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  Abstract 

      We propose a new type of QCD sum rule which is valid even 

at finite temperature. This sum rule gives us knowledge about 

temperature dependence of vacuum condensate in quantum chromo . 

dynamics. We apply this sum rule to charmonium and F-meson 

channels. Through these channels we can investigate temperature 

dependence of gluon condensate and nature of these mesons at 

finite temperature ( < 130 MeV 

      The values of vacuum condensates should be channel 

independent. We find quantitative agreement of the temperature 

dependence of gluon condensate and verify this universality in 

these channels. Based on this universality, the behaviour of 

masses, widths and thresholds of these mesons is discussed at 

finite temperature.
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   §1. Introduction 

      It is considered that the fundamental theory of strong 

interaction is quantum chromo dynamics (QCD) . The QCD theory 

describes interaction between colored quarks which are 

considered as particles constructing hadrons . There are many 

evidences which support the hypothsis of quark , and it explains 

experimental facts very systematically. But they appear only -as 

some combinations which form colorless states and do not come 

out as a single quark. This is so-called confinement of quarks . 

It is one of important problems in current physics . Enormous 

efforts have been devoted to derive this confined structure of 

quarks from this fundamental QCD theory. 

      The confinement of quarks means that asymptotic one 

particle state of single quark can not exist in the real world 

and perturbation theory based on asymptotic expansion does not 

work well in QCD. In other words, true QCD vacuum deviates from 

usual perturbative one. As a result of this fact, vacuum 

expectation values of various operators do not vanish, and we 

can investigate the structure of true QCD vacuum by these 

quantities. Especially the gluon condensate <G 
11V G 11V > plays an 

important role in confinement and the chiral condensate <~pip> 

has relation with dynamical quark mass. 2),3) There have been 

several approaches to non-perturbative QCD, i.e., confined 

perturbation theory 4) lattice gauge theory 5) instanton 

approach 6h,8) etc. The QCD sum rule is one of these methods to



analyze the non-perturbative aspects of QCD , and determines 

these vacuum expectation values from experimental data . 

     On the other hand, the analysis of QCD at finite 

temperature gives .another point of view on this confinement 

problem. Monte Carlo calculation is the most powerful method in 

this field?) It suggests strongly that hadrons melt into quarks 

and gluons at very high tempera ture and/or very high density, 

and the phase transition from hadron phase to quark-gluon phase 

does occur. At such a phase transition point, gluon condensate 

is expected to vanish and quarks will be deconfined. There is 

possibility that such a high temperature and density state can 

be obtained in ultra-relativistic heavy ion collisions and is 

called quark gluon plasma (QGP)IO) Experimental researches for 

such a new phase have started recently and are a current topic. 

Moreover if vacuum condensates have temperature dependence as 

expected from Monte Carlo simulations, hadrons will show change 

of nature at finite temperature through this dependence. We 

consider it is probable that the hadron physics under 

environment of very high temperature and density before the 

transition also has rich contents. From these points of view, if 

we find some way to apply QCD sum rule at finite temperature, we 

will be able to derive knowledge about the phase transition or 

hadron physics at finite temperature. We discuss this 

possibility in this paper. 

      The pioneering work on QCD sum rule was done by M.A. 

Shifman, A.I. Vainstein and V.I. Zakharov in 197911) Since then 
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-it has -been a-pplied -in -vari-ous ways -and . made -.a ~gr_eat -:success in 

the study-,of-non-perturbativenatur -e-of'-QCD and resonance states 

            12),\,l 4) of hadrons
. QCD sum rule -is a-:semi~-phenomenol-ogi-cal 

approach to derive vacuum expectation values of QCD from 

experimental data. It is based on the combination of dispersion 

relation and optical theorem. We consider a dispersion relation 

for invariant form factor of vacuum expectation value of time 

ordered current-current correlator 

                     if (Q 2) ds -IMT1 (S)                          Tr f _s Q 2 

The Imn(s) on the right hand side (hadron side) can be related 

to cross section corresponding to the current through optical 

theorem and we can input experimental data . We calculate H(Q 2 

on the left hand side (QCD side) by the use of QCD with operator 

product expansion (OPE) 15 ) The OPE method decomposes an 

arbitrary operator to the products of Wilson coefficient and 

local operator and enables us to treat confined region and 

asymptotically free region separately. In QCD we have G a G a 
                                                                11V 11V 

and q)q) etc. as these local operators. We can determine vacuum 

expectation values of these operators requiring the agreement of 

both hand sides of the dispersion relation. Thus QCD sum rule 

determines universal vacuum expectation values of local 

operators from experimental data. 

     The first trial to extend this sum rule to finite 

temperature was done by A.I. Bochkarev and M.E. Shaposhnikov in 
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1984 16) "The-ix :wam -.ba-.sed Dn the idea of the sum rule 

for spectral-dens-ity--They--7compal-red-theoretical spectral 

density calculated -in QCD-and hadronic one integrating them with 

an appropriate weight function. But their calculation is only 

perturbative one and both hand sides of dispersion relation do 

not saturate each other. So constant non-perturbative effect was 

introduced to adjust the sum rule at zero temperature and fixed 

it -at this value. The parameters in this sum rule were mass , 

decay constantand threshold- They applied this sum rule to p 

meson channel with increasing temperature and determined 

temperature dependence of these parameters. They discussed the 

phase transition by the criterion that it takes place when the 

threshold becomes lower than squared resonance mass. Thier 

result on critical temperature was 130 MeV, which is rather low 

compared with the result of lattice calculation. 

     We consider their argument contains a problem. If 

condensates have no temperature dependence, it is inconsistent 

with the above deconfinement picture that it takes place when 

gluon condensate vanish. Is the assumption of temperature 

independence of non-perturbative effects correct?      

.We propose a new type of QCD sum rule which is consistent 

with our confinement picture. We extend the sum rule by Shifman 

et al. to finite temperature to take non-perturbative efects 

into account. It can be done by replacing the vacuum expectation 

in time ordered current-current correlator by Gibbs ensemble 

average. The noted points by this substitution are : 1) Wilson 
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coefficients should be calculated -in~terms.zof-f-i-ni-te temperature 

perturbation theory and 2) there-is.no exper-imental-data.1-n-put 

to ImH (s). There are two kinds of -perturbati-an -theory --at -finite 

temperature, i.e., thermofield dynamics and Matsubara's method . 

We adopt Matsubara's method 17)%19) to calculate Wilson 

coefficients, which gives the correct values at discrete points 

on the imaginary energy axis (qO(n) = 27Tin/~). As for hadron 

side, we use resonance continuum model to parametrize ImH(s) . To 

cure the lack of experimental data, the physical parameters 

(masses, widths) in the resonance continuum model are related to 

vacuum condensates by some models.-Thus we have dispersion 

relation at finite temperature on qO(n). If we can perform 

analytic contination of Wilson coefficients from points qO(n), 

sum rule for spectral density proposed by Bochkarev and 

Shaposhnikov can be applicable. But the analytic continuation is 

difficult in Matsubara's scheme except C I (see (2-4)). So we 

consider the discrete mode sum of this dispersion relation with 

some weight functions. This is our new proposal of discrete mode 

sum rule. It allows us to determine temperature dependence of 

vacuum condensate with appropriate choice of weight functions. 

     In this paper, we concentrate on the analysis of gluon 

condensate, which is one of key condensates of true QCD vacuum, 

and hadron physics at finite temperature. We apply our sum rule 

to charmonium channel first. Because of heavy mass of charm 

quark we can extract gluon condensate as a dominant vacuum 

condensate in this channel. We investigate temperature 
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dependence of gluon condensate. Next we study F-meson channel . 

F-meson is considered as the bound Btate of charm and .strange 

quark. Strange quark is also supposed to be heave enoughtto 

neglect other condensates, we can investigate gluon condensate 

in this channel too. Gluon condensate is a vacuum structure of 

QCD and should be channel independent. Analysis of different 

channels allows us to study this universality. Based on this 

universality, quantitative estimation of-temperature dependence 

of masses, widths and thresholds of charmonium. and-F-Me-son-is 

obtained. These are our main results. 

      In §2. we propose "discrete mode -sum rule," and consider 

some usage of this sum rule. Application to charmonium is also 

mentioned in this section, which shows the prototype of the way 

how our sum rule works. In §3. we describe the application to 

F-meson channel. The summary and the discusions are in §4. 

Appendix A is the explanation about the sum rule at zero 

temperature and the techniques used in it, which is also useful 

at finite temperature. Appendix B contains the explanation of 

sum rule for spectral density by Bochkarev and Shaposhnikov and 

some discussions. We show the method used to calculate Wilson 

coefficient of gluon condensate in Appendix C. Appendix D is 

devoted to semi-relativistic potential model used in F-meson 

analysis. 

     The §2. is a work in collaboration with Professor K.Hirose, 

Professor T.Kanki and Dr. O.Miyamura. The §3. is my 

contribution. 
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   §2. Proposal of QCD sum rule at finite temperature 

      QCD sum rule at finite temperature is also based on the 

combination of dispersion relation and optical theorem as in the 

zero temperature case. The difference is to consider Gibbs 

ensemble average instead of vacuum expectation value. The 

current-current correlator is defined as 

      H (x-y) = << T j a (x) i b (Y) >>         11V 
11 V 

         Tr exp(-~(H-WN)) T j'(x) j b (y) / Tr exp(-~(H-UN)) 
                                 W V I 

                                                             (2-1) 

where H is the hamiltonian, N is number operator, ~ is 

temperature inverse and W is chemical potential. It is 

decomposed into a tensor part and an invariant form factor. In 

momentum space we have 

                    11 
11V (q) = T ]IV (q) ff(Q 2 (2-2) 

where we set Q 2= _q 2 for later convenience. The dispersion 

relation for H(Q 2 ) is the following 

                    11 (Q 2) 00 ds IMIT (S) (2-3)                       Tr f 0 s + Q 2 
The OPE is a short distance expansion with respect to x-y . It is 

independent of Gibbs ensemble average and also valid at finite 
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temperature. We apply OPE to the time ordered product of 

currents (the inside of << >> in (2-1)) in combination with the 

usual perturbative expansion (see Appendix A). As OPE decomposes 

operator into products of a Willson coefficient C and a normal 

ordered local operator 0 we have 

               C I <<I>> C.<<O.>> 00 ds ImTI (S) (2-4)                      I I 7T f 0 Q 2 

where I is the unit operator. The Wilson coefficients can be 

calculated perturbatively and have relation with short distance 

structure of the theory and Gibbs ensemble average of local 

operators reflect non-perturbative effects at large distance. 

     To study vacuum expectation values of QCD, we need some 

modification of (2-4). Because QCD has asymptotically free 

nature, usual perturbative part C I and continuum part in ImH(s) 

saturate each other. The relation (2-4) holds almost trivially 

and we cannot obtain information about vacuum expectation values 

by direct comparison of both hand sides. We have to find some 

method to enhance resonance region in ImR(s) where the 

information about condensates is rich. We can notice easily 

there are two ways of such method in the analogy of sum rule at 

zero temperature. One is the "moment" sum rule which compares 

the derivatives with respect to Q 2 at the origin, which was 

adopted by Shifman et al. The other one is the "continuous 

weight function" sum rule which compares both hand sides after 

the integration with respect to Q 2 multiplying an appropriate 

8
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wed:ght 1.unctlon which enhances resonance region . Both methods 

             knowledge of Wilson coefficient on the whole complex 

-energy plane . It is true that thermo field dynamics gives a way 

to calculate these quantities at finite temperature, but the 

calculation is so complicated and impractical at higher order . 

      Then we propose a new type of sum rule at finite 

temperature : 

   ~Discrete Mode Sum Rule) 

           +C0 

      I gn ( CI(n)<<I>> + C,(n)<<Oi>> 
       44-00 

                                f Oods +00 ImH(s)                              7T o I n 2                                              n=-oo s + qO(n) 

(2-5) 

where we choose momentum rest frame (the frame -q"' = 0 is also 

adopted in what follows). The g 
n and C i (n) represent their 

values on q 0 (n) and the later quantities can be calculated by 

Matsubara's method. This type of sum rule reduces the complexity 

of calculation very much. 

      It is not always allowed to exchange the order of 

integration and summation on the hadron side. There is some 

restriction to weight function g n' The criterion to exchange 

them is given by following Hardy's theorem 

               +C0 
     if X dx I gn(x) or gn(x)               n oo f                      0 0 n=-oo 

                           +00 CO +0, 
   converges! I dx g n(x) I - gn(x) (2.6)              n=- 00 fo f 000 n= 

9



     In the -real ap-pldcat-inns., we choose weight fuctions which 

satisfy this theorem-

 2.1 Usage of discrete mode sum ru le 

     In this section, we discuss several possibilities of 

discrete weight functions and the parametrization of ImH(s) at 

finite temperature. The desirable features expected to these 

functions are a)-they enhance resonance region and b) they 

allow analytic calculation as much as possible. We consider next 

functions as an example 

                          g(n) cos(nx) (2-7) 

where x is a parameter. We can perform the mode sum on the 

hadron side analytically. We find 

         +00 COS(QO (n)-x) B 
)2 cosh(V_s(6/2-x))        1 2 2Tr 

        n=-co s + Q 0 (n) sinh(/`s~/2) 
(2-8) 

where 0 < x < This resultant function damps very rapidly as 

exp(-x.s) when s tends to infinity. Imff(s) is considered to tend 

to a constant as s becomes large because of asymptotically free 

nature of QCD. So the integration with respect to s on the right 

hand side of (2-4) converges and Hardy's theorem guarantees the 
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  validity of exchanging -summation ~and,_-int-_egr_at!-.on -t-or dthis :we:i:ght 

  function. This damping factor becomes:strong 

  other words, x plays the role of cut off-pa-rameter on-the s 

  axis. In general, oscillating weight functions on the imaginary 

  axis are supposed to give damping factors on s and this is the 

  reason why we consider this weight function. Especially in zero 

  temperature limit, the result reduces to exp(-x-s) and give 

  Laplace transformation of ImH(s) to the variable x. Our purpose 

  to enhance the resonance region can be achieved by taking 

  appropriate values of x. If x is sufficiently small, (2-4) with 

  this weight functions is saturated-by the asymptotic -region.. But 

  as x becomes large, the weight of the resonance region also 

  increases. 

       When we use this type of weight function, we must pay 

  attension to the compatibility of this function and OPE. The OPE 

  is one of short distance expansions and it breaks down at large 

  distance. In momentum space, we can not rely on this expansion 

  near the origin. But naive cosine type weight function has large 

  weight for small values of momentum and some device is needed to 

  suppress such a region. Here we consider subtracted cosine type 

  one as follows 

                              (cos (2,,n x 27Tn                  gn ) - Cos( -~Y)) (2-9) 

  It is obvious that the part near n = 0 is suppressed by this 

  weight function. We will use this function in the applications. 
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Another possible choice is g W = n -sin( 27T.n. 
                            n ~~l 

     Next we describe the treatment of ImR(s) at finite 

temperature. We also adopt resonance continuum-model d-n-this 

case. At zero temperature we can use experimental data to 

parametrize ImR(s), which enables us to determine vacuum 

expectation values. But we have no such data at finite 

temperature. It is of course possible to find solutions for all 

parameters (condensates, masses, widths and threshold) 

satisfying the sum rule. But parameters are so many that there 

still remain some ambiguities. One way to reduce the number of 

parameters is to use some models which relate these parameters. 

For example, next combination is one of possible choices in the 

channels where gluon condensate is a dominant condensate. First 

using a potential model with linear confining potential, we have 

masses and widths as functions of string tension. Secondly we 

consider flux tube model which relates string tension and gluon 

condensate. Then we get them as functions of gluon condensate. 

This procedure eliminates mass and width parameters and makes us 

possible to determine parameters precisely. This combination is 

used in both charmonium and F-meson analysis. I 

     We require the agreement of both hand sides of (2-5) to 

determine remaining parameters. When vacuum expectation values 

about confinement concerning confinement is concerned, the 

appropriate values of x is larger than the inverse of the 

resonance masses. These parameters are fixed by adjusting (2-5) 

to hold in the wide region of x. We can determine higher 
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condensates at larger x. But it is noted that too large x 

becomes meaningless and the results may depend on model which we 

take in parametrizing Imn(s). Such a simple parametrization as 

resonance-continuum model cannot include information about 

higher condensate.

 2.2 Analysis of charmonium 

     We apply our new sum rule at finite temperature to analyze 

charmonium channel?0) We consider current-current correlator for 

vector current (Fig.j&): 

                       (x) = C(X) Y C(X) (2-10) 

Charm quark mass is about 1.5 GeV and so heavy that the pair 

creation from vacuum owing to vacuum fluctuation or absorption 

of quark-antiquark pair into vacuum do not occur. The quark 

propagator is not modified from free one. In othe words, the 

vacuum of such a heavy quark does not much deviate from 

asymptotic vacuum and there are no condensats due to 

non-perturbative effect. So the problem completely reduces to a 

free motion of quark in external gluon field which is under 

non-perturbative situation. Such argument leads us to 

perturbative expansion of-quark propagator and application of 

OPE for gluon to take non-perturbative effect into account. Then 
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combim-a-ti-on --of -this -pe'rt-arbratim'n -a-nd -OPE allows us to calculate 

the 'right h-amd -side -of ~2-4)-for charmonium. Using technique of 

Fock-Schwinger gauge -21) and-ORE-in momentum space, we find next 

dispersion relation : 

           C (Q 2 + C (Q 2 )<<G a G a >> ds IM11(s)            I G )IV ]IV Tr f 0 s + Q 2 
                                                                                      Co 

                                                             (2-11) 

in very good approximation neglecting higher condensates. 

     Here we make a comment on Lorentz covariance of 

condensates. At finite temperature, Lorentz covariance breaks 

down generally unless we introduce extended concept of 

4-dimensional Lorentz covariant temperature. The origin of this 

breakdown consists in the fact that the frame is chosen to make 

the thermal medium at rest. We also chose this frame, so the 

local operators which appear in OPE are not necessary Lorentz 

invariant. This means the gluon condensate does not nees to have 

              a a a a the form <<G G >>
. Colour electric condensate <<G G . >> 

            PV 11V Oi 01 
   a a a a a a <<E E >> and clo

ur magnetic one <<G . G >> = <<B B >> can                                  i
j ij 

condense independently with different Wilson coefficients. This 

separation have relation with the tensorial form of gluon 

propagator. It has no Lorentz covariance anymore and keeps only 

0(3) invariance, which allows various tensorial components of 

gluon propagator. But in this paper we use finte temperature 

version of usual Lorentz covariant form of gluon propagator. 

This is the reason why we have Lorentz invariant <<G a G a >> in 
                                                            11V 11V 

(2-11). Of course it may be more complicated in the actual 
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-zl-tuation at ±.inite temperature. But we expect that <<G a G a >> 
                                                                   11V 11V 

,-plays.-an-important role in confinement even at finite 

temperature. Independent analysis of <<E a E a >> and <<B a B a >> 

requires more strict calculation. 

      We show results of calculation of Wilson coefficients. We 

consider C I up to two loop order. It is convenient to decompose 

these coefficients into two part, 

                           C W = C W + ACW (2-12) 

where C W is an any Wilson coefficient and C W is a contribution 

from zero temperature and AC W is one from finite temperature. 

      C at one loop level ( C 0 ) can be derived easily. It is       I I 

represented by one loop diagram in Fig.2 and the results are as 

follows: 

                                   2 2 

       C 1 0 = i f+' ds - i (s + 2m c )Vs - 4m (2-13a)        1 4 Tr 2 4m 2 s + Q 2 A 3 

c 

     ACO = i f+' ds 1 - 1 tanh(~/s/4) 1 
        1 4 Tr 2 4m 2 s + Q 2 

c 
                                    2 2 

                                  X (s+2m c )/s-4m (2-13b) 
                                       /S3 

C at two loop level have contributions from three diagrams in I 

Fig.3 and we have 11) 

      C 1 1 +00 ds (3-v 2 27r v(v+3)       1 2 4Tr 2 f 4m 2 s + Q 2 4Tr 

c 

                                                           (2014) 
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where v 1- Am 2 /S ) 1/2 '. ~But -L 1 me-guix-es a two loop                               -C C~ 
calculation-and-is very--compli:cated. We have estimated this 

quntity numerically and find its contribution is negligible. 

     As for C G term (Fig.4), Shifman et al. obtained C G as 

follows : 

   C Ot 3(a+l)(a-1) 2 1 ln ( /a- + 1 3a 2_ 2a+3     G 
487TQ 2 a 2 2 1 a 2             0 

(2-15) 

AC G is given after Lengthy calculation and the result for total 

C G is as follows 

  C a 1 dt f 1 tanh (Trm^ +t2) 

                          CO 

  G -6 ~04- f 0 1 T(r) 5 /1                                        +t2 

                                 A A 2 A            1 
7TM 1 Trm tanh( 7 m 

   + f 2 4 + f 3 3 
       T(r) 2 T A ~-~2 T(r) ~-72 2 m/,+t2)                 cosh (7 MV1 +t V1 +t cosh (7r^ 

                     ( Tr )    + f 
4 1 2 - -M 1 - 3 (2-16)       T(r) 2 ( 7T A/, m/1                cosh m +t2 2cosh 2 Or A +t2) 

where 

   f 1 = -1024(3r-10)t 8 +512(3r 2 +6r+34)t 6_ 64(15r 3_ 60r 2_ 288r-16)t 4 

         -32(47r 3 +6r 2 -236r+288)t 2 -32(10r 3 +71r 2 +148r+96) 

   f 2 = 12r(r+2)(r+3)(r+4) f 3 = 2r(r+2)(r+4) f 4 2r(r+4) 

                                                           (2-17) 

with T(r) = 4t 2 +4+r , r = Q 2 /M 2 and M^ = ~m/27 0 
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     Next we consider the relation between-gluon-condensate and 

resonance masses and widths.7In heavy quarkonium, 

non-relativistic potential models havemade.-xema:rkable 

succes s?2 )There are several potentials which reproduce mass 

spectrum. We use a refined version of such potentials, which is 

                            23) proposed by Buchm*dller and T
yel 

                     V(r) a(r) + kr (2-18)                            4 
r 

where the k is string tension and a(r) is a running coupling 

constant motivated from QCD and defined as 

         a(r) = 8 dt sin(Atr) 1 1 (2-19)              b 0 fo t ln(l+t 2) t2 
                                        CO 

where b 0 = 9 and A = 250 MeV. We have neglected spin-spin 

interaction term. Variational method with this potential gives 

the masses of charmonium. The variational criterion is 

2 
                            P- + V(r) I'P

trial> = 0 (2-20)                   trial 2m 

We have used Gaussian trial function with extension parameter, 

which is used as the variational parameter. Varying k, we have 

charmonium masses as a function of the string tension. As for 

the widths, we use next relation : 

               lq)(0)12 M clp dV(r)                                soll dr 11~sol> (2-21) 
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where 7~ 
Sol is the solution of (2-20), because direct -value of 

q)(0) is not so reliable, though once integrated this relation is 

rather correct. Leptonic decay width is proportional to this 

quantity, so it is also a function of the string tension. This 

is the first step. 

     Secondly we relate this string ten Sion and gluon 

condensate. We use the relation motivated from flux-tube 

model ?4) In this model, we suppose that color-electric flux 

lines from quark to anti-quark are squeezed into a flux tube. In 

this picture energy has contributions from the!vacuum energy and 

the field energy. 

                      E E + E (2-22)                           total-~ vac . field 

with 

                      E 
vac. = BV = Bar (2-23a) 

                   E E 2 V 27TQ 2 r (2-23b)                       field= 8 Tr a 

where B is the bag constant, a is the cross section of the flux 

tube and E = 47Q The effect of E will be to compress the 
                  a vac. 

flux lines as much as possible and E field has opposite effect. 

These effects are balanced at energy minimum, i.e., ~-E = 0 and                                                3 a 

we have Q /27T/B . At this cross section, total energy is 
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thus 

                           E = 2 Q /2_~ -B r (2* 24) 

The bag constant can be related with gluon condensate as 

follows 

               B E OJT JO> 
                              vac 4 Ij 11 

                         bot <G a G a > (2-25) 
                         9 liv IjV 

with b 11N 
c 2N f 27 (for Nc= N f 3). For quark and 

                            2 = 4 anti-quark, we have Q Substituting these results for 

the bag constant and charge, we obtain final relation between 

the string tension and the gluon condensate. 

                     k /3- a <<G a G a >> (2-26) 
                                       ]IV 11V 

Then this completes the relation between the resonance masses 

and widths and the gluon condensate, and also our sum rule at 

the same time. We show the dependence of charmonium mass and its 

leptonic decay width on these parameters in Fig.5a and Fig.5b. 

     To check the reliability of our new sum rule, we 

investigate whether it reproduces the value of gluon condensate 

obtained by Shifman et al. in the zero temperature limit. We 

parametrize ImU(s) using the resonance-continuum model with 
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-experdmenta:L data 

                                                 e + e            Z/t M J/4 ) 3095 MeV r jh~ = 4.50 keV 

            q), M 3684 MeV r e e = 1.95 MeV etc. 

and 

                          S = (4.2 GeV) 2 (2-27) 

As for QCD side, we take 

                      m c = 1.41 GeV a = 0.24 (2-28) 

following Shifman et al. In Fig.6a and 6b, we can see 

contributions from each component of QCD side and hadron side, 

respectively. The contribution of gluon condensate becomes 

dominant as x becomes larger. We define L/R-ratio as the ratio of 

left and right hand side. It should be unity if sum rule holds 

well. We show in Fig.7, the result of this quantity versus cut 

off parameter x in two cases : 1) <<G a G a >> = 0 2) <<G a G a >> 
                                             jjV )IV 11V )IV 

  0.1884 GeV 4 . L/R-ratio begins to deviate at small x in the 

case 1). We can see that C <<G a G a >> term in the left hand side                             G 
PV WV 

gives negative effect and the value in case 2) keeps L/R-ratio 

unity in wider range in x and improves the sum rule very much. 

This shows that our sum rule is compatible with that of Shifman 

et al., and we have verified it works well at zero temperature. 
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We suppose the dev-iat-inn.-of -L/-R-7-=at-io from unity in the region 

where x is-larger than 5-GeV~ 1 occurs because higher order 

condensates become ±mportant-in--such a,xegion. Shifman et al. 

used "moment" sum rule which is completely independent our sum 

rule. This compatibility strongly supports the reliability of our 

sum rule. 

     We proceed to finite temperature case. Fig.8 shows 

L/R-ratio for parameter values fixed at zero temperature in 

several finite tempe-ratur-e~cases- Horizontal axis is the same 

cut off parameter x. When temperature is between 0 and 50 MeV, 

sum rule holds well-But d-t begins-to break down at 70 MeV and 

L/R-ratio becomes worse in the region where x is larger than 2 

GeV- 1 as temperature becomes higher than that. This shows that 

some modification of parameters is needed to keep the sum rule 

and we can see they have temperature dependence. We plot 

L/R-ratio for various values of gluon condensate at T = 100 MeV 

in Fig.9. The sum rule is recovered as gluon condensate becomes 

smaller. Searching the best fit, we can determine the value of 

gluon condensate at this temperature, i.e., 

             <<G 
11V G 11V >> = 0.14 GeV 4 (T = 100 MeV) (2-29) 

In Fig.10, we show the temperature dependence of gluon 

condensate. It decrease gradually as temperature becomes high. 

It becomes 80% of its zero temperature value at T = 100 MeV. 

From this dependence, we can derive temperature dependence of 
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masses and widths-

mass shifts toward 

about 80 MeV at T

We show the 

lower side 

= 100 MeV,

 results in T-ig- 1 la and 

by about 30 MeV and 

i.e.,

 1 1:b-

mass

-J/~
) 

does

We can also 

temperature, 

        r e e 
        J/4) 

      In next

 M J/1
) 7 3065 MeV 

  M 3600 MeV (T = 100 MeV) 

see that the decrease of width,is 20%-,at 

 (T = 100 MeV) 0.8 r e e (T = 0 MeV) 
                       J/1P 

 section, we consider F-meson channel.

the

(2-30)

same

(-2-31)
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     §3. Application to F-meson channel 

        We apply our QCD sum rule at finite temperature to F-meson 

  channel. As shown in §2., we have applied the sum rule to 

  charmonium channel and investigated the temperature dependence 

  of gluon condensate. The analysis of F-meson channel also tells 

  us about this dependence. As gluon condensate is a nature of the 

  QCD vacuum, it is supposed to be channel independent. Gluon 

  condensate should have this universality, which we can study by 

  the analysis of this different channel. 

        In charmonium case, we can parametrize Imff(s) on the hadron 

  side by its leptonic decay width through vector current. In 

  F-meson channel, we parametrize the imaginary part by the decay 

  constant f F* A differnt point in these cases is a lack of 

  experimental value of f F* Then first we determine its zero 

  temperature value by the use of parameters fixed in charmonium 

  analysis. After that applying our sum rule at finite 

  temperature, we investigate temperature dependence of gluon 

  condensate in this channel and discuss about the universality of 

  this dependence. 

       In this channel, another difficulty arises in potential 

  model. Non-relativistic potential model have works well and 

  reproduces the mass spectrum of charmonium rather precisely. We 

  have applied this model to s-s system, but we cannot obtain 

  correct ~-meson mass. It shows that non-relativistic 

  approximation breaks down bacause strange quark mass is not 
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sufficiently heavy. We have to take relativistic effect into 

account. This is also the case for F-meson. In the F-meson, 

heavy charm quark exists near the center almost at rest and 

the strange quark forms a relativistic orbit around the charm 

quark. The general framework to treat such semi relativistic 

atom like mesons was developed by Morishita et al. The basic 

idea is to perform non-relativistic approximation only to heavy 

quark starting from fully relativistic theory. We adopted their 

method to derive the string tension dependence of mass and the 

value of the wave function at the origin which have relation 

with the decay constant. 

  3.1 Sum rule in F-meson channel 

     First we explain the QCD side of the dispersion relation in 

F-meson channel. The main decay mode of F-meson is F 7r . It 

suggests that F-meson is composed of charm and strenge quark (cs 

or cs). Generally the lowest state in any channel should have 

the same quantum numbers of the current. So the corresponding 

current is a pseudo-scalar one (F;W.26): 

                (x) (3-1)               5 2 (c(x)y5s(x) + c(x)y,s(x)) 

In charmonium case, the-assumption that there is no <cc> 

condensate in QCD vacuum is completely justified because of its 
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heavy mass. In F-meson case, as strange quark is lighter than 

charm quark, it may seem that the condensate of the strange 

quark should be taken into account. But strange quark mass is 

about 150 MeV and still heavy to condense in the vacuum. So we 

suppose that the assumption that there is no quark condensate is 

still valid in F-meson channel, though the approximation becomes 

slightly worse. Under this assumption the same argument and 

method in §2. lead us to the dispersion relation 

           C (Q 2 + C (Q 2 )<<G a G a >> 1 00 ds IMT1(s)            I G 11V UV 7T f 0 s + Q 2 
                                                             (3-2) 

which has same form as before and Wilson coefficients are 

calculated by the current (3-1). 

      If we treat D-meson, which is composed of charm and u,d 

quarks, such assumption breaks down since u,d quarks condence 

and have non-vanishing vacuum expectation values. 

     We summerize the results for Wilson coefficients in the 

following. In F-meson channel, the tensor structure is simpler 

than that of charmonium but the mass differnce makes the 

calculation and results complicated especially in higher order. 

Using the notation as before, C 0 can be calculated from a diagram I 

in Fig.12. The result is 

                                                      -2 

                CO = 1 f 'Oods 1 3 s (3-3) 
                   I Tr s S + Q 2 8Tr s 
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                           2
, 2= 4m m / - ~c 0 xh-ex-,e S (m 1 -m 2) v 1 2 s is given by 

-r-a.l.culat-ing.the same diagram by the use of Mastubara's method 

and we have

 + co 

fo
3 

2

0 
I~c I =

4 Trk 2 dk 

 (2 TO 3

1

-4 (Q 2 (2k

          2 2    exp( ~V~ ~+M + 

 +"M (M 1 + m 2)) + mi (M 1 + M 2 ) (mi - m 2) 2 )

,C2+ M2    + M 1 ((Q2_ M2 + M 2 ) 2 + 4Q 2 (k 2 + m 2       1 2 1

     m 1 *-+ m 2 ) - (3.4)

on Q 0 (n) = 2nn/~ . In the equal mass case, this reduces to usual 

dispersion type but the mass inequality forbids such 

representation. C is expressed by three diagrams in Fig.13 and 

is rather complicated ?5) 

  C 1 1 f+- d.. 1 3 s 2 , 4    I Tr s s + Q 2 8Tr s '~ Trv 

       x ~ (,+v2) 2 1+v '+V)                      Tr + ln (T-
                    6 v) ln( 2 

                       + 21( 1-V + 1( 1+v 1-V                           1 +v 2 2 

                          1 2 1+v, 1 1-v 1                    + -41(v + l(v 
1) + 1( 2 2 

                                          2 1+v2) 1-v 2)                          -41(v 2) + l(v 2) + 1( 2 
2 
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We neglect temperature dependence of C AC for the
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present- We have estimated-AC -and -f-ou-nd -7it -negligible in -the 

charmonium case. We expect-the situation i=s-ncit in this 

case. As for C G , it is given by diagrams .-in Fig.1-4. We calculate 

these diagrams following Yazaki et al. We have to enumerate 

     2-rr +00 d 3 k 

      00 f 2Tr 3 

 Tr Y5SF Wy S F Wy 
p S F Wy p S F (k )Y5 ~F (k')y 11 S F (k') 

     • Y5 S F Wy S F My 
p S F (k )Y5 S F (k')y S F (k')y -V S F (k') 

    • Y5 S F My S F (k )Y5 9 F (k')y 
P F (k')y p F (k')y 11 F (k') 

    • Y5 S F Wy S F (k)y 
p S F MY p S F (k)y 11 S F (k )Y58F (k') 

     • y5s F (k )Y5 F (k')y 
11 -8 F (k')y V 8 F (k')y V 8 F (k')y 11 8 F (k') 

                                                             (3-6) 

where S F and S F are fermion propagator of heavy and light quark 

respectively, and k' = k-q . Analytic calculation is difficult 

and complicated because of the inequality of masses. We take 

internal mode sum analytically by the use of mathematical 

formula and integrate numerically with respect to IkI. See 

Appendix C for further details. 

     Secondary we mention the semi relativistic potential model 

used on the hadron side, which enables us to treat strange quark 
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relativistically. This method was developed by J.Morishita, 

T.Morii and M.Kawaguchi ?6 ) Their basic strategy of 

semi-relativistic method is treating light quark 

relativistically and heavy quark non-relativistically. Starting 

from fully relativistic potential model with scalar and vector 

potential introduced by Fermi and Yang, Foldy transformation is 

applied for heavy quark. This proc edure reduces the number of 

components by eight and the hamiltonian is expanded in the 

inverse power series of heavy quark mass. To investigate mass 

spectrum, we separate the hamiltonian inti two part. One is upto 

1st inverse power of heavy quark mass and the other is the 

remainder. Then we apply many dimensional variational method to 

the former hamiltonian and treat the latter by perturbation. The 

trial function is a Gaussian type, which is a product of 

polynomial and Gaussian weight exp(-r 2 /(2X 2 )), and the 

extension parameter X is taken as the variational parameter. One 

attention is here in order. The hamiltonian is still partially 

relativistic and has no energy positivity. They cure this point 

by the use of virial theorem, which says that the virial should 

vanish for the stationary solution. Then we vary the extension 

parameter observing the virial and fix the value when the virial 

vanish. 

     We try this method for various values of string tension 

contained in the scalar potential and obtained mass spectrum as 

a function of string tension. As for the value.of wave function 

at the origin, the direct value of the trial function is not so 
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reliable that we used a relation which corresponds to (2*21) ±n 

charmonium case to determin the value. 

     In Table 1, we show the value of fitted extension 

parameter, mass of F-meson, and 47 lq](O)12 . We can see that as 

string tension becomes smaller, the extension parameter becomes 

larger and the wave function becomes broader. Masses gradually 

decrease as string tension becomes smaller, which shows the same 

tendency as in the charmonium case. The values of wave function 

at the origin fluctuate slightly comparing the smooth change of 

mass, but it also decreases as the string tension becomes 

smaller. The string tension dependence : iof mass and 4Tr ly(O)12 

are shown in Fig.15a and 15b, respectively. 

     We introduce the decay constant of F-meson by the following 

matrix element in the standard way, 

                     <FICY 
11Y5 S10> = -if F P (3-7) 

The resonance part of Imff(s) can be expressed by the use of this 

decay constant as follows 

                  Im H(S) f 2 M 6(s-M 2 (3-8)                          res
. 8 F F F 

for pseudo scalar current. 

     Let the light quark be non-relativistic, so that one finds 

that 
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                      f 2 M 0~ ly(O)i 2 (3-9) 
                         F F 

for ordinary wave function. In what follows, we use this 

relation for relativistic quarks as well. The quantity ly(O)i 2 

has been already given as functions of gluon condensate, and we 

find the decay constant f F as a function of gluon condensate. As 

for continuum part, Bochkarev and Shaposhnikov used temperature 

dependent resonance continuum model requiring the saturation 

above threshold. But we simply parametrize by the use of 

asymptotic value of ImC I based on the asymptotically free nature 

of QCD 

                   Im cont
.H(s) = ci(-)e(s-sO) (3-10) 

where C 1 (00) = lim Imc I (s) and S 0 is an effective threshold. 
                                   S-)-00 

This completes the parametrization of our sum rule. 

     We adopt cosine type one in the choice of weight function. 

In the actual use of our sum rule, we fix y a and we have 2 

the following explicit form as our sum rule. 

               +CO 

         I (cos(2ffn) _ (_)n) (C (n) + C <<Ga G a >>) 
         n=1 I G 11V ]IV 

                                             cosh ( A-X)[S-) - 1 
                               ds ImH(s) 2 

                                                            00 

                     fo sinh( ~S-) 

where 0 < x < If we take zero temperature limit, factors 2 

27r (-) n and 1/sinh(~Js/2) on left and right hand side 
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=e-apecti-vely tend to zero. This shows that sum rule (3-12) has 

-the-sa-me -zero temperature limit as one with naive cosine weight 

~fnnction iand the meaning of x as cut off parameter does not 

change. 

      By the use of some models, we have reduced the number of 

parameters and finally we have two parameters, i.e., gluon 

condensate and effective threshold. As x plays a role of dumping 

parameter on the s axis (exp(-3ds-) at T=O), when x is small this 

,-zf,a-c:tor.:i.s.mot so effective and information contained in ImIT(s) 

at large s is enhanced in the sum rule. On the other hand, when 

x is large, this factor becomes effective and the weight on the 

resonance region increases. So the non-perturbative effect 

appears in the large x region. As for our parameters, the 

threshold is related with the small x region and the gluon 

condensate with large x region. Thus, the effective regions of 

these parameters are different in x and we can determine both 

threshold and gluon condensate by this single sum rule 

naturally. 

  3-2 Results 

      Before proceeding to the analysis at finite temperature, we 

have to fix decay constant f F at zero temperature. We take 

                M F = 1.970 GeV and S 0 = (3.5 GeV) 2 

                                                            (3-12) 

on the hadron side and 
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                   m c -1-41 GeV, m s 0. 15 GeV , 

               a = 0.23 and <G a G a > 0.1884 GeV 4                                     ]IV jjV 

                                                           (3-13) 

on the QCD side. Using these values we check the L/R-ratio for 

various values of f F' The contributions from each terms in QCD 

side and hadron side are shown in Fig.16a and 16b, respectively, 

-in zero temperat=e--I±mIt- We can -see on the hadron side that we 

have contribution from continuum part in the small x region but 

generally at large x it decreases very rapidly as mentioned 

above. On QCD side, the contribution from gluon condensate has 

positive sign contrary to the charmonium case. But it also 

increses as x becomes large and we can see that non-perturbative 

effect plays an essential role in saturating the resonance 

contribution on the hadron side. We plot L/R-ratio for several 

values of f F in Fig.17. As the best value for keeping the 

L/R-ratio unity, we find 

                           f F = 0.80 GeV (3-14) 

This is one of our result. This value is rather large comparing 

f D = 0.22 GeV and f B = 0.14 GeV which was found by Shuryak 27) 

(D and B means D-meson and B-meson, respectively). The charm 

quark and strange quark are in the same doublet, but charm and 

u,d or beauty and u,d do not belong to the same one. So 
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suppresion from Cabbibo angle is~expezted~Tor-± 
D --and-f B . 7his 

would be the reason why f is larger than -f andf                           F 
D ~B 

      Next we proceed to finite temperature case--The --L/R-ratio 

is shown in Fig.18 at T = 10O .MeV for parameters fixed at 

T = 0 MeV. L/R-ratio deviates largely from unity, which shows 

some modification of the parameter values is necessary at finite 

temperature . We can see L/R-ratio for various values of gluon 

condensate in Fig.19. The L/R-ratio becomes near to unity as 

gluon condensate decreases and the sum-rule -is-recovered- We 

search the value of gluon condensate which keep the L/R-ratio 

unity in widest region of x and it gives the value of gluon 

condensate at T = 100 MeV . We have 

             <<G a G a >> = 0.15 GeV 4 (T 100 MeV) (3-15) 
                  11V ]IV 

Investigating the sum rule at several temperature in this way, 

we find temperature dependence of the gluon condensate. The 

result is shown in Fig.20. We can also find temperaure 

dependence of effective threshold at small values of x. The 

result is in Fig.21. It also decreases and becomes (3.0 GeV) 2 at 

T = 100 MeV from the value (3.5 GeV) 2 at T = 0 MeV . We can 

also find temperature dependence of mass and decay constant of 

F-meson from that of gluon condensate. They are in Fig.22a and 

22b, respectively. Typically we can see that F-meson mass shifts 

by about 20 MeV toward lower side at T = 100 MeV , i.e., 

                               34 -



                 M F = 1940 MeV (T = 100 MeV) (3-16) 

The decay constant also decrease and at the same temperatue its 

value becomes 90% of the value at zero temperature. 

            f F (T = 100 MeV) 0.9 f F (T = 0 MeV) (3-17) 

     Comparing results obtained in charmonium channel and 

F-meson channel, the region where sum rule holds is-small in the 

latter case. Effects of higher condensates becomes dominant at 

large x and they increase for small mass. We suppose-that the 

break down of the sum rule at small values of x in F-meson 

channel is caused by small strange quark mass through this 

general mechanism. 

      In F-meson channel, we have measured temperature dependence 

of effective threshold quantitatively. It is true that it shifts 

toward lower side as temperature becomes higher but it has a 

value about (3.0 GeV) 2 at maximum temperature which we have 

studied and it is still larger than squared resonance mass. We 

can not observe the phenomenon that effective threshold becomes 

lower than squared resonance mass within the temperature we have 

investigated. 

      The temperature dependences obtained from analyses of 

different channels have same tendency that they decrease as 

temperature becomes high. The decrese is slightly larger in 

charmonium channel but the difference is small. They show almost 
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same behaviour 

indicates the 

condensate. We 

reliability of 

parameters, i.

 quantitatively in both channel. This fact 

universality of temperature dependence of 

 consider this universality assures the 

 the temperature dependence of hadronic 

e., masses, widths and decay constant.

gluon
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  §4. Summary and discussion 

     We have considered QCD sum rule at finite temperature based 

on th e success at zero temperature. It gives a method to 

investigate non-perturbative effect at finite temperature , which 

is interesting in connection with hadron and quark-gluon phase 

transition and hadron physics at finite temperature . Finite 

temperature QCD sum rule was considered by Bochkarev and 

Shaposhnikov first ,to study the phase transition. But they 

neglected the temperature dependence of non-perturbative effects . 

We have proposed a new sum rule which enables us to take this! 

dependence into account. Our basic strategy is to extend the 

method by Shifman et al. to finite temperature substituting 

vacuum expectation value by Gibbs ensemble average. There were 

two altered points : 1) we use finite temperature perturbation 

theory in the calculation of Wilson coefficients and 2) the lack 

of experimental data is supplemented by spectroscopic models 

depending on vacuum condensates. We adopt Matsubara's method for 

1) and parametrize masses and widths (or decay constant) by gluon 

condensate in terms of the combination of potential models and 

flux tube model to cure the lack of 2). This latter procedure 

reduces the number of parameters and we can determine remaining 

parameters without ambiguity. Essential point here is that 

Matsubara's method gives correct values of Wilson coefficients 

only on q0(n) = 27in , so that we summed up the both hand sides 

of dispersion relation with a weight function on these points. 
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 This is our proposal of discrete mode sum rule . It has a merit 

 that it does not need analytic continuation which is difficult 

 for Wilson coefficients of higher consensates. It simplifies the 

  calculation very much and information contained in this sum rule 

  is not less than that of continuous version. Some proper choice 

 of weight function on imaginary energy axis leads to damping 

 factor on the real axis. Choosing appropriate strength of this 

  damping factor, we can enhance resonance region where 

 -information on non-perturbative effects is rich. The criterion 

  to determine vacuum expectation value is the agreement of both 

 hand sides in as wider region of damping parameter as possible. 

       To check our sum rule, we compared our results and that of 

  Shifman et al. in charmonium channel at zero temperature. Their 

  sum rule was moment type one and completely different from our 

 discrete mode sum rule, but both predictions about gluon 

 condensate agree each other. This fact supports the reliability 

  of our new sum rule. 

       We have applied our sum rule to charmonium channel first, 

  and next proceed to F-meson analysis. In these channels, we can 

  extract gluon condensate effectively. We concentrate on 

  temperature dependence of gluon condensate and hadron physics at 

  finite temperature. We have found gluon condensate decrease 

  gradually as temperatere becomes higher. Typically it becomes 

  80% at T = 100 MeV . This behaviour is seen in both channels 

  and the amounts of the decrease show quantitative agreement. 

  Gluon condensate is a nature of true QCD vacuum and its 
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-temper-at-ure -d-epende-nce -:shouia be-channel independent . We have 

verified this 'universality through the analyses of these 

different chanels- We..summerize the results on hadron physics at 

finite temperature. 

      1) Charmoniummasse's shift toward lower side. J/ip and q)' 

masses decrease about 30 MeV and 80 MeV at T = 100 MeV 

respectively, 

      2) Leptonic decay widths of charmonium also decrease and 

-at -T = 100 MeV --they-becomes 80% of their zero temperature 

values. 

      3) As there is no experimental data on decay constant of 

F-meson, we have determined its value by the use of parameter 

values fixed by charmonium channel. The result is f F = 0.8 GeV 

at zero temperature. 

      4) F-meson mass shifts to the lower side by 20 MeV at T 

100 MeV. 

      5) The decay constant of F-meson also shifts to the lower 

side and it becomes 80% of its zero temperature value at T 

100 MeV . 

     6) Effective threshold decreases from (3.5 GeV) 2 to about 

(3.0 GeV) 2 at T = 100 MeV . 

      The value of f F is reasonable in comparison with f D or f B 

determined by Shuryak. We consider that verified universality 

gives a support on these results. We cannot see the phenomenon 

that threshold becomes lower than squared resonance mass within 

the temperature we have investigated. Unfortunately we cannot 
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apply our sum rule at higher temperature-th-an-130 MeV. We used 

oscillating weight functin on the imaginary energy-axis to make 

damping factor on the real axis. Such beha-vio= of weight 

function results in the periodicity of cut off parameter x. The 

parameter x has a period ~ and the significant region becomes 

smaller as temperature becomes higher. This limits the highest 

temperature of our sum rule.. To overcome this defect, we need 

alternative weight functions. One of possible choices is 

   n 
n C X with appropriate-normali:z-ati~on-f-actor, whichmakes 

difference on q0(n) and directly corresponds to moment sum rule 

by Shifman et al. 

     We have assumed that gluon propagator is proportional to 

metric tensor and it is Lorentz covariant. We have condensate 

<<G a G a >> as a result of this assumption. But at finite 
   11V 11V 

temperature, there is no Lorentz covariance, color electric 

and magmetic field can condense independently. We will be able 

to know these precise information on finite temperature 

condensate decomposing gluon propagator by 0(3) invariant 

tensors. 

     Other interesting applications are analyses of different 

channels. By these analyses, we will be able to confirm the 

universality of temperature dependence of gluon condensate and 

study that of other condensates. Especially, we can investigate 

temperature dependence of chiral condensate in D-meson channel 

which is another typical condensate of QCD vacuum. Because 

D-meson contains light u or d quark, chiral condensate becomes 
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important in this channel. The devel-opment from T-meson -channel 

to D.-meson channel is rather straightforward with respect-to 

potential model as the semi-relativistic one is also applicable 

to this channel, though some other technical difficulties are 

expected. We hope it will be realized in near future.
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  Appendix A 

     The basic object in QCD sum rule is the current-current 

commutator, which is defined by 

               H (X-Y) = <01 T ja(x) jb (Y) 10> (A-1) 
                    ]IV V 

where 3' is a current and given by 

                                                                                                                .V 
                      1 11 (x) = q(x) y 11 q(x) (A-2) 

in vector current. In momentum space, we have 

                  4 V V     11 11V (q) i f dx exp(iq(x-y)) <01 T j 11 (x) i V (Y) 10> 

              ( q 11 q V - gPV q 2 ) 11(Q 2 ) (A-3) 

by the use of gauge invariance. The dispersion relation for 

TIN 2 ) is the following, 

                   11 (Q 2 00 ds Im TI (s) (A-4)                         7T f 0 _S Q 2 
     To derive non-perturbative effe cts, we calculate H(Q 2 ) on 

the left hand side by QCD with operator product expansion and 

input experimental data to ImH(Q 2 ). The right hand side is 

represented by Willson coefficients and vacuum expectation 
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values of local -operat-ors -through cope-rat-or ~product expansion. 

The vacuum expectation values reflect,the non-perturbative 

effects of QCD-Theseare-determined from experimental data 

through (A-4) and .we can obtain information about universal 

vacuum structure of QCD. 

     The force between quarks becomes stronger as they are 

separated at larger distance, i.e., there works confining force 

between quarks which is non-perturbative effect of QCD. On the 

other hand, the-interaction..between quarks--becomes -smaller at 

shorter distance and they behave like free particles, which 

shows that QCD has asymptotically free nature. This fact means 

that there exists some scale A which characterizes QCD and we 

can treat QCD perturbatively at smaller distance than A but 

non-perturbative effects dominate at larger distance than A. 

Operator product expansion (OPE) gives a general framework of 

treating such a situation, i.e., different phenomena with 

different scales. The basic idea of OPE is to expand operators 

for small x/A. It is a short distance expansion and it contains 

further information about long distance behaviour as we take 

higher order terms into account. 

     In QCD, we can extract gluon condensate <G a G a >, chiral 
                                                  PV PV 

condensate <TT> and other vacuum condensate as vacuum 

expectation values of local operators by applying OPE to the 

time ordered current-current commutator (left hand side of 

(A-4)). So we can determine these universal vacuum parameters 

from QCD sum rule with the input of hadron side data. 
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     ~To know -how--the-se =ndensates can be extracted act
ually, we 

need -some-technical preparation on Fock-Schwinger gauge. 

Fock-Schw-i-nger gauge -condition was introduced by Fock in quantum 

electro dynamics (QED), and then, independently, by Schwinger. 

After that it has been rediscovered several times in the context 

of QCD. It is given by 

                           x - x )" A a(x) 0 (A-5) f 

where x f is an arbitary fixed point in the space and plays the 

role of gauge parameter. It keeps Lorentz invariance but breaks 

transformational symmetry. The latter should be restored in 

gauge invariant quantities and x f disappears. This serves as an 

additional check of correctness of calculation. Hereafter, we 

take x f = 0 for simplicity. 

     This-gaugecondition has two main virtues, 1) the gauge 

fi eld is expressed by field strength, 2) it allaws covariant 

Taylor expansion. 

     1) Usually field strength G a W is expressed by gauge 
                                 WV 

field A a W 

     G a W A a(x) A a(x) + fabc A b (x) Ac(x) 
       WV 3XII V @xV 11 W V 

where f abc s are structure constans of the gauge group. But in 

this gauge, the gauge field A a (x) is expressed by field strength 

G a W vice versa 
 11V 
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                    A a (x) da a x G a (ax) (A-6)                     fo p P-P 

which can be derived easily as follows. 

     Following identity 

              a a(
x) ~A W.                A (x) xP A xp P 

11 (A-7)                       Dx ax 

holds for arbitrary gauge-f-i-e-ld A a (.x)- Me -f-i-r-st term vanishes 

from the gauge condition. The second one is rewritten as 

                            a @A a (x)                        - XP G (x) - XP 11 (A-8) 
                          lip ax 

also by the use of the gauge condition. Then we have 

                                         @A a (x) 
                   XP G a (x) = A a (x) + xp - 11 (A-9) 

                      P11 P axp 

A tricky substitution of x to ax gives 

                    axP G a (ax) = -1 a A a(ax) (A-10)                          P11 Da P 

After integrating the both sides by a from zero to unity we have 

(A-6). 

     2) Expanding A a (x) in the gauge condition (A-5) at the 
                    11 

origine by Taylor expansion, we obtain 
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     x A a(0) + xOt D A a (0) + l- xax a 3 A a (0) 0 
                       ot 11 2 a 

                                                               (A-1 1 

This equation holds for any x, -hence -each -order x -m-ast equal 

to zero, 

                      x IIA a (0) 0 (A-12a) 

                       x p x a 3 A a (0) 0 (A-1-2b)                                a 11 

                              ji a ~ . a                       X x x a 
a a A )1 (0) 0 (A-12c) 

Using these equations, covariant Taylor expansion of any 

quantity can be easily derived. Typically next two expansions 

are important. For fermions, 

        Y(x) = T(O) + x a D T(O) + I xax~a 3 T(O) . ..... (A-13)                             a 2 Ot ~ 

Combining (A-6) and covariant Taylor expansion of G a (ax) in it, 
                                                           11 V 

we can see for gauge field A a (x) that 
                             11 

       A a (x) 1 xOG a (0) + 1 xaxO(D G a (0))                 2 -0! P 11 3-1! a P11 

                                  x a x ~XP(D D G a (0)) . ..... (A-14) 
                                      a ~ P11 

     Using (A-14) and (A-13), we can extract gluon condensate 

and chiral condensate, respectively. We have the former in the 

channel which contains only heavy quarks. We can treat fermion 
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perturbatively in this channel, though gluon is under 

non-perturbative effect. So we use usual perturbation for 

fermion propagator applying (A-14) for gluon field- Then -it ds 

straight forward to find gluon condensate in this channel. As 

for chiral condensate, it becomes important when light quark is 

concerned. In this case, the light fermion is under 

non-perturbative effect and we have to use expansion (A-13) to 

it. Easy calculation leads us to chiral condensate in such 

a channel. 

     Next we discuss the hadron side (right hand side) to 

complete the QCD sum rule. The imaginary part of the time 

ordered current-current corelator is related to the cross 

section of corresponding channel through the optical theorem. 

     The cross section can be determined by experiments. If 

perturbative QCD works well at all scales, the imaginary part of 

the time ordered current-current commutator should have almost 

the same structure as ImC 0+1 (s). But ImC 0+1 (s) has no                         I I 

resonances, which do exist in the real world. The vacuum 

expectation of local operators reflects these deviations from 

perturbative calculations. It is possible to use precise fit of 

experimental data, but we parametrize the cross section with a 

few characteristic parameters, i.e., resonancs masses, widths 

and threshold by the use of resonance continuum model. 

     There are several ways of actual use of the QCD sum rule. 

The first one-is "moment" sum rule, which compairs the 

right and left hand sides by their derivatives with respect to 
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  2 
7at -the -o-r±-g±-n-e, 

   M n J, Q 2 f "ds MR (S)      n n! dQ 2 QCD Q2= 0 Tr 0 S n+1 
                                                             (A-15) 

This type of sum rule was used by M.A.Shifman et al. in the 

analysis of resonance physics at T=O. 

      The second one is given by integrating Q 2 from zero to 

infinity after multiplying appropriate function. In the actual 

use to extxact-mon-pextmr-bative -information in combination with 

OPE effectively, its form is somewhat restrected. 

     As QCD has asymptotically free nature, Imff is sufficiently 

satulated by C 0 (Q 2 ) at large q 2 , which means this type of sum I 

rule is almost trivial for g(q 2 1 . The non-perturbative 

effects show theirselves in the small q 2 region as resonances, 

we must choose functions to enhance such a region and determine 

vacuum condensates of QCD, for example 

                   2 /2 2                     g(
q exp(~q / M (A-16) 

whrer M 2 is a parameter. 

      In the case of applying the sum rule for channels including 

light quarks, we need further improvement called Borel 

transformation. The OPE method gives inverse power expansion 

with respect to Q 2 because the product of local operators have 

their own dimensi-ons. Borel trnsformation gives one way of 

changing this expansion to faster convergent series. This 

                                 49



-t-ransf ormation ±s -def -i-ned ~by 

              f c+iCO        IGO 
c-iOO -exp(~Jx) f (x) x d(-,~) (f (X) 

                                                             (A. 17) 

where the integration contour runs to the right of all 

singularities of the function f(x), and 3!(X) is called Borel 

transform of f(x). Its inverse transform is 

                                  400               -f(x) f I(A) exp(-A/x) d(7~) (A-18) 

We can see this easily. From (A-18), 

                                     +CD 

            x f(x) t(X) exp(-X/x) dX = F(-) (A-19)          f 0 x 

where F(x) is Laplace transform of E(X). The inverse 

transformation of Laplace transformation is Mellin 

transformation 

                                     C+i-              f(X) 27ri fc-iCO exp(Xx) F(x) dx (A-20) 

So we have 

                             exp(X/x) F( 1 ) d(-!) (A-21)                        27Ti 
           im f c-iCO x x 

and the right hand side of this formula coincids with the 

definition of Borel transformation, which proves our assertion. 
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-Borel-t-ransf-ormation -of-f(x) is the inverse Laplace transform of 

x.f(x) with-respect to 1/x. For example, we use the Borel 

transf-ormat.i-on---of (1/Q 2 ) k t-o the variable M 2 with respect to Q 2 

in the improvement of the sum rule, which gives formula 

                L 2 (1/ , Q 2 ) k lkil) .' (1/M 2 ) k (A-22) 

      Next form is comvenient to see the relation between moment 

sum,rul-e---and.~Borel-transformation. We can rewrite Borel 

transform of H(Q 2 as follows 

    L 2( THQ 2 ) ) A(M 2 ) 

              11m - 1 (Q 2 ) n 1 )n H(Q2) (A-23) 
                 Q n -* oo (n-1 ) 1 dQ 2 

where Q 2 / n M 2 (fixed) 

This identity can be verified by the action on ( 1/Q 2 ) k , which 

reproduces (A-22). We notice that Borel transformation is one 

kind of extended moment sum rule and new series obtained after 

Borel transformation shows faster convergence because of the 

factor 1/(k-l)!. 

      Finally we show the Borel transformation of dispersion 

relation (A-4). Noticing 

                 L 2 1 2 2 exp( _s/M2) (A-24) 
                   M s + Q M 
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we have 

    i i f" ds -ImTI(s) exp~-S/M2) (1 k hi 
    7T M 2 0 i (k-1 M 2 k 

                                                             (A-25) 

where we expanded H QCD (Q 2 ) by OPE 

                    H (Q 2) +00 k (A-26)                 QCD 1 2 k                                k=O i (Q 

a-nd h k <01 0; 10> 

      Shifman et al. investigated charmonium channel to extract 

gluon condensate. Heavy charm allows them to extract gluon 

condensate. They found 

                      <Ga G a > = 0.1884 GeV 4 (A-27) 
                         jjV ]IV 

by the use of moment sum rule. They applied their sum rule for 

p-meson channel and found the value 

                          <~~)> =-250 MeV 3 (A-28) 

is consistent with experimental data.
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  Appendix B 

     The basic idea of the sum rule by J3ochkarev and 

Shaposhnikov is to write down a sum rule for spectral density of 

Gibbs ensemble average of current-current comutator 

       TI R (q;T,U)          11V 

      I d 4 x exp(-iq( x-y)) 6(x << Fj (x),j (Y)]>>        f O-YO L V 
                                                               (B.1) 

where R means retarded, << >> is the Gibbs ensemble average, T 

and p are temperature and chemical potrntial. H R (q;T,U) is an 
                                                      11V 

analytic function in the upper half plane of the complex energy 

plane and the dispersion relation for R R (q;T,p) is 

                                                +00 

                H R (q;T,1-1) dw PUV (W'q;T (B-2)                                 f -00 W - q0- ic 

R where p (w,q;T,p) is the spectral density of H (q;T,p) and its 
        11 V 11V 

concrete form can be written as 

                     3 3 
    PjjV (w,q;T,W) (27) exp((Q-E n )/T) 6 (q nm) 6(W-Wnm) 

                                    m,n 

           x <njj (O)lm> <mIj V (O)In> (1-exp(-w mn /T)) .(B-3) 

where W mn= E M_ E n mn M n and Q T Tr(-(H-pN)/T) 

Perturbative calculation of spectral density allows one to 
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require next relation, i.e., QCD sum rule-for -spe%ct:ral densi-ty 

at finite temperature 

        f dw g(w) P,,V (w,q;T,li) 

                    dw g(w) Imff M W+iE                   f PV i q;T,p) + N.P. (B-4) 
        M W+iE R where R 

JIV( i -,q;T,p) has same definition as R 11V (q;T,11) and is 

analytically continued after calculated on qO(n) = 27Tni by 

Matsubara's method. N.P. means non-perturbative effects such as 

gluon condensate or chiral condensate etc. 

     Here we pay attention to the tensorial form of R R (q;T,U). 
                                                             11V 

At finite temperature there is no full Lorentz symmetry and it 

reduces to spacial 0(3) symmetry. Because of this breaking of 

the Lorentz symmetry, H R (q;T,p) is decomposed into two 
                          11V 

invariant form factors, i.e., transversal one R R (QO;T,U) and t 

longitudinal one R R (Q ;T,11)                 1 0 

               R -"' 2 R 4.          IT 
00 (q;T,p) = q IT l(QOrq;Tjjj) I (B-5a) 

             R 2 2 -)-2 R          11 
ii (q;T,11) = (6ijqo - qiqjqO/q R t(Qofq;T,11) 

                                        2 2 -~- 2 R                     + q 
i qjqo/(qo-q ) H l(QOjq;Tjp) (B-5b) 

where Q -iqo . General argument requires that R R and H R        0 1 t 

should coincise each other at momentum rest frame q 
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           -R

(Q _tI=O;_T'jj IIR(Q R           11 _0 , t Orq O;T,ll II (Q 0 ; T,jj (B* 6) 

This allows us rewrite (B-4) to the sum rule for H R (Q 
0 ;T,ji) at 

momentum rest frame. 

              00 00 

      fo ds g(s) p(s ;T,11) = fo ds g(s) Imn M (s;T,li) + N.P. 
                                                                (B-7) 

M .z-#here,.:Imjj._fas;-T,jj) can be determined by Matsubara's method and 

p(s;T,U) is the true spectral function of R R (QO;T,p) . We have 

given p(s,-;-T,lj) value from experimental data at zero temperature, 

but at -finite temperature there is no such data to input. 

Therefore it is natural to parametrize this cross section 

in terms of resonance-continuum model which contains resonance 

masses and threshold as parameters and they should be determined 

through this sum rule. 

      A.I. Bochkarev and M.E. Shaposhnikov discussed along this 

line and applied this type of sum,rule for p-meson channel in 

the case U = 0 . They calculate Imfl M (s;T,U) at 1-loop level 

in perturbation theory using corresponding current 

            jp(x) U(X)Y U(x) - a(x)y d(x) (B-8) 2 

The result is 

       P(s) = po(s) e(s-4m 2 ) th(v/s/4T) q 
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                                              +00                   + 6(s) f4m 2 ds' Po(s') 2n F( vl~712T) (B-9) 

q with 

                                  2m 2 4m 2 
              PO (S) 2 (1 + s q s q ) 1/2 

                         8 7T 

where temperature dependence shows itself in the tangent 

hypabolic and fermionic statistical factor. As for the true 

spectral function p(s;T), because p pole dominates in the 

spectrum, it is set as 

               P(S) Presonance(s) + P continuum(s) (B-10a) 

               P (S) = f m 2 6(s-m 2 (B-10b)                 res P P P 

   Pcont (S) 1 2 e(S-S 0 ) th(w/4T) + 6(s) f +C0 ds 2n F (/s-/2T) 
               87T s 0 

(B-10c) 

The contribution from s larger than threshold cancel on both 

hands sides. The final form of the sum rule is 

  f m 2 / M 2 exp(-m 2 / M 2 

     1- fsO ds ( exp( _S/M2) th(/-s-/4T) + 2n,(/-s/2T) + N.P. 
    8Tr 2 0 M 2 

                                                             (B-11) 

They discussed the hadron and quark-gluon phase transition by 
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the use of -this sum rul - '5hey,J-0iind --the -solut-ion that the 

threshold becomes lower than~squared resonance mass. In such a 

situation hadron w-i-1.1 become-breakable. They identified this 

phenomena and the phase transition, and obtaint critical 

temperature

                           T 130 MeV. (B-12) 

But we have a question about the treatment of non-perturbative 

effect. It seems possible that they have temperature dependence, 

as is suggested by Monte Car.lo-simulation at high tempeature. We 

think some improvement is needed to take temperature dependence 

of non-perturbative effects into account, which is one of our 

motivations of this work.

I 

I
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  Appendix C 

    We can see from the same -reason as , in Appendix-A-tha-t we 

must calculate diagrams in Fig.14.to obtain Wilson coefficient 

C G of gluon condensate in F-meson channel. The situation is 

complicated because of mass inequality of quarks. We show how we 

calculate this coefficient in this Appendix. We use Matsubara's 

method and choose a frame in which the external momentum equals 

to zero. 

      After taking trace, we have next expression from (3-6). 

  2 7r 1             3 f CO 47rp S dp s 
       n=-oo (2TO 0 

     4 2 2 2 2 4 2 3 2 4 2 2 2 2 2 -16(4m 1 m 2 +3m 1 m 2 p +2m 1 r +5m 1 M 2 rp+m 2 p +m 1 m 2 p rp+6m,(rp) +2p (rp) 

/(p 2 +m 2 ) 4 (r 2 +m 2 ) 2 _ (m M , p () r) (C-la,lb)      1 2 1 2 

+16(4m 3 m 3 +3m m 3 p 2 +3m 3 m r 2 +6m 2 m 2 rp+2m m p 2 r 2 +3m 2 p 2 rp+3m 2 r 2 rp 
      1 2 1 2 1 2 1 2 1 2 2 1 

   +4m m (rp) 2 +4(rp) 3)/(p2+m2 ) 3 (r 2 +m 2 ) 3 (C-1c) 
      1 2 1 2 

+16(4m m +5m,pr+2m m p 2 +2m,p 2 pr+2m m 4 +p 4 pr )/(p2+m2 ) 5 (r 2 +m 2       1 2 1 2 1 2p 1 2 

+ (m 1 -(--* m 2 , p +--*- r ) (C-ld,le) 

where r = p-q and p 27(n+!-) , p q -~-7(n+!--l) , 0                               2 2 
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As we calculate in Euclidean metric, the inner product ds taken 

with metric tensor 6 and p 2 (-n+ 1 )) 2 p 2 , r 2                          11V 2 
2 Tr (n+.L_l) ) 2 + p 2 . r*p = 1 ( p 2 + X 2 (27Tl)2) Here we 'T 2 2 a 

introduce the notation D MN (a,b,c) defined as 

     D (a b, c) + CO (p 2 ) a (r 2 ) b,(pr)c       MN 7T 1 1 2 2 M 1 2 2 N (C-2)                         n=-- ((n+-~) +A ) ((n+-f-1) +B 

with A P2+ m2 and B v1 P2+ m2 . It is obvious from            2 Tr 1 2 7T 2 

(C-1) that C G can be calculated by -single integrati-on-of-the 

summation of D MN (a,b,c)'s with mass coefficient up to 

normalization.*e calculate D MN (a,b,c) annalytically. 

Following reduction formula can be easily verified. 

                     p 2 D D m 2 D (C-3a)                          MN M-1 N 1 MN 

                     r 2 D D m 2 D (C-3b)                          MN M N-1 2 MN 

          pr D 1 (DM + D 2 +m 2 +q 2 )D (C-3c)                MN 1 N M N-1- (ml 2 0 MN 

Iterative use of these reduction formula allows us to express 

D MN (a,b,c) by linear combination of D 
MN (0,0,0) = D MN * D MN can 

be calculated through next derivative formula : 

         D (-) N-1 ( a ) M-1( 3 2 )N- 1 D (C-4)           MN (M-1)! (N-1)! 
3A 2 3B 11 

And the mode sum in D M
N can be taken annalytically by the use 
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of mathematical formula, the result is 

         1 +00 1 D Tr I j
_) 2 2) )2+B2)           n=-- ((n+ +A ((n+!--l 

               2 2 

         1 A-B tanh(nA) 1 A+B tanh(7A) 
        2B (A-B) 2 +1 2 A 2B (A+B) 2 +1 2 A 

         1 A-B tanh(7B) 1 A+B tanh(TrB) (C-5)         2A 
(A-B) 2 +1 2 B 2A (A+B) 2 +1 2 B 

In equal mass case, we have A B and D reduces to 

                    D 2 tanh(nA)                      11 
1 2 + 4A 2 A 

Unfortunately inequal ma.ss case, D has four component and 

this is the origine of complexity. 

     By the combination of (C-3) - (C-5) , we can obtain 

analytic form for D MN (a,b,c) . This is the way of analytic 

internal mode sum. Explicit form is lengthy so we do not quote 

here. Finally integrating numerically with respect to p 
s , we 

have the value of C G *
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  Appendix D 

     The semi-relativistic potential model was proposed by 

Morishita et al. which gives very good mass spectrum of F, D and 

B-mesons. We have used this model to parametrize F-meson mass 

and the value of wave function at the origin (47IT(O)i 2 ) by 

string tension. We introduce brief outline of this method to 

help the understanding of §3. Please see reference 26 for 

precise contents. 

     Semi-relativistic potential model gives us a general method 

to investigate two fermion system in which one is light and the 

other is heavy, i.e., atom like system. In the following we 

identify heavy one as charm quark and light one as strenge 

quark. They start from relativistic two body hamiltonian 

introduced by Fermi and Yang. It is sufficient to take scalar 

and vector potential into account to our purpose. The 

hamiltonian is 

                                                4. 4-

      H q P q + ~ q m q ) + (a Q p Q + Q m Q ) + q~ Q S + (1-a q a Q )V 

                                                               (D-1) 

where subscripts q , Q denote s c (or S , C) in our case, 

respectively. If Q is sufficiently heavy for us to treat it 

non-relativistically, we can apply Fordy transformation to Q. 

Resultant eigen value equation which they find is 

                  (H 0 + H 1 + H 2 + H 3 + H 4 E$ (D-2) 
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with

                                                             -~- 4. 

                     H 0 = Ot 
qpq + ~ q(m q + S) + V (D-3-0) 

        H M + -)-2 /2m S p2 /2m 2 + V 2 V 8m 2 -~-4 /8m 3             Q p Q- ~
q Q Q p Q 

                                                                        (D-3-1) 

                   H 1 1 (!!-S g-v) CY (D-3-2)                     2 
4m 2 r dr q dr Q Q 

                          1- V iv,                        H 
3 M Q aqp -fm-Q aq n , (D-3-3) 

                                            1 dV 4. -*                       H 
4$ 2m Q j-r Ot q$ a Q xn , (D-3-4) 

where $ 
ai has two subscripts a and i , the former corresponds 

to four component of Dirac spinor of light quark and the latter 

shows the two component of the spinor state of heavy quark. 

     The wave function can be expanded in terms of scalar and 

vector spherical harmonics (Y M , ~M ~M ) as 
                               i i JJ+1 

      A(r)YM (Q) + B(r)'GIM (0) + C(r)'CF~M (Q) + D(r)'G~M (Q)                                        J( -) J(+) 

                                                             (D-4) 

where

IM  J( +) (J+1)1(2J+l) t,M 

i

J+1

 -- 
~M + /V (2J+1 ) i

J+1

But in 

 q4 im 
  6- 1 1

this 

 JM 

2

case, 

  JM

they 

 ~- JM

define the 

 ) , which

rotated spherical 

are defined as 

62 -

harmonics



m 

z U ( Y:~ 

        XJ13

                          ---~ m

I (D- ~ )

with

u
Fi 

IFY 1-1

They satisfy next two remarkable relations

      im 

 9 n A

    JM 

B
for (A, B) = (B, A) =(l,+)=(2,-)

A, (D-6)

and

-*- t -~ JM 
CYq A (k+1 )

  im 

A
(D- 7)

where k = -(J+1), J, J+1, -J for 

respectively. Following relations 

relations :

A 

are

= 1 , 2, 

usef ul to see these

Im 1 m  J( +) = - i nxt Y 

    ~m m         J( -) = - n YJ 

      ~m = - /J-(J+l ) tymi 
   i ij

(D-8-1 )

(D-8-2)

(D-8-3) 

I

and

- 63 -



                     0 1- ('nXT) = 0 

                 0 4- 4-    n n n 1 n (nxT) = 0 

                                             4- t2 
   (nXT) -t 0 , ('nXT) .'n 0 (nxt) ('nxt) 

and 

                                                        t2+ i,x-j   txt = it tx-n* = 2i-n+ 'nxt tx('nx-1) n n 

   -*.-t = 0 -*X-* -t)xI i'xI   n n n 0 , (nx n 

  ('nxl)x-t i'nxI ('nxt)x'n = I , (nx-t)x(,nx-t) = -i-t 

(D-6) and (D-7) simplify the calculation very much and 

these bases the wave function is written as 

                             TA 

B 

with 

                               F im                                C C 
                        TC 

iG , im                                C C, 

where (C,C') = (1,+), (2,-), (+,l), (-,2) (A,B) (1 

                            i J+1 im 
corresponds to parity and (+,-) to 
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(D- 9-1 )

(D- 9-2)

under

(D- 10)

,2) pair 

and im



are L J+1 , S 1 and '~'Jjm and' im are mixed states of L                           T42 

J , S 0 and L J , S 1 . The singlet dominates in the 

former and the triplet in the latter, and they are called 
         11 3 'Y 

and ii I respectively. Then the eigen value equation (D-2) is 

written as 

       H 0 + K 1 K 2 TA E ( TA (D-11) 
            K 2 H 0 + K 1 YB TB 

where K 1 corresponds to Hi. H 3 and the diagonal part of H2. H 4' 

If the heavy quark mass tends to infinity, only H 0 term remains 

except m Q and (D-11) decompose into two usual radial Dirac 

equation for each T 

                   + (u Uc          m
q + S + V dr r C E (D-12) 

                    + ILL + S + V v v          ~~r r q C C 

where u C = rFC v C rG C and K -(J+I) J , J+1 , -J for 

C = 1, 2, +, - This is the reason why they have taken rotated 

scalar and vector spherical harmonics. 

      In the actual use of this model, they take 

                  scalar potential : S(r) = kr + b 

and vector potential : V(r) = - 4 a                                            3 
r 

To investigate the mass spectrum from (D-11), dimensional 

variational method is used. They consider diagonal part up to 

1st inverse power of heavy quark mass, 

                      (H + m + -*2 /2m E (D-13)                    0 Q p Q 
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which has similar form as (-D-12). They-tze-a-t-the-remainder of 

the hamiltonian perturbatively. They cons-ider-n.dimensional 

functional space composed of next trial functions 

                        n k+ot 
(.j~) 2 .14)                          a k r exp( 2 A (D 

for each u and v (a may have different value for u and v). 

The expansion parameter A is the variational parameter- Taking 

the matrix element of the hamiltonian in this functional space 

and diagonalizing this nxn matrix, they have n energy-levels 

correspond to quantum number K . The essential point here is 

that the hamiltonian is still relativistic so that the usual 

variational criterion of energy minimum does not work in this 

case. Another criterion to fix the variational parameter is 

needed. The quantum virial theorem is used for this purpose. The 

statment is that the virial should vanish for stationaly states, 

i.e., 

                          < [rp,Hl > 0 (D-15) 

We vary the variational parameter observing the virial and the 

value is determined when the virial is nearest to zero. 

Because of this lack of positivity, these n eigen values contain 

negative ones. We choose only positive eigen values. At this 

stage, the states which have same value Of K are degenerate. For 
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example 

spritted 

estimated 

r esult is

S 0 '(-J=O) and ' 3 s 1 (J=1 ) gives same 4c = -1 and they are 

by the perturbation of remaining hamiltonian. We 

 the lowest level variation of -string tension. The 

 shown in Fig.15a.
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I

I

2k (GeV
A (±-rn) 1 s 

0 Mev)
4nlT(O) 12

0.17 2.16 1967

X to-

4.768

0.16 2-25 1957 4.661

0.15 2.19 1943 4.177

0.13 2.35 1924 3.803

0.11 2.50 1903 3.364

0- 10 -2-53 1890 3.100

0.07 2.84 1853 2.399

0.05 3.35 1825 1 .970

0.03 4.04 1791 1 .453

0.01 5.50 1746 0.877

Table

V

The extension parameter, 

lowest mass and value of wave 

function at the origin for 

various values of string tension.
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