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Abstract

It is shown that the quadrupole-pairing force (PZ—PZ) is as important
as the quadrupole force (Q-Q) to describe 2+ states in the ' medium and
heavy nuclei. 2+ states are described by adding the P2—P2 force in the
framework of the random-phase approximation. The physical quantities
such as excitation energies, (p,t) reaction-cross sections and_B(EZ) values
are systematically studied. The change of angular distribution patterns

of (p,t) reactions for first 2+ states is well accounted for in terms

of the two-step process-calculations.
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CHAPTER 1 Introduction

In 1950 Mayer and Jensen introduced the idea of the independent=-
particle model into the microscopic description of nuclear many-body
system with the consideration of the spin-orbit forcel). This so called
shell model has been very successful in explaining a mass of properties
of nuclei (magic number), spins and parities of nuclei in the ground states
etc..

On the other hand, in 1952 A, Bohr introduced the 1iquid—dr§p model,
by which a nucleus is a liquid drop and vibrates around the equibrium
shape and rotates entirely like a rigid rotor?) The liquid-drop model has

'

explained the over all trend of nuclear masses, the collective' natures
of nuclei, which are the excited states of vibrational nuclei and rotational
nuclei etc.. These two models explained many aspects of nuclear phenomena.

However, many experimental facts such as even—-odd mass difference, thg
mom?%.of inertia of deformed nuclei etc. can not be explained by. these
models. These situations were well accounted for by introducing the
3)

BCS~theory to the description of nuclei, which explained the superfluid

and superconductivity phenomena of liquid helium by Bardeen, Cooper and
Schriefer.4)‘

In mind the above successes, the method to treat the collective motion
of many-body system from the standpoint of particle excitations was investigated
by many authors in terms of the random-phase approximation.s) This method .
is the extension of the shell model for the nuclear system, in which the
pairing correlation is dominant. The random—phase approximation has an

advantage that the same equation deBcribef single-particle excitations and

collective excitations. This method is the most useful tool to investigate



the structures of medium and heavy nuclei. 1In fact, so far 2+ states in
the medium and heavy nuclei, especially for firét 2+ states, have been
studied in terms of the fandomrphase approximation with using a simple
interaction composed of the monopdle-pairing force and a quadrupole force.6)
The enhancement of the B(E2) value between first 2+ statéﬁxéjéround state
is aCcountéd for qualitatively by the simple model.

The nuclear many body problem,'for convenience, is treated by using
a suitable independent-particle solution as the zeroth-order approximation'
at first and by using an effective Hamiltonian as the residual part whicﬁv
is solved in terms of the random-phase approximation. Strictly speaking,
the independent-particle solution must be obtained by the Hartree-Fock-
Bogoliubov procedureu7)

Since A. Bohr's prediction of pairing mode, many experiments of (p,t)

reactions were carried out, because (p,t) reaction is the useful tool to

reactions on the Nd isotopes, which were in the region around N=82, was

9)

done by Yagi et.al.. There found new facts in these experiments, which
were that the excited 2+ states about 3.5MéV of all even-even nuclei were
strongly excited. By the conventional model, using the monopole pairing
force and the quadrupolé force in terms of the random phase approximation,
which has been believed to describe 2+ states of even—-even spherical
nuclei, the facts are not explained at all.

Thus we introduce the quadrupole pairing force (Pz—Pz), which is
recognized as the force to make two particles combine strongly to the
total angular momentum 2+§10As can be seen in figure 1, this type of force
surely exists in the two-body interaction. But it has been neglected,
because we have restricted our interest in the quantities which have

particle-hole nature, that is the gamma transition and the inelastic

scattering etc.. In the normal state, the quadrupole-pairing force and



quadrupole force do not interfere with each other in the framework of
the random-phase approximation, but in super because the particle number
is not conserve these forces do.

In Chapter 2 we shall discuss how important the quadrupole-pairing
force is to describe the 2+ state and to explain the experimental results.
The importance of tﬁe quadrupole-pairing force is pointed out in Chapter 2,
then the form of the Hamiltonian change. Thus in Chapter 4 the model,
containing’the quadrupole~pairing force is applied to the first 2+ states
of the medium and heavy nuclei, which are the nuclei, the neutron number
is between 50 and 82, and the possibility of the phase transitibn around
N=70 is pointed out. 1In Chapter.5 the incident-energy dependence of
(pst) reaction is discussed, especially for the reaction 208.\Pb(p,t)206Pb.
In Chapter 6 the reaction mechanism of (p,t) reaction is ~discussed.

The change of the angular distribution pattern leading to the’ first 2+
state is mot accounted for in termé of the distorted-wave Born-approximation.
Thus the second order term of the Born series is taken into account

and the calculation is done by using a macroscopic form factor for imelastic

scatterihg.
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Fig. 1. Schematic representation of the two body interaction.
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Lines running upwards represent particles while running

downwards represent holes.



CHAPTER 2 1Importance of the Quadrupole-Pairing Force in (p,t) Excitations

of 2+ Vibrational States

1. Introduction

Two-neutron transfer reactions have proved to be especially sensitive
in probing pair correlations in complex nuclei. The groups in INS and
Osaka University have been currently studying (p,t) reactions on Nd

1 y 2)

isotopes and the rare-earth nuclei”’ with about 50-MeV protons. 1In

these experiments, they have found a new experimental evidence that there

is an unexpectedly strong L = 2 transition to a state at about 3.5 -~ 4.0MeV.
These 2+ states were interpreted by them as being the quadrupole-pairing
states . (Hexeafter we also call it the quadrupole-pairing state.) For

the Ba3)

and Nd isotopes with neutron number less than N = 82, the first
2+ state also has a structure similar to the quadrupole pairing states.
For most even nuclei except for nuclei near the closed shell, two-neutron
transfer with L = 0 populates the ground statesa). However, these excited
2+ states have almost the same transition strengths as the ground states
yield.

So far,2+ states in heavy spherical nuclei, especially the first 2+
states, have been well described in the random-phase approximation by us=
ing a simple interaction composed of a monOpole—pairing force and a
quadrupole forces). The observation of such a uniformly strong L = 2
transition can not be explained in terms of the conventional model, that -
is, the monopole pairing plus quadrupole force model. Previously,
Udagawa et a1.6) have tried to.explain a strong L = 2 transition to the

40

first 2+ state of 1 Nd taking into account the quadrupole-pairing



interaction on the basis of the pairing-vibrational mode proposed by

7

A. Bohr However, it has been experimentally found that the simple

zeroth order picture of the monopole-pairing vibrational-mode predicted
by A. Bohr breaks down for N = 84 -88 nucleil’s).

The ﬁurpose of the present work is to show that the quadrupole-pairing
interaction acting on particles in the nucleus can give rise to as large
a (p,t) cross section for an excited 2+ state as the monopole-pairing
interactisn does for the ground state. The calculation is especially
focussed on the (p,t) reactions on spherical nuclei. The 2+ states are
described by adding the quadrupole-pairing force to the quadrupole force
in the framework of the random-phase approximation. The quadrupole-type
density-vibrational mode couples to the quadrupole pairing-type vibrational
mode. In the conventional theory which has described 2+ vibrational states,
the latter effect has been neglected. It should be noted that the impor-
tance of this latter effect has been revealed in the experiment of two-
neutron transfer reactions. Our method is a reasonable exténsion of the
theory for the description of vibrational motion of nucleus in a super-
conducting phase.

A similar experiment on the Nd isotopes has also been reported by Ball

et a1.8)

with the (p,t) reaction at 31MeV. They did not observe any strong
I, = 2 excited states in these nuclei. Their results may be explaiﬁed by
the decreased intensity'for the transition to the quadrupole-pairing
states. The calculated cross sections for the quadrupole-pairing states
certainly have a strong dependence on the incident proton energy, but those
show a broad resonance-like peak with a maximum value around 30MEV lower
than expected.

+ . s
In sect.2, the 2 states are described by the quadrupole-pairing force

in addition to the monopole pairing plus quadrupole forces in the random-



phase approximation. In sect. 3 the calculation metﬁod of the (p,t)
reaction cross section in the distorted-wave Born approximation is briefly
summarized and in sect. 4 sum rules for 2+ states are discussed. Comparison
with experiments are made for Ba and Nd isotopes in sect. 5 and QUalitativé

discussions are presented in sect. 6.

2. Description of 2+ Vibrational States

We consider a system of nucleons intéracting with each other by the

9)

monopole-pairing, quadrupole-pairing”’, and quadrupole forces. The

Hamiltonian may be written as

where

A+

(1) { \}4-11' R J=0
X
It

L(d‘ﬂ(')ﬂ") T ”dz>[c @Cz]/x

+ Co \ @
©Jf = Z=<().!l(mr)3‘(:rll(),>[c‘]{'_® CJJ/A '

The expressions [CJ Q@(} (J) and [C Q@(I ](J) represent two-particle

Jz/‘ I K

and particle~hole pair operators coupled to angular momentum J and its
z-component j; respectively. The parameter K = (mwaﬁ)llz describes the
oscillator strength and A is Fermi energy which will be determined later.
In'spherical nuclei with partially filled shells, the most important
effect of the two-body force is to produce monopole-pairing correlatioms.

The simplest way to introduce these correlations in the wave function is

10)

to perform the Bogoliubov-Valatin transformation :
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where ajm and ujm are the creation and annihilation operators of a

quasiparticle, Uj and Vj are the unoccupied and occupied amplitudes of j

1
orbit respectively, and are given by Uj = [%{1+(Ej-k)/Ej)]§'and
1 1
Vj = (1—U§)§l Further E [(€ -A) +A2]§'is a quasiparticle energy, and

A and A are the two parameters fixed through the BCS equationsll).

The last two interaction terms in eq.(l) could be treated in the ran-
dom phase approximations). This procedure makes it possible to diagonalize
these terms Between all two-quasiparticle states and yields collective
states which necessarily contain a large number of quasiparticles. Let

us define some creation and annihilation operators for pairs of quasi-

particles coupled to angular momentum 2,
i3 2p) = Zo Goodams |2 )y o (30)
A didz 2 /4 g TR B8 gy B ma 5 .
A Gdzr2l) = Zs (Gimigsm2 [24) dfms of o, (3b)

. +
In the random-phase approximation, a creation operator of 2 state is

defined by a linear combination of the A's assumed as boson operators,

C),;: }L% [1? ATG ,z/‘) - ﬁ.d/(—)}/‘/l -()4";27*)]. &

The amplitudes Y, ¢ and the excitation energy w are determined by the

following set of equations derived from the equation of motion [H,.Q+] = hwQ



X2
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Here the abbreviations E,,, = E, + E, i(ikr Y i5'>(U.,v, + U.,V,
v 13 5 3 ’qJJ = <jli(ikr) lJ ( J' () J' ),
and p}?? = ﬁj”(iKr)zYzﬂj'>(UjUj.-(—)SVjVj,) were used.. From these equations

we ohtain the coupled dispersion equation which determines values of hw.
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From the normalization condition of 2 states, one can easily deduce the
relation

%’ iz B~ 43‘4":'" Bjim ) = 28’

&
The suffix n indicates the solution corresponding to an eigenvalue'ﬁuh.
From eq.(5) and the normalization condition (8), the amplitudes Y and ¢
are completely determined and are given in the following forms,

lf’ 1 1 [i(o\ + F(o) Y (I)] (?4)
o TR memerm e N4 N4 R
i NZ E‘jti' —Rio.. 34 T §” Tt e i’ )
. i. 1 [ 1G] ) ) ] (?L)

Here llVE is the normalization constant and the last two terms in ¥ and ¢

give the components of quasiparticle pair amplitudes caused by the
quadrupole-pairing correlation. The constants Z, Yl and Yé are given by

2 =5 +vs +ys/ + 25, R, + 28R, +205R,.

(10a)
Y= (4.0 =4 C)/ (b= h<) | Crob)
n = (albz —azbl )/(ID;CJ "bzc”l) ’ (r0¢)

where the prime means the differential by ¥, for instance S; = dSO/dfﬁm),

and a; etc. are defined by
a,= )Sa(,"'.V-zSo) = C'E.Rol ‘é&Rf
b= Ro("——Vz S’D)%-GESJRD ~Gt’iRu}?:z

g = R|((“‘V;5\o)‘eﬁgop2*%§zRq
G =

by =
G

’

()
~ TSR, + (1-%S,)Ro-GR R:
‘-V;R:_ -f-(/——G;S:)S,"GG.Rzl »
~EROK' 4—( lﬂ%g,)ﬁz -G SR, .

il
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3. Spectroscopic amplitude for two-nucleon transfer reaction

Several attemptslz—la)

have been made to write simply the cross
section for two-nucleon transfer reactions in the distorted-wave Born

approximation. The differential cross section for the(t,p) reaction is

given in the zero-range approximation by

do 24 ____LM}* R ) 2
- V%*’-* 21_—(—[ Uﬁ»@r AR R %(naf (& R)AR | (2)

A 2T +I (TR ﬁ;

where Ii and If are the spins of target and residual nuclei, respeetively,
. v

*
m and mp are the reduced masses of the triton and proton, kt and kp are

the relative momenta of the triton and of the proton, and Véff is

strength of the Gauss—type interaction which causes the transfer reactions.

® ana £

The functions f are the distorted wave functions describing
the relative motion in the initial and final reaction channels. The vector
R defines the position of the center of mass of the captured di-neutron.

The form factor FL is given by

— (i3)
F(R)= Z Bau Reu (5557 R )

The function RNL is the radial part of the harmonic oscillator wave func~
tion for the center of mass coordinate of the two neutrons with principal
quantum number N and angular momentum L, and the parameter V describes

the oscillator strength. The coefficient BnNL’ which contains all the

information about nuclear structure, is

| s> - ﬂn )01
BQ’WL.\:‘Q',‘;:LAL‘*‘ +. ?J,J,_A(IAIF :} J-Z'J )gl_j-('" Q.,'"zﬂz;l..lmo QL LL>

X< (904, ()i s 7| (L L)o, (4IILT > \ @
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The factor'gj j is equal to unity, if the two neutrons are captured in
1°2
the same single-particel orbit (jl = ) and otherwise g j = /2. The
J132

_ L ye g1 AL
symbols \\22 )Jl,\z 2;32,J| (2 2)O,(!Z, YL;J> and <n12 Zz,Lan NL;L>

1°"2
are the 9j-coefficient of the transformation from the j-j coupling to the
L-S coupling representation and the Talmi coefficient, respectively. The

overlapping integralSlH of the wave functions for the relative motion of

the two transferred neutrons in the initial and final state is given by

31r1>§“ (7-2%/4 | 27— 1)y 4pC +at \w=| o
Qp = ( ey (1= o v) (15)
v a, 3.2 .2 4

with C= -+ = + =68 and D= a" + 262 - &, The parameters § and a are
4 4 2 4C
the size parameters of triton and the interaction range of the Gauss

potential.

The spectroscopic amplitude A(li,If;jlsz) that appears in eq. (14) is

defined as

AL L5 0,6T)= <I,m|2(w,mrg»4+)(—_[cd, 63] B>

dcd:

The amplitude with respect to the ground-state transition is equal to

. « s : 2-0"+‘ ! (
- - . — = S it \ \ "T)
A(I}VDII{' O,J,[szO) g@ld:\} 2 Lll)lvol )
Here we assumed that the target and residual nuclei have the same ground-
state wave function. Strictly speaking, both systems consist of different

nucleon number and these wave functions are non-orthonormal to each other.

In order to simplify the calculations, we neglect this effect here. On the



1<+

same assumption, the (t,p) spectroscopic amplitude associated with the

. R +
excitation of 2n state becomes

g 1 \ L |
A,‘(I);:D,];-:Q)(),d.ﬂ':_z):ﬁ———%_} (Ljé'udz,’[}”‘z,% - Vd'l %zﬁ}},,"‘)_ (l(?)
hia

For the (p,t) reactions it becomes

- 1 _ . -
Au (Ti=0, =2 54,0.3=2) I ( Ua‘.”a;‘fj',;_,m A dezl},,;z,-n ) a0
' : i

Wa

In the transfer reactions, the largest contribution comes from around
the nuclear éurface. The cross section will become large for a.form factor
which is peaked around the nuclear radius R0 and has a long exponential
tail. In the numerical calculations, the form factors for tﬂé external

region of nucleus are then constructed by matching the form factor given

by
2J

"~
]

behaviour1 .

4, Sum rule for 2+ states

In order to gain an insight into the type of spectroscopic informa-

tion, it may be useful to study the spectroscopic factor defined as

SM (I,2=0,'I.}=2 ;9=2 ) = IJZZh 34}5,_<J;“(ikkft“ Jz>/4,n (I;=", I‘F=2 ;d‘ul};z)r. (20)

The cross section is proportional to the spectroscopic factor in the follow-
\ 14 . ’ ‘

ing two approximations ): One of them is to set the frequency of the

harmonic oscillator potential of the relative motion of the two transferred

neutrons equal to the frequency of the harmonic oscillator potential of the
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target nucleus. In this approximation only the term’§{=,ﬁ;ax in eq.(14)
survives. The other approximation is to treat the triton as a point and
to replace the Talmi coefficient by its average taken over all possible
two-particle configurations. 1In this approximation the coefficient BﬁNL
reduces to the amplitude of the spectroscopic factor given in eq.(20)

In the Tamm-Dancoff approximation which neglects the backward scat-
tering amplitude ¢3j',n’ . sum of the spectroscopic factor for ‘t,p)

. . +
reactions over various 2 gstates becomes
] - 2 LR 22
SCp) = Zpa(Gi=e, m2r 32202 25 Gl Kl 2 Uy Ui, @0

and also for (p,t) reactions it becomes

, 2 22 * u..?)
S(pF) =2 <Gl ellie > 1,V
did=
~of./
The right hand side of each¥the above equations is equal to sum of the
spectroscopic factor over all the two~quasiparticle states coupled to
the angular momentum J = 2. This sum rule cannot: be derived when ground=
state correlations are included in the description of states connected by
the reaction as is done in the random-phase approximation. 1In surveying
the data on two-neutron transfer reactions , however, the sum rule is use-
ful to give a criterion for deciding whether the transition is strong.
That is to say, the criterion is whether the transition exhausts a fair
fract"of a sum-rule value. In the next section, we will show that the

transition strength associated with the quadrupole-pairing state has the

majority in the sum~rule value.

5.  Comparison with experiments



We shall now present results of the numerical calculations for (p,t)
and (t,p) reactions leading to the ground states, the first excited 2+
states and the quadrupole-pairing states. The calculations are made in two
steps. The first is to estimate cross sections for the ground-state.
transitions and to fix the monopole—pairing interaction-strengths and single-
particle energy levels from these estimations. The second is to fix the
interaction strengths V2 and G2 from the experimental data of the excitation

energies and two-neutron transfer reactions associated with the first and

+
quadrupole-pairing 2 states.

5.1. GROUND-STATE TRANSITIONS

In the calculations, all the single-particle levels lying between
Z = 28 and 82 clqsed shells for protons and between N = 50»and 126 closed
shells for neutrons were taken. Two sets of single-particle enmergies are
used for neutrons and are listed in table 1 together with the set used for
protons. The two sets for neutrons differ only in the energy interval

between 5f and 4d3

7/2 /2
and relative intervals of the levels above and below the closed shell at
N = 82 are kept the same in both the cases. The value 3.7 MeV for case 1

was taken from the difference between the separation energies for the

5f and 4d3 levels. The strengths of the monopole-pairing force were

7/2 /2

set equal to Go = 20.0A._1 MeV for neutrons in case I and 18.4MeV in case II
and Go = 23.0A_1MEV for protons. These values reproduce fairly well the
experimental values for the energy gap and make all nuclei to be in the
superconducting phase, except for N = 82, At N = 82, the energy—gap para-
meter becomes very small and therefore onencan say that the neutrons in

14 138

2Nd and Ba are approximately in the normal phase. Figure 1 shows the

/€

levels (3.7 MeV for case I and 2.5 MeV for case 1II), -



calculated and experimentally observed cross sections for the (p,t) reac-
tions leading to the ground states of Nd-isotopes. All cross sections are
sums of the differential cross sections taken for 5° intervals in the range
of 5 to 40° and are plotted as a function of neutron number N‘in residual
nucleus. The calculated cross sections are normalized to the reaction

146 144Nd. The optical potential parameter used in the calculations

17)

Nd(p,t)
were taken directly from the work of Ball et al. , and are listed in
table 2. The parameters included in eq.(15) weére taken as follows:

e ) 2 2 13 | :
vV =0.96A 3 fm , a = 0.3 and §" = 0.06 fm . It is found that a set
of the single~particle spectrum denoted as case II can reproduce the exper-
imental trends better than in case I.  Further, the calculated excitation
energies of the quadrupole-pairing vibrational states for case II are in

good agreement with the experimental values as shown in table 3, and for

case I become higher by about 1 MeV for case I. In fig.l, however, the

disagreement is remarkable at N = 88. The experimental data indicate the
necessity of taking in;o account the change in the nucléar deformations of
the target nucleus and residual onels). The reducéd cross section is due

to the decrease in the transition matrix element when the difference between
the deformations of the target and residual nuclei is taken into account.

15QNd gives better agreement with

The deformation parameter 6 = 0.07 for
the experimental cross section than the result shown in fig.l. However,
this is too small compared with the experimental value § = 0.26. One should

6) 148,150
T

take a shape coexisting model1 fo

Nd-isotopes to explain the
experimental data consistently. The differential cross sections for the
ground state transitions are given in fig.2 and are found to be in goé6d

agreement with.the experimental ones. Similar results have also been obtain-

ed for Ba-isotopes.
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5.2. Excited 2+ State Transitions

The experimental and calculated (p,t) cross sections relative to the

ground-state transition are listed in table 3 together with the results of

18)

(t,p) reactions . The parameter sets of V2 and G2 are taken so as to .

. . , + :
reproduce the experimental excitation energy of the first 2 state. We can
not fix these values from the excitation energy only, but can express the

parameter V, as a function of G,. The (p,t) cross sections relative to the

2 2
146

. + . .
ground-state transition for 2 states in Nd are shown in fig.3 as a func-

tion of GZ' In the case of G2 = 0, the calculated cross section for the
quadrupole-pairing state is apparentiy smaller by a factor of about 6 than
the experimental value. However, the cross section increases with the

quadrupole-pairing interaction strength G, and reaches the experimental

2

value at G2 = 0.0064MeV. In the case of G2 = 0, on the other hand, the

+ .
calculated cross section for the first 2 state is considerably larger than

the experimental one, but it decreases with the interaction strength Gzand

reaches a minimum value around G, = 0.006MeV. For G, values exceeding the

2 2

minimum point, the cross section tends to gradually increase. In the range

, + .
of excitation energies below 1DMeV, we can find another 2 state which

9 Hereafter

we like to call it the third 2+ state. This state lies higher in energy by

gives rise to a large (p,t) cross section with the increase of G

about 1MeV than the quadrupole-pairing state as seen in table 3. All cross

sections listed in table 3 are normalizéd to the ground-state cross section
. . + . 144

for each nucleus. The (p,t) cross section for the third 2 state in Nd

is larger than for the quadrupole-pairing state. However, it decreases more

rapidly with the increasing neutron number, resulting in relatively larger

cross section values for the quadrupole-pairing state at higher neutron

146 148N
number (° Nd and d). The neutron-number dependence of the calculated
cross sections for the quadrupole-pairing states is in good agreement with

the experimental results. For the 150Nd(p,t) 148Nd reaction,



however, the difference between the nuclear deformations of the target
and residual nuclei should be taken into account as pointed out in the
last subsection 5.1. Then the agreement with the experiment will be im-—
proved much more. It should be noted, however, that these states inter-

preted by Yagi et al.l)

as being the quadrupole-pairing states are not
always of pure quadrupole~pairing vibrational nature, although the cross
sectidns are comparable to or larger than the ground-state cross sections.
It is interesting to know about how large a collectivity these states
have for the two-neutron transfer reactions. The calculated spectroscopic
factors for the 2+ states and the sum-rule values are displayed in table 4
together with the results of (t,p) reactions. The values of the spectro-

scopic factors are given for G, = 0.0, 0.006 and 0.007 MeV. It is seen

2
that the quadrupole~pairing states have transition strengths of about

30 ~50% of the sum rule value and the sum of the transition strengths

+ o ~ L3 - -
“““ 2 of the sum rule value.

hree 2 states reaches to about 80 ~ 997
Figure 4 displays the calculated and experimental (p,t) angular dis-
tributions for the 2+ states. The angular distributions for the transi-
tions to the first excited 2+ states can not be fit with the distorted-
wave Born-approximation calculations. It has been shown that the effect

. . 0
on the cross section due to multi-step processlg’2 )

is quite important’
to fit the experimental angular distributions. However, this effect was
not considered here.

For nuclei with neutrons less than N = 82, contrary to the case with
N > 82, the first excited 2+ states have a collective character of the
pairing-vibrational type and almost exhaust L = 2 transition strength.
-5/3

The calculations done with the G2 = 20.7A

The agreement with the experimental values is quite good. However, when

MeV are shown in table 5.

the calculations were done with G2 = 0, the values are dpparently smaller

by a factor of about 5 than the experimental ones., This agreement was

9



obtained not only for the summed cross sections associated with the ground
. + . , .

and first excited 2 state transitions, but also for the angular distri-

butions as shown fig,5.

6) 14

In an earlier paper, Udagawa et al. ’ analyzed the data of 2Nd(p,t)

140Nd with the coupled-channel Born approximation (CCBA) and obtained a
good agreement with the measured angular distributions, As far as the
strong quadrupole-pairing type L = 2 transitions are concerned, however,
the angular distributions from these states can be fit quite easily with
calculations in the distorted-wave Born-approximation. Compared with these
2+ state transitions, the transitions to the first 2+ states of nuclei

with N > 82 are much more inhibited and have angular distributions that

are quite different as can be seen by comparing fig.4a with figs 4b and 5.
The angular distributions for these weak transitions were shown by Yagi et

al.21)

to be reasonably accounted for in terms of two step coupled-channel
Born-approximation calculations. As may be seen from their results, the
good agreement of the CCBA result with experiment is obtained by the de-
structive interference between the one-step process and two-step process
related to the inelastic scattering (O+ - 2+), although the magnitude of
the cross section for the direct process is larger by a factor of about 10
than for the two-step process., In the case for N < 82, the magnitude of
the cross segtion for the direct transition to the first 2+ state is fﬁr-
thermore enlarged by a factor of about 10 than in the case for N > 82,
Therefore, in this case it seems to us that the effect of the two-step
process is less important in comparison with the case for N > 82, This is

‘ . + S
a reason why in the case for N < 82 the first 2 state transitions are well

accounted for by the one step distorted-wave Born-approximation.



5.3. ENERGY DEPENDENCE OF CROSS SECITONS

We should like to mention the incident energy dependence of the
. + . .
cross sections for the 2 states. An experiment of the (p,t) reactions

8) with 31Mev

on the Nd isotopes has also been studied by Ball et al.
protons. In nuclei for N > 82, they have.not observed any strong L = 2
transitions. It makes us suspect that there may be a strong dependence
of the cross sections for the 2+ states on the incident proton energy.
For the case of 148Nd(p,t)l%Nd, the cross sections for the ground state
and the 2+ state transitions are plotted in fig.6 as a function of the
incident proton energy Ep. A remarkable feature is the appearance of a
broad resonénce—like peak with a maximum value around 30MeV in the cross
section for the‘quadrupole—pairing state and the thirxd 2+ state. The
calculated results are contrary to the experimental ones. According to
the experimental evidences, a strong 2+‘state trgnsition must be observ-
ed around higher energy than 30MeV. There remaiﬁs a possibility to
explain why this discrepancy between the calculation and the experiment
appears. That is to say, there is an ambiguity on the energy dependence
of the optical potential parameter for tritons. We took the optical
pofential with the energy dependence for protons employed by Pereyl7),
but we did not for tritons. The resonance-like behaviour is caused by
enhancement of the overlapping integral in eq.(12) of the distorted waves
and the form factor of transitions associated with the 2+ states. The
form factors are shown in fig.7. The amplitudes of the form factors for
the quadrupole~pairing state and the third 2+ state transitiomns have a
large peak in the outer region of nucleus. The main contribution to the

overlapping integral of the distorted waves and the form factor comes from

the outer region than the nuclear radius. These are reasons why the cross



2 2

sections associated with the quadrupole-pairing state and the third 2+
state become larger than the first 2+ state transition with increasing
quadrupole-pairing interaction strength and why the strong energy
dependence appears in the cross sections for the quédrupole—paifing state
and the third 2+ state. For the case with N < 82, the form factor for the
first 2+ state transition has a strong resemblance to that for the
quadrupéle—pairing state and the third 2+ state transitions in the Nd-

isotopes with N > 82.

6. Qualitative discussions

In the preceding sections we have shown that the enhanced (p,t)
cross sections for the L = 2 transition in nuclei near the m;jor closed
neutron shell at N = 82 can be understood naturally within the "'quadrupole
plus quadrupole-pairing vibrational model”. The' conventional calculations
of the quadrupole-type particel-hole vibrations do not display the large
two-neutron transfer cross sections. We feel that it is necessary to
make cléar a mechanism to generate the excited 2+ states which can display
the enhanced (p,t) cross section.

In fig.8 is displayed a schematic representation of possible distri-
butions of two-quasiparticle states coupled to 2+ in 146Nd. The 2+ states
shown in (a), (b),eand (c) are composed of levels above the closed shell
at N = 82, of levels above and below the closed shell, and of levels below
the closed shell; respectively. = The 1engths ﬁf the vertical bars give

values of (V . )2, V.V, U, U, , and V V (v, v, + U V )}, which are

3132 33323192 333 313, 123y
factors in the spectroscopic amplitudes related to the occupation of two-

quasiparticel levels. Main contributions to the spectroscopic amplitude

in eq.(19) come from the second term V V., ¢, The magnitude is
. 3132 3130



especially determined by values of the components Yland Y, in wjljz’n.
These are components of two-particle and two-hole amplitudes generated

by the quadrupole-pairing interaction. In general, values of Yl and

Y, are small except for the ones in the quarupole-pairing staté and the
third 2+ state. Furthermore, a characteristic feature of Yl and Y2 for
the quadrupole pairing state and the third 2+ state is that these have
opposite signs and are approximately of the same magnitude, and CYZJYl)
becomes 1arger‘than the coefficient of (UWVU) term by a factor of about
5. Therefore, if we neglect the (UVH+VU) term is the transition amplitude,

the spectroscopic factor for the quadrupole-pairing state and the third

+ . .
2 state transitions becomes approximately:

2 2 2 2

(h-7) DM Giviz <J‘l”(“KV)ZY2”‘};> Vi %‘:

L= =2;J=2)=
S, (L=0. =257 ) IZ Gz B, — R

As is seen in fig.8, in the range of (a) the contribution of two-

quasiparticle states to eq.(23) is smaller than that in (b) and (c) ranges.

If these contributions are neglected, then the transition to the
quadrupole-pairing state becomes completely coherent and has a large

- +
transition amplitude compared with other 2° states. For the third 2+
state, the contribution of two-quasiparticle states in (b) should be sub-
structed from that in {(¢). It seems to us, therefore, that the cross

+ .

section of the third 2 state is smaller than of the quadrupole-pairing

146 144 ) .
state. For Nd(p,t) Nd reaction, however, the cross section of the

third 2+ state becomes larger than that of the quadrupole-pairing state

because CYZ‘Y1)2+ is greater than.(Yz-Yl)2+ o
3 qp

23)



For the first 2+ states of nuclei for N > 82, the situation is more

complicated since the three terms in Y, ., , and also the term U, U, ¢, .
I1d2 I J2 3132

in eq.(19) contribute equally to the spectroscopic factor. Contributions
of all two-quasiparticle states in (a), (b) and (c) are in the random
phase and therefore the first 2+ state transition can not be collective.

Empirically, the large value of (YZ-Yl) appears only in energy below
the lowest two-quasiparticle states in (b) and (c¢). There is an energy gap
between the lowest levels in (a) and (b). For nuclei with less neutrons
than N = 82, however, this energy gap vanishes. TFor the first 2+ state,
then, the term (y,-Y,)V. V., in ¥, . becomes larger than other terms and

2 1310 did2 |

the transition strength becomes rather large. This situation for an en-

hancement of the transition amplitude has a strong resemblance to that for

the quadrupole-pairing state and the third 2+ state in nuclei for N > 82.

7. Conclusions

The following conclusion may be drawn from the results of our calcu-
lations on the (p,t) reaction cross sections: The strong L = 2 transitioms
in (p,t) reactions on Nd- and Ba-isotopes can be explained by the vibra-
tional model described by a simple interaction composed of a quadrupole
force and a quadrupole-pairing force in the frameyork of the random phase‘
approximation. If the quadrupole-pairing force were not taken into ac-
count, one can not reproduce the observed strong L = 2 transitions in the
(p,t) reactions. The strengths of the quadrupole force and the quadrupole-

5/3 5/3

pairing force are about Vo = 37.4A7 MeV, These

MeV and G, = 26.0A"
values give a good agreement of the excited energies of the first and the
quadrupole-pairing 2+ states and also of the large L = 2 transition

strengths in the (p,t) reactions with the experimental data. This value

for the quadrupole-pairing interaction strength is a little smaller than the



5/3

value 34.0A" MeV determined by analysing the cross sections of the two-

. . + .
neutron transfer reactions to the first 2  state in 140Nd6)

~5/3

and is larger
by a factor of 2 than the value 17.4 MeV determined by analysing the
cross sections of the two-neutron transfer reactions to the O+ pairing
vibrational states on Uranium isotopeszz)*. It should be noted, however,
that the value of the interaction strength depends on the number of single-
particle levels taken in the calculations.

The observed strong L = 2 transitions do not have a strong collectivity
as seen in B(E2) valpe for the E2 transition between a first 2* state and
a ground state. The quadrupole-pairing states have only transition strengths
in the range of about 30% to 50% of the sum-rule values. In nuclei for
N > 82, our theory predicts an existence of one more strong transition to
a 2+ state that lies higher in energy by about 1 MeV than the%quadrupole-
pairing state. The sum of the transition strengths for the first, quadru-
pole~pairing and the third 2+ states add ub to about 80 ~~90% of thé sum~
rule value.

The (p,t) reaction cross sections associated with the quadrﬁpole—
pairing and the third 2+ states have a strong dependence on the incident
proton energy and show a broad resonance-like peak with a maximum value
around 30 MeV. This is due to the change in an overlap integral of the
distorted waves and the form factor as the incident energy varies.

In nuciei for N < 82, a situation for an enhancement of the (p,t)

‘o . + s
transition to the first 2 state resembles that for the quadrupole-pairing

. + . . - .
and third 2 states in nuclei N > 82, Other strong L = 2 transitions in

*) Their definitions of the strength of the quadrupole-pairing force are

related to ours as follows: G2 (Udagawa et al.) = 5G2 (ours) and G2

50 mwo.?2
6w g ) 6 (ours).

(Bés et al.) =



2f

the (p,t) reactions on these nuclei are not seen in the range of the exci-
tation energy below 10 MeV,

The formalism to describe the 2+ states developed in this paper can
not be applied to the closed shell nuclei since these are in the normal
phase. However, the properties of a nucleus two neutrons removed or added
from the closed shell nucleus are well described by the calculations for
nucleus in the supercondqcting phase.

It is well known that in the case of only quadrupole force, the strength
5/3 ' +

constant VS = V A taken to fit the excitation energyyof the first 2

2 2
state increases as the closed shell is approached. If an appropriate

c _ 5/3
value of G2 = GZA

. . : . + ; . .
of the excitation energy of the first 2 state with the atomic mass number

is used, however, one can well reproduce variations

[} . c

A with a constant value of the strength V2. In our calculations, B(E2)
o . + .

values for the transition between the first 2 state and the ground state

are found to be in good agreement with the experimental data by taking the

effective charge e s 0.5e.
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Tab;e 1.

Table 2.

Table 3.

Table lbc :

Table 5.

Table Captions

‘Single particle energies (MeV).

17)

Optical potential parameters for proton and triton.

The {p,t) and (t,p) cross sections relative to the ground state

transition for the 2+ states of Nd isotopes. The cross section ¢

represents the sum of the differential cross sections taken for

5° intervals in the range of 5° to 40°. The 2:9 and 2% states are

3

defined in the text and their excitation energies Ei are given
in units of MeV. The results for case I .and II were obtained by
using the sets I and II of the single—particle‘leVels:listed in

table 1. The strengths of the quadrupole-pairing iﬁteractioﬂ

5/3

were taken as follows: G2 = 30,7A MeV for case I and G2 =n

5/3 MeV for case 1I.

26.0A
Sum rule values for (p,t) and (t,p) reaction strengths. The sum—

rule value § is given by the sum of the spectroscopic fqétor over

- +
~various 2 state of residual nucleus. The spectroscopic factors

S, for the first 2t state, the quadrupole pairing state and the

third 27 state were calculated for G, = 0.0, 0.006 and 0,007 HeV

by using the single-particle levels for case II.
The (p,t) cross sections for Ba isotopes. The cross section O
represents the sum of the differential cross sections taken for

Se'steps in the range of S° to 40°., The calculations were made

with the pairing interaction strengtﬁs Gg_= 22._0A-l MeV, Gg =
17,047 MeV and G, = 20.74~>/3 Mev by using the single-particle

levels for case II.’



Fig. 10

Figo 2.

Figo 30

AFig. l“

Figo 50

Figo 7.

Fig. 8.

Figure Captions

The (p,t) cross sections of the ground-state transition as a
function of neutron nuﬁber.

Angular distributions of the (p,t) reactions leading to the ground
state and DWBA fits. |

The summed (p,t) cross sections relative to the ground-state

146

+ .
transition c¢ross section for 2 states of Nd plotted as a

function of Gy The interaction strength G, = 0.0064 MeV can

2
reproduce the experimental data for the qﬁadrupolevpairing state -
of 40ya,

Angular distributions of the (p,t) reactions leading to the 2+
gtates of Nd isotopes aﬁd DWBA fictings.

Angular distributions of the (p,tj reactions leading to the first
2+ states of Ba isotopes and DWBA fittings. The solid Li"e‘_eneﬁés
the calculated values with the quadrupole plus the quadruﬁole
pairing forces aﬁd the dashed line denotes the results calcﬁlated

with only the quadrupole force. -

Incident~proton energy dependeﬁce of the summed cross sections

+
- for the ground-state and the 2 state transitions,

Form factors of the (p,t) reactions leading to the 2+ states., ‘The
solid lines denote tﬂe results calculated‘with the quadrupole plus
the quadrupole pairing.forces and the dashed lines‘denote‘the
results calculated with only the quadrupole force.

Schematic tepreseﬁ;ation 6f possible diétributions of two-

146Nd. The 2+ states‘shown“

quasiparticle states coupled to 2+ in
in (a), (b), and (c) are compbsed of levels above the closed shell

at N'= 82, of levels above and below the closed shell, and of

Jo
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levels below the closed shell, respectively. The lengths of the

vertical bar give values of (V, V )2, V,V, U, U, , and
ig 3, 313939 3y

V,V, (U, V, + U, V, ), which are factors in the spectroscopic
J1d 433y i Yy |
amplitude related to the occupation of two-quasiparticle levels.



Neutron

Proton

NLj

P /2
5/2
P32
611372
9/2
312
1172
4dy
: 431/2
“87/2

5/2

CASE 1  CASE II

-2.761  =2.761
-3.129  -3,129
4,169 -4.169
~2.018  ~2.018
-3.113 - =3.113
4,991  -4.991

~-9.363 -8.182

~8.659 ~-7.478

NL3

hy1/2

3/2
651/2
b87/2
5/2
4892
3p1/2
5/2

3p3/2

8P
~0.117
0.0

-2.347

-6.672

~7.900

~7.705

Table 1.




‘V »,rR7> a W WD , rI. ay - To

Mev)y (F) (F) (MeV) Mev)  (F) {F) (F)
Proton 5.1 1.21 0.593 0.0 22.81  1.21 0.593  1.25
Triton 170.1  1.15 0.74 19.0 0.0 1.52 0.76 1.40

Table 2.




CASE I

Final - Exp. CASE II
Nucleus ' E g (p,t) o(t,p) E, alp,t) a(t,p) E, o (p,t) o (t,p)
ot | .0 100 100 0.0 100 100 0.0 100 100
Lha | 2F | 0.695 7 118 0.605 11 103 0.695 4 83
z;P 3.48 92 43 3 3.50 95
2] 5.5 128 4.18 116
ot | 0.0 100 100 | 0.0 100 100 - 0.0 100 100
16 21‘ 0.453 13 a5 1 ouss s 50 0.453 S 7
. 229 3.74 73 | s 73 3.75 73
2 6.6 75 4.75 52
of | 0.0 100 100 0.0 100 100 0.0. 100 100
M8 25 | e300 29 6 | 0.300 ¥ 14_: 0.300 3 a1
2;p I 383 ‘193 5.1 84 4.02 55
'23' 1 7.3 50 5.37 8

Table 3




' Final

e
2
- ap

0.007

1105.27

1 Sum Rule
Nucleus ‘ .
v sl (plt) Sl t,p) ) qu (p,t) qu (t,p) S3 (p,t) 83 (t.p) S(p,t) S(t,p)
0.0 | 3.63 47.05 9.14 0.59 3.58 0.01
M .0 '
0.006 | 0.43  187.09 54.07 0.36 78.52 0.00 192.29  315.29
0.007 .| 15.86  278.56 74.03 0.02 64.00 0.00
0.0 7.12 52.79 13.82 0.41 1 8.80 0.05
Moy 0.006 | 0.43  153.76 75.93 5.23 65.77 0.07  207.51  283.04
0.007 | 23.32°  225.60 107.45 5.80 75.74 0.08
0.0 8.97 48.94 7.32 1.33 8.38 2.08
M8 0.006 | 0.27  122.54 79.69 2.49 3.42 0.96 225.42 254.20
28.10  185.78 2.42 59.29 0.78

Table 4




Spectroscopic

0.356

Final Exp. Theor. Sum Rule
' Factor
1 p | :
Nucleus E, olp,t) o (p,t) 5, (pst) S(p,t)
136g, 0.0 100 200 — -
0.818 182 185 110.3 153.4
134, 0.0 100 100 — —
10.605 71 71 - 71.5 128.7
132g, 0.0 100 100 - -
0.464 4 28 50.4 107.9
130, 0.0 100 - —
9 27.0 90.1

Table 5.
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CHAPTER 3 Unified Understanding of the (p,t) Reaction on Nd isotopes

1. Introduction

In the preceding chapter we discussed how the quadrupole-pairing
states were reproduced by taking into account the quadrupole-pairing
force.l) The (p,t) intensities of the 2+ states relative to that of the
ground state were well reproduced in terms of the distorted-wave Born-
approximation, but the angular distribution patterns of the first 2+'
states could not be reproduced. As discussed in the previous chapter,
the angular distributions for the weak transitions were shown by Yagi

2)

et. al. to be reasonably accounted for in terms of the coupled-

channel Born-approximation calculations. The code of such a two-step
process—calculation is now available by efforts of Toyama and Igarashi,S)v
which is INS code TWOSTP.

The purpose of this chapter is to show the numerical results in
terms df the two-step process—calculation for the first 2+ states. For
the nuclear-structure calculation, in the previous chapter,the parameers
of the interaction strengths were decided so as to reproduce the (pst)
strength leading to the quadru?dle pairing state. In this chapter these
parameters are decided so as to reproduce the over all trend of the
excitation energies of the first 2+ states of the Nd isotopes. . These parameters
decided by the diffefent.methods are almost same. The excitation energies,

B(E2) values and the (p,t) strengths of the 2" states of the Nd isotopes

were calculated and shown in the next sedtion.

2. Calculations

The details about the two-step process—calculation'wili be discussed



in chapter 6. 1In this chapter only the calculated results for the (p,t)
reactionssleading to the 2+ states of the Nd isotopes are shown.

The parameter sets of Gg and V; are shown in fig. 1, which are
taken so as to reproduce the experimental-excitation energies of the first
2+ states. As can be seen in fig. 1, there is a point into which the
parameter sets concentrate. Thus, we can obtain the wvalues G; and V;
which reproduce the excitation energies ofvthe first 2+ states of the
Sphericall& stable nuclgi. The values are G; = 24.75MeV and,VE = 33.18MeV.
These values are comparable with ones which were uséd in the previous
chapter. The -excitation energies and the B(E2) values of the first i+
st;tes are shown in fig. 2, using these values. In otrder to compare the
case of Q-Q force only, we also show the results using V; = 34,76MeV,
which are taken so as to fit the excitation energy of the first 2+state
of 148Nd.

The excitation energies and the B(E2) values for the case of PZ—P2
plus Q-Q forces are fairly well reproduced, and at N = 92 the first 2+
state doe$ not have a positive energy. This situation will be discussed
in .chapter 4. The cross sections of the (p,t) reactions are calculated
in terms of the distorted-wave Born—approx1mat10n. The calculated. and.
the experimental results are listed in table l. All the parametefs

(mentioned iy
except for the strengths of the forces are the same asYthe previous
chapter.

For the angular distribution patterns of the first 2+ étate we
calculated the cross sections of the first.2+ states in terms of the

two-step process—calculation. As will be discussed in. chapter 6, the

cross section of the second order process is too large’ compared to the

experimantal’one, if the macrbscopec form factor is used and the deformation

parameter B,which is equal to the experimental value taken from the
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B(E2) value, is used. Then we take the effective R value as Beff = aBexp

NI

(0= 1) and asume 0 is a parameter. When o = > is used, the angular
distribution pattern of the first 2+ state becomes better than that of
the distorted-wave Born-approximation calculation, which is shown in
fig. 3. The relative ratios of the (p,t) intensities for the first 2+
states to the ground states are also listed in table 1. The agreement
with experiment is better than in the case of the distorted-wave Born-
approximation. For other 2+-states‘the second~order process does not
contribute, because the cross section of the inelastic scattering is
negligibly small.

. The calculated and experimental angular distributions of the (p,t)
reaction‘leading to the first 2+ states are shown in fig. 3. "In fig. 4
the components of each processes are shown.. It can be seen that the
direct ?rocess amplitude and the second-order processes amplitudes
interfere destructively with each other<and,then the abnormal angular-
distribution pattern is obtained. The detailed discuséions of the
two-step process and the relation between the'random—phase approximation
and the Hartfee—Fock—Bogoliubov equation will be discussed in the following

chaptérs.
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Table Caption

Table 1. The excitationvenergies, B(E2) values, (p,t) and (t,p) cross

sections of the 2+ states of Nd-isotopes. The cross section O
represents the sum of the differential cross sections taken for 5° intervals

i

in the range of 5° to 40°, and normalized to the cross section of the
ground state. Effective charge is used as e s =‘0.7e for the B(E2) values.
All the cross sections are calculated in terms of the distorted;wave Born-
approximation. The cross sections for the first 2+ state are also calculated
in terms of the two-step process-calculation. o(p,t) of the firét ot

states is the TSP-cross section and the number in the parenthesis is the

DWBA one.



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Figure Captions

.Parameter sets of GC and VS s, which reproduce the excitation

2 2

energies of the first 2+ states.
Experimental and theoretical excitation energies and B(E2) values.
Dots with bar are the experimental values. The solid lines
denotes the calculated values s using the interaction composed
of Q-Q and PZ—P2 forces, and the dotted line denotes ones

using Q-Q force only.
Angular distribution of the (p,t) reaction leading to the first
2+ state of 146Nd. The TSP curve is denoted as the solid line
and the DWBA curve as the dotted line, which are arbitrary

normalized to the experimental data.

The cross sections of each process, The solid line denotes

- the result obtained by mixing sultably these three processes.



Experiment Theory’
Nucl. J" E, , BE2Z  dlp,t) oltsp) Ey BE2 - a(p,t) alt,p)
ot 0.0 - 100 100 0.0 - 00 100
Whyg 27 0.695 4.0)1.5 7 118 ~0.750 4.15 7 (5) 93
ZZp 3.48 - . 92 - 3.38  0.16 84 4
2; 4.3 - 29 - 4.03 0.04 40 0
o* 0.0 - 100 100 0.0 - 100 100
Wibyg 27 0.453 8.5:2.513 45  0.456 6.79 10(1) 57
zzﬁ 3.74 - 73 - 3.78 0.16 54 3
2; 4o - 47 - 4.75 0.01 32 0
| ot 0.0 - 100 100 0.0 - 100 100
148ya 27 0.300 13.045.0 29 46 0.268 11.83 22(1) 43
Z;é 3.83 - 198 - 4,08 0.11 46 1
2; 4.5 - 78 - 5.35 0.0 16 0

Table ‘1
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CHAPTER 4 Effects of P2 ~ P2 Force on 21+ States in the Meadium and

Heavy Nuclei

1. Introduction

So far 2+ states in heavy spherical nuclei, especially first 2t states,
have been discussed in the random-phase appromimation (RPA) by using a
simble interaction composed of a monopole-pairing force and a quadrupole
force (Q-Q).l) Kisslinger and Sorensen have shown systematically the

enhancement of B(E2) value for the transition between the first 2+ state

2)

and the ground state using the simple model. However, the strength

c _ 5/8
constant V2 = V2A

first 2+ state increases as the closed shell is approached. This is due

of Q-Q force takenCto fit the excitation energy of the

to the fact that near the magic number the configuration of proton (or
neutron) which is near the magic number can not contribute to the first
2+ state, because of the large energy difference between the magic shells
and the difference of the parity.

On the other hand, in order to explain the (p,t) strengths of the 2+

states of Nd and Ba isotopes, the importance of the quadrupole-pairing

3)

force_(Pz- Pz) was pointed out by Toki and Sano and discussed in the

previous chapters. It was also indicated that if an appropriate value of

c_g A5/3

G, = G,

, the strength constant of P2— P2 force, is used, we can well

. . . +
reproduce the variation of the excitation enexrgy of the first 2 state
. . \ c
with the atomic number A by using a constant value of the strength V2.
As done in the previous chapter, we can obtain the strengths of

these forces from nuclei which have spherical shape, and discuss the sta-

bility condition of spherical phase in térms of the spherical phase in
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4)

terms of the random-phase approximation, Thus, the purpose of the present
chapter is to show how well the exciation energy and B(E2) value of the
first 2+ state can be reproduced in terms of the random-phase approximation

" using aninteraction composed of the quadrupole-pairing force and the
quadrupole force and then where the instability of spherical phase happens.
The calculation is dspecially focussed on fhe nuclei with the neutron
number between 50 and 82: Cd, Te, Xe, Ba and Ce isotopes. There can be
seen a rotational-like band in the nuclei below N = 70 of Xe, Ba and Ce
isotbpes, but it is not well studied. The energy ratio of the first 4+
state to the first 2+ state is not equal to 3.3, but is smaller ‘than 3.0.
This is in ;\ . contrast with the rare—earth nucleus. |

In sect.2 the relation between the stability condition of the Hartree-

Fock Bogoliubqv theory and the equation of the random-phase approximation
are discussed. 1In sect.3 the numerical results are shown and comparison

with experimental results are done. In sect.4 fuwther posibilities are dis~

cussed.

2. Stability Condition of HFB Theory

In order to study nuclear structure we often have to use any model
which starts from an independent particle model. Such independent particle

5)

states must be obtained by the Hartree-Fock Bogoliubov-method(HFB). For

actual convenience, however, we first assume independent particle states and
calculate any excited state. We must investigate whether such independent
particle states are stable or not. Such procedure is to investigate the

1 o . 4),6)

stability condition of the Hartree-Fock Bogoliubov theory. ~-

On the other hand, it is well known that the stability condition of the:

Hartree-Fock Bogoliubov theory has the contact relation with the equation of
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4)

the random-phase approximation. This was pointed out by Thoulless.
Following his prescription the point where the instability of the HFB~-single
particle states just happens coincides with the point where the solution of
the random-phase approximation has zero energy. Thus, we can know the
instability point of the phase by solving the equation of the random-phase
approximation. The.formal déscription is summarized in Appendix.

In nuclear physics, what phase a nucleus has will be of great importance.
For example, it would not be possible to use ordinary perturbation theory
to calculate the properties of a spheroidal nucleus starting from an inde-’
pendent particle model with spherical symmetry. It is one of the powerful
points of the random-phase approximationYdoes not have a positive solution
when the instability of such a phase happens. For another model, such as
Ta%zbancoff approximation or the diagonalization method of the shell model,

we can not know the validity of the solutions of the models.

3. Calculations

In the previous chapter we discussed the case of Nd isotopes. The fit
to the experimental excitation energies of the spherical nuclei is very
good and the phase transition occurs ét N = 92 in terms .of the random-
phase approximation. Our results support the shape-coexistence model
around N = 90, which was done by Takemasa et al..7)

In order to check the validity of our model, we took another experimen-
tal fact; that is the exitation energy of Cd and Te isotopes, proton number
is 48 and 52 respectively. All the éﬁgie-particle levels lying between 28
and 82 closed shells for protons and neutrons were taken. Single particle

energies were listed in table 1. The strengths of the monopole-pairing

force were set equal to Go = 23A—1MeV for protons and G0'= 18A_1MeV for



2

neutrons. These values reproduce fairly well the experimental value of the
gap energies.
The calculated and the experimental excitation energies are plotted
C 6 (o4
5 = 26,0MeV and V2 = 29, MeV.

In order to compare the results with ones of the case of Q-Q force only,

against the neutron number in fig.l, using G

c
2
110C

we also show them using V_ = 30.6MeV, which was taken so as to reproduce

the excitation energy of d. As can be seen in fig.l the agreement with
the experimental excitation energies is much better in the case of P2— P2

plus Q-Q force than in the case of Q-Q force only.

Further, we discuss the case of Xe, Ba and Ce isotopes, proton number
is 54, 56 and 58 respectively, and neutron number is less than 8Of In the
calculations, all the single-particle levels lying between Z = 28 and 82
closed shells for protons and between N = 50 and 126 closed shells for
neutrons were taken. $ingle particle énergies were taken from the work

) which were denoted as case II in their paper. The

of Toki et al.,
strengths of the monopole-pairing force were set equal to G0 = 23.2A_1MeV

for protons and Go = 17.3A-1MeV for neutrons.

; and G; are shown in fig.2, which were decid-

. : ; . . +
ed so as to reproduce the experimental excitation energies of the first 2

The parameter sets of V

states. As can be seen in fig.2; there 1s a point into which the parameter

sets consentrate. Thus, we can obtain the values Gg and Vg which reproduce
. + .

the excitation energies of the first 2 states of the spherical stable

nuclei.

. + .
The excitation energies of the first 2 states are shown in fig.3 and

listed in table 2, using G; = 28,0MeV and V; = 31.8MeV. This value of G;
is comparable with G; = 26.0MeV, which has been decided from the (p,t)

reaction on Nd isotopes. In order to compare the case of . Q-Q force only,



we also show them using V; = 34,2MeV, which was given from the experimental
value of 13OXe. The excitation energies for the case of P2— P2 plus Q-Q
forces are fairly well reproduced, and the phase transition happens at

N = 68 for Xe, N = 72 for Ba and N = 72 for Ce isotopes. This results is
very interesting. The point at which the phase transition happens is
different from an isotope to another.

From the G-matrix theory, which starts from the two-body interaction
between nucleons, it is indicated that the strength of Q-Q force between
unlike nucleons VZ(NP) must be larger than one between like nucleons VZ(NN)
or V2(PP). 8) However, the situations. are not significantly changed, even
if we take ihto account the difference between the strengths of Q-Q force;
VZ(NP) * YZ(PP) = VZ(NN).

In our calculation, B(E2) values for the transition between the first
2+ states and the ground states are found to be in good agreement with the
experimental values by taking the effective charge euff = 0.8e. The
results are shown in table 2 with the experimental values and the results

of Q—-Q force only.

4. Conclusions

In this chapter the first 2+ states in the medium-heavy nuclei have
been studied in terms of the random-phase approximation with using the
quadrupole-pairing force and the quadrupole force. The first 2+ states
are reproduced much better with P2— P2 plus Q-Q forces than witﬁ‘Q—Q force
only. By using Q-Q force oply,-the phase transition happens rapidly, and
this is contrary to the experimental facts. The quadrupole-pairing force
may prevent a nucleus from having a deformed shape. Thus, 2+ states in

heavy spherical nuclei are well described in terms of the random-phase

e



|

approximation with using the quadrupole-pairing force and the quadrupole
force.
It is very important to use the quadrupole-pairing force for the
o + 2 . ‘
description of the 2 states, and then¥all the calculations about the
, 9
nuclear spectroscopy and the shape of nuclei ,) it is need to use the

quadrupole~pairing force.



Appendix

1. Hartree-Fock-Bogoliubov equation

We consider a system of fermions with a spherically symmetric shell-

model Haﬁiltonian
+ -+ ’
H= 2 (g-MG"e + 2 Vprs G s <t
p ,

+ i .
where Ca and Ca are the creation and annihilation operators of a nucleon

in the state a, €, the energy of this single particle state, and X the

chemical potential of the system. The interaction V has the’following

symmetry properties,

Vigys =-Vouys == Vpgsr = V;g«?, . (2)
We pérform the generalized Bogoliubov transformation

&: = %(Afcf +Buica< ). (3)

The requirement that the a's also form a set of fermion operators entails

the orthogonality relations
2 (AL AL £ Pd K
o

N

L ¥ X ()
P (AP + BB )T 34 |

A

Lo pA A
7. (A} B} +BJVA,S),0,



£

and the inverse relations

N
(€0
)

. KA
7 (Ala + Bal )

The new vacuum state |0> is defined by
a,lo>=72 (6)

We can obtain the Hartree-Fock-Bogoliubov equation f yom the requirement
that the expectation value of the auxiliary Hamiltonian H in the new
vacuum state must have a minimum value. Then A and B satisfy the

following equations

(- m,4°,+Z[’ AL+ %Ao«(sB,a"- AL, ()

—%_ A _—

-~ (EJ"?\)B-( J—-.L,,(O' B), - LP-At’(f AP VA.‘:/ivuv‘ .

The quantities I' and A are defined by

A=A = 2% Vasrs %rs

hwrd * -
12¢ =FW = ‘Ffz{ ch(srs Sjsg , %)

PO
Vs = = Xey = <Gy 2 = %A;'Bf p
ffs=§g:=<c€ 2> = ZB/:-RS ,

where the symbol < ++« > denotes ground state expectation value. We see
that FaY is the potential energy'arising from the density § of the
particles and is"familiar Hartree-~Fock self-consistent potential. On

the other hand, AaB is the pairing potential arising f:om'éhe pairing
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density kK of the particles.

The expectation value of the Hamiltonian is given by
. , e 18 *
W=<H>= 2—:\ (&M fut =% oS * 3 %A"‘F "¢ 4(?)

As'usual, the chemieal potentialll is determined by fixing the average

number of particles
N=<Zeg>=F§, (10)

The form of eq. (7) suggests the introduction of the Hermitian

matrix

(e-A)+ L A

’

M — * Y
| a° —(e-0- U

2

—

The expectation value of H must be stationary against small change in‘F
and K. The variation of W with respect to‘F and K can be written in

terms of M as
sw= 3 T MK o

Here Tr means the trace and 6K is the variation of the matrix K with the

form

K = U3)
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The matrix K must follow the supplementary condition which deduces from

the orthogonality relations of A and B in eq. (4).

F(lv:: k: | | | (F¥)

Putting the result equal to zero for arbitary variation, we obtain the

equation
[:f« / F< ] =0, | Us)

where the bracket means the minus commutator. This is the matrix form

of the Hartree-Fock-Bogoliubov equation which gives the stationary state.

2., Stability condition of the Hartree-Fock~Bogoliubov state

The condition that the first derivatives of the expectation value
of the Hamiltonian with respect to p and K should be zero gives the
stationary state in the Hartree-Fock-Bogoliubov approximation. On the
other hand, the condition that the second derivatives should be non-
negative gives the absolute of the Hartree-Fock-Bogoliubov state. In this
section we derive the stability condition in a general form.

0)

is a solution of the stationary equation (13),

(0) (0)

We assume that K

and we wish to replace p and K by p and K containing arbitrary
first- and second-order variations subject to the supplementary condition
(14). Let u be the parameter that defines the order of the variation.

We write K and M as



K = K(o) +fK(|) .\ FZK(L>+ .

o «) Géd
ﬁ4 _ /b1() + f4/4 4 - -

Then an expansion of the supplementary condition gives

K = l(wl Ci7a)

’

K(,) _ K(o) K(l) + K(')‘l/\(o) ) (,,.”3)

= KK + KK« K 17

We substitute p, K given by eq. (16) into eq. (9) and expand W as a
power series in Y. The requirement that W be stationary with respect to

an arbitrary first—order variation of K is
a) oW ) = O : 18)
W = ( /9/" -0 . . \

The requirement that W be an absolute minimum is equivalent to

W :3{_(9214%/2):0 >o0. | U9

We obtain from (18) and (19), taking account of eq. (16),

(o‘) ) (-20)
WG) = 3‘“ T-M K )

4%
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W(:.) _ ELTr [M@)K@) + ELM’)K(’)], (2)

(1

We already discussed W in the last section, but let us now give the

Y
derivation of the stationary equation (15). Multip}g;g eq. (17b) by

K(O) it follows that

_K(D)K(D K(D)___—_ O ’ (.Zp)
and there eq. (17b) can be written in the form
?l) ®) Gy, @ (0>K(l)(f-K@))
K= (1-K7)KKT+ K ' (2

If eq. (23) is substituted in eq. (20), it becomes

@) © )
W = LT [ KOO - K2 )+ (=K7)M KK =o.
’ | (2%)

(L

For an arbitrary K'™7, this implies that

{/((D)M(p)(l-f(m) =0, =5

This is equivalent to

[ K]0 )

In order to verify whether the solution of eq. (25) gives the minimum of

the energy (9), we must examine the sign of the second variation of W.

For this purpose we want to eliminate K(Z) in W(z) by using the supple-
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mentary condition (17). With the aid of eqs. (17a), (17p), (22) and (23)

y €. (170 can be rewritten as follows:
4~ + I 7 | .
K==V RV Y @)

where

Ve (1- K2 KK X U= KOKY( - K?), @

v'= (i- KM)KZ) °) ) V’+= K(D)K(z)( —K") (z%)

On substituting this result in (21), we obtain

W= L (MOt V) s D] e

However, from the arbitrary part of the second-order variation the contri-

(2)

bution to W is equivalent to eq. (24) and hence must vanish if eq. (25)
is satisfied. Thus the second-order variation of the energy can be

written enti?ely in terms of V.
S = AT W)+ AT e

The necessary condition to minimize the expectat%on value of the Hamiltonian
is that the quadratic form of the right of eq. (29) should be non-negative
definite. We may find eigenvalues A by equating to Tr (VV+) the right
hand side of eq. (29). The stability condition means that the eigenvalues

must all be positive or zero. Applying the variatienal calculus with

respect to V to above equation-and using eqs. (17a), (22) and (25), we can,
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obtain the eigenvalue equations as

MY+ (1-KT) MUK = AV
X 30)
V+M(D) -—M(D)V+ _'_-K(“)M(')( ’._ K(O)) — /\ V )

By substracting the two equations from eachother, we canwrite in more

compact form as
(M2 K] + M K7 = ALK KT G

This is the eigenvalue equation which gives the stability condition of

the Hartree-Fock-Bogoliubov states.

3. Relation between the stability condition of H-F-B state and the

equation of RPA

v

The stability condition of the Hartree-Fock-Bogoliubov state has been
discussed in the previous section, but the form is very complicated. 1In
order to simplify the discussions we only take into account the density
part: This is the Hartree-Fock situation. In this section we shall derive
the stability condition of the Hartree-Fock equation, which is first stud-

ied by Thouless.a)

Ths stability condition of the Hartree—Fock equation is obtained by

replacing M and K in eq.(32) with V and p, that is

08 50] + (0 7] = Al £057) ()
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(o) (1)

where v is the Hartree~Fock one body Hamiltonian and v is the

(o)

residual Hamiltonian, and p
(1
of )

ig the Hartree-Fock density matrix and
is the matrix which is obtained by eq.(32). A is the eigenvalue,
and the sign of A is very important which decides whether the Hartree-
Fock state is stable or not.

In order to see the meéﬁing of eq.(32), we take (mi) component of
eq. (32), where m,n...means the state above the fermi surface and i,j...

means the state below the fermi surface.

(o? ()]
D m @ o (o) 1O . (33)
e Jma i v+ Vi f; - ﬁw 2 /\ﬁ"l rD fi"’-
For the above definition of (m,n...) and (i,5¢..) pm(o) =0 %nd péo) = 1.
Then eq.(34) becomes.
4 ( (o\\P(” \(') () VAN
V.. -—)/; Iy T Vg = /\)"MA | \3%)
vm(o) and,vico) are Em and Ei which are the Hartree-Fock energies, and

m
3) ( /’/5 ‘ Vrm/SBA) fgS o

O +;Zj('md','m—'ﬁ‘mj>§-m 65)

- Z—\ ( ‘Y'A‘) ””"d‘

" x
(] (7— 7 )f(‘)
= 3 =T )P AT ™ Vonymd D
%‘J‘ (-Vn:w/o fmndﬁ >ﬁh() + “\J | ] J J

The (im) component of eq.(32) gives

. ' ¥ |
ay* ) r (€79
( Li?\— >£b))5;4 + Vi A ﬁW},

i
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Using eqs. (34), (35) and (36), we get the equations of the stability
condition:

N | S (')*' 1€))

| ~ =T/ =A%

(E-E)E., +z[( Ty = Tongs My + (T Ly fy 1= 5,
)

\l)

X 5 T Bt (Tt = o)t | =26
e LT (T A

The form of eq. (37) is equal to the equations obtained by Thouless
in another method.

The equation of the random-phase approximation can be obtained with¥
in the time-dependent Hartree-Fock formalism}o) The equation of motion

11
reads )

355 = (v 51, G2

where p is the density matrix, and V the Hartree~Fock Hamiltonian. The
density matrix p can be written as the time independent part and time

dependent part:
f 53 m (,.‘a))t) G7)

The Hamiltonian also can be written as the self-consistent Hamiltonian

and the residual one.
Y = VO \) #°)

(0) (0)

Using the equation [V ] = 0, eq. (38) becomes in the first order

(2, 8]+ D057 = wf @



It can be written in the familiar form as follows. As‘done in deduc-
ing the stability condition eq.(32), we take (m,i) and (i,m) components
of eq.(41), and get
™. )

Vi

! ; G)
(Eh',g’; )ﬁ‘i)+ %[(Zn{)‘—z"d‘/( )fv -t (KWJXM y )

(i

' > : h
« E — () . ‘ ! ""—;‘—1,‘ » . — "'OL) \
(‘Ew "E,{) ﬁ,ﬂ}) +‘%3[(l/y’m - /J“"W‘)f‘d + (Z_'"‘\‘) V \) )ﬁ() J ' ﬁ"

This is the equation of the random-phase approximation, which can be ob-

tained in some methods.lz)
As canYseen from eqs. (38) and (42), one is the stability condition

of the Hartree-Fock state and the other is the equation of the random-phase

g

approximation,¥ there is a close relation between them. TIf eq.(38) has

eigenvalue zero, so has eq. (42). If one eigenvalue of eq. (38) is nega-

tive, then eq. (42) has imaginary eigenvalues. If no eigenvalue of eq. (38)

is negative, then all the eigenvalues of eq. (42) are real. Conversely,

if the eigenvalue of eq. (42) is zero or imaginary, the eigenvalue of

eq. (38) is zero or negative, so we can say that the Hartree-Fock state is

unstable. For the case of the Hartree~Fock-Bogoliubov state the above

situation can be shown generally.

J=of;,

(2>
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Table 1.

Table 2.

Table Captions

Single particle energies. (MeV)

Excitation energies and B(E2) values of the first 2+ states of

Xe, Ba and Ce isotopes. The letters "-" in the rows of experiment
mean that there are not  experimental data. The letters

denoted by "unstable'" mean that the enegy of the first 2t state is
comple#_and the instabiiity of the sherical phase happens.

The strengths of the quadrupole-pairing force were taken as

G; = 28.0MeV an& V; = 31.8MeV for the case of PZ—P2 plus Q-Q
force, and as V; = 34,2MeV for the case of Q-Q force only.

The effective charge was used as e £ = 0.8e for the first

eff

case and eeff = (0.5e for the second case.

7%
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1.

3.
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Figure Captions

"The excitation energies of the first 2+ states of Cd and Te

isotopes against the neutron number. The experimental values
are denoted by the circles which are taken from the work of

(13) The solid line is the calculated one using the

Sakai.
interaction composed of P2—P2 and Q-Q forces, and the dottgdv
line and the dashedfdotted~1ine are the calculated ones
using Q-Q force only.

; and V;
of the first 2+ states.

Sets of G taken so as to fit the excitation energies

Excitation energies of the first 2+ states of the Xe, Ba and

Ce isotopes. The black circles are the experimental ones, the

..s0lid lines are calculated one using an interaction composed’

of Pz—P2~and Q-Q forces and the dotted lines are the omnes

of Q-Q force only.



Proton Néutoron

-1.284 -0.573

-0.128 0.120
0.0 -0.137
-2.567 -1.104
-2.353 -2.114
-6.418 —5.134
-7.299 -6.871
-8.643 -8.215
-8.429 -8.001
-11.637 -11.210

Table 1



Experiment P,-P, + Q-Q Q-Q only

Nucleus

Ex B(E2) Ex B(E2) Ex B(E2)
124Xe 0.350 - unstable -
1264, 0.386 7.81+0.50 0.256 7.594 unstable -
12846 0.455 6.5 £2.5  0.405 4.761 0.475 10.3
130%e 0.538 - 0.539 3.415 0.928 5.0
1324¢ 0.670 3.1 1.0  0.677 2.450 1.307 3.3
1344e 0.850 - 0.847 1.576 1.679 2.1
1283, 0.279 - unstable -
130g, 0.359 7.5 £1.8  0.276 9.019 unstable -
13234 0.472 7.2 £1.8 . 0.461 5.180 0.584 9.9
1345, 0.605 - 0.627 3.455 1.095 4.9
136, 0.818 - 0.819 2.160  1.527 3.1
130Cc—_‘ - - unstable -
1320, - - 0.136 22.075 unstable -
134¢e 0.410 - 0.401 7.155  0.095  70.3
136, - - 0.591 4.413 0.930 3.3
138., 0.790 - 0.799 2.681 1.415 2.1

Table 2
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CHAPTER 5 1Incident Energy Dependence of (p,t) Reactions

1. Introduction

Thuare have been done many-experiments of (p,t) reactions on various
nuclei by using various kinds of proton energy. In these experiments
there are some nuclei on which (p,t) reaction have heen done by using
more than two incident energies of proton; as discussed in the previous

2) and 2%8pb(p,t)2%pp by

1
chapter, Nd isotopes by Ep = 30MeV %nd 52MeV,

3 and SOMeVQ) and so on. .

E = 40MeV

P
Comparing these data, it can be seen that some level which is strong-

ly excited at some incident energy is not excited so strongly  at another

incident energy. There might be large incident energy dependence on

(p,t) reaction-cross sections. Thus the purpose of this chapter is to

show how the cross section of (p,t) reaction changes with the incident

energy in terms of the distorted-wave Born approximation.

2. 208pp(p, 1) 206p,

n
For the purpose, we took the data of the reaction 208Pb(p,t) 2"?Pb

1) 2) 206

by Ep = 40MeV™’" and Ep = 52MeV“’. The wave functions of Pb have been

5),6) The levels

well studied by many authors in terms of the shell model.
which have the angular momentum L = 0, 2, cue and 8 are excited by the

(p,t) reaction with Ep = 52MeV. The interesting point in the experiments
is that, as can be seen in figure 1, the cross sections to each angular—

momentum states at Ep = 40MeV decrease as the transfered angular momentum .

increases, however, ones at Ep = 52MeV increase as the transfered angular



momentum increases.

206

The wave functions of Pb were taken from the work of Kuo and

.5 . AR . i
Herling ), which were indicated as set I in thelY paper. The form factors

which were used in the DWBA calculation were made by using the formalism

N and the tails of the form factors were modified by the prescrip-

8)

tion of Glendenning . - The optical potentials for proton and triton are

of Lin
listed in table 1, which are taken directly form the works of Fricke et al.g)
for proton and Glendenning 10) for triton.

The results of the DWBA calculation are shown in figure 2. The‘summed
cross sections taken in steps of 5 from 5 to 40° leading to the first Lt
states are plotted as a function of the incident proton energy Ep. In order
to avoid the ambiguity of wave functions the magnitude of the cross sections
is normalized to the cross‘sections of E_ = 52MeV. As can be seen in
figure 2, the peak position of the cross sections of each L states moves

J - o~ e

- = EPS S 4 L P ST S on - an +hao bFenmoafasa 1
to the higher incident-energy part as the t f d angular

he transfered angula
increases. Thus at Ep = 52MeV, the summed cross secitons leading to the
first 6+ state is the largest of the cross sections. ggegéample, at Ep =
20MeV 0+ and 2+ states can be excited by the (p,t) reaction, but thé higher
L+ states such as 4+, 6+ and so on can not be excited so strongly. On the
other hand, at Ep = 70MeV the lower L+ states such as O+ and 2+ states can
not be excited so strongly.

The experimental and the calculated differential cross sections are
shown in figure 3. The angular distribution patterns atEp = 40MeV and
52MeV are well reproduced by using the optical potentials listed in table 1.
The energy dependence for the proton~optical potential Qas taken into
account but for the triton-optical potential it was not taken into(account.

These arguments would be more clear, if the optical potential for triton

was decided at the various triton energies.
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In-order to check the wave functions which were studied by many
authors the ratios of the summed cross sections relative to one of the
ground state are plotted in figure 4. The results of the work by Smith
et al.3) were used for the dotted line (denoted as the wave functions of
True and Ford), and the energy dependence was made by using our results
of the wave function of Kuo and Herling. The experimental results were

not always reproduced by using the one wave functions.

3. Qualitative discussion

It was éoncluded in the previous section that the peak position .of
‘the cross sections moves to the higher incident-energy part as the trans-
fered angular momentum increases. It may be understood by the following
qualitative discusSiony)

We consider the (t,p) reaction and then consider the (p,t) reaction
gnd compare it with the DWBA results. The discussion is started from the
following assumption; that is the reaction happens at thenuclear surface,
This is a natural aséumption for transfer reactions. At first we neglect

the Coulomb effects and discuss the angular momentum conservation through

the (t,p) reaction. The angular momentum just before transfer is

/&; = 'ﬁx' Fz ‘ )

where kt is the wave number of the triton (neglecting the recoil effect.)

and R is the nuclear radius. The angular momentum just after transfer is
—_— . 2
A= fo+ R R, (2

where 10 is the angular momentum of the transfered di-neutron and kp is the



wave number of the emitted proton. Assuming the emitted proton is scatter=
ed to the forward angle, the conservation 1 w of the angular momentum is

L, = £ it b
i £ then it becomes

. €,
dﬁ’f:.R‘:: ﬂo—‘_ %FR ’

Thus the transfered angular momentum must be

b= (et R = E2 R (5 - TR «

where Et and EP are the energies of the triton and proton. Using the

reaction Q value, the above equation becomes

A=I§L-R(,/9(§+&)~f—§f), &

Next we consider the Coulomb effects. Theseeffects can be taken into
account by considering the energy conservation at the nuclear surface.
At the nuclear surface the kinetic energies of the triton and the proton

E()= B~ B, et E(P)=FTF ©

e position,
where Ec is the Coulomb energy at where the reaction happems (i.e. nuclear

surface). Thus the final result is

L, = EF-R(IB(EF&—&) ~5E ) (v



For the (p,t) reaction, similar discussion can be done, and the condition
can be written as the same form in eq.7. |

For the analysis which use§ the differential ‘cross sections in the
forward angles as we have done, the angular momentum of the emitted
partiéle at the nuclear surface does nét change drastically. If there is
a change, this effect makes the transfered angular momentum through the
(p,t) reaction smaller than the value of eq.7.

The peak positions of the first L+ states by the DWBA analysis are
plotted as iélands in figure 5. The curve denoted by the dotted line is
eq.5, which is neglecting the Coulomb effect. Using the Coulomb energy
for 208Pb at the nuclear surface as EC = 15MeV, the curve of eq;q becomes
as the solid line. The value Ec = 15MeV becomes by assuming the nucleus
is a point. The finiteness of the nucleus makes the solid line shift to
the left hand side. The effect that the emitted particle scatters to a
larger angle makes the solid line shift to the right hand side. These
effects might be considered minor. The peék positions of each L+ states

calculated by DWBA were well reproduced by the simple qualitative dis-

cussion.

4, Conclusion

The incident energy dependence of (p,t) reaction has been discussed
in this chapter. The conclusion is that the peak positions of the summ-
ed cross sections leading to each L+ states move to the higher'incident—
energy part as the transfered angular momentum increases. In other words,
the (p,t) reaction with higher incident energy can excite higher angular
momentum states., In order to st ‘dy the lower spin states you had.better

use the smaller energy proton, and in order to study the higher spin states



&4

you had better to use the larger energy proton. High spin states in a
deformed nucleus might be excited by the (p,t) reaction with using‘high
energy proton. To dtudy the high spin states is very interesting to
know the point of the phase transition of rotational states.

The caléulation in this chapter was done by using the constant op-
tical potential for triton. To make the above discussions .more strict

we must study the optical potential for triton at high energy.
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Fig. 1

Figure Captions

206Pb, and

The excitation energies of the first L+ states of
the (p,t) strengths. The left hand side is the result of
the (p,t) reaction with Ep = 40MeV, and the right hand side

is with Ep = 52MeV. The strengths are the summed cross section

taken in steps of 5" from 5° to 40"

The incident~energy dependence of the cross sections for
+
each L states.

(a) 'The experimental and theoretical angular distributions

20

for 0+ and 2+ states populated by. 8Pb(p,t) with Ep = 40MeV.

(b) The experimental and theoretical angular distributions

+ 208

for 4+, 6 and 8+ states populated by Pb(p,t) with Ep = 40MeV.

P}

The cross section for the 8 state is not measured at this
incident energy.

(c) The experimental and theoretical angular distributions
208

for 0" and 2" states populated by “*%Pb(p,t) with E_ = 52MevV.

(d) The experimental and theoretical angular distributions

208

for 4+, 6" and 81 states populated by Pb(p,t) with Ep = 52MeV.

Relative ratios of the (p,t) strengths for each it states to

the ground state. The solid lines are the experimental ones.

The dotted lines are the theoretical results with using the

wave functions calculated by Kuo and Herling. . The dashed- dot

lines are!ones with using the wave functions calculated by

True and Ford.
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Fig. 5 The peak positions of the (p,t) strengths for each L+ states
The ‘}ertical axis is the transfered angular momentum, and the
horizontal axis is the incident proton energy. The islands
are the peak positions calculated in terms of DWBA. The solid
yline is the curve of eq. (7)‘ and the dotted line is 'one of

eq.(5).



Table 1.

Proton Triton
vV (MeV) ~ 54.62 16G6.0
Wv(MeV) 5.31 20.0
WS MeV) . 5.60 0.0
VS'O.(MeV) 5.84 0.0
rR(F) 1.125 1.1
aR(F) 0.873 0.75
rI (6] 1.386 1.6
a, (F) 0.624 0.75
T, (¥) 1.02§ -
as.o.(F) 0. 794 -
rc (7) 1.25 1.4
Table 1

The optical potential parameters for proton and triton.
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CHAPTER 6 Effect of Two-Step Process on (p,t) Cross Sections

1. Introduction

Two types of angular distribution patterns for (p,t) reactions lead-
ing to the first 2+ states are reported in many cases.l) One type‘of
distribution exhibits a peak around 6 = 101153 which can be well reproduc=
ed by conventional DWBA calculations. The other type does not show any
peak in that range of angles and is accounted for by including higher order

2) .
processes 5.

Experiment of the (p,;) reaction on Te isotopes with Ep = 52MeV was
done by Yagi et al.3). The shape of the angular distribution’ changes
gradually from the one type to the second one as mass number decreases.
The experimental data are useful to check effectyof higher order processes
in the (p,t) reaction. The purpose of the present chapter is to report

results of the two-step process calculation (TSP) and to point outu the

inadequacy of the usual approaches.

2. Two-step process—calculations

The T-matrix consisting of one-step and two-step processes is written

bya)

= & : ) I &)
T = <H I e TR >, @)

where ¢;+)»(¢£—)) is the distorted wave times the intrinsic wave function,
Xp(vt) is the residual interaciton and the propagator 1/(E—Ho + i€)

describes the propagation of waves in the intermediate states. The first
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term on the right hénd side of Eq. 1 is the DWBA-matrix element and the
second term corresponds to the second order processes, involving inelastic
scattering in the entrance and exit channels.

The ground states of Te iéotopes are described by the BCS-wave function
and the first 2+ states are described in terms of RPA with both the quadru-
pole pairing force (PZ"PZ),an the quadrupole force (Q—Q)S). The (p,t)
form factors which were necessary in the calculation of TSP were prepared
following thg formalism of Lin et a1.6), and the tails of the form factors
were modified according to the prescription of Glendgnning.7) The form
factors of the inelastic processes are the macroscopic ones which are the
derivative of the optical potentials. In the usual calculation the valﬁes

' 8
of deformation parameter B of Te isotopes were taken from Stelson et al.. )

The optical parameters for the proton were taken from th; work of
Fulmer et al.,g) which reproduce the angular distributions of (P, Po)
‘reaction of Te isotopes with Ep = 52MeV.10) - The optical parameters for
triton were adjusted so as to fit the angular distribution of the (p,t).
reaction leading to the grouﬂd state, since they are not well known at this
energy. They are listed in Table 1. The calculations of TSP wére done by
using the program of TWOSTP . coded by Toyama and Igarashi.ll)

Figure 1 shows the calculated (DWBA and TSP) and the experimental
angular distributions for (p,t) reactions leading to the first 2+ state of Te
isotopes. The/vériationdof angular distribution from:nucleus to nucleus
can not be reproduced over all of Te isotopes even if the TSP calcu lation
was, done, and also the magnitude of the cross section is too large in
comparison with the éxperimeﬁtal cross section.

The summed cross sections taken in steps of 2.5° from 5 to 55° are

plotted as a function of mass number A in figure 2. The interaction
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strength of the (p,t) reaction is normalized to the reaction 130Te (p,t)
128Te (gnd.). As can be seen from figure 2, the experimental cross sections
gradually increase as the mass number increases, but the trend can not be
reproduced by TSP calculation with g = Bexp' Further the magnitude of the
cross éections calculated by TSP is too large compared with the experimental
ones. This is due to the fact that the cross sections of the second order
process are too large and the second order process mainly contribute to the
cross section. The magnitude of the second step process is proportional
to the BZ value, so the intensity of TSP is completely opposite to the
experimental trend.

On the other hand, the trend of the cross section calculated by DWBA
is the same with the experimental one. In order to reproduce both the
variation of angular distribution patterns and the trend of tﬁe cross
section we might use the deformation parameter smaller than Bexp'taken from
Stelson et al.. When Beff = %-Bexp was used, the trend of the cross sections
was well reproduced and the variation of angular distribution patterns were

fairly well reproduced. The calculated and the experimental angular distri-

butions were shown in figure 3.

3. Experimental evidence

In the previous section, it was concluded that the deformation para-
1 . AR
= = must be used to explain the variation of the angular
meter Beff 3 Bexp p ' g
distribution patterns and the trend of the magnitude of the cross section.
There are other evidences to have to use such a smaller g value. There
are systematic data about the (p,t) reaction on the spherical vibrational

. 12) 13) 13) 13) 13) .,
nuclei: 44Ru , 46Pd , 480d . 505n ~, and 52Te isotopes. (Nd and
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Ba isotopes ha already been studied in the previous chapter.) The neutron

number of these nuclei is between 50 and 82. The magnitude of the summed

+
1

to the neutron number in figure 4(®) and (b). The deformation parameters

+ . .
cross sections leading to the 2, states and 0 states is plotted against

B are also plotted in figure 4(c). "’

The nautron number dependence of the summed cross sections leading to
the ground states will be reproduced by uyging the BCS wave functions as the
ground states. (The (p,t) strength of the ground state can be written as

(é—)z; A is the gap energy and G0 is the strength of the monopole pairing

(s} Wﬂ‘_f‘/’

. ; 14 : . . , . . .
interaction. )) The interesting point in these figures is to“the result

of the Sn isotopes with one of the Cd isotopes. For example we compare

the nuclei with N = 66. The summed cross section of 1égSn66 is about 1070

and the deformation parameter B is about 0.116. On the other hand the summ-

lngd66 is about 420 and the deformation parameter f

116
is about 0.193. The angular distribution pattern of ~~ Sn is the first type

and one of llaCd is the second type. If the Second order process mainly

, . 1 .
contributes to the cross section for 1 4Cd as Te isotopes, and we assume the

@

amplitude of the direct process is same between Cd and Sn with same nutron

ed cross section of

number, then the direct processes are small and the magnitude of the cross
, 114 116 '
section of ©7 'Cd must be larger than that Sn by about 4. Thus the second
order process must be smaller than the direct process.,
These data might be explained by taking into account the effective §
: I

a :
value, that is Beff = aBexp and 0(<1) isVConstant. This situation was used

for the discussion -about the first 2? states of Nd isotopes.

4, Microscopic description for the inelastic processes

In the above calculations the form factors of the inelastic process are
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the macroscopic one. On the other hand the form factors of the (p,t) reactiomn
process are the microscopic one. The interference of the direct process and
the second order process is very important in such a calculation. We have
to start on the same basis and discuss the interference between the different
processes. In this section the spectroscopic amplitude and the form factors
by the microscopié description will be given.

The spectroscopic amplitude and the form factor are defined by

< IgMe S,y VITMaSama > = 2, A O™ (T Mt I T )

)

X (SamaSo=rti] S mamy, YA S ma=m1e | Mg =He ) Aﬂf}- Eﬂ(v)\:w':(? Sh-pn), @

where % s and j are transfered angular momentum, spin and total spin respec-

tively. ]:1&3andIA , are magnitude and Z component of the spins of target

I N

PR v

and residual nuclei and Sbmb and Sama are'ones of emited and the incident
particles, V is the interaction by which the reaction is induced.
, , + +
(1) (P, P') reaction (0 —e>21 )
The form factor and the spectroscopic amplitude of (P, P') reaction lead-

ing to the first 2+'state‘are given by

. _ : —V—S ‘
A9U B FJ;TJE;, )

FJ(r) Z<o," ATODE . U (% ORI BN @

where VS is the interaction strength between nucleons, and s = 0 is the spin

(sl i),

independent part and s = 1 is the spin dependent part. (z) is given by

T(jf;j)(lg) =v%l(§wsf[""‘l ’()'m )\’;m(g))/s“‘s . ¢



The‘factors u (s) 5 ¢ and ¢, . were given in chapter 2. \/) (r,%) is

. 313, 7 "33, I112
the multipole expansion function of the radial part ofthe interaction:

VO3 = Z U Y, (DY), ©

In the radial part of the interaction is the gauss type, the expansion
function can be written by

_qF %)

Yny)= gt j,(2aarE ) e o

where jl(x) is the bessel function and a2 is the range parameter of the

interaction.

The sign of the form factor around the nuclear radius is very important

in the calculation of TSP. It is useful to know the sign of the form factor.

If we use the § interaction for the (P,P') reaction and the Q-Q force as the

residual interaction in the nucleus, the form factor is written by

L
Fagj (v = as,,s,ﬂdz GRS (y e rorial ;;T;,;;)

\ il >
X "an—ﬁm‘;f(k) Rug, (#) % “ x <m,¢“ Vvimd: > (®

where the marix element <n 1 | r I > has the same sign with the value

2

of R (r) R (r) around the nuclear radius r = Ro' Thus the sign of

Ihl
the form factor around the nuclear radius is always positive.
(2) (t,t') Reaction

For the (t,t') reaction, only the magnitude of the interaction is

different from the (P, P') reaction: That is

/0%



W(rt)= 2

+ Z T+ Df))C,» f%]b[——,ff %

where
+ 7
—;[T{S—%%:%é] , cf:“i

and

P4
aQ A(=zs"=a) ]
T 4252125 644D

~ -Jrl. 0‘2
e R T

2 (Tp+ T (0, O) cm&f[-s%//rr

=y @

24

%5

/

@

These coeficients come from the integration over triton intrinsic coordinates,

V1) = fmz?;(m;)Z f7+7(@&®'ﬂ%‘f[ ltz -inf R

Ci2)

Thus the spectroscopic factor and the form factor of (t, t') reaction

leading to the first 2+ state are given by

by = T

Fd(r) 2__‘<)l

I’T”“(E)“‘)Q NECTREZL TS

m P
.X [ic';<'“n'9‘l% (v, g)‘MZ/Qz>+ cr<’“|ﬂ| ‘1/}1(”%),”‘2,02>]’ <I3) |



where vln(v, E) and Vgp(v, E) is the expansion functions with the range
parameters S and S .
n P

The calculations with using the microscopic form factors are now in

progress.,

/of
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Fig. 1

Fig. 2

Fig. 3

Fig. &4

/0d

Figure Captions

(a) Angular distributions for the first 2+ states of Te isotopes
populated by (p,t) reactions. Lines are drawn to guide the eye.
(b) Angular distributions for the first 2+ states of Te isotopes

calculated in terms: of the distorted-wave Born-approximation.

The strength of the P2—P2 force is taken as Gg = 20MeV.

(c) Angular distributions for the first 2+ states of Te isotopes
calculated in terms of the two~-step process—-calculation.

Theré is an ambiguity in the sigp of the Pvalue, and/q =(4exp
is used.

(d) €:=-.Fexp is used. See caption to fig. 1(c).

The summed cross sections for the‘first 2+kstates of Te isotopes

. . . - . B d PR o 4 '3
taken in steps of 2.5 from 5 to 55 as a function of mass number.
¢

as
. . ; . + .
Angular distribution for the first 2 gtates of Te isotopes
calculated in terms of the two-step process—calculation.

M= % is used.

(a) The summed cross sections for the ground states of . =~ isotopes
taken in steps of 2.5 from. 5 to 55. The hbrizon;al axis is

neutron number.

(b) The summed cross séctions for the first 2+ states of the indicated -
i;btopes taken in steps of 2.§’from 5" to 55. The horizontal axis

is neutron number.

(¢) The deformation parameter P obtained from the B(E2) value.

The horizontal axis is neutron number.



Proton ; Triton

V (MeV) vayd 185.1

W (MeV) 6.0 20.0

W_(MeV) way?) 0.0

A (MeV) 6.04 0.0

S.0.

r, (F) 1.16 1.23

ap (F) 0.75 0.7

r (F) 1.37 1.52

aI(F) 0.63 0.7

Ts.o0. (F) 1.064 -

as.o.(F) 0.74 -

r (F) 1.25 1.25

A 122 124 126 128 130
a) V(A) 46.7, 47.1 47.5 47.7 48.0

Table 1.

Table 1. Optical potential parameters for proton and triton.
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CHAPTER 7 Concluding Remarks

In concluding the present paper we should like to stress the impor-
tance of the quadrupole-pairing forcet The quadrupole-pairing force was
introduced so as to explain the strongly excited 2+ states by the (p,t)
reaction on the Nd isotopes. The 2+ states were described by adding the
quadrupole-pairing force to the quadrupole force in the framework of the
random~phase approximation. The quadrupole~type density-vibrational mode
couplés to the quadrupole-type pairing-vibrational mode.

The two-body interaction V can be expanded in two ways, oné being
in ‘terms of a rotationally invariant particle-particle matrix element G,
the other in terms of an invariant particle-hole matrix element F.l)
There ié a relation between G and F which is expressed using a Racah
coefficient. In our calculation for G type matrix the monopole-and the
quadrupole-pairing forces were taken and for F type matrix the quadrupole
force was taken. Thus there might be a possibility of double-counting
fo? the two-body interaction, but the recoupling spreads the strength of
one type over many‘angular momenta and it can therefore be neglected.

For quadrupole parts of these two type matrices F and G, the quadrupole
force and the qﬁadrupole—pairing force have quite different effects with
each other as can Be seen in this paper.

The systematics of the results of the (p,t) reaction on the Nd and
Ba isotopes were well explained by the vibrational model described by a
simple interaction composed of a quadrqpole force and a quadrupole-
pairing force in the framework of the random—ph;;e approximation. For
the change of the angular distribution pattern of the (p,t) reaction

ik /

leading to the first 2+ states of the mediumheavy nuclei; the neutron
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number betweeﬁ 50 and 82, the quadrupole pairing force ha s an impor-
tant effect to make the magnitude of the cross section larger and the

two-step process calculatién well described the systematics of the (p,t)
reaction. |

In the calculations there were many sets of G ¢ and V2C which were

2
used so as to explain diffeveit kinds of experiments. These are listed in

table 1. As can be seen from table 1, the Value of G,° spreads over

2
20 to 30 MeV, and the value of V., over 30 to 35 MeV. The values of

2
the interaction strengths are strongly effected by how many single-particle
levels are taken in the calculations. To compare these values which were
decided by various experiments we must take same number of single-particle
levels. Further the calcuiations considering the situation should be
.
done in the medium-heavy nuclei.

The B(E2) Vélue of the transition between first 2+ state and ground
state calculated by taking three major shells into ponsideration exceeds
the experimental value. The colleggtivity for the BE2) value is too
strong if only the quadrupole force is taken in terms of the random-phase
approximation. The correlations never turn out to be sovlarge as estimat-
ed from the quadrupole force when ﬁe calculate thé correlations with more
realistic forces.z) The quadrupole-pairing force interferes with the
quadrupole force and reduces the quantities with particle hole nature;
B(E2) value and cross section of inelgstic scattering and so on. Thus the
effective charge of a proton and'a neutron must be larger than old one.3)
Although we must use a rather large effective charge e ff for protons and
neutrons, the trend of the experimental values was well reproduced as can
be seen in this paper.

All the calculations on the (p,t) reactions were done with the zero-

range assumptign. For the transfer reactions such as (p,t) reaction we
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must calculate the six dimensional integral, but the zero-range assump-
tion allows for reduction of the six-~dimensional integral to a three—A
dimensional one. The physical justification about the zero-range
assumption in need. In terms of the plane-wave Born approximation we

can see the effect of the zero-~range assumption, and when the relative
energy of the system is high, the finite-range effect can not be
neglected. Finite range DWBA calculation was done for the (p,t) reaction

4) 3) From their calculations the

by Bayman et al. and Takemasa et al..
relative magnitude of the cross section for excited states to the ground-
state transition is not effected so largely by such a finite calculétion.
But the maghitude of the cross section is largely affected and to discuss
the magnitude we must do the finite range calculation.

It was shown that there are strong incident-energy dependence on
the (p,t) reactions. In order to study a high spin state we would rather
use a high-energy proton beam, It is necessary to study the optical
potential for tritons at a high energy to make clear the energy dépendence.

There is a.problem in the mechanism of (p,t) reaction. It was shown
that the angular distribution patterns of the first 27 states was repro-
duced when the two-step processes including the inelastic scattering in
the entrance and the exit channels were taken into account. It was also
pointed out that the succesive process, one nucleon is transfered after

6)

another, was important for the two nucleon transfer reactionm. How

much does the successive process effect to (p,t) reaction is anopen

problem.

7)

The so called two phonon states have been discussed by many authors.

It can not be said, however, that these problems are over. 0dd nuclei

8)

have been also studied by Matsuyanagi et al.. For these problems the

quadrupole pairing force‘might affect successfuly.
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Nucleus  Nd Ba Nd Cd,Te Xe,Ba,Ce Te

Chapter 2 2 3 4 4 6
Gg 26.0 20.7 24,75 26.0 28.0 20.0
vg - - 33.18 29,3 31.8 -

Table 1. Sets of G; and V; used in the various chapters. Second

row denoﬁz’the chapter in which the pérameter sets indicated

in third and ﬁ%ﬁthrows were used., The letter "-" in

c
2

dependent which was decided so as to reproduce the excitation

the fourth row means that the parameter'V is nuclear

_ -

- —_—— ~ £ Lt 2 — A + A‘._ - et o1 . .'1 - c .
snergy of the first 2 state with using the vaiue G, in

the third row.
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