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Abstract

In order to study the meson-exchange effect in the time component of the weak
nuclear axial vector currents, the beta-ray angular distributions from aligned mirror nuclei
of B and N, (J",T,T,:1*,1,¥1) — (0%,0,0), were observed as a function of beta-ray
energies and a pair of the alignment-correlation coefficients was precisely determined. The
sum of the coefficients is proportional to the time .component and does not include the
unknown weak interaction coupling constants. Moreover, the sum of coefficients is an
excellent probe for the meson-exchange effect in the time component, because it is predicted
by a recent theoretical study that the meson-exchange current enhances the time component
by about 40% than the value calculated under the impulse approximation. The present
study is of crucial importance for investigations of the non-nucleonic degree of freedom in a
nucleus, that is one of the most important problems to be disclosed in the current nuclear
physics.

The alignment-correlation coefficients of 2B and 2N were determined in the pre-
vious experiments, that was mainly performed to investigate the limitation of G-parity
conservation. However, these results turned out to be insufficient to precisely probe the
meson-exchange current, because the spin manipulation for determining the alignment was
incomplete and thus the systematic errors in the determined degree of alignment were not
rejected. In the present experiment, the spin manipulation technique for determining the
degree of alignment was improved so that the reliability in the determined coefficients was
greatly improved.

The spin manipulation technique was based on the 5-NMR of 2B(*?N) in a Mg




single crystal (hcp structure). In the recent studies on the hyperfine interactions of the *B
and "N implanted in Mg crystal, the second minority site was found (the small fraction of
about 15% was located). The present improvgment consisted of the spin manipulations of
2B and **N not only in the majority site, but also in the minority site.

From the experimental viewpoint, the measurement of the alignment-correlation
coefficients is much freer than the polarization-correlation one from systematic errors due
to any small mixtures of background beta rays, scattered beta rays and any other detector
configurations. Moreover, the method for calibrating the beta-ray energy was also improved
than the previous experiments. Consequently, it has become possible to compare the
experimental and theoretical value as a function of the beta-ray energy for more definite
discussions on the meson-exchange current.

The alignment-correlation coefficient was determined from the ratio of the observed
beta-ray energy spectrum with the pure plus and minus alignment. The pure alignments
of both signs (A = £(7.1 £0.1)% with P = 0.1 + 0.1% for ?B, and A = £(17.1 £0.2)
with P = 0.2 £ 0.1 for N, typically) were created by converting the initial polarization
obtained through nuclear reactions. The precise degrees of alignment were obtained by the
improved spin-manipulation technique.

The alignment-correlation coeflicients (az ) were deduced by averaging the alignment
correlation terms ([g%(%]) divided by the beta-ray energy. The coefficients of 12B and 12N
were determined as a_ = —0.0174£0.0056 (%/MeV) and oy = —0.2774£0.0086 (%/MeV),
respecti\}ely. The most reliable value of a sum of the alignment coefficients, which is

proportional to the time component term, was determined as (a_ +a,) = —0.294840.0107

(%/MeV).



The present observed value of (a_ + a,) is found to be larger by about 36 + 5%
than the theoretical IA value calculated by using the Cohen-Kurath shell model. This dis-
crepancy cannot explain without the evidence of the meson-exchange current. Moreover,
the present value is even larger by 25 + 4% than the the recent theoretical value, which
was calculated by using the Paris potential and includes the meson-exchange effects and
the first and higher-order core polarization effects. It can be concluded from these facts
that the present experiment results of the alignment-correlation coefficients definitely in-
dicate the strong meson-exchange effect in the time component of the weak nuclear axial
vector currents. However, more evaluate diécussions on the meson-exchange current, more
accurate theoretical calculations of the core polarization are required.

On the other hand, the difference of the coefficients az gives a limit fr/fw =

0.04 £ 0.11 to the G-parity conservation law.
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Chapter 1

Introduction

The weak interaction, that causes nuclear beta decay, and the electromagnetic interaction
were described in the unified theory by Weinberg and Salam [1]. In the Weinberg-Salam
model W%, W°, and Z° bosons mediate the weak interaci;ion in the some way as photons
do in the electromagnetic interaction. These W* bosons were discovered in 1983 in an
experiment of the proton-antiproton collisions at CERN [2]. The Z° boson was also dis-
covered. The experimental results show that the masses of the bosons are heavy enough
to explain the short range of the weak interaction. Since the masses of the intermediate
bosons are sufficiently larger than the momentum transfer in the nuclear beta decay, the
weak interaction can be well described by the product of the hadronic and leptonic currents.

Then the weak interaction Hamiltonian is given as the product of the hadronic

current (J)) and the leptonic current (£y):

H= @G[JAA + heel, (1.1)

where G is the Fermi coupling constant and A.c. stands for the Hermitian conjugate. Gen-
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erally Hamiltonian of the weak interaction includes also the strangeness-changing part and
the lepton-lepton interaction part 3], which are omitted here. In the weak interaction, since
parity violation is at its maximum, the leptonic current is the direct sum of the vector and

axial vector terms with the same weight,

O = ieya(1 4 75y (1.2)

The hadronic current has a same structure and can be described also as a sum of the vector

term (V)) and the axial vector term (A,),
Jy=Vy+ A, (1.3)

Regarding the actual hadronic current, however, other terms arising from the strong
interaction between hadrons and mesons must be taken into account. This can be done by

adding many-body terms to the one-body term for the hadronic current, as follows:

A A :
J)\(T) =§J)\(i)+ Z J)‘(i,j)-l-é. (1.4)

Q=1

Here, the first and second terms are the one-body and the two-body terms; the others are
the many-body terms. We can obtain simple results by taking only the first term. This
is called the ’impulse approximation’. The second term is a two-body current in which
the nucleon exchanges mesons with another nucleon through the interaction shown in Fig.
(1.1), and is referred to as ”meson-exchange currents”. The third term (€) is very small.
The history of meson-exchange currents started as Yukawa’s meson theory [4]. At first, the
effect of meson-exchange currents was considered on the magnetic moment of 3H and 3He
[5, 6]. The theoretical calculation was carried out using a model-independent description
in terms of soft-pion theorems [7].

13



o} P2

P4 P2

Figure 1.1: Feynman diagram of the two-body pion-exchange current.

In the nuclear beta decay, Kubodera, Delorme, and Rho (KDR) suggested that
clear evidence for the meson-exchange effect can be found in the axial current, and then
proposed a possible experimental test [8]. They pointed out that the one-pion exchange
process is dominant. over other shorter range processes, such as multipion or heavier meson
exchanges. The soft-pion theorem was therefore applied to the axial current.

It can be shown that the exchange currents have a large amplitude (O(1)) in the time
component of the axial vector current; the impulse term has a small magnitude (O(£)).
KDR estimated that the matrix element of the one-body current is enhanced by about
40% by the exchange current in the case of the mass A=12 system. The amplitude of the
pion emission for the I'eynman diagram given in Fig. (1.1) is described as the sum of the
'commutator term’, the 'PCAC consistency term’ and the 'Born term’. Part of the "Born
term’ is taken into account in the wave function. The remainder of the 'Born term’ is,
however, cancelled out by the 'PCAC consistency term’. As a result, the amplitude of pion

emission can be described using only the ’commutator term’. From current algebra, the
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commutator is, thus, given as follows:
[an Vil = ieaﬁ'yA} (1.5)

and

(@5, AS] = deapy V- (1.6)
Here, the axial weak charge (Q%) is defined as

Q% = /dxAg, (1.7)

where o, # and « are the isospin indices of the two-body, pion and one-body currents; €afy
is a completely antisymmetric tensor of the isospin indices. In a nonrelativistic approxi-
mation, the magnitude of the main term (v,) of the vector currents is O(£) for the space
component (A = 1 ~ 3) and O(1) for the time component (A = 4). On the other hand,
the magnitude of the main term (yrys) of the axial vector currents is O(1) for the space
component and O(#) for the time component. From the commutator relations, Eq.(1.5)
and (1.6), the term due to meson-exchange currents has an opposite contribution to that of
the impulse term. Table (1.1) shows the order of such currents without any coupling con-
stants. In the case of photo-pion production, the space component has a large-magnitude
O(1), thus making leaving the time component small (O(£)). On the other hand, in the
case of weak-pion production, the time component has a large-magnitude O(1) and the
space component is small, O(%), for the axial vector term. We therefore obtain informa-
tion concerning the meson exchange current enhanced in the time component of the axial

vector current.
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space component | time component
A=1~3 A=4

Vit 1 0() O(1)

VMES 1 0(1) o(¥%)

A4 o) O(3)

AYEC 1 O(F) o(1)

Table 1.1: Amplitudes of the impulse (approximation) term and the meson exchange cur-

rents. The coupling constants are neglected in these terms.

KDR also pointed out that the decay rates in the 0t — 0~ as well as 0- — 0%
transitions are a potential source of information concerning the time component. The
mesonic effects increase the beta-decay rate of the **N(07) —6 O(0%) + ¢ + v interaction
by a factor of 2 or more. In the experiment, however, it is difficult to separate out only
the time component from the induced pseudo scalar current. Additional theoretical studies
concerning this subject are presented in references [9, 10, 11]. Many experiments have
been carried out concerning the 0= — 0% beta decay [12, 13, 14, 15]. The results, however,
contain large uncertainties due to this circumstance.

Beta decay in the mass A=12 system has provided an excellent testing ground for
the weak interaction. The ground states of '?B(17:Gnd.) and ?N(1*:Gnd.) constitute an
isotriplet(7' = 1) with an excited state of 2C(1*:15MeV) and decay to the ground state
of *C(I™ = 0%, T = 0) (See Fig. (1.2)). The beta decays represent pure Gamow-Teller

transitions. Morita studied the beta-ray energy spectra in the mass A=12 system and
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described the spectra as being a sum of the weak magnetism term (whose sign changes

with the sign of the beta decay) and the main term (whose sign does not change) [16].
P(E)  pE(Ey — E)? (1 + gaE) for 7 (1.8)

Thus, the Conserved Vector Current hypothesis (CVC) can be tested by observing the
beta-ray spectra of '?B and 2N. The Colombia group (Wu et al.), and later the Heidelberg
group, observed these spectra [17, 18, 19]. Their results agree with the theoretical prediction
from the CVC hypothesis.

The term which depends on the nuclear structure can be canceled by comparing the
beta-ray angular distributions from oriented ?B and 2N nuclei; it has played the most
important role in testing concerning the G-parity conservation law. Here, the G-parity
operator is defined as a product of the charge conjugate and the 180° rotation about the

180-y axis:
G = Cexp(inl,). (1.9)

Weinberg classified the weak nucleon currents in terms of their G-parities, and named the
currents which violate G-parity second-class currents (SCC) [20]. Both the polarization-
correlation coeflicient and the alignment-correlation coeﬂicient‘ are described as a sum of
the weak-interaction term and the nuclear structure-dependent term. The weak-interaction
term, which comprises of the SCC term (fr) and the weak magnetism term (a) changes
sign with the sign of beta decay. On the other hand, since the nuclear structure-dependent
term, namely the nuclear parameter (y) defined by the ratio of the time component of the

axial vector current to the Gamow-Teller matrix element, does not depend on the sign of

17



beta decay, a and fr can be extracted by a comparison of the correlation coefficients in
both 8% decays.

The Osaka group (Sugimoto et al.) measured the angular distributions of the beta-
ray spectra from polarized ?B and '*N in order to determine the SCC term [21]. Since
the weak magnetism term in the A=12 system had already been determined in the test
experiments of the CVC theory, the fr term was obtained from the difference of two
correlation coeflicients. However, the experimental results from the polarization correlation
terms contained large experimental errors caused by beta-ray scattering. To prevent this
problem, the Osaka group (Minamisono et al.) measured the distributions from aligned 2B
and '?N nuclei with zero polarization [22]. Later, Grenacs et al. also carried out the same
type of experiment [23], but with finite polarization. Since the alignment correlation term
is less sensitive to beta-ray scattering, a clear limitation of the second-class current was
obtained [22, 24]. In this most sensitive test the G-parity conservation law was confirmed
at the 20% level of the weak magnetism term.

On the other hand, the nuclear parameter (y) can also be isolated from the sum
of the same coefficients. The result given by Minamisono et al. showed that the time
component was very close to the theoretical calculation from the impulse approximation
(IA), and was not enhanced as is predicted by KDR. This result was explained later by
Koshigiri et al.. They pointed out that the effect of first-order core polarization is as large
as the effect of the meson exchange currents in absolute magnitude but with opposite sign.
The core polarization thus canceled the enhancement due to the meson exchange currents.
The theoretical value agreed with the experimental value very well.

For these correlation-type experiments, the nuclear magnetic resonance (NMR) tech-
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nique is indispensable for manipulating the spin-ensemble. 2B and 2N nuclei (with spin
I = 1) were implanted into a Mg single crystal in which the electric field gradient (g) is
available for spin manipulation. The energy levels of magnetic substates m = —1,0, +1
under an external magnetic field of Hy are given by the magnetic dipole interaction (uHy)
and the electric quadrupole interaction (eqQ@). Each transition is therefore separated from
all other transitions, and it is possible to manipulate the substate populations selectively
by using selected RF transitions.

What we measure is the product of the energy-dependent coefficient and the spin
alignment. This means that the spin polarization must be measured to high precision.
Therefore, for more accurate measurements of the correlation coefficients, we must study
the hyperfine interactions of ?B and 2N in Mg single crystals in order to develop a new
way of spin manipulation. The reason for this study was that, from observations of the
NMR-line widths due to dipolar broadening, we already knew that the final sites of 2B
and "’N are the interstitial sites in Mg [26], and that a small fraction of the 12B or 12N are
located at other sites, i.e., the minority of 2B or 2N nuclei sit in other final sites where
they are exposed to different electric field gradients. Since this fraction prevents us from
determining an accurate value for the alignment, the quadruple interaction, the final sites
must definitely be studied. The B or "N nuclei at the two sites must be manipulated
independently. For this purpose, we developed a new spin-ensemble-control technique in
which the spins of the majority and minority are both independently manipulated in order
to accurately determine the degree of alignment.

We also needed to measure the energy of the beta ray. Since the energy scales were
determined from fitting theoretical functions to the observed beta-ray energy-spectra from

19



previous experiments, the energy scale was ambiguous. This was due to a distortion of
the spectra caused by beta-ray scattering. In the present improved method, the beta-ray
energies were therefore calibrated in independent runs by detecting the end points of the
energy spectra of several well-known beta emitters. Details concerning these experimental
improvements are described in Chapters 3 and 4.

In the present experiment, the time component of the axial vector currents was
compared with the theoretical values given in the frame work of the impulse approximation
studied by Koshigiri et al., who recalculated the time component in terms of the higher
order terms of the core polarization [27, 33]. These results concerning the differences of the
correlation coefficients are discussed in Chapter 5.2. The stricter limitation on the existence
of SCC are given by the present coefficients. We also discuss the G-parity conservation law

at the 11% level of the weak magnetism term, as will be discussed in Chapter 5.3.1.
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Figure 1.2: Decay of the isospin triplet (T' = 1) to the goround state of C in a mass A=19

system.

Tz=-1

1+  (20.20ms)

12
B

Eo=13.369MeV
(97.1%)

;Tz=O Tz=+1
1+  (11.00ms)
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15.11MeV ‘
12.7MeV 7
0+
10.3MeV
o+
7.65MeV B*
2+t Eo=16.316MeV
4.44MeV (94.6%)
0ty

12
5C
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Table 1.2: Decay properties of 1?B and 12N in the A=12 system.

123 N
Spin I” 1t 1t
Half Life t;/, * 20.41(6) msec 10.97(4) msec
To the ground state 13.369 MeV 16.316 MeV
971440300 % | 94.55+£0.60 %
To the 4.439 MeV level 8.931 MeV 11.877 MeV
1.2840.04 % 1.90+£0.03 %
To the 7.654 MeV level 5.716 MeV 8.662 MeV
1.5£0.3 % 27404 %
To the 10.3 MeV level 3.1 MeV 6.0 MeV
0.0840.02 % 0.46+0.15 %
To the 12.710 MeV level 3.606 MeV
0.29+0.13 %

*) F. Ajzenberg-Selove Nucl. Phys. A433 (1985) 1
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Chapter 2

Theory of Nuclear Beta-Decay

2.1 Interaction Hamiltonian

Accurate calculations of beta decay in the mass A=12 system were obtained by Morita
and Koshigiri, et al.[25, 28]. The interaction Hamiltonian density for nuclear beta decay

can be described as a current-current interaction,

Hi(r) = \/gG[J,\(r)E,\(r) + h.c.]. (2.1)
Here, G is the Fermi coupling constant, and is given by

G = (2.9954 4 0.0009) x 107 "2h/m2c. (2.2)

The lepton currents (€,(r)) are given with a parity non-conserving part as

G(r) = =i (r)1(1 + 75) 0 (7). (2.3)
The hadron currents for the nucleons are generally expressed as follows with the condition

of invariance under the proper Lorentz transformation:

J)\(‘l") = V)\(’I‘)-{—A)\(T‘), (24)

23



Vi = ¥ (fvnn + fwosk, + i fskx)tn,

Ay = Poys(fans + froak, +ifpky)tn,

with
k=pn—pp
and

(2.5)

(2.6)

(2.7)

(2.8)

The form factors (f;) depend on the square of the momentum transfer (k). However, since

k% is very small, the f; are assumed to be constant in the case of beta decay. If the

Hamiltonian is invariant under the time-reversal (f;) are also real. fv, fw, fs, fa, fr, and

fr have been named vector, weak magnetism, induced scalar, axial vector, induced tensor,

and induced pseudo scalar.

The effective Hamiltonian is formed by replacing the lepton part by its matrix

element, Ly(r), as follows:
G
HI = —\/—i-/J/\(T)L/\(’I’)dT,
with
Ly(r) = (ewe|tx(r)|0)

= —ithg, (P)1(1 + 75)95, (r)

and

Ja(r) = Va(r) + Ax(r)

24

(2.10)

(2.11)

(2.12)



for 3~ decay. Here, ¥, _and Y%, are the wave functions for the electron and antineutrino.

In Eq. (2.9) the wave function can be expanded into a series of partial waves as

e £ 1 . % N Gf‘iexf‘leﬂe
pe(r)=4m 3 i e(Eemegse Tette)Y 1, (P) (2.13)
Fetmette iFHeX—ﬂeMe
and
v 47‘- . 1 . * R fﬁux*'iu#v
"w/)S,,(T) =7 Z ze"(ﬁ,,m,,—S,,|],,,u,,)Yeumy(q) . (2.14)
\/5 KuMy iy 2 .
ZgﬁvX'iul/ou

Here, p, q are the momenta of electron and antineutrino; ¢, m are the orbital angular
momentum and its z-component; j, i are the total angular momentum and its z-component.

K is a quantum number defined as

e L
P 5
. K (k> 0) |
—(k4+1) (k<0)
s = X
) ||’
by = L o=li—Sp (2.15)

f« and g, are the radial wave functions for the antineutrino, and F,, and G, are the radial
wave functions included the Coulomb phase shift for the electron. y is the spin angular

function defined as

1. .
Xow = D (Lemzslint)Y g (#)xs (2.16)
with
1 0
X1/2 = ) X-1/2 = . (2.17)
0 1
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The nuclear currents operators (V) and A,) are written in terms of the space and

time components, as follows:

and

ANr) = (I, ipA(r).

(2.18)

(2.19)

The effective Hamiltonian can thus be expanded in terms of the Hamiltonian opera-

tor (Z;rm) corresponding to the lepton system of the total angular momentum (J), z-

component (M), and orbital angular momentum (L) as follows:

1 3 f— . -1 7

HI = 5G(47r)2 E 7 te Zu(ée%meseljeﬂe)(_)ﬂe 2Y£eme(p)
Keyky,L
AN

X[(€szmu=suliup) Y 7, (@) £ (C5mu=s01jups) Y, 1, (3)]

X Z (jeju_ﬂeﬂule)EJLM(ﬁea /iu)-
J,L,.M

Here,

Errm(Ke, Ky)
= '\/E/dr X
{£0" (r)Yr0(#)[Cro G, Sosa (Kes k) = Fa, fr, So10(—he, —5,)]
FIV(1)Y JLa ()G S S125 (Res =) = Freo G, S100(— ey 5]
I ()Y T30 (#) GG, S100 (Ke, 52) = F, fr, Si1a(—fie, —5,)]

_ipA(r)YJM('f')[GnefnpSOJJ(K:ea _’":1/) - Fnegn,,SOJJ(""“:ea K;l/)]})
with
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SKLJ(Kla K;Z) = \/2 ’ [gl7é27j17j2](£10£20|[’0)

b6 4y L
i ja J (2.22)
1/2 1/2 «

The last line in Eq. (2.21) is the time component term in which we are interested.

2.2 Impulse Approximation

If we assume that the nuclear currents can be expressed as the sum of individual nucleon

currents under the nonrelativistic approximation,

described as follows:

the weak nuclear current densities are

A
pla = 2 8(r—ry)mE [fv £ Bofsl];,
7=1
Jia = ‘ZA:‘S('"_’”')T?_L -fV‘p—+(fv—2Mfw)ka:Ffsk
= WY 2M ;
4 [ o-k)k
Ty = St - | B - T
J=1 L i
A I . k
4 = §(r —p x| £, TP o .
i 2 (r =) | Fasgyy + E2M o+ Bofe) Sy X (2.23)
with
p=ks+k; (2.24)
and
k=ks—ki (2.25)

Here, ks and k; are the momentum operators on the nuclear wave functions in the initial

and final nucleon states; r; is the coordinate of each nucleon. We obtained from Eq. (2.23)

an explicit description of the Hamiltonian operator in the impulse approximation,
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2.3 Mesonic Enhancements of the Time Component

The one-pion exchange contribution to the two-nucleon current (J§¢) shown in Fig. (1.1) is

given by the following transition matrix element, J 5

Jy = (20)%(p; + P, + k — P} — ) (pips | [pips)
= (27)%6(p, + Py + k — P} — p})

{(Wﬁ(q)N(p'l)|Jf\’|N(p1)) ¢ -:mfr

(N1 |N<p2>>} | (2.26)

Here, p;, p; , ¢ and k are the four momentum of the initial nucleon, the final nucleon and
pion, and the momentum transfer induced by the external field; p;, Pi, q and k are their
three momentum; o and § denote the isospin indices of the two-nucleon current and the
pion; J? is the pion source current. The pion production amplitude by the external field

in Eq. (2.26) is expressed as follows using the soft-pion theorems:

(R ONEIRING) = (k) | 7=~ a) = 5y, 5 ()

—pto+ M,
(Ph +¢)* + M? 3 (k)
—iy(pr—q)+ M
(p] — q)2 +M2 g'l'757-)6

+9r757p

+J3(k)

u(p1)¥s. (2.27)

Here, 97 is the isospin wave function of the pion,

1
hi= e | 4 for 7% (2.28)
0

and
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;= \/Li 0 for 7°. (2.29)

fa is the axial vector coupling constant for the one-nucleon current and g, is the pion

nucleon coupling constant. J{(k) and JY*(k) are defined as

(N(P2)JRIN (p1)) = u(p2)J3 (2 = p1)u(p1), (2.30)

and

(N(2)I[QF, TN (p1)) = u(p2) I (p2 — pr)u(pr), (2.31)

with an axial weak charge of
Q5 = / dw AL (x,0). (2.32)

The first term in Eq. (2.27) is known as the ’commutator term’, the second is the "PCAC
consistency term’ and the third is the 'Born term’. However part of the 'Born term’ is
taken into account in the nuclear wave function; the other part is compensated for by the

"PCAC consistency term’. Thus, only the commutator term remains:

(W (NN (1)) = igr=(N (o) [Q3 FH1IN (p2). (2.33)

From current algebra, the commutator is given by
[Qza A] = icap, VY (2.34)
From Eq. (2.33) and Eq. (2.34), the amplitude of the pion emission is given by

(TN EIIN () = i 7o (2.35)
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The pion source current is
. o-q
(N(pp)|J7IN (p2)) = ZgrmTzﬁ- (2.36)

By combining Eq. (2.27) and Eq. (2.36) with Eq. (2.26) the following transition matrix

element in the nonrelativistic limit is obtained:

9r 1 o3-¢q
Mfsq?+m2 2M

5 1 3
Jy = W53(P1+P'1+k—Pz—P'z) (11 x T39)

iPﬁEca(ml, T2). (2.37)

The defined pfipc(®:1,®2) is the contribution of the exchange current to the axial vector

charge in Fig. 1.1. The total p4(r) is the sum of pfip; and the impulse approximation

term pf}

Phiwe = 0(r — @) phime (1, 22) + 8(r — ) pfime (@1, 22) (2.38)
and

pA(r) = pf(r) + pfiso(r). (2:39)

The meson exchange current contributes to the effective Hamiltonian as a form of p4Y;

given in Eq. (2.21).

2.4 Beta-ray Angular Distributions from Oriented

2B and 12N

The probability of beta-ray emission with an energy between E and E + dF within the

solid angle df}, is given by
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1

d_P = —pE(EQ - E)2 ZPM!M‘aM'dEdQe (240)
(27r)5 v FRiit) H

Here, the density matrix is defined as the absolute square of the transition amplitude from

the nuclear state (J;, M;) to the state (J;, My), averaged over the z-components of the

leptons as well as the final nuclear spin states,

1+3E—E,—3p-q
(2.41
12M (241)

puiM; =Y /dQV(Jfo|HI|J,-M,»)(Jfo|HI|J,-M;)*><
Seysu, My '

The initial nuclear spin states (aas) are the populations of the initial magnetic substate

(M;); they are normalized as

D ay, =1. (2.42)
M;

From Egs. (2.20),(2.40) and (2.41) the beta-ray angular distribution from oriented

nuclei can be described without any restrictions on the nuclear currents as

dP G2
dEdQ., (27r)4pE(E0 - . JJ, . V2J; + 1 e ;) Pi(cos b,)
X( )Jf —J; +J+J’+€W(JJJJ/ ng)bt(]Z.)]I( ) (243)

with

=Y \/2J; + L= M (T My — M;1€0)ay,. (2.44)
M;

Here, 0. is the direction of the electron momentum with respect to the nuclear orientation
axis; Py(cos @) are Legendre polynomials. If the recoil correction is neglected, the particle
parameters (bg},(k)) for k =0 are

1 1

b(f)l — -Zé—-le _ ju R ____éo
o= X g i - 5im)
n(’a,’n{:},’L'

XW(jej;JJ/§ fju)[‘snu,n{, + i‘s’ﬁ'uéﬂuy“ﬁ:,]
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x\/(2j. + 1)(271 + 1)(27 +1)(2J' +1)
(I n(kes RITN TN E a8, 621" (2.45)

The reduced matrix element is defined by

1
205 + 1

In the case that the 1?B and 2N decay into the ground state of 2C, the transitions

(JrM¢|Zgoa|JiM;) = (Jid MM |J ¢ My )(J5|| 2N ). (2.46)

are 1* — 0%, Therefore, J = 1 and L = 0 ~ 2. The Hamiltonian operator can thus be

described as

Z EILM(K;e) /{u)

- Va3~ 110) [ dr x
Y () VYL = s(Y 3 () + 2= ¥ B () 24)
:I:iJVY{"{l(r)\/gnﬁ'
~ip*Yam(r)3L7Y, (2.47)
with
K= Ko+ Ky (2.48)

Here, combinations of the product of the lepton wave functions are defined by
L* = Gy gx, £ Fr fv, (2.49)
and

£t =G, f., £ F.g.. (2.50)

32



2.4.1 Impulse approximation

The beta-ray angular distribution is given by substituting Eqs. (2.23) and (2.47) for Eq.
(2.43). By approximating the electron and neutrino wave functions, the angular distribu-
tion can be simply described as a sum of the main term, the polarization term and the

alignment term as follows:
W(E,0) = const. x gx(c)pE(Ey; — E)?
8

xF(£Z,E)(1 + R(E, Ey)) (1 - §aE>

X[1F P(p/E)(1 + azE)Pi(cos8) + Aaz EP2(cos 6)], (2.51)
where, F and p are the total energy and momentum of the beta ray and Fy is the end-
point energy; F(£Z,F) is Fermi function for the Coulomb correction and R(E, E) is
the radiative correction; @ is the polar angle between the electron momentum and the

quantization axis of the nuclear spin polarization. P and A are the polarization and

alignment defined in terms of the magnetic substate populations (a,,), as follows, for spin

P = Gy1— Qg (252)
and
A=1-3a. (2.53)

Pi(cos @) and Py(cos §) are Legendre polynomials.

The coeflicients az are defined as follows:

o = :i:%(a _¥), (2.54)
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with

ga

a = Re (g—"l> (2.55)

and

b= Re (9_T) (2.56)

ga

Here, the effective coupling constants (¢) are given in terms of the coupling constants (f)

for a free nucleon as follows:

ga = faTF Eofr, (2.57)
gw = z(fw— fv/2M)

= z[—(pp — pa) fv/2M — fv/2M], (2.58)

and -

gr = fr £ y(fa/2M). (2.59)

Here, the nuclear parameters (¢ and y) are defined under the nonrelativistic approximation

as
1
1 Joxr (2.60)
L+pip—pin o
and
y = Ry yEkuiis (2.61)

Jo
The ratio (y) of the time component of the axial vector current to the Gamow-Teller matrix

element can be extracted purely from the sum of ag,

(o +az) = ~5(y/2M). (2.62)
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The difference of o comprises the weak magnetism term (a) and the second-class current

term,

(0 —ay) = % <a - %) . (2.63)

2.4.2 Description including the mesonic effect

In order to discuss the meson-exchange contribution to the alignment-correlation term,
the general form of the beta-ray angular correlation shape factors (B;(E)) is defined as a

function of the beta-ray energy,
W(E, P, A,0) < pE(Ey— E)?[Bo(E) + P - Bi(E)P1(cos 8) + A - By(E)Py(cos §)].(2.64)

To use the spectral shape (w(£)), which depends on only the beta-ray energy, Eq. (2.64)

1s translated as

By(E) By(E)
Bo(B) Po(cosb) |, (2.65)

W(E,P,A,0) =w(E) |1+ P Bo(E)

Pi(cosf)+ A

with
w(E) « pE(Ey — E)? - By, (2.66)

In the present experiment we observed the beta-ray energy spectra in the direction § = 0

or 7. The observed spectrum is thus described as

W,(E,P,A) = w(E) [1 + szgg + Agzgg” (2.67)
and
W (E, P, A) = w(E) [1 —~ ngg + Agzgﬂ . (2.68)

Here, %2(% is the alignment correlation term.
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Chapter 3

Experimental Method

For determining the alignment correlation terms we must observe a pair of beta-ray-energy
spectra with different spin alignments. These spectra must then be compared under the
same conditions. It is therefore important to accurately measure the degree of polarization
and alignment as well as the energy spectra. In the present study the experimental tech-
niques were greatly improved very much compared with the previous ones. The procedure
of the experiment comprised the production of polarized nuclei, the maintaining of the po-
larization, the manipulation of spin-ensemble and the observation beta-ray spectra. This

chapter explains the experimental method used for the present work.

3.1 Production of Polarized Nuclei

A schematic view of the present experimental set up is given in Fig.(3.1). The ?B and
2N nuclei were produced through 'B(d,p)'?B and '°B(®He,n)'?N reactions, respectively.

Details concerning the experimental conditions for the production are listed in Table (3.1).
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In the present experiments the pulse-beam method was used for low-background beta-ray
detection. The target was enriched B or ''B (100ug/cm? thick) evaporated on the surface
of a Mo-ribbon-target backing. The target backing was set in the groove of a fan-shaped
target rotor. The size of the target backing was 430mm x 3mm, and 0.015mm thick. The
diameter of the rotor was 760mm. The rotation period was 60ms/rotation. The production
and beta-ray counting times were separated by chopping the incident beam. During the
counting time the Mo backing was moved to the other end of the chamber and hidden by a
radiation shield made of lead and iron for beta-ray detection with a very low background.

In the case of B production, the procedure was as follows. A deuteron beam was
accelerated to 1.5 MeV by the 4.8 MV Van de Graaff accelerator at Osaka University. The
beam was chopped by an electrostatic deflector that was synchronized with the rotating
target. The beam was then focused on the target with an area less than 2 x 6mm, thus in-
ducing a nuclear reaction. The produced 2B nuclei ejected from the target with the various
recoil energies were caught in a catcher, given in Fig.(3.2). The recoil nuclei were polarized
through the nuclear reaction. In order to obtain the optimum degree of polarization, the
incident beam energy and the recoil angle were chosen as shown in Fig.(3.2).

The recoil nuclei were implanted into a single-crystal Mg catcher of about 200 um
thick in order to stop them within a definite area and to maintain their polarization. The
Mg catcher was set so that the recoil nuclei ejected into any recoil angle from 40° to 75°
would be implanted. At this solid angle the largest polarization and smallest alignment
were obtained at the present incident energy. In order to maintain the polarization and to
manipulate the nuclear spin ensemble by the nuclear magnetic resonance (N MR) technique,
an external static magnetic field of about 300 Oe was applied along the flight path of the

37



recoil nuclei and the catcher area. Although the magnetic field was not sufficiently strong
to completely maintain the polarization, the rate of depolarization was small, i.e., a net
polarization of about 13% was maintained; this was 85% of the initial polarization produced
through the reaction. The experimental conditions for the 2N are summarized in Table
3.1.

For an easy energy calibration of the beta rays, also these beta rays from 2°F,
#1S¢, and '"F were also detected, for which BaF; and CaO targets were used. They were
separately placed by evaporating at the end part of Mo backing. Each length of the target
area was 20 mm. By adjusting the beam chopping time each target could be bombarded

separately.
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Table 3.1: Parameters for the production of the polarized nuclei.

125 12N
Half Life t; 5 20.41(6) msec 10.97(4) msec
Reaction 1B(d,p)**B 1B(*He,n)2N
Q value 1.1444(13) MeV 1.5631(90) MeV
Beam Energy 1.5 MeV 3.0 MeV
Recoil Angle 40° ~ 75° 20° ~ 55°
Mean Recoil Energy 044 MeV 1.5 MeV
Stopper Mg Mg
Max. Range 1.5 pm 2.7  pm
Magnetic Field 300 Oe 600 Oe
Max. Polarization 13 % 25 %
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Figure 3.1: Schematic view of the present experimental setup. The target was rotated in a

vacuum chamber. The target rotator was cooled by a jet of air running inside the rotator.

The chamber was made of plastic in order to avoid any possible backscattering of beta rays

from the wall. The beta rays from 2B and 2N in the recoil stopper were observed by two

sels of counter telescopes. The energy counters (I) were equipped with a gain stabilizer

using pulsed monitor light from an LED.
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Figure 3.2: Production of polarized nuclei.
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3.2 Manipulation of the Nuclear Spin Ensemble

The large polarization was obtained through the nuclear reactions. However, the pure
alignment of both positive and negative signs, 7.e. the large alignment without polarization,
were necessary. We obtained this condition by using the spin manipulation based on the
NMR technique. The control technique for the spin ensemble is thus crucial for obtaining
aligned nuclei with no polarization. In this section we describe details concerning this

technique.

3.2.1 Principle of the conversion from polarization to alignment

The energies of magnetic substates for a nucleus with spin I = 1 can be described as follows

using first-order perturbation theory for strong field limit [30]:

1

E,, = —mhwr, + Eth(iimz — I(I+1))(3cos®6 —1), (3.1)
where

wy, = ’YHOa

(v = p/Ih),
and

3
we = 5eqQ/h. (3.2)

Here, p and @ are the nuclear magnetic moment and electric quadrupole moment; H,
is the external magnetic field and ¢ is the electric field gradient; 6 is the angle between
the external magnetic field and the principal axis of the field gradient. Under the present
condition, (I =1 and the angle § = 0),
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E, = —mhwy, + éth(?)m? ~9). (3.3)

The signs of e¢@, and thus the signs of wg, had been previously determined so as to be
negative for both ?B and 2N implanted in the Mg single crystal [31]. Since the sign of
the initial alignment was known to be positive for both 2B and 2N, the magnetic substate
populations of *B and 2N were as schematically shown in Fig.(3.3). Hy was set so as to
be parallel to the initial polarization, as shown in Figs.(3.2) and (3.3).

The separations of the energies between adjacent substates were as follows:

1
AE—I(—)O = hLUL+§hLUQ (34:)
= o(on + wa)
T WL T vl
and
1
AE+1H0 = h(.UL— '2—h(.<JQ (35)
1 1
v, = g(wL—in),
Ve < (wg < 0).
We could thus induce a transition between substates m = 1 and m = 0, or between

m = 0 and m = —1, separately, by applying an RF field (H;) at frequencies of v, or Vh,
respectively.
We could also induce a double quantum transition between substate m = 1 and

m = —1 . The transition energy and the frequency were

AEy oy = 2hwy, (3.6)

and
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vy, = %(I/g + I/h). | (37)

A double quantum transition could thus be induced at the center frequency (v1) while
neglecting the second-order shift. This separated frequencies (v;, v, and v1,) offer a way
to control the spin ensemble.

We used two kinds of methods in the NMR technique to handle substate populations:
one was the adiabatic fast-passage (AFP) method for exchanging substate populations
between two levels; the other was the depolarization (DEP) method for equalizing two

substate populations.
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Figure 3.3: Schemalic view of the magnetic substate populations (¢n); am depends on
the nuclear reaction and magnetic field. In the present experiment, the direction of the

polarization was antipararell to Hy and the initial alignment was positive [31].
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AFP method

When the frequency of the RF field is swept across the resonance frequency, w = (E,, —
E,.1)/h, with an adequately slow sweep velocity and a strong RF field, the magnetic sub-
states populations, a,, and a,,, are interchanged. This process is called adiabatic fast
passage (AFP) [32].

Upon determining from the coordinate system which is rotating with the same fre-
quency (w) as the applied RF magnetic field, the effective magnetic field (H.yss) becomes
a fixed vector and the spin (I) precesses around H.sy, as shown in Fig.(3.4). When the
RF frequency is swept across the resonance frequency (wr) in such a way that the effective
field (H.yy) is inverted, as shown in Fig.(3.4), the nuclear spins also became inverted while
following the motion of the effective field. It is necessary that the angular velocity of the
rotation of H,; is much slower than that of the precession of the spin around H.zs for a

complete inversion of the spin. The adiabatic condition is thus given as

1 dw
~H, ) <L vH;. (3.8)

The frequency of the RF field (H;) must therefore be modulated according to the above
condition. Furthermore, in order to achieve a perfect population interchange, the amplitude
of the RF magnetic field must also be modulated sinusoidally as a function of time, as shown
in Fig.(3.5). Then the RF is swept around the off-resonance frequency the direction of the
nuclear spin is restored during the final stage of the sweep (Fig.(3.6)), while causing no effect
at the off-resonance frequencies. We designed the RF amplifier system while considering
this AFP condition (Eq. (3.8)). The actual condition was determined experimentally from

a test in which the achievement of conversion was tested as a function of the RF amplitude.
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The conditions used in the present study are given in Table (3.2).
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Figure 3.4: Effective magnetic field applied by the frequency-modulated RF and the prin-
ciple ol adiabatic fast passege (AFP). The RIY [requency is swept across the resonance
frequency (wg) in such a way thal the effective field (Il,5) is inverted; nuclear spins are

also inverted following the motion of the effective field.
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Figure 3.5: Schematic view of the amplitude and frequency modulation of the RF magnetic

field as a function of time. The amplitude reaches its maximum at the resonance frequency.
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H, *

Figure 3.6: Magnetic field under the off AFP condition. When the RF is swept around the
off-resonance frequency, the direction of the nuclear spin is restored during the final stage

of the sweep. As a result, there is no effect at the off-resonance frequencies.
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Depolarization method

The principle of the depolarization (DEP) method is described as follows. When an RF
is applied at the on-resonance frequency, the nuclear spin precesses around H; with a
frequency of vH; in the rotating frame. The precession frequencies spread due to the
nuclear dipolar broadening (Hp) and the inhomogeneity of the external field, and even
the inhomogeneity of the RF magnetic field. Therefore, after a sufficient time duration,
the polarization is destroyed. In actual experiments, the RF frequency was modulated in

frequency in order to cover the resonance time width. The actual condition is given in

Table (3.2).

Conversion of polarization into alignment

A schematic diagram designed to explain the principle used to convert the polarization to
a sizable degree of alignment is shown in Fig.(3.7). To convert the nuclear polarization to
positive alignment, a depolarizing RF field was first applied at v}, the substate populations
of m = 0 and m = —1 were thus equalized (ay = a;), and a resultant polarization of P
was obtained (Fig.(3.7)). An RF field for AFP was then applied at v, so that the substate
populations of m =1 and 0 were interchanged (ag < a;); the resultant polarization (Pn)
became equal to zero. We could thus obtain a pure positive alignment of A, =3/2P —
1/2A, if the depolarization and AFP were perfectly obtained and the relaxation effect of
polarization and alignment was negligible. An RF magnetic field for AFP (AFP field) at
v was finally applied once again in order to shift the alignment back to polarization and

polarization Py was thus obtained. In actual experiments Piy; was smaller than P (P <
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Pr) due to the spin relaxation effect of alignment. We thus obtained a relaxation time of
T; for the alignment from P and Ppp. To obtain a negative alignment, a depolarization

field was first applied at v,; AFP was then applied at vy.
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Figare 3.7: Schematic diagram of the spin control for producing the conditions P = 0 and
A=+Aor A= —A Theclosed triangle-shape RI* indicates that the RI" satisfied the AFD
condition; the closed squarc-shape RI" indicates the REF for equalization of two magnetic
substates. The transition between m = 41 and m = 0 as well as the transition between

m = —1 and m = 0 can be separaled by selecting the resonance frequency v, and v,



3.2.2 Hyperfine interactions of 1’B and >N in a Mg single crys-

tal

In order to accurately measure the alignment coefficients, knowledge concerning the hy-
perfine interactions of '?B and '*N in the Mg catcher is necessary. For this purpose, we
studied the NMR spectra of '?B and >N implanted in the Mg single crystal in detail [26].

The NMR spectra for both the single and double quantum transitions were observed
with good accuracy as a function of the orientation angle of the c-axis relative to the
external magnetic field (Ho), the amplitude of Hp, the amplitude of the RF magnetic field
(Hy), and temperature of the Mg catcher. Fig.(3.8) shows a typical NMR épectrum of
single quantum transitions between m = £1 and 0 for I = 1 of 2B in Mg with the crystal
c-axis parallel to the external magnetic field. The line widths were determined under the
condition of the weak H; and the low-temperature limit. We clearly observed a pair of
small peaks located within a pair of large peaks for the majority of 2B . A small fraction
of 1?B thus sits at another site where the electric field gradient (¢) is different from the 1B
at the major site.

The electric field gradient at the minor site could be determined by measurements
of the quadrupole splitting or second-order shift of the double quantum transition. The
direction of the field gradient was about 90° for the c-axis with the asymmetry parameter
being close to zero. The magnitude of the coupling constant was the same as that for the
major site.

It was shown that the g-axis of the minor component was perpendicular to the crystal

c-axis. However, the g-axis was not directed in any specific direction, but was distributed
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in the crystallographic a;-a; plane. In the case of 12N, the observed spectra also had the
same structure, as shown in Fig.(3.10).

The ¢ for the majority was parallel to the crystal c-axis with an asymmetry pa-
rameter of 7 = 0. According to observations of the line split of a pair of single quan-
tum transitions as a function of crystal orientation, the quadrupole coupling constants,
legQ(**B)/h| = (47.0£0.1) kHz and |egQ(**N)/h| = (59.3 4 1.7) kHz, were determined for
the majorities of 1?B and 12N, respectively.

Figs. (3.9) and (3.11) show the double quantum transitions between m = +1 and
m = —1. The double quantum transitions are free from a small effect due to a spread in
the strength of the quadrupole interaction caused by lattice defects. The line width there-
fore represents the nuclear dipolar broadening directly. The line width was deduced using
spectra with a Lorentzian distribution. The width was, thus, measured as a function of
the crystal orientation and was compared with the van Vleck’s values of the dipolar broad-
ening. By using Gaussian distributions, no appreciable changes were recognized within
the statistical error. Thus, in the case of >N in Mg, the final site was determined to be
the interstitial trigonal site (the center of a trigonal prism structure in a h.c.p. lattice;
see Fig.(3.12)). For the present analysis, a rearrangement of the lattice due to intersti-
tial impurities was taken into account as a lattice expansion. It was concluded from the
present results that, at least, the nearest neighbors of the impurities were expanded by
about Aa/a = (15 £5)%. Also, in the case of 2B, the final site was the interstitial site.
However, no specific final site was definitely determined.

When some locations exist, as in the present case, each NMR. time for each group
of 1B at different sites is necessary in order to control all nuclear spins of the nuclei. In
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the case of B and 2N in Mg, the same control scheme used for the majority couldn’t
be applied to the minority, since they have field gradients with different directions. Their
transitions couldn’t be separated by the frequency for control.

The most important result in this study concerning the hyperfine interactions is that
each transition of the majority could be separated from that of the minority. The crystal
c-axis was therefore set parallel to the external magnetic field, since the spin-ensemble
of the majority could be controlled without affecting the spin-ensemble of the minority.

Namely, we can induce any transitions for any sites, independently.
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Figure 3.8: Typical NMR spectrum of the single quantum transitions (SQ) for *B. The
external magnetic field is 1.0 kOe, and the applied RT' magnetic field is about 2 Oe. The
crystal c-axis is set pararell to the external magnetic field. The horizontal axis is the
resonance [requency (kHz). The central sharp line shows the resonance of the double
quantum transition. The vertical axis is the polarization change due to depolarization
- as the result of equalizing the RT" (%). At the off-resonance point the amount of initial

polarization does not change.
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Figure 3.9: Typical NMR spectrum of the double quantum transition (DQ) for 12B. The
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Figure 3.10: Typical NMR spectrum of the single quantun transitions (SQ) for 2N. The
external magnetic field is 2.0 kOe, and the applied RF magnetic field is about 2 Oc. The
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resonance [requency (kHz). The central sharp line shows the resonance of the double
quantum transition. The vertical axis is the polarizalion change due to depolarization
as the result of equalizing the RF (%). At the off-resonance point, the degree of initial

polarization does not change.
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Figure 3.12: Iinal sites of impurilies in the Mg single crystal (with h.c.p. structure). In
the case of "*N in Mg, the final site was determined to be the interstitial trigonal site (the
center of a trigonal prism structure in a h.c.p. lattice) by the mecasurement of dipolar
broadeninng line width. The lelt figure shows the observed line width of >N in Mg as a
function of the crystal orientation. The solid lines indicate the theoretical value from the
van Vieck formula for interstitial nuclei located al trigonal interstitial sites with a 15%

lattice expansion.
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3.2.3 Time sequence of the present experiment

Since we found that the sites with minor implanted nuclei for both 2B and N have
different quadrupole couplings from that of the majority, the spin-ensemble control for
both groups is necessary for a complete conversion of polarization to alignment.

Before carrying out spin control for the majority, spin control for the minority was
undertaken. Since the direction of the g-axis for the minority is not unique, it was not easy
to convert the polarization of the minority into alignment, and to use it for measurements.
We therefore equalized the substate populations of the minority in actual measurements.
Since it takes a relatively long time to completely equalize the substate populations using
the DEP method, due to the spread of the field gradient, we equalized the populations as
much as possible within a very short time.

The time sequence used to realize spin control for the present experiment is shown in
Fig.(3.13). The procedure used to producing a positive alignment is shown as the [A,] part
in Fig.(3.13). To equalize the populations for the minority, RFy; and RF;, were applied.
RFy; is an RF with a single-sweep frequency modulation (FM) for the AFP technique (see
section 3.2.1). RFY; covered the resonance frequency (v},) of the transition between m = +1
and m = 0 of the minority in order to exchange the magnetic substate population, a,; and
aso (m = +1 and 0). The width of the frequency modulation was 25 kHz, the sweep time
of the frequency was 1ms, and the RF amplitude was about H; ~ 5 Oe, which satisfied
the AFP condition described in Eq. (3.8). RFj; was an RF with a repetitive frequency
modulation around the transition frequency (1) for equalizing the sublevel populations

(aso and a,_;) of the minority. The width of the frequency modulation was 20 kHz; the
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frequency was swept seven times; one sweep time was 0.3 ms. The amplitude of the RF
was about 1 Oe. Although this sweep speed (20 kHz/0.3 msec) and amplitude was just
sufficient for the DEP method, they were not sufficient for AFP. As a result of the spin
control by RFy; and RFj,, the populations (a,y, a9, and as—1) were nearly equal. After
this procedure, the minority was left as it controlled, or was not disturbed by any other
RF applied later.

Secondly, the spin-ensemble of the majority was controlled in order to convert po-
larization to alignment. The amplitude, frequency modulation width, and duration of the
frequency sweep were the same as in the case of nuclei in the minority. The details are
listed in Table 3.2. RFi3 equalized the population (@mo and a,,—1) of the majority. The
beta-ray asymmetry was measured in count section I in order to determine the polariza-
tion (Pr). RFy4, RF with a single-sweep FM for the AFP, exchanged populations a,,y and
@m+1. Thus, the polarization was converted to alignment A,. The beta ray spectra from
the aligned nuclei were observed either at 6 = 0° or 180° and from the polarization in count
section II. The up-down asymmetries derived from these spectra also gave the degree of po-
larization (Pry); the degree of alignment was deduced. RFjys exchanged population a,,q and
Um41 again to convert the alignment back to pblarization. Polarization Pjrr, measured in
the count section III, was compared with polarization P; in order to deduce the relaxation
time for the alignment.

The procedure used for the spin manipuldtion to produce a negative alignment was
essentially the same as that used for a positive alignment, as shown in the [A_] part. It was
important that part of the procedure used for the minority site was the same as that for
positive alignment; the remaining procedure for the majority was reversed in the order of
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the RF sequence for manipulating the substate populations. The same procedure resulted
in the same residual populations in the [A;] and [A_] parts. Therefore, the effect due to
the residual polarizations of the minority was canceled.

The [P, ], [P-], and [P,4] parts involved procedures for determining the polarization
and geometrical asymmetry, and for checking the achievement factor. The [P,] part did
not involve RF control, and gave the initial beta-ray asymmetry in count sections I, II,
and IIL. In the [P_] part, RFy was applied for the AFP at the double quantum transition
between m = +1 and m = —1. The amplitude of the RF was H; ~ 25 Oe, the width of the
frequency modulation was Av = 14 kHz, and the duration of the frequency sweep was 2
ms. The AFP for the double quantum transition required a stronger RF field than that for
the single quantum transitions. RFy; exchanged the total population ay; and a_; of nuclei
both of the majority and minority, so that the initial polarization was reversed. The beta-
ray asymmetry for the reversed polarizations were observed at count times I, IT, III. In order
to obtain the ratio of the initial beta-ray asymmetry to that for the reversed polarization,
the geometrical efficiency in the beta-ray detectors was automatically cancelled. Since
this ratio included the factor for the achievement of the AFP technique, a fifth cycle was
introduced in order to determine the achievement factor. RFs; and RFy, were applied
in order to invert the initial polarization, and to give it back again. The ratio of the
initial asymmetry to that of the final was thus used to probe for the completeness of AFP
achievement. The polarizations in all counting sections were determined from asymmetry

measurements during the [P;], [P-], and [Py4] cycles.
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3.2.4 RF system

The RF cbil for producing an oscillating magnetic field (H;) at the catcher comprised a
pair of coils which were saddle shaped (Fig.(3.2)) in a way similar to the electron beam
deflector used in a television set. This shape resulted in a better homogeneity of the RF field
(H;) over a wider effective area compared with a Helmholtz coil. The RF coil comprised
0.6mm thick A¢ wire coated with a thin polyester film. Since the Mg catcher was heated
by eddy currents induced by the RF field (H;), it was mounted on a holder made of A/ to
which a water-cooling system was attached inside the vacuum chamber. An RF coil with
an aperture of 5¢m in diameter, which faced the top and bottom beta-ray windows, was
sufficiently large that the beta-ray counter telescopes did not detect the beta-rays scattered
directly by the RF coil.

The RF amplification circuit is shown in Fig.(3.15). The circuit used in the present
experiment comprised of two parts. One was a linear amplifier for the transmission of
RF power; the other was a logic circuit used to gate the RF. The four RF sources were
independently applied for each NMR technique, i.e., the AFP and the equalization.

Three frequency synthesizers were used for the AFP technique. The AFP technique
required a single sweep of the frequency modulation and sine-wave amplitude modulation.
The single-sweep FM was obtained by using a ramp signal from a ramp generator. The
AFP technique used for the single quantum transition required different sweep times of the
frequency from that of the double quantum transition. Two ramp generators were therefore
used for the AFP techniques. Amplitude modulation was provided by the sine-wave signal

from another function generator. The double-balanced mixer works as an RF modulation
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for sine-wave modulation. The RF amplitude for the AFP technique was controlled by
attenuated square waves from the gate generators.

Three function generators were used to equalize the populations. The function
generators produced frequency-modulated RF signals which were gated within the RF time.
Equalization required a more accurate amplitude control than in AFP technique. The RF
amplitude, the width of the frequency modulation, and the duration of the frequency sweep
from each function generator were adjusted to the condition of each transition. All of the
RF signals were mixed by an analogue mixer and, finally, power amplified by a 1000 W
amplifier. In the present system the achievement factors of the spin control reached close

to 100%, as listed in Table 3.3 and shown in Fig. (3.14).
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Table 3.2: RF system conditions for the spin control; tgr includes the amplitude modulation

time.

12 12N
Spin " 1+ 1+
Half Life by (msec) | 20.41(6) | 10.97(4)
Magnetic Moment b () | 1.003(1) | 0.4571(5)
Electric Quadruple Moment @ (b) | 0.0171(16) | ~ (0.01)
L(Ho — ) " ”
Sign of eq() in Mg (-) (-)
RF condition
DQ AFP H  (Oe) 10 25
tar (ms) 1 2
Af (kHz) | 14 14
SQ AFP H  (Oe) 2 5
trr  (ms) 1 1
Af  (kHz) 15 25
5Q DEP H  (Oe) 1 1
trr  (ms) 1 2
Af (kHz) 15 20
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12B

12N

Achievement of AFP

apqQ 0.9819 + 0.0059 0.9776 + 0.0045
(0.9476 + 0.0046)* | (0.9776 + 0.0066)*
msq Y™™ | 0.9931 £ 0.0045 0.9889 + 0.0059
(0.9654 + 0.0053)* | (0.9630 £ 0.0060)*
nsq  vA™AR | 0.9905 + 0.0046 0.9799 £ 0.0057
(0.9708 £ 0.0041) | (0.9816 = 0.0075)*
nsQ vpSP 0.99243 4+ 0.001 0.9827 4+ 0.006
(=) (=)
Effective residual polarization AP (%) 0.070 £0.079 0.40 +0.21
Effective alignment change AA (%) 14.27 +0.20 34.26 +0.40
Relaxation time Ti(P) (ms) 179 £ 10 173 + 21
Ty(A)  (ms) 45.6 + 1.8 61.0 + 5.9

Table 3.3: Typical achievement of spin control.

(old data)* have the condition that Z(Hy — cays) = 90°.

Here, apq, 7, AP and AA are defined as follows:

DQAFP

P = OzDQP,

SQ(mem')AFP
Am ?

APEPA+ —PA_ ,and

AAEAA+“‘AA_ .

Nl + (1 - n)am )
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Figure 3.14: Achievement of the spin control. The vertical axis is the beta-ray asymmetry,

defined as (£) = (upside counter’s count)
S D/ ™ (downside counter’s count)’
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3.2.5 Control using a micro computer system

The control circuit and timing for the gate are shown in Fig.(3.16). The timing of the
experiment was triggered by the monitor signal of the target rotor. Two photodiode sensors
picked up the motion of the rotor and generated two trigger signals: ’rotor on’ and ’rotor
off’. When the target point of the rotor came around, at first the 'rotor on’ signal was
generated. Before opening the beam gate for beam bombardment, the bin gate was closed
in ordgr to inhibit beta-ray counting for rejecting the background counts. A standard light
pulse from an LED was then emitted and detected by the E-counter for gain stabilization.
By comparing the pulse height and standard level, the gain could be corrected. After the
photo-multipliers for the E-counters were blocked by switching a high voltage, the pulse
height s.pectra for the LED standard pulse were analysed by ADC and the data were stored
in the computer as counts in count section IV(see Fig.(3.13)). The micro computer system
then suspended the data-taking. As the last step of this series of processes, the beam from
the accelerator was turned on by releasing the electrostatic chopper.

The production time, i.e., the beam-on time, lasted until the 'rotor off’ signal was
detected. The signal ’rotor off” stopped the beam by the electrostatic deflector, released
photomultiplier blocking, started beta-ray counting by opening the bin gate, and restarted
data-taking by the computer. After restarting the computer, the computer controls both
data-taking and the RF system according to the programmed timing based on its own

clock. One experimental cycle comprised five parts with different data-taking sections, as

shown in Fig.(3.13)
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Figure 3.16: The upper figure is a schematic view of the circuit diagram for the beam and
data-taking system by computer control. The lower figure is the timing of the gates for the

beam, counter blocking and the initiation of data-taking.
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3.3 Measurement of the Beta-ray Energy Spectra

3.3.1 Beta-ray detector

The beta rays emitted from 2B and 2N were detected by two sets of plastic scintillation
counter telescopes placed above and below the Mg stopper. Fig.(3.17) shows a schematic
view of a set of the beta-ray counter telescopes used in observations of the beta-ray energy
spectra.

The beta-ray energy was measured by an E-counter, a scintillator of 152mm in di-
ameter and 190mm in length attached to a photo multiplier of 127mm in diameter. For
precise observations of the small correlation coefficient, the amplifier gain in the beta-ray
detection system must be very stable. The stability of the energy counters was mainly
dependent upon the stability of the photo multiplier gain against fluctuations in the tem-
perature and counting rate. In the present experiment a pulse-height-gain-stabilizer was
used in the amplifier system for gain stabilization. The standard light pulse was fed by an
LED pulsar maintained at a constant temperature by a heater. Since, the counting rate
might be sufficiently large during the beam-on time to saturate the phototube, the photo
multiplier was blocked during this period by switching the high voltage for a dynode so as
not to amplify the photo electrons. The stability of the counter system was monitored by
the center of gravity of the standard pulse and the beta-ray-energy spectrum, as shown in
Fig.(3.18).

Two AE counters were placed in front of the E-counter in order to define the solid
angle of the beta rays. One of the AE counters (called B) was a scintillator of 55 mm in
diameter and 1 mm in thickness attached to a 2-inch photo multiplier by a plastic light
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guide (lmm in thickness and 150mm in length). Another AE counter (called B’) was a
scintillator of 80 x 80 mm and 1 mm in dimension. The counter’s efficiency was very close
to 100%. The accidental triple coincidence rate of E and two AE counters was negligible.

If beta rays from the catcher were scattered before being detected by the E-counter,
the beta-ray energy spectra became distorted. In order to reject beta-ray scattering, the
structures around the catcher and the detector were as much as possible made of materials
with small Z. The walls of the reaction chamber were made of plastic, and the beta-ray
windows were made of thin 50um thick Capton foils. The magnets used for the external
static field had only return yokes without any pole piece. The magnet coil and the RF coil
used for the NMR technique were made of AZ wire instead of Cu wire. Besides, in order to
reject the beta rays scattered by the return yokes, anti-coincidence counters (called C) were
placed at the surfaces of the yokes. One set of the anti-coincidence counters comprised two
annular scintillators and a cone-shaped scintillator. The light pulse from the cone-shaped
scintillator was sent to photomultipliers through two fish-tail-type plastic light guides. The
signals of the anti-coincidence comprised the sum of signals from two photo multipliers; as

a result, a good detection efficiency was obtained.
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Figure 3.17: Schematic view of the beta-ray counter-telescope, the magnet and the vacuum
chamber. The magnet comprised an iron yoke, an alminium coil and a plastic chamber.
The anti-coinsidence 'C counter rejects any scattered beta rays. The vacuum chamber is

made of the plastic in order to prevent any beta rays from scattering.
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3.3.2 Electronics

In order to observe the beta-ray energy spectra, the pulses from the E-counter photomulti-
pliers were amplified and measured. The electronic-circuit systems used to carry out these
measurements are shown in Fig.(3.19)

The logic circuit used to trigger the beta-ray energy measurement mainly comprised
a five-fold coincidence from four kinds of beta-ray counters (B, B’, E and C) as well as
pile-up rejection. A four-fold coincidence (B’xBxEx(C;+C;)) of the AE and the E-
counters was produced and an anti-coincidence signal (m) from the sum of the two
anti-coincidence counter signals and the B and B’ counters defined the solid angle of the
beta rays; the C counter rejected scattered beta rays. The coincidence signal was then
inhibited by a signal from the B’ counter of other side to partially reject the cosmic ray.
The final trigger signal was produced from the counter-coincidence signal as well as the
pile-up rejection inhibit and the ADC busy inhibit. When a double pulse determined by
the integration time for the signals from E-counters which occurred in E-counter of closer
than 500ns, a pile-up rejection signal was generated which killed both events. In order to
make this possible, logic signals from the B, B’ and C counters were delayed by about 500
ns. Since the conversion time for ADC was about 5 us/event, an ADC busy signal of 5us
duration killed any events which occurred within 5 us after the event.

The analogue signal circuit mainly comprised linear gates and a gain stabilizer sys-
tem. Any pulse from the E-counter was clipped by a delay line to a 170 ns width. The
E-signal for a true event passed through a linear gate opened by the logic trigger for 470

ns. The true pulse was amplified by a spectroscopic amplifier and then sent to an ADC.
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False pulses, including beta rays with an undefined solid angle, scattered beta rays, true
pulses piled up, and true pulses during the ADC busy condition were rejected by the linear
gate. The standard LED pulse could pass the linear gate using its the own trigger. The
LED trigger also opened the linear gate, and the standard pulse was fed back to the gain
stabilizer through the linear gate stretcher.

The bin gate signal gated all discriminators and, thus, protected succeeding circuits.
Details concerning the modules used in the present study and the conditions are listed in

Table 3.4
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Table 3.4: Detector system modules and typical conditions

Modules Type Setting conditions
Photomultiplier Hamamatsu R329  (B’,B) H.V. 2500V
90Y output (A%
Hamamatsu R329 (C) H.V. 2500V
Y output 3V
Hamamatsu R1250  (E) H.V. 1700V
(modified breeder) - 90Y output  100mV
Discriminator ORTEC QFD934 (B level  -30mv
width Tns
ORTEC QFD934 (B) level  -30mv
width 10ns
ORTEC QFD934 (E) level  -30mv
width 17ns
ORTEC QFD934 (C) level  -30mv
width 30ns
Pile-up gate ORTEC GP100NL width 470ns
ADC busy OULNST7973 width 5us
Linear Gate ORTEC LG101NL width 170ns
Spectroscopy Amp. | ORTEC SSA452 gain 30
shaping time 0.5us
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3.3.3 Beta-ray energy spectra of 2B and 2N

The beta-ray energy spectrum is described by Eq. (2.51). When nuclei have no polarization

and no alignment, Eq. (2.51) can be simplified as follows:
W (E) = const. x pE(Eo — E)? x F(+Z, E){1 + R(E, Eo)}(1 ¥ —g-aE). (3.9)

Since we observed the beta-ray kinetic energy, Eq. (3.9) can be transformed using the

kinetic energy (Ey) as

W(E) = const. X Ex(Ey +2)%(Ey + 1)(Ero — Ej)?

XF(£Z, Ex)(1 + R(Ex, Exo)){1 ¥ -i—a(Ek + 1)}, (3.10)
with
Ey = (E —me)/m.. (3.11)

The E counters have a sufficient volume to stop energetic beta rays from 2B and 2N,
i.€., 13.4 and 16.3 MeV for 2B and 2N, respectively. When a beta ray is injected into
the plastic scintillator and does not escape, it loses energy mainly through an electric
excitation process. A part of this energy is lost by the bremsstrahlung process, large
part of the bremsstrahlung escapes from the scintillator with part of the electron energy.
Therefore, the energy spectrum of monochromatic beta rays has low-energy tail, as shown
in Fig.(3.20), in addition to a peak equal to the incident kinetic energy. The low-energy
tail can be approximated by an exponential function.

Part of the incident beta rays escape from the plastic scintillator by backscattering

from the entrance surface. The escaped beta rays also have the same effect on the energy
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deposition with the bremsstrahlung. When the escape process can be explained by the
backscattering, the tail can be approximated by an exponential function.
The spectrum of the energy deposited in the counter for monochromatic beta rays

is therefore described as
[z, Ey) = (1 =r)é(z — E) +r - Y(z — E}) exp{\(z — E)}. (3.12)

Here, Ej is the incident kinetic energy, r the ratio of the low-energy tail, and A the dumping
factor of the tail; 6(x) is a delta function and Y(z) is a step function.
The response function of the counter is thus given by folding with an error function

which is spread by the statistical fluctuation, as follows:

S E) = [ 0,5 < exp{- =0y (3.13)

The theoretical response function (S(z, E)) contains three parameters (r, A, and o). The
width (o) depends on the efficiencies of light emission in the scintillator, photo-electron
emission at the photo cathode, or secondary electron reproduction at the dynode in the
photomultiplier. In the present analysis, ¢ is determined from fitting spectrum. In a
previous experiment, the actual response function was measured using monochromatic
beta rays created by analyzing the beta rays emitted from beta-emitting nuclei, as shown

in Fig.(3.21). From the results, the parameters of the response function are known to be
A=0411/MeV (3.14)
and

r=0.17. (3.15)
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Typical beta-ray energy spectra are shown in Fig.(3.22). The solid line is the the-
oretical shape which best fits the data; it includes the counter response function and the
effects of beta-ray scattering. The energy scale of the beta-ray energy spectrum was deter-

mined from the analysis of several beta emitters with a variety of end point energies.

Energy calibration and linearity

In the present analysis of the beta-ray energy spectra, determination of the energy scale is
most important, since the observed ratio of the spectrum with positive alignment to the
spectrum with negative alignment is given as the product of the alignment coefficient, the
degree of alignment and the beta-ray energy. Therefore, the energy calibration directly
affected the magnitude of the alignment coefficient. Most of the other effects could be can-
celed by comparing the data with a positive alignment and that with a negative alignment,
measured under the same conditions, except for their alignment. In order to determine
the absolute energies of the beta rays emitted from a nucleus in the present experiment,
several other beta emitters were produced and measured at the same time.

Since the observed energy spectrum was analyzed using the theoretical functions
in Egs. (4.71) and (4.76), at least four unknown parameters (the pulse height at the
end point of beta ray spectrum, the pulse height at the energy equal zero, the dispersion
of statistical fraction, and the normalization constant) were determined. The zero energy,
dispersion, and normalization constant are related to each other. However, the pulse height
of the beta rays with end-point energies was almost independent of the other parameters.
Moreover, the pulse height had only a small dependence on beta-ray scattering. Because,

the scattering near the end point mainly caused a simple reduction of spectrum due to the
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scattering out.

The spectrum of 2B required an energy calibration below 13.4 MeV; for 2N it
was below 16.3 MeV. The beta emitters for the calibration were those for which their end
points were near to the centroid of the spectrum of 2B beta decay. In addition to these,
in order to consider the difference in the electron and positron, the 2B and %°F electron
emitters were used for 12B. The 2N, 'Sc and "F positron emitters were used for 2N. As
already described, the targets were evaporated on the end part of the target backing. In
order to switch the beam position from the main target (*!B or B) to this part for a
correlation, only the timing of the beam pulsing was readjusted. The energy calibration
was thus perfectly carried out without changing the other conditions.

As energy scaling was obtained, the scale linearity was also checked. In the present
experiment, by using the special target system for producing **N, 8B, #Sc, 2P, and '"F,
the end point energies could be measured in order to check the linearity of the positron
detection. For this purpose, the rotating target system carried five different targets (‘°B,
Li"F, #Ca'®0, and *%Si); *H and ®He were used as incident beams. Fig.(3.23) shows the
pulse height at the end point of beta-ray spectra. The good linearity was maintained over
the energy region from 3 to 16 MeV.

For electron decay, B, ?°F, and ®°Y were used. The target was the same as that
used in the main run; the *Sr source was used as °°Y . However, since Y couldn’t be set
under the same conditions as the other short-lived emitters, a sufficient check could not be

obtained.
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Figure 3.20: The upper figure is the energy deposition of monochromatic beta rays in the
plastic scintillator. The lower figure is the responce [unction for the monochromatic energy

of the beta rays.

86



300 ' ‘ ' .

Counts

100

+

/

@‘%M!_.-mfmv,m*‘f“**‘z* C W,
0 20 40 60 80 100
Channel Number

Figure 3.21: Typical observed energy spectrum for monochromatic beta rays. The beta-ray
energy was 7 MeV. The beta rays were produced from the decay of 2N, and separated by

the analyzer magnet.
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Chapter 4
Data Analysis

4.1 Principle of Analysis

From Eq. (2.51) the beta-ray energy spectrum (N(E)) at § = 0 with finite P and A is

described using
N(E,P,A) = No[l F P(p/E)(1+ azE) + Aoz E]S(E). (4.1)

Here, S(E) is the spectral shape function and N is the normalization factor. The subscript
of coefficient o corresponds to the sign of the f¥-decays. If the spectrum (V) is observed
for both the positive alignment +A and the negative alignment — A with zero polarization,
Ny and S(E) cancel each other in ratio R(E) of N(E,0,4+A) to N(E,0,—A),

_ N(E,0,+A4) 1+ AczE

R(E) = = . 4.
() N(E,0,—A) 11— AazE (42)
The product az is thus given by
1 R(E)—-1
E=— .
T UARE) 11 (4:3)
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Therefore, if N4y and N(_,4 are measured as functions of F, oz can be determined.

In actual experiments the residual polarizations (Py) were small, but finite, and
the absolute value of the positive alignment (Ay) was not equal to that of the negative
alignment (A_). The exact expression of R(E) is therefore given by

N(E,P+,A+) . 1:F P+(1 + a;FE) + A+a;FE

= = . 4.4
R(E) N(E,P_,A_) 1FP.(1+agE)+A_azFE (44)

As a result, the energy-dependent alignment-correlation term (o E) is given by
orF = 1F P (1+azE)]—RE)1FP-(1 -I—oz¢E)]. (4.5)

R(E)A_ - Ay
The residual polarizations (P, and P_) are not usually exactly zero, due to the imperfect
spin control in converting the polarization into a large alignment, and, by the minority’s
sites of the 1?B and 12N in the Mg catcher crystal. P, and P_ have the same sequence of spin
control, and only their achievements of AFP(SQ transition) are different from each other.
Especially, according to the control of the sub populations, both residual polarizations are

the same. Thus, in the present experiment, P, and P_ satisfy the following conditions:
P, ~P_ (4.6)
and
|AP| < 0.01, (AP=P, — P.). (4.7)
Since a is at most 0.3%, the az E term in the polarization correlation term is negligible,
|APaszE| <5 x 1074 (4.8)

Using these approximations, Eq.(4.5) can be described by a simple use of these approxi-
mations,
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1 — R(E) ¥ AP
R(EYA_ — A,

azE = (4.9)

Eq.(4.9) still includes a small effect caused by the residual polarization. In order to cancel
this effect, R(E) was observed at § = 7 at the same time. Ratios R,(E) and Ry(E) are

for = 0 and 6 = 7, respectively; az E can thus be written as

_ 1 —-R,(E)FAP
az B = FEA — A (4.10)
and
1 — Ry(E) £ AP
= : 11
ol = F A — A, (4.11)

Since the polarization term has opposite signs for R, and R4(E), while the alignment term
has the same sign, the effect of the residual polarization (P) is canceled in the simple sum

of these equations, as follows:

1| 1-Ru(E) 1 — Ry(E)
= RA -4, T RBA — AL | (4.12)

Noting that I,(F) and Ry(E) are close to 1, i.e., (R(E) — 1) < 2%, Eq.(4.12) is

almost the same as

ag = %ﬁ(l — Ru(E)+ 1 — Ry(F)). (4.13)
with

Thus, az E does not strongly depend on the absolute value of A, and A_, but depends on

the difference.
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From Eq.(4.13), we can obtain the alignment correlation coefficient () as a func-
tion of the beta-ray energy. To use the energy-dependent coeflicients (Bo(F) and By(E))

in Eq.(2.64), the alignment correlation term [%(%] can be described as follows:

93



4.2 Determination of the Alignment

From the requirement given in Eq.(4.12), we must determine the degree of alignment in the
experiment. Since the alignment term is very small, and is a value that must be determined
experimentally, this term cannot be used for the determination. In our experiment, large
alignments were produced from the large initial polarization by spin manipulation. Since
the polarization term is sufficiently large to be easily observed, the degree of alignment can

be easily deduced from the polarization.

4.2.1. Observation of polarization

From Eq.(4.1), the ratio of the beta-ray counts (U) for the upside detector at § = 0 to the

D for the downside detector at 8 = 7 can be described as

(H) _ [9{1 £ P(p/EY1 + asFE)+ Aar E}S(E)dE (4.16)
D J9:{1 £ P(p/EY1+ arFE)+ AarE '
Where the g’s are the geometrical factor of the detector system. Since, the g’s most likely
do not depend on the beta-ray energy, the ratio (g) of the g, to g is constant. If g is

known, P can be derived. Eq.(4.16) becomes

U 1+ Pe
— = g—_" 4.1
(D>(E) TFpe (4.17)

where

L _<(p/B)1+aB)>
1+ <A E>

(4.18)

Here, the notation < > indicates an average over the analysis region. P thus becomes

U
P=x (é) <j)_:f_ (4.19)
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Since |1 — ¢| < 1072 in the present experiments, (1 — €) is negligible for measurements of

az. The polarization is thus given by

59
P=38— (4.20)
5+
Determination of the geometrical asymmetry (g)
When the DQ transition between magnetic substates m = +1 and m = —1 is obtained, the

initial polarization (P) is converted to —P (see section 3.2.1). The observed asymmetry is
described as follows:

(E) 1+ P
D). ~ 91-h

Uy _ 1-P
(5). = 77 (2

Uy . o LUANE .
Here, (6) is the initial asymmetry and (—[-)—) is the asymmetry for a spin ensemble
+

with a conversion of m = +1 & m = —1. P can be thus reduced, as follows:
U U U U
[<B>+ "9} [(5)_ +g] = [<6>++9} {(B)_ —9]- (4.22)
Further, g is given as a solution of the following quadratic equation:

S CRONR OO =

Actually, the conversion of m = 4+1 < m = —1 was not perfect. The achievement

of the DQ transition is defined as
P' = oP,. (4.24)

To use this definition, Eq.(4.21) is described as follows:

(U) 1+ 5
— — g
+

D 1- P,
U . 1+O[P0
(D>_ - TR (4.25)
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and the quadratic equation of ¢ is
+516). - 6] [5), 7 ()] -
g+[a~1{D+ WK D+>< o) = 0. (4.26)

Achievement of a double quantum transition

The achievement of spin control is usually defined by the degree of the population change of
the relevant substates. Especially, in the case of spin I = 1, the double quantum transition
(DQ) between the substates, m = +1 « —1, exchanges only the populations (a1 and

a_1). The achievement of DQ is therefore defined by the polarization P,

Py
= — 4.2
“=P (4.27)
with
P= ayy —a—q. (428)

When spin control is perfectly obtained, « = —1; Figure (3.13) shows the sequence for
obtaining this situation.

In this sequence, the up-down ratios are given by

1+ P
Ry = I
14+ aP
= gl—aP’
and
14 a?P
RQ—-gm, (429)

where, Ry, R, and R, can be experimentally measured, so that P, ¢, and « can be deter-

mined.
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Achievement of a single quantum transition

The determination method for the AFP achievement of single quantum transitions (SQ) is
different from that for DQ. However, its determination was necessary in order to find the
degree of the alignment. The AFP of SQ transitions exchanges the populations between
Al=1,m =41 & 0 or m = —1 « 0. The observable polarization is described using the
initial populations (@) and final polarization (a’), where a,q,a0 and a_; are defined as the

populations of the magnetic substates (m = +1,0,—1), as follows:

ay1+ag+a_ =1 (4.30)
Py=ay;—a_y (4.31)
and
P = dy—aq
= [nao+ (1 =n)ay] —a. (4.32)

Here, F; is the initial polarization and P, is the polarization after the SQ’s AFP between
m = +1 < 0. The achieved 7 is the ratio of the exchanged population.

After controlling the SQ’s AFP twice, the polarization is given by
P, = afl'_l —a_
= [m{nay+ (1 —nao} + (1 — n){nao + (1 = n)as}] — a1 (4.33)

The difference of Eqs. (4.31) and (4.32) reduce the uncontrolled population (a_;); the

difference of Eq. (4.31) and (4.33) is also

P1 - PO = —7]((7,+1 - ao) (434)
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and
Py — Py =2n(n — 1)(as1 — ao). (4.35)

The most important condition in the above equation is that even if the observed P includes
some unknown polarization due to the existence of the minority, P is canceled in Eqs. (4.34)
and (4.35). Therefore, the achievement( 1) can be acquired from Eqgs. (4.34) and (4.35)

without any effect from the minority group,

n=1-—- (4.36)

2P — P

4.2.2 Determination of the alignment from the observed polar-
ization

Here, a1, ag,a_; are defined as the populations of the magnetic substates: m = +1,0, —1.
In the case of nuclei with spin I = 1, the polarization (P) and alignment (A) are given by

these magnetic substate population (a4, ap and a_) respectively, as follows:
P=ay1—a4 (4.37)
and
A=1—3ap. (4.38)

P can be easily observed by detecting the asymmetry of the beta rays, while A cannot
be measured directly. Measurements of the asymmetry change due to the polarization are
necessary for a determination of the degree of alignment.

For this purpose, in the course of the present experiment three beta-ray count sec-
tions were used like Fig. (3.13). In section II, P = 0 and A = +A were attained for
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observations of the alignment correlation. Spin manipulation by the RF for the exchange
of ag and a;q was applied between each adjacent section. RF[_j; converted the polarization
into alignment, and RFy_ 1 reconverted the alignment back to polarization.

The observed polarization at each sections is described as

Pi=a; —a_y, (4.39)

Pi=ay1—ay=ap—{nao+ (1 —n)a_,} (4.40)
and

Pri=a41 —a’y =ap — {29(1 — n)ao + (20> — 27 + Da_, }. (4.41)

The alignment (Ap) is given by

An =1-3aq, 1 —3{na_1+ (1 —n)ao}

= (1 =3a-1) —3(1 = n)(ao — a_y). (4.42)

In order to determine a_; and ao from the observed P, Egs. (4.39) and (4.40) were trans-

formed as follows:

Pu = (ap1 —a0) + (1 —n)(ao — a-1), (4.43)
B = %{(GH + ao) — 2a_1 + (ay1 — ao)}

= %{(1 —3a_1) + (Pu— (1 —n)(ao — a-1)}, (4.44)

and

1—-3a_, =2P - P+ (1 — n)(ao — a_l). (4.45)
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From Eqgs. (4.43) and (4.44), Ay is described by P and 7 only:

AH = 2PI - PH - 2(1 — 7])((10 — a_l)
= 2P—Pu—2(1—n)(P+ao— as1)
= 2P — Pu+ 2(1 —n)(ao — a41) (4.46)

Under the experimental condition that n ~ 1 and ag ~ a4i, since the third term of Eq.

(4.46) can be neglected,
AH ~ 27]PI — PH. (447)
Therefore, A is also given by the polarizations at sections II and III:
2
AH = ;PIII — PH. (448)

Aq of Eq. (4.47) is the degree of the initial alignment at section II; Ay of Eq. (4.48) is the
final one. If the populations don’t change in section II, they are all equal. However, since
the alignment and polarization are decreased by relaxation, the final A becomes smaller

than the initial value. This relaxation effect was taken into account in determining P, i.e.,

A.

4.2.3 Effect of the spin-lattice relaxation time

To account for the effective alignment in the beta-ray counting time sections, both the
relaxation time for the alignment and that for polarization must be considered. The align-
1

ment with the relaxation time (7 = §) is described as

A(t) = Aje™ 4t (4.49)
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Here, A; is the initial alignment; A4 is the relaxation time of the alignment. The decay of

nuclei is also described in terms of the lifetime () as follows:
N(t) = Nge™e, (4.50)

From Eqgs. (4.49) and (4.50), the effective alignment (Acss) at ¢ = 0 ~ t. is described as

follows:

Acss =

te
/ Ae Mate Mgy
_ Jo

T
/ e~ dt
0

—L1 (A A.p—ratcp—Atc
/\A+/\4(A’ A;eMlee )

L1 —erte)

(4.51)

(4.52)

From Eqs. (4.47) and (4.48), the initial and final alignments of the count section can be

observed. From the definition of A4,

In(4%)
Ay = tAf (4.53)
with
Ay = Ajerate (4.54)

The effective alignment can therefore be determined in terms of only the observable A as

by A; — Afe_)“tc

Aegs =
o mE /e +r 1-e

(4.55)
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4.3 Corrections and Errors

The alignment correlation coefficients were measured by observing the beta-ray energy
spectra and by determining the alignment using the methods discussed in section 4.2.2.
However, corrections due to several causes are necessary for the observed coefficient.

In the present work, the following corrections were considered: the solid angle of the
beta-ray counters, the beta-decay branches to the excited states, the response function for
the beta-ray counters, the beta-ray scattering, the background beta rays, (p/F) and the
stability of the incident beam.

These corrections can be classified in terms of whether or not they depend on the
beta-ray energy. The energy-independent corrections are listed in Table 4.1 and the total
correction factors, including energy-dependent corrections, are listed in Table 4.2. In these

descriptions, the correction factor (C) is defined as
Oltrue = C'aobserved~ (456)

The systematic error (d) is defined as

Aatrue = \/(Aaobserved)2 + (daobserved)zt (457)
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Table 4.1: Energy-independent correction factors.

for *B for 12N
correction factor | error factor | correction factor | error factor
Solid angle 1.031 0.002 1.031 0.002
Decay branch 0.988 0.001 0.976 0.001
Relaxation of P and A 0.999 0.001 0.997 0.002
Background noise 1 0 - 0.978 0.01
Responce function 1 0.03 1 0.03
oy 1 0 0.975 0.005
(p/E) 1 0 1 0
Energy independence 1.018 0.030 0.956 0.034
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Table 4.2: Energy-dependent correction factors. The correction factors include the energy-

independent correction factors given in Table (4.1).

E (MeV) | 2B | 12N

5.0 0.945 | 0.874

6.0 0.981 | 0.922

7.0 1.002 | 0.950

8.0 1.016 | 0.966

9.0 1.031 | 0.975

10.0 1.050 | 0.979

11.0 1.074 | 0.983

12.0 1.108 | 0.987

13.0 1.152 | 0.998

14.0 - 1.012
15.0 - 1.039
16.0 - 1.074
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4.3.1 Correction for the finite solid angle of the beta-ray detec-
tors

The beta-ray counters used in the present experiment had a finite solid angle, as shown in
Figure (3.17). The degree of the observed polarization or alignment was corrected for the

solid angle. The degree of polarization is thus given as

1
P, = E/QPPl(cosﬂ)dQ

P b
= ﬁ/o cos 0(2m sin 0d6). (4.58)
Here, 20, is the subtending angle of the telescope, which corresponds to the solid angle
) =27(1 — cosby). (4.59)

Thus, Eq. (4.58) is calculated to be
Pcos?fy—1
2 cosfy—1

= %P(l + cos by). (4.60)

Pobs =

Similarly, the degree of alignment is corrected by using the following equation:

1
Ame = 5 /Q APy (cos 8)dQ)

Aol .
= 5/0 5(3003 6 — 1)(2 sin 0d0)

A cos by — cos® b,
2 1 —cosf

= %A cos Op(1 + cos by). (4.61)

Eqs. (4.60) and (4.61) clearly show that the value averaged over a finite solid angle depends

differently on the subtending angle between the alignment and polarization terms. In actual
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experiments, the degree of alignment was deduced from the polarization change between
the sections before and after the conversion. The observed alignment must therefore be
corrected using Eq. (4.60). On the other hand, the observed alignment correlation term
must be corrected using Eq. (4.61). The net correction factor can therefore be calculated

as

(AaE)obs)
A;bs

Aobs ak
P,
A=

(aE)obs =

= (aF)cosby. (4.62)

By substituting 6 using the actual angle (14 &£ 0.5°), the correction factor (Cg) for a finite

counter solid angle is given by

1
Cqo= = 1.031 £+ 0.002. (4.63)

cos By
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4.3.2 Correction for beta-decay branches

The beta-decay branches of B and 2N to the excited states of 2C are shown in Fig. (1.2).
Since each branch has a different angular distribution, and the actual beta-ray spectrum is
a mixture of these branches, the polarization and alignment terms must also be corrected
for these decay branches.

The beta-ray angular distribution for each branch is given as follows:

For the ground state,

Wo(E,0) = CSo(E)[1 F P(p/E)(1 + azE)P1(cos0) + Aaz EPy(cos 0)]. (4.64)
For the first excited state £;=4.439 MeV,

Wi(E,8) = CSi(E)[1 + %P(p/E)(l + az F)P1(cos ) + -1}6Aa¢EP2(cos 6)). | (4.65)
For the second excitebd state £,=7.654 MeV,

Wo(E,0) = CSy(E)[1 F P(p/E)(1 + azE)Py(cos ) + Aaz EPa(cos 0)]. (4.66)

Where So(£), S1(£) and S2(E) are spectral shape functions which include their branching

ratios, the angular distribution to be observed is given by the following sum:

W(E,0) = CS(E)

F (1 - %?((EE))) P(p/E)(1+ az E)Py(cos )
+ (1 - 1255"2((5))> Aaz EPy(cos 6)], (4.67)
where
S(E) = So(E) + Si(E) + S2(E). (4.68)
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Therefore, the correction factor (C4g(F)) for the alignment term is given as

Car(E) =1 / (1 - 19_0§1_((E£))) : (4.69)

Since the polarization to be observed is reduced by a factor of %%lz%l, the observed coef-
ficient must be increased by this factor. Integrating over the energy region used for the
analysis, the correction factor (Cfy) through polarization is given as

3 [E2 S\(5)B

P =1 odB ST
BR 2 [B2 S(E)dE

(4.70)

The net correction factor (Cgg) is therefore the product C'{;R . C’gR, as summarized in Table

4.3.
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Table 4.3: Correction factors for the beta-decay branches.

E (MeV) | 2B 12y

Cdr Csr | Cr Chr

5 1.019 1.007 | 1.030 1.005

6 1.014 1.002 | 1.026 1.002

7 1.008 0.996 | 1.022 0.998

8 1.003 0.991 | 1.018 0.993

9 1.000 0.988 | 1.013 0.988

10 1.000 0.988 | 1.007 0.983

11 1.000 0.988 | 1.002 0.978

>12 1.000 0.988 [ 1.000 0.976

(CEr) = Jus” CE(E)dE = 0.988  (for ”B)
(CER) = [13° CER(E)AE = 0976 (for ?N)

Cer = C#g - (Cg)
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4.3.3 Correction for the response function of the beta-ray de-
tector

The observed beta-ray energy spectra are distorted from the true spectra due to the re-

sponse of the counter by
Ey
Wooo(E, A) = / W,(E', AR(E, E')dE', (4.71)
0

where R(E,E’) is the response function. The polarization term is neglected since the po-

larization is negligibly small. The energy spectrum (W(E,A)) is therefore given by
W(E,A) = S(E)(1+ AaFE), (4.72)
where S(E) is the spectral shape function. Using Eq. (4.72),

Eo
Wops(E,A) = /0 S(E")(1 + AaE"\R(E, E')dE'

Eo EO
_ / S(E')R(E, E')dE' + Aa / S(E"E'R(E, E')dE'
0 0

= S(E)1+ AaE=——), (4.73)

Crrs
where the correction factor (Crgs) and the new spectral shape (S’(E)) are given by

Ey
. (E)_E/O S(E")R(E, E')dE'

Eq (474)
/0 S(E')E'R(E, E')dE'

and
S(E) = /0 " S(E)R(E, B (4.75)

From the observed spectra from monochromatic beta rays, the response function is given

as [31]
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1 (B'-p)? :
R(E,B') = r\[smoe” "5 4 (1 - r)[;—_—f;;ge“E‘E Y (E,E'), (4.76)

with
1 ESFE
Y(E,E') = (4.77)
0 E>F
Parameters r and A were determined to be r = 0.18 and A = 0.21 from the same observa-
tions. The o parameter was determined to be o = 0.3 from a fitting of the actual spectrum.
By neglecting the second-order terms, the correction factor (Crps(E)) was calculated using

a simplified spectral shape function, S(E) = E*(Ey — E)?. The results are given in Table

4.4.
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Table 4.4: Correction factor (Crgs) for the response function of the beta-ray detector.

E (MeV)| 2B | 2N

5 0.911 | 0.862

6 0.951 | 0.913

7 0.977 | 0.945

8 0.996 [ 0.967

9 1.013 | 0.983

10 1.031 | 0.997

11 1.055 | 1.009

12 1.088 | 1.022

13 1.132 | 1.037

14 - 1.058
15 - 1.086
16 - 1.122
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4.3.4 Error due to beta-ray scattering

Beta-ray scattering distorts the observed energy spectra from that of the theoretical shapes.
This effect, however, can be canceled in the first order, since the ratio of the spectra with a
positive alignment (A, ) to that of the negative alignment (A_). Moreover, in the present
experiment, beta-ray scattering was reduced as much as possible. The anti-coincidence
counteré rejected scattered beta rays from the iron-magnet yokes as well as those from the
plastic chamber, which contained only the low-Z material; a very small scattering effect
was therefore expected. Even though it was small, we estimated the effect on the alignment
correlation term due to this beta-ray scattering.

Two effects concerning the distortion of the original beta-ray spectra by beta-ray
scattering were considered: that due to the ’scattered out’ beta-rays (the original shape
was distorted by escaping of beta rays that left the solid angle of the detectors), and that
due to 'scattered in’ beta rays (those scattered by materials close to the catcher which were
emitted in the central direction § = 0). In addition, ’scattered in’ beta rays deposited their
energy by scattering at large angles; information concerning the original energy was lost.

The ’scattered out’ effect modifies the original energy spectrum (W,(F, A)) accord-

ing to
W(E,A) = W,(E, A)Sou(E), (4.78)
where S,y is the correction factor; it depends on only the beta-ray energy as, for example,
Sout(E) =1 — aexp{—bE}. (4.79)
Therefore, although in the ratio of W,(E, A+) to W,(FE, A_) this effect can be canceled, the
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response function (R'(E, E')) must include S,y instead of the original response function

(R(E, E'")), as follows:
R(E,E") = R(E,E")Sou(E). (4.80)

On the other hand, since the ’scattered in’ effect includes spectra with the other

direction # # 0, so that this effect modifies W,(E, P, A) according to
E T
WI(E,P,A) = W,(E, P,A)S.w(E) +/ 0/ W', P, A,0)Sw(E,E',60)d0dE", (4.81)
o Jo

where Sin(£, E',0) is the observed spectrum of the ’scattered in’ beta rays emitted with
the energy of E and the § direction. By combing Eq. (4.81) with Eq. (4.72), the spectrum

to be observed can be written as

Ey
Woss( £, P, A) = [ [Wo(B", P, A)Sou(E")
0

Ey
+ / / Wo(E', P, A)Su(E', B",0)d0dE'|R(E, E")AE".  (4.82)

We estimated the ’scatter in’ effect by a computer simulation using the Monte Carlo
method. As a result, in the present experimental setup, the effect of ’scatter in’ was

negligible.

4.3.5 Correction for the background beta rays

In the present experiment, the beta-ray yield was sufficiently high (10% cps for 2B, 100
cps for 12N}, and the electrical noise was negligible (< 10~2 cps) compared to true events.
The effect of background beta rays was thus very small. However, we found the mixture
of (HD)* beam in the *He beam from the Van de Graaff accelerator. (HD)* beam was
equivalent D* beam in the nuclear reaction. So that, B were produced in the experiment
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for '2N. This mixture caused by the leak of ionization gas in the ion source of the Van de
Graaff. Tt is important that the spin of these 1>B was not manipulated, since they had
different resonance frequencies for the NMR than 2N. We can thus consider the admixture
of 2B as the usual background. At first, I explain the effects due to the usual background

noises except for the beam mixture, and then explain the effect of the beam admixture.

Background noise

Background beta rays have two origins: one is beta rays from other beta emitters and/or
cosmic rays; the other is beta rays from the 2B or 12N stopped at locations other than the
catcher. The fraction of the other beta emitters was observed using the time spectra under
the same experimental conditions. Since the end-point energies of 2B and 2N are very
large, there were no beta-ray counts from other beta emitters in the energy region used for
the analysis (above 5 MeV). Also, the cosmic-ray background was negligible (< 1072 cps),
since cosmic rays can be canceled by the anti-coincidence of the opposite-side counter.

The beta rays that come from outside of the catcher modify the original spectrum

(Wo(E, P, A)) by f(E), the spectrum of the outer beta rays,
Wi(E, P, A) = W,(E, P, A) + f(E). ' (1.83)

Since f(E) depends only on the beta-ray energy, using Eq. (2.67), Eq. (4.83) can be

transformed as follows:

WIE.PA) = w(B)I+ PR + AT+ 1(5)
= {w(B) + f(E))
1+ —2E)__pBlE)  wlB) BuB) gy



The observed alignment correlation term is therefore modified as

w(E) 4 Ba(B)
[32(E)} _ B ® B
BO(E) obs Aobs

(4.85)

It is noted here that we obtained the degree of alignment from the degree of observed
polarization, where the degree of polarization was extracted from the asymmetry of the

integrated spectral shape. The observed polarization can therefore be described as

P Jw(E)dE
" J{w(B) + f(B)}E

(4.86)

Thus, the observed alignment correlation term is finally given as
w(E) By (E)
[BZ(E)] _ @@ A5E
Bo(E)] .. w(E)dE
’ [Ca®)+ 1 BYE
w(E)
W(B)+1 () Bz(E)]

w(E)dE BO (E)
{w(B)+f(E)}E

= a2, (4.87

When the background ratio is small, the correction factor (Chg) can be approximated to

the first order as

f(E) [Jf(E)E
w(E)  [w(E)dE

Chg ~ 1+ (4.88)

In order to estimate the beta rays from outside of the catcher we observed the
beta-ray spectra without using a catcher. The detector setup shown in Fig. (3.17) cannot
completely reject the ’outer beta rays’ and, thus, counted such beta rays. This result gave
the upper limit of the admixture of such beta rays, since the main part of the 2B or
2N nuclei which was supposed to be stopped by the catcher also scattered out under this
condition. From the observed energy spectra of the background beta rays, we obtained the
ratio of the ’outer beta rays’ to the true beta rays as
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JHE)AE o, (4.89)

and

% < 0.10. (4.90)

S

This value is negligible for the correction. Moreover, we observed the alignment correlation
terms with the other detector configuration in order to reject such background beta rays.
For the rejection of such ’outer beta rays’, we added an additional counter close to the
catcher. When small counters were placed just outside of the vacuum window shown in
Fig. (3.1), such outside beta rays disappeared almost completely. On the contrary, how-
ever, beta-ray scattering was increased. We therefore measured the alignment-correlation
coefficients under both of these conditions and compared them with each other. As a result,

the two coefficients agreed within the error.

The admixture of ?’B in the 12N

The effect of the beam admixture can be considered as the same method as the other
background noise. The spectrum of 2B was well known, thus, the correction was very
accurate. For the correction, the amplitude of the admixture was needed. We observed
this amplitude from the measurement of the ratio of the ®N yield induced D+ beam to
the yield induced (HD)* beam. So that, the beam admixture was obtained about 0.1%.
In the setup for the >N experiment, the ratio of the yield of 1*B to the yield of 12N was
determined about 2%. This admixture was taken into account in the correction. Table

(4.5) shows the correction factor due to the beam admixture.
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Table 4.5: Correction factor (Chg) for the background noise due to the beam admixture.

E (MeV) | B | N

Ct, | Crg

5 1.029 | 1.007

6 1.028 | 1.006

7 1.027 | 1.005

8 1.026 | 1.004

9 1.024 | 1.002

10 1.020 | 0.998

11 1.016 | 0.994

12 1.010 | 0.988

13 1.006 | 0.984

>14 1.000 | 0.978

(CE) = [13° CL(B)dE =0.978  (for 12N)

Chg = Cty - (Cy)
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4.3.6 Error due to the gain instability of pulse amplification

In the present experiment the total gain of the detector systems and amplifier was stabilized
by a feedback loop using a standard light pulse from a light-emitting diode (LED). By using
this stabilizer system, the pulse height for a standard light pulse was kept constant. The
actual gain of the detector system was monitored by the center of gravity of the spectra for
actual beta rays. As shown in Fig. (3.18), the stability of the center of gravity was better

than £+0.5%, which is negligible for the coeflicients.
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Chapter 5

Results and Discussion

5.1 Extraction of Alignment-Correlation Coefficients

5.1.1 Alignment-correlation terms [_i_lgz(g)]

The alignment correlation terms [%(%J can be extracted as a function of the beta-ray
energy from the ratio R(F) of the beta-ray spectrum with alignment A, to the spectrum
with A_, as shown in Eq. (4.15) of chapter 4. It is therefore necessary to obtain the ratio
of beta-ray counts in each energy bin. In the present analysis, the spectra from individual
runs were summed up after adjusting the beta-ray energy-scale by an individual energy
calibration for each run.

From the analysis, the alignment correlation terms [g—ﬁ%] for ?B and 2N were
obtained as functions of the beta-ray energy, as shown in Tables 5.1 and 5.2. The raw data

(called "uncorrected’) in the second column of the tables are the sums of data from all of

the runs. The same analysis method for both energy calibration and the determination of
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the degree of alignment was used. The absolute beta-ray energy was calibrated for each
run from the end points of the beta-ray spectra of 1*B and °F (for 12B), or of 12N, 'S¢ and
I"F (for 2N), as described in chapter 3. The total gain of the detector system was quite
stable, as shown in Fig. 3.18. The degree of alignment was determined using data from
the same energy region as that used for the analysis of the alignment-correlation terms.

The achievement of spin-ensemble manipulation was also stable during each run. We could

By (E

Bl E)] . The summed

therefore sum up all of the experimental alignment correlation terms, [
data were then corrected in each energy bin by using the correction factors given in Table

4.2. The ’corrected’ data are listed in the third column of Tables 5.1 and 5.2 and in Fig.

(5.1).

5.1.2 Definition of the alignment-correlation coefficients (o)

As was theoretically shown by Morita et al., the observed ag coefficients were almost
independent of the beta-ray energy. However, as was also theoretically shown by Koshigiri
et al., there was a slight energy dependence in the experimental coefficients, as shown in
Fig. (5.2). The experimental results must therefore be compared with the theoretical
prediction by using the same averaging procedure in the same energy range.

In the previous analysis, a_ and o, were individually determined from the ratio of
their spectra with the different energy region; the old coefficients were extracted from the

total gradient of [M} over the energy region F = E, ~ Ej,, as follows:

By (FE)
2] - (2]
— L1Bo(Ep o (B
“=""E.-E (5.1)

Although their definition was matched by a the theoretical calculation for a comparison,
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this method was not sufficiently accurate to consider the energy-dependent alignment-
correlation terms.

In the present analysis, the alignment correlation coefficients (a4 ) are defined as

being the average of the [%(%] ratio over the range of beta-ray energy under consideration,
28
oy = <_“Tﬁ_> (5.2)

This definition is equivalent to the least-square fitting of a straight line (azE) drawing
from the origin of the coordinate to the experiment [g%(%]. We chose the energy region
from 4.5 MeV to 13.5 MeV for both ?B and 2N, so that the amount of any correction
factor would be less than 15%, which is five-times larger than the present statistical errors.
Because the present uncertainty of the correction factors may reach 20% (relative), we used

the same energy region for both 2B and 2N for simplicity in any further analysis. The foras

values were thus determined to be as follows:
a_ = —0.0174 £ 0.0056 (%/MeV) (5.3)

and

fl

ay = —0.2774 £0.0086 (%/MeV). (5.4)

5.1.3 Sum and difference of o

In order to discuss concerning on the time component and second class current, it is nec-
essary to obtain the sum and difference of the coefficients. The sum and difference of the

coeflicients were extracted from the average of [M E]

Bo(E) and [M E] in the en-

128 By (E) 12N

ergy region. As a result, the sum and difference were determined in the energy region from
4.5 to 13.5 MeV as
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(om + ay) = —0.2948 £ 0.0107 (%/MeV)
and
(- —ay) = 0.2600 £ 0.0107 (%/MeV).

Before comparing the present data with the theoretical predictions, it is noted that

the present a4 coefficients were derived from the absolute inclination of the alignment

correlation term [%%1], i.e. the average <EJ§(% E> So, the predicted values should be

also derived from the same averaging method. This is because the theoretical [%(%] has
also a second-power term of beta-ray energy Wifh a coefficient of about -0.0025 %/MeV?
for both ?B and '?N besides the linear term of beta-ray energy. Since the second power
term is almost the same for 2B and 2N, this term is canceled in the difference of a_ and
ay. However, it is doubled in the sum (a_+ay ). Therefore, in this discussion, the sum of
the coeflicients was directly compared with the theoretical calculations instead of reducing

y value from the experimental sum. The theoretical sum in Fig. (5.6) is calculated from

the theoretical [gi (g)].
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Table 5.1: Alignment correlation term of >B as a function of the beta-ray energy

EMey) | 2B | 28 ()

uncorrected corrected
3] —0.0776 £ 0.1319 | —0.0735 + 0.1284
6 +0.0405 £ 0.1219 | 4+0.0399 £+ 0.1235
7 —0.0075 £ 0.1162 | —0.0076 £ 0.1206
8 —0.1557 £ 0.1158 | —0.1589 + 0.1218
9 —0.1155 £ 0.1210 | —0.1195 + 0.1287
10 —0.2360 + 0.1343 | —0.2487 4 0.1446
11 —0.3511 £ 0.1620 | —0.3786 + 0.1772
12 ~0.1963 + 0.2201 | —0.2183 £ 0.2465
13 —0.4657 + 0.3617 | —0.5387 4+ 0.4195

Coefficient
a_ (%/MeV) | —0.0174 + 0.0056
S 5]
The coefficient a_ is defined as the mean of ~——%-122
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Table 5.2: Alignment correlation term of >N as a function of the beta-ray energy

E (MeV)

By (E)

Bo(E)

(%)

uncorrected

corrected

10

11

12

13

14

15

16

—1.4321 £ 0.2287
—1.6315 4+ 0.2122
—1.8870 £ 0.2002
—2.0524 £ 0.1943
—2.4928 + 0.1933
—2.9239 £+ 0.1992
—3.2284 £ 0.2128
—3.4991 + 0.2364
—3.9315 £ 0.2771
.—4.6398 + 0.3450
—5.9478 £0.4712

—3.5464 4 0.7341

—1.2539 £ 0.2338
—1.5065 £ 0.2192
—1.7949 £+ 0.2101
—1.9873 £ 0.2062
—2.4346 £ 0.2107
—2.8685 £ 0.2222
—3.1780 £ 0.2389
—3.4612 £ 0.2641
—3.9324 £ 0.3071
—4,7056 £ 0.3786
—6.1929 £ 0.5119

—3.8150 £ 0.7438

Coefficient

oy (%/MeV)

—0.2774 £ 0.0086

The coefficient o, is defined as the mean of

E
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Figure 5.1: Alignment correlation terms [B4E)] for 12B and !2N. The closed marks are used
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in the present analysis. The solid lines are the theorctical predictions by Koshigiri, et al.

27, 33].
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Table 5.3: Difference and sum of the alignment correlation terms of 2B and 2N.

£ 08 | (8]~ (B 9 | g+ (B, 00
5 +1.2912 1 0.2504 —1.3491 + 0.2504
6 +1.9811 £+ 0.2344 —1.7746 £+ 0.2344
7 +2.0596 £ 0.2255 —2.1962 £ 0.2255
8 +1.9502 + 0.2236 —2.2994 + 0.2236
9 +2.3893 + 0.2307 —2.7487 £+ 0.2307
10 +2.9068 + 0.2499 —3.3138 £ 0.2499
11 +2.6965 + 0.2891 —3.6033 £+ 0.2891
12 +3.7998 £+ 0.3735 —4.2211 £0.3735
13 +3.9447 + 0.5949 —5.0389 + 0.6289
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Figure 5.3: Sum and difference of the alignment correlation terms [%;i(%] as a function
of the beta-ray energy. The solid lines are the theoretical predictions by Koshigiri, ¢i al.

[27, 33).
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5.2 Time Component of the Axial Vector Current

5.2.1 Determination of the time component

The sums of the alignment correlation terms are shown as functions of the beta-ray energy
in Table 5.3. In Fig. (5.4), the present results are given with improved precision. Under
the rough approximation, the sum of the alignment correlation terms comprise only the
nuclear parameter (y), which is the ratio of the axial charge, i.e., the main term of the
time component of the axial vector current divided by the Gamow-Teller matrix element,

as given in Eq.(2.62):

(a_ + a+) = < [gj(g)L?B;:7 [%]12N>
B —%y. (5.5)

Therefore, the determination of (a_ + ey ) is equal to the determination of the time com-
ponent.

However, the actual sum of alignment-correlation terms includes a second-power
term of beta-ray energy. In order to extract the meson-exchange effect with accuracy, the
experimental value must be directly compared with the theoretical calculation as a function
of beta-ray energy. In the present analysis, the meson-exchange effect was extracted as a

discrepancy (6) from the theoretical IA calculation as follows:

[gz—%} T [?ZEQLA- ‘ (5.6)

6 was determined by using the least-square fitting over the 4.5 ~ 13.5 MeV energy region.
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5.2.2 Enhancement of the time component due to mesonic ef-
fects

Fig. (5.5) shows both the present experimental value and the theoretical predictions under
the impulse approximation with the Cohen-Kurath shell model by Koshigiri, et al. [10].

The solid line is the IA values and the dotted line is the values fitted by the least-square

method. The discrepancy § was determined as
8 = 0.36 + 0.05. (5.7)

This large enhancement (36 + 5%) clearly shows a effect of the meson-exchange currents

in the time component. The nuclear parameter y in the IA value is calculated as

y = 3.72. (5.8)
From Eq. (5.7), the experimental yey, is obtained as

Yexp = 0.06 £ 0.19. (5.9)

However, the nuclear parameter y has the theoretical model dependence, since y is divided
by the Gamow-Teller matrix element. The Gamow-Teller matrix element calculated from
the Cohen-Kurath shell model is inconsistent with the experimental value.

In the recent studies, Koshigiri, et al. predicted the new theoretical calculation,
which included the meson-exchange currents and the first- and higher-order core polariza-
tion, by using the Paris potential [27, 33]. Fig. (5.6) shows the present experimental value
and the most advanced theoretical predictions. 'IA (0Aw)’ means the value calculated by
using the Paris potential in the 0%iw shell model. ’TA (0%iw)’ means the full 0 + 2%w shell
model.
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As shown in Fig. (5.6) clearly, the present value is larger by about 56% than the
'TA (0hw)’ value. This large enhancement clearly shows a effect of the meson-exchange
currents in the time component. According to Koshigiri et al., the meson effect on the
(@ +ay) is as large as 36%. However, the core polarization effect, which includes the first
and higher order core polarization, reduced the enhancement by about —12%. As a result,
the most advanced theory predicts a total enhancement of about 24%, as graphically shown
as TA+MEC (0 4 2hw)’ value in Fig. (5.6).

The evident discrepancy (about 25%) between the experiment and theoretical value

still exists.
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Experimental and theoretical (CK model) values

or——mmmmmm 1

i
e
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Sum of [B2(E)/BO(E)]= (%/MeV)
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E MeV) . fit(CK)  5=0.36+0.04

Experiment

Iigure 5.5: Comparison of the present result and the theoretical value of the sum of
alignment-correlation terms. The solid line is the theoretical values calculated under the
impulse approximation with the Cohen-Kurath shell model [10]. The dotted line is the

fitted values by using the least-square method.
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cients (a_ + ay). The theoretical values were calculated from the recent studies [27, 33].
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5.3 Induced Tensor and Weak Magnetism Term

The difference of the alignment correlation term comprises a second-class current term and

a weak magnetism term like as Eq. (2.63).

(Oz__ — a+) = < [30]12]3; [30}12N>
4 f ,
RN (510

The difference was determined as follows:
(- — ;) =0.2600 £ 0.0107. (5.11)

A comparison of (- — c) in the previous and the present results is shown in Fig. (5.7).

5.3.1 Test of G-parity conservation

If the second-class current exists, conservation of the G-parity in weak nucleon currents is

violated. From Eq. (5.10), the second-class current term can be described as

fx = —§(a_ —ay)+a. (5.12)

ga 4
Here, g4 is the effective coupling constant reformed from the free nucleon coupling constant,

Ja:
ga = fa + Eofr1. (5.13)

The Eo fr term can be neglected, since it is less than 1% of fx; ga can thus be approximated

to be equal to fy. Therefore, Eq. (5.12) can be transformed as

=~ —Z(a. —ay) +a. (5.14)
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137



In order to determine the second-class current term from only the experimental data, the
weak magnetism term (a) is required; a was measured by observation of the beta-ray energy

spectral shape correction factors (az) in the decay of ?B and 12N

a= 13—6(a_ —ay). (5.15)

The Columbia group and Heidelberg group observed experimental data for ay, indepen-

dently. The weighted mean of their values was adopted as being the experimental value:

(a- —ay) = 0.86+£0.24 (%/MeV): Columbia group
= 1.09£0.09 (%/MeV): Heidelberg group
(a- —ay) = 1.062+0.084 (%/MeV). (5.16)
From Eq. (5.15)
¢ =0199£0.016 (%/MeV). (5.17)
From the present value
3

— Jlom — ay) = —0.1948 + 0.0073. (5.18)

fr was obtained as

T 00040018 (%/MeV)
fa
= 0.02£0.09 (x107*/m,c?) (5.19)
and
fr=(0.08£0.33) (fa/2M). (5.20)
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fa was determined by observing the neutron decay. In order to use this value, fr is given

as,
fa = —1.254 4 0.007 (5.21)
and
fr=—010+042 (1/2M). (5.22)
From the CVC theory, the weak magnetism term f&VC is given as,
wC=-3.706 (1/2M). (5.23)

The limitation of the second-class current term was obtained as the following ratio of fr

to f\?vvc:

Jr
7ovo = 0.03:+ 011, (5.24)

On the other hand, when the weak magnetism term a = 0.193, which is theoretical

calculation, was used, the second-class current term was obtained as

Jr
—ve = 0.01 + 0.05. (5.25)

w
However, this theoretical calculation does not include the meson-exchange effect.

In conclusion, the G-parity violating current is less than 11% of the weak magnetism
term with only experimental values, or less than 5% with the CVC theory. This is consistent
with the non-existence of the second-class current. The present result and the previous

results are given in Fig. (5.8).
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5.3.2 Test of CVC theory

If the second-class current does not exist (as discussed in section 5.3.1), the weak magnetism
term can be obtained from the present experimental result. Eq. (5.12) can be transformed

under the condition that f; = 0, as follows:

a= Z(a_ —ay), (5.26)

where a is obtained as
a = 0.1950 + 0.0080 (%/MeV). (5.27)

There are some methods for testing the CVC theory in an A=12 system, as follows:
measurement of the shape correction factors of the beta-ray energy spectra in *B and ?N;
measurement of the y-ray energy width of the M1 transition from the isobaric analogue
state of 12C; and the present work.

The weak magnetism term ’a’ obtained from each method was related to each other,

as follows:

3

a = E(a_ —ay) . (5.28)
3T, ft

= e 5.29
\} 4 aE3 ftor ot (5.29)

3
= Z(a_ —ay). (5.30)

In Eq. (5.28), az are the spectral shape-correction factors in 8% decays. In Eq. (5.29),
ft is the f1 value for the beta decay of *B and N; ft(+_o+) is the reduced transition
probability ft value of pure Fermi transitions (0% — 0%); « is the fine-structure constant;

E., is the gamma-ray energy; and I, is the energy width.
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The present result and these other tests’ results are given in Fig. (5.9). The dotted-
line indicates the theoretical values by Koshigiri, et al. [10]. The present result shows good

agreement with this calculation.
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Chapter 6

Conclusion

Alignment correlation coefficients o were determined to be o = —0.0174 + 0.0056 and
ar = —0.2774 £ 0.0086 for '?B and!?N, respectively. In the present experiment, the
reliability of the degree of alignments and the achievement of spin manipulation were
improved by the new knowledge on the hyperfine interaction of 2B and N in Mg. The
accuracy of the energy calibration was also improved by measuring beta-ray energy spectra
of several beta emitters.

In order to determine the meson-exchange enhancement of the time component of the
axial vector currents, the sum of C(;efﬁcients, which was proportional to the time component,
was compared with the theoretical calculations. The present experimental value (a_ +
ay) = —(0.2948 £ 0.0107) showed significant enhancement due to meson-exchange current
by about 36 £ 5% than the theoretical value under the impulse approximation with the
Cohen-Kurath shell model. Of cause, under this model the tensor force is too strong and
the calculated Gamow-Teller matrix element is inconsistent with the experimental value.

However, this discrepancy cannot explain without the evidence of the meson-exchange
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currents.

In the recent theoretical studies by Koshigiri et al., the meson-exchange current
enhances the time component by 36% and the core polarization reduces by 12%. They
calculated the theoretical values by using the Paris potential, which was the full 0 + 2%w
shell model included the higher-order core polarization and had good consistency between
the theoretical and experimental Gamow-Teller matrix element. This theoretical value is
larger by 9% than the impulse approximation value under the Cohen-Kurath shell model.
Therefore, the present value is still larger than the most advanced theoretical value by
about 25%. It can be concluded from these facts that the present experimental results of
the alignment-correlation coefficients definitely indicate the strong meson-exchange effect
in the time component of the weak nuclear axial vector currents.

The theoretical studies are still in progress for more accurate value. The value, which
included the meson-exchange effect in the Gamow-Teller matrix element, may reduce the
gap between theoretical value and experimental value by about 5%. For more evaluate
discussions on the meson-exchange current, more accurate theoretical calculations of the
core polarization are required.

On the other hand, in the present experiment the limitation of the G-parity con-
servation law was determined from the difference of the coefficients az. The difference
of coefficients comprised of the weak magnetism term and the second class term. In the
present analysis the weak magnetism term determined experimentally was used so that
the limit fr/fw = 0.04 4 0.11 was obtained. This result is the most reliable limit of the

G-parity conservation law.
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