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A New Method for the Determination of Information
Amounts on X-ray Radiographs
(Part I)
The Information Amounts derived from Radiation
Absorption Curves or Film Demsity Curves

By

Hitoshi Kanamori
From Radiation Division, Shimadzu Seisakusho Ltd., Kyoto, Japan

Many attempts fo define the INFORMATION AMOUNT on X-ray radiograph were
made in recent years, however, they have not been succeedingly developed. To derive
the amounts directly from clinical radiographs may be the reason of unsuccess. The
following new method is to quantitize synthetically from X-ray generator to film. The
radiographic effect at every elemental area is represented by a contrast and a sharpness.
At first, excepting the latter, only contrast is considered in this paper.

The film densities to the thickness x of one material, Al or acrylite for example,
will be plotted as Fig. 1. An INFORMATION AMOUNT is derived for the éitutatiion.
when the radiograph is made, i.e, X-ray generators, geometries from focus to film,
kVp and mAs values, and characteristics of screen and film, etc. If a<ix=b is
needed for a diagnosis, the range should be normslized to O=K<=1 by equation (1.1),
and gradient g(x), which gives the contrast g(x)4x between x and x+4x, is
normalized to G(X)by equation (1.3). This gradient G at the thickness X has some
information F(G). The obvious characteristics, i.e. F(G)=0 and F(G) increases
with G, gives 3 possible shapes of the functions in Fig. 2. If the contrast is twice,
the value of the information may be less than twice, so that the curve c in Fig. 2
should be chosen. F(G)=G", (0<n<1), is the most simple function to be taken.
And the total information amount is

ﬁF(G) dIX=I;{G(]{)}"dX, where O<n<I.
This integral takes maximum D,», on the straight line between the two corners of
the area O<X<1 by D., where D, is the practical range of film density (Fig. 3).
Now we define the INFORNATION AMOUNT as followig eqnation,
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H=Dz" [ (G(X))dX,0<n<1 ' (1.10)
H’s are calculated in Table 1 on thé modeled curves in Fig. 4. To fulfil H,>H., n
should be chosen as O<n<(!/2, and then n=1/; has been taken. According to the de-
finition, H<1. In practice, the calculation of the integral of H should be performed
by means of the numerical summation (Fig. 6, eq. (1.16), (1.17)).

Instead of film density, logarithm radiation transmission could be taken. Then,
E.=Du/y takes the place of D,. The most profitable kVp can be taken as shown
in Fig. 7.

Experimental trnasmission curves and calculated H’s are in Fig. 8 and Table 2,
where E. is taken as 0.7. For inspecting a 3.65 mm Al plate, the most profitable
transmisson curves, with a single phase rectified, a 3 phase rectified tppe of generator,
and by monochromatic X-rays are shown at @,@,® respectively. Fig. 9 and Fig. 10
are also derived from experimental radiation transmission curves. The results
show that homogeneous X-rays give the best information. And, large rate of pulsations
at tube voltage wavforms increrse soft radiations and decrease information amounts,
at the low kVp’s. ;

In conclusion, the definition of the INFORMATION AMOUNT in such a simple
method could be a powerful weapon to develope the information radiographing tech-

niques.
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Fig 1. A Film Density Curve and the
Definition of a Normalized Thickness
B
- N\
—t
.;:i_
N
W
2
—
bt as E ~> X
0 FixsP )6
a==x<h: The Range for Diagnosis
‘ x—a
R T

x: Thickness X: Normalized Thickness

XL, MERBROAMPESERICH Y, $5E
L7 4N s B LEESEERIC 2 2 0REME X
htw3oT, Fig. 1ol HEEirviyhd
EEERBIILTEL, 22T, BREOHSGRLAS
Eﬁmﬁ%ﬁaabﬁéaa%u
X= g:a B (aliah)]
LT hig, amobm1h&OTHMmﬁﬁm
n3., ZoXH LT, BUEORILE 25
A 3ER, FUCREHRIMEERS 5L RX 3.
BEEXIi2B 350 Afis G(X) &35k
X, X+4X 222 5f@Dav 7R 4D i3,
AD=G(X) 4X--- A Q)
THBEhb G(X) TaviIArEREEES,
yEDORETCOHEZ g(x) & ThiT,
G(X)=(b—2a) g(X):rremrerrrnneannnnennnnn(1.3)
TH5.
ZEOBHEEF(G) Eav 72 0K,
SEFDMEEEZ L TR 5.
(Dav 72 B2 TERERERZ .
F(0)=0-- (1D
(n:/byz}ﬁx%uw&xgwﬁfﬁ*
W,

F'(G)>o0-- -+(1.5)
0200%#;6 F (@ oOELLT,
Fig, 2D X 5% 3508ARELIbNS. HLY
DFFHELLEDaVFPFTALMR, EXE2

BHFEFEIHRESEE $£02% 05

Fig. 2 Three Kinds of Sahpes for Imformation
Amounts F(G) to Gradient G
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Fig. 3 Density Curves and Information Amounts
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Fig 4. Modeled Density Curves
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Fig 5. Groupes of Density Curves taking
the same H's respectively
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Table 1. Calculated Examples of the Informa-
tion Amounts H’s on the Modeled
Curve b,c and d in Fig. 4.

r Hy H, Hy
0.1 0. 464 0.215 0.1
0.2 0. 585 0.342 0.2
0.3 0. 669 0 448 0.3
0.4 0. 737 0.543 0.4
0.5 0.794 0.630 0.5
0.6 0.843 0.711 0.6
0.7 0.888 0.789 0.7
0.8 0.928 0. 861 0.8
0.9 0. 965 0. 931 n.9
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Curves for the Numerical Integration of
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Fig. 7. Determination of the Most Profitable
Kvp from Radiation Transmisstion Curves
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Table. 2. Information Amounts Calculated

from Fig. 8
Peak

g‘;rv:f_l glfuﬂ?lir Voltage Information
Fiz. 8 | Phases | 2cross the | Amount Hf

g X-ray Tube

@ 1 40kV 0.991

@ 1 45 0.953

@ 1 35 0.848

@ 3 35.8 0.995

() B o e R o 1.000

* From the Table of H.V.L.’s
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Fig. 9. The Most Profitable KVp’s to
Al Thicknesses
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Fig 11. An Example of the Weighting Function
when the Neighbour of x=c and x=d are
inportant in Diagnosis
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