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内容梗概

本論文 は著者が大阪大学大学院工学研究科博士 課程前期2年 間、及び後期3年 間 に

おいて行なった、 レーザ ー生成高温高密度 プラズマ に関する理論 的研究 の成 果 をまとめた

ものである。

最近の慣性核融合実験 の進歩 によ り、高密度圧縮 モー ドによ り燃料 となる重水素 の

密度は固体密度 の約600倍 、高温圧縮モー ドにより温度 は約一億度 に達す る高温高密度

プラズマが実現で きるようになった。 これまで実験結果を定量的に評価 する場合 に、理想

プラズマ近似 を基 に評価 してきた。理想 プラズマ近似 によるプラズマ物理学 の分野は比較

的確立 されてお り、高温低密度領域では十分精度の良い結果 を与える。 しか し上記のよう

な高密度領域 には適用できず、高密度 プラズマ に関 しては基本的性質について も未知な も

のが多い。理想 プラズマでは、粒子問のクーロン相互作用が粒子の熱運動 に比べ無視で き

るが、高温高密度 プラズマでは近接の粒子問におけるクーロン相互作用が、その物性 に非

常 に重要である。 また通常 の固体 と違い、温度が数千万度か ら数億度 という高温状態 にあ

るので、通常 の固体物理学 の結果 をそのまま引用することはで きない。著者 は、粒子 シ ミ

ュレーション及び統計力学的理論 モデルの二つの手法 により、高温高密度 プラズマの基本

的性質について研究 を行なった。

本論文 は、7章 より構成 されている。

第1章 は緒論 であ り、慣性核融合 における高温高密度 プラズマ の基本的性質 につい

ての研究 の重要性 を述べ、各種物理モデルが適用 される温度密度な どの範囲を明かにする。

第2章 では、本研究 におい て新た に開発 した3次 元高温高密度 プ ラズマ粒子 コー ド

"SCOPE"に ついて
、その構成、基本式及 び計算上 の工夫などについて述べる。電子及び

イオンからなる2成 分 プラズマで、近接 の粒子 問におけるクーロン相互作用 を正確 に取 り

入れ、量子効果を近似 的に取 り入れたコー ドは、 これが初めてである。

第3章 では、"SCOPE"を 応用 した研究 として高密度効果 による炭素水素混合 プラ

ズマの制動輻射 エネルギー損失の減少 について述べる。輻射の強度が十分小 さい極 限では、

制動輻射損失は動径分布関数 と関係付 けられる。シ ミュレーションにより動径分布 関数 を

計算 し、制動輻射損失の評価 を行 なった。その結果、プラズマ振動数 と同程 度の振動数で

の制動輻射 は理想 プラズマの場合 に比べ、約75%程 度 に減少す ることを示 した。

第4章 では、IISOOPE"を 応用 した研究 として高温高密度 プラズマ中の自己拡散 及

び電気伝導度 について述べる。 自己拡散係数 は速度 自己相関関数、電気伝導度 は電流密度



自己相関関数 と揺動散逸定理に より関係付け られている。 シミュレーシ ョンにより速度 自

己相関関数 と電流密度 自己相関関数 を計算 し、 自己拡散係数 と電気伝導度 を評価 した。ま

た、 自己拡散係数 と電気伝導度 に関 しては、そのクーロン結合係数rに 対する依存性 を

求めた。

第5章 では、密度汎関数法 をもとに した原子モ デルについて述べ る。 このモデルで

は、2体 相関関数 とPoisson方 程式 とSchr6dinger方 程式を連立 させて電子状態を決

定する。本章 では、電子 一電子間の分布 の計算 にFermi縮 退の効果 を導入するなどの改

良を行 ない、 より正確 な原子モデルを作 った。

第6章 では、原 子モデルを応用 して高密度 プラズマ中の荷電粒子 の阻止能 を評価 し

た。荷電粒子の阻止能はプラズマの誘電応答関数から求めた。高密度 プラズマの誘電応答

関数 は、局所場補正理論 により計算 した。著者 は、従来の局所場補正理論 において無視 さ

れていた電子一イオン問の局所場補正関数 を原子モデルを用いて計算 し、荷 電粒子の阻止

能の評価 を行 なった。その結果、従来の局所場補正理論 によるそれ より約5%程 度阻止能

が向上することを示 した。

第7章 は結論であ り、以上の研究で得 られた結果 をまとめ、本論文 の総括 とした。



I.

II.

Table of Contents

Table of Contents 

Introduction 

References of chapter I 

3-Dimensional Two-Component Particle-Particle Particle-Mesh Code 

"SCOPE" 

II - 1. Basic equations and outline of "SCOPE" 

II -2. Short-range forces include quantum effects 

II -3. Particle-Mesh method and long-range forces 

11-3- 1. The conventional P-M method 

11-3-2. Newly developed P-M method 

11-3-3. Comparison between newly developed 

           P-M method and conventional P-M method 

II - 4. Connection of P-P and P-M method 

II - 5. Initial positions and velocities in "SCOPE" 

II - 6. Integral of equation of motion 

II - 7. Summary 

References of chapter II

page 

1 

6

7 

8 

9 

12 

13 

13 

14 

17 

19 

23 

24 

25



page

III. Application of "SCOPE" to Laser-Produced Hot, Dense Plasmas I 

    -- Reduction in bremsstrahlung emission 

    from hot, dense binary-ionic-mixture plasmas --

    III - 1. Introduction 

    111-2. Formulation of bremsstrahlung emission 

           from a binary-ionic-mixture plasma 

    111-3. Pair distribution functions 

    111-4. Reduction in bremsstrahlung emission 

           from binary-ionic-mixture plasmas 

    III - 5. Summary 

   References of chapter III

26 

27

29 

34

50 

62 

64

IV. Application of "SCOPE" to Laser-Produced Hot, 

    -- Self-diffusion and electric conductivity -

Dense Plasmas II

65

IV - 1. Introduction 

IV - 2. Velocity auto-correlation functions and 

      self-diffusion coefficients 

IV - 3. Auto-correlation function of total electric 

      electric conductivity 

IV - 4. Summary 

References of chapter IV

current and

66

67

74 

81 

82



V. Atomic Model for Laser-Produced Hot, Dense Plasmas 

in the Density Functional Theory 

V - 1. Introduction 

V - 2. Outline of atomic model 

V - 3. Schrodinger equation in hot, dense plasmas 

  V - 3 - 1. Wave functions for bound states 

  V - 3 - 2. Wave functions for free (scattering) states 

  V - 3 - 3. Electron number density around a test ion 

V - 4. Effective potential and 

      hypernetted-chain approximation 

V - 5. Results and Discussions 

V - 6. Summary 

References of chapter V

page 

 83 

 84 

 85 

 87 

 88 

 89 

 90

93 

96 

104 

106

VI. Application of Atomic Model to Laser-Produced Hot, Dense Plasmas I 

  Stopping power of charged particles 

in laser-produced hot, dense plasmas 

VI - 1. Introduction 

VI - 2. Formulation of stopping power 

VI - 3. Local field correction theorem 

VI - 4. Derivation of static local field correction functions 

VI - 5. High and low velocity limit and ion effects 

      on stopping number

107 

108 

110 

112 

116

120



VI-6.Localfieldcorrectioneffectsonstoppingnumber

VI-7.Summary

ReferencesofchapterVI

VII.Conclusions

謝 辞

業 績 目 録

page

126

132

133

134

139

140



I. INTRODUCTION

     High density compression of six hundred times of solid density has 

been recently achieved with the use of a deuterated polystyrene shell'. 

Figure 1.1 shows the number density and temperature diagram of laser 

fusion hydrogen plasmas. As' shown in Fig 1.1, in such a laser-produced 

hot, dense plasma, plasma density and temperature cover very wide 

domains. There exists a domain in which the Coulomb coupling constant 

for ions, r,=Z2e2/akBT-1-10, and the electron degeneracy parameter, 

O=kBT/£F-- 0.1-10. Here, a is the ion sphere radius, (3/4nn1)1/3, EF is the 

Fermi energy, -h2(3n2ne)2/3/2m, ni and ne are number densities of ions 

and electrons, kBT is plasma thermal energy, kB is the Boltzmann 

constant and L is Plank constant divided by 2n. Such a domain is called a 

two-component, i.e., electrons and ions, strongly coupled plasma2. In the 

present paper, two different approaches, particle simulation and 

analytical modeling, are employed to investigate some basic properties of 

a two-component strongly coupled plasma. 

     The knowledge of the interparticle correlations is required to 

evaluate the heat transport by radiation, self-diffusion, electric 

conductivity, stopping power, and etc. of two-component strongly 

coupled plasmas. For the estimation of such physical values quantitatively, 

it is desirable to simulate numerically many charged particle system for a 

long time with enough statistical accuracy. It is, however, very expensive 

to calculate all forces between particles. Therefore, 3-dimensional two-

component Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has 

been developed3'4. In "SCOPE", the short-range forces are computed by 

using a direct particle-particle summation over the spatially localized 
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forces and long-range forces are calculated by the Particle-In-Cell (PIC) 

methods. Quantum diffraction and symmetry effects are taken into 

account in the short-range forces through the effective pair potentials6. 

The PPPM method was used for molecular dynamics simulations. This 

scheme is the first to apply the PPPM method for the two-component 

strongly coupled plasmas. The details of the code is discussed in Chap. II. 

    The heat transport by radiation is one of the important problems in 

laser fusion plasmas. The electron shielding and ion-ion correlation 

reduce the X-ray emission and absorption coefficients of free-free 

transitions in such a plasma3,8-10 Developed has been the formulation 

of the bremsstrahlung emission coefficients from a binary ionic mixture 

plasma based on the formulation made by H. Totsuji8'9 and that made by 

R. Kawakami et a110. In this formula, the pair distribution functions are 

related to the bremsstrahlung emission coefficients. And estimated are 

the reduction in bremsstrahlung emission from a binary ionic mixture 

plasma using the pair distribution functions obtained by simulation with 
"SCOPE" . The reduction in bremsstrahlung emission is described in 

Chap. III. 

     In laser-produced hot, dense plasmas, it is expected that the self-

diffusion coefficients are smaller than those in the ideal plasma. To 

estimate the self-diffusion coefficients quantitatively, the knowledge of 

the time dependent interparticle correlations is required. The self-

diffusion coefficients are related to the velocity auto-correlation functions 

(V.A.F.)11,12 Calculated are the velocity auto-correlation functions of the 

two-component nondegenerate plasmas by the simulations, and 

estimated are the self-diffusion coefficients as a function of the Coulomb

-3-



coupling constant for ions I'. In the same way, the electric conductivities 

are related to the auto-correlation functions of the total microscopic 

electric current 11,12 Calculated are the auto-correlation functions of 

the total microscopic electric current of the two-component 

nondegenerate plasmas by the simulations, and estimated are the electric 

conductivities. The self-diffusion coefficients and the electric 

conductivities are mentioned in Chap. IV. 

     For very highly compressed plasmas, for example, the plasma of six 

hundred times of solid density which has been recently made with the 

use of a deuterated polystyrene shell targetl at ILE, the thermal de 

Broglie wavelength defined by Xe=-h/(2nmekBT)1/2 and the electron 

sphere radius defined by ae=(3/4icne)1/3 are comparable. "SCOPE" cannot 

be applied to such very highly compressed plasmas because in "SCOPE" 

the quantum effects are taken into account approximately. It is very 

important for laser fusion to calculate various thermodynamics functions 

of plasmas in such a region. In order to investigate such very highly 

compressed plasmas, the quantum effects should be taken into account 

through the Schrodinger equation, and many body effects are also 

important because of high density. To calculate the pair distribution 

functions, and the effective potential acting on an electron and an ion, an 

atomic model has been developed within the framework of density 

functional theory (DFT)13,14 And found are the unnegligible difference 

of the pair distribution functions from other theoretical models2,10• The 

atomic model is described in Chap. V. 

     Recently the various physical values can be observed by using the 

charged particles which are made by fusion reaction experimentally. The 

energy spectra of the charged particles which are produced by fusion 

                                           -4-



reaction has to be estimated correctly in order to obtain the correct 

physical values which characterize the highly compressed fusion plasmas 

experimentally. The charged particles made by fusion reaction lose the 

energy by collisions. The ratio of the lost energy to the range moving in 

the plasma is called stopping power. It is very important to estimate the 

stopping power correctly for the estimation of the self-heating of the 

plasma by the charged particles and the estimation of the product of the 

mass density p and the core radius R15,16 The stopping power can be 

calculated using the dielectric function E(k,co). The dielectric function 

E(k, (o) of such a highly compressed plasma can be calculated using the 

local field correction theory2. In Ref. 2 the electron-ion local field 

correction function Gei(k, w) is assumed to be zero because it is very 

difficult to calculate electron-ion local field correction function in their 

frame work. In this paper the static electron-ion local field correction 

function Gei(k) is estimated with the aid of the atomic model. The 

stopping power is described in Chap. VI. 

     In Chap. VII, conclusions and summaries are presented.

-5-
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II. 3-Dimensional Two-Component Particle-Particle Particle-Mesh Code 

"SCOPE"

     In order to simulate the two-component strongly coupled plasmas, 3-

dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been 

developed (Ref. 1). In "SCOPE", the short-range forces are calculated by using 

a direct Particle-Particle (P-P) summation over the spatially localized forces 

and the long-range forces by Particle-Mesh (P-M) method. Quantum diffraction 

and symmetry effects are taken into account through the effective pair 

potential by an approximated way (Ref. 2). In "SCOPE", the Poisson equation 

has been solved by the 4-th order finite difference method and third order 

spline weighting method. To obtain accuracy within error <_ 1%, the distance x 

is required 15 0 in the conventional P-M (Cloud In Cell) method, but only 3 0 

is required in the newly developed P-M method. For the close interactions, 

especially electron-ion interactions, the small time increment At' is estimated 

as satisfies the condition At' <<t, where ti is the interaction time. Initial 

positions are determined by the Metropolis method (Ref. 3) and initial velocity 

distribution function is Maxwellian.

-7-



II - 1. BASIC EQUATIONS AND OUTLINE OF "SCOPE"

    The plasmas considered in "SCOPE" consist of many point plus charges 

(plus ions) and many point minus charges (electrons) which subject to Newton 

equation of motion. The basic equations are as follows. 

   dri 

     dt - vi , (2.1) 

     dVi 
     n1i F         dt i 

, (2.2) 

    F1= F1 
            i #1 , (2.3) 

where ri, vi and mi are position, velocity and mass of the i-th particle. 

    As Eq. (2.3) shows, the force on the i-th particle is defined by the 

summation over the forces among all particles except i-th particle. But it is too 

expensive to calculate Eq. (2.3) about all particles in the plasmas. In "SCOPE" 

the force on the i-th particle is calculated from the summation of the short-

range forces and the long-range forces as follows, 

               sr lr 
    Fi = F1 + Fi (2.4) 

Namely, the short-range forces are calculated by using a direct Particle-

Particle (P-P) summation over the spatially localized forces and the long-range 

forces by Particle-Mesh (P-M) method. Quantum effects are taken into account 

in the short-range forces. In the next section, I describe how to evaluate the 

short-range forces which include the quantum effects.

-8-



11-2. SHORT-RANGE FORCES INCLUDE QUANTUM EFFECTS 

    In order to introduce quantum effects and treat nondegenerate- strongly 

coupled plasmas by classical mechanics4, effective pair potentials, which 

account for quantum diffraction and symmetry effects in an approximate way, 

are used. Effective pair potentials may be derived by using the quantum-

mechanical Slater sum 

   W({r }) _ 1 i exp (- (3En) yfn 
(2.5) 

in a form reminiscent of the classical Boltzmann factors, i.e., as 

   W({r}) = exp (- f3 i1-0ij(r)~                                J (2.6) 

In Eq. (2.5) '1'n and En are the eigenfunctions and eigenvalues of the full 

Hamiltonian of the system, {r) denotes the set of all positions of electrons and 

ions, and vij(r) represents the effective pair potential between i-th and j-th 

particles. At sufficiently high temperature, the contribution of bound state to 

electrons-nuclei Slater sum can be neglected. If, moreover, the scattering 

states are limited to s waves, the following very simple effective pair potentials 

can be derived2 

    v i j (r) _ q ,q j 1- exp - r                         k
ij                                                                (2.7) 

where -kij is the thermal de Broglie wavelength, i.e., 

                                              -9-



    7%ij -
       ~2 7t m ij kB T                                                                (2.8) 

and m,, is the reduced mass of an i j pair. In the classical (high-temperature) 

limit, 1)i ,(r) reduces to be bare Coulomb potential, as -k,, reduces to zero. 

    To take account of symmetry effects (i.e., the Pauli principle) for 

electrons, a term must be added to the effective pair potential. It has been 

shown6 that in the high temperature limit 

   v e, e (r) = 1)(d) (r) + v(s)(r) 

        = r2 { 1- exp (- kee / } 
         + kB T 1n2 e r2                    x - 2                       R k, 1n2) , (2.9) 

where the first term v(d)(r) arises from quantum diffraction effects, while the 

second term v(s)(r) take care of symmetry. The forces arising from quantum 

diffraction effects and symmetry effects are defined as, 

    d)(r) _ - ar v(d)(r) 
            e2 e2 1 1 _ r        = -r r+ )exp -            2 r k ee kee (2.10) 

   f(S)(r) _ - , v(S)(r) 

         2kBT r2 
         = 2rexp- 2 
            7L kee 7t 9cee 1n2 . (2.11) 

                                      -10-



    The direct particle-particle interaction force between the i-th 

particles with the charge qi and q, is given by 

F gigj gigj 1 1 r   ij = 
r3 rij - r2 rij r + exp -                                 ij ij 

                     2 ___ r2 kBT + 8
iebje 2 rij exp - 2 

                    1 Xee TL xee In 2 

where S is Kronecker's delta.

and j-th

(2.12)

-11-



II - 3. PARTICLE-MESH METHOD AND LONG-RANGE FORCES 

    The long-range forces are calculated by introducing 3-dimensional 

meshes through the Poisson equation as follows.

1). 

2).

3).

4).

The meth     method 

usually u        used 

an enough 

enough p        precision 

new P-M 

strongly c        coupled 

two types

The charge density Pi m n at the grid point (l,m,n) is calculated 

from the positions of the particles. 

By using the charge density Pi ,m,n at the grid point (l,m,n), the 

finite difference Poisson equation is solved about the static electric 

potential 0i,m,n at the grid point (l,m,n), for example, with the aid 

 of Fast Fourier Transform for a periodic boundary condition system. 

The electric force Fi m n at the grid point (l,m,n) is calculated 

 from $i ,m,n-

 The long-range force on the i-th particle Fill is calculated from the 

 electric force Fi ,m,n at the grid point (l,m,n). 

   mentioned above is called Particle-Mesh (P-M) method, and is 

   to simulate the ideal plasmas. The conventional P-M method has 

  precision to simulate the ideal plasmas, but does not have an 

       to simulate two component strongly coupled plasmas. The 

method which has an enough precision to simulate two-component 

      plasmas has been developed. In the following sub section, the 

of P-M methods are described and compared.
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II - 3 - 1. THE CONVENTIONAL P-M METHOD 

    In the conventional P-M method, the charge density pl .m,n at the grid 

points (l,m,n) is obtained by the Cloud-In-Cell (CIC) method7'8. By 

introducing the finite size particle, whose size is same as a mesh size, I assign 

the charge of a particle to the nearest 8 grid points with linear area weighting 

method. By using the charge density pt m nat the grid point (l,m,n), I solve the 

second order finite difference Poisson equation, 

Oz {6$ 1. m. n - (~I +1 . m. n + $ I -1. M'. + $1. m+1..+ 01.m-1.n + $I. nm n+ 1 + ~1. m n- 1) }= 47CPI. m. n 
                                                         (2.13) 

for example, with the aid of Fast Fourier Transform for a periodic boundary 

condition system. The electric field of a grid point is obtained from the 

relation which has a second order precision 

                   (~I+Lm.n-01-1.m,n) ( I.m+l .n-y1.m-l,n) 1.m.n+1m,n-1) E
1. m. n 20 2A 20                                                                    

. (2.14) 

The long-range force on the i-th particle is calculated from the electric field 

of the nearest 8 grid points with the linear area weighting method. 

II - 3 - 2. NEWLY DEVELOPED P-M METHOD 

     In the newly developed P-M method, I assign the charge of a particle to 

the nearest 8 grid points and neighbor 56 grid points with the third order 

spline function
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     S3 (X- Xt0) = + 2 g2(g F 2) + 3 

3 

   S3(x-x±1)=±6(x±2) 
    X= X- Xtl 

                                                         (2.15) 

By using the charge density Pi ,m,n at the grid point (I,m,n), the fourth order 

finite difference Poisson equation 

-V2 `Yl.m.n= 12&2{$1 +2.m,n- 16$1+1.m.n+ 30(p1.m.n- 1601-1.m.n+`Y1-2,m,n 
       + 01.m +2,n - 16 01. m +1. n + 30 `Y1. m. n - 1601,1,n + 01,m-2,n 

                    +`Y1,m,n+2- 164)1.m,n+1+ 3001 m n- 1641.m.n-1+`Y1,m,n-2} 
            =41tp1.m.n 

                                                           (2.16) 

is solved for example, with the aid of Fast Fourier Transform for a periodic 

boundary condition system. I obtain the electric field of a grid point, from the 

relation which has the fourth order precision 

   a`Y1 m n _ 1 ~ 
      r)X 1 _01 +2,m,n-8'x'1+1.m,n+801-1,m,n+01-2, m, n) _ 

                                                                                   -E x 1,m,n 

                                                           (2.17) 

The long-range force on the i-th particle is calculated from the electric field 

of the nearest 8 grid points and neighbor 56 grid points with the third order 

spline function. 

II - 3 - 3. COMPARISON BETWEEN NEW DEVELOPED P-M METHOD 

       AND CONVENTIONAL P-M METHOD 

    The improvement of accuracy of the long-range forces by using newly 

developed P-M method is described as follows. Figure 2.1 shows the error of 

the calculation of the long-range forces from the bare Coulomb forces as a 

function of the distance from the observation point to the test particle. In Fig. 
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2.1, CIC means the conventional P-M method, P4 means that the charge 

density is obtained by CIC but the Poisson equation is solved by the fourth 

order difference, S3P2 means that the charge density is obtained by the third 

order spline function but the Poisson equation is solved by the second order 

difference and S3P4 means the newly developed P-M method. The horizontal 

axis represents the distance normalized by the mesh size A, and the vertical 

axis represents the error of the calculation of the long-range force from the 

bare Coulomb forces. In the case using the charge density obtained by CIC the 

error oscillates as the function of x, but in the case using the charge density 

obtained by S3 the error decreases smoothly as the function of x. On the other 

hand, the absolute value of the error is dependent on the accuracy of 

transforming the Poisson equation to a finite difference equation. To obtain 

accuracy within error <_ 1%, the distance x is required 15 A in the 

conventional P-M, but only 3 A is required in the newly developed P-M 

method.

- 15-



2

O 
U 
L 

O 

L 

N

n 

O 
u 
L 

O 

L 

Q)

10

10

I

  -1 

10

  -2 

10

10

I

  -1 

10

i

V 

I

r

CIc

P4

S3P2

  -2 I 
. I. I 1.\--10 ,\ . I 

   0 5 10 15 S3P4 

   cii stance (x/ A)

Fig 2.1 The error of the calculation of the long-range forces from the bare Coulomb forces as a 

function of the distance from the observation point to the test particle. 

The horizontal axis represents the distance normalized by the mesh size A, and 

the vertical axis represents the error of the calculation of the long-range force from 

the bare Coulomb forces.
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11-4. 

    In 

lengths, 

           "D 

   L MN

 CONNECTION OF P-P AND P-M METHOD 

"SCOPE        " the size of 3 -dimensional meshes is a 

defined by 

     riBTe

few electron Debye

       e 4~e2n
e (2.18) 

where e, Te and ne are electron charge, temperature and number density 

respectively. Figure 2.2 illustrates 2-dimensional meshes and particle 

positions by open and closed circles. If the i-th particle locates at the position 

shown in Fig. 2.2, the direct particle-particle forces are calculated by 

summing over the forces from the particles within a obliquely lined region and 

a hatched region, and the long-range forces are calculated beyond a hatched 

regionl'7. It should be noted that when the long-range forces are calculated, 

the long-range forces contributed from the oblique lined region and the 

hatched region are excluded because the forces contributed from the oblique 

lined region and the hatched region are calculated by P-P method. To exclude 

the long-range forces contributed from the obliquely lined region and the 

hatched region, 

E the following equation is used.     4n   - 

-                      P r. M" n• 
                       t.m•.n• 

                  sin{20,(1-l')+2 Om(m -m') +20,(n-n )} 

X

   ''. •k. sin 20
,\ 

x [sin220, (1+ 

         01=

1 + 3 sin Z 0,) + sin? 0 m ( 1 + 3 sin 20 m) +sin 20 n ( 1 + 3 sinz 0 n)

3 sin20 ), sin220 m (1 + 3 sin2 0m) 
 nk, 

_ nkm _ nkn 
  L ' 0m M ' 0n N 
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II - 5. INITIAL POSITIONS AND VELOCITIES IN "SCOPE" 

    Initial positions of electrons and ions are determined by the Metropolis 

method3. In our Metropolis code, the electron-ion pair interaction potential is 

defined as the summation of a repulsive soft-core potential and an attractive 

Coulomb potential, 

                  6 n qie    ve1(r) = ~kBT (r) - r , (2.20) 

where a is the soft-core radius, n and a are constants. The electron-electron 

and ion-ion pair interaction potentials are bare Coulomb potentials. Figure 2.3 

(a) shows the electron-ion pair interaction potential normalized by the plasma 

temperature, where Z=6, F=1, a=0.2a, e=0.1 and n=3. The horizontal axis 

represents the distance normalized by the ion sphere radius a. At r-0.1a the 

v(r) has the minimum value. Figure 2.3 (b) shows the ion-ion and electron-ion 

pair distribution functions. At r-0.1 a the electron-ion pair distribution 

function has the peak value. The ion number Ni which used in this calculation 

is 100 and the electron number Ne is 600. 

     Initial velocities of electrons and ions are determined as follows. First, 

the following function as the velocity 

   F(v) = 4m50 v2 ex - Zv 2 dv 
                                  T , (2.21) 

is defined and the following equation 

    F(Vmax) N NV = F(Vi) (2.22) 
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is solved about vi. Where the Nv is the number of the particles making 

Maxwellian. And in order to decrease the differences of the velocity 

distribution function from Maxwellian, the velocity of the i-th particle is 

corrected as follows. 

    Vi ->vi{1+a('yi - 0.5)} . (2.23) 

Where a is a constant and Yi is the random number from 0 to 1. Figure 2.4 

shows the velocity distribution functions of ions and electrons. The ion 

number Ni which used in this calculation is 800, the electron number Ne is 

4800, a=0.5 and vmax 3vT . The horizontal axis represents the velocity 

normalized by the thermal velocity and the vertical axis represents the 

distribution function of the absolute value of velocity. The dashed line 

represents Maxwellian. The direction of velocity is determined by 20 unit 

vectors. They go from the center of a regular icosahedron to the center of the 

faces of that.
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U - 6. INTEGRAL OF EQUATION OF MOTION 

    The equations of motion are integrated for all particles with respect to 

the normalized time increment of Ato 0.05. In order to simulate two-

component strongly coupled plasmas with sufficient accuracy, for electron-ion 

interactions which have very small impact parameter or fast relative velocity, 

such events are selected and sufficiently small time increment are used, for 

example At'=At/6000. The normalized interaction time of an electron-ion pair 

can be estimated as follows. 

    wpe Z1 /2 r3 Ve3 
T= d0 = e12 1/ 2 2 

                                                   -2 5/3 
_2   dt [i+{ 2yi 3 CZr 2 _ _ + 1 Sin15 

                 rz 

         i=r /ae , V=V /VT . (2.24) 

For example when Z=1, F=0.63, ve=0.2 and r=0.2, t -- 2.2x10'4. The small time 

increment At' is determined as satisfies the condition of At'«i.
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II-7.

     In order to simulate the two-component strongly coupled plasmas, 3-

dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been 

developedl. In "SCOPE", the short-range forces are calculated by using a 

direct Particle-Particle (P-P) summation over the spatially localized forces and 

the long-range forces by Particle-Mesh (P-M) method. Quantum diffraction and 

symmetry effects are taken into account through the effective pair potential by 

an approximated way2. In "SCOPE", the Poisson equation has been solved by 

the 4-th order finite difference method and third order spline weighting 

method. By introducing the 4-th order finite difference and the third order 

spline weighting, the number of meshes required to obtain the accuracy 

within a error <_ 1%, is reduced (1/5)3 of the conventional P-M method. For 

the close interactions, especially electron-ion interactions, the small time 

increment At' is estimated as satisfies the condition Ot'<<t where ti is the 

interaction time. Initial positions are determined by the Metropolis method 

and initial velocity distribution function is Maxwellian.
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Ill. Application of "SCOPE" to Laser-Produced Hot, Dense Plasmas I 

        Reduction in bremsstrahlung emission 

     from hot, dense binary-ionic-mixture plasmas

     With the use of "SCOPE", ion-ion and electron-ion pair distribution 

functions are observed for two-component strongly coupled plasmas and 

compared with statistical models (Ref. 1, 2) in detail. The reduction in 

bremsstrahlung emission from a binary-ionic-mixture plasma is 

calculated from the pair distribution functions obtained by the simulation. 

It is found that the reduction in bremsstrahlung emission from a binary 

ionic mixture plasma is approximated by that for a fictitious single ion 

species plasma (Ref. 3) with a certain ion charge even for the two-

component plasma (Ref. 4).
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III - 1. INTRODUCTION 

     The heat transport by radiation is one of the important problems in 

laser fusion plasmas. In a laser-produced hot, dense plasma, plasma 

density and temperature cover very wide domains, and there exists a 

domain in which the Coulomb coupling constant for ions, r=Z2e2/akBT-1, 

and the electron degeneracy parameter, O=kBT/eF -- 1-10. Here a is the 

ion sphere radius, (3/4nni)1/3, EF is the Fermi energy, fif.2(3E2 ne)2/3/2m, 

ni and ne are the number densities of ions and electrons, kBT is the 

plasma thermal energy, kB is the Boltzmann constant and 11 is Plank 

constant divided by 2n. Such a domain is called a two-component, i.e., 

electrons and ions, strongly coupled plasmal. The electron shielding and 

ion-ion correlation reduce the X-ray emission and absorption coefficients 

due to free-free transitions2-5. 

     The knowledge of the interparticle correlations is required to 

calculate the effects of the electron shielding and ion-ion correlation on 

the bremsstrahlung. In this chapter the ion-ion and electron-ion pair 

distribution functions are obtained directly with the use of "SCOPE". 

     Developed is the formulation of the bremsstrahlung emission 

coefficients from such a binary ionic mixture plasma based on the 

formulation made by H. Totsuji3,5 and that made by R. Kawakami et a12. 

In this formula, the pair distribution functions are related to the 

bremsstrahlung emission coefficients. 

     The pair distribution functions obtained by simulations are 

compared in detail with theories 1 " 2. The symmetry effects6 in the 

effective pair potentials on the pair distribution functions are also 
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discussed for a hot, dense plasma. Estimated is the reduction in 

bremsstrahlung emission from a single ion species plasma and a binary 

ionic mixture plasma. It is shown that the reduction for a binary ionic 

mixture plasma can be approximated by that for a fictitious single ion 

species plasma3 even for a two-component plasma.
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HI - 2. Formulation of bremsstrahlung emission from a binary-ionic-

          mixture plasma 

     The cross section for dipole emission of photon is given by7 

    = (272)2 m d2d 2 dk dP' d6k, p• - 0 -hp e ~ ~ dt2 ~ 8(El - Ef -~ic~) x 3 3 
                      r.1 (27G) (27u) 

                                                         (3.1) 

where e and k are the polarization and the wavenumber of the emitted 

photon respectively, w=(k2c2+ (0 pe2) 1/2 and (d2d/dt2)f 1 is the matrix 

element of the time derivate of the electric dipole moment d between 

the initial state (E1=(Ilp)2/2m and asymptotic wave number p ) and the 

final state (Ef= (1p')2/2mand asymptotic wave number p') of electrons. 

     H. Totsuji5 has introduced the formulation of bremsstrahlung 

emission coefficients from a one-component strongly coupled plasma 

which consists of only one species of ions, and R. Kawakami et a12 have 

introduced that from a two-component strongly coupled plasma which 

consists of electrons and only one species of ions. The formulation is 

extended to the case of a binary ionic mixture plasma4, which consists of 

electrons and two species of ions of the charges Zle and Zee and their 

numbers are N1 and N2 When the electron position is r(t), 

   2 2 2 N, N, dd =edr =m IV U1(Ir-RjI)+k'1VU2(Ir-Rkl)}  dt de                         J=1 

(3.2) 

and the matrix element is given as follows,
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C d a) = IeT-1 1 (P; (r) [--{Ui(Ir JI1 - RBI) + k=1 U2 ( - RkI) }~ (p1(r) d1 
            f., 

                                                        (3.3) 

where U 1 and U2 are the ion potentials shielded by electrons, the suffixes 

1 and 2 denote the ions of the charges Zle and Zee, and 1~~ and Rk are 

ion positions. 

    In the Born approximation I can replace (pi(r) by exp(if p•r) and 

(pft(r) to exp(-ihp'•r) in Eq. (3.3), and by changing the values r - Rj = r1 

and r - Rk = r2, Eq. (3.3) can be rewritten as 

( -) = m [j~1J e'° ~ ef~ r { aff Ui(rl) } dr, + loll e14• R ef4 r' { VZ UZ(r2) J dr2 ] 
                                                           (3.4) 

where liq=lp-lip' is the change of the electron momentum in the 

collision. If assumed is that the potential U1(r) and U2(r) are dependent 

only on'the species of ions, namely independent on the particle number j 

and k, Eq. (3.4) can be written as 

    z N N, l 

Caa) =m [{e' , }(-iq)fU1(rf)ef4 drl+{Ief4 A•}(-iq) jU2(r2)e`4 = drz] 
       Lf 

                                                        (3.5) 

With the use of Eq. (3.5), the term I e (d2d/dt2) f i 12 can be written as 

follows.
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e [A2 a 11124 q2 I I - iq ~ J~leiq ~ g2 U1(g) q2 U1(- q)              ~f l 2 

                + Ye-lq. Ielq.R, g2U,(q)g2U2(-q) 
                              J= 1 k= 1 

            + {e1 q Ic J ~iqq)                k=1 {e}q2u2(q)q2ui(_ j=1 
          + {kle-iq ~} {}q2u2(q)q2u2(_q)]                                      kYeiq'Rkl 

, (3.6) 

where Ua(q) is the Fourier Transform of Ua(r), 

    U a (q) = 1 U a (r) e- I q r dr (3.7) 

     With the use of Eq. (3.6), the cross-section averaged over the ion 

distribution, the polarization and the propagation direction of photon is 

calculated as8 

       8(E,-E,--lw) O-o 2doodp• 2 2 1 
dck.p.= 31C2mc3hp toe I1 ZaZses naps g2Sas(q)Pa(q)Ps(-q) 

                                                         (3.8) 

SaR(q) is the ion structure factor defined by3 

   Sap (q) = C P a(q) p (_ q)~ -a N ~ (3.9) 

where 

               N, 

    P a(q) = exp (- i q • R j) 
               j = 1 , (3.10) 

and Pa(q) is the electron shielding factor2, 

          q2 
    Pa(q) 4

7LZa,e Ua(q) (3.11) 
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The ion structure factor Sap(q) is related to the pair distribution function 

gap(r) as3 

   Sap(q) = Sap +na 1{gap(r) - 1}e-iq .r dr 
                                                     (3.12) 

and the electron shielding factor Pa(q) is related to the pair distribution 

function gea(r) as 

    P a (q) = 1 - ne j 19, a (r) - 1} e- i q r dr 
                    Za . (3.13) 

    The emission coefficient E(w)dco ( energy emitted per unit time, 

volume, solid angle and polarization) is given by 

E (w) do) = J$tiw mp dok, P, f (P) { 1- f (P') } 2 3 dp 
                             (21L) 

                                                            , (3.14) 

where f(p) is the distribution function of electrons with momentum hp, 

   f(p) = 1 

        l+exP (tip)2 /2m-µ 
                         kBT 

, (3.15) 

and µ is the chemical potential. Carrying out the integration of Eq. (3.14) 

with respect to p and p' got is 

                2e6 kBT w2 - w, 2 dw 
E(w)dw= 3

T3-i3c3w{exp(iw /kBT)- 1} 
              2 2 

      x Y- Y, Za Z,na na b dgS4 (q)Pa (q) PR (- q) F(q) / q 
                 a=1p=1 

                                                       (3.16)

where
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2 

       I + exp µ - X12 (q _ mc) 
F (q) = 1n kBT 2m kBT 2 iq 

                                 2 2 

                  _ Vi q mw         1 +exp 
kB µ T 2m kBT 2 + iq (3.17) 

It is clear from Eqs. (3.12) and (3.13) that the ion-ion correlation effects 

on the reduction of bremsstrahlung emission coefficients are included in 

SaR(q), while the electron shielding effects are included in Pa(q) and 

PR(q). If the pair distribution functions, gaa(r), gea(r) and gea(r) are given, 

the bremsstrahlung emission coefficients can be calculated. 

     As in Ref. 2, in order to show the strongly coupled effects on the 

reduction of the bremsstrahlung emission coefficients, the ratio R(w) is 

also introduced, by 

          E(Sap(q). Pa(q).P5(-q)) 
R(w) E(S

CO(q)=Sas Pa(q)Pp(-q)=1) 

         2 2 

     I I Z«Z, nan~ J dgScp(q)PQ(q)PP(- q) F(q) /q 
          a=1~=1 0 

                    2 2 

           I IZaZ0 nan,5a,JdgF(q) /q 
                 a=10=1 . (3.18) 

Furthermore, the following ratios, 

                                                        2 2 

        E(S~(q).P.(q)=Ps(-q)=1) ~11Z.Z,nans 1odgS.e(q)F(q)/q 
R1(0) E(S

aa(q)=s.0 P.(q) = PP(- q) = 1) = 2 2                                         ZaZo nan, S., J dgF(q) /q 
                                                                       a=le-~ a 

                                                        (3.19) 

are introduced to express the ion-ion correlation effects separately.
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III - 3. PAIR DISTRIBUTION FUNCTIONS 

    The pair distribution function g(r) represents the probability to 

find a particle at a distance r from the origin where a test particle 

locates. In an ideal plasma there is less correlation among the particles, 

thus the probability is independent of the distance, i.e. g(r)=1. However 

in a strongly coupled plasma, the repulsive force between ions and the 

attractive force between ion and electron affect the pair distribution 

functions. 

     If random phase approximation (R.P.A.) is applicable, the pair 

distribution functions are calculated analytically. If the plasma consists of 

fully ionized hydrogen, the pair distribution functions, gii(r) and gei(r) are 

described as9 

          k2 
   g i i (r) = 1 - p ( ski r )                 47zn i x (3 .20) 

2 

    9,i (r) = 1 + 47m, exp (- ke r )                                                             , (3.21) 

where ni is the ion number density, ke XDe 1 and 

              ni e2 
    ki = 4~k

B Ti . (3.22) 

     If R.P.A. theory is not applicable, the pair distribution functions can 

be calculated analytically from the hypernetted chain approximation 

(HNC) theoryl and the finite temperature Thomas-Fermi (T-F) model2. 

The ion-ion pair distribution function gii(r) is obtained from the HNC 

equation,
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gii (r) = exp - Oii (r) + h(r) - c(r)                 k
B T (3.23) 

where h(r) is the pair correlation function, 

    h (r) = gii (r) - 1 (3.24) 

with HNC equation, I use the Ornstein-Zernike relation, 

   h (r) = c (r) + ni f c (Ir - r'I) h (r•) dr, , (3.25) 

where 4ii(r) is the ion-ion interaction potential shielded by electrons', 

                  * 2 

   ̀Yii(r) = (Z e) f dk 2 1( exp(ik . r) 
            2~ k £e(k) , (3.26) 

and c(r) is the direct correlation function. Z* is the effective ionization 

state which will be determined later and ee(k) is the electronic 

dielectric function'. It should be noted that no ion-ion correlation effect 

is taken into account in the calculation of Ce(k). Namely, in the calculation 

of the ion-ion pair distribution function in the frame of the equations 

mentioned above, electron shielding is treated only as a linear-response 

shielding. 

     The electron-ion pair distribution function ge1(r) is obtained from 

    gei (r) = ne(r) / Z'ni , (3.27) 

where ne(r) is the electron number density around a test ion, which is 

calculated from the following equations2. 

    - V2 U(r) = 47te [ Z 8 (r) - n e(r) + Z*ni ] , (3.28) 

   ne (r) 2dp = J 3 fT (p) 
           (2K) , (3.29) 
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and

   fT (p) = 
               (dip) 2 /2m-eU(r)-µ 

         1 + exp k
B T                                                      (3.30) 

Here U(r) is the Thomas-Fermi potential. In the frame of T-F model, the 

bound electron number density is calculated from 

           2dp 
   nbe(r) = JE<0 (27L)3 fT(P) 

                                                     (3.31) 
where 

2 

   E = (hp) - eU(r) 
          2m . (3.32) 

Thus the effective ionization state Z' is given by 

     Zi =Z-Nbe (3.33) 

where 

    Nbe= b 47tr2nbe(r)dr 
                                                     (3.34) 

Since Zinc is equal to the average free electron number density, 

   Zi ni 2 dp = J f(p) 
          (2L)3 (3.35) 

which determines the chemical potential, where f(p) is defined by Eq. 

(3.15). It should be also noted that in the calculation of the electron-ion 

pair distribution function in the frame of Eqs. (3.27)-(3.35), the ion-ion 

correlation is neglected, i.e, gii(r)=1. 

     The pair distribution functions are observed by simulations with 

electron-electron symmetry effects. Simulations have been performed as 

follows. Integrated are the equations of motion for all particles by 
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normalized time increment of 1\twpe0.05 for maximum time trnaxO')pe60. 

I recognize that simulation plasmas are sufficiently quiet at the time of 

twpe 60 because of good initial positions and velocities. Simulation -

parameters are summarized in Table 3.1. Note that the mass ratio of 

proton to electron has been chosen the value of 100, and that of carbon 

to electron has been chosen the value of 600. But the pair distribution 

functions are almost unaffected by the ratios because these are static 

properties. 

     After the time of twpe=60, the pair distribution functions are 

observed at every two time steps and averaged over the time interval of 

tape 60- 120. 

     In the first case, which corresponds to a weakly coupled plasma, 

the physical parameters are the atomic number Z=1, the Coulomb 

coupling constant for ions I'=0.0278 and the plasma temperature 

T=1keV. The ion-ion pair distribution function and the electron-ion pair 

distribution function are shown in Fig. 3.1, in which the solid line 

represents the results obtained by simulation and the dashed line 

represents the results of R.P.A. theory. The distance r is normalized by 

the ion-sphere radius a. They are in good agreement except for r<0.2a. 

The reason why there is a little difference between simulation and R.P.A. 

theory for r<0.2a is that in R.P.A. theory the short-range correlation 

effects between particles are not included. However, in this case, the 

difference is not significant on any physical quantities. 

     In the second case, which corresponds to a two-component 

strongly coupled plasma, the physical parameters are the atomic number 

Z=6, the Coulomb coupling constant for ions F=1, and the plasma
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Table 3.1

     Details of simulations. Ne and Ni are the numbers of electrons and 

ions used in simulations. i is the size of one mesh in space. i t is the time 

step in the numerical integration.

Z 

r 

0 

ni(cm-3) 

T(keV) 

Ne 

Ni 

Mesh 

AADe 

n. A3 

ni 03 

AtO)pe 

mime

case (1) 

1 

0.0278 

19.145 

1.7X1024 

1.0 

1600 

1600 

4x4x4 

1.361 

25.0 

25.0 

0.05 

100.0

case (2) 

6 

1.0 

5.808 

1.7X1024 

 1.0 

4800 

800 

4X4X4 

2.645 

75.0 

12.5 

0.05 

600.0
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Fig. 3.1 The ion-ion and electron-ion pair distribution functions for the case of Z--1, 

t=0.0278 and T=lkeV. The solid line represents the results obtained by 

simulation and the dashed line represents the results calculated by R P. A -

theory. The distance r.is normalized by the ion-sphere radius a.
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temperature T=1keV. Figure 3.2 shows the electron-ion pair distribution 

function, in which the solid line represents the results obtained by 

simulation and the dashed line represents the results calculated from 

Eqs. (3.27)-(3.35). The result from Eqs. (3.27)-(3.35) is greater than that 

by simulation for r<0.2a. Many electrons are needed to shield the test 

particle charge Ze since when the electron-ion distribution function is 

calculated from Eqs. (3.27)-(3.35), the ion-ion pair distribution function 

is set gii(r)=1, i.e., no three-body correlation effects are included. And 

another reason of the difference is that no quantum effects are included 

in Eqs. (3.27)-(3.35). In the second case, the plasma is not fully ionized. 

The bound electron-ion pair distribution function is observed by 

simulation with symmetry effects. The electrons trapped by the nearest 

ion are defined as the bound electrons. Figure 3.3 shows the electron-ion 

pair distribution functions, in which the solid line represents total 

electron distribution function, the dashed line represents bound electron 

distribution function and the solid-dashed line represents free electron 

distribution function. The effective ionization state is estimated by 

     Z' =Z-Nbe , (3.36) 

    Nbe = 47Lne Jr2 gbe -i (r) dr 
                                                     (3.37) 

Here gbe -i(r) is the bound electron-ion pair distribution function obtained 

by the simulation. For this plasma Z' is estimated to be 5.67. The value of 

Z`=5.67 is under-estimated slightly because the potential lowering by 

neighborhood ions is not included in the definition of the bound 

electrons. But probably for this plasma, its effects can be small. In the 

frame of Eqs. (3.27)-(3.35), Z' is estimated to be about 5.21 for the 

plasma Z=6, I'=1 and T=lkeV. The ion charge Z'=5.21 is under-

estimation because the ion-ion correlation effects and the quantum
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Fig. 3.2 The electron-ion pair distribution functions for the case of Z=6, I'=1 and 

T=lkeV. The solid line represents the results obtained by simulation and the 

dashed line represents the results calculated by finite temperature T-F model. 

The distance r is normalized by the ion-sphere radius a.

Fig. 3.3
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The electron-ion pair distribution functions for the case of Z=6, I'=1 and 

T=lkeV. The solid line represents that of the total electrons, the dashed line 

represents that of the bound electrons and the solid dashed line represents that 

of the bound electrons. The distance r is normalized by the ion-sphere radius a. 
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effects are not included in Eqs. (3.27)-(3.35). Figure 3.4 shows the bound 

electron-ion pair distribution functions, in which the solid line 

represents the results obtained by simulation and the dashed line 

represents the results calculated from Eqs. (3.27)-(3.35). Many bound 

electrons are needed to shield the test particle charge Ze compared with 

the simulation because no ion-ion correlation effects are included in Eqs. 

(3.27)-(3.35), as mentioned above. 

    The difference of the effective ionization state and that of the 

electron shielding effects in the calculation of the ion-ion pair 

distribution function between the simulation and the Eqs. (3.23)-(3.26) 

affect ion-ion pair distribution function. Figure 3.5 shows the ion-ion pair 

distribution functions, in which the solid line represents the ion-ion pair 

distribution function obtained by the simulation, the dashed line 

represents that obtained from Eqs. (3.23)-(3.26), and the solid-dashed 

line represents that obtained from Eqs. (3.23)-(3.26) by replacing Z* by Z. 

The simulation result decreases the fastest of the three as the distance r 

decreases, and approaches to unity the fastest of the three as the 

distance r increases. The result obtained from Eqs. (3.23)-(3.26) by 

replacing Z+ to Z is closer to that of the simulation than that obtained 

from Eqs. (3.23)-(3.26) by no replacing. This fact shows that in the 

calculation of gii(r), the nonlinear electron shielding effects should be 

taken into account in the ion-ion interaction potential 4ii(r). 

     As mentioned above, the differences of the pair distribution 

functions between the simulation and the theories originate from that the 

ion-ion and electron-ion pair distribution functions are calculated 

separately in the theories. Recently R. Ying and G. Kalmanl0 perform the 

calculation of the ion-ion and bound electron-ion pair distribution 

functions self-consistently for a strongly coupled hydrogen plasma by a 
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The bound electron-ion pair distribution functions for the case of Z=6, 

T=1keV. The two lines indicate the same as in Fig. 3.2. The distance r is 

normalized by the ion-sphere radius a.
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Fig. 3.5
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by simulation, 

and the solid-dashed 

replacing Z*

0.0 0.0 v' 0.5 1.0 1.5 2.0 

       r/ a 
pair distribution functions, the solid line represents that obtained 

  the dashed line represents that obtained from Eq. (3.23)-(3.26) 

        line represents that obtained from Eq. (3.23)-(3.26) by 

to Z. The distance r is normalized by the ion-sphere radius a. 
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newly developed atomic model based on T-F model. But in their model, 

the free electron pair distribution function is assumed to be independent 

on the distance r, i.e., gfe_i(r)=1. This assumption is not always correct as 

our simulation shows. And ion-ion distribution function is roughly treated 

compared with our theoretical model. Note also that the quantum effects 

are not included in their model too. 

     The electron-electron symmetry effects on the pair distribution 

functions are estimated for the second case of Z=6, I'=1 and T=1keV. 

The force arising from the symmetry effects, defined by Eq. (2.11), is 

proportional to the square of the plasma temperature, because the de 

Broglie wave length tee is proportional to inverse square root of the 

plasma temperature, and its width is proportional to 9Cee2. In the second 

case the plasma temperature is relatively high. Figure 3.6 shows the ratio 

of the force arising from the symmetry effects to that arising from the 

quantum diffraction effects, defined by Eq. (2.10). The ratio f(s)(r)/f(d)(r) 

is greater than unity for r<0.5ae, ae is the electron sphere radius, 

ae=(3/4nne) 1/3. The symmetry effects are thus important for the second 

case of Z=6, F=1 and T=1keV. Figure 3.7 shows the ion-ion pair 

distribution functions obtained by simulation, in which the solid line 

represents the result with the symmetry effects and the dashed line 

represents that without the symmetry effects. Both are almost the same 

for r<2a. The electron-electron symmetry effects are not significant for 

the ion-ion pair distribution function. 

     Figure 3.8 shows the electron-electron pair distribution functions 

obtained by simulation, in which the solid line represents the result with 

the symmetry effects and the dashed line represents that without the 

symmetry effects. As expected, the electron-electron symmetry effects 

                                    -44-



reduce the value of the electron-electron pair distribution function 

greatly for the region of r<0.5ae. The Pauli principle prevents that two 

electrons approach each other. 

     Figures 3.9, 3.10 and 3.11 show the electron-ion pair distribution 

functions, the bound electron-ion pair distribution functions and the free 

electron-ion pair distribution functions obtained by simulation, in which 

the solid line represents the result with the symmetry effects and the 

dashed line represents that without the symmetry effects. As shown in 

Figs. 3.9 and 3.10, the electron-electron symmetry effects enhance the 

value of the electron-ion, especially bound electron-ion pair distribution 

functions. The reason of the enhancement is guessed as follows. By 

adding symmetry term to diffraction term, the free energy of the plasma 

increases compared with the case without symmetry term. Many 

electrons are attracted to an ion compared with the case without 

symmetry effects in order to decrease the free energy of the plasma. 

Note that for the case without symmetry effects, Z* is estimated to be 

5.73. For the case with symmetry effects, Z' is estimated to be the value 

of 5.67, as mentioned above. It seems that the difference of Z` is too 

small to observe the deference of ion-ion pair distribution functions 

between the two cases. For the case with symmetry effects, the number 

of electrons which locate within the distance r<0.2a from an ion can be 

estimated by 

                        0. 2a 
    N = 4ltne 1 r2 gei (r) dr 

                 0 (3.38) 

The number N takes on value on roughly 0.1. The distance re between 

these electrons is roughly estimated as 

    r0. 2a0. 8a        e - V O
. I -N e (3.39) 
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This value is sufficiently large to reduce the symmetry effects on the 

electron-electron pair distribution function as shown in Fig. 3.8. 

Therefore the values of Z* for the cases of with and without symmetry 

effects do not contradict each other.
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Fig. 3.6
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The ratio of the force arising from the symmetry effects, defined by Eq. (2.11) 

and that arising from the quantum diffraction effects, defined by Eq. (2.10) for 

the case of Z--6,r=1 and T=lkeV. The distance r is normalized by the electron-

sphere radius ae.

Fig. 3.7
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            r/a 
The ion-ion pair distribution functions obtained by simulation, the solid line 

represents the result with the symmetry effects and dashed line represents the 

result without the symmetry effects for the case of Z--6. F=1 and T=lkeV. The 

distance r is normalized by the ion-sphere radius a. 
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Fig. 3.8
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The electron-electron pair distribution functions obtained by simulation, for 

the case of Z=6, F=1 and T=1keV. The two lines indicate the same as in Fig. 3.7. 

The distance r is normalized by the electron-sphere radius ae.

Fig. 3.9
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The electron-ion pair distribution functions obtained by simulation, for the 

case of Z=6, r=1 and T=1keV. The two lines indicate the same as in Fig. 3.7. The 

distance r is normalized by the ion-sphere radius a. 
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Fig. 3.10 The bound electron-ion pair distribution functions obtained by simulation, for 

the case of Z=6, r=1 and T=lkeV. The two lines indicate the same as in Fig. 3.7. 

The distance r is normalized by the ion-sphere radius a.

Fig. 3.11
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            r/a 
The free electron-ion pair distribution functions obtained by simulation, for 

the case of Z=6, I'=1 and T=1keV. The two lines indicate the same as in Fig. 3.7. 

The distance r is normalized by the ion-sphere radius a.
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III - 4. REDUCTION IN BREMSSTRAHLUNG EMISSION FROM 

BINARY - IONIC - MIXTURE PLASMAS

     First, I estimate the reduction in bremsstrahlung emission from a 

two-component strongly coupled plasma Z=6, F=1 and T=1keV using the 

pair distribution functions in Sec. III - 3. Figure 3.12 shows the reduction 

of bremsstrahlung emission coefficients obtained from Eqs. (3.12)-(3.19) 

as a function of the frequency. The dashed line represents the 

bremsstrahlung emission coefficients in which only the ion-ion 

correlation effects are included. The solid-dashed line represents the 

emission coefficients in which the ion-ion correlation and free electron 

shielding effects are included. The free electron shielding effects are 

estimated by replacing gei(r) by gfe-i(r) in Eq. (3.13), where gfe-i(r) is the 

free electron-ion pair distribution function. The solid line represents the 

emission coefficients in which the ion-ion correlation and total electron 

shielding effects are included. R. Kawakami et a12 calculate the reduction 

in bremsstrahlung emission from a two-component strongly coupled 

plasma Z=13, ni=8x1021cm-3 and T=lkeV (I'=0.787 and 8=123.8). Our 

results are in good agreement with their results qualitatively, for example 

the reduction rate for the low frequency near w-use and the frequency 

under which the emission is reduced although they calculate the ion-ion 

pair distribution function using the ion-ion interaction potential 

~ii(r)=Z*eU(r) in HNC equation. The shielding effects in their ion-ion 

interaction potential is over-estimation as well in Eq. (3.26), because no 

ion-ion correlation effects are included as the same as in Eq. (3.26). As 

the result, the ion-ion pair distribution function obtained by their model 

is enhanced compared with the ion-ion pair distribution function 

obtained by our simulation. Because both of the ion-ion and electron-ion 
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Fig. 3.12 The reduction of the bremsstrahlung emission coefficients as a function of the 

frequency for the case of Z=6, r'=1 and T=lkeV. The dashed line represents the 

bremsstrahlung emission coefficients which includes only the ion-ion 

correlation effects. The solid-dashed line represents that includes the ion-ion 

correlation and the free electron shielding effects. The solid line represents that 

includes the ion-ion correlation and the total electronic shielding effects. The 

frequency w is normalized by the electron plasma frequency cope.
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pair distribution functions obtained by their model are enhanced 

compared with the pair distribution functions obtained by our simulation , 

the electron scattered by an ion feels almost the same charge for both 

case of our simulation and their model qualitatively. 

  Also estimated is the reduction in bremsstrahlung emission from a 

binary ionic mixture plasma Z I=6, Z2=1, n l :n2=1:1, F1=1.0, r2=0.0278 

and Feff=0.553, by simulation with symmetry effects. Here 

     F1 1 Z1 2 e2 __ 3 /3       1 _ a
.kBT a1 4itn1 

   11'2 2 e2 )1/3         __ 2 
a Z22 kBT a2 3 - 4itn2 

   r _ (Z5 /3)(Z)1/3 e2 a- 3 1/3      eff ak
BT 47t(n1 + n2) 

, 

                                                           . (3.40) 

Simulation parameters are summarized in Table 3.2. Figure 3.13 shows 

the pair distribution functions, in which a) is the ion-ion and electron-ion 

distribution functions around the ion of Z1=6, and the dashed line 

represents the ion of Z2=1 distribution function around the ion of Z1=6, 

and b) is the ion-ion and electron-ion distribution functions around the 

ion of Z2=1. Figure 3.14 shows the electron-ion pair distribution 

functions around the ion of Z1=6, the solid line, the dashed line and the 

solid dashed line represent the total electron, bound electron and free 

electron distribution functions, respectively. The effective ionization state 

of the carbon is estimated to be Z1*=5.77. 
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Table 3.2

     Details of simulation. Ne is the number of electrons used in 

simulation. NI is the number of the first type of ions, corresponding to 

carbon, used in simulation. N2 is the number of the second type of ions, 

corresponding to hydrogen, used in simulation. 0 is the size of one mesh 

in space. At is the time step in the numerical integration.

Z1 

Z2 

n1 : n2 

reff 

ni(total, cm-3) 

ne(cm-3) 

T(keV) 

Ne 

NI 

N2 

Mesh 

1iI'De 

ne A3 

n1 03 

Atu)pe 

M1/me 

M2/ me

6 

1 

1 : 1 

0.553 

3.4X 1024 

1.2X1025 

1.0 

5600 

800 

800 

4X4X4 

2.645 

87.5 

12.5 

0.05 

600.0 

100.0
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Fig. 3.13 a)
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          r/a 
The ion-ion and electron-ion pair distribution functions around the ion of 

Z1=6, and the dashed line represents the ion of Z2=1 distribution function 

around the ion of Z1=6. The distance r is normalized by the ion-sphere 

radius a given by Eq. (3.40).
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Fig. 3.13 b) The ion-ion and electron-ion distribution functions around the ion of Z2=1. 

The distance r is normalized by the ion-sphere radius a given by Eq. (3.40).
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Fig. 3.14 The electron-ion pair distribution functions around the ion of Z1=6, the solid 

line, the dashed line and the solid dashed line represent the total electron, 

bound electron and free electron distribution functions. The distance r is 

normalized by the ion-sphere radius a given by Eq. (3.40).
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     By using these pair distribution functions, estimated is the 

reduction in bremsstrahlung emission from a binary ionic mixture plasma 

as a function of the frequency. Figure 3.15 shows the reduction of the 

bremsstrahlung emission coefficients as a function of the frequency. The 

three lines indicate the same as mentioned above. As shown in Fig. 3.15, 

the dependence of the reduction on the frequency consists of roughly 

three parts. First for cope_<ox5 cope, the ion-ion correlation and electronic 

shielding effects are comparable and the reduction rate at co-cape is about 

75%. Second for 5cope<' 50 cope, the electronic shielding effects are 

dominant but the reduction rate is roughly 10%. Third for 50cope<co, there 

is almost no reduction in bremsstrahlung, because high frequency 

emission originates in a very small impact parameter, and an electron 

feels the bare ion charge Ze. 

     Totsuji3 has pointed out that when only ion-ion correlation effects 

are taken into account, the reduction from a binary ionic mixture plasma 

is approximated by a fictitious plasma of which the ion charge is given by 

    Zeff e2 - CZ5 /3 ) (Z) 1/3 e2 . (3.41) 
This is examined for the two-component plasma. For the plasma 

considered above Zeff and Feff take on value on 3.97 and 0.553, 

respectively. Simulation parameters are shown in Table 3.3. Note that in 

the simulation chosen is the ion charge Ze=4e instead of Ze=3.97e, and 

the effective Coulomb coupling constant for ions F=0.56, instead of 

r'=0.553. In the calculation of r, Z=4 is used, instead of Z=3.97, a is the 

same value defined by Eq. (3.40) and T=lkeV. The pair distribution 

functions are shown in Fig. 3.16 (a). Figure 3.16 (b) shows the electron-

ion pair distribution functions, in which the three lines are the same as 
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Fig. 3.15 The reduction of the bremsstrahlung emission coefficients as a function of the 

frequency for the case of the binary ionic mixture plasma. The three lines 

indicate the same as in Fig. 3.12. The frequency o is normalized by the electron 

plasma frequency wpe.
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those in Fig. 3.14. The reduction factor is shown in Fig. 3.17. In this 

plasma, Z' takes on value on 3.86. In the case of the mixture plasma and 

the fictitious plasma, the reduction factors of both cases are in good 

agreement. The conclusion is that, if the binary ionic mixture plasma is 

almost fully ionized, the effective ion charge for bremsstrahlung can be 

approximated by Eq. (3.41), even if a two-component plasma.
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Table 3.3 

     Details of simulation. Ne and Ni are the numbers of electrons and 

ions used in simulation respectively. A is the size of one mesh in space. At 

is the time step in the numerical integration. 

Z 4 

F 0.56 

ni(cm-3) 3.4X1024 

T(keV) 1.0 

Ne 3200 

Ni 800 

Mesh 4X4X4 

A /?'De 2.425 

n, A3 50.0 

ni A3 12.5 

AtcOpe 0.05 

mi / me 400.0
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Fig. 3.16 a)
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The pair distribution functions for the case of the fictitious plasma of Z=4 , 

F=0.56 and T=1keV. The distance r is normalized by the ion-sphere radius a 

given by Eq. (3.40).
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           r/a 
The electron-ion pair distribution functions for the case of the fictitious 

plasma of Z=4, r=0.56 and T=lkeV. The three lines indicate the same as in 

Fig. 3.3. The distance r is normalized by the ion-sphere radius a given by Eq. 

(3.40). 
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Fig. 3.17 The reduction of the bremsstrahlung emission coefficients as a function of the 

frequency for the case of the fictitious plasma of 2^4, 1'=0.56 and T=lkeV. The 

three lines indicate the same as in Fig. 3.12.The frequency 1 is normalized by 

the electron plasma frequency cope-
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111-5. SUMMARY 

    The formulation of the calculation of the bremsstrahlung 

coefficients from a two-component binary ionic mixture plasma has been 

introduced on the basis of dipole emission model. The pair distribution 

functions are related to the emission coefficients. 

     The pair distribution functions obtained by using "SCOPE" are 

compared with analytical solutions for the cases of the weakly coupled 

and strongly coupled plasmas. For the weakly coupled plasma, the 

simulation results are in good agreements with R.P.A. theory. For the 

strongly coupled plasma, The differences in the pair distribution 

functions between the simulations and analytical models are not 

negligible. The differences originate in that in the previous theories the 

ion-ion and electron-ion pair distribution functions are calculated 

separately, the electron shielding effects are taken into as a linear 

response shielding and there is no quantum effects. The electron-

electron symmetry effects are found to reduce the value of the electron-

electron pair distribution function and enhance the value of the electron-

ion pair distribution function, especially for bound electrons.     

.The reduction in the bremsstrahlung is estimated for the case of 

two-component strongly coupled plasma Z=6, 17=1 and T=1keV, and 

compared with the results by R. Kawakami et a12. Our results are in good 

agreements with their results qualitatively. 

     The pair distribution functions are observed for the cases of the 

binary ionic mixture plasma, and estimated the reduction of the 

bremsstrahlung. The dependence of the reduction on the frequency 

consists of roughly three parts. First, the ion-ion correlation effects and 

electronic shielding effects are comparable for cape<w<5c.)pe and the 
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reduction rate at C"-(, ,e is about 75%. the electronic shielding effects are 

dominant but the reduction rate is roughly 10% for 5oo,e<ox50o),e and no 

reduction for 50oOpe<co. 

     The reduction in the bremsstrahlung emission for a binary mixture 

plasma is concluded to be approximated by that for a single ion plasma of 

which ion has a fictitious averaged charge, even for the two-component 

plasma.
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IV. Application of "SCOPE" to Laser-Produced Hot, Dense Plasmas II 

                 Self-diffusion and electric conductivity

     With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.) 

and the auto-correlation functions of the total microscopic electric current of 

laser-produced hot, dense plasmas are calculated. The self-diffusion 

coefficients and electric conductivities are then estimated. The dependence of 

the self-diffusion coefficients on the Coulomb coupling constant F is obtained. 

For the plasmas, Z=6, 8=5, the normalized self-diffusion coefficients of 

electrons are proportional to i--o.55 for the range of 0.5<r'<3, and roughly 0.1 

times Spitzer-Harm value (Ref. 1). The normalized self-diffusion coefficients of 

ions are proportional to 1--0.69 for the range 0.5<F<2. For the range F 2, the 

electric shielding effects on the self-diffusion coefficients of ions become 

strong. The normalized electric conductivities obtained by simulations are 

proportional to x`0.52 and that of theoretical model are proportional to r`1.32 

for the range of 0:5<r'<3. The difference is attributed to the dynamical effects 

and the treatment of electron degeneracy.
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IV - 1. INTRODUCTION 

     In laser-produced hot, dense plasmas, it is expected that the self-

diffusion coefficients are smaller than that in the ideal plasma. To estimate the 

self-diffusion coefficients quantitatively, the knowledge of the time dependent 

interparticle correlations is necessary. 

    The self-diffusion coefficients are related to the velocity auto-correlation 

functions (V.A.F.)2.3. It is very difficult to calculate the velocity auto-

correlation functions by statistical model2, but it is not so difficult to calculate 

the velocity auto-correlation functions by simulation3. The velocity auto-

correlation functions of the two-component nondegenerate plasmas are 

calculated by simulations, and estimated are the self-diffusion coefficients as a 

function of the Coulomb coupling constant for ions I'. In the section IV - 2, 

described are the velocity auto-correlation functions and the self-diffusion 

coefficients. 

    The electric conductivities are related to the auto-correlation functions 

of the total microscopic electric current2' 3. The auto-correlation functions of 

the total microscopic electric current of the two-component nondegenerate 

plasmas are calculated by simulations, and estimated are the electric 

conductivities. In the section IV - 3, described are the auto-correlation 

functions of the total microscopic electric current and the electric 

conductivities. 

     The section IV - 4 is devoted to summary. 
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IV - 2. VELOCITY AUTO-CORRELATION FUNCTIONS AND 

         SELF-DIFFUSION COEFFICIENTS 

    The self-diffusion of both ions and electrons has been studied by 

computing the corresponding normalized velocity auto-correlation function 

(V.A.F.) defined as 

   Za(t) = (va(t) • Va(O)) 
            Iva(O)I2 , (4.1) 

where va(t) is the velocity at time t of an ion or an electron. The self-diffusion 

coefficient can be related to the velocity auto-correlation function as follows4. 

A particle in a plasma receives the friction force and the random force due to 

the internal particle-particle collisions. The equation of motion in one-

dimension can be written as 

   mU(t)=-mvu(t) +f(t) (4.2) 

where u is the velocity of a particle, v is the collision frequency and f(t) is the 

random force. By using the Fourier transform of Eq. (4.2), the Fourier 

component of u is written as 

   A((0) = µ((0) f (w) (4.3) 

where µ(co) is the complex mobility given by 

         _ 1 1     µ(w) - m i 
o + v . (4.4) 

With the aid of Eq. (4.3), the power spectra of u(t) is given as 
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   Iu(w) =If((0)lµ((o)12 (4.5) 

Using the equipartition of energy, the power spectrum of f(t), If(w), is given by 

   If(w) =mvkBT /m . (4.6) 

By Wiener-Khinchin's theorem, the power spectrum is related to the auto-

correlation function as 

  I u ((o) = 2 $ dt ( u(t) u(0) ) exp (- i cot) 
               1L (4.7) 

Using Eqs. (4.4)-(4.6), lu(w) can be written by 

   I „ (~) = kBT 1 + 1           27cmCiw+v -iw+v) , (4.8) 
By Eqs. (4.7) and (4.8), the following equation can be derived. 

    'u(t)u(0))= 2tm j mdw(iw1+v + -i(O+v)exp(icot)                                                                (4.9) 

By integrating Eq. (4.9) at the half circle of which radius is infinite on the half 

plane of imaginary part of w > 0, the following equation can be obtained. 

   u(t) u(0)) = kBT 5 - iE dw µ (co) exp (i wt) 
                      2TC - - ie (4.10) 

Eq. (4.10) is equal to the equation as follows. 

   t (w) k T dt ( u(t) u(0) ) exp (- i wt) 
                 B . (4.11) 

With the aid of Einstein's law, the self-diffusion is related to velocity auto-

correlation function as

-68-



   D = f dt(u(t)u(O)/ (4.12) 

For the case of 3-dimension, Eq. (4.12) can be rewritten as 

        kBT 
   Da= rna t dtZa(t) (4.13) 

     In the Spitzer-Harm's theoryl the electron-ion collision frequency is 

given by 

    V ei - 2Tc Z2 e4 ni 1n (ne k 3) 
             3 Me V3 , (4.14) 

where v is the velocity of an electron. Assumed is that the self-diffusion 

coefficients of the electrons can be written as 

      _ V2      De 3 
V ei , (4.15) 

where < > means the average by Maxwellian. Eq. (4.15) can be rewritten as 

                          k De ~1 2 
     D - 12 7L3 / 2 n e ~'De Pe De X5     De V G Z 1n (ne XDe3> 3(X) , (4.16) 

where 

     X = V / VTe , (4.17) 
and 

          2 /2    T(x) _ j J0 dt ti exp(- t) (4.18) 

When xmax = 3.0, < x5 /'I'(x) > -- 30. In the same way, the self diffusion 

coefficients of the ions can be written as 
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' 

       _ 121L3 12 ni XDi 3 ()pi XDi 2 x5 
                   ' l 3 `fi'x      i In (ni ~'Di3/ 

                                                           (4.19) 

for the case of ideal plasmas. 

     Figure 4.1 shows the normalized velocity auto-correlation functions 

which are obtained by simulation for Z=6, r'=1 and 0=5. The horizontal axis 

represents the time normalized by cope-1, where cope (47rnee2/me)1/2. Note that 

the mass ratio of ion to electron in this simulation is 600 because this 

simulation requires the long time even if the mass ratio mentioned above. 

However, as shown in Eqs. (4.16) and (4.19), for the case of ideal plasmas the 

normalized self-diffusion coefficients are independent of the mass of an 

electron or an ion. For the case of strongly coupled plasmas, the mass 

dependence of the normalized self-diffusion coefficients is probably weak. As 

shown in Fig 4.1, at the time t-0 the V.A.F. decreases proportional to t2 and at 

the long time scale V.A.F. decreases exponentially. 

     The self-diffusion coefficients are estimated according to the Eq. (4.13) 

as a function of r with Z=6 and 0=5. The parameters are summarized in Table 

4.1. Figure 4.2 shows the self-diffusion coefficients normalized by wpa2Da2, 

where a means electron or ion and XDi=(kBT/4nZ2nie2) 1/2. The horizontal axis 

represents the Coulomb coupling constant for ions r. The open triangle means 

the self-diffusion coefficients of electron and the open circle means the self-

diffusion coefficients of ion. The dashed lines show the F dependence of the 

self-diffusion coefficients of electron and ion. As shown in Fig. 4.2 the 
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normalized self-diffusion coefficients of both electron and ion obey the power 

law of F for the range of 0.5<F<3 except that of ions at F=3. It seems that for 

the range of 3<,F the electron shielding effects are stronger than that for the 

range of F 3. By the least square method the normalized self-diffusion 

coefficients are interpolated as 

     De / 0) PeA'De2= 16. 42 1,-0.55 , (4.20) 

    Di / (OpixDi2= 5. 7811'-0.6a 
                                                         (4.21) 

     In Fig. 4.2, the solid line means the self-diffusion coefficients of 

electrons obtained by Eq. (4.16) when xmaX 3.0. Note that for the range of 

I7>2, Eq. (4.16) is meaningless because ln(neXDe3) is negative. As shown in Fig. 

4.2, in the strongly coupled plasmas the self-diffusion coefficients of electrons 

are almost 0.1 times of that of Spitzer-Harm's theory because of strongly 

coupled effects. In Spitzer-Harm's theory, if ln(n JDe3) is neglected, the 

normalized self-diffusion coefficients of electron are proportional to r`3/2 

because of the relationship of neXDe3 and r-3/2. Because of strong coupling 

effects, the F dependence of the self-diffusion coefficients of electron is 

different from that of Spitzer-Harm's theory.

-71-



Table 4.1 

      Details of simulation parameters. Ne and Ni are the numbers of 

electrons and ions used in the simulations respectively. A is the size of one 

mesh in space. At is the time step in the numerical integration. For almost all 

simulations in this table, Z=6, 8=5, Ne 600, Ni=100, Atwpe=0.05, 

mesh=8x8x8, the mesh size of P-P area is 6x6x6 and the mass ratio of an ion 

to electron is 600.

r 

ni (c m-3) 

T(keV) 

A /?'De 

De* 

D,"

0.5 

2.14X 1025 

4.65 

0.468 

24.02 

9.42

1.0 

2.67X 1024 

1.16 

0.661 

16.9 

5.64

2.0 

3.34X 1023 

0.290 

0.935 

10.4 

3.64

3.0 

9.91x1022 

0.129 

1.145 

9.47 

5.11
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The normalized velocity auto-correlation functions of the plasma Z=6, t=1 and 0=5. 

The horizontal axis represents the time normalized by wpe i . 
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IV - 3. AUTO CORRELATION FUNCTION OF TOTAL ELECTRIC 

        CURRENT AND ELECTRIC CONDUCTIVITY 

    The electric conductivity has been studied by computing the 

corresponding normalized auto-correlation function of the total microscopic 

electric current defined as2, 3 

     ~~ (t) '; (0))-
       (1j(0)11 J(t)= , (4.22) 

where 
              N, 

   J (t) = I Za Via(t) 
                                                (4.23) 

The frequency-dependent (AC) conductivity can be related to J(w) as 

          G) 2 
   6(w) = 4P J (w) 

                                                           (4.24) 

where 

   J((0)=j o dtJ(t)exp(-i(ot) (4.25) 

and 
        2 _ w

pe 2 + wpi 2      (OP .. (4 .26) 

Especially for the case of w=0, Eq. (4.24) means the frequency independent 

(DC) conductivity. And 6 is normalized as follows. 

     6"=6/(Ope . (4.27) 

    The DC conductivity can be also estimated by statistical model5. The 
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electric resistivity p stemming from scattering of the electric current by the 

random potential fields produced by the ions is expressed as 

      _ 27L 1/2 1112 1     P - 4 3 
Z 3/ 2 (j) pe I'E                                                                 . (4.28) 

LE is the generalized Coulomb logarithm defined by5 

           s/2 S(k) 
   L _ 3~ 8 J°° dk f(k ~ 2) ii     E _ 4 o k I Ee(k) 12                                                          (4.29) 

where f is the Fermi distribution function defined by Eq. (3.15), Sii is the ion 

structure factor defined by Eq. (3.9) and ee is the electric dielectric function 

defined by 

                   t °dqq f(q) In 2q + k ce(k) = 1 + (1- Gee(k)) 4me3 °                 g k 2q k                                                           (4
.30) 

where Gee is the electron-electron local field correction function6 and 

discussed in Chap. VI in detail. Using the relation of a to p 

    6=1/p , (4.31) 

the conductivity is obtained from Eqs. (4.28)-(4.31). 

     Figure 4.3 shows the auto-correlation functions of total electric current 

of the plasma Z=6, F=1 and 6=5. The horizontal axis represents the time 

normalized by cope 1. As shown in Fig 4.3, the auto-correlation function 

decreases exponentially at the same time scale as the velocity auto-correlation 

functions of electron. The electric current is dominant for the total electric 

current. 
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     Figure 4.4 shows the frequency dependence of the electric conductivity 

of the plasma Z=6, 1'=1 and 0=5. The horizontal axis represents the frequency 

normalized by the electron plasma frequency wpe. The solid line represents 

the real part of the electric conductivity and the dashed line represents the 

imaginary part of the electric conductivity. As the frequency increases, the 

electric conductivity decreases rapidly. Note that the real part of the electric 

conductivity is finite and the imaginary part of the electric conductivity is zero 

at (o--,O. This means that the plasma is good conductor against the DC current. 

     Estimated are the DC electric conductivity according to the Eq. (4.25) 

and the statistical model mentioned above as a function of F with Z=6 and 0=5. 

The parameters are summarized in table 4.2. Figure 4.5 shows the DC electric 

conductivities normalized by awpe. The horizontal axis represents the Coulomb 

coupling constant for ions F. The open circle means the DC electric 

conductivities obtained by the simulations and the open triangle means the DC 

electric conductivities obtained by the statistical model. The dashed lines 

show the F dependence of the DC electric conductivities obtained by the 

simulations and the statistical model. As shown in Fig. 4.5 the normalized DC 

electric conductivities obtained by the simulations and the statistical model 

obey the power law of F for the range of 0.5<F<3. By the least square method 

the normalized DC electric conductivities are interpolated as 

    GS(0) / 0), = 1. 41 r- 0.52 , (4.32) 

    Gt(0) / tope = 1.40I'-132 (4.33) 
where the subscript s denotes the simulation results and t denotes the results 
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of statistical (theoretical) model. As shown in Fig. 4.5. the F dependence of 

normalized DC conductivities is quit different between simulations and 

theories. In this theoretical model it is assumed that the electrons are 

scattered by ions which have a static structure factor Sii(k), namely the 

dynamical effects are not included. And Eq. (4.29) is correct only the case of 

0<1. For this case, 0=5.
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Table 4.2 

      Details of simulation parameters. Ne and Ni are the numbers of 

electrons and ions used in the simulations respectively. A is the size of one 

mesh in space. At is the time step in the numerical integration. For almost all 

simulations in this table, Z=6, 0=5, Ne 600, Ni=100, Atcope=0.05, 

mesh=8x8x8, the mesh size of P-P area is 6x6x6 and the mass ratio of ion to 

electron is 600.

r 

ni(cm-3) 

T(keV) 

A ADC 

aS* 

at *

0.5 

2.14X 1025 

4.65 

0.468 

2.27 

3.49

1.0 

2.67x 1024 

1.16 

0.661 

1.14 

1.41

2.0 

3.34x 1023 

0.290 

0.935 

1.06 

0.564

3.0 

9.91x1022 

0.129 

1.145 

0.816 

0.330
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Fig. 4.3 The normalized auto-correlation functions of total electric current of the plasma Z=6, 

       r=1 and 0=5. The horizontal axis represents the time normalized by ww '
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Fig. 4.4 The AC electric conductivities normalized by Ci)pe of the plasma Z=6, r=1 and 0=5. 

       The horizontal axis represents the frequency normalized by wPC.
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Fig. 4.5 The DC electric conductivities normalized by (op.. The horizontal axis represents the 

Coulomb coupling constant for ions I'. The open circle means the DC electric 

conductivities obtained by simulations and the open triangle means the DC electric 

conductivities obtained by statistical model.
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IV-4.

     With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.) 

and auto-correlation functions of total electric current of laser-produced hot, 

dense plasmas are calculated. The self-diffusion coefficients and the electric 

conductivities are estimated. The dependence of the self-diffusion coefficients 

on the Coulomb coupling constant r is obtained. For Z=6, 0=5, the normalized 

self-diffusion coefficients of electron are proportional to 1'-0.55 for the range of 

0.5<F 3, and are roughly 0.1 times of that obtained by Spitzer-Harm theory. 

The normalized self-diffusion coefficients of ion are proportional to 1--0.69 for 

the range of 0.5<F 2. For the range of r>2, the electric shielding effects on 

the self-diffusion coefficients of ions become strong. The normalized electric 

conductivities obtained by simulations are proportional to 1`0.52 for the range 

of 0.5<r<3 and its value agrees with that obtained by theoretical model at 1'--1.
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V. Atomic Model for Laser-Produced Hot, Dense Plasmas in the Density 

Functional Theory

    Within the framework of the Density Functional Theory (DFT), the 

atomic model based on the spherical cell model is developed (Ref. 1, 2). 

Calculated are the pair distribution functions, and the effective potential acting 

on an electron and an ion, by solving numerically a set of the coupled modified 

Poisson - HNC - Schrodinger equations for a range of parameters which are 

interested in laser fusion. The results are compared with other theoretical 

models (Ref. 3, 4).
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V - 1. INTRODUCTION 

     For highly compressed plasmas, for an example, the plasma of six 

hundred times of solid density which has been recently made with the use of a 

deuterated polystyrene shell targets at ILE, the thermal de Broglie wavelength 

defined by Eq. (2.8) and the electron sphere radius defined by ae (3/4nne)1/3 

are comparable. It is very important for laser fusion to calculate various 

thermodynamics functions of plasmas in such a region. In order to investigate 

such highly compressed plasmas, the quantum effects should be taken into 

account through the Schrodinger equation, and many body effects are also 

important because of high density. 

     To calculate the pair distribution functions and the effective potentials 

acting on an electron and an ion, an atomic model has been made within the 

framework of DFT. In the next section, described are the outline of the atomic 

model.
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V - 2. OUTLINE OF ATOMIC MODEL

    The spherical cell modell,2 (SCM) due to Perrot and Dharma-wardana is 

improved to obtain my atomic model. By the SCM, it is possible to determine 

various effective pair potentials, pair distribution functions, bound states, and 

the effective charge of ions Z*=Z-Nbe , with Nbe a mean number of bound 

electrons per ion in a self-consistent manner. In the SCM, the system size 

should be large enough to represent a physically relevant part of the plasma. 

    The outline of the calculation is as follows.

1).

2).

3).

4).

5).

   6). 

In Fig. 5.1,

Using modified T-F model4, the initial potential of the 

Schrodinger equation is obtained. 

Using the initial potential, the Schrodinger equation is solved and 

the initial electron-ion pair distribution function is calculated. 

Solving OCP HNC equations, obtained are the initial ion-ion and 

electron-electron pair distribution functions. 

Using the pair distribution functions, calculated are the effective 

potentials. 

Using the effective potentials calculated are the pair distribution 

functions. 

I repeat 4) and 5) until the iteration is converge. 

the schematic diagram of the present atomic model is illustrated.
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V - 3. SCHRODINGER EQUATION IN HOT, DENSE PLASMAS 

     The one-electron Schrodinger equation is expressed in atomic unit as 

    - I V2 + Vei(r)] yr(r) E xKr) 
                                                          (5.1)) 

where Vei(r) is the effective potential acting on an electron contributed from a 

test ion, W(r) is the eigenfunction and E is the eigenvalue. Note that in atomic 

unit, h=e=me 1, namely the potential and the eigenvalues are normalized by 

two times of Rydberg energy (13.6 eV), the distance r is normalized by the 

Bohr radius defined by 

        h2 

     aB m e2 (
5.2) 

Since the effective potential Vei(r) is spherically symmetric, `1'(r) 'is expanded 

into the spherical harmonics Yim(0,4) as 

   NJ(r) = i~ Rj(r)Ylm(8, ~) 
                                                             (5.3) 

where I and m are the azimuthal and magnetic quantum numbers, 

respectively. Writing the radial part Rvl(r)=X 1(r)/r, obtained is 

2 

                   1 (1 
2.1)     - d x

21 + Vei(r) + 2r        2 dr X,,, Exvl (5.4) 

Note that the number v means the principal number when the eigenvalue E is 

negative and means the wave number when the eigenvalue E is positive. To 

solve this equation, it is transformed into an eigenvalue problem with 
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appropriate boundary conditions and applied are the finite difference method 

and shooting method. 

V - 3 - 1. WAVE FUNCTIONS FOR BOUND STATES 

     An electronic state with E<0 is obtained according to the following 

procedures6. 

    1). Find the turning point(s) satisfying the condition , 

       E- Vei(r) + 1(+1) -0      { 2r2                                                             (5.5) 

     2). Find approximate solution of Eq. (5.4) near r=0, 

          Xni = r1+ 1                                                             (5 .6) 

     3). Find asymptotic form of xn1 for r->°°, 

      Xnl = exp(- (2Ef) (5.7) 
After the above three procedures for a test value E (<0), Eq. (5.4) is solved 

numerically for 0<r<rt by starting with Eq. (5.6) (this is called inner solution) 

and rt<_r<_rmax by starting with Eq. (5.7) (this is called outer solution) , where rt 

is the turning point given by Eq. (5.5). And assumed is that at r=rt , (xnl, 

xnl')=(xnlin, xn1'in) for the inner solution =(xnlout, xnl'out) for the outer 

solution, where the dash denotes the derivative with respect to r. These values 

are functions of the energy eigenvalue E. 

     The wave functions mentioned above should be normalized as follows. 

     omax IX111I2     l dr - 1                                                             (5.8) 
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V - 3 - 2. 

    The 

following 

   1).

2).

3).

 WAVE FUNCTIONS FOR FREE (SCATTERING) STATES 

wave function for a given E (>0) is obtained according to the 

proceduress. 

 Expand the wave function into a series of partial waves 

'1'k(r) _ (21 + 1) i' Rkl(r) P1(cos8) 
           1=0 (5.9) 

 where P1(cos8) is Legendre polynomial and k is the wavenumber. 

 Find the outer solution defined in r>rmax by assuming the 

 asymptotic solution as 

 Tk(r) r -* ,o -' eik 'r , (5.10) 

 and by using the following relation 

 eik r = 
I~, (21 + 1) i' j1(kr) PI(cos 8) (5.11) 

 where j1 is the spherical Bessel function, and found is the outer 

  solution as 

          sin(kr - 21 + 8I(k) )
Rd(r)                       kr (5.12) 

where S1(k) is the phase shift. Note that the relation 

         sin ( z - 21) 
j1(Z) r-~ z . (5.13) 

Find the inner solution by integrating Eq. (5.4) with the starting 

form of 
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       Rk1(r) (= Rkl(r)in) = A x~l(r) 
                                  r (5 .14) 

     4). Smooth connection of the inner solution and outer solution at 

          r=rmax, and determined are A and S1(k). 

     The free state wave functions should also satisfy the normalization 

condition Eq. (5.8). 

V - 3 - 3. ELECTRON NUMBER DENSITY AROUND A TEST ION 

     The elementary quantum theory tells us that the local electron density 

around a test ion can be written as 

   nei(r) = ne + nb(r) + Anf(r) 
                                                           (5.15) 

with 

   nb(r) = 1(21 + 1) (Rnl(r)Yl,0(O, ~)ff(En,1) 
                n,1 , (5.16) 

and 

2 
An f(r) _        2 fo dk k2 f(k) x(21 + 1) LR~,2(r) - R. o~ (r)]         71                           1 (5 .17) 

where ne=<Z>ni is the average electron number density , nb(r) is the bound 

electron number density and Anf(r) is the displaced free electron number 

density in atomic unit. Since the magnetic effects are not included in this 

model, in the spherical harmonics Yim the magnetic number m is always zero 

and the factor 21+1 originates in the summation about the magnetic number 

m. Note that in atomic unit the number densities are normalized by aB 3, 

namely 
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            a.u cgs 3 

     he = ne aB . (5.18) 

In Eq. (5.17) the Rkl(O) is the solution of Eq. (5.4) when Vei(r)=0, and are 

compensate Rkl in the asymptotic region and rapid convergence of 1-sum. 

     The self-consistency of whole calculation can be tested by the finite-

temperature version of Friedel sum rule 1, 2 

   Z = N be + 2 j-f(k)dk E(21 + 1) db1(k)               7ti 0 1 dk . (5.19) 

An integration by parts gives, with the convention 51(0)=0, 

       2 j k f(k) [1 - f(k)] x(21 + 1)bi(k)dk Z - N be = 
7LkBT o 1 . (5.20) 

The rmax should be determined satisfying the condition of Eq. (5.19) or Eq. 

(5.20). 

     The total electron-ion pair distribution function is given by 

    9,i(r) = nea(r) / ne . (5.21) 

The bound electron-ion pair distribution function is given by 

    gbe-i(r) = nb(r) /ne . (5.22) 

And the free electron-ion pair distribution function is given by 

    gfe-i(r) = nf(r) /ne (5.23) 

where 

    n f(r) = he + Lnf(r) . (5.24) 
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The electron-ion pair correlation function 

electron-ion pair distribution function as 

   hei(r) = gea(r) - 1

hei(r) is related to the total

(5.25)
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V - 4. EFFECTIVE POTENTIAL AND HYPERNETTED-CHAIN 

        APPROXIMATION 

    The effective potentials Vei(r), Vii(r) and Vee(r) are determined as 

follows. 

2 

    - w ei(r) _ r + hei(r) - Cei(r) , (5.26) 

2 

    - h'Vii(r) = - h' Zr a + hii(r) - Cii(r) (5.27) 

2 

    - RVee(r) _ - (3 + hee(r) - Cee(r) , (5.28) 

where 1i=1/kBT, h4V is the pair correlation function, cAV is the direct 

correlation function and the suffix µv denotes p-type particle around v-type 

particle. Within the hypernetted-chain (HNC) approximation, hµv and c4V 

satisfy the Ornstein-Zernik relation for a multi-component plasma 

   h µ,, (k) - C µV (k) = E n,, C µr (k) ii (k) 
(5.29) 

where the hat mark means the Fourier-transform. For entirely classical 

electron and ion systems Eq. (5.29) is applicable, however, in the quantum 

region Eq. (5.29) is not applicable. According to Chihara's analysis of metallic 

hydrogen7' 8, the e-i part of Eq. (5.29) is given by 

- R o k h, (k) - Cei (k) _ n y Ce7 (k) hyi (k) 
   xe ( ) , (5.30) 

where Xe°(k) is the Fourier-transform of non-interacting density response 

                                    -93-



function of the homogeneous electron gas defined by 

xe(o)(k) _ _ ne 30 1~dx x 1n 2x + K 2          kBT4K o 1 + ex(x2-M 8 I2x-KI 
                                                           (5.31) 

where 

    K= 
_k 1/3 

        (3m2ne) . (5.32) 

The dimensionless chemical potential M in Eqs. (5.31) is to be determined 

through a numerical solution of the equation 

2                        °° X 

_ 

   3 Jo 1 +exp{ (x2 - M) / 8 } 
                                                         (5.33) 

In the same way, the ion-electron part should be change. Chihara calls it a 

"quantal -hypernetted-chain" (QHNC) approximation . In the classical limit9, 

Xe°(k) H3ne and Eq. (5.30) reduces Eq. (5.29). 

     The ion-ion pair correlation function hii(r) is related to the ion-ion pair 

distribution function gi i(r) as 

   hai(r) = g ii(r) - 1 . (5.34) 

The ion-ion pair distribution function gi i(r) is calculated using Vi i(r) as 

   gii(r) = exp {- (3V,i(r) } (5.35) 
In the same way, hee(r) is related to gee(r) as 

    hee(r) = gee(r) - 1 . (5.36) 

The electron-electron pair distribution function g
ee(r) is calculated using 

Vee(r) as 
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and

gee(r) = dee(r) / he 

nce(r) = f 2dk ff(k) 
      (tit)

fee (k) = 
(~k)2 

      l+exp

1

 (5.37)

 (5.38)

/ 2m + Vee(r) - µ
kBT

  (5.39)

where µ is chemical potential.
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V - 5. RESULTS AND DISCUSSIONS 

     The pair distribution functions are obtained by the atomic model. For 

the first case, the parameters are Z=1, rs l and T=25eV ( F=1.088, 6=0.4989 

and ni=1.611x1024 CM-3). rs is defined as 

        ae 
     rs- a 
             B . (5.40) 

     Figure 5.2 shows the electron-electron pair distribution functions. The 

horizontal axis represents the distance normalized by the electron sphere 

radius ae. The solid line shows the electron-electron pair distribution function 

obtained by presented model using the classical HNC equation, and the dashed 

line shows that by S. Ichimaru et a13 by the approximation of classical electron 

one component plasma. The solid line is enhanced compared with the dashed 

line, because in the Ichimaru model the degeneracy effects and ion correlation 

effects are not included. 

     Figure 5.3 shows the ion-ion pair distribution functions. The horizontal 

axis represents the distance normalized by the ion sphere radius a. The solid 

line shows the ion-ion pair distribution function obtained by presented model 

using the classical HNC equation, the solid-dashed line shows that by Eqs. 

(3.23)-(3.26) (by the approximation of ion one component plasma with linear 

electron shielding), and the dashed line shows that by the approximation of 

ion one component plasma with no electric shielding. As shown in Fig. 5.3, it 

becomes easy to close the ions each other compared with the case of no 

electric shielding, but the linear response shielding is slightly over-

estimation. 
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Fig. 5.3

The electron-electron pair distribution functions for the case of Z=1, r9=1,T=25eV. 

The horizontal axis represents the distance normalized by the electron sphere radius a.. 

The solid line shows that obtained by using the classical HNC , and 

the dashed line shows that by classical electron OCR
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The ion-ion pair distribution functions for the case of Z= 1, r9=1, T: 25eV. 

The horizontal axis represents the distance normalized by the ion sphere radius a.. 

The solid line shows the ion-ion pair distribution function obtained by presented model 

using the classical HNC equation, the solid-dashed line shows that by Eqs. (3.23)-(3.26) , 

and the dashed line shows that by the approximation of ion one component plasma with 

no electric shielding. 
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     Figure 5.4 shows the electron-ion pair distribution functions. The 

horizontal axis represents the distance normalized by the ion sphere radius a. 

The solid line shows the electron-ion pair distribution function obtained by 

presented model using the classical HNC equation, and the dashed line shows 

the result of Eqs. (3.27)-(3.30) with replacing Z* by Z. As shown in Fig. 5.4, 

the solid line is reduced compared with the dashed line because of the 

quantum diffraction effects in the Schrodinger equation and the value at r=0 is 

finite. Note that for, the first case there is no , bound state, namely Z*=1, 

because of the pressure ionization effects. 

     For the second case, the parameters are Z=1, rs=2 and T=25eV 

F=0.5442, 0=1.996 and ni=2.014x1023 cm-3 ). Figure 5.5 represents the 

electron-electron pair distribution functions. The horizontal axis represents 

the distance normalized by the electron sphere radius ae. The solid line shows 

the electron-electron pair distribution function obtained using the QHNC 

equation, the solid-dashed line shows that obtained using the classical HNC 

equation and the dashed line shows obtained by the classical electron one 

component plasma. ' Because of the quantum diffraction effects in the QHNC 

equation, it becomes easy to close the electrons each other compared with 

that the case of the classical HNC equation. 

       Figure 5.6 represents the ion-ion pair distribution functions. The 

horizontal axis and the three types of lines mean as same as in Fig. 5.3. Note 

that there is almost no difference between the ion-ion pair distribution 

function with QHNC equation and. that with classical HNC, equation. Because F 

is smaller than that of the first case, the solid-dashed line becomes close to 

the solid line compared with the first case. 
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Fig. 5.4 The electron-ion pair distribution functions for the case of Z= 1, r.= 1, T=25eV. 

The horizontal axis represents the distance normalized by the ion sphere radius a.. 

The solid line represents the result of the present model in which the classical HNC is 

used, and the dashed line represents the result of the modified T-F.
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Fig. 5.5
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The electron-electron pair distribution functions for the case of Z=1, r =2,T=25eV. 

The horizontal axis and three types of lines represent the same as in Fig. 5.2.
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Fig. 5.6 The ion-ion pair distribution functions for the case of Z= 1, r9=2, T=25eV. 

The horizontal axis and three types of lines represent the same as in Fig . 5.3.

_100-



      Figure 5.7 represents the electron-ion pair distribution functions using 

the classical HNC equation. The solid line represents the total electron-ion 

pair distribution function, the solid-dashed line represents the free electron-

ion pair distribution function, and the dashed line represents the bound 

electron-ion pair distribution function. Because of the low electron number 

density compared with the first case, the pressure ionization effects become 

weak, therefore the bound state exists. Note that only is state exists for the 

second case. The effective ionization state Z* is estimated to be approximately 

0.762 and the energy of the is state is calculated to be about - 5.89x10-2 in 

atomic unit. 

      Figure 5.8 represents the electron-ion pair distribution functions using 

the QHNC equation. Three types of lines represent the same as in Fig 5.7. The 

values of the electron-ion pair distribution functions are reduced compared 

with using classical HNC equation because of the quantum diffraction effects in 

the QHNC equation. The effective ionization state Z* is estimated to be 

approximately 0.773 and the energy of the is state is calculated to be about -

1.304x10-4 in atomic unit.
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Fig. 5.7 The electron-ion pair distribution functions using the classical HNC. 

The solid line represents that of the total electron, the solid-dashed line represents that 

of the free electron, and the dashed line represents that of the bound electron.
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Fig. 5.8 The electron-ion pair distribution functions using the QHNC. 

The three types of lines represent the same as in Fig. 5 .7.
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V - 6. SUMMARY

    The spherical cell model (SCM) due to Perrot and Dharma-wardana is 

improved in the calculation of the electron-electron correlation by extending 

from the Debye-Huckel model to the HNC framework with taking the 

degeneracy effect into account. Calculated are the pair distribution functions, 

the effective potential acting on an electron and an ion, by solving numerically 

a set of the coupled modified Poisson - HNC - Schrodinger equations for a 

range of parameters which are interested in laser fusion. 

     The differences appeared in the various pair distribution functions 

between the improved SCM and the previous works are summarized as 

follows. The electron-electron pair distribution function is slightly large in the 

region r<1.5ae compared with that by S. Ichimaru et al, because in the 

Ichimaru model the degeneracy effects and ion correlation effects are not 

included. On the other hand, the electron linear response shielding in the 

calculation of the ion-ion pair distribution function is found to be slightly over-

estimated. The electron-ion pair distribution function is very small near the 

origin, r<0.2a, compared with that by the modified T-F model, because the 

quantum diffraction effects are automatically included in the Schrodinger 

equation. The value of the e-i pair distribution function at r=0 is finite in the 

improved SCM model. 

     The ionization states for the two cases, ni=l.6X1024cm 3 (r, =I), T=25eV 

and ni=2x1023 cm 3 (rS 2), T=25eV, are compared. For the first case , rs 1, 

there is no bound state, namely Zt=1, because of the pressure ionization 

effects. For the second case because of the relatively low number density 
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compared with the first case, the pressure ionization effects become weak, 

therefore the bound state (Is state) exists. The effective ionization state Z* 

using the HNC equation is estimated to be approximately 0.762 and the energy 

of the 1s state is calculated to be about - 5.89x10-2 in atomic unit. 

    The differences of quantal HNC and the classical HNC appears in the 

pair distribution functions, especially, the electron-ion pair distribution 

function. The e-i pair distribution function by QHNC is small near the origin 

because of the quantum diffraction effects.
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VI. Application of Atomic Model to Laser-Produced Hot, Dense Plasmas I 

            Stopping power of charged particles 

            in laser-produced hot, dense plasmas

    With the use of the atomic model, the stopping power of the charged 

particles is estimated. The stopping power can be calculated using the 

dielectric function e(k,(o). The dielectric function c(k,w) of a highly 

compressed plasma can be calculated using the local field correction theory 

(Ref. 1). In the dielectric function e(k,ci) obtained by presented model, the 

strong coupling effects, the electric shielding effects, Fermi degeneracy 

effects and quantum diffraction effects are included. The stopping numbers 

obtained by presented model are compared with those by some other 

theoretical models. In Ref. 1 the electron-ion local field correction function 

G,1(km) is assumed to be zero because it is very difficult to calculate electron-

ion local field correction function in their frame work. The static electron-ion 

local field correction function Ge1(k,u)) is estimated using the atomic model 

mentioned the previous chapter in this paper. The stopping power obtained by 

presented model is about 1.05 times greater than that obtained by Xin-Zhong 

Yan et al (Ref. 2) for the plasma Z=1, rs 1 and T=25eV.
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VI - 1. INTRODUCTION 

     Recently the various physical values can be observed by using the 

charged particles made by fusion reaction experimentally. The energy spectra 

of the charged particle made by fusion reaction should be estimated correctly 

in order to obtain the correct physical values which characterize the highly 

compressed fusion plasmas experimentally. The charged particles lose the 

energy by collisions. The loss rate of the particle energy per unit length is 

called stopping power. The correct stopping power is required for the 

estimation of the plasma self-heating by the charged particles and the product 

of the mass density p and the core radius R3,4 

     The stopping power can be calculated using the dielectric function 

E(k,c)). In the next section, connected are the stopping power and the 

dielectric function e(k,co). The dielectric function e(k,co) of such a highly 

compressed plasma can be calculated using the local field correction (LFC) 

theoryl. In the section VI - 3, surveyed is the local field correction theory. In 

Ref. 1 the electron-ion local field correction function Gei(k,co) is assumed to be 

zero because it is very difficult to calculate the electron-ion local field 

correction function in their frame work. The static electron-ion local field 

correction function Ge1(k,co) is estimated using the atomic model. In the 

section VI - 4, derived are the static local field correction functions especially 

the static electron-ion local field correction function Gei(k,w). In the section 

VI - 5, described are the high and low velocity limit of the stopping number 

and the ion effects on the stopping number. In the section VI - 6, described 
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are the effects of the local field correction functions 

my results are compared with the results obtained 

In the section V - 7, I summarize this chapter.

on stopping number. And 

by the model in Ref. 1, 2.
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VI - 2. FORMULATION OF STOPPING POWER 

     First, described is the formulation of stopping power in hot, dense 

plasmas. A charged particle is assumed moving with the constant velocity in a 

hot, dense plasma. The external charge density Pext is given by 

    pext(r, t) = q0 b (r - vt) (6.1) 

where q0 is the charge of the test particle and S is delta function. And the 

Fourier component of pext(r,t) is given by 

    Oext(k, o)) = 27L q0 8 ((o - k • V) (6.2) 
The dielectric function e(k,(o) is related to the charge density as 

             Lk' 0)) - Oext(k, CO) 
                                                            (6.3) 

where pind (k,c.)) is the induced charge density in the plasma. From Eq. (6.2) 

and (6.3), pind (k,co) is calculated as 

    h' ind(k, w) - 2n qo 1 k COS (w - k • v)                       E ( ) 
(6.4) 

The induced potential 'ind is given by Poisson equation and Eq. (6.4) as 

   ~ind(k, (j)) _ - 87U2 q0 1 - 1 )8((o - k • v) 
                    k (6.5) 

Using Eq. (6.5) the induced electric field Eind(r,t) is given as 

                                  - 110-



EId(r,t)= 1 Jdkik 4nkgO(1 £(k,k~v))exp{ik•(r-vt)}          (270' (6.6) 

The force which the charged particle feels is described as 

    F=gOEind(r,t) 
                 4n 2      = 13Jdkik q~ 1- Ekk•v        (2n) k (, ) . (6.7) 

The stopping power is obtained with the aid of Eq. (6.7) as 

2 

    dw - Zoe2 Jdk k•v IM 1     d
s 2m2v k2 E (k, k • v) (6.8) 

where Zo is the atomic number of the charged particle. If the dielectric 

function e is given, the stopping power can be obtained. 

     The non-dimensional value L is introduced as follows. 

    dw - - 47cne Zo2e4 L      d
s me v2 (6.9) 

This value L is called stopping number. Stopping number L is described as 

    L=- 1 mevjdk k•v IM 1 
         (2it)3 ne e2 k2 E (k, k • v) (6.10)
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IV - 3. LOCAL FIELD CORRECTION THEOREM 

     The dielectric function e(k,w) in hot, dense plasmas can be calculated by 

the local field correction (LFC) theoreml. Assumed is a fictitious external 

potential field VV(r,t) which couples only to the density field p4(r,t) of the g-

species particles. By using Vµ(r,t) and pµ(r,t) the density-density response 

functions xµv(k,co) between the g and v species particles is defined as follows. 

   8 0 (k, w) _ I xµv(k, W)vv(k, W) (6.11) 
where 8' (k,w) is the Fourier component of the displacement of the density 

field pµ(r,t) from the unperturbed values and V L(k,w) is the Fourier component 

of the fictitious external potential field Vµ(r,t). With the aid of Eq. (6.3), the 

dielectric function e(k,w) is given by 

     1 = 1+ v(k) I Z µZV x 4V (k,                            co) 
    £(k, 0)) L.V , (6.12) 

where v(k)=4ne2/k2. 

     The effective potential 4µv(k,w) on a µ-species particle produced by the 

density fluctuation & ' (k,w) in the v-species particles may be written as 

   ̀ I' µv(k, (fl) = Zµzvv(k) {1- Gµv(k, (0)}b0v(k, (o) (6.13) 
This potential generally differs from the bare Coulomb potential because of the 

microscopic correlation effects involved; the difference is here measured by 
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the dynamic LFC G,, ,(k,w). Using the free-particle polarizability function 

xµ(°)(k,w), a density response of the 4-species particles against a renormalized 

potential field Vµ(k,w) + Ev 4µv(k,w) in the plasma is described as 

80µ(k, () = x µ(o)(k, (0) [ 'O (k, (0)
        + v(k) I Z µZ,,{1 - G 4,,(k, (o) }80„(k, (o)~ 

V The function xµ(°)(k,c)) is given by 

        Cxµ(o) - nµ 3Oµ Jm x     Re (k. w) = k B T 4Kµ o dx1 + exp{(x2 - Mµ) / Oµ} 

2 

                            In (2Kµx+ Kµ2) - S2µ2 

2 

                               (2KµX-Kµ2) -S2µ2 
and 

                   n 3n() 2     ImLxµco)(k w)]=- k
BT 8Kµ 

                 1 + exp {(S2µ +Kµ2) /2Kµ}2 -Mµ                              - 
O 
                 In µ

2 

                  l+exp - {(Qµ-Kµ2) /2Kµ} -Mµ 
                                Ou 

where 

      Kµ - k 1 /3 - 2mµw 2/3 O - 2mµkBT                                                                          2/3 

         (3n2nµ) i (3n2n µ) i 2 (3n2n ) 

The dimensionless chemical potential Mµ in Eqs. (6.15) and ( ) 

determined through a numerical solution of the equation 

    1 - f -dx x2 
   3 o 1 + exp{(x2 - Mµ) / O µ}

(6.14)

(6.15)

(6.16)

µ (6.17) 

6.16 is to be

. (6.18)
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    Expression for xµv(k,w) may be obtained through a comparison between 

Eqs. (6.11) and (6.14). For a two-component (electron and ion) plasma, 

xuv(k,w) is written as 

   xee = xe(0){1 - Z2vxi(°)(1 - Gii)} / D , (6.19) 

   xii = xi(0){1 _ vxe(0)(1 - Gee)} / D                                                            (6.20) 

   xei = - Zvxe(0)Xi(0)(1 - Gei) / D                                                            (6.21) 

    xie = - Zvxe(0)Xi(0)(1 - Gie) / D (6.22) 

where 

   D = {1 - vxe(0)(1 - Gee) } {1 - Z21)xi(0)(1 - Gii) } 
         - Z2,u2xe(0)Xi(0)(1 - Gei) (1 - Gie) . (6.23) 

The dielectric function, Eq. (6.12), takes the form 

   1 = 1 + v [xe(o)+ Z2 (0)      - D xi 

              + Z21.)xe(0)xi(0)(Gee + Gii - Gei - Gie)] . (6.24) 

     In the same way, for a binary-ionic-mixture (BIM) plasma, the xµv(k,c)) is 

written as 

vDxce =x {1 -x1(1 -G11)}{1- x2(1 -G22)}-x~x1x2(1 -G12)(1 -G21) , (6.25) 

- Z1vDx,1 = xjx1x2 (1 - Gr2) (1 - G21) + xx1(1 - G e1) {1 - x2(1- G22)} , (6.26) 

- Z2vDX 2 = x x1x2 (1- G~1) (1 - G12) + xIx2(1 - G,3) {1 - x1(1 - G11)} , (6.27) 

-Z 1vDx1~=x~x1x2(1-G2j (1 - G12) +x~x1(1-G1j {l-x2(1-G22)} (6.28) 

 Z1,Dx11=x1{1-x.(1-G«)}{1-x2(1-G22)}-xCx,x2(1-G r2)(1-G2e) (6.29) 

2 
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Z1Z2-ODX12=xex1x2(1-Ge2)(1-G1J+x1x2(1-G12){1-xe(1-Gee)} , (6.30) 

- Z2DDx2e = xcx,x2 (1- G1.)(1 -G 21) + x'-x2(1 -G 2J {1 - x 1(1 - G11)}                                                          (6.31) 

Z2Z1vDx21=xex1x2(1-G2e)(1-Gd)+x1x2(1-G21){1-xe(1-G-)} (6.32) 

z Z2 DDX22=x2{1-xe(1-Ga)}{1-x1(1-G11)}-xexlx2(1-G e1)(1-G1e) , (6.33) 

where 

    D= {1- xe(1 -Ga)}{1 -x1(1 -G11)}{1- x2(1 -G22)} 
      - xex1x2(1 - Gel) (1 - G12) (1- Gee) 

      - xex1x2(1 - G1.)(1 -G 21) (1- Get) 
      -xex 2(1-Ge2)(1-G2J{1-x1(1-G11)} 

      -x 1x2(1-G12)(1-G21){1-xe(1-G«)} 
      -x ex1(1-Ge) (1-G1J{1-x2(1-G22)} , (6.34) 

and 
         _ (0) 2 (0) 2 (0)       x

e-vxe x, -Z1 vxl x2-Z2 vx2 , (6.35) 

where the suffix 1, 2 means the species of ions. 

     As mentioned above, if G,,(k,ci) are given I can obtain the dielectric 

function e(k,c)). In the next section, the static local field correction functions 

Gµv(k,0) are derived.
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VI - 4. DERIVATION OF STATIC LOCAL FIELD CORRECTION FUNCTIONS 

     In this section the static local field correction functions 1 are derived for 

a two-component plasma (TCP, ie, electrons and ions) and a binary-ionic-

mixture plasma (BIM, ie, electrons and two species of ions) using HNC 

approximation and Eqs. (6.13) and (6.14). 

     For a two-component plasma, the Fourier components of the electron-

electron effective potential and the electron-ion effective potential are given 

with the aid of Eqs. (5.21), (5.23) and (5.24) as 

3 Vee(k) = R v(k) - ni Cei(k) h1e(k) - he Cee(k) pee(k) (6.36) 

 Vei(k) _ - R ZD(k) 
         - n i Cei(k)hii(k) - ne Cee(k) hei(k) (6.37) 

As the same way, with the use of Eqs. (6.13) and (6.14) the effective potentials 

mentioned above can be written as follows. 

~3 VJk) v(k) + 13 v(k) {- Z (1 - Gei(k)) ni hie(k)
            +(1 - Ge(k)) ne hee(k) } 

 Vei(k) = - 13 Zv(k) 
      + (3 v(k) {- Z(1 - Gei(k)) ni hii(k) 

       +(1 - Gee(k)) nehei(k)} 

Using Eqs. (6.36)-(6.39), two equations can be introduced as follows. 

f3 v(k) {- Z(1 - Gei(k)) ni h,,(k) 
      +(1- Gee(k))nehee(k)} 

   hi cei(k) hie(k) -he Cee(k) hee(k) 
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Pi(k) {- Z(1 - Gee(k)) hi hii(k) 
     + (1- GeC(k)) he hei(k) } 

      - n i Cei(k) hii(k) - he Cee(k) hec(k) (6.41) 

Solving Eqs. (6.40) and (6.41) about Gee and Gei, Gee and Gei are obtained as 

follows. 

   Gee(k) = 1 + 1 cee(k)              (3
v(k) , (6.42) 

   Gei(k) = 1- Z
v k cei(k)               R ( ) . (6.43) 

As the same way, Gi i and G1e are given as follows. 

   Gie(k) = 1 + Z2 Cii(k) 
                v(k) (6.44) 

   Gie(k) = 1- ~Z1 k Cie(k)               13 
1() . (6.45) 

To author's knowledge, this is the first calculation of the electron-ion local 

field correction function in plasmas. 

     Let's demonstrate that in the specific cases the local field correction 

functions mentioned above conclude the form of Eqs. (32), (44a)-(44c) in Ref. 

1. For the case of electron OCP, Ornstein-Zernik relation is written as 

    hee(k) =Cee(k) + he cee(k) hee(k) . (6.46) 
By putting Eq. (6.46) into Eq. (6.42), obtained is 

   Gee(k) = 1 + 1 hee(k)              R 
v(k) 1 + he hee(k) . (6.47) 
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And the structure factor See(k) is defined as 

   See(k) = 1 + Ilehee(k) . (6.48) 

Putting Eq. (6.48) into Eq. (6.47), obtained is 

   G,e(k) = 1 + n 
v k 1 S 1 k              R e ( ) ee( ) (6.49) 

Eq. (6.49) is equal to Eq (32) in Ref. 1. As the same way, Gii(k) is calculated as 

   G1i(k) = 1+ Ph
i Z2 v k 1 S I                           ii(k) i ( ) (6.50) 

Eq. (6.50) is equal to Eq (44b) in Ref. 1 except the first term of the right hand 

side. The term 1/ee(k) originates in an assumption of the linear response 

shielding. 

     If the linear response shielding is assumed, the electron-ion direct 

correlation function cei(k) is reduced to (3Zv(k)5. Therefore Gei is zero. 

     For a binary-ionic-mixture plasma, the local field correction functions 

can be obtained as follows. 

   Gee(k) = 1 + Py k Cee(k) 
                 ( ) , (6.51) 

   Gee(k) = 1 - 1 Cel(k)      Z1-O(k) 
, (6.52) 

   Ge2(k) = 1 - Z k Ce2(k)               f3 
2v( ) , (6.53)
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G11(k) = 1 + a c11(k) 
        (3 Z1 v(k) 

G12(k) = 1 + Z
1Z2" ~~( k c12(k) ) 

G22(k) = 1 + a 
v(k) c22(k)        13 Z2 

Gle(k) = Gel(k) 

G2e(k) = G,2(k) 

G21(k) = G12(k)

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59)
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VI - 5. HIGH AND LOW VELOCITY LIMIT AND ION EFFECTS ON 

        STOPPING NUMBER 

    In the high velocity limit the stopping number of the form of Eq. (6.10) 

approaches the Bethe-Bloch formula6-8 

    LB= 1n 1. 123 Ine V2               -sco
pe                                                          (6.60) 

Figure 6.1 shows the stopping numbers of the plasma, Z=1, n, =3. Ox I 025C m-3, 

T=0.3keV. The horizontal axis represents the velocity normalized by the 

electron thermal velocity. The solid line represents the stopping numbers 

obtained by the formula mentioned in the previous sections with Gµv=O, and 

the solid-dashed line represents the stopping numbers of the Bethe-Bloch 

formula. As shown in Fig. 6.1, at high velocity region the solid line approaches 

the dashed line. At the region of v<0.8vTe, LB is negative and becomes 

meaningless. Thus the stopping number can be calculated at the low velocity. 

     In Fig. 6.1, the dashed line represents the stopping number obtained by 

electron OCP with Gee=O. As shown in Fig. 6.1, at the region of v<0.2vTe the 

dashed line is quit different from the solid line. This difference originates in 

the ion effects on the stopping number. At very low velocity the contribution of 

ions to the stopping number is dominant because of the heavy mass of ions. 

     As shown in Fig. 6.1, the stopping number obtained by presented formula 

decreases proportionally to v3. This fact can be explained as follows. For the 

small velocity (v<vTe), the dielectric function E(k,k . v) can be expanded 

keeping the parameter (hk/2me)/ v to only first order9. The imaginary part 
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of the dielectric function is found to be 

                                         2 2 2 2 -1 ImE(k,k•v)=k•v 2nd e {exp Bme 1 +1                  (~ik) k, ,T 

The result for the real part is 

2 

   ReE(k, k • v) = 1 + k2 a In I 1 /2 ((X) 
                        k as , (6.62) 

where ke is the Debye wavenumber defined by ke XDe 1. The function I1/2 (a) is 

the standard Fermi integral 

                       X1/2 
    I1/2(a)- dx

ex-a+ 1                                                             (6.63) 

where a=µ/kBT, µ is chemical potential. Using Eqs. (6.61) and (6.62), it is 

obtained that Im(1 /e) is proportional to v and L is proportional to v3 for v = 0. 

     Figure 6.2 shows the value of L X (vF/v)3. The solid line represents that 

obtained by TCP with GµV=O, the dashed line represents that obtained by 

electron OCP with Gee=O. Both of the two case, L x (vF/v)3 approaches a 

constant value at v = 0. The value of L x (vF/v)3 at the low velocity limit =C(F.O) 

can be also calculated as2 

3 

   C(r,8)=- 2M2 .~~dkk a IM 1            ge{av F-(k, k •v } 
                                                            (6.64) 

When e in Eq. (6.64) is given by Eqs. (6.61) and (6.62), Eq. (6.64) takes the 
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form2 

                3 ~1k2 -1 
C (I', O) = c dk k 2 exp - a + 1            (

k + i'2) 8mekBT 
                                                         (6.65) 

where 

    K~ = keg dda In 11 / 2 (a) 
. (6.66) 

For a TCP, this expression may be extended as 

C(I.9)=J dk(I K2) {exp(8m~kBT-a.)+1} +Z 2( )2{eXp(8m,kHT +1 } 
                                                           (6.67) 

where a1=µi/kBT, µi is chemical potential of ion and 

x2 = keg d In I1 1 2 (ae) + Z d In I1 , 2 ((Xi)      { dote dai }                                                          (6.68) 

Found are the values of C = 0.649 for electron OCP and C = 2.54X102 for TCP. 

And observed are the values of Lx(vF/v)3 at v=3x10-3 VFF is 0.665 for electron 

OCP and is 2.46x 102 for TCP. There are in very good agreements. 

    Figure 6.3 shows the stopping numbers, the solid line represents the 

stopping number of carbon and deuteron mixture plasma of 

nC=nD=3.0X1025cm 3 , T=0.3keV, and the dashed line represents that of 

deuteron plasma of nD=3.0X1025cm-3, T=0.3keV. Note that the stopping 

power is proportional to neL. As shown in Fig. 6.3 at the low velocity region 

the effect due to the carbon is dominant for the case of carbon and deuteron 

mixture plasma. This fact is explained as follows. Assumed is a test particle of 

the charge Zoe moving with a constant velocity v in a plasma of the charge Ze, 
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electron number density -ff.. When the collision cross-section is given by 

6=nr2, where r=2ZoZe2/mev2, the stopping power is written as 

    dW _ 4lneZo2Z2e4 
     ds meV2 (6.69) 

As the definition of L, Eq. (6.9), L includes the term Z2. Therefore the effects 

of deuteron cannot appear for the case of carbon and deuteron mixture 

plasma.
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The stopping number of the plasma n, T=0.3keV. 

The horizontal axis represents the velocity normalized by the electron thermal velocity. 

The solid line represents the stopping numbers obtained by the formula mentioned in 

the previous sections with Gµv=0, the dashed line represents the stopping number 

obtained by electron OCP with Gee--O and the solid-dashed line represents the stopping 

numbers of the Bethe-Bloch formula.
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The solid line represents that obtained by TCP with Gµv=O, the dashed line represents 

that obtained by electron OCP with Gee=O. 
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Fig. 6.3 The stopping numbers. The solid line represents the stopping number of carbon and 

deuteron mixture plasma of nC=nD=3.0x1025cm 3 , T=0.3keV, and the dashed line 

represents the stopping number of deuteron plasma of nD=3 .0x1025cm 3, T=0.3keV.
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VI - 6. LOCAL FIELD CORRECTION EFFECTS ON STOPPING NUMBER 

     For the plasma Z=1, rs l and T=25eV, the static local field correction 

functions are calculated with the use of the atomic model using the classical 

HNC equation and the stopping numbers are estimated. Figure 6.4 shows the 

local field correction functions. The horizontal axis represents the 

wavenumber normalized by ae 1. The solid line represents the electron-ion 

static local field correction function, the solid-dashed line represents the 

electron-electron static local field correction function and the dashed line 

represents the ion-ion static local field correction function. As shown in Fig. 

6.4, the electron-electron and ion-ion static local field correction functions 

over the value of unity at the range of 10<kae<20, and approach to unity for 

large wavenumber. The electron-ion static local field correction function 

simply increases as wavenumber k increases and approaches to unity for large 

wave number. 

     The static local field correction functions are compared with that 

obtained by S. Ichimaru et all. Figure 6.5 shows the electron-electron static 

local field correction functions, the solid line represents that by the presented 

model and the dashed line represents that by Eq. (32) in Ref. 1. The 

difference originates in the degeneracy effects and ion correlation effects. 

Figure 6.6 shows the ion-ion static local field correction functions, the solid 

line represents that by presented model and the dashed line represents that 

by Eq. (44b) in Ref. 1. The difference between two results is smaller than that 

of the electron-electron static local field correction functions. 

    The stopping numbers are calculated by the presented model and 
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compared with that obtained by Xin-Zhong Yan et a12. Figure 6.7 shows the 

stopping numbers normalized by that obtained by R.P.A., i.e. GµV=0. The solid 

line represents the stopping number obtained by the presented model, the 

solid-dashed line represents that obtained by the presented model replacing 

Gel to 0 and the dashed line represents that obtained by Xin-Zhong Yan et a12. 

As shown in Fig. 6.7, at the velocity v-vTe, all of the three stopping numbers 

have a peak value because of the effects of Gee, and at v-0.O1vTe (-.vTi), the 

effects of Gii are found. For the velocity of VTi<v<0.1vTe, because of the effects 

of Gei the stopping number is enhanced compared with that without the 

effects of Gel. The stopping number obtained by the presented model is about 

1.05 times greater than that obtained by the model in Ref. 2 for the plasma 

Z=1, rS 1 and T=25eV. This fact can be explained as follows. For the case 

without Gei and Gie, the dielectric function e(k,cu) is written by Eq. (6.23) and 

(6.24) as 

                     Xe _ xi    E (k, (0) = 1 - 1 + 
XeGee 1 + x1Gii                                                          (6.70) 

where 

   x µ Z µ21)(k) X 4(0)(k, (0) . (6.71) 

Eq. (6.70) means that the dielectric function e(k,ci) can be expressed by the 

summation of the effects contributed vacuum, electron and ion. For the case 

with Gel and Gie, the dielectric function e(k,co) is written by Eq. (6.23) and 

(6.24) as
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£(k, Xe     w)= 1- 1+
XeGee 1 + 

where 

          _ xe + xi Ee-i (k' o)) { 1 + xeGee 1+ xiGii

Xi 

xiCTii

 (+ }-i-

Ee_i(k,      co) 

   Xe Xi Gel Gie

  (6.72)

xeG.) (1 )

           _ xe xi (Gei+ Gie)             (
1 + xeGee) (1 +xiGii) - Xe xi Gei Gie 

I call Eel as the electron-ion mixture term. The to                                                 term 

coupling rate of electron and ion. For small k and large 

zero. The main region of k integral at V=avT 

kae<a(9n/4)1/361/2. Namely for high velocity and low velocity, 

                                                              F. -on the stopping number become very weak. The effects 

number appear for the intermediate velocity. In this m number 

electron-ion strong coupling effect.

+ xiGii - Xe xi Gel Gie 

             (6.73) 

   Ee-i expresses the 

k, the Eel reduces to 

e will be given by 

ocity, the effects of £e-i 

     on the stopping of 

eaning Gei implies the
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VI-7. SUMMARY

    With the use of the atomic model developed, the stopping power of 

charged particles in a hot, dense plasma is estimated. The stopping power is 

obtained from the dielectric function of a highly compressed plasma e(k,co) 

which is calculated using the local field correction theory. The static electron-

ion local field correction function Gei(k) is estimated for the first time by 

using the atomic model developed in Chap. V. It was difficult to calculate Gei in 

Ichimaru's frame work. The stopping power obtained by the presented model 

is about 1.05 times that obtained by the model of Xin-Zhong Yan et al for the 

plasma Z=1, rS 1 and T=25eV. The inclusion of Gei results in the 

enhancement of the stopping power for the test particle velocity of 

VT i<v<0.1 vTe.
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VII. CONCLUSIONS 

     In a laser -produced hot, dense plasma, plasma density and temperature 

cover very wide domains. There exists a domain called a two-component 

strongly coupled plasma of which the Coulomb coupling constant for ions 

F--1--10 and the electron degeneracy parameter 6 - 0.1--10. In the present 

paper, investigated are some basic properties of a two-component strongly 

coupled plasma. 

     I summarize the conclusions below. 

Chapter II 

(1) In order to simulate the two-component strongly coupled plasmas, 3-

dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been 

developed. In "SCOPE" the short-range forces are calculated by using a direct 

Particle-Particle (P-P) summation over the spatially localized forces and the 

long-range forces by Particle-Mesh (P-M) method. Some quantum effects are 

taken into account through the effective pair potential by an approximated 

way. In "SCOPE", the Poisson equation has been solved by the 4-th order finite 

difference method and the third order spline weighting method. By 

introducing the 4-th order finite difference and the third order spline 

weighting, the number of meshes required to obtain the accuracy within a 

error <_ 1%, is reduced (1/5)3 of the conventional P-M method. For the close 

interactions, especially electron-ion interactions, the small time increment At' 

is estimated as satisfies the condition 4t'«ti, where c is the interaction time. 
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Initial positions are determined by Metropolis method and initial velocities 

are determined by Maxwellian. 

Chapter III 

(1) The formulation of the calculation of the bremsstrahlung emission 

coefficients from a two-component binary-ionic-mixture plasma has been 

introduced on the basis of dipole emission model. The pair distribution 

functions are related to the bremsstrahlung emission coefficients. 

(2) The pair distribution functions obtained by using "SCOPE" are compared 

with analytical solutions for the cases of the weakly coupled and strongly 

coupled plasmas. For the weakly coupled plasma, the simulation results are in 

good agreements with R.P.A. theory. For the strongly coupled plasma, the 

differences in the pair distribution functions between the simulations and 

analytical models are not negligible. The differences originate in that in the 

previous theories the ion-ion and electron-ion pair distribution functions are 

calculated separately, the electron shielding effects are taken into as a linear 

response shielding and there is no quantum effects. The electron-electron 

symmetry effects are found to reduce the value of the electron-electron pair 

distribution function and enhance the value of the electron-ion pair 

distribution function, especially for bound electrons. 

(3) The reduction in the bremsstrahlung emission is estimated for the case 

of two-component strongly coupled plasma of Z=6, F=1 and T=1keV, and 

compared with the results by R. Kawakami et al. Our results are good 

agreements with their results qualitatively. 

(4) The pair distribution functions are observed for the cases of the binary 

ionic mixture plasma, and the reduction in the bremsstrahlung emission is 
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estimated. The dependence of the reduction on the frequency consists of 

roughly three parts. First, for wpe<' 5wpe the ion-ion correlation effects and 

electronic shielding effects are comparable and the reduction rate at w--wpe is 

about 75%, for 5wpe<wv50wpe the electronic shielding effects are dominant 

but the reduction rate is roughly 10% and no reduction for 50wpe<w. 

(5) The reduction in the bremsstrahlung emission for a binary mixture 

plasma is concluded to be approximated by that for a single ion plasma of 

which ion has a fictitious averaged charge, even for the two-component 

plasma. 

Chapter IV 

(1) With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.) 

of laser-produced hot, dense plasmas are calculated. And the self-diffusion 

coefficients are estimated. The dependence of the self-diffusion coefficients 

on the Coulomb coupling constant I' is obtained. For the plasmas, Z=6, 0=5, 

the normalized self-diffusion coefficients of electrons are proportional to 1-0.55 

for the range of 0.5<FF3, and are roughly 0.1 times Spitzer-Harm value. The 

normalized self-diffusion coefficients of ions are proportional to 1-0.69 for the 

range of 0.5<I'<2. For the range of F>2, the electric shielding effects on the 

self-diffusion coefficients of ion become strong. 

(2) With the use of "SCOPE", auto-correlation functions of total electric 

current of laser-produced hot, dense plasmas are calculated. And the electric 

conductivities are estimated. The dependence of the electric conductivities on 
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the Coulomb coupling constant r is obtained. The normalized electric 

conductivities obtained by simulations are proportional to 1`0.52 for the range 

of 0.5<r 3 and its value agrees with that obtained by theoretical model at F--1. 

Chapter V 

(1) The spherical cell model (SCM) due to Perrot and Dharma-wardana is 

improved in the calculation of the electron-electron correlation by extending 

from the Debye-Huckel model to the HNC framework with taking the 

degeneracy effect into account. Calculated are the pair distribution functions, 

the effective potential acting on an electron and an ion, by solving numerically 

a set of the coupled modified Poisson - HNC - Schrodinger equations for a 

range of parameters which are interested in laser fusion. 

(2) The differences appeared in the various pair distribution functions 

between the improved SCM and the previous works are summarized as 

follows. The electron-electron pair distribution function is slightly large in the 

region r<1.5ae compared with that by S. Ichimaru et al, because in the 

Ichimaru model the degeneracy effects and ion correlation effects are not 

included. On the other hand, the electron linear response shielding in the 

calculation of the ion-ion pair distribution function is found to be slightly over-

estimated. The electron-ion pair distribution function is very small near the 

origin, r<0.2a, compared with that by the modified T-F model, because the 

quantum diffraction effects are automatically included in the Schrodinger 

equation. The value of the e-i pair distribution function at r=0 is finite in the 

improved SCM model. 

(3) The ionization states for the two cases, n1=1.6X 1024 c m-3 (rs 1), T=25eV 
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and ni=2X1023cm-3 N=2), T=25eV, are compared. For the first case , rs 1, 

there is no bound state, namely Z'=1, because of the pressure ionization 

effects. For the second case because of the relatively low number density 

compared with the first case, the pressure ionization effects become weak, 

therefore the bound state (1s state) exists. The effective ionization state Z* 

using the HNC equation is estimated to be approximately 0.762 and the energy 

of the is state is calculated to be about - 5.89x10-2 in atomic unit. 

(4) The differences of quantal HNC and the classical HNC appears in the 

pair distribution functions, especially, the electron-ion pair distribution 

function. The e-i pair distribution function by QHNC is small near the origin 

because of the quantum diffraction effects.

Chapter VI 

(1) With the use of the atomic model developed, the stopping power of 

charged particles in a hot, dense plasma is estimated. The stopping power is 

obtained from the dielectric function of a highly compressed plasma e(k,(,) 

which is calculated using the local field correction theory. The static electron-

ion local field correction function Gei(k) is estimated for the first time by 

using the atomic model developed in Chap. V. It was difficult to calculate Gei in 

the framework of S. Ichimaru et al. The stopping power obtained by the 

presented model is about 1.05 times that obtained by the model of Xin-Zhong 

Yan et al for the plasma Z=1, rs=1 and T=25eV. The inclusion of Gei results in 

the enhancement of the stopping power for the test particle velocity of 

vT i<v<O.1 vTe 
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