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Abstract

Processor networks connected by buses have attracted considerable attention. Since buses 

enhance communication capabilities compared with one-to-one communication links, algo-

rithms on bus-connected networks run faster than on usual link-connected networks. Several 

conventions concerning simultaneous sending to the same bus have been proposed: exclusive 

(simultaneous sending is prohibited), common (simultaneous sending is permitted only if the 

same value is sent) arbitrary (simultaneous sending is permitted and one of the processors 

trying to send to the same bus succeeds), and priority (simultaneous sending is permit-

ted and the rightmost processor trying to send to the same bus succeeds). The power of 

these models become stronger as going backward in this order and become more practical 

as going forward. It has been open whether the models differ properly with respect to the 

power. In Chapter 2, we present two practical methods to realize a priority bus using com-

mon buses. From this result, it should be concluded that the difference of power among 

common, arbitrary, and priority is not proper. 

  Since the computation time of many problems depends on that of sorting, it is very 

important to develop fast sorting algorithms. In Chapter 3, we present the following parallel 

algorithms on bus-connected processor arrays: for every fixed e > 0, N elements can be 

sorted in O(N/W) time on a 1-dimensional processor array of size N with W (W < N") 

buses and N2 elements can be sorted in O(N/W) time on a 2-dimensional processor array of 

size N x N with W (W < Nl-E) buses at each row and each column. Since the computation 

time of these algorithms attains the obvious lower bound S2(N/W), these algorithms are 

optimal. 

  The bus system in Chapters 2 and 3 is referred to as a static bus system in the sense 

that the configuration of buses cannot be changed during the execution of the algorithms. A 

reconfigurable bus system is a bus system whose configuration can be dynamically changed. 
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A reconfigurable array is a processor array that consists of processors arranged to a 2-

dimensional grid with a reconfigurable bus system. Since a reconfigurable array is more 

powerful than a PRAM and more practical, a reconfigurable array becomes the focus of 

attention. In Chapter 3 we show that for every T, (1 < T < log* N), N elements can be 

sorted in O(T) time on a reconfigurable array with N x N log(T) N processors. This result 

implies that N elements can be sorted in log* N time on a reconfigurable array of size N x N. 

  Chapter 2, 3, and 4 are based on the results in [1,4], [3,5], and [2,6], respectively.
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Chapter 1

Introduction

Most sequential algorithms have been developed on the basis of a RAM (random access 

machine)[2]. Since a RAM reflects practical sequential computers and is amenable to the-

oretical analysis, a RAM is regarded as the most suitable theoretical model for sequential 

algorithms. On the contrary, there is no general consensus concerning the best parallel the-

oretical model. In fact, many formal models of parallel computation have appeared in the 

literature. Among many kinds of parallel formal models, a PRAM (parallel random access 

machine)[5][15] have been studied most frequently and parallel algorithms on it have been 

actually developed. One of the reason why a PRAM is major is that a PRAM is easy to 

deal with. However, the parallel algorithms on a PRAM seem to be impractical, because it 

is considered to be impossible to realize the shared memory employed by a PRAM. 

  On the other hand, parallel algorithms on processor arrays connected with one-to-one 

communication links such as a mesh connected machine, a hypercube machine, etc, have 

been investigated. Since the one-to-one communication link is more practical than the shared 

memory, these processor arrays are more feasible than a PRAM. Actually, many parallel 

machines based on mesh and hypercube topologies have been developed. But, non-trivial 

problems require computation time at least as large as the diameter of the network. Most of 

the algorithms on processor arrays with one-to-one communication links are rather slower 

than those on a PRAM. To overcome the limit of computation time bounded by the diameter 

of networks, processor arrays with capability of one-to-many communication have attracted 

considerable attention. It is known that many problems can be solved fast on processor

1



2 CHAPTER 1. INTRODUCTION 

arrays with buses because buses decrease the diameter of networks and enhance the com-

munication capabilities. For example, finding maximum [1] [9] [21] [31], finding median [31], 

sorting [21] [31], image processing [9] [21] [29] [32], and component labeling [16] [17] [28] 

have been efficiently solved. 

  Several models concerning simultaneous sending to the same bus have been proposed [16]. 

For example, exclusive (simultaneous sending is prohibited), common (simultaneous sending 

is permitted only if the same value is sent), arbitrary (simultaneous sending is permitted 

and one of the processors trying to send to the same bus succeeds), and priority (simul-

taneous sending is permitted and the rightmost processor trying to send to the same bus 

succeeds) have been proposed. Obviously, the power of these models become stronger as 

going backward in this order and become more practical as going forward. It has been open 

whether the differences of the power and the practicalness among these models are proper. 

One of the main interests of researchers is to develop faster algorithms using less powerful 

buses. 

  The bus system mentioned above is static in the sense that the configuration of buses 

cannot be changed during the execution of the algorithms. To speed up the computation, 

a reconfigurable bus system which has capability of changing bus configuration dynami-

cally has been proposed. Such a dynamic bus system is referred to as a reconfigurable bus 

system. A reconfigurable array is a processor array that consists of processors arranged to 

a 2-dimensional grid with a reconfigurable bus system. Recently, several algorithms on a 

reconfigurable array have been investigated. For example, sorting [36] [40], graph prob-

lems [35] [38], computational geometry problems [23] [36], image processing [24] [25], basic 

arithmetic operations [38] [39], generating computation tree forms [37] and simulating the 

PRAM [34] have been solved. Furthermore, it is known that the reconfigurable bus is at 

least as powerful as a PRAM if enough processors are available [34]. And there exists a 

problem which can be solved faster on a reconfigurable array than on a PRAM; the logical 

exclusive OR of a binary vector of size N can be computed in constant time on a reconfig-

urable array of size N, while this problem requires )(log N/ log log N) timet on a PRAM 

with a polynomial number of processors. 

  In this dissertation, we will discuss some topics on processor arrays with buses. In 

Chapter 2, we discuss the feasibility of a bus whose model is priority. In other words, we 

  tThroughout this dissertation, the log to the base 2 is used.
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present two practical methods to realize a priority bus using common buses. Thus, it should 

be concluded that a priority bus is a practical model. In Chapter 3, we present optimal 

sorting algorithms on processor arrays with multiple buses. That is, we will show that for 

every fixed e > 0, N elements can be sorted in O(N/W) time on a 1-dimensional processor 

array of size N with W (W < Nl-`) buses and N2 elements can be sorted in O(N/W) 

time on a 2-dimensional processor array of size N x N with W (W < N''E) buses at 

each row and each column. Since the computation time of these algorithms attains the 

obvious lower bound SZ(N/W), these algorithms are optimal. But this algorithm is at most 

as fast as O(NE) time. Even if a polynomial number of processors are available, sorting 

of N elements requires S2(log N/ log log N) time not only on a processor array with static 

buses but also on a PRAM. In order to sort N elements in o(log N/ log log N) time, we have 

to deliver more powerful model than a PRAM. In Chapter 4, we consider a reconfigurable 

array, which is more powerful than a PRAM but more practical. we will show that for every 

T, (1 < T < log* N), N elements can be sorted in O(T) time on a reconfigurable array with 

N x N log(T) N processors. This sorting algorithm is based on an algorithm computing the 

number of 1's in a given binary sequence. The algorithm to compute the number of 1's is 

useful for the other problems.

Let log(k) =log log...log and log' n be the smallest k such that log(k) n < 1. 

              k times



Chapter 2

Methods to real ize the priority

bus

A PRAM employs processors which have capability to access any memory cell in the shared 

memory(Fig. 2.1). Several models of a PRAM have been proposed with regard to simulta-

neous reading and writing to the same memory cell as follows: 

  • EREW (exclusive read exclusive write) 

    Both simultaneous reading and writing are prohibited, 

  • CREW (concurrent read exclusive write) 

    Only simultaneous reading is permitted, 

  • CROW (concurrent read concurrent write) 

    Both simultaneous reading and writing are permitted. 

Furthermore, a CRCW model is subdivided as follows: 

  • common 

    All processors trying to write into a same memory cell must be writing the same value, 

  • arbitrary 

    If several processors simultaneously try to write into a same memory one of them 

    succeeds and writes its value, but there is no rule assumed to govern the selection of 

    the successful processor. 

4
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PE(O) PE(1) PE(2) PE(3) PE(4) PE(5) PE(6) PE(7)

Shared Memory

                           Figure 2.1: PRAM 

  . priority 

    If several processors simultaneously try to write to a same cell, then the lowest-

    numbered processor among them succeeds. 

Obviously, a priority model has the strongest power of the three. 

  Similarly to simultaneous writing on a PRAM, several bus models have been proposed 

with regard to simultaneous sending to the same bus as follows: 

  • exclusive 

    Two or more processors cannot send to the same bus. 

  • common 

    All processors trying to send to the same bus must be sending the same value, 

  • arbitrary 

    If several processors simultaneously try to send to the same bus, one of them succeeds 

    and transfers its value, but there is no rule assumed to govern the selection of the 

    successful processor, 

  • priority 

    If several processors simultaneously try to send to the same bus, then the rightmost 

    processor among them succeeds. (the rightmost processor means the processor nearest 

    to one end of the bus.)



6 CHAPTER 2. METHODS TO REALIZE THE PRIORITY BUS 

A priority model is most powerful and a exclusive model is weakest of the four. Indeed, 

there is a problem which can be solved faster using an arbitrary model than using a common 

model[16] [17]. 

  In this chapter, we present practical methods to realize (or simulate) communication 

through a bus whose model is priority. To present feasible methods, we have to be clear 

what devices are available. We assume that only a bus whose model is common and which 

can transfer one bit value in a time unit (shortly a 1-bit common bus) is only available 

as a communication device. This assumption is reasonable because it is not so difficult to 

develop a 1-bit common bus by recent technology. 

   It is easy to realize a w-bit common bus (i.e. a bus whose model is common and which 

can transfer w bits value in a time unit). If w 1-bit common buses are arranged, we can 

realize w-bit common bus; to transfer each bit of w bits value, a 1-bit common bus is used. 

Since the constraint of a w-bit common bus concerning simultaneous sending holds, different 

values are never sent to each 1-bit common bus. On the other hand, if we use this method 

to realize a w-bit priority bus (i.e. a bus whose model is priority and which can transfer 

w bits value in a time unit), different values may be sent to a 1-bit common bus. This 

does not meet the constraint of a common model. To realize a w-bit priority bus, we will 

show methods to find the rightmost processor among processors trying to send to the bus 

using 1-bit common buses: after finding the rightmost processor, it actually sends the data. 

For example, the following method will be the first idea: the rightmost processor trying to 

send to the bus can be found in O(log n) time using a 1-bit common bus by means of a 

binary search method, where n is the number of processors connected with the bus. By this 

method, a w-bit priority bus can be realized in O(log n) time. But, since most algorithms 

on processor networks with buses take logarithmic or sub-logarithmic time, the overhead of 

the logarithmic factor is fatal. It is important to realize a w-bit priority bus in low constant 

time even if extra 1-bit common buses are used. 

  In this chapter, we will present two methods to realize a w-bit priority bus in low constant 

time. In these methods, to find the rightmost processor, 1-bit common buses arranged to 

O(logn) layers are used. The arrangements are called a binary tree layout (Fig. 2.3)and 

an extended binary tree layout(Fig. 2.4), respectively. In Section 2.2, we will show that the 

rightmost processor can be found in one time unit on the binary tree layout. But in this 

method, each processor has to send to log n buses simultaneously. In Section 2.3, we will



2.1. MODEL AND DEFINITION
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              Figure 2.2: A 1-dimensional processor array with buses 

improve this method and show that the rightmost processor can be found in low constant 

time on the extended binary tree layout. In this method, each processor will access at most 

two buses in a time unit. We will compare these two methods in Section 2.4. 

2.1 Model and definition 

A 1-dimensional processor array with buses consists of processors PE(0), PE(1), ... , PE(n-

1) arranged to a 1-dimensional grid with multiple buses. Figure 2.2 illustrates an example 

of a processor array with buses. On processor arrays, each processor is a RAM extended 

by communication commands and works synchronously. Assume that only 1-bit common 

buses are arranged to a processor array. As shown in Fig 2.2, buses on a processor array 

arranged to layers. Layers are called the 1st layer, the 2nd layer, ..., from the bottom. In 

Fig. 2.2, the 3rd layer consists of two buses: a bus over PE(0), ... , PE(7) and a bus over 

PE(8), ... PE(15). These buses are denoted as [0, 7] and [8,15], respectively. Furthermore, 

buses on a layer is denoted as a set of buses. For example the buses on the 3rd layer in 

Fig. 2.2 are denoted as {[0, 7], [8, 15]}. 

  In Sections 2.3 and 2.4, in order to simulate communication through a priority bus by 

1-bit common buses, we will present two methods to find the rightmost processor among 

processors trying to send to a priority bus. To formalize finding the rightmost processor, 

we define the rightmost finding as follows: 

Definition 1 (the rightmost finding) 

Input. Let (inp(0), inp(1),... inp(n - 1)) be an n bit binary vector. Each inp(i) (0 < 

i < n - 1) is given to PE(i). This means that PE(i) try to send data to a priority bus iff 

inp(i) = 1.
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                        Figure 2.3: Binary tree layout 

Output. Let (out(0), out(1),... , out(n - 1)) be an n bit binary vector defined as follows: 

               out(i) 1 if i = max{klinp(k) = 1} 

= 

                              0 otherwise 

Each PE(i) knows the value of out(i). Furthermore, PE(i) such that out(i) = 1 is called the 

rightmost processor. 0 

2.2 Method 1 for rightmost finding 

Figure 2.3 illustrates a processor array with buses arranged to a binary tree layout. In this 

section, we will show a method to find the rightmost processor in a time unit on processor 

arrays with 1-bit common busses arranged to the binary tree layout. The binary tree layout 

can be defined formally as follows: 

Definition 2 (binary tree layout) 

  • the bus layout of the j th layer 1 < j < log n is: 

                    {[0,23 -1],[2-7,2.21-1],...,[n-23,n-1]}. 

   • Each processor is connected to log n buses over it on all layers *. 

0 

  On the binary tree layout, concerning the bus [s, t] which connects PE(s), PE(s + 1), ... , 

PE(t), we call that PE(s), PE(s + 1), ... , PE((s + t - 1)/2) is connected by the left side of 

the bus [s, t] and PE((s + t + 1)/2),. .. , PE(t) is connected by the right side. 
  *Throughout this dissertation

, for cleaner presentation, we will omit the floor or ceiling operators neces-

sary to ensure that all values are integers.
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  We now present a rightmost finding algorithm on the binary tree layout by means of a 

parallel binary search. The similar algorithm on the PRAM was presented in [10]. 

  The idea of the rightmost finding algorithm is as follows. Consider the bus, [0, n - 1], 

on the log nth layer. PE(i) connected by the right side of [0, n - 1] sends 1 to [0, n - 1] 

if inp(i) = 1. And PE(i) connected by the left side of [0, n - 1] tries to receive data from 

[0, n - 1]. If the processors connected by the left side receives 1, then these processors will 

know that they are not the rightmost processor. Otherwise, these processors can know that 

they are candidates of the rightmost processor. Assume that there is a processor PE(i) 

(n/2 < i < n-1) connected by the right side of [0, n-1] and whose input value, inp(i), is 1. 

Then by using the bus [n/2, n - 1], the processors can find whether the rightmost processor 

belongs to [n/2, 3n/4 - 1] or [3n/4, n - 1] similarly. By iterating similarly, the rightmost 

processor can be found in log n steps. Since this method takes O(log n) time, we reduce the 

computation time by simultaneous communication as follows: 

[Method 1] PE(i) with inp(i) = 0 does nothing in this algorithm. If inp(i) = 1 then PE(i) 
    executes the following steps. 

Step 1 For each bus on the jth layer (1 < j < log n), executes the following commands 

    simultaneously. 

      1. If the processor is connected by the right side of the bus, it sends 1 to the bus. 

      2. If the processor is connected by the left side of the bus, it tries to receive data 

        from the bus. 

Step 2 If PE(i) receives no data from every bus in Step 1, then PE(i) lets out(i) := 1. 

    Otherwise lets out(i) := 0. O 

In this algorithm, each processor executes log n communication commands simultaneously. 

We have: 

Theorem 2.1 Method 1 finds the rightmost processor in a time unit on the binary tree 

layout. 

Proof. Let d = log n and we prove the theorem by induction on d. If d = 1, the rightmost 

processor can be found obviously. We assume that the rightmost processor can be found in 

case d - 1, and prove that the rightmost finding can be completed in case d.
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3 
2 
1 
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                  6 7               9A 12 13 14 17 
   G(0) G(1) G(2) G(3) G(4) G(5) G(6) G(7) 

                   Figure 2.4: Extended binary tree layout 

  The binary tree layout of size n consists of two binary tree layout of size n/2 and a bus 

[0, n]. Let PE(r) be the rightmost processor. If 0 < r < n/2-1, the rightmost processor can 

be found correctly on the left binary tree layout of size n/2 from the induction hypothesis. 

If n/2 < r < n - 1, processors connected by the left side of [0, n - 1] receives 1 from PE(r) 

through the bus [0, n - 1], PE(i) (0 < i < n/2 - 1) cannot become the rightmost processor. 

Furthermore, from the induction hypothesis, the rightmost processor can be found on the 

right binary tree layout of size n/2. This completes the proof. 0

i i

i i i 6 7 i i 1 1 12 1 13 14 1 1 17 i, 1 i 211

2.3 Methods 2 for rightmost finding 

In this section, we present another rightmost finding algorithm. In the previous algorithm, 

each processor has to execute communication commands simultaneously. In the algorithm 

in this section, each processor execute at most one send and one receive command in a time 

unit. This algorithm is executed on the extended binary tree layout depicted by Fig. 2.4. 

Definition 3 (extended binary tree layout) 

  • For simplicity, processors on the extended binary tree layout are indexed as follows: 

                  PE(i, j) (0 < i < 2d - 1,1 < j < d) 

    where d is an integer such that n = d . 2d. In other words, PE(i, j) corresponds to 

   PE(i.d+j-1). 

  • The bus layout of the kth layer (0 < k < d) is 

                {[0, d . 2k - 1], [d . 2k, 2 - d . 2k - 1].... [n - d . 2k, n - l]}. 

    Note that layers are indexed by 0, 1, ... , d, for simplicity. 

  • Each PE(i, j) is connected by two buses on the 0th layer and the jth layer only. 0
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  On the extended binary layout, for each i (0 < i < 2d- 1), PE(i, 1), PE(i, 2),..., PE(i, d) 

forms the ith group denoted by G(i). If we consider that processors in a group merged into 

a processor, the extended binary tree layout can be regarded as a binary tree layout. 

  Consider a bus [s, t] on the j th layer on the extended bus layout. This bus connects 

PE(s, j), PE(s + 1, j), ... , PE(t, j). Similarly to the binary tree layout, PE(s, j), PE(s + 

1, j), ... , PE ((s + t - 1)/2, j) are connected by the left side of the bus and PE((s + t + 

1)/2, j), ... , PE(t, j) are connected by the right side of the bus. 

  First, we will show the outline of the rightmost finding method on the extended binary 

tree layout. 

[Outline of Method 2] 

Step 1 For each group G(i), determine whether there exists a processor in the group whose 

    input value is 1. In other words, for each i (0 < i < 2d - 1) 

                  u(i) = inp(i, 1) V inp(i, 2) V ... V inp(i, d) 

    is computed where inp(i, j) denotes input variable of PE (i, j). 

Step 2 Find the rightmost element of u(0), u(1), ... , u(2d - 1) whose value is 1. In other 

     words, compute 

                       R = max{slu(s) = 1}. 

    After Step 2, the rightmost processor belongs to G(R). 

Step 3 Find the rightmost element among input values inp(R, 1), inp(R, 2), ... , inp(R, d). 

    In other words, compute 

                        r = max{sjinp(R,s) = 1} 

    After Step 3, PE(R, r) is the rightmost processor. O 

Step 1 can be easily performed by buses on the 0th layer. Similarly to Theorem 1, Step 2 

can be performed by the parallel binary search method. Step 3 can be performed as fol-

lows: Assume that inp(R, jl) = inp(R, j2) = • • • = inp(R, jk) = 1 (ji < j2 < • < 

3k), and the other input values are 0. Then PE(R, jk) is the rightmost processor. Let 

B(jl), B(j2), ... , B(jk) be buses which connects PE(R, jl), PE(R, j2), ..., PE(R, jk) on the
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j1th, j2th, ... jkth layers, respectively. Concerning these buses, B(jk) is longest, and in-

cludes B(jl), B(j2), ... , B(jk_1). From this fact B(jk) can be found, and then the rightmost 

processor PE(R, jk) can be computed. 

  We now show the method on the extended binary tree layout precisely. 

[Method 2] Each PE(i, j) employs local variables u(i), v(i, j), w(i, j), and w(i). Initially 
    each variable takes value 0. 

Step 1 For each PE(i, j), if inp(i, j) = 1, PE(i, j) sends 1 to the bus on the 0th layer. Each 

    PE(i, j) tries to receive data from the bus on the 0th layer, and if it receives 1, then 

    let u(i) := 1, otherwise u(i) := 0. 

Step 2 Each PE(i, j) with u(i) = 1 executes the following substeps. If u(i) = 0, PE(i, j) 

    skips Step 2. 

     1. Each PE(i, j) connected by the right side of the bus on the jth layer, sends 1 to 

        the bus. Each PE(i, j), which is connected by the left side of the bus on the jth 

        layer, receives data from the bus. If PE(i, j) receives 1, v(i, j) will be set to 1, 

        otherwise set to 0. 

     2. If v(i, j) = 1, PE (i, j) sends 1 to the bus on the 0th layer. Each PE(i, j) tries to 

        receive data from the bus on the 0th layer, if PE(i, j) cannot receive 1 from the 

       bus, u(i) is the rightmost element taking value 1 among u(0), u(1), . . . , u(2' - 1). 

       Let R be the index such that u(R) is the rightmost element. 

Step 3 1. Each PE(R, k) belonging to G(R) sends 1 to the bus on the kth layer if 

        inp(R, k) = 1. Every processor PE(i, j) tries to receive data from the bus on 

       the jth layer. If it receives 1 then w(i, j) := 1, otherwise w(i, j) := 0 

     2. If w(i, j) = 1, PE(i, j) sends 1 to the bus on the 0th layer. Every processor 

        PE(i, j) tries to receive data from the bus on the 0th layer, and if it receives 1 

        then w(i) := 1. In other words, compute 

                      w(i) := w(i,1) V w(i, 2) V ... V w(i, d) 

     3. Find the rightmost element taking value 1 among w(0), w(1), ..., w(2d - 1). 

       This can be performed by the similar scheme to Step 2. Then, let w(RG) be the 

       rightmost element, that is, RG = max{ijw(i) = 1}.
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      4. Find the leftmost element taking value 1 among w(0), w(1), ... , w(2d - 1). This 

        can be performed by the similar scheme to Step 2. Then let w(LG) be the 

       leftmost element, that is, LG = min{ilw(i) = 1}. 

     5. Each PE(RG, j) (1 < j < d) connected by the right side of the bus on the jth 

        layer sends 1 to this bus. Each PE(R, k) (1 < k < d) tries to receive data from 

        the bus on the kth layer. 

     6. Each PE(LG, j) (1 < j < d) connected by the left side on the jth layer send 1 

       to this bus. Each PE(R, k) (1 < j < d) tries to receive data from the bus on the 

        kth layer. 

      7. The processor succeeding to receive 1 in both 5. and 6. is the rightmost processor. 

        Let this processor be PE(R, r). Let out(R, r) := 1 and the other output values 

       out (i, j) be 0. 

  The following theorem holds: 

Theorem 2.2 Method 2 finds the rightmost processor in constant time on the extended 

binary tree layout. 

Proof. Each step in Method 2 can be performed in constant time. So we just prove the 

correctness of the method. Similarly to Method 1, it is easy to prove that G(R) includes 

the rightmost processor. Hence, we will prove that the PE(R, r) is exactly the rightmost 

processor. 

  As said before, let inp(R, jl) = inp(R, j2) _ ... = inp(R, jk) = 1 (ii < j2 < ... < jk) 

and the other input values be 0. Let B(j1), B(j2), ..., B(jk) be buses which connects 

PE(R, ii), PE(j2), ... , PE(jk) on the jl, j2, ... jkth layers, respectively. Let s and t be in-

dices such that PE(s, jk), PE(s + 1, jk), ... , PE(t, jk) are connected by B(jk). Then, 

                       w(s) = w(s + 1) _ ... = w(t) 

holds, and the other values of w's are 0. Hence, s = LG and t = RG hold. PE(RG, jk) and 

PE(LG, jk) are connected by the right side of B(jk) and the left side of B(jk), respectively. 

Therefore, PE(R, jk) receives 1 in both 5. and 6. Since PE(LG, j) and PE(RG, j) are 

connected by the same side of the bus on the jth layer when j > jk, PE(R, j) can receive 1 

only once in 5. and 6. Since PE(LG, j) and PE(RG, j) are connected by the different bus
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on the jth layer when j < jk, PE(R, j) cannot receive 1 in both 5. and 6. Therefore, only 

PE(R, ik) receives 1 in both 5. and 6. This completes the proof. El 

2.4 Comparison between Methods 1 and 2 

The w-bit priority bus can be realized by w 1-bit common buses and the bus layout for 

rightmost finding. The bus layout for rightmost finding needs O(log n) layers in both Meth-

ods 1 and 2. Hence, the w-bit priority bus can be realized on the common bus layout 

with w + O(logn) layers in constant time. Therefore, if w = S2(logn), the w-bit priority 

bus can be realized on the common buses with increasing constant factors of hardware and 

time complexity. This assumption is acceptable because most of the algorithms on the bus 

network presented in the literature require buses sending log n bits in a time unit. 

  Let us compare Methods 1 and 2. In Method 1, each processor is connected by logn 

buses and executes send or receive commands to each bus simultaneously. In Method 2, 

each processor is connected by at most two buses and executes send or receive commands 

to at most one bus in a time unit. Though Method 1 completes the rightmost finding in a 

time unit, Method 2 requires approximately 10 steps. 

   Let us consider that a processor network with several priority buses are realized by 

Method 1 and 2, respectively. In this network, some processors are connected by several 

priority buses. Focus on a processor which is connected by k priority buses. To realize 

communication through k priority buses by Method 1 and 2, this processor is connected k 

binary tree layouts and k extended binary tree layouts, respectively. If we use Method 1, 

the processor has to execute communication commands to the binary layouts corresponding 

to priority buses to which the processor sends. If we use Method 2, the processor has to 

execute communication commands to all the extended binary layouts, even if the processor 

executes no communication command to the priority buses. In other words, in Method 2, the 

processor has to execute k communication commands to 1-bit common buses simultaneously. 

Consequently, in both Method 1 and 2, some kinds of parallel execution within a processor 

are required. 

  But, in both Method 1 and 2, the algorithm for each processor can be expressed by a 

small finite state machine. Hence, the priority bus can be realized in constant time using 

1-bit common buses, as long as a small circuit to execute the rightmost finding algorithm is
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added to every input/output port. 

  Since Method 1 and 2 solve the rightmost finding problem, an arbitrary bus can be 

realized similarly by these methods. 

2.5 Concluding remarks 

In this chapter, we have presented feasible methods to realize communication through prior-

ity buses by 1-bit common buses. It is known [5][6] that the graph connectivity problem can 

be solved on a 2-dimensional processor array with buses arranged to each row and column 

as follows: 

  1. If the buses are common, it can be solved in O(log2 n) time, 

  2. If the buses are common, it can be solved in O(log n) expected time, 

  3. If the buses are arbitrary, it can be solved in O(log n) time. 

By applying our methods to the third algorithm, the graph connectivity problem can be 

solved in O(log n) time in spite of using common buses.



Chapter 3

Sorting on processor arrays

with buses

Sorting is one of the most fundamental problems with rich theory and wide practical ap-

plications. It is widely known in [2] that any sequential sorting requires f2(N log N) time 

and there exist optimal sequential sorting algorithms. To speed-up sorting, parallel sorting 

algorithms have been investigated [4]. For example, both AKS sorting network [3] [15] and 

Cole's optimal merge sort [11] [15], sort N elements in O(log N) time using N processors. 

Since the product of time and the number of processors is equal to the time complexity 

of the best known sequential algorithm, these algorithms are called optimal speed-up. But 

they seem to be impractical, because AKS sorting network has a large constant factor, and 

Cole's optimal merge sort is executed on a shared memory machine, a PRAM. 

  On the other hand, more feasible algorithms on practical parallel machines have been 

studied. We focus on the processor array where processors are arranged to a 1-dimensional 

or a 2-dimensional grid. Let MESH(N) denote a processor array which consists of N pro-

cessors arranged to a 1-dimensional grid with neighbor links(Fig. 3.1). Each processor can 

communicate with its neighbors via neighbor links. Let MESH(N x N) denote a processor 

array which consists of N x N processors arranged to a 2-dimensional grid with neighbor 

links(Fig. 3.2). It is known that N elements given one at each processor on MESH(N) can be 

sorted in O(N) time by the odd-even transposition sort [8] which is a parallel version of the 

serial bubble sort. The odd-even transposition sort is optimal because the time complexity is

16



17

0 1 2 3 4 5 7

Fig ure 3.1 : MESH(8)

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Figure 3.2: MESH( x 4)

equal to the obvious lower bound obtained from the diameter of MESH(N). Many sorting 

algorithms have been presented which sort N2 elements in O(N) time on MESH(N x N) [33]. 

Similarly, these algorithms are optimal. The research target is to reduce the constant factor 

of the time complexity (30]. 

  In order to speed up sorting, we consider processor arrays with multiple buses. Let 

GRID(N, W) denote a processor array which consists of N processors arranged to a 1-

dimensional grid with W buses(Fig. 3.3). And let GRID(N x N, W) denote a processor 

array which consists of N x N processors arranged to a 2-dimensional grid with W buses 

at each row and at each column(Fig. 3.4). We will present the following sorting algorithms 

on these processor arrays: 

  . For every fixed e > 0, N elements can be sorted in O(N/W) time on GRID(N, W) if 

    W < N1-`.
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0 1 2 3 4 5 6 7

Figure 3.3 : GRID(8, 3)

                       Figure 3.4: GRID( x 4,2) 

  . For every fixed e > 0, N2 elements can be sorted in O(N/W) time on GRID(N x N, W) 

    if W<N1-E 

These algorithms are optimal because the time complexity is equal to the obvious lower 

bound Q(N/W). 

  It is known [13] that N elements can be sorted in O(N/W + N3/4 log1/4 N) time on 

GRID(N, W) with neighbor links, i.e., on a 1-dimensional processor array with commu-

nication capability of both GRID(N, W) and MESH(N). Recently, the computation time 

has been improved to O(N/W + N log N) [14] without neighbor links. This algorithm is 

optimal for W = O(N1/4/ log1/4 N). Hence our algorithm is optimal for a wider range 

of W. Furthermore a randomized algorithm which sorts N2 elements in O(N) time on
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GRID(N x N, 1) was presented [18]. Since our sorting algorithm sorts N2 elements in 

O(N) time on GRID(N x N, 1) deterministically, thereby our algorithm sort faster than 

this algorithm in the worst case. 

   The optimal sorting algorithm on a 1-dimensional processor array with complicated bus 

layout was presented in [27]. This sorting algorithm is optimal if the number of layers is 

at most O(N/ log2 N). Therefore, if a bus layout suitable for sorting is available, sorting 

can be performed optimally with the larger number of layers. But if enough large number 

of layers is not available, our sorting algorithm performs sorting optimally despite using a 

simple bus layout. 

   The sorting algorithms we will present are based on Leighton's Columnsort [22]. Column-

sort sorts the elements of a matrix by the following operations to the matrix. 

   • Sort the elements within each column or within each column except the leftmost 

     column; 

   • Permute the elements along a certain permutation. 

These two operations are repeated alternately constant times. In Section 3.2, we will describe 

Columnsort precisely. In Section 3.3, we will present the two basic algorithms: an O(N) 

time sorting algorithm on GRID(N, 1) and an O(N/W) time permutation routing algorithm 

on GRID(N, W). These algorithms are used for applying Columnsort to GRID(N, W) and 

GRID(N x N, W). Sections 3.4 and 3.5 give the new sorting algorithms on GRID(N, W) 

and GRID(N x N, W), respectively. 

3.1 Model 

The processors on GRID(N, W) and GRID(N x N, W) are indexed by PE(O), PE(1) ,..., 

PE(N - 1) and PE(O, 0), PE(0,1), ..., PE(N - 1, N - 1), respectively(Figs. 3.3 and 3.4). 

Each processor is a uniform-cost random access machine (RAM) with usual operations 

and instructions. The arithmetic operations (addition and subtraction), bitwise logical 

operations, equality predicate and so on require constant time. The processors execute the 

same program synchronously. Although performing the same instructions, processors can 

work on different data. In one step each processor can access one bus. As mentioned in 

Chapter 2, models differ in simultaneous access of the same bus by two or more processors.
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In this chapter we use exclusive buses. 

3.2 Columnsort 

Sorting algorithms presented in this chapter are based on a simple sorting algorithm called 

Columnsort. In this section, we describe Columnsort. Though our description of Columnsort 

is different from Leighton's on a minor point, they are same essentially. 

  Let A be an r x s matrix of elements where sir (r is divisible by s) and r > 2(s - 1)2. 

The (i, j) element of A is denoted as a(i, j). Columnsort is described by simple operations 

to the matrix A. After completion of Columnsort, the (i, j) element (0 < i < r, 0 < j < s) 

of A will contain the i + jrth sorted element of A. In other words, Columnsort sorts the 

elements of A in column major order. 

   Columnsort takes eight steps. Let the jth column of A be Aj = a(0, j), a(1, j), ..., 

a(r - 1J). In Steps 1, 3 and 5 the elements within each column of A are sorted. In Step 7, 

the elements within each column of A except the leftmost column A0 are sorted. In Steps 

2, 4, 6 and 8, the elements of A are permuted. The permutation in Step 2 corresponds 

to transposing of A(Fig. 3.5). The elements are picked up column by column and then 

deposited row by row. More precisely, transposing is represented by a one-to-one mapping 

trans: {0,...,r- 1} x {0,...,s- 1} -~ {0,...,r- 1} x {0,...,s- 1} defined as follows: 

                 trans(i, j) = (L(i + jr)/sj, i mod s). 

In Step 2, the (i, j) element, a(i, j), is transferred to the trans(i, j) element. The permutation 

in Step 4 corresponds to untransposing, the inverse of transposing. Step 6 involves a cyclic 

shift of A for Lr/2J positions along column major order. That is, each i + jrth element 

is transferred to the (i + jr + Lr/2J) mod rsth element. Hence, the permutation in Step 6 

corresponds to shifting of A defined as follows(Fig. 3.6). 

           shift(i, j) = 

             ((i + Lr/2J) mod r, (L(i + Lr/2J)/ri + j) mod s). 

The permutation in Step 8 corresponds to unshifting, the inverse of shifting. Summarize 

Columnsort as follows: 

[Columnsort]
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                      Figure 3.5: Transpose and untranspose 

Stepl Sort the elements within each column of A. 

Step2 Transpose the elements of A. 

Step3 Sort the elements within each column of A. 

Step4 Untranspose the elements of A. 

Step5 Sort the elements within each column of A. 

Step6 Shift the elements of A. 

Step? Sort the elements within each column of A except the leftmost column. 

StepS Unshift the elements of A. 0 

  An example of the execution process of Columnsort on 4 x 16 for a zero-one input is 

depicted in Fig. 3.7. Though this example does not satisfy the constraint that r > 2(s -1)2, 

it illustrates the essence of Columnsort. The following theorem holds. 

Theorem 3.1 [22] Columnsori sorts the elements of a matrix A if sir and r > 2(s - 1)2 

hold.
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                      Figure 3.6: Shift and unshift 

Proof. Though Leighton have proved the correctness of Columnsort [22], we show a proof 

of the correctness by zero-one principle [15] [20] which is simpler than Leighton's one. In 

other words, we will prove Columnsort sorts A whose elements are either 0 or 1. After Step 1, 

each column begins with 0's followed by l's. Then after transposing, the element within 

each column are transferred to an r/s x s sub-matrix. In each sub-matrix, the upper rows 

are filled with 0, the lower rows are filled with 1 and at most one row consists of both 0 

and 1. Then after Step 3, the upper rows of A are filled with 0, the lower rows are filled 

with 1 and at most s rows contain both 0 and 1. In the s rows, each row begins with 0's 

followed by 1's and each column begins with 0's followed by 1's. Since r > 2(s - 1)2 holds, 

the elements in the s rows are transferred to at most two column by untransposing. In other 

words, after Step 4, the left columns of A are filled with 0, the right columns of A are filled 

with 1, and at most two columns between them consist of both 0 and 1. Suppose there are 

exactly two columns which consist of both 0 and 1. The right column of them contains 0. 

Thus, in the s rows before untransposing, each row which is transferred to the left column 

of them by untransposing contains 0. Therefore, the left column of them contains at most 

(s - 1)2 1's. Similarly, the right column of them contains at most (s -1)2 0's. After Step 5, 
each column of length r begins with 0's followed by l's. From r > 2(s - 1)2, after shifting 

at most one column except the leftmost column contains both 0 and 1. After Step 7, the
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Figure 3.7: An execution process of Columnsort
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elements except the leftmost column are already sorted. By unshifting, all the elements of 

A are sorted. 0 

  Assume that sjr does not hold. If there are exactly two columns which contain both 

0 and 1 after Step 4, the left column of them contains at most s(s - 1) 1's and the right 

column contains at most s(s - 1) 0's. To sort the elements, the constraint r > 2s(s - 1) is 

sufficient. Hence, the following corollary holds. 

Corollary 3.2 Columnsorl sorts the elements of a matrix A if r > 2s(s - 1). 0 

Therefore, the constraint sjr is not essential for Columnsort. 

3.3 Basic algorithms 

Before showing the sorting algorithm on GRID(N, W), we present basic algorithms used for 

the sorting algorithm. Sorting on GRID(N, W) is defined precisely as follows: 

[Sorting on GRID(N, 1)] 

INPUT Let A = a(0), a(1),..., a(N - 1) be a sequence of elements. Each a(i) is given to 

   PE(i). 

OUTPUT Each PE(i) knows the ith element of the sorted sequence of A. 

First, we show a simple parallel sorting algorithm on GRID(N, 1) by an enumeration 

scheme [8]. Sorting on GRID(N, 1) is used for sorting the elements within each column 

in Columnsort. 

[Sorting algorithm on GRID(N, 1)] Let c(i) be a local memory cell of PE(i). After 
    completion of the algorithm, the rank of a(i) is stored to c(i). Initially, c(i) = 0. 

Stepl Step 1 consists of N sub-steps. In each ith sub-step (i = 0, N - 1), PE(i) 

    sends a(i) to the bus and all the processors receive it from the bus. During each sub-

   step, when receiving a(i), PE(j) compares a(i) and a(j). If (a(i), i) < (a(j), j) holds 

    in lexicographical order, PE(j) increases the value of c(j) by 1. 

Step2 Step 2 consists of N sub-steps. In each ith sub-step (i = 0,1, ... , N - 1), if c(j) = i, 

   PE(j) sends a(j) to PE(i) via the bus, and PE(i) memorizes a(j), the ith sorted 

    elements of A. 0
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  Obviously, the following lemma holds. 

Lemma 3.3 N elements can be sorted in O(N) time on GRID(N,1). 0 

  Second, we consider the permutation routing on GRID(N, W) defined as follows. 

[Permutation routing on GRID (N, W)] 

INPUT Let p : {0,1, ... , N - 1} -• {0, 1, ... , N - 1} be a one-to-one mapping and A = 

    a(0), a(l),..., a(N - 1) be a sequence of elements. Each a(i) and p(i) are given to 

   PE(i). 

OUTPUT Each PE(p(i)) knows a(i). 

  The permutation routing algorithm is used for implementation of transposing and un-

transposing in Columnsort. Permutation routing can be performed on GRID(N, W) effi-

ciently as follows. 

[Permutation routing algorithm on GRID(N, W)] The algorithm has IN/Wi steps. 
   In the ith step (0 < i < I N/Wi ), for all iW < j < (i + 1) W, PE(j) with p(j) = i 

    sends a(j) to PE(i) in parallel. Then, after completion of the whole steps, each PE(p(i)) 

    knows a(i). 0 

  Obviously, we have, 

Lemma 3.4 Any permutation routing on GRID(N, W) can be performed in O(N/W) time. 

0 

  It can be considered that Step 2 of the sorting on GRID(N, 1) executes the permutation 

routing along the permutation c. 

  In this section, we have presented the sorting algorithm on GRID(N, 1) and the permu-

tation algorithm on GRID(N, W). Main sorting algorithms presented in this chapter exploit 

these algorithms. 

3.4 Sorting on GRID (N, W ) 

Sorting on GRID(N, W) can be performed efficiently by adapting Columnsort with a matrix 

of size N/W x W. It is assumed that N/W is an integer. Each PE(i + jN/W) (0 < i < 

N/W, 0 < j < W) maintains the (i, j) element of the matrix in Columnsort.
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             Figure 3.8: Groups and shifted groups on GRID(N, W) 

[Sorting algorithm on GRID(N, W) (W < N'/4)] Consider that the processors are 

    partitioned into W groups with consecutive N/W processors(Fig. 3.8) and one bus 

    can be assigned to each group. Then, each group can be regarded as GRID(N/W, 1). 

    We apply Columnsort to GRID(N, W) such that each group corresponds to a column 

    in Columnsort. Only in Step 6, the processors PE(i) (N/(2W) < i < N - N/(2W)) 

    are divided into W - 1 groups with consecutive N/W processors. These groups are 

    called shifted groups. 

Stepl Sort the elements within each group in parallel. 

Step2 Transpose the elements. 

Step3 Sort the elements within each group in parallel. 

Step4 Untranspose the elements. 

Step5 Sort the elements within each group in parallel. 

Step6 Sort the elements within each shifted group in parallel. 0 

  From simple observation of Columnsort, Step 6 of the algorithm implements shifting, 

sorting each column and unshifting in Columnsort. From Lemma 3.3, sorting the elements 

within each group and within each shifted group can be performed in O(N/W) time. From 

Lemma 3.4, transposing and untransposing can be completed in O(N/W) time. Further-

more, since W < N1/4 holds, the constraint of Columnsort, N/W > 2W(W - 1), holds. 

Therefore, the following lemma holds.
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Lemma 3.5 N elements can be sorted in O(N/W) time on GRID(N, W) if W < N1/4. 0 

  Similarly to Step 6, Steps 2 and 4 can be omitted by modifying Step 3. That is, in 

Step 3, the elements are sorted within each "transposed" group. 

  Consider the case that N/W is not an integer. Let N' = W . I N/Wi . From Lemma 3.5, 

N' elements can be sorted in O(N'/W) time on GRID(N', W). Furthermore, any execution 

within one step on GRID(N', W) can be simulated by GRID(N, W) in constant time because 

N' = O(N). Hence, N' elements which consists of N input elements and N' - N dummy 

elements can be sorted in O(N/W) time on GRID(N, W). Therefore, for every integer N, 

N elements can be sorted in O(N/W) time on GRID(N, W). By means of this method, we 

can ignore the cases such that N/W, N1"4, and so on, are not integers. 

  We now apply the above sorting algorithm with constant depth recursion and get the 

optimal sorting algorithm on GRID(N, W) with large number of buses. 

[Sorting algorithm on GRID(N, W)] If W > N1"4, it is considered that the processors 

    are partitioned into N1"4 groups with consecutive N3/4 processors. Since WIN 1/4 

    buses can be assigned to each group, each group is regarded as GRID(N3/4, W/Nl/4) 

    We apply Columnsort to GRID(N, W) such that each group is seen to be a column 

    in Columnsort. Only in Step 6, the processors PE(i) (N3/4/2 < i < N - N314/2) 

    are divided into N1/4 - 1 groups with consecutive N3/4 processors. These groups are 

    called shifted groups. 

Stepl If W < N1J4, sort all the elements and terminate the algorithm. Otherwise, execute 

    the following steps. 

Step2 Sort the elements within each group recursively in parallel. 

Step3 Transpose the elements. 

Step4 Sort the elements within each group recursively in parallel. 

Step5 Untranspose the elements. 

Step6 Sort the elements within each group recursively in parallel. 

Step? Sort the elements within each shifted group recursively in parallel. 0 

  Similarly to Lemma 3.5 the following theorem holds.
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Theorem 3.6 For every fixed e > 0, N elements can be sorted in O(N/W) time on 

GRID(N, W) if W < N1-E 

Proof. We will estimate the computation time of the algorithm. Let T(N, W) be the com-

putation time required in case the algorithm is executed on GRID(N, W). In the algorithm, 

sorting on GRID(N3/4, WIN 1/4) are executed recursively four times. Therefore, 

          T(N, W) = 

               O(N/W) if W < N1/4 

                4T(N3/4, W/N1!4) + O(N/W) otherwise. 

Assume that W = N1-E for fixed e > 0. Then, 

              T(N, N1-E) = 

                 O(NE) if W < N1/4 

                    4T(N3/4 N3/4-e) + O(NE) otherwise. 

Consider the depth-k recursion, we have, 

            T(N, N1-E) = 4kT(N(314)", N(3/4)k-E) + O(4kNE). 

Since e is independent from N, the depth k of recursion is constant. Therefore, T(N, W) _ 

O(N/W) if W < N1-E 0 

  The GRID(N, W) can be simulated simply by the CREW-PRAM with N processors and 

W shared memory cells. Therefore, the following corollary holds. 

Corollary 3.7 For every fixed e > 0, N elements can be sorted in O(N/W) time on the 

CREW-PRAM with N processors and W shared memory cells if W < N1-E. 0

3.5 Sorting on GRID(N x N, W) 

Sorting on GRID(N x N, W) is defined precisely as follows: 

[Sorting on GRID(N x N, W)] 

INPUT Let A be an N x N matrix of elements and a(i, j) (0 < i, j < N) be the (i, j) 

    element of A. Each a(i, j) is given to PE(i, j) on GRID(N x N, W). 

OUTPUT Each PE(i, j) knows the i + jNth sorted elements of A.
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In other words, A is sorted in column major order. 

  The permutation routing on GRID(N x N, W) can be defined similarly. Since the sort-

ing algorithm on GRID(N x N, W) is based on Columnsort, the permutation routing on 

GRID(N x N, W) will be used. Any permutation routing on GRID(N x N, W) can be 

performed by iterating the permutation routings on GRID(N, W) at each row and at each 

column. That is, it can be performed by iterating Steps 1 and 2 alternately. 

Stepl Permute the elements within each column on GRID(N x N, W) in parallel. 

Step2 Permute the elements within each row on GRID(N, xN, W) in parallel. 

Obviously, if we select appropriate permutations at each step, any permutation requires 

at most O(N) iterations. But some "simple" permutation routings on GRID(N x N, W) 

requires merely constant number of iterations. Though we omit the precise description of a 

permutation routing algorithm on GRID(N x N, W), the following lemma can be convinced 
intuitively. 

Lemma 3.8 Any "simple" permutation routing can be done in O(N/W) time on GRID(Nx 

N,W). 0 

The "simple" permutations include the permutations used for Columnsort (transposing, 

untransposing and so on) on GRID(N x N, W). It is useless to clarify what "simple" per-

mutation routings are, however it seems to be interesting. The reason why it is useless will 

be shown after Corollary 3.11. 

  Now we show a sorting algorithm on GRID(N x N, W). 

[Sorting algorithm on GRID(N x N, W)] Consider that A is partitioned into N3!5 

    groups of size N x N2/5(Fig. 3.9). Sorting can be performed by Columnsort in which 

    each groups are seen to be a column. Furthermore, consider that a(i, j) (N2/5/2 < 

    j < N - N2/5/2), a part of A, is divided into N3/5 -1 groups of size N x N2/5. These 

    groups are called shifted groups. 

Stepl Sort the elements within each group in column major order in parallel. 

Step2 Transpose the elements of A. 

Step3 Sort the elements within each group in column major order in parallel.
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Figure 3.9: Groups and shifted groups on GRID(N x N, W)

Step4 Untranspose the elements of A. 

Step5 Sort the elements within each group in column major order in parallel. 

Step6 Sort the elements within each shifted group in column major order in parallel. 0 

  Since the constraint of Columnsort, N7/5 > 2N3/5(N3/5-1), holds, sorting is completed 

correctly. Thus, if each step can be completed in O(N/W) time, the algorithm sorts N x N 

elements in O(N/W) time. It remains how to sort the elements within each group and within 

each shifted group, transpose A and untranspose A in O(N/W) time. 

  First, we will confirm transposing the elements of A can be performed by means of per-

mutations at each column and at each row on GRID(N x N, W), though it is convinced from 

Lemma 3.8. Sorting the elements within each column is performed just after transposing. 

Hence, it is considered that transposition is completed, if each i+ jNth element within each 

group is transferred to the ((i+ jN) mod N3/5)th group, that is, the (i mod N3/5)th group. 

To ensure the permutation trans2 which transposes the elements is a one-to-one mapping,
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we select the following permutation: 

            trans2(i, j) = 

              ((i + j) mod N, (i mod N3/5)N2/5 + i mod N2"5). 

It is easy to find out that the permutation trans2 implements transposing. We will show 

that the permutation irans2 can be performed by the permutations at each column and row. 

The permutation trans2 can be performed by two permutations tl and t2 defined as follows: 

                          (i, j) 

                         I t1 

                      ((i + j) mod N, j) 

                        l t2 

             ((i + j) mod N, (i mod N3/5)N2/5 + i mod N2/5) 

The permutation t2 means that the ((i + j) mod N, j) element is transferred to PE((i + 

j) mod N, (i mod N3/5)N2/5 + i mod N2/5). Let us verify both t1 and t2 are one-to-one 

mappings at each column and at each row, respectively. Assume j is fixed. Since the 

mapping f (i) = (i + j) mod N defined over 10,..., N - 1} is a one-to-one mapping, t1 is a 

one-to-one mapping for every fixed j. Hence, from Lemma 3.4, the permutation tl can be 

performed in O(N/W) time by a permutation within each column. Let k = (i + j) mod N. 

The permutation t2 can be rewritten as follows: 

                         (k,j) 

                         I t2 

              (k, ((k - j) mod N3/5)N2/5 + (k - j) mod N2/5) 

Since the mapping g(j) = ((k-j) mod N3/5)N2/5+(k-j) mod N2/5 defined over 10,.,., N-

1} is a one-to-one mapping, t2 is a one-to-one mapping for every fixed k. Hence, from 

Lemma 3.4, the permutation t2 can be performed in O(N/W) time by a permutation within 

each row. Therefore, transposing can be completed in O(N/W) time. Similarly, untrans-

posing can be implemented. 

  Now, we show how to sort the elements within each group. They are sorted by Column-

sort. 

[Sorting elements within each group] Consider each group is a matrix of size N x N2/5. 

    Sorting can be performed by applying Columnsort to each matrix.
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Stepl Sort the elements within each column. 

Step2 Transpose the elements within each group. 

Step3 Sort the elements within each column. 

Step4 Untranspose the elements within each group. 

Step5 Sort the elements within each column. 

Step6 Shift the elements within each group. 

Step? Sort the elements within each column except the leftmost column within each group. 

StepS Unshift the elements within each group. 0 

  Since the constraint of Columnsort, N > 2N2/5(N2/5 - 1), holds, sorting can be com-

pleted correctly. From Lemma 3.3, each column can be sorted in O(N/W) time in case 

W < N'-'. Transposing and untransposing can be performed in the same way. We will 

confirm shifting and unshifting can be completed in O(N/W) time. Sorting the elements 

within each column is performed just after shifting. Hence, shifting can be considered to 

be completed, if the elements in the lower N/2 row are transferred to the next column and 

in the last column are transferred to the first column. Let us focus on the elements within 

the first group, a(i, j) (0 < i < N, 0 < j < N2/5). In the first group, the elements can be 

transposed along the permutation shift2 defined as follows: 

          shift2(i, 2) (i, j) if i<N/2 
                        (i, (j + 1) mod N2'5) otherwise. 

Hence shifting can be performed by a permutation within each row. Therefore, we have, 

Theorem 3.9 For every fixed e > 0, N2 elements can be sorted in O(N/W) time on 

GRID(N x N, W) if W < N1'E. 0 

  In general, the following corollary holds. 

Corollary 3.10 For every fixed e > 0, NM elements can be sorted in O((N+M)/W) time 

on GRID(N x M, W) if W < (N + M)' 0 

  The sorting algorithm on GRID(N x N, W) is represented simply as follows.
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Repeat the following steps constant times alternately: 

Stepl Sort the elements within each column (sometimes sort except some columns). 

Step2 Permute the elements along the appropriate permutations. 

The elements are permuted along ten permutations: (1)transposing, (2)untransposing, 

(3)transposing within each (shifted) group, (4)untransposing within each (shifted) group, 

(5)shifting within each (shifted) group, and (6) unshifting within each (shifted) group. The 
order of the permutations and the implementation of each permutation can be computed 

easily. 

  Obviously, from Corollary 3.10, we have 

Corollary 3.11 Any permutation routing can be performed in O((N + M)/W) time on 

the GRID(N x M, W) if W < (N + M)i-E 0 

Therefore, not only "simple" permutation routings but also any other permutation routing 

can be performed effectively. 

3.6 Concluding remarks 

In this chapter, optimal parallel sorting algorithms on processor arrays with multiple buses 

are presented. Obviously, by using AKS sorting network [3] [15], N elements can be sorted in 

O(logN) time on GRID(N, W) where W = S2(N). This method is optimal because sorting 

N elements needs at least 11(log N) time as long as at most N processors are available. 

Therefore it remains open to find an optimal sorting algorithm on GRID(N, W) where 

W E [w(N' ), o(N)] (e.g. W = N/ log N).



Chapter 4

Sorting on a reconfigurable

array

A logarithmic time sorting algorithm on a practical model is known [26]. The algorithm is 

based on an enumeration scheme for parallel sorting as follows: to sort N elements, each 

element is simultaneously compared to all the others in constant time by using N(N-1) pro-

cessors, and the rank of each element is computed in O(log N) time by enumerating elements 

whose value is smaller than that of it. Hence, N elements can be sorted in O(log N) time 

using N(N - 1) processors. In this chapter, we will present a sub-logarithmic time sorting 

algorithm on a reconfigurable array (shortly RE-ARRAY) on the basis of an enumeration 

scheme. Sub-logarithmic time is achieved by computing the rank of elements faster. 

  It is known [36] [40] that N elements can be sorted in constant time by an enumeration 

scheme both on an N x N2 RE-ARRAY (means RE-ARRAY with N x N2 processors) and 

on an N3/2 x N3/2 RE-ARRAY. We will reduce the number of processors and improve this 

algorithm. Firstly, we show an algorithm summing up N binary values in constant time 

on N x loge N RE-ARRAY. Secondly, by using these algorithms, we show that N elements 

can be sorted by an enumeration scheme in constant time on an N x N loge N RE-ARRAY. 

Lastly, we obtain more generalized algorithm which sorts N elements in O(T) time on an 

N x N log(T) N RE-ARRAYwhere 1 < T < log* N. This implies that N elements can be 

sorted in constant time on an N x N log(') N RE-ARRAY for any constant integer a > 1, 

and in 0(log* N) time on an N x N RE-ARRAY.

34
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                         Figure 4.1: RE-ARRAY 

4.1 Model and notation 

A RE-ARRAY is formalized as follows. Processors on an N x M RE-ARRAY are denoted 

by PE(i, j) (0 < i < N - 1, 0 < j < M - 1). As shown in Fig. 4.1, it is considered that 

PE(i, 0) (0 < i < N - 1) is located at the top row of a RE-ARRAY and PE(0, j) (0 < 

j < M - 1) is located at the leftmost column of a RE-ARRAY. Each processor on a 

RE-ARRAY is the RAM (random access machine) with an extended set of instructions 

for changing configuration of buses, sending data to buses and receiving data from buses. 

As shown in Fig. 4.2, each processor has several ports denoted by U(k), D(k), L(k) and 

R(k) (0 < k < P - 1). The ports facing to each other are connected by static buses, that is, 

D(k) on PE(i, j) and U(k) on PE(i, j + 1) are connected by a static bus. Similarly, R(k) 

on PE(i, j) and L(k) on PE(i + 1, j) are connected by a static bus. It is assumed that each 

processor may have the constant number of ports, that is, P is constant. All processors 
work synchronously and execute the following phases in a time unit: 

Phase 1 Changing configuration of a reconfigurable bus systems by connecting or discon-

    necting its own ports by buses locally. The data sent at Phase 2 is transferred through 

    the locally connected buses and static buses between processors. 

Phase 2 Sending data to each port. 

Phase 3 Receiving data from each port. The data sent at the previous phase are received 

    at this phase.
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                      Figure 4.2: Ports of RE-ARRAY 

Phase 4 Executing a constant number of instructions of the RAM. 

  On a RE-ARRAY, all processors execute the phases synchronously, that is, no processor 

executes a phase before all processors finishing the previous phase. The computation time 

of an algorithm is evaluated by counting the number of iterations of these four phases during 

the execution of it. Hence, our model is the unit-time delay model because it is assumed 

that communication completes within a time unit. 

  In algorithms presented in this chapter, we use the following notation: 

  • The connection of two ports, say, L(O) and R(O) is denoted by L(O) . R(0). 

  • Sending the value x to the port, say, L(O) is denoted by L(O) f-- x. 

  • Receiving value from a port and storing it to a local memory cell, say, receiving value 

    from the port L(O) and storing it to the local memory cell c is denoted by L(O) -+ c. 

  From Phase 2 to Phase 4, it can be regarded that the processors are connected by static 

buses, because the configuration of bus system is not changed. Several bus models are 

proposed [16] with respect to simultaneous sending on a static bus system. All algorithms
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presented in this chapter and the previously known sorting algorithms [36] [40] are designed 

for the exclusive model.

4.2 Basic property and algorithms 

In this section, we show a basic property and basic algorithms for sorting algorithm. At the 

end of this section, we show an algorithm which sums up binary values in constant time. 

4.2.1 Basic property 

The following lemma implies that the difference within the constant factor of the number 

of processors can be ignored. 

Lemma 4.1 Any execution in a time unit on an O(N) x O(M) RE-ARRAY can be simu-

lated in a time unit on an N x M RE-ARRAY. 

Proof. Let A and B be cjN x c2M RE-ARRAY (where cl and c2 are constant positive 

numbers) and N x M RE-ARRAY, respectively. Assume that each processor on B has 

max{cl, c2} times as many ports as A. Then, each PE(x, y) on B can simulate any execution 

of all PE(i, j) (clx < i < c1(x + 1), c2y < j < c2(y+ 1)) on A in a time unit. Therefore, any 

execution on A in a time unit can be simulated on B in a time unit. 0 

  Even if we regard that the time complexity is affected by the number of the local com-

putation, any execution in a time unit on A can be simulated in O(clc2) time on B. Since 

c1c2 is constant, B can simulate A in constant time. 

4.2.2 Leftmost finding 

We consider the problem to find the leftmost element whose value is 1, when a binary 

sequence of length N is given. Leftmost Finding on an N x 1 RE-ARRAY is defined as 

follows. 

Input Let B = (a(0), a(1),..., a(N - 1)) be a binary sequence of length N. Each a(i) (0 < 

   i < N - 1) is given to PE(i, 0). 

Output All processors know m such that m = min{ila(i) = 1}. If there does not exist i 

    such that a(i) = 1, all processors know m(= N).
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0 0 1 0 1 1 0 0

                        Figure 4.3: Leftmost finding 

  The leftmost finding algorithm on an N X 1 RE-ARRAY follows (Fig. 4.3). 

[Leftmost Finding Algorithm] 

Step 1 If a(i) = 0, then L(0) • R(0) : PE(i, 0). {means that if a(i) = 0, then PE(i, 0) 

       connects L(0) and R(0).} 

    If a(i) = 1, then R(0) - 1 : PE(i, 0). {means that if a(i) = 1, then PE(i, 0) sends 1 

       to R(0).} 

    L(0) c(i) : PE(i, 0) (0 < i < N - 1). {means that each PE(i, 0) receives data from 

       L(O), and stores it to c(i) that is a local memory cell of PE(i, 0).} 

     If PE(i, 0) receives no data, let c(i) t-- 0. 

Step 2 If a(i) = 1 and c(i) = 0, then PE(i, 0) broadcasts i to all processors. 

     If a(N - 1) = 0 and c(N - 1) = 0, then PE(N - 1, 0) broadcasts N to all processors. 

                                                 [end of algorithm] 

  The following lemma holds. 

Lemma 4.2 The leftmost element can be found in constant time on an N x 1 RE-ARRAY. 

Proof. If c(i) = 1 then there exists j < i such that a(j) = 1 and vice versa. Thus, if both 

a(i) = 1 and c(i) = 0 hold, a(i) is the leftmost element. If such i does not exist, the value 

of all elements is 0. Obviously the algorithm completes in constant time. 0 

4.2.3 Logical OR 

The logical OR is the problem to determine whether there is an element whose value is 1, 

when a binary sequence of length N is given. The logical OR on an N x 1 RE-ARRAY is 

defined as follows.
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Input Let B = (a(0), a(l),..., a(N - 1)) be a binary sequence of length N. Each a(i) (0 < 

    i < N - 1) is given to PE(i, 0). 

Output All processors know the logical OR of the input sequence, that is,know m such 

    that m = max{a(i)}. 

  The logical OR can be simply computed by using the leftmost finding algorithm. To 

compute the logical OR, after executing the leftmost finding algorithm, if there is a leftmost 

element, then the result of the logical OR is 1, otherwise, the result is 0. Therefore, the 

following lemma holds. 

Lemma 4.3 The logical OR can be computed in constant time on an N x 1 RE-ARRAY. 

4.2.4 Compression 

We consider the procedure that compresses a sequence of elements. Compression on an 

N x M RE-ARRAY is defined as follows. 

Input Let A = (a(0), a(1), ... , a(N - 1)) be a sequence of elements. In addition to 

     the domain of elements, each element in the sequence may take value NULL. Each 

   a(i) (0 < i < N - 1) is given to PE(i, 0). 

Output Let A' = (a(io), a(ii), a(i2).... ) be the subsequence of A such that an element in 

    A is in A' if and only if its value is not NULL. The processors on the leftmost column 

    knows the first M elements in A', that is, each PE(0, j) (0 < j < M - 1) knows a(ij) 

    if exists. 

In the compression algorithm on an RE-ARRAY, each column works as a stack and each 

processor on the top row works as the top of the stack. From the rightmost to the leftmost 

column, if an element given to a column is not NULL, then the processors on the column push 

the element on the stack. Otherwise, the processors hold the stack. Then each processor 

on the leftmost column knows the element whose value is not NULL. The compression 

algorithm on a RE-ARRAY follows (Fig. 4.4). 

[Compression Algorithm] 

Step 1 Each PE(i, 0) (0 < i < N-1) broadcasts a(i) to the processors on the same column, 

   PE(i, j) (0 < j < M - 1).



        NULL 12 NULL 5 31 NULL 7 NULL 

     12 

5 

    31 

7 

                          Figure 4.4: Compression 

Step 2 If a(i) = NULL, then 

       L(0) . R(0) : PE(i, j) (0 < j < M - 1). 

    If a(i) NULL, then 

       D(O) • R(0) : PE(i, j) (0 < j < M - 1) 
       U(0) . L(0) : PE(i, j) (0 < j < M - 1) 

       U(0) <-- a(i) : PE(i, 0). 

    L(0) --> c(j) : PE(0, j) (0 < j < M - 1). {c(j) contains a(ij).} 

                                                   [end of algorithm] 

  The following lemma holds. 

Lemma 4.4 Compression can be done in constant time on an RE-ARRAY. 

Proof. The correctness of.the algorithm can be proved by induction easily. 0 

4.2.5 Prefix remainder computation 

The prefix w-remainder of a binary sequence on an N x M RE-ARRAY is defined as follows. 

Input Let (a(0), a(1), ... , a(N - 1)) be a binary sequence of length N. Each a(i) (0 < i < 
   N - 1) is given to PE(i, 0). 

Output Let xi be the prefix remainder at position i, that is, xi = (E; =o a(j)) mod w. 
   Each PE(i, 0) (0 < i < N - 1) knows xi.

J J J J
/ l r

I
J J J

J J i

I r

I

J J J
I r r
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1 0 1 1 0 0 1 1

Figure 4.5: Prefix remain der

  We show the algorithm for computing the prefix M-remainder on an N x M RE-ARRAY. 

In the algorithm each column works as a cyclic shift register of size M. On the leftmost 

column, only the top element of the cyclic shift register is 1. On each column, if the element 

given to the column is 1, then the processors on the column shift the cyclic shift register. 

Otherwise, the processors hold the cyclic shift register. Then the prefix remainder is equal 

to the position where 1 places on the cyclic shift register. The algorithm for computing the 

prefix M-remainder on an N x M RE-ARRAY is described as follows(Fig. 4.5). 

[Prefix Remainder Algorithm, 

Step 1 Each PE(i, 0) (0 < i < N-1) broadcasts a(i) to the processors on the same column. 

Step 2 if a(i) = 0, then 

       L(0) . R(0) : PE(i, j) (0 < j < N - 1). 

    if a(i) = 1, then 

       L(0) . D(0) : PE(i, j) (0 < j < M - 2) 

       U(0) .R(0) : PE(i,j) (1 < j <M-1) 

       U(1) . D(1) : PE(i, j) (1 < j < M - 2) 

       D(1) . R(0) : PE(i, 0) 

       L(0) . U(1) : PE(i, M - 1). 

    L(0) F- 1 : PE(0, 0). 

    R(O)-*c(i,j):PE(i,j) (0< j <M-1). 

Step 3 if c(i, j) = 1, PE(i, j) broadcasts j (= xi) to the processors on the same column.
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                                                   [end of algorithm] 

  The following lemma holds. 

Lemma 4.5 The prefix M-remainder of a binary sequence of length N can be computed in 

constant time on an N x M RE-ARRAY. 

Proof. It is sufficient to prove that for all i, c(i, j) = 1 iff xi = j holds. This can be easily 

proved by induction. 0 

  The CRCW PRAM with the polynomial number of processors cannot compute even 

the exclusive-or of the binary sequence in constant time[6]. Hence, a RE-ARRAY with the 

exclusive buses is more powerful than the CRCW PRAM with regard to the prefix remainder 

computation. 

4.2.6 Remainder computation 

We show an algorithm for computing the remainder of the sum of a binary sequence on a 

RE-ARRAY. The w-remainder on a RE-ARRAY is defined as follows. 

Input Let (a(0), a(l), ... , a(N - 1)) be a binary sequence of length N. Each a(i) (0 < i < 

    N - 1) is given to PE(i, 0). 

Output Let x is the sum of the binary sequence, that is, x = EN of a(i). All processors 
    know r such that x =_ r (mod w). 

  From the definition, the M-remainder can be easily computed by means of the prefix 

M-remainder. We will show that the remainder from a larger modulus can be computed in 

constant time on a RE-ARRAY. The basic idea is as follows. Consider that an N x M RE-

ARRAY is divided into subarrays of sizes N x 1, N x 2, ... , N x v~_M_. To express x by 

the RNS (residue number system), we apply the algorithm in Lemma 4.5 to each subarray, 

and then rl, r2i ... , r' can be computed such that x - ri (mod i). If rl, r2, ... , r,/M-

are known, the remainder from a larger modulus than M can be computed. We analyze 

how large the modulus is by using the Chinese remainder theorem and the prime number 

theorem, famous theorems in number theory.
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Theorem 4.6 (Chinese remainder theorem) Let p1i p2i ... , Pin be pairwise relatively 

prime positive integers . For unknown x, if bl, b2, ... , b,,, are known as follows, 

                          x - b1 (mod pl) 

                          x - b2 (mod p2) 

                                x - b,,, (mod p,,,) 

then r can be computed such that x - r (mod Pipe ...An). O 

  From the Chinese remainder theorem, the following corollary holds. 

Corollary 4.7 Let lcm(m) be the L.C.M. (least common multiple) of {1,2, ..., m}. If the 

following congruence holds for integers x and y, 

                         x - y (mod 1) 

                       x y (mod 2) 

                          x y (mod m) 

then the congruence x - y (mod lcm(m)) holds. O 

  To analyze how large lcm(m) is, we use the prime number theorem. 

Theorem 4.8 (Prime number theorem) Let a(n) denote the number of prime numbers 

less than or equal to n. The following equality holds: 

                         lim 7r(n) Inn = 1 
                                    n-co n 

when In is the natural logarithm. 13 

  Thus, a(n) = 0(n/ log n) holds. From the prime number theorem, the following lemma 

holds. 

Lemma 4.9 The equality lcm(n) = 2°(' )holds. 

Proof. Let {p1, p2, ... , p,n} (P1 = 2 < p2 < ... < p,n < n, m = 7r(n)) be the set of primes 

less than or equal ton and a1, a2.... , a,,, be the integers such that piai < n < pi +1 holds.
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From the prime number theorem, m = 0(n/ log n). Thus, 

                              lcm(n) = p1alp2a2 ... pma,,, 

                              < nm 

                                       n°(n/ log n) 

                                = 2°(n). 

Let m' be the integer such that pm, < n/2 < p,n,}1. From the prime number theorem, 

m - m' = E) (n/ log n). Thus, 

                          lcm(n) > Pm'+1Pm'+2 "'Pm 

                           > (n/2)°(n/logn) 

                               2°(n). 

Therefore, lcm(n) = 2°(n) holds. 0 

  The algorithm for computing the remainder from a larger modulus on a RE-ARRAY is 

described as follows. 

[Algorithm for Computing lcm(v/'M_)-Remainder] Consider an N x M RE-ARRAY 

    is partitioned into subarrays of sizes N x 1, N x 2,..., N x vrM-. PE(i, j) on an 

    subarray of size N x k is denoted by PEk(i, j). 

Step 1 On each subarray of size N x k, compute rk such that x =- rk (mod k) by comput-

    ing the prefix k-remainder. When the computation of prefix k-remainder completed, 

    PEk(N - 1, 0) broadcasts rk to all processors on the kth subarray. 

Step 2 Compute the prefix k-remainder of the sequence (0,1,1,1, ... , 1) on each subarray 

   of size N x k. After Step 2, each PEk(i, 0) knows rk j such that i - rk E (mod k). 

Step 3 On each ith column, compare rk and rk,1 and examine whether the condition rk = 
    rk = holds for all k (1 < k < vrM). To examine whether the condition holds for all k 

    on each column, the logical OR is used. 

Step 4 Find the minimum i such that rk = rk ; for all k (1 < k < ~) by using the 

    leftmost finding algorithm. That is, compute r = min{irk = rk f for all k}. And 

    broadcast r to all processors on an array. After Step 4, all processors know r, the 

    solution of lcm(v/M-)-remainder.
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Step 5 Find the minimum i > 0 such that rk i = 0 for all k (1 < k < VV) by leftmost 

    finding. That is, compute to = min{irk ; = 0 for all k}. If such w (= lcm(V"M_)) exists, 

    broadcast w. 

                                                 [end of algorithm] 

  To compute lcm(v/M-)-remainder only, we do not have to execute step 5. But lcm(VrM-) 

has been computed in step 5 for the following algorithm that computes the sum of a binary 

sequence by using lcm(V(-M))-remainder. 

Lemma 4.10 The problem lcm(VM) -remainder can be solved in constant time on an N x 
M RE-ARRAY. 

Proof. For all k (1 < k < v/M-), the congruence x =_ r (mod k) holds. Therefore, from 
Corollary 4.7, x =_ r (mod lcm(VM-)) holds. This completes the proof. o 

  From Lemma 4.10, lcm( kM)-remainder can be computed in constant time on an N x 
kM RE-ARRAY. Hence, from Lemma 4.1, the following lemma holds. 

Lemma 4.11 The problem lcm(O(Vi))-remainder can be solved in constant time on an 

N x M RE-ARRAY. 0 

  From Lemma 4.9, there exists a fixed k such that lcm( k log N) > N. Therefore, the 

following corollary holds. 

Corollary 4.12 The sum of a binary sequence of length N can be computed in constant 

time on a RE-ARRAY of size N x loge N. 0 

Proof. To compute the minimum k such that lcm( k log N) > N, the lcm( k log N)-

remainder computation is repeated for k = 1, 2.... until lcm( k log N) > N holds. At the 

end of the iteration, x = (x mod lcm( k log N)) holds because x is at most N. Since k is 

constant, the number of the iteration is constant. Therefore, the sum of the binary sequence 

can be computed in constant time. 0 

  A more efficient algorithm can be obtained if the algorithm in Lemma 4.10 is modified 

as follows: for the prime numbers p1, p2, ... defined in the proof of Lemma 4.9, a RE-

ARRAY is divided into subarrays of sizes N x pl, N x p2.... and x mod pi, x mod P2.... 

are computed on them. In this algorithm, we can compute the remainder from the modulus
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of size 2°( M1°gM). Hence, in Corollary 4.12, the size of a RE-ARRAY is reduced to 

N x loge N/ log log N. But this modification makes algorithm more complicated and does 

not lead asymptotical improvement of our sorting algorithm. 

4.3 New sorting algorithm 

Sorting on a RE-ARRAY is defined as follows. 

Input Let (a(0), a(l),..., a(N-1)) be a sequence of elements. Each a(i)is given to PE(i, 0) 

   (0<i<N-1). 

Output Let (a(ro), a(ri),... , a(ryl)) be the sorted sequence of the input sequence, that 

    is, a(ri) < a(ri+1) for all i. Each PE(i, 0) knows a(ri); (0 < i < N - 1). 

Without loss of generality, it is assumed that the elements are distinct, that is, for all i and 

i (i # j), a(i) # a(j) holds. The rank of a(i), the number of smaller elements than a(i), is 

denoted by ri. 

4.3.1 Constant time sorting algorithm 

First, we show a constant time sorting algorithm on RE-ARRAY of size N x N loge N. The 

sorting algorithm is along an enumeration scheme, that is, by computing the rank of each 

element. To compute the rank of each element, we use the algorithm for computing the sum 

of a binary sequence. From Corollary 4.12, the sum of a binary sequence of length N can 

be computed in constant time on an N x loge N RE-ARRAY. Therefore, the ranks of all 

elements can be computed in constant time on an N x N loge N RE-ARRAY. Figure 4.6 

illustrates the constant time sorting algorithm. 

[Constant Time Sorting Algorithm] Consider that an N x N loge N RE-ARRAY is 

    divided horizontally into N subarrays of size N x loge N. We denote PE(i, j) on the 

    kth (0 < k < N - 1) subarray PEk(i, j), that is, PEk(i, j) means PE(i, k loge N + j). 

Step 1 Each PE(i, 0) broadcasts a(i) to all processors on the same column. And each 

    PEk(k,0) broadcasts a(k) to all processors on the same row. 

Step 2 Each PEk(i, 0) compares a(k) and a(i). If a(k) > a(i), let rk,i <-- 1. Otherwise, let 

      rk,i +-. 0.
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Step 3 Compute the rank of a(k) i.e. rk = T-'v Ol rk j on each kth subarray in constant 
    time by computing the sum of the binary sequence. 

Step 4 Each PEk(rk,0) sends rkth element, a(k), to PE(rk,0). 

                                                   [end of algorithm] 

  The following theorem holds. 

Theorem 4.13 Sorting of N elements can be performed in constant time on an N x 

N loge N RE-ARRAY. 0 

4.3.2 General sorting algorithm 

We show a sorting algorithm on a RE-ARRAY of size less than N x N log2 N. The algorithm 

in Corollary 4.12 cannot be used to compute the rank of all elements on N x M RE-

ARRAY(M < N loge N). But the remainder of the rank of each element can be computed 

by the remainder computation, so the elements are classified by the remainder of their ranks 

and are partitioned into the groups. And the sorting algorithm is applied to each group 

recursively so that the rank of each element in the range of its group can be computed. 

Then the rank of each element can be computed from the remainder of the rank and the 

rank in the range of its group. Figure 4.7 illustrates the general sorting algorithm. 

[General Sorting Algorithm] Similarly to the constant time sorting, consider that N x 

    M RE-ARRAY is divided into N (horizontal) subarrays of size N x (M/N). And let 

    w = lcm( M/N). If w < N, consider that an N x M RE-ARRAY is divided into 

    w vertical subarrays of size N/w x M. Each PE(i, j) on the kth vertical subarray is 

    denoted by PEk(i, j) (0 < i < N/w - 1, 0 < j < M). The algorithm has seven steps. 

    As shown in Fig. 4.7, the remainder of the rank of each element is computed on each 

    horizontal subarray in Steps 1,2, and 3. In Steps 4 and 5, the elements whose rank 

    takes the remainder j is transferred to the jth vertical subarray. In Step 6, sorting 

    the elements within each vertical subarray is performed recursively and then the rank 

    of each elements is computed. In Step 7, each element is transferred to the correct 

    position. 

Step 1, Step 2 Execute the same as step 1 and step 2 of the constant time sorting.
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Step 3 Compute w-remainder of (rk,o, rk,1, ..., rk,N_1) on each the kth horizontal sub-

    array, that is, compute rk such that rk - rk (mod w). From Lemma 4.10, this can 

     be done in constant time. In case w > N, execute step 4 of the constant time sorting 

    algorithm, because rk = r'k holds. Otherwise, execute the following steps to gather 

    elements whose rank takes the same remainder. 

Step 4 Each PEA (0, WIN) (0 < j < w - 1, 0 < k < N - 1) let its local variable dj (k) 
    NULL. Since for all k each PE,, (0, WIN) knows a(k), let d, (k) +- a(k). After 
    Step 4, (dj (0), dj (1), ... , dj (N - 1)) contains all elements whose rank takes the re-

    mainder j. 

Step 5 Compress (dj (0), dj (1), ... , d? (N - 1)) for each j on each vertical subarray. After 

    Step 5, each PEA (i, 0) knows one of the elements whose rank takes the remainder j. 
    Let sj,i be the index such that PE'j(i, 0) knows a(sj,i). 

Step 6 Sort each sequence (a(sj,o), a(sj,l), . .. , a(sj,N/w_1)) for all j on each vertical subar-
    ray recursively. Let the rank of a(sj,i) in the sequence (a(sj,o), a(sj,l), ... , a(sj,N/,,,-1)) 

    be rj,i. Then the rank of (a(sj,i) in < a(0), a(1), ..., a(N - 1)) is rj,iw + j. 

Step 7 Similarly to step 4 of the constant time sorting, send a(sj,i) to PE(rj,iw + j, 0). 

                                                   [end of algorithm] 

Theorem 4.14 N elements can be sorted in O(T) time on N x Nlog(T) N RE-ARRAYfor 
every 1 < T < log* N. 

Proof. The correctness of the algorithm can be proved easily by induction on the size of 

a RE-ARRAY. We have to analyze the computation time required in this algorithm. Let 

t(N, M) be the computation time required if this algorithm sorts N elements on N x M 

RE-ARRAY. In step 6, this algorithm sorts N/w elements on each N/w x M horizontal 

subarray recursively. Hence the following equality holds. 

       t(N, M) = f t(N/2o( N/M), M) + O(1) if M < N loge N 
                  O(1) if M > N 1og2 N 

Therefore, t(N, N log (T) N) = O(T). a 

  Theorem 4.14 implies the following corollaries.
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Corollary 4.15 N elements can 

ARRAY for any fixed integer a > 

Corollary 4.16 N elements can

be 

1. 

be

sorted in

sorted

constant

in O(log' N)

time

time

on an N x N log(es) N RE-

0 

on an N x N RE-ARRAY. 

0

4.4 Concluding remarks 

In this chapter, we have presented a fast sorting algorithm on reconfigurable arrays. Our 

sorting algorithm requires a smaller number of processors than the previous algorithm [40]. 

Recently, more efficient algorithm has developed: N elements can be sorted in constant time 

on an N x N reconfigurable array[7][19]. However a method presented in this chapter, the 

remainder method is effective with regard to counting is and has lots of applications. The 

author will report the applications at some other time.



Chapter 5

Concl usions

In this dissertation, we have shown three topics with regard to parallel algorithms on bus-

connected machines. In Chapter 2, we presented practical methods to realize the priority 

buses using common buses. In Chapter 3, we showed optimal sorting algorithms on bus-

connected processor arrays. In Chapter 4, we presented a sub-logarithmic time sorting 

algorithm on a reconfigurable array. Furthermore, in previous papers, the author have been 

studying and showed the following interesting results: 

  • N elements can be sorted in (N/W + loge N) time on a 1-dimensional processor array 

    of size N with multiple buses arranged to W layers [27]. 

   • A 2-dimensional processor array of size N x N with buses arranged to a single layer can 

    be simulated in O(log N) time on a 2-dimensional processor array with buses arranged 

    to an orthogonal tree [28]. 

  • Image component labeling of size N x N can be performed in O(log2 N) time on a 

    2-dimensional processor array with buses arranged to an orthogonal tree [29]. 

The author intend to clarify the computation power of bus-connected processor arrays and 

reconfigurable arrays.
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