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L INTRODUCTION

High density compression of six hundred times of solid density has
been recently achieved with the use of a deuterated polystyrene shelll,
Figure 1.1 shows the number density and temperature diagram of laser
fusion hydrogen plasmas. As shown in Fig 1.1, in such a laser-produced
hot, dense plasma, plasma density and temperature cover very wide
domains. There exists a domain in which the Coulomb coupling constant

for ions, '=Z2e2/akgT~1~10, and the electron degeneracy parameter,
6=kpgT/er ~ 0.1~10. Here, a is the ion sphere radius, (3/4mn;)1/3, & is the

Fermi energy, h2(3n2ny)?/3/2m, n; and n, are number densities of ions
and electrons, kgT is plasma thermal energy, kg is the Boltzmann

constant and h is Plank constant divided by 2n. Such a domain is called a

two-component, i.e., electrons and ions, strongly coupled plasmaz. In the

present paper, two different approaches, particle simulation and
analytical modeling, are employed to investigate some basic properties of
a two-component strongly coupled plasma. ‘

The knowledge of the interparticle correlations is required to
evaluate the heat transport by radiation, self-diffusion, electric
conductivity, stopping power, and etc. of two-component strongly
coupled plasmas. For the estimation of such physical values quantitatively,
it is desirable to simulate numerically many charged particle system for a
long time with enough statistical accuracy. It is, however, very expensive
to calculate all forces between particles. Therefore, 3-dimensional two-

component Particle-Particle Particle-Mesh (PPPM) Code “SCOPE” has
been developed3'4. In “SCOPE", the short-range forces are computed by

using a direct particle-particle summation over. the spatially localized

-1 -
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forces and long-range forces are calculated by the Particle-In-Cell (PIC)

method®. Quantum diffraction and symmetry effects are taken into
account in the short-range forces through the effective pair potentialsG.

The PPPM method was used for molecular dynamics simulations”’. This

scheme is the first to apply the PPPM method for the two-component
strongly coupled plasmas. The details of the code is discussed bin Chap. II.

The heat transport by radiation is one of the important problems in
laser fusion plasmas. The electron shielding and ion-ion correlation

reduce the X-ray emission and absorption coefficients of free-free
transitions in such a plasma3'8'1o. Developed has been the formulation
of the bremsstrahlung emission coefficients from a binary ionic mixture

plasma based on the formulation made by H. Totsujis'9 and that made by

R. Kawakami et all0. In this formula, the pair distribution functions are

related to the bremsstrahlung emission coefficients. And estimated are
the reduction in bremsstrahlung emission fr’om a binary ionic mixtufé_
plasma using the pair distribution functions obtained by simulation with
“SCOPE". The reduction in bremsstrahlung ‘emission is described in
Chap. III

In laser-produced hot, dense plésmas, it is expécted that the self-
diffusion coefficients are smaller than those in the ideal plasma. To
estimate the self-diffusion coefficients quantitatively, the knéwledge of
the time dependent int‘erparticle correlations is required. The self-

diffusion coefficients are related to the velocity auto-correlation functions
w.AF) 112 calculated are the velocity auto-correlation functions of the

two-component nondegenerate plasmas by the simulations, and

estimated are the self-diffusion coefficients as a function of the Coulomb



coupling constant for ions I'. In the same way, the electric conductivities
are related to the auto-correlation functions of the total microscopic
electric current 11:12, Calculated are the auto-correlation functions of

the total microscopic electric current of the two-component
nondegenerate plasmas by the simulations, and estifnated are the electric
conductivities. The self-diffusion coefficients and the electric
conductivities are mentioned in Chap. IV.

For very highly compressed plasmas, for example, the plasma of six

hundred times of solid density which has been recently made with the

use of a deuterated polystyrene shell target1 at ILE, the thermal de
Broglie wavelength defined by %.=h/(2nmkgT)}/2 and the electron

sphere radius defined by a,=(3/4nn,)1/3 are comparable. “SCOPE" cannot

be applied to such very highly compressed plasmas because in “SCOPE”
the quantum effects are taken into account approximately. It is very
important fdr laser fusion to calculate various thermodynamics functions
of plasmas in such a region. In order to investigate such very highly
compressed plasmas, the quantum effects should be taken into account
through the Schrodinger equation, and many body effects are also
important because of high density. To calculate the pair distribution
functions, and the effective potential acting on an electron and an ion, an

atomic model has been developed within the framework of density

functional theory (OFT)13:14, And found are the unnegligible difference

of the pair distribution functions from other theoretical models2:10. The

atomic model is described in Chap. V.
Recently the various physical values can be observed by using the
charged particles which are made by fusion reaction experimentally. The

energy spectra of the charged particles which are produced by fusion

-4 -



reaction has to be estimated correctly in order to obtain the correct
physical values which characterize the highly compressed fusion plasmas
experimentally. The charged particles made by fusion reaction lose the
energy by collisions. The ratio of the lost energy to the range moving in
the plasma is called stopping power. It is very important to estimate the
stopping power correctly for the estimation of the self-heating of the

plasma by the charged particles and the estimation of the product of the

mass density p and the core radius R15.16 The stopping power can be
calculated using the dielectric function e(k,0). The dielectric function
e(k,w) of such a highly compressed plasma can be calculated using the
local field correction theoryz. In Ref. 2 the electron-ion local field

correction function Gg(k,w) is assumed to be zero because it is very

difficult to calculate electron-ion local field correction function in their
frame work. In this paper the static electron-ion local field correction
function Gg;(k) is estimated with the aid of the atomic model. The
stopping power is described in Chap. VI. .‘

In Chap. VII, conclusions and summaries are presented.



REFERENCES OF CHAPTER I

1).
2).

3).
4).

5).

10).

11).

12).

13).

14).

15).

16).

S. Nakai, Bull. Am. Phys. Soc, 34, 2040 (1989).

S. Ichimaru, S. Mitake, S. Tanaka and Xin-Zhong Yan, Phys. Rev. A,
32, 1768 (1985).

H. Furukawa and K. Nishihara, Phys. Rev. A, 42, 3532 (1990).

K. Nishihara, H. Furukawa, M. Kawaguchi and Y. Abe,

Japanese Supercomputing (Springer-Verlag, New York, 1988), P59.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation (McGraw-Hill, New York, 1985).

C. Deutsch, Phys. Lett. 60A, 317 (1977).

J. W. Eastwood, R. W. Hockney and D. N. Lawrence, Comput. Phys.
Commun. 19, 215 (1980).

H. Totsuji, Phys. Rev. A, 32, 3005 (1985).

H. Totsuji, Memoirs of the School of Engineering, Okayama
University, 21, 45 (1986).

R. Kawakamii, K. Mima, H. Totsuji and Y. Yokoyama, Phys. Rev. A, 38,
3618 (1988).

L. Sjogren, J. P. Hansen and E. L. Pollock, Phys. Rev. A, 24, 1544
(1981).

J. P. Hansen and I. R. McDonald, Phys. Rev. A, 23, 2041 (1981).

F. Perrot, Phys. Rev. A 25, 489 (1982).

M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A 26, 2096
(1982).

Y. Setsuhara, H. Azechi, N. Miyanaga, H. Furukawa, R. Ishizaki,

K. Nishihara, M. Katayama, A. Nishiguchi, K. Mima, and S. Nakai,
Laser and Particle Beams, 8, 609 (1990).

Y. Setsuhara, H. Azechi, N. Miyanaga, H. Furukawa, K. Nishihara,

A. Nishiguchi, K. Mima, and S. Nakai, to be submitted.

-6 -



. 3-Dimensional Two-Component Particle-Particle Particle-Mesh Code

"SCOPE"

In order to simulate the two-component strongly coupled plasmas, 3-
dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been
developed (Ref. 1). In "SCOPE", the short-range forces are calculated by using
a direct Particle-Particle (P-P) summation over the spatially localized forces
and the long-range forces by Particle-Mesh (P-M) method. Quantum diffraction
and symmetry effects are taken into account through the‘effective pair
potential by an approximated way (Ref. 2). In "SCOPE", the Poisson equation

has been solved by the 4-th order finite difference method and third order

spline weighting method. To obtain accuracy within error < 1%, the distance x
is required 15 A in the conventional P-M (Cloud In Cell) method, but only 34
is required in the newly developed P—M method. For the close interactions,
especially electron-ion interactions, the small time increment At'is estimgtéd
as satisfies the condition At'<<t, where 1 is the interaction time. Iniﬁal

positions are determined by the Metropolis method (Ref. 3) and initial velocity

distribution function is Maxwellian.



IT-1. BASIC EQUATIONS AND OUTLINE OF "SCOPE"

The plasmas considered in "SCOPE" consist of many point plus charges
(plus ions) and many point minus charges (electrons) which subject to Newton

equation of motion. The basic equations are as follows.

dr,
=V
dt t . (2.1)
dv, _p
Mgt =i . (2.2)
F, = ) Fi,j
i#i . (2.8)

where r;, v; and m, are position, velocity and mass of the i-th particle.

As Eq. (2.3) shows, the force on the i-th particle is defined by the
summation over the forces among all particles except i-th particle. But it is too
expensive to calculate Eq. (2.3) about all particles in the plasmas. In "SCOPE"
the force on the i-th particle is calculated from the summation of the short-

range forces and the long-range forces as follows,

ST ir

Namely, the short-range forces are calculated by using a direct Particle-
Particle (P-P) summation over the spatially localized forces and the long-range
forces by Particle-Mesh (P-M) method. Quantum effects are taken into account
in the short-range forces. In the next section, I describe how to evaluate the

short-range forces which include the quantum effects.



I - 2. SHORT-RANGE FORCES INCLUDE QUANTUM EFFECTS .

In order to introduce quantum effects and treat nondegenerate strongly

4

coupled plasmas by classical mechanics®, effective pair potentials, which

account for quantum diffraction and symmetry effects in an approximate way,
are used. Effective pair potentials may be derived by using the quantum-

mechanical Slater sum

W({r} = Sy exp(- BEw) Vi

, (2.5)
in a form reminiscent of the classical Boltzmann factors, ie., as
W({r}) = eXP(” B Y DU(r))
1<] (2.6)

In Eq. (2.5) ¥, and E, are the eigenfunctions and eigenvalues of the full

Hamiltonian of the system, {r} denotes the set of all positions of electrons and
ions, and ‘oij(r) represents the effective pair potential between i-th and j-th
particles. At sufficiently high temperature, the contribution of bound state to

electrons-nuclei Slater sum can be neglected. If, moreover, the scattering

states are limited to s waves, the following very simple effective pair potentials

can be derived2

vy, () = g&;ﬂ{l - exp(— %)}

1] . 2.7)

where .kij is the thermal de Broglie wavelength, i.e.,



%, = ——
4 J2nm ks T

. (2.8)

and my is the reduced mass of an i-j pair. In the classical (high-temperature)
limit, vij(r) reduces to be bare Coulomb potential, as ?cij reduces to zero.

To take account of symmetry effects (i.e., the Pauli principle) for
electrons, a term must be added to the effective pair potential. It has been

6

shown® that in the high temperature limit

Ve, e(T) = D(d)(r) +09(T)

=5 {1-ew(-30)}

+k;TIn2 exp( —-—)
Thee IN2 (2.9)

’

where the first term v@(r) arises from quantum diffraction effects, while the

second term v®)(r) take care of symmetry. The forces arising from quantum

diffraction effects and symmetry effects are defined as,

(1) =~ Lo0(r)

_e e (1. 1Y), /T~
T2 r (r %ee)exp( Poee . (2.10)
() = - —Q—U‘S’(r)
2k T 12
= —5T CXP( _2——")
Thee TRee IN2 . (2.11)

-10 -



The direct particle-particle interaction force between the i-th and j-th

particles with the charge q; and g; is given by

£yt - e (L L)exp(- £)
1

=T T T Tu|T R,
2k. T

+8,,8,, 5T, exp (—
A

€e

r2

where & is Kronecker's delta.

-11 -
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o- 3. PARTICLE-MESH METHOD AND LONG-RANGE FORCES

The long-range forces are calculated by introducing 3-dimensional

meshes through the Poisson equation as follows.
1). The charge density Pl,m,n‘at the grid point (I,m,n) is calculated
from the positions of the particles.
2). By using the charge density p; i, , at the grid point (L, m,n), the
finite difference Poisson equation is solved about the static electric

potential ¢; ., , at the grid point (L m,n), for example, with the aid

of Fast Fourier Transform for a periodic boundary condition system.
8). The electric force F; , , at the grid point (l,m,n) is calculated

from ¢; ;) -

4). The long-range force on the i-th particle Filr is calculated from the
electric force F; ., at the grid point (,m,n).

The method mentioned above is called Particle-Mesh (P-M) method, and is
usually used to simulate the ideal plasmas. The conventional P-M method has
an enough precision to simulate the ideal plasmas, but does not have an
enough precision to simulate two-component strongly coupled plasmas. The
new P-M method which has an enough precision to simulate two-component
strongly coupled plasmas has been developed. In the following sub section, the

two types of P-M methods are described and compared.

-12 -



II-3-1. THE CONVENTIONAL P-M METHOD

In the conventional P-M method, the charge density 'pl'm’n at the grid

points (I, m,n) is obtained by the Cloud-In-Cell (CIC) method”+8. By
introducing the finite size particle, whose size is same as a mesh size, I assign
the charge of a particle to the nearest 8 grid points with linear area weighting

method. By using the charge density p; o, ,at the grid point (1,m,n), I solve the
second order finite difference Poisson equation,

#{6(1)1 m.n (¢l+l.m.n + ¢l—1.m.n + ¢1.m+l.n + ¢I.m—-l.n + ¢l.m.n+ 1 + ¢l.m.n— l)}= 4Kpl.m.n
, (2.13)

for example, with the aid of Fast Fourier Transform for a periodic boundary
condition system. The electric field of a grid point is obtained from the

relation which has a second order precision

E .= {_ ($141m. n2—A¢1— Lm.n) - (d1.ma1 .n2—A¢l.m—l n) B (¢].m_n+12;¢]'m'n_l ) }

(2.14)

The long-range force on the i-th particle is calculated from the electric field

of the nearest 8 grid points with the linear area weighting method.

II-3-2. NEWLY DEVELOPED P-M METHOD
In the newly developed P-M method, I assign the charge of a particle to
the nearest 8 grid points and neighbor 56 grid points with the third order

spline function

-13-



S, (x—xio)=¢% iz(ii 2)+—%
1 _ 3
Sy (x-x%,))=*5(x£2)
X=X- Xy . (2.15)

By using the charge density p; ,, , at the grid point (l,m,n),  the fourth order
finite difference Poisson equation

1
- V2q)l.rzn.n::' W{(pl +2,m,n 16¢1+1.m.n+ 30¢1.m.n - 16¢l—1,m.n+¢l-—2.m.n

+ q)l.m +2,n 16¢l.m +l.n+ 30¢1.m.n - 16¢1.m—1.n + ¢l.m—2.n

+ <!)l.m.n+2 - 16¢1.m,n+l+ 3O¢l.m.n - 16¢l,m.n-—l + ¢l,m.n—2}
= 4npl. m, n

, (2.16)

is solved for example, with the aid of Fast Fourier Transform for a periodic
boundary condition system. I obtain the electric field of a grid point, from the

relation which has the fourth order precision

aq)l,m,n_ 1 ’ 8 8 =E
- ox —12A\¢l+2,m,n— ¢I+Lm.n+ ¢1—1.m,n+¢1—2.m.n)- xlL,m,n

(2.17)

The long-range force on the i-th particle is calculated from the electric field
of the nearest 8 grid points and neighbor 56 grid points with the third order

spline function.

II-3-3. COMPARISON BETWEEN NEW DEVELOPED P-M METHOD
AND CONVENTIONAL P-M METHOD
The improvement of accuracy of the long-range forces by using newly
developed P-M method is described as follows. Figure 2.1 shows the error of
the calculation of the long-range forces from the bare Coulomb forces as a

function of the distance from the observation point to the test particle. In Fig.

-14 -



2.1, CIC means the conventional P-M method, P4 means that the charge
density is obtained by CIC but the Poisson equation is solved by the fourth
order difference, S3P2 means that the charge density is obtained by the third
order spline function but the Poisson equation is solved by the second order

difference and S3P4 means the newly developed P-M method. The horizontal
axis represents the distance normalized by the mesh size A, and the vertical

axis represents the error of the calculation of the long-range force from the
bare Coulomb forces. In the case using the charge density obtained by CIC the
error oscillates as the function of x, but in the case using the charge density
obtained by S3 the error decreases smoothly as the .function of x. On the other
hand, the absolute value of the error is dependent on the accuracy of

transforming the Poisson equation to a finite difference equation. To obtain

accuracy within error < 1%, the distance x is required 15 A in the

conventional P-M, but only 3 A is required in the newly developed P-M

method.

-15-
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the vertical axis represents the error of the calculation of the long-range force from

the bare Coulomb forces.
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I - 4. CONNECTION OF P-P AND P-M METHOD

In “SCOPE” the size of 3-dimensional meshes is a few electron Debye
lengths, defined by

kBTe
Ao. = \J 4me™m, (2.18)

i

where e, T, and n, are electron charge, temperature and number density

respectively. Figure 2.2 illustrates 2-dimensional meshes and particle
positions by open and closed circles. If the i-th particle locates at the position
shown in Fig. 2.2, the direct particle-particle forces are calculated by
summing over the forces from the particles within a obliquely lined region and
a hatched region, and the long-range forces are calculated beyond a hatched

reg10n1’7 It should be noted that when the long-range forces are calculated,

the long-range forces contributed from the oblique lined region and the
hatched region are excluded because the fqrces contributed from the oblique
lined region and the hatched region are calculated by P-P method. To exclude
the long-range forces contributed from the obliquely lined region and the

hatched region, the following equation is used.

LMN 2 Promn

5 sin{26,1-1%+2 6.(m -m") +26,(n-n )}
"‘ %% 5in2g, (1+ smze) + sin?6m (1+ 3 sin26 ) +sin 20 , (1+— sin? @ )

[sm 20 (1+ = sin26 ) sin?20,, (1+—sm29 ) sm226,,(1+—sm Gn)]

N . (2.19)
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Fig 2.2 Schematic diagram of 2-dimensional meshes band particle positions with the open and

closed circles.
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II- 5. INITIAL POSITIONS AND VELOCITIES IN "SCOPE"

Initial positions of electrons and ions are determined by the Metropolis
method3. In our Metropolis code, the electron-ion pair interaction potential is

defined as the summation of a repulsive soft-core potential and an attractive
Coulomb potential,
q;€

T , (2.20)

v @) = ek, T (Z) -

where ¢ is the soft-core radius, n and € are constants. The electron-electron

and ion-ion pair inferaction potentials are bare Coulomb potentials. Figure 2.3

(a) shows the electron-ion pair interaction potential normalized by the plasma
temperature, where Z=6, I'=1, 0=0.2a, £=0.1 and n=3. The horizontal axis
represents the distance normalized by the ion sphere radius a. At r~0.1a the
v(r) has the minimum value. Figure 2.3 (b} shows the ion-ion and electron-ion

pair distribution functions. At r~0.la the electron-ion pair distribution

function has the peak value. The ion number N; which used in this calculation
is 100 and the electron nu‘mber N, is 600.

Initial velocities of electrons and ions are determined as follows. First,

the following function as the velocity

F(Vv) = 4n JO V2 exp(— v )dv

, (2.21)

is defined and the following equation

F(Viay) = = F(V
( ) N, (V) . (2.22)
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is solved about v;. Where the N, is the number of the particles making

Maxwellian. And in order to decrease the differences of the velocity
distribution function from Maxwellian, the velocity of the i-th particle is

corrected as follows.
v, >v,{l1+a(y, - 0.5)} . (2.23)
Where « is a constant and v, is the random number from O to 1. Figure 2.4

shows the velocity distribution functions of ions and electrons. The ion

number N; which used in this calculation is 800, the electron number N, is
4800, a=0.5 and v, ,.=3vy . The horizontal axis represents the velocity

normalized by the thermal velocity and the vertical axis represents the
distribution function of the absolute value of velocity. The dashed line
represents Maxwellian. The direction of velocity is determined by 20 unit
vectors. They go from the center of a regular icosahedron to the center of the

faces of that.
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Fig 2.3 (a) The electron-ion pair interaction potential normalized by the plasma temperature,
where Z=6, I'=1, 6=0.2a, £€=0.1 and n=3. The horizontal axis represents the distance
normalized by the ion sphere radius a.
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Fig 2.3 (b) The ion-ion and electron-ion pair distribution functions. The horizontal axis
represents the distance normalized by the ion sphere radius a.
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Fig 2.4 The velocity distribution functions of ions and electrons. The ion number N, which
used this calculation is 800, the electron number N, is 4800, a=0.5 andv,_, =3v;

The horizontal axis represents ‘the velocity normalized by the thermal velocity and
vertical axis represents the distribution function of the absolute value of velocity.
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II - 6. INTEGRAL OF EQUATION OF MOTION

The equations of motion are integrated for all particles with respect to
the normalized time increment of At(npe=0.05. In order to simulate two-
component strongly coupled plasmas with sufficient accuracy, for electron-ion

interactions which have very small impact parameter or fast relative velocity,

such events are selected and sufficiently small time increment are used, for
example At'=At/6000. The normalized interaction time of an electron-ion pair

can be estimated as follows.

) -3 .3
. o +/3Z I v,
T=_(1_e_ I.a/z ) 1/2 2
dt 2v, 1 (7°/® §°
1+{?Z—e‘”?(lf_v?-%)+l} sin?d

r=r/a. , v=v /v, 2.24)
For example when Z=1, I'=0.63, Vz=0.2 and T=0.2, t ~ 2.2x107%. The small time

increment At' is determined as satisfies the condition of At'<<t.
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Io-7. SUMMARY

In order to simulate the two-component strongly coupled plasmas, 3-

dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been
developedl. In "SCOPE", the short-range forces are calculated by using a

direct Particle-Particle (P-P) summation over the spatially localized forces and
the long-range forces by Particle-Mesh (P-M) method. Quantum diffraction and
symmetry effects are taken into account through the effective pair potential by

an approximated way2 . In "SCOPE", the Poisson equation has been solved by

the 4-th order finite difference method and third order spline weighting
method. By introducing the 4-th order finite difference and the third order
spline weighting, the number of meshes required to obtain the accuracy
within a error < 1%, is reduced (1/5)3 of the conventional P-M method. For
the close interactions, especially electron-ion interactions, the small time
increment At' is estimated as satisfies the condition At'<<t, where 1 is the
interaction time. Initial positions are determined by the Metropolis method

and initial velocity distribution function is Maxwellian.
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III. Application of “SCOPE” to Laser-Produced Hot, Dense Plasmas I
~ Reduction in bremsstrahlung emission

from hot, dense binary-ionic-mixture plasmas ~

With the use of “SCOPE”, ion-ion and electron-ion pair distribution
functions are observed for two-component strongly coupled plasmas and
compared with statistical models (Ref. 1, 2) in detail. The reduction in
bremsstrahlung emission from a binary-ionic-mixture plasma is
calculated from the pair distribution functions obtained by the simulation.
It is found that the reduction in bremsstrahlung emission from a binary
ionic mixture plasma is approximated by that for a fictitious single ion
species plasma (Ref. 3) with a certain ion charge even for the two-

component plasma (Ref. 4).
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I - 1. INTRODUCTION

The heat transport by radiation is one of the important problems in
laser fusion plasmas. In a laser-produced hot, dense plasma, plasma

- density and temperature cover very wide domains, and there exists a

domain in which the Coulomb coupling constant for ions, I'=22e2/akgT~1,
and the electron degeneracy parameter, 0=kgT/er ~ 1~10. Here a is the
ion sphere radius, (3/4nn,)1/3, ¢ is the Fermi energy, h2(3n2n,)2/3/2m,
n; and n, are the number densities of ions and electrons, kgT is the

plasma thermal energy, kg is the Boltzmann constant and h is Plank

constant divided by 2n. Such a domain is called a two-component, i.e.,

electrons and ions, strongly coupled plasmal. The electron shielding and

ion-ion correlation reduce the X-ray emission and absorption coefficients

due to free-free transitionsz'5 .

The knowledge of the interparticle correlations is required to
calculate the effects of the electron shielding and ion-ion correlation on
the bremsstrahlung. In this chapter the ion-ion and electron-ion pair
distribution functions are obtained directly with the use of “SCOPE".

Developed is the formulation of the bremsstrahlung emission

coefficients from such a binary ionic mixture plasma based on the
formulation made by H. Totsuji3’5 and that made by R. Kawakami et al2.

In this formula, the pair distribution functions are related to the
bremsstrahlung emission coefficients.

The pair distribution functions obtained by simulations are
compared in detail with theories!+2. The symmetry effects® in the

effective pair potentials on the pair distribution functions are also
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discussed for a hot, dense plasma. Estimated is the reduction in
bremsstrahlung emission from a single ion species plasma and a binary
ionic mixture plasma. It is shown that the reduction for a binary ionic

mixture plasma can be approximated by that for a fictitious single ion

species plasma3 even for a two-component plasma.
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Il - 2. Formulation of bremsstrahlung emission from a binary-ionic-
" mixture plasma

The cross section for dipole emission of photon is given by7
€ - 2
Tolat®l,

where e and k are the polarization and the wavenumber of the emitted

(2m)” m
s =" hp

2
dp-
6(E1 "Ef"hm) X dks ps
. (2n)” (2n)
(3.1)

photon respectively, o=(k2c?+ op?) /2 and (d?d/dt?)g; is the matrix
element of the time derivate of the electric dipole moment d between
the initial state (E;=(hp)2/2m and asymptotic wave number p ) and the
final state (Eg= (hp’)2/2mand asymptotic wave number p’ ) of electrons.

H. Totsuji5 has introduced the formulation of bremsstrahlung
emission coefficients from a one-component strongly coupled plasma
which consists of only one species of ions, and R. Kawakami et al2 have

introduced that from a two-component strongly coupled plasma which

consists of electrons and only one species of ions. The formulation is
extended to the case of a binary ionic mixture plasma4, which consists of

electrons and two species of ions of the charges Z,e and Zye and their

numbers are N; and Ny When the electron position is r(t),

d’d _ 4 2 f 3 pt
T eag— :%1— {j;V U,(r -R))) + k‘élVU2 (Ir —Rk[)}

(3.2)
and the matrix element is given as follows,
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((;tg) =47 1o (@) [ { 2 Ul(lr - RJD + kgle (Il‘ - Rkl) }j' ¢,(r) dr
' . (3.3)

where U, and U, are the ion potentials shielded by electrons, the suffixes
1 and 2 denote the ions of the charges Z,e and Zye, and R; and Ry are

ion positions.
In the Born approximation I can replace ¢;(r) by exp(ihper) and

9f'(r) to exp(-ihp’er) in Eq. (3.3), and by changing the values r - Rj=r1

andr - R = 1y, Eq. (3.3) can be rewritten as

(S};T(Z)“ =.Iel'1_2[j]§lfe’q- K gtar {agl x(rl)}dl‘l + Z e Re {—é-r—Uz(rz)}drz]

. (3.4)
where hq=hp-hp’ is the change of the electron momentum in the

collision. If assumed is that the potential U;(r) and Uy(r) are dependent
only on'the species of ions, namely independent on the particle number j

and k, Eq. (3.4) can be written as

((f%)u:%[ <« }(_iQ)ml(r*>e'“ o {Zer e ey e ar,

' ' (3.9)
With the use of Eq. (3.5), the term | e (d2d/dt?) ¢; 12 can be written as

follows.
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d2d 2_ et N, ® N, R , ,

© [dt2 1 il - m2q2[ JZ:F : }{EF }q Uyq)q*U,(-q)
N, N,

+ jgle—iq.R,}{kgleiq-&}qul(q)quz(_ q)
N, N,

R e
N N

Py ‘R, 2 i ‘R, _
b R O LR @]

(3.6)

where U,(q) is the Fourier Transform of U(r),

Ua(q) =] Ua(r) e7'¢ " dr 3.7

With the use of Eq. (3.6), the cross-section averaged over the ion
distribution, the polarization and the propagation direction of photon is

calculated a58

3(E, -E ; —hw) [o? — 0.’ dodp’ 2 1
Okp = i 3r2m c*hp mzpe P El ZaZyenanqrSes () Pa(Q) P (- )

(3.8)

SaB(q) is the ion structure factor defined by3

Su(@=(pal@py(-a)/ /NNy

where

N,
pu(q)= X exp(-iq - R}
j=1 , (3.10)

and P,(q) is the electron shielding factor2,

2

qQ®
el = dnzee @

-31 -
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The ion structure factor SQB(q) is related to the pair distribution function
gaB(r) asS

Sep(Q) = 8y + e [{gye(r) — 117" " dr . (3.12)

and the electron shielding factor P,(q) is related to the pair distribution

function g, (r) as

Po(q)=1- 2 [{8eal®) —1}e7 "9 " dr

(3.13)

The emission coefficient E(w)dw ( energy emitted per unit time,

volume, solid angle and polarization) is given by

Ao
236, fp){1-flp)}—2

E(0)do = [[ho 3
(2n)

dp
(3.14)

where f(p) is the distribution function of electrons with momentum hp,

1
(hp)* /2m - p
kT

f(p) =

1+ exp
(3.15)

and p is the chemical potential. Carrying out the integration of Eq. (3.14)

with respect to p and p’ got is

2e6 kT /0 — 0p > do
3h’cio{exp(ho /kT) -1}

x 3 3 ZaZ, [BaTy | daS, @)P« (@) P, (- 9) F(@) /q

a=1p=1

E(w)dw =

(3.16)

where
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m (4 _moY
1+eXp { T~ omk,T (2 ~hq )
F(q):ln = u _h2 q mao 2:
1+eXp_kBT - 2m kT (—2_ hq ) Jd. (3.17)

It is clear from Egs. (3.12) and (3.13) that the ion-ion correlation effects
on the reduction of bremsstrahlung emission coefficients are included in
Sqp(@), while the eléctron shielding effects are included in P,(q) and
PB(q). If the pair distribution functions, gaﬁ(r), Eeol(r) and geﬁ(r) are given,
the bremsstrahlung emission coefficients can be calculated.

As in Ref. 2, in order to show the strongly coupled effects on the
reduction of the bremsstrahlung emission coefficients, the ratio R(w) is

also introduced. by

E (Suﬁ(q) PQ(Q)- Pp( - Q))

R(w) = E(qu(q)zsuﬂ,P“(q) =PB(—q) = 1)

. ) ;
2 2 ZaZy,[nan, fodqsqs(q)Pa(Q) Py-qyF@)/q

a=18=1
2 oo
Z,Z, [n,n_ d dqFq) /
cgwl py/ Mot usjo ar@ /4

Furthermore, the following ratios,

N

(3.18)

2 2 -
Y, %242, /nan, [ daS4(q) F@) /9

a=1f8=1

2 2 oo
Y, ZZ‘,ZB [n.ng 8, joqu(q) /q

a=1p=1

E(S,(q).P.(q) =P,(-q)=1)

R‘(m)‘:E(Sab(q) =8°5 Pu(q)zpp(—q)z 1) =

, (3.19)

are introduced to express the ion-ion correlation effects separately.
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nm - 3. PAIR DISTRIBUTION FUNCTIONS

The pair distribution function g(r) represents the probability to
find a particle at a distance r from the origin where a test particle
locates. In an ideal plasma there is less correlation among the particles,
thus the probability is independent of the distance, i.e. g(r)=1. However
in a strongly coupled plasma, the repulsive force between ions and the
attractive force between ion and electron affect the pair distribution
functions.

If random phase approximation (R.P.A.) is applicable, the pair
distribution functions are calculated analytically. If the plasma consists of

fully ionized hydrogen, the pair distribution functions, g;(r) and g;(r) are

described a59

guM=1-7—— el eXP( V2k,T1)

. (3.20)
2
k.
(M) =147+ ATn CXp( K. I')
, (3.21)
where n; is the ion number density, k.=Ap. ! and
k, =
(3.22)

If R.P.A. theory is not applicable, the pair distribution functions can

be calculated analytically from the hypernetted chain approximation
(HNC) theory1 and the finite temperature Thomas-Fermi (T-F) mode12.

The ion-ion pair distribution function g;;(r) is obtained from the HNC

equation,
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gu() =exp { - 2+ b - ety }

. (3.23)

where h(r) is the pair correlation function,

h@)=g,@) -1 (3.24)

’

with HNC equation, I use the Omstein-Zernike relation,

h(@r)=c@)+n, [c(r-r]) h(r)dr (3.25)

where ¢;;(r) is the ion-ion interaction potential shielded by electrons!,

¢n( )_'(_Z_*—ijdk eXp(ik- 1’)

(k)

and cf(r) is the direct correlation function. Z* is the effective ionization

, (3.26)

state which will be determined later and g.(k) is the electronic
dielectric function!. It should be noted that no ion-ion correlation effect

is taken into account in the calculation of g,(k). Namely, in the calculation

of the ion-ion pair distribution function in the frame of the equations
mentioned above, electron shielding is treated only as a linear-response
shielding.

The electron-ion pair distribution function gg(r) is obtained from

8. (r) =ne(r) /Z'n, (3.27)

where ng(r) is the electron number density around a test ion, which is

calculated from the following equations2.

~V2U(r) =4ne[Z38(1) —n.(r) + Z'n,] (3.28)

’

2dp
M =l"31
n.(r) = | om) (P)

, (3.29)
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and
1
fT( )= 2
P (hp) /2m -eU(r) - p
' k;T

1+exp
(3.30)

Here U(r) is the Thomas-Fermi potential. In the frame of T-F model, the

bound electron number density is calculated from

2dp
I

N, (r) = E<0 (g )3 T(p)
, (3.31)
where
2
(hp)
E=——"-¢eU(r)
2m (3.32)
Thus the effective ionization state Z* is given by
Z =Z-N,, , (3.33)
where
N, =] 4nrin, (r)dr
be = | be (T) 554
Since Z'n, is equal to the average free electron number density,
2dp
Zn, =[—=51(p)
(2n)’ . (3.35)

which determines the chemical potential, where f(p) is defined by Eq.
(3.15). It should be also noted that in the calculation of the electron-ion
pair distribution function in the frame of Egs. (3.27)-(3.35), the ion-ion
correlation is neglected, i.e, gj;(r)=1.

The pair distribution functions are observed by simulations with
electron-electron symmetry effects. Simulations have been performed as

follows. Integrated are the equations of motion for all particles by
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normalized time increment of Atwpe=0.05 for maximum time t;,,,0,.=60.
I recognize that simulation plasmas are sufficiently quiet at the time of
tw,e=60 because of good initial positions and velocities. Simulation -

parameters are summarized in Table 3.1. Note that the mass ratio of
proton to electron has been chosen the value of 100, and that of carbon
to electron has been chosen the value of 600. But the pair distribution
functions are almost unaffected by the ratios because these are static
properties.

After the time of tw,=60, the pair distribution functions are
observed at every two time steps and averaged over the time interval of
tw,e=60~120.

In the first case, which corresponds to a weakly coupled plasma,

the physical parameters are the atomic number Z=1, the Coulomb
coupling constant for ions I'=0.0278 and the plasma temperature

T=1keV. The ion-ion pair distribution function and the electron-ion paii’
distribution function are shown in Fig. 3.1, in which the solid line
represents the results obtained by simulation and the dashed line
represents the results of R.P.A. theory. The distance r is normalized by
the ion-sphere radius a. They are in good agreement except for r<0.2a.
The reason why there is a little difference between simulation and R.P.A.
theory for r<0.2a is that in R.P.A. theory the short-range correlation
effects between particles are not included. However, in this case, the
difference is not significant on any physical quantities.

In the second case, which corresponds to a two-component -

strongly coupled plasma, the physical parameters are the atomic number

Z=6, the Coulomb coupling constant for ions I'=1, and the plasma

-37 -



Table 3.1

Details of simulations. N, and N; are the numbers of electrons and
ions used in simulations. A is the size of one mesh in space. At is the time

step in the numerical integration.

case (1) case (2)
z 1 6
r 0.0278 1.0
] 19.145 5.808
n;(cm-3) 1.7x1024 1.7x1024
T(keV) 1.0 1.0
N 1600 4800
N, 1600 800
Mesh 4X4X4 4X4x4
A/Ape 1.361 2.645
n, A3 25.0 ' 75.0
n; A3 25.0 12.5
Atwpe 0.05 | 0.05
m;/m, 100.0 600.0
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Fig. 3.1

2.0lllr[ljl*xlllTl|llll

The ion-ion and electron-ion pair distribution functions for the case of 2=1,
I'=0.0278 and T=1keV. The solid line represents the results obtained by
simulation and the dashed line represents the results calculated by R. P. A
theory. The distance r.is normalized by the ion-sphere radius a.
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temperature T=1keV. Figure 3.2 shows the electron-ion pair distribution
function, in which the solid line represents the results obtained by
simulation and the dashed line represents the results calculated from
Egs. (3.27)~(3.35). The result from Egs. (3.27)-(3.35) is greater than that
by simulation for r<0.2a. Many electrons are needed to shield the test
particle charge Ze since when the electron-ion distribution funétion is
calculated from Egs. (3.27)~(3.35), the ion-ion pair distribution function
is set g;;(r)=1, i.e., no three-body correlation effects are included. And
another reason of the difference is that no quantum effects are included
in Egs. (3.27)~(3.35). In the second case, the plasma is not fully ionized.
The bound electron-ion pair distribution function is observed by
simulation with symmetry effects. The electrons trapped by the nearest
ion are defined as the bound electrons. Figure 3.3 shows the electron-ion
pair distribution functions, in which the solid line represents total
electroh distribution function, the dashed line represents bound electron
distribution function and the solid-dashed line represents free electron

distribution function. The effective ionization state is estimated by

Z =Z-N, . (3.36)

N, =4nn, [r2g, ,(@)dr (3.37)

Here gp..4(r) is the bound electron-ion pair distribution function obtained

by the simulation. For this plasma Z'is estimated to be 5.67. The value of
Z'=5.67 is under-estimated slightly because the potential lowering by

neighborhood ions is not included in the definition of the bound

electrons. But probably for this plasma, its effects can be small. In the

frame of Egs. (3.27)-(3.35), Z'is estimated to be about 5.21 for the
plasma Z=6, I'=1 and T=1keV. The ion charge Z2'=5.21 is under-

estimation because the ion-ion correlation effects and the quantum

- 40 -



10.0

r/a

Fig. 3.2  The electron-ion pair distribution functions for the case of Z=6, I'=1 and
T=1keV. The solid line represents the results obtained by simulation and the
dashed line represents the results calculated by finite temperature T-F model.
The distance r is normélized by the ion-sphere radius a.
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Fig. 3.3  The electron-ion pair distribution functions for the case of Z=6, I'=1 and
T=1keV. The solid line represents that of the total electrons, the dashed line
represents that of the bound electrons and the solid dashed line represents that

of the bound electrons. The distance r is normalized by the ion-sphere radius a.
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effects are not included in Egs. (3.27)-(3.35). Figure 3.4 shows the bound
electron-ion pair distribution functions, in which the solid line
represents the results obtained by simulation and the dashed line
represents the results calculated from Egs. (3.27)-(3.35). Many bound
electrons are needed to shield the test particle charge Ze compared with
the simulation because no ion-ion correlation effects are included in Egs.
(3.27)-(8.35), as mentioned above.

The difference of the effective ionization state and that of the
electron shielding effects in the calculation of the ion-ion pair
distribution function between the simulation and the Egs. (3.23)-(3.26)
affect ion-ion pair distribution function. Figure 3.5 shows the ion-ion pair
distribution functions, in which the solid line represents the ion-ion pair
distribution function obtained by the simulation, the dashed line
represents that obtained from Egs. (3.23)-(3.26), and the solid-dashed
line represents that obtained from Egs. (3.23)-(3.26) by replacing Z* by Z.
The simulation result decreases the fastest of the three as the distance r
decreases, and approaches to unity the fastest of the three as the
distance r increases. The result obtained from Egs. (3.23)~(3.26) by
replacing Z* to Z is closer to that of the simulation than that obtained
from Egs. (3.23)~(3.26) by no replacing. This fact shows that in the

calculation of g;;(r), the nonlinear electron shielding effects should be

taken into account in the ion-ion interaction potential ¢;;(r).

As mentioned above, the differences of the pair distribution
functions between the simulation and the theories originate from that the

ion-ion and electron-ion pair distribution functions are calculated
separately in the theories. Recently R. Ying and G. Kalman!0 perform the

calculation of the ion-ion and bound electron-ion pair distribution

functions self-consistently for a strongly coupled hydrogen plasma by a
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Fig. 3.4  The bound electron-ion pair distribution functions for the case of Z=6, I'=1 and
T=1keV. The two lines indicate the same as in Fig. 3.2. The distance r is
normalized by the jon-sphere radius a.
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Fig. 3.5  The lon-ion pair distribution functions, the solid line represents that obtained
by simulation, the dashed line represents that obtained from Eq. (3.23)~(3.26)
and the solid-dashed line represents that obtained from Eq. (3.23)~(3.26) by

replacing 2" to Z. The distance r is normalized by the jon-sphere radius a.
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newly developed atomic model based on T-F model. But in their model,
the free electron pair distribution function is assumed to be independent
on the distance r, i.e., gg_4{r)=1. This assumption is not always correct as
our simulation shows. And ion-ion distribution function is roughly treated
compared with our theoretical model. Note also that the quantum effects
are not included in their model too.

The electron-electron symmetry effects on the pair distribution

functions are estimated forvthe second case of Z=6, I'=1 and T=1keV.

The force arising from the symmetry effects, defined by Eq. (2.11), is

proportional to the square of the plasma temperature, because the de

Broglie wave length X, is proportional to inverse square root of the

plasma temperature, and its width is proportional to %¢.2. In the second

case the plasma temperature is relatively high. Figure 3.6 shows the ratio
of the force arising from the symmetry effects to that arising from the
quahtum diffraction effects, defined by Eq. (2.10). The ratio fS)(r)/fd(r)

is greater than unity for r<0.5a., a. is the electron sphere radius,

a.=(3/4nn,)1/3. The symmetry effects are thus important for the second

case of Z=6, I'=1 and T=1keV. Figure 3.7 shows the ion-ion pair

distribution functions obtained by simulation, in which the solid line
represents the result with the symmetry effects and the dashed line
represents that without the symmetry effects. Both are almost the same
for r<2a. The electron-electron symmetry effects are not significant for
the ion-ion pair distribution function. |

Figure 3.8 shows the electron-electron pair distribution functions
obtained by simulation, in which the solid line represents the result with
the symmetry‘effects and the dashed line represents that without the

symmetry effects. As expected, the electron-electron symmetry effects
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reduce the value of the electron-electron pair distribution function
greatly for the region of r<0.5a.. The Pauli principle prevents that two
electrons approach each other.

Figures 3.9, 3.10 and 3.11 show the electron-ion pair distribution
functions, the bound electron-ion pair distribution functions and the free
electron-ion pair distribution functions obtained by simulation, in which
the solid line represents the result with the symmetry effects and the
dashed line represents that without the symmetry effects. As shown in
Figs. 3.9 and 3.10, the electron-electron symmetry effects enhance the
value of the electron-ion, especially bound electron-ion pair distribution
functions. The reason of the enhancement is guessed as follows. By
adding symmetry term to diffraction term, the free energy of the plasma
increases compared with the case without symmetry term. Many
electrons are attracted to an ion compared with the case without
symmetry effects in order to decrease the free energy of the plasma.

Note that for the case without symmetry effects, Z'is estimated to be
5.73. For the case with symmetry effects, Z'is estimated to be the value
of 5.67, as mentioned above.’ It seems that the difference of Z* is too
small to observe the deference of ion-ion pair distribution functions
between the two cases. For the case with symmetry effects, the number
of electrons which locate within the distance r<0.2a from an ion can be
estimated by
N =4rnn, Jo' 2 g. (r)dr
0 o (3.38)

The number N takes on value on roughly 0.1. The distance r, between

these electrons is roughly estimated as

_ 0. 2a

Te= =~ 0. 8a.

¥0. 1 . (3.39)
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This value is sufficiently large to reduce the symmetry effects on the

electron-electron pair distribution function as shown in Fig. 3.8.
Therefore the values of Z* for the cases of with and without symmetry

effects do not contradict each other.
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Fig. 3.6  The ratio of the force arising from the symmetry effects, defined by Eq. (2.11)
and that arising from the quantum diffraction effects, defined by Eq. (2.10) for
the case of Z=6, I'=1 and T=1keV. The distance r is normalized by the electron-

sphere radius a,.

105 T 1 1L ll'lll[.l 1L L L)
1.0 F

;..( |

CD B
0.5 b
OO hll'l[lilllll(l[lll—‘
0.0 05 1.0 15 2.0

r/a

Fig. 3.7  The ion-ion pair distribution functions obtained by simulation, the solid line
represents the result with the symmetry effects and dashed line represents the
result without the symmetry effects for the case of Z=6, I'=1 and T=1keV. The

distance r is normalized by the ijon-sphere radius a.
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Fig. 3.8  The electron-electron pair distribution functions obtained by simulation, for
the case of Z=6, I'=1 and T=1keV. The two lines indicate the same as in Fig. 3.7.

The distance r is normalized by the electron-sphere radius a,.
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Fig. 3.9  The electron-ion pair distribution functions obtained by simulation, for the
case of Z=6, I'=1 and T=1keV. The two lines indicate the same as in Fig. 3.7. The

distance r is normalized by the ion-sphere radius a.
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Fig. 3.10 The bound electron-ion pair distribution functions obtained by simulation, for
the case of Z=6, I'=1 and T=1keV. The two lines indicate the same as in Fig. 3.7.

The distance r is normalized by the ion-sphere radius a.

10.0
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Fig. 3.11 The iree electron-ion pair distribution functions obtained by simulation, for

the case of Z=6, I'=1 and T=1keV. The two lines indicate the same as in Fig. 3.7.

The distance r is normalized by the fon-sphere radius a.
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III - 4. REDUCTION IN BREMSSTRAHLUNG EMISSION FROM
BINARY - IONIC - MIXTURE PLASMAS

First, I estimate the reduction in bremsstrahlung emission from a
two-component strongly coupled plasma Z=6, I'=1 and T=1keV using the

pair distribution functions in Sec. III - 3. Figure 3.12 shows the reduction
of bremsstrahlung emission coefficients obtained from Egs. (3.12)-(3.19)
as a function of the frequency. The dashed line represents the
bremsstrahlung emission coefficients in which only the ion-ion
correlation effects are included. The solid-dashed line represents the
emission coefficients in which the ion-ion correlation and free electron
vshieldirig effects are included. The free electron shielding effects are
estimated by replacing g¢(r) by g_i(r) in Eq. (3.13), where g, 4(r) is the
free electron-ion pair distribution function. The solid line represents the

emission coefficients in which the ion-ion correlation and total electron
shielding effects are included. R. Kawakami et al2 calculate the reduction
in bremsstrahhjng emission from a two-component strongly coupled
plasma Z=13, n;=8x102!cm-3 and T=1keV (I'=0.787 and 6=128.8). Our
results are in good agreement with their results qualitatively, for example
the reduction rate for the low frequency near WO~ Wpe and the frequency

under which the emission is reduced although“they calculate the ion-ion
pair distribution function using the ion-ion interaction potential
0;1(r)=Z"eU(r) in HNC equation. The shielding effects in their ion-ion
interaction potential is over-estimation as well in Eq. (3.26), because no
ion-ion correlation effects are included as the same as in Eq. (3.26). As
the result, the ion-ion pair distribution function obtained by their model
is enhanced compared with the ion-ion pair distribution function

obtained by our simulation. Because both of the ion-ion and electron-ion
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Fig. 3.12 The reduction of the bremsstrahlung emission coefficients as a function of the
frequency for the case of Z=6, I'=1 and T=1keV. The dashed line represents the
bremsstrahlung emission coefficients which includes only the ion-ion
correlation effects. The solid-dashed line represents that includes the ion-ion
correlation and the free electron shielding effects. The solid line represents that
includes the ion-ion correlation and the total electronic shielding effects. The

frequency © Is normalized by the electron plasma frequency Ope-
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pair distribution functions obtained by their model are enhanced
compared with the pair distribution functions obtained by our simulation,
the electron scattered by an ion feels almost the same charge for both
case of our simulation and their model qualitatively.

Also estimated is the reduction in bremsstrahlung emission from a
binary ionic mixture plasma Z;=6, Z,=1, njing=1:1, I'/=1.0, TI,=0.0278

and I'.=0.553, by simulation with symmetry effects. Here

A (.3 "
17 a kT ' 4= (4nn1) ,
L2 (-3 )"
27 ak,T , a2 = (41m2 )
1/38
- __'<ZS/3><Z> e _ 3 1/3
eff = ak,T 4m(n, + 1n,)

(3.40)

Simulation parameters are summarized in Table 3.2. Figure 3.13 shows
the pair distribution functions, in which a) is the ion-ion and electron-ion
distribution functions around the ion of Z,=6, and the dashed line
represents the ion of Z,=1 distribution function around the ion of Z,=6,
and b) is the ion-ion and electron-ion distribution functions around the
ion of Zy=1. Figure 3.14 shows the electron-ion pair distribution
functions around the ion of Z,=6, the solid line, the dashed line and the
solid dashed line represent the total electron, bound electron and free
electron distribution functions, respectively. The effective ionization state

of the carbon is estimated to be Z,*=5.77.
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Table 3.2

Details of simulation. N, is the number of electrons used in
simulation. N, is the number of the first type of ions, corresponding to

carbon, used in simulation. Ny is the number of the second type of ions,

corresponding to hydrogen, used in simulation. A is the size of one mesh

in space. At is the time step in the numerical integration.

Zy 6

Zy

nj :ng 1:1

Lesr 0.553
n(total, cm™3) 3.4x1024
ng(cm-3) 1.2xX1025
T(keV) 1.0

N, 5600

N, 800

N,y 800
Mesh 4X4X4
A/Ape 2.645

n, A3 - 87.5

n; A3 12.5
Atwy,, 0.05
my/ mg 600.0
m, / m, 100.0
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Fig. 3.13 a)

Fig. 3.13b)
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The ion-ion and electron-ion pair distribution functions around the ion of
Z,=6, and the dashed line represents the ion of Zy=1 distribution function
around the ion of Z=6. The distance r is normalized by the ion-sphere
radius a given by Eq. {3.40).
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The ion-ion and electron-ion distribution functions around the ion of Zo=1.

The distance r is normalized by the lon-sphere radius a given by Eq. (3.40).

-54 -



D,

1

L

Fig. 3.14 The electron-ion pair distribution functions around the ion of Z4=6, the solid
line, the dashed line and the solid dashed line represent the total electron,
bound electron and free electron distribution functions. The distance r is

normalized by the ion-sphere radius a given by Eq. (3.40).
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By using these pair distribution functions, estimated is the
reduction in bremsstrahlung emission from a binary ionic mixture plasma
as a function of the frequency. Figure 3.15 shows the reduction of the
bremsstrahlung emission coefficients as a function of the frequency. The
three lines indicate the same as mentioned above. As shown in Fig. 3.15,

the dependence of the reduction on the frequency consists of roughly

three parts. First for w,e<ws5 wpe. the ion-ion correlation and electronic
shielding effects are comparable and the reduction rate at ©~Wpe is about
75%. Second for 5wp.<<50 Wy, the electronic shielding effects are

dominant but the reduction rate is roughly 10%. Third for 50wyesm, there

is almost no reduction in bremsstrahlung, because high frequency
emission originates in a very small impact parameter, and an electron
feels the bare ion charge Ze.

Totsuji3 has pointed out that when only ion-ion correlation effects

are taken into account, the reduction from a binary ionic mixture plasma

is approximated by a fictitious plasma of which the ion charge is given by

1/3
Zeffzez =<ZSIS> <Z> e? . (3.41)

This is examined for the two-component plasma. For the plasma
considered above Z. 4 and Iy take on value on 3.97 and 0.553,
respectively. Simulation parameters are shown in Table 3.3. Note that in
the simulation chosen is the ion charge Ze=4e instead of Ze=3.97e, and

the effective Coulomb coupling constant for ions I'=0.56, instead of

I'=0.553. In the calculation of I', Z=4 is used, instead of Z=3.97, a is the

same value defined by Eq. (3.40) and T=1keV. The pair distribution
functions are shown in Fig. 3.16 (a). Figure 3.16 (b) shows the electron-

ion pair distribution functions, in which the three lines are the same as
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Fig. 3.15 The reduction of the bremsstrahlung emission coefficients as a function of the
frequency for the case of the binary ionic mixture plasma. The three lines
indicate the same as in Fig. 3.12. The frequency ® is normalized by the electron

plasma frequency Ope-
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those in Fig. 3.14. The reduction factor is shown in Fig. 3.17. In this
plasma, Z'takes on value on 3.86. In the case of the mixture plasma and
the fictitious plasma, the reduction factors of both cases are in good
agreement. The conclusion is that, if the binary ionic mixture plasma is
almost fully ionized, the effective ion charge for bremsstrahlung can be

approximated by Eq. (3.41), even if a two-component plasma.
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Table 3.3

Details of simulation. N, and N; are the numbers of electrons and
ions used in simulation respectively. A is the size of one mesh in space. At

is the time step in the numerical integration.

VA 4

r 0.56
n,(cm-3) 3.4X1024
T(keV) 1.0
N, 3200
N, 800
Mesh 4X4X4
Ape 2.425
n, A3 50.0
n; A3 12.5
Atmpe 0.05
m; / mg 400.0
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Fig. 3.16a)  The pair distribution functions for the case of the fictitious plasma of Z=4,

I'=0.56 and T=1keV. The distance r is normalized by the ion-sphere radius a
given by Eq. (3.40).
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Fig. 3.16 b)  The electron-ion pair distribution functions for the case of the fictitious
plasma of Z=4, I'=0.56 and T=1keV. The three Unes indicate the same as in
Fig. 3.3. The distance r is normalized by the ioﬁ-spllere radius a given by Eq.
(3.40).
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Fig. 3.17 The reduction of the bremsstrahlung emission coefficients as a function of the
frequency for the case of the fictitious plasma of Z=4, I'=0.56 and T=1keV. The
three lines indicate the same as in Fig. 3.12.The frequency o is normalized by

the electron plasma frequency ®pe-
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III - 5. SUMMARY

The formulation of the calculation of the bremsstrahlung
coefficients from a two-component binary ionic mixture plasma has been
introduced on the basis of dipole emission model. The pair distribution
functions are related to the emission coefficients.

The pair distribution functions obtained by using “SCOPE" are
compared with analytical solutions for the cases of the weakly coupled
and strongly coupled plasmas. For the weakly coupled plasma, the
simulation results are in good agreements with R.P.A. theory. For the
strongly coupled plasma, The differences in the pair distribution
functions between the simulations and analytical models are not
negligible. The differences originate in that in the previous theories the
ion-ion and electron-ion pair distribution functions are calculated
separately, the electron shielding effects are taken into as a linear
response shielding and there is no quantum effects. The electron-
electron symmetry effects are found to reduce the value of the electron-
electron pair distribution function and enhance the value of the electron-
ion pair distribution function, especially for bound electrons.

‘The reduction in the bremsstrahlung is estimated for the case of

two-component strongly coupled plasma Z=6, I'=1 and T=1keV, and

compared with the results by R. Kawakami et al2. Our results are in good

agreements with their results qualitatively.

The pair distribution functions are observed for the cases of the
binary ionic mixture plasma, and estimated the reduction of the
bremsstrahlung. The dependence of the reduction on the frequency

consists of roughly three parts. First, the ion-ion correlation effects and

electronic shielding effects are comparable for Wpe<0<50pe and the

-62 -



reduction rate at o~y is about 75%. the electronic shielding effects are
dominant but the reduction rate is roﬁghly 10% for Swpe<w<50wmy, and no
reduction for 50@pe<o.

The reduction in the bremsstrahlung emission for a binary mixture
plasma is concluded to be approximated by that for a single ion plasma of
which ion has a fictitious averaged charge, even for the two-component

plasma.
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IV. Application of "SCOPE" to Laser-Produced Hot, Dense Plasmas I

~ Self-diffusion and electric conductivity ~

With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.)
and the auto-correlation functions of the total microscopic electric current of
laser-produced hot, dense plasmas are calculated. The self-diffusion

coefficients and electric conductivities are then estimated. The dependence of

the self-diffusion coefficients on the Coulomb coupling constant I is obtained.
For the plasmas, Z=6, 6=5, the normalized self-diffusion coefficients of

electrons are proportional to I"9-55 for the range of 0.5<I'<3, and roughly 0.1
times Spitzer-Harm value (Ref. 1). The normalized self-diffusion coefficients of
ions are proportional to I"0-69 for the range 0.5<I'<2. For the range I'>2, the

electric shielding effects on the self-diffusion coefficients of ions become

strong. The normalized electric conductivities obtained by simulations are

proportional to I"0-52 and that of theoretical model are proportional to I'™1-32

for the range of 0.5<I'<3. The difference is attributed to the dynamical effects

and the treatment of electron degeneracy.
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IV - 1. INTRODUCTION

In laser-produced hot, dense plasmas, it is expected that the self-
diffusion coefficients are smaller than that in the ideal plasma. To estimate the
self-diffusion coefficients quantitatively, the knowledge of the time dependent
interparticle correlations is necessary.

The self-diffusion coefficients are related to the velocity auto-correlation

functions (V.A.F.)2’3. It is very difficult to calculate the velocity auto-

correlation functions by statistical modelz, but it is not so difficult to calculate

3

the velocity auto-correlation functions by simulation“. The velocity auto-

correlation functions of the two-component nondegenerate plasmas are

calculated by simulations, and estimated are the self-diffusion coefficients as a
function of the Coulomb coupling constant for ions I'. In the section IV - 2,

described are the velocity auto-correlation functions and the self-diffusion
coefficients.
The electric conductivities are related to the auto-correlation functions

(2.3

of the total microscopic electric curren . The auto-correlation functions of

the total microscopic electric current of the two-component nondegenerate
plasmas are calculated by simulations, and estimated are the electric
condu¢tivities. In the section IV - 3, described are the auto-correlation
functions of the total microscopic electric current and the electric
conductivities.

The section IV - 4 is devoted to summary.
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IV - 2. VELOCITY AUTO-CORRELATION FUNCTIONS AND

SELF-DIFFUSION COEFFICIENTS

The self-diffusion of both ions and electrons has been studied by

computing the corresponding normalized velocity auto-correlation function

(V.AF.) defined as
<va(t) g va(0)>
(w0’

Za(t) =
. (4.1)

where v, (t) is the velocity at time t of an ion or an electron. The self-diffusion

coefficient can be related to the velocity auto-correlation function as follows?.

A particle in a plasma receives the friction force and the random force due to
the internal particle-particle collisions. The equation of motion in one-

dimension can be written as

mu(t) = -mvu(t) + f(t)  (a2)

where u is the velocity of a particle, v is the collision frequency and {(t) is the

random force. By using the Fourier transform of Eq. (4.2), the Fourier

component of u is written as

n
O(w) = p(w) f (o) . 4.3)
where p{w) is the complex mobility given by
1 1
H(®) miw+v . (4.9

With the aid of Eq. (4.3), the power spectra of u(t) is given as
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2
Tu(w) =1; (o) |p(w)] . (4.5)
Using the equipartition of energy, the power spectrum of {(t), If{w), is given by

[;(w)=mvVvKk,T /= (4.6)

By Wiener-Khinchin's theorem, the power spectrum is related to the auto-

correlation function as

I.(®) = -2-1; I~ at(u(t) u(0) Yexp(-iot)

(4.7)
Using Eqgs. (4.4)-(4.6), I (w) can be written by
| kT o 1 1
I“(m)zznm(i(o+v+—ico+v) (4.8)
By Egs. {4.7) and (4.8), the following equation can be derived.
luu(0)) = ;{11:;1 J:,dm(im1+v + —i<11;+v)eXp(imt) (4.9)

By integrating Eq. (4.9) at the half circle of which radius is infinite on the half

plane of imaginary part of @ > O, the following equation can be obtained.

, kaT o —ig .
(u(t) u(o)) = o Juw_iedo)u(w)expﬁ ot) 10
Eq. (4.10) is equal to the equation as follows.
1l .
W) = dt{u(t) u(0) )exp(-i wt)
h(@) = | dtd )exp .

With the aid of Einstein's law, the self-diffusion is related to velocity auto-

correlation function as
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D= dt(u(t) u0))

(4.12)

For the case of 3-dimension, Eq. (4.12) can be rewritten as

kT
D, =

(4.13)

In the Spitzer-Harm's theory1 the electron-ion collision frequency is

given by

4~/21 Vi e4n
ei 3 m 1 (nc)\'De)

\Y%
, (4.14)

where v is the velocity of an electron. Assumed is that the self-diffusion

coefficients of the electrons can be written as

D?‘<3va>

where < > means the average by Maxwellian. Eq. (4.15) can be rewritten as

, (4.1.5)

_ 121 /2 nekDeS mpeKD°2< X® >

»De B
Vv2Z In (n. KD:)) 3 Y(x) w6
where
X=V [/ Vg . (417)
and »
2 X /
Y(x) = N jo det'’? exp(—t) “18)

When x_.. =3.0, <x5/¥(x >~ 30. In the same way, the self diffusion

coefficients of the ions can be written as
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D. = 1278/2 14 }\'Dis Oy, kDiz < X5 >
: V2 In (ni 7"1)13) 3 )

for the case of ideal plasmas.

, (4.19)

Figure 4.1 shows the normalized velocity auto-correlation functions

which are obtained by simulation for Z=6, I'=1 and 6=5. The horizontal axis
represents the time normalized by .}, where w,=(4nn.e2/m¢)!/2. Note that

the mass ratio of ion to electron in this simulation is 600 because this
simulation requires the long time even if the mass ratio mentioned above.
However, as shown in Eqgs. (4.16) and (4.19), for the case of ideal plasmas the
normalized self-diffusion coefficients are independent of the mass of an
electron or an ion. For the case of strongly coupled plasmas, the mass
dependence of the normalized self-diffusion coefficients is probably Weak. As
showﬂ in Fig 4.1, at the time t~0 the V.A.F. decreases proportional to t2 and at
the long time scale V.A.F. decreases exponentially.

The self-diffusion coefficients are estimated according to the Eq. (4.13)

as a function of I with Z=6 and 6=5. The parameters are summarized in Table
4.1. Figure 4.2 shows the self-diffusion coefficients normalized by mpalDaz,
where o means electron or ion and Ap=(kgT/4nZ%n,e?)1/2. The horizontal axis

represents the Coulomb coupling constant for ions I'. The open triangle means
the self-diffusion coefficients of electron and the open circle means the self-
diffusion coefficients of ion. The dashed lines show the I' dependence of the

self-diffusion coefficients of electron and ion. As shown in Fig. 4.2 the
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normalized self-diffusion coefficients of both electron and ion obey the power
law of T for the range of 0.5<I'<3 except that of ions at I'=3. It seems that for
the range of 3<I the electron shielding effects are stronger than that for the

range of I'<3. By the least square method the normalized self-diffusion

coefficients are interpolated as

2 -0.55
De / ®pelAp, = 16. 42T . (4.20)

2 -0. 69
D, /® Ay, =5. 781T .

In Fig. 4.2, the solid line means the self-diffusion coefficients of

electrons obtained by Eq. (4.16) when x ..=3.0. Note that for the range of .
I'>2, Eq. (4.16) is meaningless because ln(nelDe3) is negative. As shown in Fig.

© 4.2, in the strongly coupled plasmés the self-diffusion coefficients of electrons

are almost 0.1 times of that of Spitzer-Harm's theory because of strongly

coupled effects. In Spitzer-Harm's theory, if ln(nexDee’) is neglected, the

normalized self-diffusion coefficients of electron are proportional to I3/2

because of the relationship of nAp.3 and I'%/2. Because of strong coupling

effects, the I dependence of the self-diffusion coefficients of electron is

different from that of Spitzer-Harm's theory.
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Table 4.1

Details of simulation parameters. N, and N; are the numbers of
electrons and ions used in the simulations respectively. A is the size of one
mesh in space. At is the time step in the numerical integration. For almost all
simulations in this table, Z=6, 6=5,

N.=600, N;=100, Ata)pe=0.05,

mesh=8x8x8, the mesh size of P-P area is 6x6x6 and the mass ratio of an ion

to ‘electron is 600.

2.0

r 0.5 1.0 3.0
n,(cm-3) 2.14x10%5  2.67x10%*  3.34x10%23  9.91x10%2
T(keV) 4.65 1.16 0.290 0.129
A/pe 0.468 0.661 0.935 1.145

D, 24.02 16.9 10.4 9.47

D, 9.42 5.64 3.64 5.11
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Fig. 4.1 The normalized velocity auto-correlation functions of the plasma Z=6, I'=1 and 6=5.

The horizontal axis represents the time normalized by mpc“.
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Fig. 4.2 The self-diffusion coefficients normalized by (Dpa)"Daz' where o means electron or ion.

The horizontal axis represents the Coulomb coupling constant for ions I'.
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IV - 3. AUTO CORRELATION FUNCTION OF TOTAL ELECTRIC

CURRENT AND ELECTRIC CONDUCTIVITY

The electric conductivity has been studied by computing the
corresponding normalized auto-correlation function of the total microscopic

electric current defined asz’3

(j (1) «j(0))

" sor)
j(0) . (4.22)
where
N.
i) =23 Zov,(t) |
a1 (4.23)
The frequency-dependent (AC) conducktivity can be related to J(w) as
@ =250
c(w) = ®
4r . (4.24)
where
J (o) = JO dtJ(t)exp(-imt)  wss)
and
2 _ 2 2
Wp = Wpe + O, (4.26)

Especially for the case of w=0, Eq. (4.24) means the frequency independent
(DC) conductivity. And ¢ is normalized as follows.
0 =0 /e (4.27)

The DC conductivity can be also estimated by statistical model®. The
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electric resistivity p stemming from scattering of the electric current by the

random potential fields produced by the ions is expressed as

__4(2n) ‘21 L,

2z O (4.28)
Lg is the generalized Coulomb logarithm defined by5
3/2 S (k
Le= 3ﬁ49 Jo dli( f(k /2) = )2
| £.(k) | ., (4.29)

where f is the Fermi distribution function defined by Eq. (3.15), S;; is the ion

structure factor defined by Eq. (3.9) and ¢, is the electric dielectric function

defined by
2q+k

e(k) = 1+ (1 — Ge(k)) 210E quqf(q)lnl 2q - k

nh’k’®

, (4.30)

where G is the electron-electron local field correction function6 and

discussed in Chap. VI in detail. Using the relation of o to p
o=1/p (4.31)

the conductivity is obtained from Egs. (4.28)-(4.31).

Figure 4.3 shows the auto-correlation functions of total electric current

of the plasma Z=6, I'=1 and 6=5. The horizontal axis represents the time

normalized by mpe'l. As shown in Fig 4.3, the auto-correlation function

decreases exponentially at the same time scale as the velocity auto-correlation
functions of electron. The electric current is dominant for the total electric

current.
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Figure 4.4 shows the frequency dependence of the electric conductivity

of the plasma Z=6, I'=1 and 8=5. The horizontal axis represents the frequency
normalized by the electron plasma frequency Wpe- The solid line represents

the real part of the electric conductivity and the dashed line represents the
imaginary part of the electric conductivity. As the frequency increases, the
electric conductivity decreases rapidly. Note that the real part of the electric

conductivity is finite and the imaginary part of the electric conductivity is zero
at =0. This means that the plasma is good conductor against the DC current.
Estimated are the DC electric conductivity according to the Eq. (4.25)
and the statistical model mentioned above as a function of I' with Z=6 and 6=5.
The parameters are summarizea in table 4.2. Figure 4.5 shows the DC electric

conductivities normalized by Dpe- The horizontal axis represents the Coulomb

coupling constant for ions I The open circle means the DC electric

conductivities obtained by the simulations and the open triangle means the DC

electric conductivities obtained by the statistical model. The dashed lines
show the I' dependence of the DC electric conductivities obtained by the

simulations and the statistical model. As shown in Fig. 4.5 the normalized DC
electric conductivities obtained by the simulations and the statistical model

obey the power law of I for the range of 0.5<I'<3. By the least square method

the normalized DC electric conductivities are interpolated as

L 0. 52
65(0) /®p = 1.41T . (4.32)

_ - 132
6,0) / ®p =1.40T . (4.33)

where the subscript s denotes the simulation results and t denotes the results

-76 -



of statistical (theoretical) model. As shown in Fig. 4.5, the I dependence of

normalized DC conductivities is quit different between simulations and
theories. In this theoretical model it is assumed that the electrons are

scattered by ions which have a static structure factor S;;(k), namely the
dynamical effects are not included. And Eq. (4.29) is correct only the case of

0<1. For this case, 0=5.
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Table 4.2

Details of simulation parameters. N, and N; are the numbers of

electrons and ions used in the simulations respectively. A is the size of one
mesh in space. At is the time step in the numerical integration. For almost all

simulations in this table, Z=6, 0=5, N.=600, N;=100, Atmpezo.OS,

mesh=8x8x8, the mesh size of P-P area is 6x6x6 and the mass ratio of ion to

electron is 600.

r 0.5 1.0 2.0 3.0
n;(cm-3) 2.14x10%5  2.67x10%*  3.34x1028  9.91x1022
T(keV) 4.65 1.16 0.290 0.129
A/Ape 0.468 0.661 0.935 1.145

o' 2.27 1.14 1.06 0.816

o/ 3.49 1.41 0.564 0.330
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Fig. 4.3 The normalized auto-correlation functions of total electric current of the plasma Z=6,
I'=1 and 06=5. The horizontal axis represents the time normalized by (opc'l.
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Fig. 4.4 The AC electric conductivities normalized by mpe of the plasma Z=6, I'=1 and 6=5.

The horizontal axis represents the frequency normalized by Ope
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Fig. 4.5 The DC electric conductivities normalized by Ope- The horizontal axis represents the

Coulomb coupling constant for ions I'. The open circle means the DC electric
conductivities obtained by simulations and the open triangle means the DC electric
conductivities obtained by statistical model.
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IV - 4. SUMMARY

With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.)
and auto-correlation functions of total electric current of laser-produced hot,
dense plasmas are calculated. The self-diffusion coefficients and the electric

conductivities are estimated. The dependence of the self-diffusion coefficients

on the Coulomb coupling constant I' is obtained. For Z=6, 6=5, the normalized
self-diffusion coefficients of electron are proportional to I"0-55 for the range of
0.5sI'<3, and are roughly 0.1 times of that obtained by Spitzer -Harm theory.
Thé normalized self-diffusion coefficients of ion are proportional to I"0-69 for

the range of 0.5<I'<2. For the range of I>2, the electric shielding effects on
the self-diffusion coefficients of ions become strong. The normalized electric

conductivities obtained by simulations are proportional to I'0-52 for the range

of 0.5<I'<3 and its value agrees with that obtained by theoretical model at I'~1.
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V. Atomic Model for Laser-Produced Hot, Dense Plasmas in the Density

Functional Theory

Within the framework of the Density Functional Theory (DFT), the
atomic model based on the spherical cell model is developed (Ref. 1, 2).
Calculated are the pair distribution functions, and the effective potential acting
on an electron and an ion, by solving numerically a set of the coupled modified
Poisson - HNC - Schrddinger equations for a range of parameters which are
interested in laser fusion. The results are compared with other theoretical

models (Ref. 3, 4).
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V-1 INTRODUCTION

For highly compressed plasmas, for an example, the plasma of six

hundred times of solid density which has been recently made with the use of a

deuterated polystyrene shell target5 at ILE, the thermal de Broglie wavelength
defined by Eq. (2.8) and the electron sphere radius defined by a,=(3/4nn.) 1/3

are comparable. It is very important for laser fusion to calculate various
thermodynamics functions of plasmas in such a region. In order to investigate
such highly compressed plasmas, the quantum effects should be taken into
account through the Schrodinger equation, and many body effects are also
important because of high density.

To calculate the pair distribution functions and the effective potentials
acting on an electron and an ion, an atomic model has been made within the
framework of DFT. In the next section, described are the outline of the atomic

model.
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V-2, OUTLINE OF ATOMIC MODEL

The spherical cell modell'2 (SCM) due to Perrot and Dharma-wardana is

improved to obtain my atomic model. By the SCM, it is possible to determine
various effective pair potentials, pair distribution functions, bound states, and

the effective charge of ions Z*=Z-N;. , with Ny, a mean number of bound

electrons per ion in a self-consistent manner. In the SCM, the system size
should be large enough to represent a physically relevant part of the plasma.

The outline of the calculation is as follows.
1). Using modified T-F model?, the initial potential of the

Schrédinger equation is obtained.

2). Using the initial potential, the Schrddinger equation is solved and
the initial electron-ion pair distribution function is calculated.

3). Solving OCP HNC equations, obtained are the initial ion-ion and
electron-electron pair distribution functions.

4). Using the pair distribution functions, calculated are the effective
potentials.

5). Using the effective potentials calculated are the pair distribution
functions.

6). I repeat 4) and 5) until the iteration is converge.

In Fig. 5.1, the schematic diagram of the present atomic model is illustrated.

-85-



electron-ion

ion electron

electron

electron-electron

ion electron

> A

test electron electron
ion-ion

ion electron

. 7
test ion ion

Fig. 5.1 The schematic diagram of the present atomic model.
x and + are the jons and electrons around the test particle.
The allows means the potentials V_,V,,V,.

And the dashed lines are the correlation taking into account.
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v-3. SCHRODINGER EQUATION IN HOT, DENSE PLASMAS

The one-electron Schrodinger equation is expressed in atomic unit as

[— 1v2 4 Vei(r)} w(r) = Ey(r)

(5.1)
where V(r) is the effective potential acting on an electron contributed from a

test ion, ¥(r) is the eigenfunction and E is the eigenvalue. Note that in atomic
unit, h=e=m.=1, namely the potential and the eigenvalues are normalized by

two times of Rydberg energy (13.6 eV), the distance r is normalized by the

Bohr radius defined by

_h2

ap, = 5
B™ m,.e? . (5.2)

Since the effective potential V,(r) is spherically symmetric, ¥(r) is expanded

into the spherical harmonics Y,(6,¢) as

Y(x) = T R(DY10(6, 9)

. (5.3)
‘where | and m are the azimuthal and magnetic quantum numbers,

respectively. Writing the radial part R\,l(r)%xV (r)/ r, obtained is

1 d%n 1(1 1)
2 d 9 {Vei( )+ }le EXVI

Note that the number v means the principal number when the eigenvalue E is

(5.4)

negative and means the wave number when the eigenvalue E is positive. To

solve this equation, it is transformed into an eigenvalue problem with
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appropriate boundary conditions and applied are the finite difference method

and shooting method.

V-3-1. WAVE FUNCTIONS FOR BOUND STATES
An electronic state with E<O is obtained according to the following

proceduress.

1). Find the turming point(s) satisfying the condition,
1(+1
E—{}Q@) ( )} 0

2). Find approximate solution of Eq. (5.4) near r=0,

(5.5)

—~ 1
A = T'H! (5.6)

3). Find asymptotic form of y; for r->eo,

= eXp(_ nY) I2EI) . (5.7)

After the above three procedures for a test value E (<0), Eq. (5.4) is solved

numerically for O<r<r, by starting with Eq. (5.6) (this is called inner solution)
and risrsr - by starting with Eq. (5.7) (this is called outer solution), where Iy
is the turning point given by Eq. (5.5). And assumed is that at r=r; , (x,

Xnt) =00 ™ Xo'™ for the inner solution =(x,,°, x_,°u) for the outer

solution, where the dash denotes the derivative with respect to r. These values
are functions of the energy eigenvalue E.

The wave functions mentioned above should be normalized as follows.

rmax 2 _
JO anlI dr - 1 (5.8)
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V-3-2. WAVE FUNCTIONS FOR FREE (SCATTERING) STATES
The wave function for a given E (>0) is obtained according to the

following proceduress.

1). Expand the wave function into a series of partial waves

v.(r)= Y (21+ 1) i'R,(r) P,(cosH)
1=0 (5.9)
where Pj(cos6) is Legendre polynomial and k is the wavenumber.

2). Find the outer solution defined in r>r ., by assuming the

asymptotic solution as

Y (r) —5=> eik T

, - (5.10)
and by using the following relation
ek+r = > (21+ 1) i j,(kr) P,(cos®)
, 1=0 , (56.11)

where j; is the spherical Bessel function, and found is the outer
solution as

sin(kr - 12‘—1 + 61(k))
Ry() === kr (5.12)

1)

where 8,(k) is the phase shift. Note that the relation

sin(z - -2731)
j](Z) r = >, A

. (5.13)

3). Find the inner solution by integrating Eq. (5.4) with the starting

form of
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Ru() (=Ry()") =A Xk;‘(r) (5.14)

4). Smooth connection of the inner solution and outer solution at

I'=T.

max and determined are A and (k).

The free state wave functions should also satisfy the normalization

condition Eq. (5.8).

V -3-3. ELECTRON NUMBER DENSITY AROUND A TEST ION
The elementary quantum theory tells us that the local electron density

around a test ion can be written as

n,) =n.+ n,(r) + An (r)

, (5.15)
with
N, (r) = nzl(m + 1) !Rnl(r)Yl, o( 6, q))lzf(En,l) 5.16)
and
An(r) = % [[dkk*f(k) 3(21 + 1) [R r) - R ‘°’2(r)]
f e % ] Kl Kl .

where n.=<Z>7; is the average electron number density, ny(r) is the bound
electron number density and An(r) is the displaced free electron number

density in atomic unit. Since the magnetic effects are not included in this

model, in the spherical harmonics Y, the magnetic number m is always zero

and the factor 2l+1 originates in the summation about the magnetic number

m. Note that in atomic unit the number densities are normalized by ag3,

na"mely
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— au __ ¢8s

3
Il =Ile 4dg (5.18)
In Eq. (5.17) the Ry,(0) is the solution of Eq. (5.4) when V,(r)=0, and are
compensate Ry; in the asymptotic region and rapid convergence of l-sum.

The self-consistency of whole calculation can be tested by the finite-

temperature version of Friedel sum rulel-2

) ds,(k)

_ 2 S
Z=N,, +% | f(kdk ;(21 MR . (5.19)

An integration by parts gives, with the convention 6,(0)=0,

Z-N,, = J ki) [1-f(x)] 2(21 + 18,(k)dk

k T (5.20)

The rp,,, should be determined satisfying the condition of Eq. (5.19) or Eq.
(5.20).

The total electron-ion pair distribution function is given by

gei(r) = nei(r) /ﬁe . (6.21)

The bound electron-ion pair distribution function is given by

Ere_1(T) =M,(r) /e . (5.22)

And the free electron-ion pair distribution function is given by

8 (1) =14(r) /M. (5.23)

’

where

N(r) = Ne + Ang(r) (5.24)
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The electron-ion pair correlation function hgy(r) is related to the total

electron-ion pair distribution function as

hei(r) = gei(r) -1 . (5.25)
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V-4, EFFECTIVE POTENTIAL AND HYPERNETTED-CHAIN

APPROXIMATION

The effective potentials V,(r), Vir) and V(r) are determined as

follows7 .

—BVL() = BEE 4 h (1) - cu(@)

. (5.26)

_ Z’e?
— BVu(r) =— B + hy(r) — cu(r) . (5.27)
— BVee(r) = — B + heelr) — Cee(T) . (5.28)

where B=1/kgT, hle is the pair correlation function, c,, is the direct

JTAY
correlation function and the suffix pv denotes p-type particle around v-type
particle. Within the hypernetted-chain (HNC) approximation, hy and Cuy

satisfy the Ormnstein-Zernik relation for a multi-component plasma

h, ®-¢, W= 21, ¢, (k) h, ()
, (5.29)

where the hat mark means the Fourier-transform. For entirely classical
electron and ion systems Eq. (5.29) is applicable, however, in the quantum
region Eq. (5.29) is not applicable. According to Chihara's analysis of metallic

hydrogen7'8, the e-i part of Eq. (5.29) is given by

_ [3 : (k) h, (k) -c_ (k)= 1, c, (k) h, (k)

, (5.30)

where xco(k) is the Fourier-transform of non-interacting density response
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function of the homogeneous electron gas defined by

Oy _ e 30 (~ X 2x + K[
Xe (k) = kT 4K J‘0dX1+exp{(X2—M)/6} In 2x — K|
, (5.31)
where
k
K= — 1/3
(3m2n.) . (5.32)

The dimensionless chemical potential M in Egs. (5.31) is to be determined

through a numerical solution of the equation

__f x?

1+exp{(x>-M) /6} (5.33)

In the same way, the ion-electron part should be change. Chihara calls it a
"quantal-hypernetted-chain" (QHNC) approximation. In the classical limitg,
%O(k)~-Bn, and Eq. (5.30) reduces Eq. (5.29).

The ion-ion pair correlation function hy,(r) is related to the ion-ion pair

distribution function g;,(r) as

hy() =gux) -1 _ . (5.34)
The ion-ion pair distribution function g,(r) is calculated using V,,(r) as
gu(r) = CXP{— BV“(I‘)} . (5.35)

In the same way, h(r) is related to Eeelr) as

Ree(r) = gee(r) — 1 (5.36)
The electron-electron pair distribution function g.(r) is calculated using

Veelr) as
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Zee(T) =Nee(T) /Ne ' . (5.37)

2dk
Ne(1) = 25 fee(k)
(21t)3 . (5.38)
and

1

(hk)" /2m + Ve(T) — 1
1+exp KT
B

fee (k) =

. (5.39)

where p is chemical potential.
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VvV -5. RESULTS AND DISCUSSIONS

The pair distribution functions are obtained by the atomic model. For

the first case, the parameters are Z=1, re=1 and T=25eV ( I'=1.088, 6=0.4989

and n;=1.611x10%4 cm™3). rg is defined as

(5.40)

Figure 5.2 shows the electron-electron pair distribution functions. The
horizontal axis represents the distance normalized by the electron sphere

radius a.. The solid line shows the electron-electron pair distribution function
obtained by presented model using the classical HNC equation, and the dashed
line shows that by S. Ichimaru et al3 by the approximation of classical electron

one component plasma. The solid line is enhanced compared with the dashed
line, because in the Ichimaru model the degeneracy effects and ion correlation
effects are not included.

Figure 5.3 shows the ion-ion pair distribution functions. The horizontal
axis represents the distance normalized by the ion sphere radius a. The solid
line shows the ion-ion pair distribution function obtained by presented model
using the classical HNC equation, the solid-dashed line shows that by Egs.
(3.23)-(3.26) (by the approximation of ion one component plasma with linear
electron shielding), and the dashed line shows that by the approximation of
ion one component plasma with no electric shielding. As shown in Fig. 5.3, it
becomes easy to close the ions each other compared with the case of no
electric shielding, but the linear response shielding is slightly over-

estimation.
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9..(r)

Fig. 5.2 The electron-electron pair distribution functions for the case of Z=1, r,=1,T=25¢V.
The horizontal axis represents the distance normalized by the electron sphere radius a,.

The solid line shows that obtained by using the classical HNC , and
the dashed line shows that by classical electron OCP.

1. 5 rrr—r—rr T

Fig. 5.3 The ion-ion pair distribution functions for the case of Z=1, r =1, T=25€V.
The horizontal axis represents the distance normalized by the ion sphere radius a_.

The solid line shows the ion-ion pair distribution function obtained by presented model

using the classical HNC equation, the solid-dashed line shows that by Egs. (3.23)-(3.26) ,
and the dashed line shows that by the approximation of ion one component plasma with
no electric shielding.
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Figure 5.4 shows the electron-ion pair distribution functions. The
horizontal axis represents the distance normalized by:the ion sphere radius a.
The solid line shows the electron-ion pair distribution function obtained by
presented model using the classical HNC equation, and the dashed line shows
the result of Egs. (3.27)-(3.30) with replacing Z* by Z. As shown in Fig. 5.4,
the solid line is reduced compared with the dashed line because of the
quantum diffraction effects in the Schrddinger equation and the value at r=0 is
finite. Note that fof‘ the first case there is no boitlnd state, namely Z*=1,
because of the pressure ionization effects.

For the second case, the parameters are Z=1, r,=2 and T=25eV |
I'=0.5442, 0=1.996 and n;=2.014x10% cm=3 ). Figure 5.5 represents the

electron-electron pair diétribution fuﬁctions. The horiiontal axis’ reﬁresents
the distance normalized by the electron sphere radius a.. The solid line shows
the electron-electron pair distribution function obtained using the QHNC
equation, the solid-dashed line shows that obtained using the classical HNC
equation and the dashed line shows obtained by the classical electron one
component plasma. Because of the qﬁantum diffracﬁon effects in the QHNC
equation, it becomes easy to close the electrons each 6thér compared with
that the case of the classical HNC equation.

Figure 5.6 fe,presents the ion-ion pair distribution functions. The
horizontal axis and the thr;ee. types of lines mean as same as in Fig. 5.3. Note

that there is almost no difference between the ion-ion pair distribution
function with QHNC equation and.that with classical HNC equation. Because I'
is smaller than that of the first case, the solid-dashed line becomes close to

the solid line compared with the first case.
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Fig. 5.4 The electron-ion pair distribution functions for the case of Z=1, r =1, T=25¢eV.
The horizontal axis represents the distance normalized by the ion sphere radius a.

The solid line represents the result of the present model in which the classical HNC is
used, and the dashed line represents the result of the modified T-F.
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Fig. 5.5 The electron-electron pair distribution functions for the case of Z=1, r,=2,T=25¢V.

The horizontal axis and three types of lines represent the same as in Fig. 5.2.
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Fig. 5.6 The ion-ion pair distribution functions for the case of Z=1, r,=2, T=25¢V.

The horizontal axis and three types of lines represent the same as in Fig. 5.3.
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Figure 5.7 represents the electron-ion pair distribution functions using
the classical HNC equation. The solid line represents the total electron-ion
pair distribution function, the solid—dashed line represents the free electron-
ion pair distribution function, and the dashed line represents the bound
electron-ion pair distribution function. Because of the low electron number
density compared with the first case, the pressure ionization effects become
weak, therefore the bound state exists. Note that only 1s state exists for the
second case. The effective ionization state Z* is estimated to be approximately
0.762 and the energy of the 1s state is calculated to be about - 5.89x102 in
atomic unit.

Figure 5.8 represents the electron-ion pair distribution functions using
the QHNC equation. Three types of lines represent the same as in Fig 5.7. The
values of the electron-ion pair distribution functions are reduced compared
with using classical HNC equation because of the quantum diffraction effects in
the QHNC equation. The effective ionization state Z* is estimated to be
approximately 0.773 and the energy of the 1s state is calculated to be about -

1.804x10% in atomic unit.
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Fig. 5.7 The electron-ion pair distribution functions using the classical HNC.
The solid line represents that of the total electron, the solid-dashed line represents that
of the free electron, and the dashed line represents that of the bound electron.
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Fig. 5.8 The electron-ion pair distribution functions using the QHNC.
The three types of lines represent the same as in Fig. 5.7.
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V -6. SUMMARY

The spherical cell model (SCM) due to Perrot and Dharma-wardana is
improved in the calculation of the electron-electron correlation by extending
from the Debye-Huckel model to the HNC framework with taking the
degeneracy effect into account. Calculated are the pair distribution functions,
the effective potential acting on an electron and an ion, by solving numerically
a set of the coupled modified Poisson - HNC - Schrédinger equations for a
range of parameters which are interested in laser fusion.

The differences appeared in the various pair distribution functions
between the improved SCM and the previous works are summarized as
follows. The electron-electron pair distribution function is slightly large in the

region r<l.5a, compared with that by S. Ichimaru et al, because in the

Ichimaru model the degeneracy effects and ion correlation effects are not
included. On the other hand, the electron linear response shielding in the
calculation of the ion-ion pair distribution function is found to be slightly over-
estimated. The electron-ion pair distribution function is very small near the
origin, r<0.2a, compared with that by the modified T-F model, because the
quantum diffraction effects are automatically included in the Schrédinger
equation. The value of the e-i pair distribution function at r=0 is finite in the

improved SCM model.

The ionization states for the two cases, n;=1.6x102¢cm3 (rg=1), T=25eV

and n;=2x1023cm3 (r;=2), T=25eV, are compared. For the first case , rg=1,

there is no bound state, namely Z'=1, because of the pressure ionization

effects. For the second case because of the relatively low number density
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compared with the first case, the pressure ionization effects become weak,
therefore the bound state (1s state) exists. The effective ionization state Z*

using the HNC equation is estimated to be approximately 0.762 and the energy
of the lé state is calculated to be about - 5.89x102 in atomic unit.

The differences of quantal HNC and the classical HNC appears in the
pair distribution functions, especially, the electron-ion pair distribution

function. The e-i pair distribution function by QHNC is small near the origin

because of the quantum diffraction effects.
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VI. Application of Atomic Model to Laser-Produced Hot, Dense Plasmas I
~ Stopping power of charged particles

in laser-produced hot, dense plasmas ~

With the use of the atomic model, the stopping power of the charged

particles is estimated. The stopping power can be calculated using the
dielectric function e(k,0). The dielectric function e(k,w) of a highly
compressed plasma can be calculated using the local field correction theory
(Ref. 1). In the dielectric function e(k,w) obtained by presented model, the
strong coupling effects, the electric shielding effects, Fermi vdlegeneracy
effects and quantum diffraction effects are included. The stopping numbers

obtained by presented model are compared with those by some other

theoretical models. In Ref. 1 the electron-ion local field correction function
Gei(k,w) is assumed to be zero because it is very difficult to calculate electron-
ion local field correction function in their frame work. The static electron-ion
local field correction function Gg,(k,») is estimated using the atomic model

mentioned the previous chapter in this paper. The stopping power obtained by
presented model is about 1.05 times greater than that obtained by Xin-Zhong

Yan et al (Ref. 2) for the plasma Z=1, r=1 and T=25eV.

- 107 -



VI-1. INTRODUCTION

Recently the various physical values can be observed by using the
charged particles made by fusion reaction experimentally. The energy spectra
of the charged particle made by fusion reaction should be estimated correctly
in order to obtain the correct physical values which characterize the highly
compressed fusion plasmas experimentally. The charged particles lose the
energy by collisions. The loss rate of the particle energy per unit length is
called stopping power. The correct stopping power is required for the

estimation of the plasma self-heating by the charged particles and the product
of the mass density p and the core radius R34,

The stopping power can be calculated using the dielectric function
e(k,w). In the next section, connected are the stopping power and the
dielectric function e(k,w). The dielectric function e(k,0) of such a highly
compressed plasma can be calculated using the local field correction (LFC)

theoryl. In the section VI - 3, surveyed is the local field correction theory. In

Ref. 1 the electron-ion local field correction function Gei[k,co) is assumed to be

zero because it is very difficult to calculate the electron-ion local field

correction function in their frame work. The static electron-ion local field
correction function Gei(k,m) is estimated using the atomic model. In the
section VI - 4, derived are the static local field correction functions especially
the static electron-ion local field correction function Gg(k,»). In the section
VI - 5, described are the high and low velocity limit of the stopping number

and the ion effects on the stopping number. In the section VI - 6, described
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are the effects of the local field correction functions on stopping number. And
my results are compared with the results obtained by the model in Ref. 1, 2.

In the section V - 7, I summarize this chapter.
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VI - 2, FORMULATION OF STOPPING POWER

First, described is the formulation of stopping power in hot, dense

plasmas. A charged particle is assumed moving with the constant velocity in a

hot, dense plasma. The external charge density p.,; is given by

Pext(T, t) = (108(r — vt) . (6.1)

where qg is the charge of the test particle and 3§ is delta function. And the

Fourier component of p..(r,t) is given by

Pexe(k, ®) = 27q, 6(0 — Kk o )

(6.2)
The dielectric function e(k,w) is related to the charge density as
Pex(k, ©)
K, ©) + Dok, 0) = o
6ext( (D) 6ind( ) 8(k, (D)  6.3)

where Py,4 (k,») is the induced charge density in the plasma. From Eq. (6.2)

and (6.3), Pinq (k. is calculated as

Bnall, ©) = - 27, (1- m)m “kev)

(6.4)
The induced potential ¢, 4 is given by Poisson equation and Eq. (6.4) as
81, 1
(k,0) == —5°(1- )50 -k +v)
$1nd k2 g(k’ (D) . (65)

Using Eq. (6.5) the induced electric field E; 4(r,t) is given as \
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E_,(r,t)=

1 ., 4ng, 1 .
_[akix - (l—s(k,k.v))exp{lko(r—vt)}

(2n) . (6.6)

The force which the charged particle feels is described as

F = qOElnd(r’ t)

B 4mq,’ _ 1
“(215) Jdie 1k =5 k* (1 S(k’k'v)) . (6.7)

The stopping power is obtained with the aid of Eq. (6.7) as

2
dW _ ZO 62 k oV 1 .
ds = 2nv J dk K> Im ek, k ev) . (6.8)

where Z, is the atomic number of the charged particle. If the dielectric
function ¢ is given, the stopping power can be obtained.

The non-dimensional value L is introduced as follows.

dw  4rnh.Z, e

ds m. v? . (6.9)

This value L is called stopping number. Stopping number L is described as

_ 1l mev k‘v 1
(271:)3f1¢f:2J dk K [m e(k,k ov)

(6.10)
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IV - 3. LOCAL FIELD CORRECTION THEOREM

The dielectric function e(k,0) in hot, dense plasmas can be calculated by
the local field correction (LFC) theorem!. Assumed is a fictitious external
potential field Vu(r,t) which couples only to the density field p,(r,t) of the u-
species particles. By using Vu(r,t) and pp(r.t) the density-density response

functions xuv(k,m) between the p and v species particles is defined as follows.

80k, ) = 2 gk @V, (k ©) . 61

where Sf)\u(k,m) is the Fourier component of the displacement of the density

field pu(r,t) from the unperturbed values and Vu(k,m) is the Fourier component
of the fictitious external potential field Vu(r,t). With the aid of Eq. (6.3), the

dielectric function e(k,w) is given by

T = L B2z o o
where v(k)=4ne2/k2.

The effective potential ¢uv(k.w) on a p-species particle produced by the
density fluctuation Bf)\v(k,o)) in the v-species particles may be written as

0wk, ®) = Z,Z,0(k) {1 - G,k 0)}3p.(k, w)

This potential generally differs from the bare Coulomb potential because of the

(6.13)

microscopic correlation effects involved; the difference is here measured by
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the dynamic LFC G, (k,0). Using the free-particle polarizability function
72, Q(k,0), a density response of the p-species particles against a renormalized

N ‘
potential field Vu(k,m) + I, q;uv(k,co) in the plasma is described as

86 u(k, ©) = X u(O)(k, ©) [{\/u(k, ©)
+v(k) % Z,Z {1 - Gudk, ©)}6p,(k, m)]

(6.14)
The function xu(o)(k,m) is given by
1 __ny 30, (- .
Relz, "k, 0)]= K,T 4K, o T+ exp{( - Mu)/e}
|(2K x+K, ) -,
l(ZK x-K, ) -0’ . (6.15)
and '
_ 2
© n, 3n6
Il "0k, )] = - g
B i
) -
2
L+ exp| - {(e,+K,) /2K, } -M,
5 :
In = , L > =
{(e,-k,”) /2%, } -M™,
1 +exp|-
i 0, | ., (6.16)
where
2m o 2m kT
Kp: 2k T7E QP=-—2u-—2——7—3- , Ouz 2 ;; 2 2/3 ¢ . ‘
(3n°n,) h(3n'n,) B(8n'n,) | (6.17)

The dimensionless chemical potential M, in Egs. (6.15) and (6.16) is to be
determined through a numerical solution of the equation

1 _J x?
1 +exp{(x®-M,) /O,} . (6.18)
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Expression for xuv(k.w) may be obtained through a comparison between

Egs. (6.11) and (6.14). For a two-component (electron and ion) plasma,

Yuvlk.0) is written as
Yee =X {1 = Z70x, (1 - G,)} /D . 6.19)
X = Xi(O){l - ‘)Xe(O)(l - Ge)} /D ., (6.20)
Yo == Z0% 7%, (1 - G,) /D . 6.21)
Yoo == 2% V%, O(1 - G,) /D | (6.29)
where

D= {1 - UXe(O)(l - Gee)} {1 - ZzDXi(O)(l - Gn)}

- 221)2Xe(0)xi(0)(1 - Gei) (1 - Gie) (6.23)

The dielectric function, Eq. (6.12), takes the form

1 g\
&= 1+ f[xe(w‘*’ sz1(0)

+ ZZ'UXe(O)Xi(O)(Gee + Gu - Gei - Gie)] . (6.24)

In the same way, for a binary-ionic-mixture (BIM) plasma, the xuv(k,m) is

written as

DX =X =X ( = G HE = 2ao(1 = Go)} — 2 X X1 -G ) 1= Ga))  (6.25)

= Z,9Dx, = XXX (1 - Gc2) (1 =G, + chl(l - Gcl) {1 - Xz(l - Gzz)} , (6.26)
—Z,0D% , = XXy X A= G) (1 =G) + 2 X,(1 -G ) L - x,(1- G,))} . (6.27)
_ZIDDxlc:XCXlXZ (1_ Gzc)(l _GIZ) +XeX1(1 _Glc) {1 _Xz(l— Gzz)} ., (6.28)

le\)DX” = X1{1 -x{1-Ge)} {1 - Xz(l - Gzz)}— XCXIX2(1 - Gcz)(l - Gzc) , (6.29)
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2,Z,9Dy,, =X X 1X2(1 - Gc2) (1 - Glr) + xlxz(l - Gm) {1-x(1-Ga)}
= Z,0Dx,, = XeX1 X (1 - Glc) (1 - sz) + chz(l - G2e) {1 - Xl(l - Gu)}

Z,Z,0D%5, =X Xy2a (1= G ) (1= G o) + %, %,(1 = G, ) {1 - x (1 - G)}

2
Z, oDy, = X2{1 — Xl - Gec)}{l - xl-(l - Gu)}_ xtxlxz(l - Gcl) (1 - Glc) s

where

D={1-%.0- Gcc)}{l _X1(1 - Gn)}{l - Xz(l - Gzz)}
- x°x1x2(l - Gcl) (1 - Gu) (1 - G2c)
- Xexlxz(l - Glc) (1 - G21) (1 - Ge2)
- XeX2(1 - Gc2) (1 - G2e) {1 - Xl(l - Gn)}
- XIXZ(l - Glz) (1 - G21) {1-2(1-Gea)}
XXl -G o) (1 -G, ) {1 -%,(1- Gy}

and
0)

( 2 (0) 2 -(0)
Xe=VXe X, =Z, VX, v Xe=Z, X,

where the suffix 1, 2 means the species of ions.

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

As mentioned above, if G, (k,0) are given I can obtain the dielectric

function g(k,w). In the next section, the static local field correction functions

Guv(k,O) are derived.
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VI - 4. DERIVATION OF STATIC LOCAL FIELD CORRECTION FUNCTIONS

1

In this section the static local field correction functions® are derived for

a two-component plasma (TCP, ie, electrons and ions) and a binary-ionic-
mixture plasma (BIM, ie, electrons and two species of ions) using HNC
approximation and Eqgs. (6.13) and (6.14).

For a two-component plasma, the Fourier components of the electron-
electron effective potential and the electron-ion effective potential are given

with the aid of Egs. (5.21), (5.23) and (5.24) as

[3{7&(1() =Bv(k) -1, c., (k) h, (k) — DeCee(k) hee(k) . (6.36)

BV (k) = - BZu(k)

-n, Cei(k) h, (k) - n. Cee(k)hei(k) (6.37)

As the same way, with the use of Egs. (6.13) and (6.14) the effective potentials

mentioned ébove can be written as follows.

BVe(k) = Bok) + Bok) {-Z(1 - G (k) D, h, (k)
+(1 - Gee(k)) fle hee(k)} , (6.38)

BV (k) = - B Zu(k)
+Buk){-Z(1-G_(k)nh, k)
+(1 = Ge(k)) nh, (k) }

(6.39)
Using Egs. (6.36)-(6.39), two equations can be introduced as follows.
Bu(k) {~ Z(1 - G,(K)) 7, h, (k)
+(1 - Gelk)) e hee (W) }
= —ﬁj Cei(k) hie(k) — ¢ Cee(k) hee(k) (6.40)
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Bl)(k) {_ Z(l o Gei(k)) ﬁi hn(k)
+ (1 - Gee(k)) ﬁehei(k)}
= -1, (k) h,(k) - Di. ceelk) b, (k)

(6.41)

Solving Egs. (6.40) and (6.41) about G, and G.;, G, and G.; are obtained as

follows.
6= 1+ g €= e
1 1
Gulk) =1 B Zv(k) cu(k) | . (6.43)

As the same way, G,; and G, are given as follows.

G,(k)=1+ ¢, (k)

BZ*v(k) . .(6.44)

¢, (k)

_1__ 1 | -
Gie(k)—l 57008 | ' as

To author's knowledge, this is the first calculation of the electron-ion local
field correction function in plasmas.

Let's demonstrate that in the specific cases thé local field correction
functions mentioned above conclude the form of Egs. (32), (44a)-(44c) in Ref.

1. For the case of electron OCP, Ornstein-Zernik relation is written as

hec(k) zcee(k) + . Cee(k) hee(k) ‘ . (6.46)
By putting Eq. (6.46) into Eq. (6.42), obtained is | o
Geolk) = 1+ — he(k)

Bo(k) 1+ 7 he(k)

(6.47)
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And the structure factor S (k) is defined as
See(k) =1+ f:lelrlee(k) . (6.48)

Putting Eq. (6.48) into Eq. (6.47), obtained is

1
Guli0 =14 L (1 1)
B (k) Se(k)
Eq. (6.49) is equal to Eq (32) in Ref. 1. As the same way, G,,(k) is calculated as

B 1 o1
Gu(k) =1+ B, 77 v(k) (1 Sn(k))

(6.49)

(6.50)
Eq. (6.50) is equal to Eq (44b) in Ref. 1 except the first term of the right hand
side. The term 1/e,(k) originates in an assumption of the linear response
shielding.

If the linear response shielding is assumed, the electron-ion direct

correlation function cg(k) is reduced to BZv(k)5. Therefore Ge, is zero.

For a binary-ionic-mixture plasma, the local field correction functions

can be obtained as follows.

Gee(k) =1+ B (k) Cee(k)  6.51)

Gull) =1- 57 (k) Calk) 52
1 1

Gealle) = 1 BZ,v(k) Carlk) . (6.53)
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G(k) =1+ _"‘Tl_— Cao(k)
BZ

Gie(k) = G,(k)
Gipe(k) = G,p(k)
G2l(k) = Gm(k)
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Vi-5. HIGH AND LOW VELOCITY LIMIT AND ION EFFECTS ON

STOPPING NUMBER

In the high velocity limit the stopping number of the form of Eq. (6.10)

approaches the Bethe-Bloch formula®-8

2
LB=1n(1.123mev )

N (6.60)

Figure 6.1 shows the stopping numbers of the plasma, Z=1, n;=3.0x10%5cm"3,

T=0.3keV. The horizontal axis represents the velocity normalized by the
electron thermal velocity. The solid line represents the stopping numbers
obtained by the formula mentioned in the previous sections with G,,=0, and
the solid-dashed line represents the stopping numbers of the Bethe-Bloch
formula. As shown in Fig. 6.1, at high velocity region the solid line approaches

the dashed line. At the region of v<0.8vy, Lp is negative and becomes

meaningless. Thus the stopping number can be calculated at the low velocity.
In Fig. 6.1, the dashed line represents the stopping number obtained by
electron OCP with G..=0. As shown in Fig. 6.1, at the region of v<0.2v, the
dashed line is quit different from the solid line. This difference originates in
the ion effects on the stopping number. At very low velocity the contribution of
ions to the stopping number is dominant because of the heavy mass of ions.
As shown in Fig. 6.1, the stopping number obtained by presented formula

decreases proportionally to v3. This fact can be explained as follows. For the

small velocity (vgvy). the dielectric function e(k,k-v) can be expanded
keeping the parameter (hk/2m.)/ v to only first order”. The imaginary part
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of the dielectric function is found to be

_ 2m.2 e2 2 k2
Ims(k,kov)—kov—————(hk)3 {eXp(SmekT )+ 1}

, (6.61)

The result for the real part is

Ree(kk-v)=1+—1-(~—ei~a—ln1 (o)
’ kz’aa LR . (6.62)

where k, is the Debye wavenumber defined by ke=KDe’1. The function I, /2 (o) is

the standard Fermi integral

1/2

_[7 D SR
11/2(0‘)—]0 b Qe | , (6.63)

where a=u/kgT, 4 is chemical potential. Using Egs. (6.61) and (6.62), it is
obtained that Im(1/¢) is proportion‘al to v and L is proportional to v3 for v = 0.
Figure 6.2 shows the value of L X (VF/V)3. The solid‘ line represents that
obtained by TCP with Guv=0, the dashed line represents that obtained by
electron OCP with G..=0. Both of the twé case, L x (;/F/v)3 approachgs a
constant value at v = 0. The value of L X (vg /v)3 at the low velocity limit =C(T,6)

can be also calculated as?

e =-525 8 dkk{ Im g(k,lli .v)} “

. (6.64)

When ein Eq. (6.64) is given by Egs. (6.61) and (6.62), Eq. (6.64) takes the
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2

form
-1
= h'k
C(T. 8) =} dicy Kz){e p(Smek T~ )* 1}
(6.65)
where

_2.d
K2 =k, o Inl, (o) (6.66)

For a TCP, this expression may be extended as

C(r.e)=Jo"dkw—lfK;)—[{exp(8$=l}:zT a,)+ 1} 'z ? () {exp(smzf:zT _at) +1 }‘}

, (6.67)
where o=y, /kgT, y, is chemical potential of ion and
2 d d
k@0 + 22 I, e )
/2 € 1/2 i
dot. do, (6.68)

Found are the values of C = 0.649 for electron OCP and C ~ 2.54x102 for TCP.
And observed are the values of Lx(vg/v)3 at v=3x10-3 vy is 0.665 for electron

OCP and is 2.46X102 for TCP. There are in very good agreements.

Figure 6.3 shows the stopping numbers, the solid line represents the

stopping number of carbon and deuteron mixture plasma of

ne=np=3.0x10%%cm=3 , T=0.3keV, and the dashed line represents that of

deuteron plasma of nD=3.0X10250m‘3, T=0.3keV. Note that the stopping

power is proportional to n.L. As shown in Fig. 6.3 at the low velocity region

the effect due to the carbon is dominant for the case of carbon and deuteron
mixture plasma. This fact is explained as follows. Assumed is a test particle of

the charge Z;e moving with a constant velocity v in a plasma of the charge Ze,
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electron number density n,. When the collision cross-section is given by

o=nrZ, where r=ZZOZez/mev2, the stopping power is written as

dw  4mn.Z, Z’e*
ds = mev> . (6.69)

As the definition of L, Eq. (6.9), L includes the term Z2. Therefore the effects
of deuteron cannot appear for the case of carbon and deuteron mixture

plasma.
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Fig. 6.1 The stopping number of the plasma Z=1, n;=3.0x1025and T=0.3keV.
The horizontal axis represents the velocity normalized by the electron thermal velocity.
The solid line represents the stopping numbers obtained by the formula mentioned in
the previous sections with Guv=0' the dashed line represents the stopping number
obtained by electron OCP with Gee=0 and the solid-dashed line represents the stopping

numbers of the Bethe-Bloch formula.
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Fig. 6.2 Thevalueof L X (vF/v)3 of the plasma Z=1, n=3.0x10?5and T=0.3keV.

The solid line represents that obtained by TCP with Gu\,:O. the dashed line represents
that obtained by electron OCP with Gg.=0.
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Fig. 6.3 The stopping numbers. The solid line represents the stopping number of carbon and
deuteron mixture plasma of nC=nD=3.OXIO25cm’3 , T=0.3keV, and the dashed line

represents the stopping number of deuteron plasma of np=3.0X 1025cm'3. T=0.3keV.
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VI - 6. LOCAL FIELD CORRECTION EFFECTS ON STOPPING NUMBER

For the plasma Z=1, r=1 and T=25eV, the static local field correction

functions are calculated with the use of the atomic model using the classical
HNC equation and the stopping numbers are estimated. Figure 6.4 shows the
local field correction functions. The horizontal axis represents the

wavenumber normalized by .ae'l. The solid line represents the electron-ion

static local field correction function, the solid-dashed line represents the
electron-electron static local field correction function and the dashed line
represents the ion-ion static local field correction function. As shown in Fig.
6.4, the electron-electron and ion-ion static local field correction functions

over the value of unity at the range of 10<ka,<20, and approach to unity for

large wavenumber. The electron-ion static local field correction function
simply increases as wavenumber k increases and approaches to unity for large
wave number.

The static local field correction functions are compared with that
obtained by S. Ichimaru et all. Figure 6.5 shows the electron-electron static
local field correction functions, the solid line represents that by the presented
model and the dashed line represents that by Eq.' (32) in Ref. 1. The
difference originates in the degeneracy effects and ion correlation effects.
Figure 6.6 shows the ion-ion static local field correction functions, the solid
line represents that by presented model and the dashed line represents that
by Eq. (44b) in Ref. 1. The difference between two results is smaller than that

of the electron-electron static local field correction functions.

The stopping numbers are calculated by the presented model and
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compared with that obtained by Xin-Zhong Yan et al2. Figure 6.7 shows the

stopping numbers normalized by that obtained by R.P.A,, i.e. G,,y=0. The solid

line represents the stopping number obtained by the presented model, the

solid-dashed line represents that obtained by the presented model replacing
Ggj to O and the dashed line represents that obtained by Xin-Zhong Yan et al?.
As shown in Fig. 6.7, at the velocity v~vp,, all of the three stopping numbers

have a peak value because of the effects of G, and at v~0.01v, (~v,), the

ce
effects of G, are found. For the velocity of v ;<v<0.1vy,, because of the effects
of G; the stopping number is enhanceci compared with that without the
effects of G,;. The stopping number obtained by the presented model is aboﬁt
1.05 times greater than that obtained by the model in Ref. 2 for the‘pla‘sma

Z=1, rg=1 and T=25eV. This fact can be explained as follows. For the case

without G; and Gy, the dielectric function e(k,0) is written by Eq. (6.23) and

(6.24) as |
Xe Xi
ek, 0)=1- -
( ) 1+ XeGee 1+ XiGii , (6.70)
where
vo=2Z, (k) y Ok, ®) 6.71)

Eq. (6.70) means that the dielectric function e(k,0) can be expressed by the
summation of the effects contributed vacuum, electron and ion. For the case
with G,; and Gy, the dielectric function e(k,0) is written by Eq. (6.23) and
(6.24) as
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4 Xe 3 Xi
e(k 0)=1 1+ %Gee 1+%,Gy, - &, (k, @)

, (6.72)
where
(k 0)) =I: Xe } Xe Xi Gel Gie
S 1 +XeGee 1+ X!Gil A+ XeGee) (1 + XGyp) = Xe Xi Get Gie
B XeXi(Geit Gie) J
(1 +%eGee) (L +%,Gyy) = Xe X1 Gey Gie (6.73)

I call g_; as the electron-ion mixture term. The term g, ; expresses the
coupling rate of electron and ion. For small k- and large k, the g, ; reduces to
zero. The main region of k integral at v=avy, will be given by
ka go(9n/4)1/381/2. Namely for high velocity and low velocity, the effects of g,

on the stopping number become very weak. The effects of ¢, ; on the stopping

number appear for the intermediate velocity. In this meaning G,; implies the

electron-ion strong coupling effect.
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Fig. 6.4 The local field correction functions. The horizontal axis represents the wavenumber
normalized by a_ . The solid line represents the electron-ion static local field
correction function, the solid-dashed line represents the electron-electron static local
‘ﬁeld correction function and the dashed line represents the ion-ion static local field
correction function.
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Fig. 6.5 The electron-electron static local field correction functions, the solid line represents
that by presented model and the dashed line represents that by Eq. (32) in Ref. 1.

ka,

Fig. 6.6 The ion-ion static local field correction functions, the solid line represents that by
presented model and the dashed line represents that by Eq. (32} in Ref. 1.
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Fig. 6.7 The stopping numbers normalized by the stopping number obtained by R.P.A..i.e. G,,=0.
The solid line represents the stopping number obtained by presented model,
the solid-dashed line represents the stopping number obtained by presented model
replacing G to O and dashed line represents the stopping number obtained by
Xin-Zhong Yan et al.
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vI-7. SUMMARY

With the use of the atomic model developed, the stopping power of

charged particles in a hot, dense plasma is estimated. The stopping power is
obtained from the dielectric function of a highly compressed plasma e(k,w)

which is calculated using the local field correction theory. The static electron-

ion local field correction function Gg (k) is estimated for the first time by
using the atomic model developed in Chap. V. It was difficult to calculate G, in

Ichimaru's frame work. The stopping power obtained by the presented model
is about 1.05 times that obtained by the model of Xin-Zhong Yan et al for the

plasma Z=1, r;=1 and T=25eV. The inclusion of G,; results in the

enhancement of the stopping power for the test particle velocity of

VpiSV<0. 1vpe.
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VII. CONCLUSIONS

In a laser-produced hot, dense plasma, plasma density and temperature
cover very wide domains. There exists a domain called a two-component

strongly coupled plasma of which the Coulomb coupling constant for ions
I'~1~10 and the electron degeneracy parameter 6 ~ 0.1~10. In the present

paper, investigated are some basic properties of a two-component strongly

coupled plasma.

I summarize the conclusions below.

Chapter 1I

(1} In order to simulate the two-component strongly coupled plasmas, 3-
dimensional Particle-Particle Particle-Mesh (PPPM) Code "SCOPE" has been
developed. In "SCOPE" the short-range forces are calculated by using a direct
Particle-Particle (P-P) summation over the spatially localized forces and the
long-range forces by Particle-Mesh (P-M) method. Some quantum effects are
taken into account through the effective pair potential by an approximated
way. In "SCOPE", the Poisson equation has been solved by the 4-th order finite
difference method and the third order spline weighting method. By
introducing the 4-th order finite difference and the third order spline
weighting, the number of meshes required to obtain the accuracy within a

error < 1%, is reduced (1/5)3 of the conventional P-M method. For the close

interactions, especially electron-ion interactions, the small time increment At'

is estimated as satisfies the condition At'<<t, where 1 is the interaction time.
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Initial positions are determined by Metropolis method and initial velocities

are determined by Maxwellian.

Chapter III

(1) The formulation of the calculation of the bremsstrahlung emission
coefficients from a two-component binary-ionic—mixture plasma has been
introduced on the basis of dipole emission model. The pair distribution
functions are related to the bremsstrahlung emission coefficients.

(2) The pair distribution functions obfained by using "SCOPE" are compared
with analytical solutions for the cases of the weakly coupled and strongly
coupled plasmas. For the weakly coupled plasma, the simulation results are in
good agreements with R.P.A. theory. For the strongly coupled plasma, the
differences in the pair distribution functions between the simulations and
analytical models are not negligible. The differences originate in that in the
previous theories the ion-ion and electroﬁ-ion pair distributioﬂ functions) are
calculated separately, the electron shielding effects aré taken into as a linéar
response shielding and there is no quantum effects. The electron-electron
symmetry effects are found to reduce the value of the electron-electron’ pair
distribution function and enhance the value of the electron-ion pair
distribution function, especially for bound electrons.

(3) The reduction in the bremsstrahlung emission is estimated for ﬂle case
of two-component strongly coupled plasma of Z=6, I'=1 and T=1keV, and
compared with the results by R. Kawakami et al. Our results are good
agreements with their results qualitatively.

(4) The pair distribution functions are observed for the cases of the binary

ionic mixture plasma, and the reduction in the bremsstrahlung emission is
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estimated. The dependence of the reduction on the frequency consists of

roughly three parts. First, for WpeSW<OW,,e the ion-ion correlation effects and

electronic shielding effects are comparable and the reduction rate at o~y is
about 75%, for Swp.<w<50wp the electronic shielding effects are dominant

but the reduction rate is roughly 10% and no reduction for 50mpegw.

(5) The reduction in the bremsstrahlung emission for a binary mixture
plasma is concluded to be approximated by that for a single ion plasma of
which ion has a fictitious averaged charge, even for the two-component

plasma.

Chapter IV
(1) With the use of "SCOPE", the velocity auto-correlation functions (V.A.F.)
of laser-produced hot, dense plasmas are calculated. And the self-diffusion

coefficients are estimated. The dependence of the self-diffusion coefficients

on the Coulomb coupling constant I' is obtained. For the plasmas, Z=6, 6=5,
the normalized self-diffusion coefficients of electrons are proporﬁonal to 1055
for the range of 0.5<I'<3, and are roughly 0.1 times Spitzer-Harm value. The
normalized self-diffusion coefficients of ions are proportional to I"0-69 for the

range of 0.5<I'<2. For the range of I'>2, the electric shielding effects on the

self-diffusion coefficients of ion become strong.
(2) With the use of "SCOPE", auto-correlation functions of total electric
current of laser-produced hot, dense plasmas are calculated. And the electric

conductivities are estimated. The dependence of the electric conductivities on
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the Coulomb coupling constant I' is obtained. The normalized electric
conductivities obtained by simulations are proportional to I"052 for the range

of 0.5<I'<3 and its value agrees with that obtained by theoretical model at I'~1.

Chapter V

(1) The spherical cell model (SCM) due to Perrot and Dharma-wardana is
improved in the calculation of the electron-electron correlation by extending
from the Debye-Huckel model to the HNC framework with taking fhe
degeneracy effect into account. Calculated are the pair distribution functions,
the effective potential acting on an electron and an ion, by solving numerically
a set of the coupled modified Poisson - HNC - Schrddinger equations for a
range of parameters which are interested in laser fusion.

(2) The differences appeared in the various pair distribution functions
between the improved SCM and the previous works are summarized as
follows. The electron-electron pair distribution function is slightly large in the

region r<l.5a, compared with that by S. Ichimaru et al, because in the

Ichimaru model the degeneracy effects and ion correlation effects are not
included. On the other hand, the electron linear response shielding in the
calculation of the ion-ion pair distribution function is found to be slightly over-
estimated. The electron-ion pair distribution function is very small near the
origin, r<0.2a, compared with that by the modified T-F model, because the
quantum diffraction effects are automatically included in the Schridinger
equation. The value of the e-i pair distribution function at r=0 is finite in the

improved SCM model.

(3) The ionization states for the two cases, n;=1.6X1 0%24cm3 (rS=1), T=25eV
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and n;=2x1023 cm™3 (r=2), T=25€V, are compared. For the first case , r=1,

there is no bound state, namely Z'=1, because of the pressure ionization
effects. For the second case because of the relatively low number density
compared with the first case, the pressure ionization effects become weak,
therefore the bound state (1s state) exists. The effective ionization state Z*

using the HNC equation is estimated to be approximately 0.762 and the energy
of the 1s state is calculated to be about - 5.89x102 in atomic unit.

(4) The differences of quantal HNC and the classical HNC appears in the
pair distribution functions, especially, the electron-ion pair distribution

function. The e-i pair distribution function by QHNC is small near the. origin

because of the quantum diffraction effects.

Chapter VI
(1) With the use of the atomic model developed, the stopping power of

charged particles-in a hot, dense plasma is estimated. The stopping power is
obtained from the dielectric function of a highly compressed plasma e(k,w)

which is calculated using the local field correction theory. The static electron-

ion local field correction function Gg (k) is estimated for the first time by
using the atomic model developed in Chap. V. It was difficult to calculate Gy in

the framework of S. Ichimaru et al. The stopping power obtained by the
presented model is about 1.05 times that obtained by the model of Xin-Zhong

Yan et al for the plasma Z=1, r,=1 and T=25eV. The inclusion of G, results in

the enhancement of the stopping power for the test particle velobity of

Vpi<v<0.1vpe.
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