈O₅ (M⁺) 302.1154, found 302.1147; Anal. Calcd for C₁₇H₁₈O₅; C, 67.54; H, 6.00. Found C, 67.64; H, 6.04.

3,4-Dimethoxybenzyl 3,4,5-trimethoxybenzyl ether (42d): 無色結晶; mp 58-59 ℃; ¹H NMR (200 MHz, CDCl₃) δ 3.85 (s, 3H), 3.87 (s, 6H), 3.89 (s, 6H), 4.47 (s, 2H), 4.51 (s, 2H), 6.59 (s, 2H), 6.87-6.93 (m, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 55.6, 55.7, 55.9, 60.6, 71.8, 71.9, 104.5, 110.7, 111.0, 120.3, 130.5, 133.8, 137.2, 148.5, 148.9, 153.1; HRMS (EI) calcd for C19H24O6 (M⁺) 348.1573, found 348.1581; Anal. Calcd for C10H24O6: C, 65.50; H, 6.94. Found C, 65.36; H, 6.85.

Bis(3,4,5-trimethoxybenzyl) ether (42e): 無色結晶; mp 86-87 ℃; 'H NMR (250 MHz, CDCl₃) δ 3.83 (s, 6H), 3.85 (s, 12H), 4.48 (s, 4H), 6.59 (s, 4H); ¹³C NMR (67.9 MHz, CDCl₃) δ 55.7, 60.4, 72.0, 104.3, 133.5, 137.0, 152.9; Anal. Calcd for C₂₀H₂₆O₇: C, 63.48; H, 6.92. Found C, 63.42; H, 6.88.

Phenol ether 誘導体の PIFA-BF3・Et₂O を用いる biaryl coupling 反応の一般法 Phenol ether 誘導体 (0.0500 mmol) の CH₂Cl₂ (1.0 mL) 溶液に窒素雰囲気下、 PIFA (0.0500 mmol) と BF3·Et2O (0.100 mmol)の CH2Cl2 (1.0 mL) 溶液を -40 ℃ で滴下し、-40 ℃ で 1.5 時間 撹拌した。反応溶媒 を濃縮留去し、得られた残渣をカラムクロマトグラフィー (SiO2, n-hexane/AcOEt)で精製すると、biaryl coupling product が得られた。

2,3,10-Trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cycloheptene⁵¹ (35a)

(1.0 +1.0 mL)より合成。

calcd for C₁₈H₂₀O₃ (M⁺) 284.1409, found 284.1403.

6,7-Dihydro-5H-[1,3]benzodioxolo[5',6':3,4]cyclohepta[1,2-f][1,3]benzodioxole (35b)

(1.5+1.5 mL)より合成。

2,3,9,10-Tetramethoxy-6,7-dihydro-5H-dibenzo[a,c]cycloheptene^{50a)} (35c)

(1.5+1.5 mL)より合成。

found 314.1519.

1,2,3,9,10-Pentamethoxy-6,7-dihydro-5H-dibenzo[a,c]cycloheptene (35d)

(1.5+1.5 mL)より合成。

(1.5+1.5 mL)より合成。

414.2232.

(0.5 + 2.0 mL) より合成。

32a (14.2 mg, 0.0498 mmol) 、 PIFA (21.4 mg, 0.0498 mmol) 、 BF₃· Et₂O (6.0 mg, 0.0423 mmol) 、 CH₂Cl₂

35a (12.8 mg, 91%): 無色結晶; mp 70-71 ℃ (lit⁵¹⁾ 79-80 ℃); ¹H NMR (250 MHz, CDCl₃) δ 2.13 (qui, 2H, J = 6.8 Hz), 2.44 (t, 4H, J = 6.8 Hz), 3.85 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 6.77 (s, 1H), 6.81 (dd, 1H, J = 8.2, 2.6Hz), 6.93 (s, 1H), 6.94 (d, 1H, J = 2.6 Hz), 7.15 (d, 1H, J = 8.2 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 30.5, 31.0, 33.6, 55.4, 56.0, 56.1, 111.8, 111.9, 114.0, 129.3, 132.0, 132.1, 132.9, 142.2, 147.4, 148.1, 158.3; HRMS (EI)

32b (21.6 mg, 0.0760 mmol) 、 PIFA (32.7 mg, 0.0760 mmol) 、 BF₃·Et₂O (11.6 mg, 0.0817 mmol) 、 CH₂Cl₂

35b (19.6 mg, 91%): 無色結晶; mp 149-151 °C; ¹H NMR (250 MHz, CDCl₃) δ 2.10 (qui, 2H, J = 6.5 Hz), 2.38 (t, 4H, J = 6.5 Hz), 5.96 (s, 4H), 6.72 (s, 2H), 6.81 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 31.2, 33.9, 100.8, 108.6, 108.8, 133.2, 134.1, 146.2, 146.3; HRMS (EI) calcd for C17H14O4 (M⁺) 282.0893, found 282.0900.

32c (22.1 mg, 0.0698 mmol) 、 PIFA (30.0 mg, 0.0698 mmol) 、 BF₃·Et₂O (5.8 mg, 0.0409 mmol) 、 CH₂Cl₂

35c (21.7 mg, 99%): 無色結晶; mp 159-160 °C (lit^{S0a)} 153-155 °C); ¹H NMR (200 MHz, CDCl₃) δ 2.20 (qui, 2H, J = 7.0 Hz), 2.44 (t, 4H, J = 7.0 Hz), 3.93 (s, 12H), 6.78 (s, 2H), 6.90 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 31.1, 33.9, 56.0, 56.2, 111.7, 112.0, 132.2, 133.0, 147.5, 147.9; HRMS (EI) calcd for C10H22O4 (M⁺) 314.1519,

32d (24.7 mg, 0.0713 mmol) 、 PIFA (30.7 mg, 0.0713 mmol) 、 BF₃·Et₂O (20.2 mg, 0.143 mmol) 、 CH₂Cl₂

35d (22.5 mg, 92%): 無色結晶; mp 110-111 °C; ¹H NMR (250 MHz, CDCl₃) δ 2.04-2.14 (m, 2H), 2.29-2.48 (m, 4H), 3.57 (s, 3H), 3.89 (s, 3H), 3.91 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 6.59 (s, 1H), 6.76 (s, 1H), 7.08 (s, 1H); ¹³C NMR (67.9 MHz, CDCl₃) δ 30.9, 31.7, 33.3, 55.8, 56.0, 60.6, 61.2, 107.7, 111.3, 113.5, 126.0, 128.2, 132.3, 136.0, 140.8, 146.7, 147.7, 150.7, 152.1; HRMS (EI) calcd for $C_{20}H_{24}O_5$ (M⁺) 344.1624, found 344.1626.

2-tert-Butyldimehtylsilyloxy-3,9,10-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cycloheptene (35e) 32e (27.6 mg, 0.0662 mmol) 、 PIFA (28.5 mg, 0.0662 mmol) 、 BF₃· Et₂O (18.8 mg, 0.132 mmol) 、 CH₂Cl₂

35e (20.7 mg, 75%): 無色結晶; mp 113-115 °C; ¹H NMR (200 MHz, CDCl₃) δ 0.18 (s, 6H), 1.01 (s, 9H), 2.17 (m, 2H), 2.42 (m, 4H), 3.85 (s, 3H), 3.91 (s, 3H), 3.92 (s, 3H), 6.73 (s, 1H), 6.76 (s, 1H), 6.85 (s, 1H), 6.86 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ -4.5, 18.5, 25.8, 31.1, 31.2, 33.8, 55.7, 56.0, 56.1, 111.8, 111.9, 112.7, 120.7, 132.0, 133.0, 133.3, 143.4, 147.4, 147.7, 149.7; HRMS (EI) calcd for C24H34O4Si (M⁺) 414.2227, found

2,2,2-Trifluoro-1-[2,3,11-trimethoxy-7,8-dihydrodibenzo[c, e]azocin-6(5H)-yl]-1-ethanone (36a) 33a (31.1 mg, 0.0783 mmol)、 PIFA (37.0 mg, 0.0861 mmol) 、 BF₃· Et₂O (12.2 mg, 0.0861 mmol) 、 CH₂Cl₂

-49-

36a (27.7 mg, 89%): 無色結晶; mp 134-136 °C; IR (KBr) 1686 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.41 (dd, 1H, J = 14.7, 9.7 Hz), 2.99 (dd, 1H, J = 14.7, 7.1 Hz), 3.19 (dd, 1H, J = 14.2, 10.6 Hz), 3.31 (d, 1H, J = 13.9 Hz), 3.85 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 4.26 (dd, 1H, J = 12.7, 6.4 Hz), 5.19 (d, 1H, J = 13.9 Hz), 6.82 (s, 1H), 6.86 (d, 1H, J = 12.7, 6.4 Hz), 5.19 (d, 1H, J = 13.9 Hz), 5.19 (d, 2H, 2Hz), 5.19 (d, 2Hz), 5.191H, J = 2.6 Hz), 6.93 (dd, 1H, J = 8.6, 2.6 Hz), 7.18 (d, 1H, J = 8.6 Hz), 7.40 (s, 1H); HRMS (EI) calcd for C₂₀H₂₀F₃NO₄ (M[†]) 395.1341, found 395.1338. Anal. Calcd for C₂₀H₂₀F₃NO₄: C, 60.76; H, 5.10; N, 3.54. Found C, 60.56: H. 5.07: N. 3.55.

2,2,2-Trifluoro-1-[2,3,10,11-tetramethoxy-7,8-dihydrodibenzo[c, e]azocin-6(5H)-yl]-1-ethanone (36b)

33b (19.7 mg, 0.0461 mmol), PIFA (21.8 mg, 0.0507 mmol), BF₃·Et₂O (13.1 mg, 0.0922 mmol), CH₂Cl₂ (1.0 + 2.0 mL) より合成

36b (13.3 mg, 68%): 無色結晶; mp 157-158 °C; IR (KBr) 1686 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 2.42 (dd, 1H, J = 10.2, 10.1 Hz, 2.96 (dd, 1H, J = 14.3, 10.2 Hz), 3.22 (dd, 1H, J = 14.3, 10.1 Hz), 3.31 (d, 1H, J = 13.5 Hz), 3.92 (s, 6H), 3.95 (s, 6H), 4.22-4.30 (m, 1H), 5.20 (d, 1H, J = 13.5 Hz), 6.75 (s, 1H), 6.82 (s, 2H), 7.40 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 34.5, 48.3, 48.5, 56.0, 56.1, 111.9, 112.1, 112.9, 114.0, 116.7 (J = 287 Hz), 127.2, 131.0, 132.0, 132.9, 147.7, 148.5, 148.6, 148.9, 156.3 (J = 35 Hz); HRMS (EI) calcd for C₂₁H₂₂F₃NO₅ (M⁺) 425.1443, found 425.1445. Anal. Calcd for C21H22F3NO5: C, 59.21; H, 5.21; N, 3.29. Found C, 59.33; H, 5.26; N, 3.30.

2,2,2-Trifluoro-1-[1,2,3,10,11-pentamethoxy-7,8-dihydrodibenzo[c,e]azocin-6(5H)-yl]-1-ethanone (36c)

33c (30.6 mg, 0.0669 mmol) , PIFA (31.6 mg, 0.0736 mmol) , BF₃· Et₂O (19.0 mg, 0.134 mmol) , CH₂Cl₂ (1.5+2.0 mL)より合成。

36c (15.9 mg, 52%): 無色結晶; mp 135-136 °C; IR (KBr) 1685 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 2.43 (dd, 1H, J = 14.5, 10.5 Hz), 2.94 (dd, 1H, J = 14.5, 6.6 Hz), 3.18 (dd, 1H, J = 14.3, 10.5 Hz), 3.26 (d, 1H, J = 13.8 Hz), 3.55 (s, 3H), 3.87 (s, 3H), 3.90 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 4.23 (dd, 1H, J = 14.3, 6.6 Hz), 5.13 (d, 1H, J = 14.3) 13.8 Hz), 6.74 (s, 1H), 6.84 (s, 1H), 6.93 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 34.3, 48.5, 48.6, 55.9, 56.0, 60.9, 61.1, 110.2, 111.6, 114.1, 116.7 (*J* = 287 Hz), 126.7, 127.3, 131.0, 131.4, 142.1, 147.1, 149.0, 151.0, 153.0, 156.3 (J = 38 Hz); HRMS (EI) calcd for C₂₂H₂₄F₃NO₆ (M⁺) 455.1555, found 455.1558. Anal. Calcd for C₂₂H₂₄F₃NO₆: C, 57.76; H, 5.73; N, 3.06. Found C, 57.86; H, 5.38; N, 3.05.

1-(5,7-Dihydro-6H-di[1,3]benzodioxolo[5,6-c:5,6-e]azepin-6-yl)-2,2,2-trifluoro-1-ethanone (37a)

34a (24.7 mg, 0.0648 mmol) 、 PIFA (30.6 mg, 0.0713 mmol) 、 BF₃·Et₂O (18.5 mg, 0.130 mmol) 、 CH₂Cl₂ (1.0 + 2.0 mL)より合成。

37a (23.2 mg, 94%): 無色結晶; mp 282-285 °C; IR (KBr) 1686 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 4.23 (brs, 4H), 6.04 (s, 4H), 6.83 and 6.89 (s, 2H), 6.92 and 6.94 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 47.6, 47.9, 48.0, 101.6, 108.2, 108.3, 109.2, 110.5, 116.7 (J = 288 Hz), 125.5, 125.7, 134.4, 134.6, 147.5, 148.5, 154.7 (J = 37 Hz); HRMS (EI) calcd for C₁₈H₁₂F₃NO₅ (M⁺) 379.0665, found 379.0659. Anal. Calcd for C₁₈H₁₂F₃NO₅ · 1/2 H₂O: C, 55.68; H, 3.37; N, 3.60. Found C, 56.02; H, 3.30; N, 3.64.

2,2,2-Trifluoro-1-(2,3,9,10-tetramethoxy-5,7-dihydro-6H-dibenzo[c,e]azepin-6-yl)-1-ethanone (37b)

34b (23.3 mg, 0.0564 mmol) 、 PIFA (26.7 mg, 0.0620 mmol) 、 BF₃·Et₂O (16.0 mg, 0.113 mmol) 、 CH₂Cl₂ (1.0+2.0 mL)より合成した。

37b (19.6 mg, 85%): 無色結晶; mp 166-167 ℃; IR (KBr) 1686 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 3.94 (s, 6H), 3.98 (s, 6H), 4.30 and 4.41 (br., 4H), 6.86 and 6.94 (s, 2H), 7.00 and 7.02 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 47.7, 48.2, 56.1, 56.2, 110.8, 110.9, 112.1, 113.3, 116.7 (*J* = 288 Hz), 124.5, 124.6, 133.1, 148.7, 149.5, 149.7, 154.6 (J = 35 Hz); HRMS (EI) calcd for $C_{20}H_{20}F_3NO_5$ (M⁺) 411.1293, found 411.1303. Anal. Calcd for C₂₀H₂₀F₃NO₅: C, 58.39; H, 4.90; N, 3.40. Found C, 58.31; H, 4.96; N, 3.39.

2,2,2-Trifluoro-1-(1,2,3,9,10-pentamethoxy-5,7-dihydro-6H-dibenzo[c,e]azepin-6-yl)-1-ethanone (37c)

(1.0 + 2.0 mL) より合成。

3.17. Found C, 57.18; H, 5.14; N, 3.14.

1-(2-tert-Butyldimethylsilyloxy-3,9,10-trimethoxy-5,7-dihydro-6H-dibenzo[c,e]azepin-6-yl)-2,2,2-trifluoro-1-ethanone (37d)

(1.0 +2.0 mL)

Found C, 58.39; H, 6.24; N, 2.80.

3,9,10-Trimethoxy-6-(2,2,2-trifluoroacetyl)-6,7-dihydro-5H-dibenzo[c,e]azepin-2-yl acetate (37e)

(1.0+2.0 mL)より合成。

(J = 36 Hz), 168.9; HRMS (EI) calcd for $C_{21}H_{20}NO_6F_3$ (M⁺) 439.1283, found 439.1264.

6,6-Diisopropyl-2,3,9,10-tetramethoxydibenzo[d,f][1,3,2]dioxasilepine (43a) 38a (19.1 mg, 0.0454 mmol) 、 PIFA (19.5 mg, 0.0454 mmol) 、 BF3 · Et2O (12.9 mg, 0.0908 mmol) 、 CH2Cl2

(1.0 + 1.0 mL)より合成。

113.3, 120.3, 144.7, 146.4, 149.3; HRMS (EI) calcd for C22H30O6Si (M⁺) 418.1811, found 418.1813.

38b (12.5 mg, 0.0322 mmol) 、 PIFA (13.8 mg, 0.0454 mmol) 、 BF3 · Et2O (9.1 mg, 0.0644 mmol) 、 CH2Cl2

34c (23.1 mg, 0.0521 mmol) 、 PIFA (24.6 mg, 0.0573 mmol) 、 BF₃·Et₂O (14.8 mg, 0.104 mmol) 、 CH₂Cl₂

37c (19.6 mg, 85%): 無色結晶; mp 142-144 °C; IR (KBr) 1686 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.67 and 3.92 and 3.93 and 3.94 and 3.95 and 3.96 (s, 15H), 3.51-3.98 (m, 2H), 4.61 (dd, 1H, J = 11.9, 9.9 Hz), 5.06 (dd, 1H, J = 13.9, 11.6 Hz), 6.68 and 6.77 and 6.84 and 6.93 (s, 2H), 7.24-7.27 (m, 1H); ¹³C NMR (50.3 MHz, CDCl₃) δ 47.8, 48.2, 48.3, 48.4, 48.5, 56.0, 56.1, 60.9, 61.0, 61.2, 108.2, 109.4, 111.5, 112.7, 113.0, 116.7 (J = 288 Hz), 124.5, 124.7, 126.0, 128.2, 128.3, 142.8, 143.0, 148.5, 148.6, 148.8, 150.8, 150.9, 153.1, 154.6 (J = 36 Hz); HRMS (EI) calcd for C₂₁H₂₂F₃NO₆ (M⁺) 441.1397, found 441.1397. Anal. Calcd for C₂₁H₂₂F₃NO₆: C, 57.14; H, 5.02; N,

34d (28.4 mg, 0.0553 mmol) 、 PIFA (26.2 mg, 0.0608 mmol) 、 BF3·Et2O (15.7 mg, 0.111 mmol) 、 CH2Cl2

37d (18.0 mg, 64%): 無色結晶; mp 172-173 °C; IR (KBr) 1688 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 0.19 and 0.20 (s, 6H), 0.97 and 0.98 (s, 9H), 3.86 (s, 3H), 3.93 (s, 3H), 3.96 (s, 3H), 4.28 and 4.36 (br., 4H), 6.81 and 6.83 and 6.90 and 6.92 and 6.94 and 6.95 and 6.98 and 7.00 (s, 4H); 13 C NMR (75.5 MHz, CDCl₃) δ -3.9, 19.1, 26.3, 48.4, 48.5, 48.8, 48.9, 56.2, 56.7, 111.5, 111.6, 112.6, 113.4, 113.9, 114.6, 117.4 (*J* = 287 Hz), 120.8, 120.9, 124.8, 125.0, 125.9, 126.1, 133.6, 133.8, 146.2, 146.4, 149.2, 150.1, 150.2, 151.2, 155.3 (J = 36 Hz); HRMS (EI) calcd for C₂₅H₃F₃NO₅Si (M⁺) 511.2002, found 551.1972. Anal. Calcd for C₂₅H₃₂F₃NO₅Si: C, 58.69; H, 6.30; N, 2.74.

34e (28.0 mg, 0.0634 mmol) 、 PIFA (30.0 mg, 0.0698 mmol) 、 BF3 · Et2O (18.0 mg, 0.127 mmol) 、 CH2Cl2

37e (16.7 mg, 60%): 無色結晶; mp 174-176 ℃; IR (KBr) 1767, 1684 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.36 (s, 3H), 3.90 (s, 3H), 3.94 (s, 3H), 3.95 (s, 3H), 4.33 (s, 2H), 4.40 (brs, 2H), 6.84 and 6.93 and 6.95 and 6.97 and 7.05 (s, 3H), 7.21 and 7.23 (s, 1H); ¹³C NMR (67.9 MHz, CDCl₃) δ 20.7, 47.9, 48.3, 110.9, 111.0, 112.1, 113.3, 114.5, 116.7 (J = 287 Hz), 122.3, 124.2, 124.3, 130.6, 132.2, 133.2, 140.2, 140.4, 148.9, 149.6, 149.8, 154.8

43a (13.3 mg, 56%): 無色結晶; mp 132-133 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.09 (d, 12H, J = 5.4 Hz), 1.18 (m, 2H), 3.90 (s, 12H), 6.62 (s, 2H), 6.81 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 12.4, 17.0, 56.0, 56.5, 105.0,

6,6-Diisopropyl-1,3,5,7,9,11-hexaoxa-6-silaindeno[5',6':3,4]cyclohepta[1,2-f]indene (43b)

-51-

(1.0 + 1.0 mL)より合成。

43b (13.3 mg, 56%): 無色結晶; mp 148-149 °C; ¹H NMR (200 MHz, CDCl₄) δ 1.09 (d, 12H, J = 5.4 Hz), 1.23 (m, 2H), 5.96 (s, 4H), 6.57 (s, 2H), 6.73 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 12.2, 17.0, 101.4, 102.5, 109.4, 121.6, 143.3, 147.0, 147.5; Anal. Calcd for C₂₀H₂₂O₆Si: C, 62.16; H, 5.74. Found C, 62.13; H, 5.73.

6,6-Diisopropyl-2,3-dimethoxy-5,7,9,11-tetraoxa-6-silabenzo[3,4]cyclohepta[1,2-f]indene (43c) 38c (15.4 mg, 0.0381 mmol) 、 PIFA (16.3 mg, 0.0381 mmol) 、 BF₃·Et₂O (16.2 mg, 0.144 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL)より合成。

43c (7.0 mg, 46%): 無色結晶; mp 129-130 °C; ¹H NMR (250 MHz, CDCl₃) δ 1.08 (d, 12H, J = 6.8 Hz), 1.16 (m, 2H), 3.88 (s, 6H), 5.97 (s, 2H), 6.58 (s, 1H), 6.60 (s, 1H), 6.76 (s, 1H), 6.78 (s, 1H); ¹³C NMR (67.9 MHz, CDCl₃) § 12.3, 17.0, 56.0, 56.3, 101.4, 102.5, 104.9, 109.3, 113.2, 120.3, 121.5, 143.2, 144.7, 146.2, 147.1, 147.5, 149.1; Anal. Calcd for C₂₁H₂₆O₆Si: C, 62.66; H, 6.51. Found C, 62.52; H, 6.53.

6,6-Di-tert-butyl-2,3,9,10-tetramethoxydibenzo[d,f][1,3,2]dioxasilepine (43d)

38d (30.7 mg, 0.0684 mmol) 、 PIFA (29.4 mg, 0.0684 mmol) 、 BF₃·Et₂O (29.1 mg, 0.205 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL)より合成。

43d (23.9 mg, 78%): 無色結晶; mp 193-194 °C; ¹H NMR (200 MHz, CDCI₃) δ 1.06 (s, 18H), 3.89 (s, 6H), 3.90 (s, 6H), 6.61 (s, 2H), 6.80 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 21.4, 27.7, 56.1, 56.6, 105.2, 113.7, 119.9, 144.5, 147.3, 149.3; HRMS (EI) calcd for $C_{24}H_{34}O_6Si$ (M⁺) 446.2124, found 446.2124; Anal. Calcd for $C_{24}H_{34}O_6Si$: C, 64.54; H, 7.67. Found C, 64.70; H, 7.69.

6,6-Di-tert-butyl-1,3,5,7,9,11-hexaoxa-6-silaindeno[5',6':3,4]cyclohepta[1,2-f]indene (43e)

38e (20.8 mg, 0.0499 mmol) 、 PIFA (21.5 mg, 0.0499 mmol) 、 BF₃· Et₂O (14.2 mg, 0.0998 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL)より合成。

43e (16.6 mg, 80%): 無色結晶; mp 253-254 °C; ¹H NMR (250 MHz, CDCl₃) δ 1.04 (s, 18H), 5.96 (s, 4H), 6.57 (s, 2H), 6.71 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.3, 27.7, 101.4, 102.6, 109.7, 121.1, 143.0, 147.5, 147.9; Anal. Calcd for C₂₂H₂₆O₆Si: C, 63.74; H, 6.32. Found C, 63.79; H, 6.33.

6,6-Di-tert-butyl-2,3-dimethoxy-5,7,9,11-tetraoxa-6-silabenzo[3,4]cyclohepta[1,2-f]indene (43f)

38f (14.3 mg, 0.0331 mmol) 、 PIFA (14.2 mg, 0.0331 mmol) 、 BF₃·Et₂O (14.0 mg, 0.0993 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL) より合成。

43f (11.9 mg, 83%): 無色結晶; mp 140-142 °C; ¹H NMR (250 MHz, CDCl₃) δ 1.05 (s, 18H), 3.88 (s, 3H), 3.89 (s, 3H), 5.97 (s, 2H), 6.59 (s, 1H), 6.60 (s, 1H), 6.74 (s, 1H), 6.77 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.3, 27.7, 56.0, 56.3, 101.4, 102.6, 104.2, 109.5, 113.5, 119.9, 121.1, 143.0, 144.5, 147.0, 147.4, 148.0, 149.1; HRMS (EI) calcd for C₂₃H₃₀O₆Si (M⁺) 430.1811, found 430.1811.

2,3,9,10-Tetramethoxy-5,7-dihydro-6H- $6\lambda^4$ -dibenzo[c, e]thiepin-6-one (44a)

40a (13.8 mg, 0.0394 mmol) 、 PIFA (16.9 mg, 0.0394 mmol) 、 BF₃· Et₂O (11.2 mg, 0.0788 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL)より合成。

44a (10.0 mg, 73%): 無色結晶; mp >300 °C; ¹H NMR (250 MHz, CDCl₃) δ 3.25 (d, 1H, J = 12.3 Hz), 3.45 (d, 1H, J = 14.4 Hz), 3.71 (d, 1H, J = 14.4 Hz), 4.12 (d, 1H, J = 12.3 Hz), 3.94 (s, 6H), 3.96 (s, 6H), 6.86 (s, 1H), 6.91 (s, 1H), 6.93 (s, 1H), 6.96 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 53.3, 55.6, 56.1, 56.2, 56.3, 111.9, 112.1, 112.6, 114.2, 121.2, 122.1, 132.9, 133.0, 148.2, 148.5, 149.3, 149.7; HRMS (EI) calcd for C₁₈H₂₀O₅S (M⁺) 348.1030, found 348.1028.

5,7-Dihydro-6H-6λ⁴-[1,3]dioxolo[4',5':7,8][2]benzothiepino[4,5-f][1,3]benzodioxol-6-one (44b)

(1.0 + 1.0 mL) より合成。

3.91.

+ 1.0 mL) より合成。

found 333.0711.

1,2,3,9,10-Pentamethoxy-5,7-dihydro-6H- $6\lambda^4$ -dibenzo[c, e]thiepin-6-one (44d)

(1.0 + 1.0 mL)より合成。

151.0, 151.4, 152.7, 152.9; HRMS (EI) calcd for C₁₉H₂₂O₆S (M⁺) 378.1137, found 378.1145.

2,3,9,10-Tetramethoxy-5,7-dihydro-6H-6⁶-dibenzo[c, e]thiepine-6,6-dione (45a)

+1.0 mL)より合成。

132.6, 149.3, 149.6; HRMS (EI) calcd for C₁₈H₂₀O₆S (M⁺) 364.0980, found 364.0979.

5,7-Dihydro-6H-6λ⁶-[1,3]dioxolo[4',5':7,8][2]benzothiepino[4,5-f][1,3]benzodioxole-6,6-dione (45b)

(3.0 + 1.0 mL) より合成。

332.0353.

2,3,9,10-Tetramethoxy-5,7-dihydrodibenzo[c, e]oxepine^{50a)} (46a) 42a (14.3 mg, 0.0449 mmol) 、 PIFA (19.3 mg, 0.0449 mmol) 、 BF₃· Et₂O (12.7 mg, 0.0898 mmol) 、 CH₂Cl₂

40b (14.3 mg, 0.0449 mmol) 、 PIFA (19.3 mg, 0.0449 mmol) 、 BF₃ · Et₂O (19.1 mg, 0.135 mmol) 、 CH₂Cl₂

44b (10.1 mg, 71%): 無色結晶; mp 269-270 °C; ¹H NMR (200 MHz, CDCl₃) δ 3.17 (d, 1H, J = 14.8 Hz), 3.37 (d, 1H, J = 17.8 Hz), 3.66 (d, 1H, J = 17.8 Hz), 4.07 (d, 1H, J = 14.8 Hz), 6.02 (d, 2H, J = 2.4 Hz), 6.05 (J = 2.4 Hz), 6.82 (s, 1H), 6.83 (s, 1H), 6.88 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 53.2, 55.6, 101.5, 101.6, 109.0, 109.5, 109.7, 111.6, 122.1, 123.3, 134.2, 134.3, 147.0, 147.3, 148.3, 148.5; HRMS (EI) calcd for C₁₆H₁₂O₅S (M⁺) 316.0405, found 316.0441; Anal. Calcd for C₁₆H₁₂O₅S: C, 60.75; H, 3.82. Found C, 60.33; H,

2,3-Dimethoxy-5,7-dihydro-6H-6⁴-[2]benzothiepino[4,5-f][1,3]benzodioxol-6-one (44c)

40c (12.0 mg, 0.0359 mmol), PIFA (19.3 mg, 0.108 mmol), BF₃·Et₂O (15.3 mg, 0.108 mmol); CH₂Cl₂ (1.0

44c (7.1 mg, 59%): 無色結晶; mp 247-248 °C; ¹H NMR (270 MHz, CDCl₃) δ 3.19 and 3.23 (d, 1H, J = 12.4 Hz), 3.37 and 3.45 (d, 1H, J = 14.4 Hz), 3.67 and 3.69 (d, 1H, J = 14.4 Hz), 3.92 and 3.93 (s, 3H), 3.94 and 3.95 (s, 3H), 4,03-4.14 (m, 1H), 6.02-6.06 (m, 2H), 6.83-6.93 (m, 4H); ¹³C NMR (67.9 MHz, CDCl₃) δ 53.2, 53.3, 55.6, 56.1, 56.2, 101.5, 101.6, 109.0, 109.4, 109.8, 111.6, 111.8, 112.1, 112.5, 114.1, 121.1, 122.2, 123.1, 132.8, 132.8, 134.3, 134.4, 146.9, 147.2, 148.2, 148.5, 149.3, 149.6; HRMS (EI) calcd for C₁₇H₁₆O₅S (M⁺) 332.0718,

40d (13.2 mg, 0.0347 mmol) 、 PIFA (14.9 mg, 0.0347 mmol) 、 BF₃· Et₂O (9.8 mg, 0.0694 mmol) 、 CH₂Cl₂

44d (5.6 mg, 42%): 無色結晶; mp 193-194 ℃; ¹H NMR (270 MHz, CDCl₃) δ 3.15 and 3.25 (d, 1H, J = 11.7 Hz), 3.36 and 3.47 (d, 1H, J = 13.8 Hz), 3.63 and 3.75 (s, 3H), 3.68 (m, 1H), 3.91 and 3.92 (s, 3H), 3.94 (s, 6H), 3.95 and 3.96 (s, 3H), 4.05-4.17 (m, 1H), 6.69 and 6.75 (s, 1H), 6.85 and 6.92 (s, 1H), 7.03 and 7.09 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₁) δ 53.4, 53.6, 55.6, 55.8, 56.0, 56.1, 56.2, 60.9, 61.0, 61.1, 109.0, 110.6, 112.1, 113.6, 113.8, 114.1, 121.2, 122.3, 124.4, 125.7, 125.8, 125.9, 128.2, 128.5, 142.6, 143.1, 148.1, 148.4, 148.7, 149.0,

41a (39.4 mg, 0.107 mmol) 、 PIFA (48.1 mg, 0.112 mmol) 、 BF₃·Et₂O (31.8 mg, 0.223 mmol) 、 CH₂Cl₂ (1.0

45a (32.3 mg, 83%): 無色結晶; mp >300 °C; ¹H NMR (250 MHz, CDCl₃) δ 3.90-4.05 (m, 4H), 3.96 (s, 6H), 3.97 (s, 6H), 6.94 (s, 2H), 6.96 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 56.2, 56.2, 57.3, 111.9, 113.2, 120.6,

41b (22.8 mg, 0.0682 mmol) , PIFA (29.3 mg, 0.0682 mmol) , BF₃·Et₃O (19.4 mg, 0.136 mmol) , CH₂Cl₂

45b (16.3 mg, 72%): 無色結晶; mp >300 °C; ¹H NMR (250 MHz, CDCl₃) δ 3.90 (m, 4H), 6.06 (dd, 4H, J=8.0, 1.3 Hz), 6.89 (s, 2H), 6.91 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 57.0, 57.7, 101.5, 101.9, 108.6, 109.3, 110.5, 110.9, 121.7, 124.6, 133.9, 148.1, 148.2, 148.4, 148.6; HRMS (EI) calcd for C₁₆H₁₂O₆S (M⁺) 332.0354, found

-53-

(1.0 + 1.0 mL)より合成。

46a (12.0 mg, 85%): 無色結晶; mp 243-244 °C (lit^{50a)} 247.1 °C); ¹H NMR (200 MHz, CDCl₃) δ 3.96 (s, 6H), 3.99 (s, 6H), 4.28 (s, 4H) 6.96 (s, 2H), 7.03 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 56.0, 56.2, 67.3, 110.2, 112.7, 127.9, 133.8, 148.5, 149.3.

5,7-Dihydro-1,3,6,9,11-pentaoxaindeno[5',6':3,4]cyclohepta[1,2-f]indene (46b)

42b (59.3 mg, 0.207 mmol) 、 PIFA (89.0 mg, 0.207 mmol) 、 BF₃·Et₂O (58.8 mg, 0.414 mmol) 、 CH₂Cl₂ (1.0 +1.0 mL)より合成。

46b (47.6 mg, 81%): 無色結晶; mp 226-228 °C; ¹H NMR (200 MHz, CDCl₃) δ 4.21 (s, 4H), 6.03 (s, 4H), 6.89 (s, 2H), 6.94 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 67.0, 101.3, 107.5, 109.8, 128.9, 135.2, 147.1, 148.1; HRMS (EI) calcd for C₁₆H₁₂O₅ (M⁺) 284.0685, found 284.0678.

2,3-Dimethoxy-5,7-dihydro-6,9,11-trioxabenzo[3,4]cyclohepta[1,2-f]indene (46c)

42c (20.6 mg, 0.0681 mmol) 、 PIFA (29.3 mg, 0.0681 mmol) 、 BF₃ · Et₂O (19.3 mg, 0.136 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL) より合成

46c (11.0 mg, 54%): 無色結晶; mp 221-222 °C; ¹H NMR (200 MHz, CDCl₃) δ 3.95 (s, 3H), 3.96 (s, 3H), 4,21 (s, 2H), 4,28 (s, 2H), 6.03 (s, 2H), 6.91 (s, 1H), 6.94 (s, 1H), 6.98 (s, 1H), 7.01 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 56.1, 67.2, 101.3, 107.4, 109.9, 110.2, 112.6, 127.7, 129.1, 133.7, 135.4, 147.0, 148.1, 148.5, 149.3; Anal. Calcd for C17H16Oc; C, 67.99; H, 5.37. Found C, 68.02; H, 5.34.

1,2,3,9,10-Pentamethoxy-5,7-dihydrodibenzo[c, e]oxepine (46d)

42d (45.2 mg, 0.130 mmol) 、 PIFA (55.9 mg, 0.130 mmol) 、 BF₃·Et₂O (36.9 mg, 0.260 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL) より合成。

46d (31.4 mg, 70%): 無色結晶; mp 124-125 °C; 'H NMR (250 MHz, CDCl₃) δ 3.66 (s, 3H), 3.93 (s, 3H), 3.94 (s, 3H), 3.95 (s, 3H), 3.96 (s, 3H), 4.10-4.50 (m, 4H), 6.77 (s, 1H), 6.94 (s, 1H), 7.30 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 55.9, 56.1, 60.8, 61.2, 67.3, 67.6, 108.9, 112.1, 112.5, 126.5, 127.9, 129.7, 131.4, 142.6, 148.3, 148.5, 150.4, 152.8; Anal. Calcd for C19H22O6: C, 65.88; H, 6.40. Found C, 65.81; H, 6.36.

1,2,3,9,10,11-Hexamethoxy-5,7-dihydrodibenzo[c,e]oxepine (46e)

42e (20.6 mg, 0.0544 mmol) 、 PIFA (23.4 mg, 0.0544 mmol) 、 BF₃· Et₂O (15.5 mg, 0.109 mmol) 、 CH₂Cl₂ (1.0 + 1.0 mL)より合成。

46e (7.8 mg, 38%): 無色結晶; mp 111-113 °C; ¹H NMR (200 MHz, CDCl₃) δ 3.67-4.03 (m, 2H), 3.70 (s, 3H), 3.91 (s, 3H), 3.93 (s, 3H), 3.95 (s, 6H), 3.96 (s, 3H), 4.39 (d, 1H, J = 11.2 Hz), 4.98 (d, 1H, J = 11.2 Hz), 6.77 (s, 1H), 7.07 (s, 1H); ¹³C NMR (67.9 MHz, CDCl₃) δ 56.0, 59.7, 60.9, 61.0, 61.1, 62.1, 67.5, 108.7, 121.6, 126.3, 128.2, 131.4, 133.1, 141.3, 142.5, 150.4, 151.6, 152.7, 153.0; HRMS (EI) calcd for C24H24O7 (M⁺) 376.1522, found 376.1521; Anal. Calcd for C₂₀H₂₄O₇: C, 63.82; H, 6.43. Found C, 63.73; H, 6.37.

2,2'-Dihydroxybiphenyl 誘導体 (47) 合成の一般法

43 (0.0500 mmol)の THF (1.0 mL) 溶液に TBAF の 1.0 M THF (0.050 mL) 溶液を室温で加え、室温で2時 間撹拌した。反応液の溶媒を濃縮留去し、prep. TLC で精製すると、2,2'-dihydroxybiphenyl 誘導体 (47) が 得られた。

4,4',5,5'-Tetramethoxy[1,1'-biphenyl]-2,2'-diol⁵⁸⁾ (47a)

43a (23.9 mg, 0.0540 mmol)、1.0M TBAF solution in THF (0.054 mL, 0.0540 mmol)、THF (1.0 mL) より合 成。

47a (15.8 mg, 96%): 無色結晶; mp 182-184 ℃ (lit.⁵⁸⁾ 181.5-182.5 ℃); IR (KBr) 3319 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) § 3.84 (s, 6H), 3.87 (s, 6H), 6.62 (s, 2H), 6.72 (s, 2H); HRMS (EI) calcd for C₁₆H₁₈O₆ (M⁺) 306.1103,

6-(6-Hydroxy-1,3-benzodioxol-5-yl)-1,3-benzodioxol-5-ol⁵⁹⁾ (47b) 43b (16.6 mg, 0.0400 mmol)、1.0M TBAF solution in THF (0.040 mL, 0.0400 mmol)、THF (2.0 mL) より合 成。

5-Methyl-6-(6-methyl-1,3-benzodioxol-5-yl)-1,3-benzodioxole⁶⁰⁾ (48b) の合成

ると 48b (7.3 mg, 97%) が無色結晶として得られた。 (M⁺) 270.0892, found 270.0890.

2,2'-Diformylbiphenyl 誘導体 (49) の一般合成法

2,2'-diformylbiphenyl 誘導体 (49) が得られた。

4,4',5,5'-Tetramethoxy[1,1'-biphenyl]-2,2'-dicarbaldehyde⁶¹⁾ (49a)

330.1103, found 330.1105.

6-(6-Formyl-1,3-benzodioxol-5-yl)-1,3-benzodioxole-5-carbaldehyde⁶¹ (49b) found 298.0479.

4,4',5,5',6-Pentamethoxy[1,1'-biphenyl]-2,2'-dicarbaldehyde (49d) 46d (13.2 mg, 0.0380 mmol)、DDQ (25.9 mg, 0.114 mmol)、CH₂Cl₂ (2.0 mL)、H₂O (0.11 mL) より合成。

47b (10.6 mg, 97%): 無色結晶; mp 201-202 °C (lit.⁵⁹⁾ 207-207.5 °C); IR (KBr) 3264 cm⁻¹; ¹H NMR (250 MHz, $CD_{3}OD) \ \delta \ 5.88 \ (s, \ 4H), \ 6.46 \ (s, \ 2H), \ 6.65 \ (s, \ 2H); \ HRMS \ (EI) \ calcd \ for \ C_{14}H_{10}O_{6} \ (M^{+}) \ 274.0477, \ found \ 274.0469.$

44b (8.9 mg, 0.0280 mmol)の EtOH (5.0 mL) 溶液に過剰量の Raney Ni (w-1)を触媒として加え、7時間加 熱還流した。反応液を空冷し、触媒を濾過し、母液を濃縮留去した。得られた残渣を prep. TLC で精製す

48b: mp 120-121 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.96 (s, 6H), 5.95 (s, 4H), 6.56 (s, 2H), 6.73 (s, 2H); ¹³C NMR (67.9 MHz, CDCl₃) δ 19.6, 100.8, 109.8, 109.8, 129.3, 134.2, 145.3, 146.5; HRMS (EI) calcd for C₁₆H₁₄O₄

46 (0.0500 mmol)の CH₂Cl₂ (2.0 mL)、H₂O (0.110 - 0.150 mL) 溶液に DDQ (0.140 -0.150 mmol) を室温で加 え、24 時間加熱還流した。反応液を空冷し、 sat. sodium carbonate を加え、CH₂Cl₂ で抽出し、brine で洗 浄し、濃縮留去した。得られた残渣をカラムクロマトグラフィー (SiO2) で精製すると

46a (14.6 mg, 0.0460 mmol)、DDQ (29.4 mg, 0.123 mmol)、CH₂Cl₂ (2.0 mL)、H₂O (0.15 mL) より合成。 49a (10.0 mg, 66%): 無色結晶; mp 213-215 °C (lit.⁶¹⁾ 213-215 °C); IR (KBr) 1682 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) § 3.96 (s, 6H), 4.01 (s, 6H), 6.80 (s, 2H), 7.56 (s, 2H), 9.67 (s, 2H); HRMS (EI) calcd for C₁₈H₁₈O₆ (M⁺)

46b (12.6 mg, 0.0440 mmol)、DDQ (27.1 mg, 0.119 mmol)、CH2Cl2 (2.0 mL)、H2O (0.11 mL)より合成。 49b (7.3 mg, 56%): 無色結晶; mp 245-248 °C (lit.⁶¹⁾ 213-215 °C); IR (KBr) 1682 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 6.15 (s, 4H), 6.77 (s, 2H), 7.48 (s, 2H), 9.61 (s, 2H); HRMS (EI) calcd for C₁₆H₁₀O₆ (M⁺) 298.0477,

49d (6.0 mg, 46%): 無色結晶; mp 152-153 °C; IR (KBr) 1688, 1682 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 3.61 (s, 3H), 3.94 (s, 3H), 3.99 (s, 3H), 4.01 (s, 3H), 4.02 (s, 3H), 6.73 (s, 1H), 7.40 (s, 1H), 7.57 (s, 1H), 9.62 (s, 1H), 9.65 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 56.1, 56.2, 56.3, 61.0, 61.2, 105.6, 108.8, 114.3, 128.7, 130.4, 131.2, 149.3, 151.3, 153.2, 153.9, 190.0, 190.1; HRMS (EI) calcd for C19H20O7 (M⁺) 360.1209, found 360.1211.

引 用 文 献

1) Willgerodt, C. J. Prakt. Chem. 1886, 33, 154-160.

- 2) (a) Varvoglis, A. Chem. Soc. Rev. 1981, 10, 377-407. (b) Varvoglis, A. Synthesis 1984, 709-726. (c) Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VCH Publishers, Inc., New York, 1992. (d) Varvoglis, A. Hypervalent Iodine in Organic Synthesis, Academic Press, San Diego, 1997. (e) Varvoglis, A. Tetrahedron 1997, 53, 1179-1255. (f) Varvoglis, A.; Spyroudis, S. Synlett 1998, 221-232.
- 3) (a) Koser, G. F. In the Chemistry of Functional Groups, Supplement D, Eds., Patai, S.; Rappoport, Z., John Willy & Sons, New York, 1983, Chapter 18 and 25. (b) Koser, G. F. In Suppliment D2: The Chemistry of Halides, Pseudo-Halides and Azides, Eds., Patai, S.; Rappoport, Z., John Willy & Sons, Chichester, 1995, Chapter 21.
- 4) (a) Moriarty, R. M.; Prakash, O. Acc. Chem. Res. 1986, 19, 244-250. (b) Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431-447. (c) Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365-383. (d) Prakash, O.; Saini, N.; Tanwar, M. P.; Moriarty, R. M. Contemp. Org. Synth. 1995, 2, 121-131: Chem. Abs. 1995, 123, 284824c. (e) Moriarty, R. M.; Prakash, O. Adv. Heterocyclic Chem. 1998, 69, 1-87.
- 5) (a) Ochiai, M.; Nagao, Y. J. Synth. Org. Chem. Jpn. 1986, 44, 660-673. (b) Ochiai, M. Rev. Heteroatom Chem. 1989, 2, 92-111.
- 6) (a) Kita, Y.; Tohma, H.; Yakura, T. Trends in Organic Chemistry 1992, 3, 113-128. (b) Kita, Y.; Tohma, H. Farumashia 1992, 28, 984-989: Chem Abs. 1992, 117, 233100g. (c) Kita, Y.; Takada, T.; Tohma, H. Pure & Appl. Chem. 1996, 68, 627-630.
- 7) (a) Stang, P. J. Angew. Chem. Int. Ed. Engl. 1992, 31, 274-285. (b) Stang, P. J. In Suppl. C2: The Chemistry of Triple-Bonded Functional Groups, Ed., Patai, S., John Willy & Sons, Chichester, 1994, Chapter 20. (c) Stang, P. J. In Modern Acetylene Chemistry, Eds., Stang, P. J.; Diederich, F., VCH Publishers, Weinheim, 1995, Chapter 3. (d) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-1178.
- 8) (a) Kitamura, T. J. Synth. Org. Chem. Jpn. 1995, 53, 893-905. (b) Kitamura, T.; Fujiwara, Y. Organic Preparations and Procedures Int. 1997, 29, 409-458.
- 9) (a) Banks, D. F. Chem. Rev. 1966, 66, 243-266. (b) Umemoto, T. J. Synth. Org. Chem. Jpn. 1983, 41, 251-265. (c) Merkushev, E. B. Russ. Chem. Rev. (Engl Transl) 1987, 56, 826-845.
- 10) (a) Tamura, Y; Shirouchi, Y.; Haruta, J. Synthesis 1984, 231-232. (b) Tamura, Y.; Shirouchi, Y.; Haruta, J. Chem. Pharm. Bull. 1985, 33, 1097-1103. (c) Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. Tetrahedron Lett. 1985, 26, 3837-3840. (d) Tamura, Y.; Yakura, T.; Shirouchi, Y.; Haruta, J. Chem. Pharm. Bull. 1986, 34, 1061-1066. (e) Kita, Y.; Yakura, T.; Terashi, H. Haruta, J.; Tamura, Y. Chem. Pharm. Bull. 1989, 37, 891-894.
- 11) (a) Szántay, C.; Blaskó, G.; Bárczai-Beke, M.; Péchy, P.; Dörnyei, G. Tetrahedron Lett. 1980, 21, 3509-3512. (b) White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C. Brossi, A. Tetrahedron 1983, 39, 2393-2397. (c) White, J. D.; Chong, W. K. M.; Thirring, K. J. Org. Chem. 1983, 48, 2300-2302. (d) Kita, Y.; Yakura, T.; Tohma, H.; Kikuchi, K.; Tamura, Y. Tetrahedron Lett. 1989, 30, 1119-1120. (e) Rama Krishna, K. V.; Sujatha, K.; Kapil, R. S. Tetrahedron Lett.

1990, 31, 1351-1352. (f) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. J. Am. Chem. Soc. 1992, 114, 2175-2180. (g) Pelter, A.; Ward, R. S.; Abd-el-Ghani, A. Tetrahedron Asym. 1994, 5, 329-332. (h) Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.; Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996, 61, 223-227. (i) Ward, R. S.; Pelter, A. Abd-El-Chani, A. Tetrahedron 1996, 52, 1303-1336. (j) Kita, Y.; Takada, T.; Gyoten, M.; Tohma, H.; Zenk, M. H.; Eichhorn, J. J. Org. Chem. 1996, 61, 5857-5864.

- 1996, 61, 1267-1274.
- York, 1982; Part D, p 207.
- Munro, M. H. G. Tetrahedron 1988, 44, 1727-1734.
- S.; Russell, R. A. Tetrahedron Lett. 1993, 34, 545-548.
- 4667-4670.
- J. Org. Chem. 1993, 58, 7195-7203.
- Murakata, M.; Yamada, K.; Hoshino, O. J. Chem. Soc., Chem. Commun. 1994, 443-444.
- 19) Karam, O.; Jacquesy, J.-C.; Jouannetaud, M.-P. Tetrahedron Lett. 1994, 35, 2541-2544.
- Chem. Soc. 1994, 116, 3684-3691.
- Commun. 1996, 1491-1492.

12) (a) Callinan, A.; Gary, Y. C.; Morrow, G. W.; Swenton, J. S. Tetrahedron Lett. 1990, 31, 4551-4552. (b) Wang, S.; Gates, B. D.; Swenton, J. S. J. Org. Chem. 1991, 56, 1979-1981. (c) Swenton, J. S.; Callinan, A.; Chen, Y.; Rohde, J. J.; Kerns, M. L.; Morrow, G. W. J. Org. Chem.

13) Dhingra, O. P. In Oxidation in Organic Chemistry; Trahanovsky, W. S., Ed.; Academic Press, New

14) (a) Perry, N. B.; Blunt, J. W.; McCombs, J. D.; Munro, M. H. G. J. Org. Chem. 1986, 51, 5476-5478. (b) Blunt, J. W.; Calder, V. L.; Fenwick, G. D.; Lake, R. J.; McCombs, J. D.; Munro, M. H. G.; Perry, N. B. J. Nat. Prod. 1987, 59, 290-292. (c) Perry, N. B.; Blunt, J. W.; Munro, M. H. G.; Higa, T.; Sakai, R. J. Org. Chem. 1988, 53, 4127-4128. (d) Perry, N. B.; Blunt, J. W.;

15) (a) Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987, 52, 3927-2930. (b) Lewis, N.; Wallbank, P. Synthesis 1987, 1103-1106. (c) Pelter, A.; Elgendy, S. Tetrahedron Lett. 1988, 29, 677-680. (d) Pelter, A.; Elgendy, S. M. A. J. Chem. Soc., Perkin Trans. 1 1993, 1891-1892. (e) Fleck, A. E.; Hobart, J. A.; Morrow, G. W. Synthetic Commun. 1992, 22, 179-187. (f) Mitchell, A.

16) (a) Kita, Y.; Tohma, H.; Kikuchi, K.; Inagaki, M.; Yakura, T. J. Org. Chem. 1991, 56, 435-438. (b) Braun, N. A.; Ciufolini, M. A.; Peters, K; Peters, E.-M. Tetrahedron Lett. 1998, 39,

17) (a) Rama Rao, A. V.; Gurjar, M. K.; Sharma, P. A. Tetrahedron Lett. 1991, 32, 6613-6616. (b) Wipf, P.; Kim, Y. Tetrahedron Lett. 1992, 33, 5477-5480. (c) Hara, H.; Inoue, T.; Nakamura, H.; Endoh, M.; Hoshino, O. Tetrahedron Lett. 1992, 33, 6491-6494. (d) McKillop, A.; McLaren, L.; Taylor, R. J. K.; Watson, R. J.; Lewis, N. Synlett 1992, 201-203. (e) Wipf, P.; Kim. Y.; Fritch, P. C.

18) (a) Kaçan, M.; Koyuncu, D.; McKillop, A. J. Chem. Soc., Perkin Trans. 1 1993, 1771-1776. (b)

20) McKillop, A.; McLaren, L.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1994, 2047-2048.

21) Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. J. Am.

22) (a) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. Tetrahedron Lett. 1991, 32, 4321-4324. (b) Kita, Y.; Egi, M.; Okajima, A.; Ohtsubo, M.; Takada, T.; Tohma, H. Chem.

23) (a) Kita, Y.; Takada, T.; Mihara, S.; Tohma, H. Synlett 1995, 211-212. (b) Kita, Y.; Takada, T.; Mihara, S.; Whelan, B. A.; Tohma, H. J. Org. Chem. 1995, 60, 7144-7148. (c) Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada, T.; Tohma, H. Chem. Commun. 1996, 2225-2226.

- 24) Kita, Y.; Arisawa, M.; Gyoten, M.; Nakajima, M.; Hamada, R.; Tohma, H.; Takada, T. J. Org. Chem. 1998, 63, 6625-6633.
- 25) Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. J. Org. Chem. 1998, 63, 7698-7706.
- 26) (a) Barton, D. H. R.; Cohen, T. Festschrift A. Stoll; Birkhauser, Basel, 1957. (b) Wildman, W. C.; Fales, H. M.; Battersby, A. R. J. Am. Chem. Soc. 1962, 84, 681-682. (c) Barton, D. H. R.; Kirby, G. W.; Taylor, J. B.; Thomas, G. M. J. Chem. Soc. 1963, 4545-4558. (d) Paton, J. M.; Pauson, P. L.; Stevens, T. S. J. Chem. Soc. (C) 1969, 1309-1314.
- 27) (a) Schwartz, M. A.; Rose B. F.; Vishnuvajjala, B. J. Am. Chem. Soc. 1973, 95, 612-613. (b) Tomioka, K.; Koga, K.; Yamada, S.-I. Chem. Pharm. Bull. 1977, 25, 2681-2688.
- 28) (a) Schwartz, M. A.; Holton, R. A. J. Am. Chem. Soc. 1970, 92, 1090-1092. (b) Schwartz, M. A.; Rose, B. F.; Holton, R. A.; Scott, S. W.; Vishnuvajjala, B. J. Am. Chem. Soc. 1977, 99, 2571-2578. (c) Kupchan, S. M.; Dhingra, O. P.; Kim, C.-K. J. Org. Chem. 1978, 43, 4076-4081.
- 29) Kita, Y.; Okunaka, R.; Kondo, M.; Tohma, H.; Inagaki, M.; Hatanaka, K. J. Chem. Soc., Chem. Commun. 1992, 429-430.
- 30) Martin, S. F. In Alkaloids; Brossi, A. Ed.; Academic Press, Inc.: New York, 1987; Vol. 30, p 251.
- 31) Newman, H. J. Org. Chem. 1965, 30, 1287-1288.
- 32) Eichhorn, J.; Takada, T.; Kita, Y.; Zenk, M. H. Phytochemistry 1998, 49, 1037-1047.
- 33) (a) Bastida, J.; Viladomat, F.; Llabres, J. M.; Ramirez, G.; Codina, C.; Rubiralta, M. J. Nat. Prod. 1989, 52, 478-480. (b) Sweeney, J. E.; Bachman E. S.; Coyle, J. T. Psychopharmacology 1990, 102, 191-200. (c) Sweeney, J. E.; Puttfarcken, P. S.; Coyle, J. T. Pharmacology Biochemistry & Behavior 1989, 34, 129-137. (d) Sweeney, J. E.; Höhmann, C. F.; Moran, T. H.; Coyle, J. T. Pharmacology Biochemistry & Behavior 1988, 31, 141-147. (e) Tonkopii, V. D.; Prozorovskii, V. B.; Konstorum, M. G. Byull. Eksp. Biol. Med. 1975, 80, 120; Chem. Abstr. 1975, 83, 189728w. (f) Vasilenko, E. T.; Tonkopii, V. D. Biolkhimiya 1974 39, 301; Chem. Abstr. 1975, 82, 12913f. (g) Fisenko, V. P.; Mitsov, V. Farma. Toksikol (Moscow) 1975, 38, 34; Chem. Abstr. 1975, 82, 132979d. (h) Baraka, A.; Cozanitis, D. Anesth. Analg. 1973, 52, 832; Chem. Abstr. 1974, 81, 22842e. (i) Dolgushina, A. T. Povysh. Rezistentnosti Organizma 1973, 182; Chem. Abstr. 1974, 81, 72709h. (j) Cozanitis, D. A.; Nuuttila, K.; Karhunen P.; Baraka, A. Anaesthesist 1973, 22, 457. (k) Numata, A.; Takemura, T.; Ohbayashi, H.; Katsuno, T.; Yamamoto, K.; Sato, K.; Kobayashi, S. Chem. Pharm. Bull. 1983, 31, 2146-2149. (1) Bazhenova, E. D.; Aliev, Kh. U.; Zakirov, U. B. Farmakol. Alkaloidov Ikh. Proizvod. 1972, 74; Chem. Abstr. 1974, 80, 103864r. (m) Stichting Biomedical Research and Advice group, Neth. Appl. NL 88 00, 350; Chem. Abstr. 1990, 112, 112096y. (n) Ernir, S US Patent 5, 589, 475; Chem. Abstr. 1997, 126, 54848. (o) Weniger, B.; Italiano, L.; Beck, J.-P.; Bastida, J.; Bergonon, S.; Codina, C.; Lobstein, A.; Anton, R. Planta Med. 1995, 61, 77-79.
- 34) Rainer, M. CNS Drugs 1997, 7, 89.
- 35) For synthesis; (a) Crollner, L.; Frantsits, W.; Küenburg, B.; Hedenig, U.; Fröhlich, J.; Jordis, U. Tetrahedron Lett. 1998, 39, 2087-2088. (b) Szewczyk, J.; Wilson, J. W.; Lewin, A. H.; Carroll, F. I. J. Hetrocyclic Chem. 1995, 32, 195-199. (c) Vlahov, R.; Krikorian, D.; Spassov, G.; Chinova,

M.; Vlahov, I.; Parushev, S.; Snatzke, G.; Ernst, L.; Kieslich, K.; Abraham, W.-R.; Sheldrick, W. S. Tetrahedron 1989, 45, 3329-3345. (d) Shimizu, K.; Tomioka, K.; Yamada, S.-I.; Koga, K. Chem. Pharm. Bull. 1978, 26, 3765-3771. (e) Shimizu, K.; Tomioka, K.; Yamada, S.-I.; Koga, K. Heterocycles 1977, 8, 277-282. (f) Kametani, T.; Yamaki, K.; Yugi, H.; Fukumoto, K. J. Chem. Soc. (C) 1969, 2602-2605; (g) Barton, D. H. R.; Kirby, G. W. J. Chem. Soc. 1962, 806-817.

- Yee, Y. K.; Berger, M. H. J. Am. Chem. Soc. 1977, 99, 8065-8067.
- 123-124.
- Yuasa, K.; Soto, K.; Imakura, Y.; Shingu, T. Heterocycles 1982, 19, 1219-1222.
- Fales, H. M. J. Am. Chem. Soc. 1964, 86, 4434-4437.
- G.; Walter, R.; Weirich, R. Angew. Chem. Int. Ed. Engl. 1990, 29, 977-991.
- 9-21.
- G.; Stauffer, R. D. J. Am. Chem. Soc. 1981, 103, 6460-6471.
- Organomet. Chem. 1984, 264, 263-271.

36) For synthesis; (a) Chaplin, D. A.; Fraser, N.; Tiffin, P. D. Tetrahedron Lett. 1997, 38, 7931-7932. (b) Essamkaoui, M.; Benharref, A.; Moskowitz, H.; Mayrargue, J.; Thal, C. Heterocycl. Commun. 1996, 2, 319-323. (c) Ishizaki, M.; Ozaki, K.; Kanematsu, A.; Isoda, T.; Hoshino, O. J. Org. Chem. 1993, 58, 3877-3885. (d) Parker, K. A.; Kim, H.-J. J. Org. Chem. 1992, 57, 752-755. (e) S ánchez, I. H.; Soria, J. J.; López, F. J.; Larraza, M. I.; Flores, H. J. J. Org. Chem. 1984, 49, 157-163. (f) Martin, S. F.; Garrison, P. J. J. Org. Chem. 1982, 47, 1513-1518. (g) Schultz, A. G.;

37) For synthesis; (a) Kametani, T.; Yamaki, K.; Terui, T. J. Hetrocycl. Chem. 1973, 10, 35-37. For isolation; (b) Laiho, S. M.; Fales, H. M. J. Am. Chem. Soc. 1964, 86, 4434-4437. (c) Kobayashi, S.; Ishikawa, H.; Kihara, M.; Shing, T.; Uyeo, S. Chem. Pharm. Bull. 1976, 24, 2553-2555. (d) Li, H.-Y.; Ma, G.-E.; Xu, Y.; Hong, S.-H. Planta Medica 1987, 53, 259-261. (e) Bastida, J.; Viladomat, F.; Llabrés, J. M.; Quiroga, S.; Codina, C.; Rubiralta, M. Planta Medica 1990, 56,

38) For isolation; (a) Latvala, A.; Önür, M. A.; Gözler, T.; Linden, A.; Kivçak, B.; Hesse, M. Phytochemistry 1995, 39, 1229-1240. (b) Abdallah, O. M. Phytochemistry 1995, 39, 477-478. (c) Kihara, M.; Xu, L.; Konishi, K.; Kida, K.; Nagao, Y.; Kobayashi, S.; Shingu, T. Chem. Pharm. Bull. 1994, 42, 289-292. (d) Kobayashi, S.; Satoh, K.; Numata, A.; Shingu, T.; Kihara, M. Phytochemistry 1991, 30, 675-677. (e) Kobayashi, S.; Takeda, S.; Ishikawa, H.; Matsumoto, H.; Kihara, M.; Shingu, T.; Numata, A.; Uyeo, S. Chem. Pharm. Bull. 1976, 24, 1537-1543.

39) For isolation; (a) Latvila, A.; Oenuer, M. A.; Goezler, T.; Linden, A.; Kivcak, B.; Hesse, M. Phytochemistry 1995, 39, 1229-1240. (b) Kobayashi, S.; Kihara, M.; Yuasa, K.; Imakura, Y.; Shingu, T.; Kato, A.; Hashimoto, T. Chem. Pharm. Bull. 1985, 33, 5258-5263. (c) Kobayashi, S.;

40) (a) Chaplin, D. A.; Johnson, N. B.; Paul, J. M.; Potter, G. A. Tetrahedron Lett. 1998, 39, 6777-6780. (b) Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1994, 59, 5463-5465. (c) Laiho, S. M.

41) For leading references on both the synthesis and natural occurrence of biaryls, see Bringmann,

42) (a) Noyori, R. Chem. Soc. Rev. 1989, 18, 187-208. (b) Narasaka, K. Synthesis 1991, 1-10.

43) (a) Ullmann, F.; Bielecki, T. Chem. Ber. 1901, 34, 2174-2185. (b) Fanta, P. E. Synthesis 1974,

44) Semmelhack, M. F.; Helquist, P.; Lones, L. D.; Keller, L.; Mendelson, L.; Ryono, L. S.; Smith, J.

45) (a) Takagi, K.; Hayama, N.; Sasaki, K. Bull. Chem. Soc. Jpn. 1984, 57, 1887-1890. (b) Colon, I.; Kelsey, D. R. J. Org. Chem. 1986, 51, 2627-2637. (c) Vanderesse, R.; Brunet, J.-J.; Caubere. P. J.

-59-

- 46) (a) Kumada, M. Pure & Appl. Chem. 1980, 52, 669-679. (b) Trost, B. M.; Verhoeven, T. R. Comprehensive Organometallic Chemistry Wilkinson, G. Eds. Pergamon, Oxford 1982; Vol. 8, p. 799. (c) Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340-348. (d) Negishi, E.-I.; Takahashi, T.; King, A. O. Org. Synth. 1988, 66, 67-74. (e) Tamao, K. Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I.; Pattenden, G. Eds. Pergamon: New York, 1991; Vol. 3, p 435. (f) Farina, V. Comprehensive Organometallic Chemistry II, Abel, E. W.; Stone, F. G. A.; Wilkinson, G.; Hededus, L. S. Eds. Pergamon, New York, 1995; Vol. 12, p. 161.
- 47) (a) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524. (b) Suzuki, A. Pure & Appl. Chem. 1991, 63, 419-422. (c) Percec. V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060-1065. (d) Saito, S.; Sakai, M.; Miyaura, N. Tetrahedron Lett. 1996, 37, 2993-2996.
- 48) Reviews: (a) Reuman, M.; Meyers, A. I. *Tetrahedron* 1985, 41, 837-860. (b) Gant, T. G.; Meyers, A. I. *Tetrahedron* 1994, 50, 2297-2360.
- 49) (a) Lipshutz, B. H.; Kayser, F.; Liu, Z.-P. Angew. Chem. Int. Ed. Engl. 1994, 33, 1842-1844. (b) Lin. G.-Q.; Zhong, M.; Tetrahedron Lett. 1997, 38, 1087-1090.
- 50) (a) Taylor, E. C.; Andrade, J. G.; Rall, G. J. H.; McKillop, A. J. Am. Chem. Soc. 1980, 102, 6513-6519. (b) Tomioka, K.; Ishiguro, T.; Itaka, Y. Koga, K. Tetrahedron 1984, 40, 1303-1312.
 (c) Buckleton, J. S.; Cambie, R. C.; Clark, G. R.; Craw, P. A.; Rickard, C. E. F.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1988, 41, 305-324. (d) Tanaka, M.; Mukaiyama, C.; Mitsuhashi, H.; Maruno, M.; Wakamatsu, T. J. Org. Chem. 1995, 60, 4339-4352. (e) Quideau, S.; Feldman, K. S. Chem. Rev. 1996, 96, 475-503.
- 51) Parker V. D.; Ronlán A. J. Am. Chem. Soc. 1975, 97, 4714-4721.
- 52) (a) Palmquist, U.; Nilsson, A.; Parker, V. D.; Ronlán, A. J. Am. Chem. Soc. 1976, 98, 2571-2580.
 (b) Tamura, S.; Okuma, K.; Akabori, H.; Kanezaki, K. J. Agric. Chem. Soc. Jpn. 1953, 27, 491-498. (c) Rosowsky, A.; Chaykovsky, M.; Lin, M.; Modest, E. J. J. Med. Chem. 1973, 16, 869-875. (d) Kametani, T.; Yamaki, K.; Ogasawara, K. Yakugaku Zasshi 1969, 89, 638-640.
- 53) Bols, M. Skrydstrup, T. Chem. Rev. 1995, 95, 1253-1277.
- 54) Oikawa, Y.; Yoshida, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885-888.
- 55) Ikeda, Y.; Taguchi, H.; Yoshida, I. Chem. Pharm. Bull., 1981, 29, 2893-2898.
- 56) Biot, H. G. Chem. Ber., 1954, 87, 681-683.
- 57) Hart, D. J.; Hong, W.-P.; Hsu, L.-Y. J. Org. Chem. 1987, 52, 4665-4673.
- 58) Adderley C. J. R.; Hewgill, F. R. J. Chem. Soc. (C) 1968, 1434-1438.
- 59) Hewgill F. R.; Tetrahedron 1978, 34, 1595-1596.
- 60) Semmelhack, M. F.; Helquist, P.; Jones, L. D.; Keller, L.; Mendelson, L.; Ryono, L. S.; Smith, J. G.; Stauffer, R. D. J. Am. Chem. Soc. 1981, 103, 6460-6471.
- 61) Ziegler, F. E.; Chliwner I.; Fowler, K. W.; Kanfer, S. J.; Kuo, S. J.; Sinha, N. D. J. Am. Chem. Soc. 1980, 102, 790-798.

