
Title Parallel Algorithms on Processor Arrays with
Buses

Author(s) 中野, 浩嗣

Citation 大阪大学, 1992, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3087968

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

 PARALLEL ALGORITHMS ON
PROCESSOR ARRAYS WITH BUSES

Koji Nakano

January 1992

 PARALLEL ALGORITHMS
PROCESSOR ARRAYS WITH

ON

BUSES

Koji Nakano

January 1992

Dissertation submitted to the Faculty of Engineering Science

 of Osaka University in partial fulfillment of

 the requirements for the degree of

 Doctor of Philosophy

 in Engineering

Abstract

Processor networks connected by buses have attracted considerable attention. Since buses

enhance communication capabilities compared with one-to-one communication links, algo-

rithms on bus-connected networks run faster than on usual link-connected networks. Several

conventions concerning simultaneous sending to the same bus have been proposed: exclusive

(simultaneous sending is prohibited), common (simultaneous sending is permitted only if the

same value is sent) arbitrary (simultaneous sending is permitted and one of the processors

trying to send to the same bus succeeds), and priority (simultaneous sending is permit-

ted and the rightmost processor trying to send to the same bus succeeds). The power of

these models become stronger as going backward in this order and become more practical

as going forward. It has been open whether the models differ properly with respect to the

power. In Chapter 2, we present two practical methods to realize a priority bus using com-

mon buses. From this result, it should be concluded that the difference of power among

common, arbitrary, and priority is not proper.

 Since the computation time of many problems depends on that of sorting, it is very

important to develop fast sorting algorithms. In Chapter 3, we present the following parallel

algorithms on bus-connected processor arrays: for every fixed e > 0, N elements can be

sorted in O(N/W) time on a 1-dimensional processor array of size N with W (W < N")

buses and N2 elements can be sorted in O(N/W) time on a 2-dimensional processor array of

size N x N with W (W < Nl-E) buses at each row and each column. Since the computation

time of these algorithms attains the obvious lower bound S2(N/W), these algorithms are

optimal.

 The bus system in Chapters 2 and 3 is referred to as a static bus system in the sense

that the configuration of buses cannot be changed during the execution of the algorithms. A

reconfigurable bus system is a bus system whose configuration can be dynamically changed.

i

ii

A reconfigurable array is a processor array that consists of processors arranged to a 2-

dimensional grid with a reconfigurable bus system. Since a reconfigurable array is more

powerful than a PRAM and more practical, a reconfigurable array becomes the focus of

attention. In Chapter 3 we show that for every T, (1 < T < log* N), N elements can be

sorted in O(T) time on a reconfigurable array with N x N log(T) N processors. This result

implies that N elements can be sorted in log* N time on a reconfigurable array of size N x N.

 Chapter 2, 3, and 4 are based on the results in [1,4], [3,5], and [2,6], respectively.

List of Publications

[1] K. Nakano, T. Masuzawa, and N. Tokura, Mutual Exclusion for Simultaneous

 Sending to Buses, Technical Report SIGAL16-12, IPS Japan, in Japanese (1990-

 7).

[2] K. Nakano, T. Masuzawa, and N. Tokura, A Fast Sorting Algorithm on a Re-

 configurable Array, Technical Report COMP90-69, IEICE (1990-12).

[3] K. Nakano, T. Masuzawa, and N. Tokura, Optimal Sorting Algorithm on Proces-

 sor Arrays with Multiple Buses, Technical report COMP 91-7, IEICE (1991-4).

[4] K. Nakano, T. Masuzawa, and N. Tokura, Methods to realize a Priority Bus

 System, Transactions IEICE ,D-I, J74-D-I, 6, pp.345-351, in Japanese (1991-6).

[5] K. Nakano, T. Masuzawa, and N. Tokura, Fast Sorting on Processor Arrays with

 Buses, '91 LA Summer Symposium(1991-7).

[6] K. Nakano, T. Masuzawa, and N. Tokura, A Sub-logarithmic Time Sorting Al-

 gorithm on a Reconfigurable Array, IEICE Transactions on Communication and

 Systems, E-74, 11, pp.3894- 3901 (1991-11).

iii

Contents

1 Introduction 1

2 Methods to realize the priority bus 4

 2.1 Model and definition . 7

 2.2 Method 1 for rightmost finding . 8

 2.3 Methods 2 for rightmost finding 10

 2.4 Comparison between Methods 1 and 2 . 14

 2.5 Concluding remarks . 15

3 Sorting on processor arrays with buses 16

 3.1 Model .. 19

 3.2 Columnsort 20

 3.3 Basic algorithms . 24

 3.4 Sorting on GRID(N, W) 25

 3.5 Sorting on GRID(N x N, W) 28

 3.6 Concluding remarks . 33

4 Sorting on a reconfigurable array 34

 4.1 Model and notation . 35

 4.2 Basic property and algorithms 37

 4.2.1 Basic property . 37

 4.2.2 Leftmost finding 37

 4.2.3 Logical OR 38

 4.2.4 Compression . 39

iv

CONTENTS V

 4.2.5 Prefix remainder computation 40

 4.2.6 Remainder computation . 42

 4.3 New sorting algorithm . 46

 4.3.1 Constant time sorting algorithm . 46

 4.3.2 General sorting algorithm . 48

 4.4 Concluding remarks . 51

5 Conclusions 52

 Acknowledgments 52

 Bibliography 53

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

PRAM

A 1-dimensional processor array with buses . .

Binary tree layout

Extended binary tree layout

MESH(8)

MESH(4 x 4)

GRID(, 3)

GRID(x 4,2)
'Transpose and untranspose

Shift and unshift

An execution process of Columnsort

Groups and shifted groups on GRID(N, W) . .

Groups and shifted groups on GRID(N x N, W)

RE-ARRAY

Ports of RE-ARRAY

Leftmost finding

Compression

Prefix remainder

Constant time sorting

General sorting

5

7

8

10

17

17

18

18

21

22

23

26

30

35

36

38

40

41

47

49

vi

Chapter 1

Introduction

Most sequential algorithms have been developed on the basis of a RAM (random access

machine)[2]. Since a RAM reflects practical sequential computers and is amenable to the-

oretical analysis, a RAM is regarded as the most suitable theoretical model for sequential

algorithms. On the contrary, there is no general consensus concerning the best parallel the-

oretical model. In fact, many formal models of parallel computation have appeared in the

literature. Among many kinds of parallel formal models, a PRAM (parallel random access

machine)[5][15] have been studied most frequently and parallel algorithms on it have been

actually developed. One of the reason why a PRAM is major is that a PRAM is easy to

deal with. However, the parallel algorithms on a PRAM seem to be impractical, because it

is considered to be impossible to realize the shared memory employed by a PRAM.

 On the other hand, parallel algorithms on processor arrays connected with one-to-one

communication links such as a mesh connected machine, a hypercube machine, etc, have

been investigated. Since the one-to-one communication link is more practical than the shared

memory, these processor arrays are more feasible than a PRAM. Actually, many parallel

machines based on mesh and hypercube topologies have been developed. But, non-trivial

problems require computation time at least as large as the diameter of the network. Most of

the algorithms on processor arrays with one-to-one communication links are rather slower

than those on a PRAM. To overcome the limit of computation time bounded by the diameter

of networks, processor arrays with capability of one-to-many communication have attracted

considerable attention. It is known that many problems can be solved fast on processor

1

2 CHAPTER 1. INTRODUCTION

arrays with buses because buses decrease the diameter of networks and enhance the com-

munication capabilities. For example, finding maximum [1] [9] [21] [31], finding median [31],

sorting [21] [31], image processing [9] [21] [29] [32], and component labeling [16] [17] [28]

have been efficiently solved.

 Several models concerning simultaneous sending to the same bus have been proposed [16].

For example, exclusive (simultaneous sending is prohibited), common (simultaneous sending

is permitted only if the same value is sent), arbitrary (simultaneous sending is permitted

and one of the processors trying to send to the same bus succeeds), and priority (simul-

taneous sending is permitted and the rightmost processor trying to send to the same bus

succeeds) have been proposed. Obviously, the power of these models become stronger as

going backward in this order and become more practical as going forward. It has been open

whether the differences of the power and the practicalness among these models are proper.

One of the main interests of researchers is to develop faster algorithms using less powerful

buses.

 The bus system mentioned above is static in the sense that the configuration of buses

cannot be changed during the execution of the algorithms. To speed up the computation,

a reconfigurable bus system which has capability of changing bus configuration dynami-

cally has been proposed. Such a dynamic bus system is referred to as a reconfigurable bus

system. A reconfigurable array is a processor array that consists of processors arranged to

a 2-dimensional grid with a reconfigurable bus system. Recently, several algorithms on a

reconfigurable array have been investigated. For example, sorting [36] [40], graph prob-

lems [35] [38], computational geometry problems [23] [36], image processing [24] [25], basic

arithmetic operations [38] [39], generating computation tree forms [37] and simulating the

PRAM [34] have been solved. Furthermore, it is known that the reconfigurable bus is at

least as powerful as a PRAM if enough processors are available [34]. And there exists a

problem which can be solved faster on a reconfigurable array than on a PRAM; the logical

exclusive OR of a binary vector of size N can be computed in constant time on a reconfig-

urable array of size N, while this problem requires)(log N/ log log N) timet on a PRAM

with a polynomial number of processors.

 In this dissertation, we will discuss some topics on processor arrays with buses. In

Chapter 2, we discuss the feasibility of a bus whose model is priority. In other words, we

 tThroughout this dissertation, the log to the base 2 is used.

3

present two practical methods to realize a priority bus using common buses. Thus, it should

be concluded that a priority bus is a practical model. In Chapter 3, we present optimal

sorting algorithms on processor arrays with multiple buses. That is, we will show that for

every fixed e > 0, N elements can be sorted in O(N/W) time on a 1-dimensional processor

array of size N with W (W < Nl-`) buses and N2 elements can be sorted in O(N/W)

time on a 2-dimensional processor array of size N x N with W (W < N''E) buses at

each row and each column. Since the computation time of these algorithms attains the

obvious lower bound SZ(N/W), these algorithms are optimal. But this algorithm is at most

as fast as O(NE) time. Even if a polynomial number of processors are available, sorting

of N elements requires S2(log N/ log log N) time not only on a processor array with static

buses but also on a PRAM. In order to sort N elements in o(log N/ log log N) time, we have

to deliver more powerful model than a PRAM. In Chapter 4, we consider a reconfigurable

array, which is more powerful than a PRAM but more practical. we will show that for every

T, (1 < T < log* N), N elements can be sorted in O(T) time on a reconfigurable array with

N x N log(T) N processors. This sorting algorithm is based on an algorithm computing the

number of 1's in a given binary sequence. The algorithm to compute the number of 1's is

useful for the other problems.

Let log(k) =log log...log and log' n be the smallest k such that log(k) n < 1.

 k times

Chapter 2

Methods to real ize the priority

bus

A PRAM employs processors which have capability to access any memory cell in the shared

memory(Fig. 2.1). Several models of a PRAM have been proposed with regard to simulta-

neous reading and writing to the same memory cell as follows:

 • EREW (exclusive read exclusive write)

 Both simultaneous reading and writing are prohibited,

 • CREW (concurrent read exclusive write)

 Only simultaneous reading is permitted,

 • CROW (concurrent read concurrent write)

 Both simultaneous reading and writing are permitted.

Furthermore, a CRCW model is subdivided as follows:

 • common

 All processors trying to write into a same memory cell must be writing the same value,

 • arbitrary

 If several processors simultaneously try to write into a same memory one of them

 succeeds and writes its value, but there is no rule assumed to govern the selection of

 the successful processor.

4

5

PE(O) PE(1) PE(2) PE(3) PE(4) PE(5) PE(6) PE(7)

Shared Memory

 Figure 2.1: PRAM

 . priority

 If several processors simultaneously try to write to a same cell, then the lowest-

 numbered processor among them succeeds.

Obviously, a priority model has the strongest power of the three.

 Similarly to simultaneous writing on a PRAM, several bus models have been proposed

with regard to simultaneous sending to the same bus as follows:

 • exclusive

 Two or more processors cannot send to the same bus.

 • common

 All processors trying to send to the same bus must be sending the same value,

 • arbitrary

 If several processors simultaneously try to send to the same bus, one of them succeeds

 and transfers its value, but there is no rule assumed to govern the selection of the

 successful processor,

 • priority

 If several processors simultaneously try to send to the same bus, then the rightmost

 processor among them succeeds. (the rightmost processor means the processor nearest

 to one end of the bus.)

6 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS

A priority model is most powerful and a exclusive model is weakest of the four. Indeed,

there is a problem which can be solved faster using an arbitrary model than using a common

model[16] [17].

 In this chapter, we present practical methods to realize (or simulate) communication

through a bus whose model is priority. To present feasible methods, we have to be clear

what devices are available. We assume that only a bus whose model is common and which

can transfer one bit value in a time unit (shortly a 1-bit common bus) is only available

as a communication device. This assumption is reasonable because it is not so difficult to

develop a 1-bit common bus by recent technology.

 It is easy to realize a w-bit common bus (i.e. a bus whose model is common and which

can transfer w bits value in a time unit). If w 1-bit common buses are arranged, we can

realize w-bit common bus; to transfer each bit of w bits value, a 1-bit common bus is used.

Since the constraint of a w-bit common bus concerning simultaneous sending holds, different

values are never sent to each 1-bit common bus. On the other hand, if we use this method

to realize a w-bit priority bus (i.e. a bus whose model is priority and which can transfer

w bits value in a time unit), different values may be sent to a 1-bit common bus. This

does not meet the constraint of a common model. To realize a w-bit priority bus, we will

show methods to find the rightmost processor among processors trying to send to the bus

using 1-bit common buses: after finding the rightmost processor, it actually sends the data.

For example, the following method will be the first idea: the rightmost processor trying to

send to the bus can be found in O(log n) time using a 1-bit common bus by means of a

binary search method, where n is the number of processors connected with the bus. By this

method, a w-bit priority bus can be realized in O(log n) time. But, since most algorithms

on processor networks with buses take logarithmic or sub-logarithmic time, the overhead of

the logarithmic factor is fatal. It is important to realize a w-bit priority bus in low constant

time even if extra 1-bit common buses are used.

 In this chapter, we will present two methods to realize a w-bit priority bus in low constant

time. In these methods, to find the rightmost processor, 1-bit common buses arranged to

O(logn) layers are used. The arrangements are called a binary tree layout (Fig. 2.3)and

an extended binary tree layout(Fig. 2.4), respectively. In Section 2.2, we will show that the

rightmost processor can be found in one time unit on the binary tree layout. But in this

method, each processor has to send to log n buses simultaneously. In Section 2.3, we will

2.1. MODEL AND DEFINITION

I-11 T I I
I I IIIIII III III II I

III IIrol
1 2 1 3 4 5 6 7 8] 9 10 11 12 13 14

ll1

15 1

4
3
2
1

7

 Figure 2.2: A 1-dimensional processor array with buses

improve this method and show that the rightmost processor can be found in low constant

time on the extended binary tree layout. In this method, each processor will access at most

two buses in a time unit. We will compare these two methods in Section 2.4.

2.1 Model and definition

A 1-dimensional processor array with buses consists of processors PE(0), PE(1), ... , PE(n-

1) arranged to a 1-dimensional grid with multiple buses. Figure 2.2 illustrates an example

of a processor array with buses. On processor arrays, each processor is a RAM extended

by communication commands and works synchronously. Assume that only 1-bit common

buses are arranged to a processor array. As shown in Fig 2.2, buses on a processor array

arranged to layers. Layers are called the 1st layer, the 2nd layer, ..., from the bottom. In

Fig. 2.2, the 3rd layer consists of two buses: a bus over PE(0), ... , PE(7) and a bus over

PE(8), ... PE(15). These buses are denoted as [0, 7] and [8,15], respectively. Furthermore,

buses on a layer is denoted as a set of buses. For example the buses on the 3rd layer in

Fig. 2.2 are denoted as {[0, 7], [8, 15]}.

 In Sections 2.3 and 2.4, in order to simulate communication through a priority bus by

1-bit common buses, we will present two methods to find the rightmost processor among

processors trying to send to a priority bus. To formalize finding the rightmost processor,

we define the rightmost finding as follows:

Definition 1 (the rightmost finding)

Input. Let (inp(0), inp(1),... inp(n - 1)) be an n bit binary vector. Each inp(i) (0 <

i < n - 1) is given to PE(i). This means that PE(i) try to send data to a priority bus iff

inp(i) = 1.

8 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS

n
u u TI

II 11 11

5

11 if II n n

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

4
3
2
1

 Figure 2.3: Binary tree layout

Output. Let (out(0), out(1),... , out(n - 1)) be an n bit binary vector defined as follows:

 out(i) 1 if i = max{klinp(k) = 1}

=

 0 otherwise

Each PE(i) knows the value of out(i). Furthermore, PE(i) such that out(i) = 1 is called the

rightmost processor. 0

2.2 Method 1 for rightmost finding

Figure 2.3 illustrates a processor array with buses arranged to a binary tree layout. In this

section, we will show a method to find the rightmost processor in a time unit on processor

arrays with 1-bit common busses arranged to the binary tree layout. The binary tree layout

can be defined formally as follows:

Definition 2 (binary tree layout)

 • the bus layout of the j th layer 1 < j < log n is:

 {[0,23 -1],[2-7,2.21-1],...,[n-23,n-1]}.

 • Each processor is connected to log n buses over it on all layers *.

0

 On the binary tree layout, concerning the bus [s, t] which connects PE(s), PE(s + 1), ... ,

PE(t), we call that PE(s), PE(s + 1), ... , PE((s + t - 1)/2) is connected by the left side of

the bus [s, t] and PE((s + t + 1)/2),. .. , PE(t) is connected by the right side.
 *Throughout this dissertation

, for cleaner presentation, we will omit the floor or ceiling operators neces-

sary to ensure that all values are integers.

2.2. METHOD 1 FOR RIGHTMOST FINDING 9

 We now present a rightmost finding algorithm on the binary tree layout by means of a

parallel binary search. The similar algorithm on the PRAM was presented in [10].

 The idea of the rightmost finding algorithm is as follows. Consider the bus, [0, n - 1],

on the log nth layer. PE(i) connected by the right side of [0, n - 1] sends 1 to [0, n - 1]

if inp(i) = 1. And PE(i) connected by the left side of [0, n - 1] tries to receive data from

[0, n - 1]. If the processors connected by the left side receives 1, then these processors will

know that they are not the rightmost processor. Otherwise, these processors can know that

they are candidates of the rightmost processor. Assume that there is a processor PE(i)

(n/2 < i < n-1) connected by the right side of [0, n-1] and whose input value, inp(i), is 1.

Then by using the bus [n/2, n - 1], the processors can find whether the rightmost processor

belongs to [n/2, 3n/4 - 1] or [3n/4, n - 1] similarly. By iterating similarly, the rightmost

processor can be found in log n steps. Since this method takes O(log n) time, we reduce the

computation time by simultaneous communication as follows:

[Method 1] PE(i) with inp(i) = 0 does nothing in this algorithm. If inp(i) = 1 then PE(i)
 executes the following steps.

Step 1 For each bus on the jth layer (1 < j < log n), executes the following commands

 simultaneously.

 1. If the processor is connected by the right side of the bus, it sends 1 to the bus.

 2. If the processor is connected by the left side of the bus, it tries to receive data

 from the bus.

Step 2 If PE(i) receives no data from every bus in Step 1, then PE(i) lets out(i) := 1.

 Otherwise lets out(i) := 0. O

In this algorithm, each processor executes log n communication commands simultaneously.

We have:

Theorem 2.1 Method 1 finds the rightmost processor in a time unit on the binary tree

layout.

Proof. Let d = log n and we prove the theorem by induction on d. If d = 1, the rightmost

processor can be found obviously. We assume that the rightmost processor can be found in

case d - 1, and prove that the rightmost finding can be completed in case d.

10 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS

3
2
1
0

 6 7 9A 12 13 14 17
 G(0) G(1) G(2) G(3) G(4) G(5) G(6) G(7)

 Figure 2.4: Extended binary tree layout

 The binary tree layout of size n consists of two binary tree layout of size n/2 and a bus

[0, n]. Let PE(r) be the rightmost processor. If 0 < r < n/2-1, the rightmost processor can

be found correctly on the left binary tree layout of size n/2 from the induction hypothesis.

If n/2 < r < n - 1, processors connected by the left side of [0, n - 1] receives 1 from PE(r)

through the bus [0, n - 1], PE(i) (0 < i < n/2 - 1) cannot become the rightmost processor.

Furthermore, from the induction hypothesis, the rightmost processor can be found on the

right binary tree layout of size n/2. This completes the proof. 0

i i

i i i 6 7 i i 1 1 12 1 13 14 1 1 17 i, 1 i 211

2.3 Methods 2 for rightmost finding

In this section, we present another rightmost finding algorithm. In the previous algorithm,

each processor has to execute communication commands simultaneously. In the algorithm

in this section, each processor execute at most one send and one receive command in a time

unit. This algorithm is executed on the extended binary tree layout depicted by Fig. 2.4.

Definition 3 (extended binary tree layout)

 • For simplicity, processors on the extended binary tree layout are indexed as follows:

 PE(i, j) (0 < i < 2d - 1,1 < j < d)

 where d is an integer such that n = d . 2d. In other words, PE(i, j) corresponds to

 PE(i.d+j-1).

 • The bus layout of the kth layer (0 < k < d) is

 {[0, d . 2k - 1], [d . 2k, 2 - d . 2k - 1].... [n - d . 2k, n - l]}.

 Note that layers are indexed by 0, 1, ... , d, for simplicity.

 • Each PE(i, j) is connected by two buses on the 0th layer and the jth layer only. 0

2.3. METHODS 2 FOR RIGHTMOST FINDING 11

 On the extended binary layout, for each i (0 < i < 2d- 1), PE(i, 1), PE(i, 2),..., PE(i, d)

forms the ith group denoted by G(i). If we consider that processors in a group merged into

a processor, the extended binary tree layout can be regarded as a binary tree layout.

 Consider a bus [s, t] on the j th layer on the extended bus layout. This bus connects

PE(s, j), PE(s + 1, j), ... , PE(t, j). Similarly to the binary tree layout, PE(s, j), PE(s +

1, j), ... , PE ((s + t - 1)/2, j) are connected by the left side of the bus and PE((s + t +

1)/2, j), ... , PE(t, j) are connected by the right side of the bus.

 First, we will show the outline of the rightmost finding method on the extended binary

tree layout.

[Outline of Method 2]

Step 1 For each group G(i), determine whether there exists a processor in the group whose

 input value is 1. In other words, for each i (0 < i < 2d - 1)

 u(i) = inp(i, 1) V inp(i, 2) V ... V inp(i, d)

 is computed where inp(i, j) denotes input variable of PE (i, j).

Step 2 Find the rightmost element of u(0), u(1), ... , u(2d - 1) whose value is 1. In other

 words, compute

 R = max{slu(s) = 1}.

 After Step 2, the rightmost processor belongs to G(R).

Step 3 Find the rightmost element among input values inp(R, 1), inp(R, 2), ... , inp(R, d).

 In other words, compute

 r = max{sjinp(R,s) = 1}

 After Step 3, PE(R, r) is the rightmost processor. O

Step 1 can be easily performed by buses on the 0th layer. Similarly to Theorem 1, Step 2

can be performed by the parallel binary search method. Step 3 can be performed as fol-

lows: Assume that inp(R, jl) = inp(R, j2) = • • • = inp(R, jk) = 1 (ji < j2 < • <

3k), and the other input values are 0. Then PE(R, jk) is the rightmost processor. Let

B(jl), B(j2), ... , B(jk) be buses which connects PE(R, jl), PE(R, j2), ..., PE(R, jk) on the

12 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS

j1th, j2th, ... jkth layers, respectively. Concerning these buses, B(jk) is longest, and in-

cludes B(jl), B(j2), ... , B(jk_1). From this fact B(jk) can be found, and then the rightmost

processor PE(R, jk) can be computed.

 We now show the method on the extended binary tree layout precisely.

[Method 2] Each PE(i, j) employs local variables u(i), v(i, j), w(i, j), and w(i). Initially
 each variable takes value 0.

Step 1 For each PE(i, j), if inp(i, j) = 1, PE(i, j) sends 1 to the bus on the 0th layer. Each

 PE(i, j) tries to receive data from the bus on the 0th layer, and if it receives 1, then

 let u(i) := 1, otherwise u(i) := 0.

Step 2 Each PE(i, j) with u(i) = 1 executes the following substeps. If u(i) = 0, PE(i, j)

 skips Step 2.

 1. Each PE(i, j) connected by the right side of the bus on the jth layer, sends 1 to

 the bus. Each PE(i, j), which is connected by the left side of the bus on the jth

 layer, receives data from the bus. If PE(i, j) receives 1, v(i, j) will be set to 1,

 otherwise set to 0.

 2. If v(i, j) = 1, PE (i, j) sends 1 to the bus on the 0th layer. Each PE(i, j) tries to

 receive data from the bus on the 0th layer, if PE(i, j) cannot receive 1 from the

 bus, u(i) is the rightmost element taking value 1 among u(0), u(1), . . . , u(2' - 1).

 Let R be the index such that u(R) is the rightmost element.

Step 3 1. Each PE(R, k) belonging to G(R) sends 1 to the bus on the kth layer if

 inp(R, k) = 1. Every processor PE(i, j) tries to receive data from the bus on

 the jth layer. If it receives 1 then w(i, j) := 1, otherwise w(i, j) := 0

 2. If w(i, j) = 1, PE(i, j) sends 1 to the bus on the 0th layer. Every processor

 PE(i, j) tries to receive data from the bus on the 0th layer, and if it receives 1

 then w(i) := 1. In other words, compute

 w(i) := w(i,1) V w(i, 2) V ... V w(i, d)

 3. Find the rightmost element taking value 1 among w(0), w(1), ..., w(2d - 1).

 This can be performed by the similar scheme to Step 2. Then, let w(RG) be the

 rightmost element, that is, RG = max{ijw(i) = 1}.

2.3. METHODS 2 FOR RIGHTMOST FINDING 13

 4. Find the leftmost element taking value 1 among w(0), w(1), ... , w(2d - 1). This

 can be performed by the similar scheme to Step 2. Then let w(LG) be the

 leftmost element, that is, LG = min{ilw(i) = 1}.

 5. Each PE(RG, j) (1 < j < d) connected by the right side of the bus on the jth

 layer sends 1 to this bus. Each PE(R, k) (1 < k < d) tries to receive data from

 the bus on the kth layer.

 6. Each PE(LG, j) (1 < j < d) connected by the left side on the jth layer send 1

 to this bus. Each PE(R, k) (1 < j < d) tries to receive data from the bus on the

 kth layer.

 7. The processor succeeding to receive 1 in both 5. and 6. is the rightmost processor.

 Let this processor be PE(R, r). Let out(R, r) := 1 and the other output values

 out (i, j) be 0.

 The following theorem holds:

Theorem 2.2 Method 2 finds the rightmost processor in constant time on the extended

binary tree layout.

Proof. Each step in Method 2 can be performed in constant time. So we just prove the

correctness of the method. Similarly to Method 1, it is easy to prove that G(R) includes

the rightmost processor. Hence, we will prove that the PE(R, r) is exactly the rightmost

processor.

 As said before, let inp(R, jl) = inp(R, j2) _ ... = inp(R, jk) = 1 (ii < j2 < ... < jk)

and the other input values be 0. Let B(j1), B(j2), ..., B(jk) be buses which connects

PE(R, ii), PE(j2), ... , PE(jk) on the jl, j2, ... jkth layers, respectively. Let s and t be in-

dices such that PE(s, jk), PE(s + 1, jk), ... , PE(t, jk) are connected by B(jk). Then,

 w(s) = w(s + 1) _ ... = w(t)

holds, and the other values of w's are 0. Hence, s = LG and t = RG hold. PE(RG, jk) and

PE(LG, jk) are connected by the right side of B(jk) and the left side of B(jk), respectively.

Therefore, PE(R, jk) receives 1 in both 5. and 6. Since PE(LG, j) and PE(RG, j) are

connected by the same side of the bus on the jth layer when j > jk, PE(R, j) can receive 1

only once in 5. and 6. Since PE(LG, j) and PE(RG, j) are connected by the different bus

14 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS

on the jth layer when j < jk, PE(R, j) cannot receive 1 in both 5. and 6. Therefore, only

PE(R, ik) receives 1 in both 5. and 6. This completes the proof. El

2.4 Comparison between Methods 1 and 2

The w-bit priority bus can be realized by w 1-bit common buses and the bus layout for

rightmost finding. The bus layout for rightmost finding needs O(log n) layers in both Meth-

ods 1 and 2. Hence, the w-bit priority bus can be realized on the common bus layout

with w + O(logn) layers in constant time. Therefore, if w = S2(logn), the w-bit priority

bus can be realized on the common buses with increasing constant factors of hardware and

time complexity. This assumption is acceptable because most of the algorithms on the bus

network presented in the literature require buses sending log n bits in a time unit.

 Let us compare Methods 1 and 2. In Method 1, each processor is connected by logn

buses and executes send or receive commands to each bus simultaneously. In Method 2,

each processor is connected by at most two buses and executes send or receive commands

to at most one bus in a time unit. Though Method 1 completes the rightmost finding in a

time unit, Method 2 requires approximately 10 steps.

 Let us consider that a processor network with several priority buses are realized by

Method 1 and 2, respectively. In this network, some processors are connected by several

priority buses. Focus on a processor which is connected by k priority buses. To realize

communication through k priority buses by Method 1 and 2, this processor is connected k

binary tree layouts and k extended binary tree layouts, respectively. If we use Method 1,

the processor has to execute communication commands to the binary layouts corresponding

to priority buses to which the processor sends. If we use Method 2, the processor has to

execute communication commands to all the extended binary layouts, even if the processor

executes no communication command to the priority buses. In other words, in Method 2, the

processor has to execute k communication commands to 1-bit common buses simultaneously.

Consequently, in both Method 1 and 2, some kinds of parallel execution within a processor

are required.

 But, in both Method 1 and 2, the algorithm for each processor can be expressed by a

small finite state machine. Hence, the priority bus can be realized in constant time using

1-bit common buses, as long as a small circuit to execute the rightmost finding algorithm is

2.5. CONCLUDING REMARKS 15

added to every input/output port.

 Since Method 1 and 2 solve the rightmost finding problem, an arbitrary bus can be

realized similarly by these methods.

2.5 Concluding remarks

In this chapter, we have presented feasible methods to realize communication through prior-

ity buses by 1-bit common buses. It is known [5][6] that the graph connectivity problem can

be solved on a 2-dimensional processor array with buses arranged to each row and column

as follows:

 1. If the buses are common, it can be solved in O(log2 n) time,

 2. If the buses are common, it can be solved in O(log n) expected time,

 3. If the buses are arbitrary, it can be solved in O(log n) time.

By applying our methods to the third algorithm, the graph connectivity problem can be

solved in O(log n) time in spite of using common buses.

Chapter 3

Sorting on processor arrays

with buses

Sorting is one of the most fundamental problems with rich theory and wide practical ap-

plications. It is widely known in [2] that any sequential sorting requires f2(N log N) time

and there exist optimal sequential sorting algorithms. To speed-up sorting, parallel sorting

algorithms have been investigated [4]. For example, both AKS sorting network [3] [15] and

Cole's optimal merge sort [11] [15], sort N elements in O(log N) time using N processors.

Since the product of time and the number of processors is equal to the time complexity

of the best known sequential algorithm, these algorithms are called optimal speed-up. But

they seem to be impractical, because AKS sorting network has a large constant factor, and

Cole's optimal merge sort is executed on a shared memory machine, a PRAM.

 On the other hand, more feasible algorithms on practical parallel machines have been

studied. We focus on the processor array where processors are arranged to a 1-dimensional

or a 2-dimensional grid. Let MESH(N) denote a processor array which consists of N pro-

cessors arranged to a 1-dimensional grid with neighbor links(Fig. 3.1). Each processor can

communicate with its neighbors via neighbor links. Let MESH(N x N) denote a processor

array which consists of N x N processors arranged to a 2-dimensional grid with neighbor

links(Fig. 3.2). It is known that N elements given one at each processor on MESH(N) can be

sorted in O(N) time by the odd-even transposition sort [8] which is a parallel version of the

serial bubble sort. The odd-even transposition sort is optimal because the time complexity is

16

17

0 1 2 3 4 5 7

Fig ure 3.1 : MESH(8)

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Figure 3.2: MESH(x 4)

equal to the obvious lower bound obtained from the diameter of MESH(N). Many sorting

algorithms have been presented which sort N2 elements in O(N) time on MESH(N x N) [33].

Similarly, these algorithms are optimal. The research target is to reduce the constant factor

of the time complexity (30].

 In order to speed up sorting, we consider processor arrays with multiple buses. Let

GRID(N, W) denote a processor array which consists of N processors arranged to a 1-

dimensional grid with W buses(Fig. 3.3). And let GRID(N x N, W) denote a processor

array which consists of N x N processors arranged to a 2-dimensional grid with W buses

at each row and at each column(Fig. 3.4). We will present the following sorting algorithms

on these processor arrays:

 . For every fixed e > 0, N elements can be sorted in O(N/W) time on GRID(N, W) if

 W < N1-`.

18 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

i i i i i i i

i i i i i i i i i i

0 1 2 3 4 5 6 7

Figure 3.3 : GRID(8, 3)

 Figure 3.4: GRID(x 4,2)

 . For every fixed e > 0, N2 elements can be sorted in O(N/W) time on GRID(N x N, W)

 if W<N1-E

These algorithms are optimal because the time complexity is equal to the obvious lower

bound Q(N/W).

 It is known [13] that N elements can be sorted in O(N/W + N3/4 log1/4 N) time on

GRID(N, W) with neighbor links, i.e., on a 1-dimensional processor array with commu-

nication capability of both GRID(N, W) and MESH(N). Recently, the computation time

has been improved to O(N/W + N log N) [14] without neighbor links. This algorithm is

optimal for W = O(N1/4/ log1/4 N). Hence our algorithm is optimal for a wider range

of W. Furthermore a randomized algorithm which sorts N2 elements in O(N) time on

3.1. MODEL 19

GRID(N x N, 1) was presented [18]. Since our sorting algorithm sorts N2 elements in

O(N) time on GRID(N x N, 1) deterministically, thereby our algorithm sort faster than

this algorithm in the worst case.

 The optimal sorting algorithm on a 1-dimensional processor array with complicated bus

layout was presented in [27]. This sorting algorithm is optimal if the number of layers is

at most O(N/ log2 N). Therefore, if a bus layout suitable for sorting is available, sorting

can be performed optimally with the larger number of layers. But if enough large number

of layers is not available, our sorting algorithm performs sorting optimally despite using a

simple bus layout.

 The sorting algorithms we will present are based on Leighton's Columnsort [22]. Column-

sort sorts the elements of a matrix by the following operations to the matrix.

 • Sort the elements within each column or within each column except the leftmost

 column;

 • Permute the elements along a certain permutation.

These two operations are repeated alternately constant times. In Section 3.2, we will describe

Columnsort precisely. In Section 3.3, we will present the two basic algorithms: an O(N)

time sorting algorithm on GRID(N, 1) and an O(N/W) time permutation routing algorithm

on GRID(N, W). These algorithms are used for applying Columnsort to GRID(N, W) and

GRID(N x N, W). Sections 3.4 and 3.5 give the new sorting algorithms on GRID(N, W)

and GRID(N x N, W), respectively.

3.1 Model

The processors on GRID(N, W) and GRID(N x N, W) are indexed by PE(O), PE(1) ,...,

PE(N - 1) and PE(O, 0), PE(0,1), ..., PE(N - 1, N - 1), respectively(Figs. 3.3 and 3.4).

Each processor is a uniform-cost random access machine (RAM) with usual operations

and instructions. The arithmetic operations (addition and subtraction), bitwise logical

operations, equality predicate and so on require constant time. The processors execute the

same program synchronously. Although performing the same instructions, processors can

work on different data. In one step each processor can access one bus. As mentioned in

Chapter 2, models differ in simultaneous access of the same bus by two or more processors.

20 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

In this chapter we use exclusive buses.

3.2 Columnsort

Sorting algorithms presented in this chapter are based on a simple sorting algorithm called

Columnsort. In this section, we describe Columnsort. Though our description of Columnsort

is different from Leighton's on a minor point, they are same essentially.

 Let A be an r x s matrix of elements where sir (r is divisible by s) and r > 2(s - 1)2.

The (i, j) element of A is denoted as a(i, j). Columnsort is described by simple operations

to the matrix A. After completion of Columnsort, the (i, j) element (0 < i < r, 0 < j < s)

of A will contain the i + jrth sorted element of A. In other words, Columnsort sorts the

elements of A in column major order.

 Columnsort takes eight steps. Let the jth column of A be Aj = a(0, j), a(1, j), ...,

a(r - 1J). In Steps 1, 3 and 5 the elements within each column of A are sorted. In Step 7,

the elements within each column of A except the leftmost column A0 are sorted. In Steps

2, 4, 6 and 8, the elements of A are permuted. The permutation in Step 2 corresponds

to transposing of A(Fig. 3.5). The elements are picked up column by column and then

deposited row by row. More precisely, transposing is represented by a one-to-one mapping

trans: {0,...,r- 1} x {0,...,s- 1} -~ {0,...,r- 1} x {0,...,s- 1} defined as follows:

 trans(i, j) = (L(i + jr)/sj, i mod s).

In Step 2, the (i, j) element, a(i, j), is transferred to the trans(i, j) element. The permutation

in Step 4 corresponds to untransposing, the inverse of transposing. Step 6 involves a cyclic

shift of A for Lr/2J positions along column major order. That is, each i + jrth element

is transferred to the (i + jr + Lr/2J) mod rsth element. Hence, the permutation in Step 6

corresponds to shifting of A defined as follows(Fig. 3.6).

 shift(i, j) =

 ((i + Lr/2J) mod r, (L(i + Lr/2J)/ri + j) mod s).

The permutation in Step 8 corresponds to unshifting, the inverse of shifting. Summarize

Columnsort as follows:

[Columnsort]

3.2. COL UMNSORT 21

- -s

r

I m

transpose

- un e

V

p-

 Figure 3.5: Transpose and untranspose

Stepl Sort the elements within each column of A.

Step2 Transpose the elements of A.

Step3 Sort the elements within each column of A.

Step4 Untranspose the elements of A.

Step5 Sort the elements within each column of A.

Step6 Shift the elements of A.

Step? Sort the elements within each column of A except the leftmost column.

StepS Unshift the elements of A. 0

 An example of the execution process of Columnsort on 4 x 16 for a zero-one input is

depicted in Fig. 3.7. Though this example does not satisfy the constraint that r > 2(s -1)2,

it illustrates the essence of Columnsort. The following theorem holds.

Theorem 3.1 [22] Columnsori sorts the elements of a matrix A if sir and r > 2(s - 1)2

hold.

22 CHAPTER 3. SORTING ON PROCESSOR ARRAYS

T

 shift
-,

unshift

I---

M

i ~

WITH BUSES

 Figure 3.6: Shift and unshift

Proof. Though Leighton have proved the correctness of Columnsort [22], we show a proof

of the correctness by zero-one principle [15] [20] which is simpler than Leighton's one. In

other words, we will prove Columnsort sorts A whose elements are either 0 or 1. After Step 1,

each column begins with 0's followed by l's. Then after transposing, the element within

each column are transferred to an r/s x s sub-matrix. In each sub-matrix, the upper rows

are filled with 0, the lower rows are filled with 1 and at most one row consists of both 0

and 1. Then after Step 3, the upper rows of A are filled with 0, the lower rows are filled

with 1 and at most s rows contain both 0 and 1. In the s rows, each row begins with 0's

followed by 1's and each column begins with 0's followed by 1's. Since r > 2(s - 1)2 holds,

the elements in the s rows are transferred to at most two column by untransposing. In other

words, after Step 4, the left columns of A are filled with 0, the right columns of A are filled

with 1, and at most two columns between them consist of both 0 and 1. Suppose there are

exactly two columns which consist of both 0 and 1. The right column of them contains 0.

Thus, in the s rows before untransposing, each row which is transferred to the left column

of them by untransposing contains 0. Therefore, the left column of them contains at most

(s - 1)2 1's. Similarly, the right column of them contains at most (s -1)2 0's. After Step 5,
each column of length r begins with 0's followed by l's. From r > 2(s - 1)2, after shifting

at most one column except the leftmost column contains both 0 and 1. After Step 7, the

3.2. COL UMNSORT 23

4-s

r

0
T
r/s

1

S

Step 1 Step 2 Step 3 Step 4

1 `1

h~\

Step 5 Step 6 Step 7 Step 8

Figure 3.7: An execution process of Columnsort

24 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

elements except the leftmost column are already sorted. By unshifting, all the elements of

A are sorted. 0

 Assume that sjr does not hold. If there are exactly two columns which contain both

0 and 1 after Step 4, the left column of them contains at most s(s - 1) 1's and the right

column contains at most s(s - 1) 0's. To sort the elements, the constraint r > 2s(s - 1) is

sufficient. Hence, the following corollary holds.

Corollary 3.2 Columnsorl sorts the elements of a matrix A if r > 2s(s - 1). 0

Therefore, the constraint sjr is not essential for Columnsort.

3.3 Basic algorithms

Before showing the sorting algorithm on GRID(N, W), we present basic algorithms used for

the sorting algorithm. Sorting on GRID(N, W) is defined precisely as follows:

[Sorting on GRID(N, 1)]

INPUT Let A = a(0), a(1),..., a(N - 1) be a sequence of elements. Each a(i) is given to

 PE(i).

OUTPUT Each PE(i) knows the ith element of the sorted sequence of A.

First, we show a simple parallel sorting algorithm on GRID(N, 1) by an enumeration

scheme [8]. Sorting on GRID(N, 1) is used for sorting the elements within each column

in Columnsort.

[Sorting algorithm on GRID(N, 1)] Let c(i) be a local memory cell of PE(i). After
 completion of the algorithm, the rank of a(i) is stored to c(i). Initially, c(i) = 0.

Stepl Step 1 consists of N sub-steps. In each ith sub-step (i = 0, N - 1), PE(i)

 sends a(i) to the bus and all the processors receive it from the bus. During each sub-

 step, when receiving a(i), PE(j) compares a(i) and a(j). If (a(i), i) < (a(j), j) holds

 in lexicographical order, PE(j) increases the value of c(j) by 1.

Step2 Step 2 consists of N sub-steps. In each ith sub-step (i = 0,1, ... , N - 1), if c(j) = i,

 PE(j) sends a(j) to PE(i) via the bus, and PE(i) memorizes a(j), the ith sorted

 elements of A. 0

3.4. SORTING ON GRID(N, W) 25

 Obviously, the following lemma holds.

Lemma 3.3 N elements can be sorted in O(N) time on GRID(N,1). 0

 Second, we consider the permutation routing on GRID(N, W) defined as follows.

[Permutation routing on GRID (N, W)]

INPUT Let p : {0,1, ... , N - 1} -• {0, 1, ... , N - 1} be a one-to-one mapping and A =

 a(0), a(l),..., a(N - 1) be a sequence of elements. Each a(i) and p(i) are given to

 PE(i).

OUTPUT Each PE(p(i)) knows a(i).

 The permutation routing algorithm is used for implementation of transposing and un-

transposing in Columnsort. Permutation routing can be performed on GRID(N, W) effi-

ciently as follows.

[Permutation routing algorithm on GRID(N, W)] The algorithm has IN/Wi steps.
 In the ith step (0 < i < I N/Wi), for all iW < j < (i + 1) W, PE(j) with p(j) = i

 sends a(j) to PE(i) in parallel. Then, after completion of the whole steps, each PE(p(i))

 knows a(i). 0

 Obviously, we have,

Lemma 3.4 Any permutation routing on GRID(N, W) can be performed in O(N/W) time.

0

 It can be considered that Step 2 of the sorting on GRID(N, 1) executes the permutation

routing along the permutation c.

 In this section, we have presented the sorting algorithm on GRID(N, 1) and the permu-

tation algorithm on GRID(N, W). Main sorting algorithms presented in this chapter exploit

these algorithms.

3.4 Sorting on GRID (N, W)

Sorting on GRID(N, W) can be performed efficiently by adapting Columnsort with a matrix

of size N/W x W. It is assumed that N/W is an integer. Each PE(i + jN/W) (0 < i <

N/W, 0 < j < W) maintains the (i, j) element of the matrix in Columnsort.

26 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

 groups

 N/W

 H H H H H
 00000000000000000000

 H 4

 N/W
 shifted groups

 Figure 3.8: Groups and shifted groups on GRID(N, W)

[Sorting algorithm on GRID(N, W) (W < N'/4)] Consider that the processors are

 partitioned into W groups with consecutive N/W processors(Fig. 3.8) and one bus

 can be assigned to each group. Then, each group can be regarded as GRID(N/W, 1).

 We apply Columnsort to GRID(N, W) such that each group corresponds to a column

 in Columnsort. Only in Step 6, the processors PE(i) (N/(2W) < i < N - N/(2W))

 are divided into W - 1 groups with consecutive N/W processors. These groups are

 called shifted groups.

Stepl Sort the elements within each group in parallel.

Step2 Transpose the elements.

Step3 Sort the elements within each group in parallel.

Step4 Untranspose the elements.

Step5 Sort the elements within each group in parallel.

Step6 Sort the elements within each shifted group in parallel. 0

 From simple observation of Columnsort, Step 6 of the algorithm implements shifting,

sorting each column and unshifting in Columnsort. From Lemma 3.3, sorting the elements

within each group and within each shifted group can be performed in O(N/W) time. From

Lemma 3.4, transposing and untransposing can be completed in O(N/W) time. Further-

more, since W < N1/4 holds, the constraint of Columnsort, N/W > 2W(W - 1), holds.

Therefore, the following lemma holds.

3.4. SORTING ON GRID(N, W) 27

Lemma 3.5 N elements can be sorted in O(N/W) time on GRID(N, W) if W < N1/4. 0

 Similarly to Step 6, Steps 2 and 4 can be omitted by modifying Step 3. That is, in

Step 3, the elements are sorted within each "transposed" group.

 Consider the case that N/W is not an integer. Let N' = W . I N/Wi . From Lemma 3.5,

N' elements can be sorted in O(N'/W) time on GRID(N', W). Furthermore, any execution

within one step on GRID(N', W) can be simulated by GRID(N, W) in constant time because

N' = O(N). Hence, N' elements which consists of N input elements and N' - N dummy

elements can be sorted in O(N/W) time on GRID(N, W). Therefore, for every integer N,

N elements can be sorted in O(N/W) time on GRID(N, W). By means of this method, we

can ignore the cases such that N/W, N1"4, and so on, are not integers.

 We now apply the above sorting algorithm with constant depth recursion and get the

optimal sorting algorithm on GRID(N, W) with large number of buses.

[Sorting algorithm on GRID(N, W)] If W > N1"4, it is considered that the processors

 are partitioned into N1"4 groups with consecutive N3/4 processors. Since WIN 1/4

 buses can be assigned to each group, each group is regarded as GRID(N3/4, W/Nl/4)

 We apply Columnsort to GRID(N, W) such that each group is seen to be a column

 in Columnsort. Only in Step 6, the processors PE(i) (N3/4/2 < i < N - N314/2)

 are divided into N1/4 - 1 groups with consecutive N3/4 processors. These groups are

 called shifted groups.

Stepl If W < N1J4, sort all the elements and terminate the algorithm. Otherwise, execute

 the following steps.

Step2 Sort the elements within each group recursively in parallel.

Step3 Transpose the elements.

Step4 Sort the elements within each group recursively in parallel.

Step5 Untranspose the elements.

Step6 Sort the elements within each group recursively in parallel.

Step? Sort the elements within each shifted group recursively in parallel. 0

 Similarly to Lemma 3.5 the following theorem holds.

28 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

Theorem 3.6 For every fixed e > 0, N elements can be sorted in O(N/W) time on

GRID(N, W) if W < N1-E

Proof. We will estimate the computation time of the algorithm. Let T(N, W) be the com-

putation time required in case the algorithm is executed on GRID(N, W). In the algorithm,

sorting on GRID(N3/4, WIN 1/4) are executed recursively four times. Therefore,

 T(N, W) =

 O(N/W) if W < N1/4

 4T(N3/4, W/N1!4) + O(N/W) otherwise.

Assume that W = N1-E for fixed e > 0. Then,

 T(N, N1-E) =

 O(NE) if W < N1/4

 4T(N3/4 N3/4-e) + O(NE) otherwise.

Consider the depth-k recursion, we have,

 T(N, N1-E) = 4kT(N(314)", N(3/4)k-E) + O(4kNE).

Since e is independent from N, the depth k of recursion is constant. Therefore, T(N, W) _

O(N/W) if W < N1-E 0

 The GRID(N, W) can be simulated simply by the CREW-PRAM with N processors and

W shared memory cells. Therefore, the following corollary holds.

Corollary 3.7 For every fixed e > 0, N elements can be sorted in O(N/W) time on the

CREW-PRAM with N processors and W shared memory cells if W < N1-E. 0

3.5 Sorting on GRID(N x N, W)

Sorting on GRID(N x N, W) is defined precisely as follows:

[Sorting on GRID(N x N, W)]

INPUT Let A be an N x N matrix of elements and a(i, j) (0 < i, j < N) be the (i, j)

 element of A. Each a(i, j) is given to PE(i, j) on GRID(N x N, W).

OUTPUT Each PE(i, j) knows the i + jNth sorted elements of A.

3.5. SORTING ON GRID(N x N, W) 29

In other words, A is sorted in column major order.

 The permutation routing on GRID(N x N, W) can be defined similarly. Since the sort-

ing algorithm on GRID(N x N, W) is based on Columnsort, the permutation routing on

GRID(N x N, W) will be used. Any permutation routing on GRID(N x N, W) can be

performed by iterating the permutation routings on GRID(N, W) at each row and at each

column. That is, it can be performed by iterating Steps 1 and 2 alternately.

Stepl Permute the elements within each column on GRID(N x N, W) in parallel.

Step2 Permute the elements within each row on GRID(N, xN, W) in parallel.

Obviously, if we select appropriate permutations at each step, any permutation requires

at most O(N) iterations. But some "simple" permutation routings on GRID(N x N, W)

requires merely constant number of iterations. Though we omit the precise description of a

permutation routing algorithm on GRID(N x N, W), the following lemma can be convinced
intuitively.

Lemma 3.8 Any "simple" permutation routing can be done in O(N/W) time on GRID(Nx

N,W). 0

The "simple" permutations include the permutations used for Columnsort (transposing,

untransposing and so on) on GRID(N x N, W). It is useless to clarify what "simple" per-

mutation routings are, however it seems to be interesting. The reason why it is useless will

be shown after Corollary 3.11.

 Now we show a sorting algorithm on GRID(N x N, W).

[Sorting algorithm on GRID(N x N, W)] Consider that A is partitioned into N3!5

 groups of size N x N2/5(Fig. 3.9). Sorting can be performed by Columnsort in which

 each groups are seen to be a column. Furthermore, consider that a(i, j) (N2/5/2 <

 j < N - N2/5/2), a part of A, is divided into N3/5 -1 groups of size N x N2/5. These

 groups are called shifted groups.

Stepl Sort the elements within each group in column major order in parallel.

Step2 Transpose the elements of A.

Step3 Sort the elements within each group in column major order in parallel.

30

N

CHAPTER 3.

 N 2/5
H

SORTING ON PROCESSOR ARRAYS WITH BUSES

groups

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Y

1

1

1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
1
M
M
1
1

-1--1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Y

1

1

Y

1

1

Y

1

1

Y

1

1

1

1

1

1

Y

Y

Y

1

Y

1

1

1

1

1

1

,

1

,

1

1

1

1

1

,

1

1

1

1

1 I

1

1

1

1
1
1

1
1
1

1
1
1

1
1
Y
1
1
1
1
1
1
1
1
L.

 ~~

N 2/5 shifted groups

Figure 3.9: Groups and shifted groups on GRID(N x N, W)

Step4 Untranspose the elements of A.

Step5 Sort the elements within each group in column major order in parallel.

Step6 Sort the elements within each shifted group in column major order in parallel. 0

 Since the constraint of Columnsort, N7/5 > 2N3/5(N3/5-1), holds, sorting is completed

correctly. Thus, if each step can be completed in O(N/W) time, the algorithm sorts N x N

elements in O(N/W) time. It remains how to sort the elements within each group and within

each shifted group, transpose A and untranspose A in O(N/W) time.

 First, we will confirm transposing the elements of A can be performed by means of per-

mutations at each column and at each row on GRID(N x N, W), though it is convinced from

Lemma 3.8. Sorting the elements within each column is performed just after transposing.

Hence, it is considered that transposition is completed, if each i+ jNth element within each

group is transferred to the ((i+ jN) mod N3/5)th group, that is, the (i mod N3/5)th group.

To ensure the permutation trans2 which transposes the elements is a one-to-one mapping,

3.5. SORTING ON GRID(N x N, W) 31

we select the following permutation:

 trans2(i, j) =

 ((i + j) mod N, (i mod N3/5)N2/5 + i mod N2"5).

It is easy to find out that the permutation trans2 implements transposing. We will show

that the permutation irans2 can be performed by the permutations at each column and row.

The permutation trans2 can be performed by two permutations tl and t2 defined as follows:

 (i, j)

 I t1

 ((i + j) mod N, j)

 l t2

 ((i + j) mod N, (i mod N3/5)N2/5 + i mod N2/5)

The permutation t2 means that the ((i + j) mod N, j) element is transferred to PE((i +

j) mod N, (i mod N3/5)N2/5 + i mod N2/5). Let us verify both t1 and t2 are one-to-one

mappings at each column and at each row, respectively. Assume j is fixed. Since the

mapping f (i) = (i + j) mod N defined over 10,..., N - 1} is a one-to-one mapping, t1 is a

one-to-one mapping for every fixed j. Hence, from Lemma 3.4, the permutation tl can be

performed in O(N/W) time by a permutation within each column. Let k = (i + j) mod N.

The permutation t2 can be rewritten as follows:

 (k,j)

 I t2

 (k, ((k - j) mod N3/5)N2/5 + (k - j) mod N2/5)

Since the mapping g(j) = ((k-j) mod N3/5)N2/5+(k-j) mod N2/5 defined over 10,.,., N-

1} is a one-to-one mapping, t2 is a one-to-one mapping for every fixed k. Hence, from

Lemma 3.4, the permutation t2 can be performed in O(N/W) time by a permutation within

each row. Therefore, transposing can be completed in O(N/W) time. Similarly, untrans-

posing can be implemented.

 Now, we show how to sort the elements within each group. They are sorted by Column-

sort.

[Sorting elements within each group] Consider each group is a matrix of size N x N2/5.

 Sorting can be performed by applying Columnsort to each matrix.

32 CHAPTER 3. SORTING ON PROCESSOR ARRAYS WITH BUSES

Stepl Sort the elements within each column.

Step2 Transpose the elements within each group.

Step3 Sort the elements within each column.

Step4 Untranspose the elements within each group.

Step5 Sort the elements within each column.

Step6 Shift the elements within each group.

Step? Sort the elements within each column except the leftmost column within each group.

StepS Unshift the elements within each group. 0

 Since the constraint of Columnsort, N > 2N2/5(N2/5 - 1), holds, sorting can be com-

pleted correctly. From Lemma 3.3, each column can be sorted in O(N/W) time in case

W < N'-'. Transposing and untransposing can be performed in the same way. We will

confirm shifting and unshifting can be completed in O(N/W) time. Sorting the elements

within each column is performed just after shifting. Hence, shifting can be considered to

be completed, if the elements in the lower N/2 row are transferred to the next column and

in the last column are transferred to the first column. Let us focus on the elements within

the first group, a(i, j) (0 < i < N, 0 < j < N2/5). In the first group, the elements can be

transposed along the permutation shift2 defined as follows:

 shift2(i, 2) (i, j) if i<N/2
 (i, (j + 1) mod N2'5) otherwise.

Hence shifting can be performed by a permutation within each row. Therefore, we have,

Theorem 3.9 For every fixed e > 0, N2 elements can be sorted in O(N/W) time on

GRID(N x N, W) if W < N1'E. 0

 In general, the following corollary holds.

Corollary 3.10 For every fixed e > 0, NM elements can be sorted in O((N+M)/W) time

on GRID(N x M, W) if W < (N + M)' 0

 The sorting algorithm on GRID(N x N, W) is represented simply as follows.

3.6. CONCLUDING REMARKS 33

Repeat the following steps constant times alternately:

Stepl Sort the elements within each column (sometimes sort except some columns).

Step2 Permute the elements along the appropriate permutations.

The elements are permuted along ten permutations: (1)transposing, (2)untransposing,

(3)transposing within each (shifted) group, (4)untransposing within each (shifted) group,

(5)shifting within each (shifted) group, and (6) unshifting within each (shifted) group. The
order of the permutations and the implementation of each permutation can be computed

easily.

 Obviously, from Corollary 3.10, we have

Corollary 3.11 Any permutation routing can be performed in O((N + M)/W) time on

the GRID(N x M, W) if W < (N + M)i-E 0

Therefore, not only "simple" permutation routings but also any other permutation routing

can be performed effectively.

3.6 Concluding remarks

In this chapter, optimal parallel sorting algorithms on processor arrays with multiple buses

are presented. Obviously, by using AKS sorting network [3] [15], N elements can be sorted in

O(logN) time on GRID(N, W) where W = S2(N). This method is optimal because sorting

N elements needs at least 11(log N) time as long as at most N processors are available.

Therefore it remains open to find an optimal sorting algorithm on GRID(N, W) where

W E [w(N'), o(N)] (e.g. W = N/ log N).

Chapter 4

Sorting on a reconfigurable

array

A logarithmic time sorting algorithm on a practical model is known [26]. The algorithm is

based on an enumeration scheme for parallel sorting as follows: to sort N elements, each

element is simultaneously compared to all the others in constant time by using N(N-1) pro-

cessors, and the rank of each element is computed in O(log N) time by enumerating elements

whose value is smaller than that of it. Hence, N elements can be sorted in O(log N) time

using N(N - 1) processors. In this chapter, we will present a sub-logarithmic time sorting

algorithm on a reconfigurable array (shortly RE-ARRAY) on the basis of an enumeration

scheme. Sub-logarithmic time is achieved by computing the rank of elements faster.

 It is known [36] [40] that N elements can be sorted in constant time by an enumeration

scheme both on an N x N2 RE-ARRAY (means RE-ARRAY with N x N2 processors) and

on an N3/2 x N3/2 RE-ARRAY. We will reduce the number of processors and improve this

algorithm. Firstly, we show an algorithm summing up N binary values in constant time

on N x loge N RE-ARRAY. Secondly, by using these algorithms, we show that N elements

can be sorted by an enumeration scheme in constant time on an N x N loge N RE-ARRAY.

Lastly, we obtain more generalized algorithm which sorts N elements in O(T) time on an

N x N log(T) N RE-ARRAYwhere 1 < T < log* N. This implies that N elements can be

sorted in constant time on an N x N log(') N RE-ARRAY for any constant integer a > 1,

and in 0(log* N) time on an N x N RE-ARRAY.

34

4.1. MODEL AND NOTATION 35

 Figure 4.1: RE-ARRAY

4.1 Model and notation

A RE-ARRAY is formalized as follows. Processors on an N x M RE-ARRAY are denoted

by PE(i, j) (0 < i < N - 1, 0 < j < M - 1). As shown in Fig. 4.1, it is considered that

PE(i, 0) (0 < i < N - 1) is located at the top row of a RE-ARRAY and PE(0, j) (0 <

j < M - 1) is located at the leftmost column of a RE-ARRAY. Each processor on a

RE-ARRAY is the RAM (random access machine) with an extended set of instructions

for changing configuration of buses, sending data to buses and receiving data from buses.

As shown in Fig. 4.2, each processor has several ports denoted by U(k), D(k), L(k) and

R(k) (0 < k < P - 1). The ports facing to each other are connected by static buses, that is,

D(k) on PE(i, j) and U(k) on PE(i, j + 1) are connected by a static bus. Similarly, R(k)

on PE(i, j) and L(k) on PE(i + 1, j) are connected by a static bus. It is assumed that each

processor may have the constant number of ports, that is, P is constant. All processors
work synchronously and execute the following phases in a time unit:

Phase 1 Changing configuration of a reconfigurable bus systems by connecting or discon-

 necting its own ports by buses locally. The data sent at Phase 2 is transferred through

 the locally connected buses and static buses between processors.

Phase 2 Sending data to each port.

Phase 3 Receiving data from each port. The data sent at the previous phase are received

 at this phase.

36 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

D(O) D(1) D(2)

R(O)

R(1)

R(2)

U(0)
L(O)

L(1)

L(2)
D(O)

U(1)

D(1)

U(2)
R(O)

R(1)

R(2)
D(2)

L(O)

L(1)

L(2)

U(O) U(1) U(2)

 Figure 4.2: Ports of RE-ARRAY

Phase 4 Executing a constant number of instructions of the RAM.

 On a RE-ARRAY, all processors execute the phases synchronously, that is, no processor

executes a phase before all processors finishing the previous phase. The computation time

of an algorithm is evaluated by counting the number of iterations of these four phases during

the execution of it. Hence, our model is the unit-time delay model because it is assumed

that communication completes within a time unit.

 In algorithms presented in this chapter, we use the following notation:

 • The connection of two ports, say, L(O) and R(O) is denoted by L(O) . R(0).

 • Sending the value x to the port, say, L(O) is denoted by L(O) f-- x.

 • Receiving value from a port and storing it to a local memory cell, say, receiving value

 from the port L(O) and storing it to the local memory cell c is denoted by L(O) -+ c.

 From Phase 2 to Phase 4, it can be regarded that the processors are connected by static

buses, because the configuration of bus system is not changed. Several bus models are

proposed [16] with respect to simultaneous sending on a static bus system. All algorithms

4.2. BASIC PROPERTY AND ALGORITHMS 37

presented in this chapter and the previously known sorting algorithms [36] [40] are designed

for the exclusive model.

4.2 Basic property and algorithms

In this section, we show a basic property and basic algorithms for sorting algorithm. At the

end of this section, we show an algorithm which sums up binary values in constant time.

4.2.1 Basic property

The following lemma implies that the difference within the constant factor of the number

of processors can be ignored.

Lemma 4.1 Any execution in a time unit on an O(N) x O(M) RE-ARRAY can be simu-

lated in a time unit on an N x M RE-ARRAY.

Proof. Let A and B be cjN x c2M RE-ARRAY (where cl and c2 are constant positive

numbers) and N x M RE-ARRAY, respectively. Assume that each processor on B has

max{cl, c2} times as many ports as A. Then, each PE(x, y) on B can simulate any execution

of all PE(i, j) (clx < i < c1(x + 1), c2y < j < c2(y+ 1)) on A in a time unit. Therefore, any

execution on A in a time unit can be simulated on B in a time unit. 0

 Even if we regard that the time complexity is affected by the number of the local com-

putation, any execution in a time unit on A can be simulated in O(clc2) time on B. Since

c1c2 is constant, B can simulate A in constant time.

4.2.2 Leftmost finding

We consider the problem to find the leftmost element whose value is 1, when a binary

sequence of length N is given. Leftmost Finding on an N x 1 RE-ARRAY is defined as

follows.

Input Let B = (a(0), a(1),..., a(N - 1)) be a binary sequence of length N. Each a(i) (0 <

 i < N - 1) is given to PE(i, 0).

Output All processors know m such that m = min{ila(i) = 1}. If there does not exist i

 such that a(i) = 1, all processors know m(= N).

38 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

0 0 1 0 1 1 0 0

 Figure 4.3: Leftmost finding

 The leftmost finding algorithm on an N X 1 RE-ARRAY follows (Fig. 4.3).

[Leftmost Finding Algorithm]

Step 1 If a(i) = 0, then L(0) • R(0) : PE(i, 0). {means that if a(i) = 0, then PE(i, 0)

 connects L(0) and R(0).}

 If a(i) = 1, then R(0) - 1 : PE(i, 0). {means that if a(i) = 1, then PE(i, 0) sends 1

 to R(0).}

 L(0) c(i) : PE(i, 0) (0 < i < N - 1). {means that each PE(i, 0) receives data from

 L(O), and stores it to c(i) that is a local memory cell of PE(i, 0).}

 If PE(i, 0) receives no data, let c(i) t-- 0.

Step 2 If a(i) = 1 and c(i) = 0, then PE(i, 0) broadcasts i to all processors.

 If a(N - 1) = 0 and c(N - 1) = 0, then PE(N - 1, 0) broadcasts N to all processors.

 [end of algorithm]

 The following lemma holds.

Lemma 4.2 The leftmost element can be found in constant time on an N x 1 RE-ARRAY.

Proof. If c(i) = 1 then there exists j < i such that a(j) = 1 and vice versa. Thus, if both

a(i) = 1 and c(i) = 0 hold, a(i) is the leftmost element. If such i does not exist, the value

of all elements is 0. Obviously the algorithm completes in constant time. 0

4.2.3 Logical OR

The logical OR is the problem to determine whether there is an element whose value is 1,

when a binary sequence of length N is given. The logical OR on an N x 1 RE-ARRAY is

defined as follows.

4.2. BASIC PROPERTY AND ALGORITHMS 39

Input Let B = (a(0), a(l),..., a(N - 1)) be a binary sequence of length N. Each a(i) (0 <

 i < N - 1) is given to PE(i, 0).

Output All processors know the logical OR of the input sequence, that is,know m such

 that m = max{a(i)}.

 The logical OR can be simply computed by using the leftmost finding algorithm. To

compute the logical OR, after executing the leftmost finding algorithm, if there is a leftmost

element, then the result of the logical OR is 1, otherwise, the result is 0. Therefore, the

following lemma holds.

Lemma 4.3 The logical OR can be computed in constant time on an N x 1 RE-ARRAY.

4.2.4 Compression

We consider the procedure that compresses a sequence of elements. Compression on an

N x M RE-ARRAY is defined as follows.

Input Let A = (a(0), a(1), ... , a(N - 1)) be a sequence of elements. In addition to

 the domain of elements, each element in the sequence may take value NULL. Each

 a(i) (0 < i < N - 1) is given to PE(i, 0).

Output Let A' = (a(io), a(ii), a(i2)....) be the subsequence of A such that an element in

 A is in A' if and only if its value is not NULL. The processors on the leftmost column

 knows the first M elements in A', that is, each PE(0, j) (0 < j < M - 1) knows a(ij)

 if exists.

In the compression algorithm on an RE-ARRAY, each column works as a stack and each

processor on the top row works as the top of the stack. From the rightmost to the leftmost

column, if an element given to a column is not NULL, then the processors on the column push

the element on the stack. Otherwise, the processors hold the stack. Then each processor

on the leftmost column knows the element whose value is not NULL. The compression

algorithm on a RE-ARRAY follows (Fig. 4.4).

[Compression Algorithm]

Step 1 Each PE(i, 0) (0 < i < N-1) broadcasts a(i) to the processors on the same column,

 PE(i, j) (0 < j < M - 1).

 NULL 12 NULL 5 31 NULL 7 NULL

 12

5

 31

7

 Figure 4.4: Compression

Step 2 If a(i) = NULL, then

 L(0) . R(0) : PE(i, j) (0 < j < M - 1).

 If a(i) NULL, then

 D(O) • R(0) : PE(i, j) (0 < j < M - 1)
 U(0) . L(0) : PE(i, j) (0 < j < M - 1)

 U(0) <-- a(i) : PE(i, 0).

 L(0) --> c(j) : PE(0, j) (0 < j < M - 1). {c(j) contains a(ij).}

 [end of algorithm]

 The following lemma holds.

Lemma 4.4 Compression can be done in constant time on an RE-ARRAY.

Proof. The correctness of.the algorithm can be proved by induction easily. 0

4.2.5 Prefix remainder computation

The prefix w-remainder of a binary sequence on an N x M RE-ARRAY is defined as follows.

Input Let (a(0), a(1), ... , a(N - 1)) be a binary sequence of length N. Each a(i) (0 < i <
 N - 1) is given to PE(i, 0).

Output Let xi be the prefix remainder at position i, that is, xi = (E; =o a(j)) mod w.
 Each PE(i, 0) (0 < i < N - 1) knows xi.

J J J J
/ l r

I
J J J

J J i

I r

I

J J J
I r r

4.2. BASIC PROPERTY AND ALGORITHMS 41

1 0 1 1 0 0 1 1

Figure 4.5: Prefix remain der

 We show the algorithm for computing the prefix M-remainder on an N x M RE-ARRAY.

In the algorithm each column works as a cyclic shift register of size M. On the leftmost

column, only the top element of the cyclic shift register is 1. On each column, if the element

given to the column is 1, then the processors on the column shift the cyclic shift register.

Otherwise, the processors hold the cyclic shift register. Then the prefix remainder is equal

to the position where 1 places on the cyclic shift register. The algorithm for computing the

prefix M-remainder on an N x M RE-ARRAY is described as follows(Fig. 4.5).

[Prefix Remainder Algorithm,

Step 1 Each PE(i, 0) (0 < i < N-1) broadcasts a(i) to the processors on the same column.

Step 2 if a(i) = 0, then

 L(0) . R(0) : PE(i, j) (0 < j < N - 1).

 if a(i) = 1, then

 L(0) . D(0) : PE(i, j) (0 < j < M - 2)

 U(0) .R(0) : PE(i,j) (1 < j <M-1)

 U(1) . D(1) : PE(i, j) (1 < j < M - 2)

 D(1) . R(0) : PE(i, 0)

 L(0) . U(1) : PE(i, M - 1).

 L(0) F- 1 : PE(0, 0).

 R(O)-*c(i,j):PE(i,j) (0< j <M-1).

Step 3 if c(i, j) = 1, PE(i, j) broadcasts j (= xi) to the processors on the same column.

42 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

 [end of algorithm]

 The following lemma holds.

Lemma 4.5 The prefix M-remainder of a binary sequence of length N can be computed in

constant time on an N x M RE-ARRAY.

Proof. It is sufficient to prove that for all i, c(i, j) = 1 iff xi = j holds. This can be easily

proved by induction. 0

 The CRCW PRAM with the polynomial number of processors cannot compute even

the exclusive-or of the binary sequence in constant time[6]. Hence, a RE-ARRAY with the

exclusive buses is more powerful than the CRCW PRAM with regard to the prefix remainder

computation.

4.2.6 Remainder computation

We show an algorithm for computing the remainder of the sum of a binary sequence on a

RE-ARRAY. The w-remainder on a RE-ARRAY is defined as follows.

Input Let (a(0), a(l), ... , a(N - 1)) be a binary sequence of length N. Each a(i) (0 < i <

 N - 1) is given to PE(i, 0).

Output Let x is the sum of the binary sequence, that is, x = EN of a(i). All processors
 know r such that x =_ r (mod w).

 From the definition, the M-remainder can be easily computed by means of the prefix

M-remainder. We will show that the remainder from a larger modulus can be computed in

constant time on a RE-ARRAY. The basic idea is as follows. Consider that an N x M RE-

ARRAY is divided into subarrays of sizes N x 1, N x 2, ... , N x v~_M_. To express x by

the RNS (residue number system), we apply the algorithm in Lemma 4.5 to each subarray,

and then rl, r2i ... , r' can be computed such that x - ri (mod i). If rl, r2, ... , r,/M-

are known, the remainder from a larger modulus than M can be computed. We analyze

how large the modulus is by using the Chinese remainder theorem and the prime number

theorem, famous theorems in number theory.

4.2. BASIC PROPERTY AND ALGORITHMS 43

Theorem 4.6 (Chinese remainder theorem) Let p1i p2i ... , Pin be pairwise relatively

prime positive integers . For unknown x, if bl, b2, ... , b,,, are known as follows,

 x - b1 (mod pl)

 x - b2 (mod p2)

 x - b,,, (mod p,,,)

then r can be computed such that x - r (mod Pipe ...An). O

 From the Chinese remainder theorem, the following corollary holds.

Corollary 4.7 Let lcm(m) be the L.C.M. (least common multiple) of {1,2, ..., m}. If the

following congruence holds for integers x and y,

 x - y (mod 1)

 x y (mod 2)

 x y (mod m)

then the congruence x - y (mod lcm(m)) holds. O

 To analyze how large lcm(m) is, we use the prime number theorem.

Theorem 4.8 (Prime number theorem) Let a(n) denote the number of prime numbers

less than or equal to n. The following equality holds:

 lim 7r(n) Inn = 1
 n-co n

when In is the natural logarithm. 13

 Thus, a(n) = 0(n/ log n) holds. From the prime number theorem, the following lemma

holds.

Lemma 4.9 The equality lcm(n) = 2°(')holds.

Proof. Let {p1, p2, ... , p,n} (P1 = 2 < p2 < ... < p,n < n, m = 7r(n)) be the set of primes

less than or equal ton and a1, a2.... , a,,, be the integers such that piai < n < pi +1 holds.

44 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

From the prime number theorem, m = 0(n/ log n). Thus,

 lcm(n) = p1alp2a2 ... pma,,,

 < nm

 n°(n/ log n)

 = 2°(n).

Let m' be the integer such that pm, < n/2 < p,n,}1. From the prime number theorem,

m - m' = E) (n/ log n). Thus,

 lcm(n) > Pm'+1Pm'+2 "'Pm

 > (n/2)°(n/logn)

 2°(n).

Therefore, lcm(n) = 2°(n) holds. 0

 The algorithm for computing the remainder from a larger modulus on a RE-ARRAY is

described as follows.

[Algorithm for Computing lcm(v/'M_)-Remainder] Consider an N x M RE-ARRAY

 is partitioned into subarrays of sizes N x 1, N x 2,..., N x vrM-. PE(i, j) on an

 subarray of size N x k is denoted by PEk(i, j).

Step 1 On each subarray of size N x k, compute rk such that x =- rk (mod k) by comput-

 ing the prefix k-remainder. When the computation of prefix k-remainder completed,

 PEk(N - 1, 0) broadcasts rk to all processors on the kth subarray.

Step 2 Compute the prefix k-remainder of the sequence (0,1,1,1, ... , 1) on each subarray

 of size N x k. After Step 2, each PEk(i, 0) knows rk j such that i - rk E (mod k).

Step 3 On each ith column, compare rk and rk,1 and examine whether the condition rk =
 rk = holds for all k (1 < k < vrM). To examine whether the condition holds for all k

 on each column, the logical OR is used.

Step 4 Find the minimum i such that rk = rk ; for all k (1 < k < ~) by using the

 leftmost finding algorithm. That is, compute r = min{irk = rk f for all k}. And

 broadcast r to all processors on an array. After Step 4, all processors know r, the

 solution of lcm(v/M-)-remainder.

4.2. BASIC PROPERTY AND ALGORITHMS 45

Step 5 Find the minimum i > 0 such that rk i = 0 for all k (1 < k < VV) by leftmost

 finding. That is, compute to = min{irk ; = 0 for all k}. If such w (= lcm(V"M_)) exists,

 broadcast w.

 [end of algorithm]

 To compute lcm(v/M-)-remainder only, we do not have to execute step 5. But lcm(VrM-)

has been computed in step 5 for the following algorithm that computes the sum of a binary

sequence by using lcm(V(-M))-remainder.

Lemma 4.10 The problem lcm(VM) -remainder can be solved in constant time on an N x
M RE-ARRAY.

Proof. For all k (1 < k < v/M-), the congruence x =_ r (mod k) holds. Therefore, from
Corollary 4.7, x =_ r (mod lcm(VM-)) holds. This completes the proof. o

 From Lemma 4.10, lcm(kM)-remainder can be computed in constant time on an N x
kM RE-ARRAY. Hence, from Lemma 4.1, the following lemma holds.

Lemma 4.11 The problem lcm(O(Vi))-remainder can be solved in constant time on an

N x M RE-ARRAY. 0

 From Lemma 4.9, there exists a fixed k such that lcm(k log N) > N. Therefore, the

following corollary holds.

Corollary 4.12 The sum of a binary sequence of length N can be computed in constant

time on a RE-ARRAY of size N x loge N. 0

Proof. To compute the minimum k such that lcm(k log N) > N, the lcm(k log N)-

remainder computation is repeated for k = 1, 2.... until lcm(k log N) > N holds. At the

end of the iteration, x = (x mod lcm(k log N)) holds because x is at most N. Since k is

constant, the number of the iteration is constant. Therefore, the sum of the binary sequence

can be computed in constant time. 0

 A more efficient algorithm can be obtained if the algorithm in Lemma 4.10 is modified

as follows: for the prime numbers p1, p2, ... defined in the proof of Lemma 4.9, a RE-

ARRAY is divided into subarrays of sizes N x pl, N x p2.... and x mod pi, x mod P2....

are computed on them. In this algorithm, we can compute the remainder from the modulus

46 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

of size 2°(M1°gM). Hence, in Corollary 4.12, the size of a RE-ARRAY is reduced to

N x loge N/ log log N. But this modification makes algorithm more complicated and does

not lead asymptotical improvement of our sorting algorithm.

4.3 New sorting algorithm

Sorting on a RE-ARRAY is defined as follows.

Input Let (a(0), a(l),..., a(N-1)) be a sequence of elements. Each a(i)is given to PE(i, 0)

 (0<i<N-1).

Output Let (a(ro), a(ri),... , a(ryl)) be the sorted sequence of the input sequence, that

 is, a(ri) < a(ri+1) for all i. Each PE(i, 0) knows a(ri); (0 < i < N - 1).

Without loss of generality, it is assumed that the elements are distinct, that is, for all i and

i (i # j), a(i) # a(j) holds. The rank of a(i), the number of smaller elements than a(i), is

denoted by ri.

4.3.1 Constant time sorting algorithm

First, we show a constant time sorting algorithm on RE-ARRAY of size N x N loge N. The

sorting algorithm is along an enumeration scheme, that is, by computing the rank of each

element. To compute the rank of each element, we use the algorithm for computing the sum

of a binary sequence. From Corollary 4.12, the sum of a binary sequence of length N can

be computed in constant time on an N x loge N RE-ARRAY. Therefore, the ranks of all

elements can be computed in constant time on an N x N loge N RE-ARRAY. Figure 4.6

illustrates the constant time sorting algorithm.

[Constant Time Sorting Algorithm] Consider that an N x N loge N RE-ARRAY is

 divided horizontally into N subarrays of size N x loge N. We denote PE(i, j) on the

 kth (0 < k < N - 1) subarray PEk(i, j), that is, PEk(i, j) means PE(i, k loge N + j).

Step 1 Each PE(i, 0) broadcasts a(i) to all processors on the same column. And each

 PEk(k,0) broadcasts a(k) to all processors on the same row.

Step 2 Each PEk(i, 0) compares a(k) and a(i). If a(k) > a(i), let rk,i <-- 1. Otherwise, let

 rk,i +-. 0.

4.3. NEW SORTING ALGORITHM

3 1 8 6 5

r

Step 1

rankof3=1

rank of 1 = 0

rank of 8=4

rank of 6=3

rank of 5=2

3

1

8

6

5

3 1 8 6 5

0 1 0 0 0

0 0 0 0 0

1 1 0 1 1

1 1 0 0 1

1 1 0 0 0

 Step 2

1 3 5 6 8

F 3

L / L / k

1

8

6

Step 3 Step 4

Figure 4.6: Constant time sorting

3

1

8

6

5

47

48 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

Step 3 Compute the rank of a(k) i.e. rk = T-'v Ol rk j on each kth subarray in constant
 time by computing the sum of the binary sequence.

Step 4 Each PEk(rk,0) sends rkth element, a(k), to PE(rk,0).

 [end of algorithm]

 The following theorem holds.

Theorem 4.13 Sorting of N elements can be performed in constant time on an N x

N loge N RE-ARRAY. 0

4.3.2 General sorting algorithm

We show a sorting algorithm on a RE-ARRAY of size less than N x N log2 N. The algorithm

in Corollary 4.12 cannot be used to compute the rank of all elements on N x M RE-

ARRAY(M < N loge N). But the remainder of the rank of each element can be computed

by the remainder computation, so the elements are classified by the remainder of their ranks

and are partitioned into the groups. And the sorting algorithm is applied to each group

recursively so that the rank of each element in the range of its group can be computed.

Then the rank of each element can be computed from the remainder of the rank and the

rank in the range of its group. Figure 4.7 illustrates the general sorting algorithm.

[General Sorting Algorithm] Similarly to the constant time sorting, consider that N x

 M RE-ARRAY is divided into N (horizontal) subarrays of size N x (M/N). And let

 w = lcm(M/N). If w < N, consider that an N x M RE-ARRAY is divided into

 w vertical subarrays of size N/w x M. Each PE(i, j) on the kth vertical subarray is

 denoted by PEk(i, j) (0 < i < N/w - 1, 0 < j < M). The algorithm has seven steps.

 As shown in Fig. 4.7, the remainder of the rank of each element is computed on each

 horizontal subarray in Steps 1,2, and 3. In Steps 4 and 5, the elements whose rank

 takes the remainder j is transferred to the jth vertical subarray. In Step 6, sorting

 the elements within each vertical subarray is performed recursively and then the rank

 of each elements is computed. In Step 7, each element is transferred to the correct

 position.

Step 1, Step 2 Execute the same as step 1 and step 2 of the constant time sorting.

4.3. NEW SORTING ALGORITHM 49

22 13 31 75 62 7 51 12 34

(rank of 22) mod 3 = 0

(rank of 13) mod 3 = 2

(rank of 31) mod 3 = 1

(rank of 75) mod 3 = 2

(rank of 62) mod 3 = 1

(rank of 7) mod 3 = 0

(rank of 51) mod 3 = 0

(rank of 12) mod 3 = 1

(rank of 34) mod 3 = 2

22 7 51 31 62 12 13 75 34

2
1 41 1 Ai 1

13

31

75

62

7

51

12

34

Step 1^-3 Step 4^-5

22 7 51 31 62 12 13 75 34

rank of 22 rank of 31 rank of 13
=1X3+0 =1X3+1 =0X3+2
=3 =4 =2

rank of 7 rank of 62 rank of 75
=0X3+0 =2X3+1 =2X3+2

=0 =7 =g

rank of 51 rank of 12 rank of 34
=2X3+0 =0X3+1 =1X3+2

=6 =1 =5

7 12 13 22 31 34 51 62 75

t.A
1 £4 li 1 A1

13

•i 1

31

62

7

51

75

12

34

Step 6 Step 7

Figure 4.7: General sorting

50 CHAPTER 4. SORTING ON A RECONFIGURABLE ARRAY

Step 3 Compute w-remainder of (rk,o, rk,1, ..., rk,N_1) on each the kth horizontal sub-

 array, that is, compute rk such that rk - rk (mod w). From Lemma 4.10, this can

 be done in constant time. In case w > N, execute step 4 of the constant time sorting

 algorithm, because rk = r'k holds. Otherwise, execute the following steps to gather

 elements whose rank takes the same remainder.

Step 4 Each PEA (0, WIN) (0 < j < w - 1, 0 < k < N - 1) let its local variable dj (k)
 NULL. Since for all k each PE,, (0, WIN) knows a(k), let d, (k) +- a(k). After
 Step 4, (dj (0), dj (1), ... , dj (N - 1)) contains all elements whose rank takes the re-

 mainder j.

Step 5 Compress (dj (0), dj (1), ... , d? (N - 1)) for each j on each vertical subarray. After

 Step 5, each PEA (i, 0) knows one of the elements whose rank takes the remainder j.
 Let sj,i be the index such that PE'j(i, 0) knows a(sj,i).

Step 6 Sort each sequence (a(sj,o), a(sj,l), . .. , a(sj,N/w_1)) for all j on each vertical subar-
 ray recursively. Let the rank of a(sj,i) in the sequence (a(sj,o), a(sj,l), ... , a(sj,N/,,,-1))

 be rj,i. Then the rank of (a(sj,i) in < a(0), a(1), ..., a(N - 1)) is rj,iw + j.

Step 7 Similarly to step 4 of the constant time sorting, send a(sj,i) to PE(rj,iw + j, 0).

 [end of algorithm]

Theorem 4.14 N elements can be sorted in O(T) time on N x Nlog(T) N RE-ARRAYfor
every 1 < T < log* N.

Proof. The correctness of the algorithm can be proved easily by induction on the size of

a RE-ARRAY. We have to analyze the computation time required in this algorithm. Let

t(N, M) be the computation time required if this algorithm sorts N elements on N x M

RE-ARRAY. In step 6, this algorithm sorts N/w elements on each N/w x M horizontal

subarray recursively. Hence the following equality holds.

 t(N, M) = f t(N/2o(N/M), M) + O(1) if M < N loge N
 O(1) if M > N 1og2 N

Therefore, t(N, N log (T) N) = O(T). a

 Theorem 4.14 implies the following corollaries.

4.4. CONCLUDING REMARKS 51

Corollary 4.15 N elements can

ARRAY for any fixed integer a >

Corollary 4.16 N elements can

be

1.

be

sorted in

sorted

constant

in O(log' N)

time

time

on an N x N log(es) N RE-

0

on an N x N RE-ARRAY.

0

4.4 Concluding remarks

In this chapter, we have presented a fast sorting algorithm on reconfigurable arrays. Our

sorting algorithm requires a smaller number of processors than the previous algorithm [40].

Recently, more efficient algorithm has developed: N elements can be sorted in constant time

on an N x N reconfigurable array[7][19]. However a method presented in this chapter, the

remainder method is effective with regard to counting is and has lots of applications. The

author will report the applications at some other time.

Chapter 5

Concl usions

In this dissertation, we have shown three topics with regard to parallel algorithms on bus-

connected machines. In Chapter 2, we presented practical methods to realize the priority

buses using common buses. In Chapter 3, we showed optimal sorting algorithms on bus-

connected processor arrays. In Chapter 4, we presented a sub-logarithmic time sorting

algorithm on a reconfigurable array. Furthermore, in previous papers, the author have been

studying and showed the following interesting results:

 • N elements can be sorted in (N/W + loge N) time on a 1-dimensional processor array

 of size N with multiple buses arranged to W layers [27].

 • A 2-dimensional processor array of size N x N with buses arranged to a single layer can

 be simulated in O(log N) time on a 2-dimensional processor array with buses arranged

 to an orthogonal tree [28].

 • Image component labeling of size N x N can be performed in O(log2 N) time on a

 2-dimensional processor array with buses arranged to an orthogonal tree [29].

The author intend to clarify the computation power of bus-connected processor arrays and

reconfigurable arrays.

52

Acknowledgments

The author wishes to express his gratitude for guidance and encouragement received from

Professor N. Tokura. He also wishes to thank to Associate Professors T. Araki, K. Hagihara,

and Y. Tsujino. He wishes to express his thanks to the members of his laboratory, especially

Assistant Professor T. Masuzawa, with whom I have worked together, for his time and

kindness. Furthermore, he would like to thank T. Kasami, A. Hasimoto, and K. Taniguchi

for their usefull comment on this dissertation. Finally, he wishes to thank to the members of

Osaka University, especially Professors T. Kikuno, K. Torii, T. Kasiwabara, H. Miyahara,

H. Nisitani, M. Sudo, M. Yachida, H. Wakita, M. Fujii, R. Mizoguchi, J. Toyoda, and

T. Kitahasi.

53

B ibliography

 [1] A. Aggarwal, Optimal bounds for finding maximum on array of processors with k global

 buses, IEEE Transactions on Computers, C-35,1,pp.62-64, 1986.

 [2] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer

 algorithms, Addison-Wesley, 1974.

 [3] M. Ajtai, J. Kolmos and E. Szemeredi, An O(n log n) sorting network, Proceedings of

 the 15th Annual ACM Symposium on Theory of Computing, pp.1-9, 1983.

 [4] S. G. Akl, Parallel sorting algorithms, Academic Press, 1985.

[5] S. G. Akl, The design and analysis of parallel algorithms, Prentice-Hall, 1989.

[6] P. Beame and J. Hastad, Optimal bounds for decision problems on the CRCW PRAM,

 Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp.83-93,

 1987.

 [7] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, The power of reconfiguration,

 Journal of Parallel and Distributed Computing, 13, pp.139-153, 1991.

[8] D. Bitton, D. J. Dewitt, D. K. Hisao and J. Menon, A taxonomy of parallel sorting,
 ACM Computing Surveys, 16, 3, pp.287-319, 1984.

[9] S. H. Bokhari, Finding maximum on an array processor with a global bus, IEEE Trans-
 actions on Computers, C-33, 2, pp.133-139, 1984.

[10] B.S.Chlebus, K.Diks, T.Hagerup, and T.Radzik, Efficient simulations between

 concurrent-read concurrent-write PRAM models, Proceedings of the 13th Mathematical

54

BIBLIOGRAPHY 55

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Foundations of Computer Science(Lecture Notes in Computer Science 324),pp.231-239,

1988

R. Cole, Parallel merge sort, Proceedings of the 27th Annual Symposium on Founda-

tions of Computer Science, pp.511-516, 1986.

A. Gibbons and W. Rytter, Efficient parallel algorithms, Cambridge University Press,

1989.

S. Fujita, M. Yamasita and T. Ae, An optimal sorting algorithm for parallel processor

with multiple buses, Proceedings of Joint Symposium on Parallel Processing '90, pp.33-

40, 1990, in Japanese.

S. Fujita, M. Yamasita and T. Ae, An optimal sorting algorithm for parallel processors

with multiple buses, Transactions of IPS Japan, 32, 7, pp.800-806, 1991, in Japanese.

A. Gibbons and W.Rytter, Efficient parallel algorithms, Cambridge University Press,

1988.

K. Iwama, Feasible but still powerful PRAMs, Technical Report COMP 86-53, Institute

of Electronics, Information and Communication Engineers, 1986.

K. Iwama and Y. Kambayashi, An O(log n) parallel connectivity algorithm on the mesh

of buses, Information Processing, 11, pp.305-310, 1989.

K. Iwama, E. Miyano and Y Kambayashi, A parallel sorting algorithm on the mesh-

bus machine, Technical Report SIGAL 18-2, Information Processing Society of Japan,

1990.

J. Jang and V. K. Prasanna, An optimal sorting algorithm on reconfigurable mesh,

Technical Report IRIS#227, Univ. of Southern California, 1991.

D. E. Knuth, The art of computer programming, vol.3 (sorting and searching),Addison-

Wesley, 1973.

V. K. P. Kumar and C. S. Raghavendra, Array processor with multiple broadcasting,

Journal of Parallel and Distributed Computing, 4, pp.173-190,1987.

T. Leighton, Tight bounds on the complexity of parallel sorting, Proceedings of the 16th

Annual ACM Symposium on Theory of Computing, pp.71-80, 1984.

56

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

 BIBLIOGRAPHY

R. Miller and Q. F. Stout, Efficient parallel convex hull algorithms, IEEE Transactions

on Computers, C-37, 12, pp.1605-pp.1618, 1988.

R. Miller, V. K. P. Kumar, D. I. Reisis and Q. F. Stout, Data movement operations and

applications on reconfigurable VLSI arrays, Proceedings of International Conference on

Parallel Processing, 1, pp.205-208, 1988.

R. Miller, V. K. P. Kumar, D. I. Reisis and Q. F. Stout, parallel computation on

reconfigurable meshes, to appear in IEEE Transactions on Computers.

D. E. Muller and F. P. Preparata, Bounds to complexities of networks for sorting and

for switching, Journal of ACM, 22, 2, pp.195-201, 1975.

K. Nakano, T. Masuzawa, K. Hagihara, and N. Tokura, A parallel sorting algorithm on

1-dimensional grid with buses Transactions of IEICE(DI), J72-D-I, pp.631-641, 1989,

in Japanese.

K. Nakano, T. Masuzawa, K. Hagihara, and N. Tokura, A parallel algorithm for sim-

ulating communication on 2-D Grid with buses, Transactions of IEICE(DI),J73-D-I, 3,

pp.269-279, 1990 in Japanese.

K. Nakano, T. Masuzawa, K. Hagihara, and N. Tokura, An efficient parallel algorithm

for image component labeling on 2-dimensional grid with buses, Transactions of IE-

ICE(DI), J73-D-I, 4, pp.403-414, 1990 in Japanese.

C. P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh connected com-

puters, Proceedings of the 18th Annual ACM Symposium on Theory of Computing,

pp.255-263, 1986.

Q. F. Stout, Mesh-connected computers with multiple broadcasting, IEEE Transactions

on Computers, C-32, 9,pp.826-830,1983.

Q. F. Stout, Meshes with multiple buses, Proceedings of the 27th Annual Symposium

on Foundations of Computer Science, pp.264-272, 1986.

C. D. Thompson and H. K. Kung, Sorting on a mesh-connected parallel computer,

Proceedings of the 8th Annual ACM Symposium on Theory of Computing, pp.58-64,

1976.

BIBLIOGRAPHY 57

[34] B. F. Wang and G. H. Chen, Two-dimensional processor array with a reconfigurable

 bus system is at least as powerful as CRCW MODEL Information Processing Letters,

 36, 1, pp.31-36, 1990.

[35] B. F. Wang and G. H. Chen, Constant time algorithms for the transitive closure and
 some related graph problems on processor arrays with reconfigurable bus systems, IEEE

 Transactions on Parallel and Distributed Systems, 1, 4, 1990.

[36] B. F. Wang and G. H. Chen, Constant time algorithms for sorting and computing

 convex hulls, to appear in Proceedings of International Computer Symposium Tsing-

 Hua Univ., Taiwan, 1990.

[37] B. F. Wang and G. H. Chen, An O(1) time algorithm for generating computation tree

 forms, to appear in Proceedings International Computer Symposium, Tsing-Hua Univ,

 Taiwan, 1990.

[38] B. F. Wang, G. H. Chen and H. Li, Fast algorithms for some arithmetic and logic oper-
 ators, Technical Report Department of Computer Science & Information Engineering

 National Taiwan Univ., 1990.

[39] B. F. Wang, G. H. Chen and H. Li, Configurational computation: a new computation
 method on processor arrays with reconfigurable bus systems. to appear in Proceedings

 of International Conference on Parallel Processing, 1991.

[40] B. F. Wang, G. H. Chen and F. C. Lin, Constant time sorting on a processor array with

 a reconfigurable bus system, Information Processing Letters, 34, 4, pp.187-192, 1990.

	139@00001.pdf
	139@00002.pdf
	139@00003.pdf
	139@00004.pdf
	139@00005.pdf
	139@00006.pdf
	139@00007.pdf
	139@00008.pdf
	139@00009.pdf
	139@00010.pdf
	139@00011.pdf
	139@00012.pdf
	139@00013.pdf
	139@00014.pdf
	139@00015.pdf
	139@00016.pdf
	139@00017.pdf
	139@00018.pdf
	139@00019.pdf
	139@00020.pdf
	139@00021.pdf
	139@00022.pdf
	139@00023.pdf
	139@00024.pdf
	139@00025.pdf
	139@00026.pdf
	139@00027.pdf
	139@00028.pdf
	139@00029.pdf
	139@00030.pdf
	139@00031.pdf
	139@00032.pdf
	139@00033.pdf
	139@00034.pdf
	139@00035.pdf
	139@00036.pdf
	139@00037.pdf
	139@00038.pdf
	139@00039.pdf
	139@00040.pdf
	139@00041.pdf
	139@00042.pdf
	139@00043.pdf
	139@00044.pdf
	139@00045.pdf
	139@00046.pdf
	139@00047.pdf
	139@00048.pdf
	139@00049.pdf
	139@00050.pdf
	139@00051.pdf
	139@00052.pdf
	139@00053.pdf
	139@00054.pdf
	139@00055.pdf
	139@00056.pdf
	139@00057.pdf
	139@00058.pdf
	139@00059.pdf
	139@00060.pdf
	139@00061.pdf
	139@00062.pdf
	139@00063.pdf
	139@00064.pdf
	139@00065.pdf
	139@00066.pdf

