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Abstract

We propose a new type of QCD sum rule which is wvalid even
at finite tempefature. This sum rule gives us knowledge about
temperature dependence of vacuum condensate in quantum chromo
dynamics. We apply this sum rule to charmonium and F-meson
channels. Through these channels we can investigate tempefature
dependence of gluon condensate and nature of these mesons at
finite temperature ( < 130 MeV ).

The values of vacuum condensates should be channel
independent. We find quantitative agreement of the temperature
dependence of gluon condensate and vefify this universality in
these channels. Based on this universality, the behaviour of
masses, widths and thresholds of these mesons is discussed at

finite temperature.
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§1. Introduction

It is considered that the fundamental theory of strong
interaction is quéntum chromo dynamics (QCD). The QCD theory
describes interaction between colored quarks which are
considered as particles constructing hadrons. There are many
evidences which support the hypothsis of quark, and it expléins
experimental facts very systematically. But they appear only as
some combinations which form colorless states and do not come
out as a single quark. This is so-called confinement of quarks.
It is one of important problems in current physics. Enormous
efforts have been devoted to derive this confined structure of
quarks from this fundamental QCD theory.

The confinement of quarks means that asymptotic one
particle state of single quark can not exist in the real world
and perturbation theory based on asympfotic expansion does not
work well in QCD. In other words, true QCD vacuum deviates froﬁ
usual perturbative one. As a result of this fact, vacuum
expectation values of various operators‘do not vanish, and we
can investigate the structure of true QCD vacuum by these

quantities. Especially the gluon condensate <Gquu > plays an

1)

v
and the chiral condensate <yy>
2),3)

important role in confinement

has relation with dynamical quark mass. There have been

several approaches to non-perturbative QCD, i.e., confined

perturbation theory?) lattice gauge theory?)

6)8)

instanton

approach etc. The QCD sum rule is one of these methods to



analyze the non-perturbative aspects of QOCD, and determines
these vacuum expectation values from experimental data.

On the other hand, the analysis of QCD at finite
temperature gives another point of view dn this confinement
problem. Monte Carlo calculation is the most powerful method in
this field?) It suggests strongly that hadrons melt into quarks
and gluons atrvery high temperature and/or very high density,
and the phase transition from hadron phase to quark-gluon phase
does occur. At such‘a phase transition point, gluon condensate
is expected to vanish and quarks will be deconfined. There is
possibility that such a high temperature and density state'can‘
be obtained in ultra-relativistic heavy ion collisions and is
called quark gluon plasma (QGP)]O) Experimental researches for
such a new phase have started recently and are a current topic.
Moreover if vacuum condensates have temperature dependence as
expected from Monte Carlo simulations, hadrons will show change
of nature at finite température through this dependence. We
consider it is probable that the hadron physics under
environment of very high temperature and density before the
transition also has rich contents. From these points of view, if
we find some way to apply QCD sum rule at finite temperature, we
will be able to derive knowledge about the phase transition or
hadron physics at finite temperature. We discuss this
possibility in this paper.

The pioneering work on QCD sum rule was done by M.A.

Shifman, A.I. Vainstein and V.I. Zakharov in 1979!1) Since then



it has been applied in various ways and made = great success in
the study of non-perturbative nature of “QCD and resonance stateé
of hadrons!Z)m14) QCD sum rule is a -semi<phenomenological
approach to derive vacuum expectation values of QCD from
experimental data. It is based on the combination of dispersion
relation and optical theorem. We consider a dispersion relation

for invariant form factor of vacuum expectation value of time

ordered current-current correlator :

Imli(s)
S + Q2

me?) = L J ds i
The ImJI(s) on the right hand side (hadron side) can be related
to cross section corresponding to the current through optical
theorem and we can input experimental data . We calculate H(QZ)
on the left hand side (QCD side) by the use of QCD with operator
product expansion (OPE)!S) The OPE method decomposes an
arbitrary operator to the products of Wilson coefficient and
local operator and enables us to treat confined region and
asymptotically free region separately. In QCD we have GivGiv
and Yy etc. as these local operators. We can determine vacuum
expectation values of these operators requiring the agreement of
both hand sides of the dispersion relation. Thus QCD sum rule
determines universal vacuum expectation values of local
operators from experimental data.

The first trial to extend this sum rule to finite

temperature was done by A.I. Bochkarev and M.E. Shaposhnikov in



198416)fTheirfextensiDn:wa$,¢ased;pn:ihe didea of the sum rule

for spectral'density-“Theyfcnmpaired'théoretical spectral
density calculated in QCD -and hadronic one integrating them with
an appropriate weight function. But their calculation is only
perturbative one and both hand sides of dispersion relation do
not saturate each other. So constant non-perturbative effect was
introduced to adjust the sum rule at zero temperature and fixed
it at this value. The parameters in this sum rule were mass,
decay constant and threshold. They applied this sum rule to p
meson channel with increasing temperature and determined
temperature dependence of these parameters. They discussed the
phase transition by the criterionbthat it takes place when the
threshold becomes lower than squared resonance mass. Thier
result on critical temperature was 130 MeV, which is rather low
compared with the result of lattice calculation.

We consider their argument contains a problem. If
condensates have no temperature dependence, it is inconsistent
with the above deconfinement picture that it takes place when
gluon condensate vanish. Is the assumption of temperature
independence of non-perturbative effects correct?

‘We propose a new type of QCD sum rule which is consistent
with our confinement picture. We extend the sum rule by Shifman
et al. to finite temperature to fake non-perturbative efects
into account. It can be done by replacing the vacuum expectation
in time ordered current-current correlator by Gibbs ensemble

average. The noted points by this substitution are : 1) Wilson



coefficients should be calculated .in terms of f£inite temperature
perturbation theory and 2) there is no experimental :data dinput
to Imy(s). There are two kinds of perturbation theory .at finite
temperature, i.e., thermofield dynamics and Matsubara's method.

17 )
)N19)to calculate Wilson

We adopt Matsubara's method
coefficients, which gives the correct values at discrete points
on the imaginary energy axis (qo(n) = 27in/B). As for hadron
side, we use resonance continuum model to.parametrize Imll(s). To
cure the lack of experimental data, the physical parameters
(masses, widths) in the resonance continuum model are related to
vacuum condensates by some models. Thus we have dispersion
relation at finite temperature on qo(n). If we can perform
analytic contination of Wilson coefficients from points qo(n),
sum rule for spectral density proposed by Bochkarev and
Shaposhnikov can be applicable. But the analytic continuation is
difficult in Matsubara's scheme except CI (see (2-4)). So we
consider the discrete mode sum of this dispersion relation with
some weight functions. This is our new proposal of discrete mode
sum rule. It allows us to determine temperature dependence of
vacuum condensate with appropriate choice of weight functions.

In this paper, we concentrate on the analysis of gluon
condensate, which is one of key condensates of true QCD vacuum,
and hadron physics at finite temperature. We apply our sum rule
to charmonium channel first. Because of heavy mass of charm
quark we can extract gluon condensate as a dominant vacuum

condensate in this channel. We investigate temperature



dependence of gluon condensate. Next we study F-meson channel.
F-meson is considered as the bound state of charm and strange
quark. Strange quark is also supposed to be heave enough to
neglect other condensates, we can investigate gluon condensate
in this channel too. Gluon condensate is a vacuum structure of
QCD and should be channel independent. Analysis of different
channels allows us to study this uniVersality. Based on this
universality, quantitative estimation of temperature dependence
of masses, widths and thresholds of charmonium and F-meson .is
obtained. These are our main results.

In §2. we propose "discrete mode sum rule," and consider
some usage of this sum rule. Application to charmgnium is élso
mentioned in this section, which shows the prototype of the way
how our sum rule works. In §3. we describe the application to
F-meson channel. The summary and the discusions are in §4.
'Appendix A is the explanation about the sum rule at zero
temperature and the techniques used in it, which is also useful
at finite temperature. Appendix B contains the explanation of
sum rule for spectral density by Bochkarev and Shaposhnikov and
some discussions., We show the method used to calculate Wilson
coefficient of gluon condensate in Appendix C. Appendix D is
devoted to semi-relativistic potential model used in F-meson
analysis.

The §2. is a work in collaboration with Professor K.Hirose,

Professor T.Kanki and Dr. O.Miyamura. The §3. is my

contribution.



§2. Proposal of QCD sum rule at finite temperature

QCD sum rule at finite temperature is also based on the
combination of dispersion relation and optical theorem as in the
zero temperature case. The difference is to consider Gibbs
ensemble average instead of vacuum expectation value. The

current-current correlator is defined as
I (x-y) = << T ja(x) jb(y) >>
uv u v

= Tr exp(-B(H-uN)) T 33(x) 3o(y) / Tr exp(-8(H-uN)) ,
| (2:1)
where H is the hamiltonian, N is number operator, B is
temperature inverse and p is chemical potential. It is
decomposed into a tensor part and an invariant form factor. In

momentum space we have
I (q) =T (q) 0% (2-2)
uv uv , !

where we set Q2= —q2 for later convenience. The dispersion

relation for H(Qz) is the following :

Imli(s)

. (2-3)
s+Q2

2 1 (*
m(Q~) = = J ds
TJo

The OPE is a short distance expansion with respect to x-y. It is

independent of Gibbs ensemble average and also valid at finite



temperature. We apply OPE to the time ordered product of

currents (the inside of << »>> in (2-1)) in combination with the
usual perturbative expansion (see Appendix A). As OPE decomposes
operator into products of a Willson coefficient Ci and a normal

ordered local operator Oi’ we have

Iml(s)

’ (2°4)
s + Q2

Cre<I>> + Z C ¢<0;>> = % des
i 0
where I is the unit operato;. The Wilson coefficients can be
calculated perturbatively and have relation with short distance
structure of the theory and Gibbs ensemble average of local
operators reflect non-perturbative effects at large distance.
To study vacuum expectation values of QCD, we need some
modification of (2-4).‘Because QCD has asymptotically free

nature, usual perturbative part C. and continuum part in Imll(s)

I
saturate each other. The relation (2¢4) holds almost trivially
and we cannot obtain information about vacuum expectation values
by direct comparison of both hand sides. We have to find some
method to enhance resonance region in Imll(s) where the
information about condensates is rich. We can notice easily
there are two ways of such method in the analogy of sum rule at
zero temperature. One is the "moment" sum rule which compares
the derivatives with respect to Q2 at the origin, which was
adopted by Shifman et al. The other one is the "continuous

weight function" sum rule which compares both hand sides after

the integration with respect to Q2 multiplying an appropriate



weight function which enhances resonance region. Both methods
“require -the knowlédge of Wilson coefficient on the whole complex
-energy plane. It is true that thermo field dynamics gives a way
to calculate these quantities at finite temperature, but the
calculation is so complicated and impractical at higher order.

Then we propose a new type of sum rule at finiﬁe
temperature :

(Discrete Mode Sum Rule)

n;_ g, ( Cr(n)<<I>> + § C,(n)<<0,;>> )

o +o00 )
= lf ds z 9, ImI(s) 5
TJ0 nz-e s + qg(n)

(2+5)
where we choose momentum rest frame (the frame § = 0 is also
adopted in what follows). The 9, and Ci(n) represent their
values on qo(n) and the later quantities can be calculated by
Matsubara's method. This type of sum rule reduces the complexity
of calculation very much.

It is not always allowed to exchange the order of
integration and summation on the hadron side. There is some
restriction to weight function 9" The criterion to exchange

them is given by following Hardy's theorem :

+o [ © +oo
If J dx | g_(x) or f g_(x)
nz—w 0 ) | n I 0 né—m I n |
+oo [+ ] 0 +x
converges, dx g_(x) = J g (x) . (2.6)
nz‘m JO n 0 nZ—m n



In the real applications, we choose weight fuctions which

satisfy this theorem.

2.1 Usage of discrete mode sum rule

In this section; we discuss several possibilities of
discrete weight functions and the parametrization of Imll(s) at
finite temperature. The desirable features expected to these
functions are :: a) they enhance resonance region and b) they
allow analytic calculation as much as possible. We consider next

functions as an example :
g{n) = cos(nx) , (2-7)

where x is a parameter. We can perform the mode sum on the

hadron side analytically. We find

+00 cos(QO(n)-x)

(L)z cosh(/s(B8/2-x))
2m

n=-ow s + Qo(n)2 sinh(v/sB/2)

(2-8)
where 0 $x <B . This resultant function damps very rapidly as
exp(-x+s) when s tends to infinity. Imll(s) is considered to tend
to a constant as s becomes large because of asymptotically free
nature of QCD. So the integration with respect to s on the right

hand side of (2-+4) converges and Hardy's theorem guarantees the

- 10 -



validity of exchanging summation and dntegration for this weight
function. This damping factor becomes strong when x :ds Jdarge. In
other words, x plays the role of cut off parameter on “the s
axis. In general, oscillating weight functions on the imaginary
axis are supposed to give damping factors on s and this is the
reason why we consider this weight function. Especially in zero
temperature limit, the result reduces to exp(-x-s) and give
Laplace transformation of Imli(s) to the variable x. Our purpose
to enhance the resonance region can be achieved by taking
appropriate values of x. If x is sufficiently small, (2-4) with
this weight functions is saturated by the asymptotic region. But
as x becomes large, the weight of the resonance region alsok
increases.

When we use this type of weight function, we must pay
attension to the compatibility of this function and OPE. The OPE
is one of short distance expansions and it breaks down at large
distance. In momentum space, we can not rely on this expansion
near the origin. But naive cosine type weight function has large
weight for small values of momentum and some device is needed to
suppress such a region. Here we consider subtracted cosine type
one as follows : |

9,(8) = £ (cos (22%x) - cos(42%y)) . (2+9)
It is obvious that the part near n = 0 1is suppressed by this

weight function. We will use this function in the applications.

- 11 -



Another possible choice is gn(s) =1 sin(gggi) -

Next we describe the treatment of Imli(s) at finite
temperature. We also adoét resonance continuum ‘model in this
cése. At zero temperatufe we can use experimental data to
parametrize Im[[(s), which enables us to determine vacuum
expectation values. But we have no such data at finite
temperature. It is of course possible to find solutions for all
parameters (condensates, masses, widths and threshold)
satisfying the sum rule. But parameters are so many that there
still remain some ambiguities. One way to reduce the number of
parameters is to use some models which relate these parameters.
For example, next combiﬁation is one of possible choices in the
channels where gluon condensate is a dominant condensate. First
using a potential model with linear confining potential, we’have
masses and widths as functions of string tension. Secondly we
consider flux tube model which relates string tension and gluon
condensate. Then we get them as functions of gluon condensate.
This procedure eliminates mass and width parameters and makes us
possible to determine parameters precisely. This combination is
used in both charmonium and F-meson analysis. .

We require the agreement of both hand sides of (2.5) to
determine remaining parameters; When vacuum expectation values
about confinement concerning confinement is concerned, the
appropriate values of x is larger than the inverse of the
resonance masses. These parameters are fixed by adjusting (2.5)

to hold in the wide region of x. We can determine higher

- 12 -



condensates at larger x. But it is noted that too large x
becomes meaningless and the results may depend on model which we
take in parametrizing Img(s). Such a simple parametrization as
resonance-continuum modei cannot inélude information about

higher condensate.

2.2 Analysis of charmonium

We apply our new sum rule at finite temperature to analyze
charmonium channel?o) We consider current-current correlator for

vector current (Fig.la):
i (x) = c(x c(x) . 2«10
lu( ) (x) Yu (x) ( )

Charm quark mass is about 1.5 GeV and so heavy that the pair
creation from vacuum owing to vacuum fluctuation or absorption
- of quark-antiquark pair into vacuum do not occur. The quark
propagator is not modified from free one. In othe words, the
vacuum of such a heavy quark does not much deviate from
asymptotic vacuum and there are no condensats due to
non-perturbative effect. So the problem completely reduces to a
free motion of quark in ekternal gluon field which is under
non-perturbative situation. Such argument leads us to
perturbative expansion of .quark propagator and application of

OPE for gluon to take non-perturbative effect into account. Then

- 13 -



combination ©of ~this “perturbation and OPE allows us to calculate
the right hand side of (2-4) for charmonium. Using technique of

1)

Fock-Schwinger gaugéz and OPE in momentum space, we find next

dispersion relation :

c (@%) + CG(.Q2)<<G>3\)GZ\)>> - %des ollisl
. 0 s + Q
(2-11)
in very good approximétion neglecting higher condensates.

Here we make a comment on Lorentz covariance of
condensates. At finite temperature, Lorentz covariance breaks
down generally unless we introduce extended concept of
4-dimensional Lorentz covariant temperature. The origin of this
breakdown consists in the fact that the frame is chosen to make
the thermal medium at rest. We also chose this frame, so the

local operators which appear in OPE are not necessary Lorentz

invariant. This means the gluon condensate does not nees to have

the form <<G2 c? >>. Colour electric condensate <<Ga.Ga.>> =
HV Uuv . 0i 01
<<E?E®>> and clour magnetic one <<G?jG?j>> = <<B%B%>> can

condense independently with different Wilson coefficients. This
separation have relation with the tensorial form of gluon
propagator. It has no Lorentz covariance anymore and keeps only
O(3) invariance, which allows various tensorial components of
gluon propagator. But in this paper we use finte temperature
version of usual Lorentz covariant form of gluon propagator.
This is the reason why we have Lorentz invériant <<G3vGiv>> in

(211). Of course it may be more complicated in the actual

- 14 -



situation at finite temperature. But we expect that <<G® 6% »»

HV uv
_plays_an.importaﬁt role in confinement even at finite
temperature. Independent analysis of <<Eaﬁa>> and <<B%B%>>
requires more strict calculation.

We show results of calculation of Wilson coefficients. We

consider CI up to two loop order. It is convenient to decompose

these coefficients into two part,
C.=C._. + AC. , (2.12)

where CW is an any Wilson coefficient and CW is a contribution

from zero temperature and AC, is one from finite temperature.

W
0

CI at one loop level {( CI ) can be derived easily. It is

represented by one loop diagram in Fig.2 and the results are as

follows:
0 1 + 1 (s + Zmi) s - 4mi
CI =— f 2 ds > 3 (2+13a)
4T 4mc s + 0 Vs
0 1 (*7 1 1
ACI = — 5 ds ( — - 3 ) ( tanh(B/s/4) - 1 )
4T 4mc s + Q Q
(s+2m§) s—4mi
X . (213b)

/53

CI at two loop level have contributions from three diagrams in

Fig.3 and we have11)

+® 2

_ 1 2 2M4_3

cl = f ds ——— (3-v°) ( 2m - v(v+3) )
I 24TT2 4m§ s + Q2 . 4T

(2°14)



where v = ( 1— 4mﬁ/s )1/2 - But AQ} requires a two loop
calculation and is very:complicated. We have estimated this

quntity numerically and find its contribution is negligible.

As for CG term (Fig.4), Shifman et al. obtained CG as
follows :
_ 2 Ja 2
c. = a ( 3(a+1)(a-1) 1 In ( a + 1 )y - 3a”-2a+3 )
G 2 2 2va Va - 1 -2 )
481TQ0 -a a

(2-15)
ACG is given after lengthy calculation and the result for total

C. is as follows :

1 tanh(mf/1+t%)

1 ©0
c., =L J dt £,
0

36 4 5
QO T(r) 1+t2
. 2 . 2
. f2 1 ; T . f3 1 . (rim)° tanh(mrm/1+t")
/h A
T(r) coshz(nﬁ 1+t2) T(r) /1+t2 coshz(nﬁ 1+t2)
.3
v £, —— (ni) (1 - 2 ) (2-16)
T osh? (nh/1+t2) 2cosh? (mhv/1 +£2)
where
£, = -1024(3r-10)t83+512(3r%+6r+34)t%-64(15r°-60r2-288r-16)t>

3

=32(47r34612-236r+288)t2-32(10r3+71r2+148r+96) ,

f, = 12r(r+2)(r+3)(r+4) , f3 = 2r(r+2)(r+4) , f4 = 2r(r+4)
(2.17)

with T(r) = 4t2+4+r , T = Qg/m2 and @ = Bm/2m .

- 16 -



Next we ctonsider the relation between gluon condensate and
resonance masses and widths. In heavy guarkonium,

non-relativistic potential models have made .remarkable

2)

2 ; .
success.” 'There are several potentials which reproduce mass

spectrum. We use a refined version of such potentials, which is

proposed by Buchmiiller and Tye%3)

Vir) = - % elr) .y, (2+18)

where the k is string tension and g(r) is a running coupling
constant motivated from QCD and defined as
sin{(Atr) 1 1

8 (~ '
olr) = ——J dt ( -y, (2+19)
by Jo t In(1+t%) t2

where b0= 9 and A = 250 MeV. We have neglected spin-spin
interaction term. Variational method with this potential gives

the masses of charmonium. The variational criterion is

2
B, v(r)

8 Wiriall - 2m =0 (2-20)

. a0
I‘l’trlal
We have used Gaussian trial function with extension parameter,
which is used as the variational parameter. Varying k, we have
charmonium masses as a function of the string tension. As for
the widths, we use next relation :

M av
|w(0)|2 = 27 <wsoll dér) stol> ! (2-21)

- 17 -



where Vso1 is the solution of (2.20), because direct value of
Y(0) is not so reliable, though once integrated this relation is
rather correct. Leptonié decay width is proportional to this
quantity, so it is also a function of the string tension. This
is the first step.

Secondly‘we relate this string tension and gluon
condensate. We use the relation motivated from fluthube
model?4) In this model, we suppose that color-electric flux
lines from quark to anti-quark are squeezed into a flux tube. In

this picture energy has contributions from the vacuum energy and

the field energy.

Etotal= Evac.+ Efield (2-22)
with
Evac.= BV = Bor , (2-23a)
2 2
. E . 210~ .
Efielg™ 87V = 5 T s (2-23b)

where B is the bag constant, ¢ is the cross section of the flux

tube and E = é%g . The effect of EVac will be to compress the
flux lines as much as possible and Efield has opposite effect.
These effects are balanced at energy minimum, i.e., %% = 0 and

we have ¢ = Q /27/B . At this cross section, total energy is

- 18 -



thus

E=20/21rB r . (2+24)

The bag constant can be related with gluon condensate as

follows :

1
vac 4

ba a .a .
96T <Gquuv> ! (2-25)

with b = 11Nc- 2Nf = 27 (for Nc= Nf= 3). For quark and
anti-quark, we have Q2 = %a . Substituting these results for
the bag constant and charge, we obtain final relation between

the string tension and the gluon condensate.

k =/3 « q <<G3vG2v>> ) (2+26)
Then this completes the relation between the resonance masses
and widths and the gluon condensate, and also our sum rule at
the same time. We show the dependence of charmonium mass and its
leptonic decay width on these parameters in Fig.5a and Fig.5b.

To check the reliability of our new sum rule, we

investigate whether it reproduces the value of gluon condensate
obtained by Shifman et al. in the zero temperature limit. We

parametrize Iml(s) using the resonance-continuum model with

- 19 -



-experimental data :

+ —
. _ e e _ ,°
J/Y = MJ/w = 3095 MeV , PJ/d) = 4.50 kev ,
ete”
v : Mw. = 3684 MeV , Fw. = 1.95 MeV etc.
and
S = (4.2 Gev)? . (2+27)
As for QCD side, we take
m_ = 1.41 GeV , a = 0.24 , (2-28)

(o

following Shifman et al. In Fig.6a and 6b, we canbsee
contributions from each component of QCD side and hadron side,
respectively. The contribution of gluon condensate becomes
dominant as x becomes larger. We define L/R-ratio as the ratio of
left and right hand side. It should be unity if sum rule holds
well. We show in Fig.7, the result of this quantity versus cut
off parameter x in two cases : 1) <<Givciv>> =0, 2) <<G3vGiv>>
= 0.1884 GeV4 . L/R-ratio begins to deviate at small x in the
case 1). We can see that CG<<G3vGiv>> term in the left hand side
gives negative effect and the value in case 2) keeps L/R-ratio
unity in wider range in x and improves the sum rule very much.

This shows that our sum rule is compatible with that of Shifman

et al., and we have verified it works well at zero temperature.

- 20 -



We suppose the dewviation of I/R-ratio from unity in the region
where x is larger than 5.GeV—1 occurs because higher order
condensates become ‘dimportant :in such :a region. Shifman et al.
used "moment" sum rule which is completely independent our sum
rule. This compatibility strongly supports the reliability of our
sum rule.

We proceed to finite temperature case. Fig.8 shows
L/R-ratio for parameter’Values fixed at éero temperature in
several finite temperature cases. Horizontal axis is the same
cut off parameter x. When temperature is between 0 and 50 MeV,
sum rule holds well. But it begins to break down at 70 MeV and
L/R-ratio becomes worse in the region where x is larger than 2
GeV-1 as temperature becomes higher than that. This shows that
some modification of parameters is needed to keep the sum rule
and we can see they have temperature dependence. We plot
L/R-ratio for various values of gluon condensate at T = 100 MeV
in Fig.9. The sum rule is recovered as gluon condensate becomes
smaller. Searching the best fit, we can determine the value of
gluon condensate at this temperature, i.e.,

<G G > = 0.14 Gev? (T = 100 Mev) . (229)
In Fig.10, we show the temperature dependence of gluon
condensate. It decrease gradually as temperature becomes high.
It becomes 80% of its zero temperature value at T = 100 MeV.

From this dependence, we can derive temperature dependence of

- 21 -



masses and widths. We show the results in Fig.11a .and 11b. J/y

mass shifts toward lower side by about 30 MeV and y' mass does

about 80 MeV at T = 100 MeV, i.e.,

MJ/w = 3065 MeV ,
My = 3600 MeV (T = 100 MeV) . (2-30)

We can also see that the decrease of width is 20% .at the .same

temperature, i.e.,

+ - + - : ‘
r® € (T =100 Mev) = 0.8T%® (T = 0 Mev) . (2+31)

J/y J/v

- In next section, we consider F-meson channel.

- 22 -



§3. Application to F-meson channel

We apply our QCD sum rule at finite temperature to F-meson
channel. As shown in §2., we have applied the sum rule to
charmonium channel and investigated the temperature dependence
of gluon condensate. The analysis of F-meson channel also tells
us about this dependence. As gluon condénsate is a nature of the
QCD vacﬁum, it is supposed to be channel independent. Gluon
condensate should have this universalify, which we can study by
the analysis of this different channel.

In charmonium ¢ase, we can parametrize Imll(s) on the hadron
side by its leptonic decay width through vector current. In
F-meson channel, we parémetrize the imaginary part by the decay
constant fF. A differnt point in these cases is a lack of |
experimental value of fF. Then first we determine its zero
temperature value by the use of parameters fixed in charmonium
analysis. After that applying our sum rule at finite
temperature, we investigate temperature dependence of gluon
condensate in this channel and discuss about the universality of
this dependence. /

In this channel, another difficulty arises in potential
model. Non-relativistic potential model have works well and
reproduces the mass spectrum of charmonium rather precisely. We
have applied this model to s-s system, but we cannot obtain
correct ¢-meson mass. It shows that non-relativistic

approximation breaks down bacause strange quark mass is not
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sufficiently heavy. We have to take relativistic effect into
account. This is also the case for F-meson. In the F-meson,
heavy charm quark exists near the center almost at rest and

the strange quark forms a relativistic orbit around the charm
quark. The general framework to treat such semi relativistic
atom like mesons was developed by Morishita et al. The basic
idea is to perform non-relativistic approximation only to heavy
quark starting from fully relativistic theory. We adopted their
method to derive the string tension dependence of mass and the
value of the wave function at the origin which have relation

with the decay constant. ]

3.1 Sum rule in F-meson channel

First we explain the QCD side of the dispersion relation in
F-meson channel. The main decay mode of F-meson is F » ¢ w . It
suggests that F-meson is composed of charm and strenge quark (cs
or cs). Generally the lowest state in any channel should have
the same quantum numbers of the current. So the corresponding

current is a pseudo-scalar one (Fiq.2b) 1

Jo(x) = T (clx)yga(x) + S(x)ygs(x)) . (3:1)

In charmonium case, the assumption that there is no <cc»

condensate in QCD vacuum is completely justified because of its
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heavy mass. In F-meson case, as strange quark is lighter than
charm quark, it may seem that the condensate of the strange
guark should be taken into account. But strange quark mass is
about 150 MeV and still heavy to condense in the vacuum. So we
suppose that the assumption that there is no quark condensate is
still valid in F-meson chénnel, though the approximation becomes
slightly worse. Under this assumptioh the same argument and

method in §2. lead us to the dispersioh relation :

2 2 a ga 1 (7., Iml(s)
C.(Q%) + C.(Q7)<<G" G~ > = = J ds =miis)
I G TAVRTA T o s+ o2

(3-2)

which has same form as before and Wilson coefficients are
calculated by the cufrent (3-1).

If we treat D-meson, which is composed of charm and u,d
quarks, such assumption breaks down since u,d quarks condence
and have non-vanishing vacuum expectation values.

We summerize the results for Wilson coefficients in the
following. In F-meson channel, the tensor structure is simpler
than that of charmonium but the mass differnce makes the
calculation and results complicated especially in higher order.
Using the notation as before, C0 can be calculated from a diagram

I
in Fig.12. The result is

+co
0.1 J ds ——— 3 5_, (3+3)
m S
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- 2 2 - 0 .. .
where s = S —'(mT—mz) , Vo= 1 - 4m1m2/s - 1 is given by

.calculating the same diagram by the use of Mastubara's method

and we have

03 * e 4 mc2dk
=2

I 3
0 (27) exp( g 2+m$) . 1

2 2

—a@%(2k% m(m+ my)) + my(m+ my) (my - my)?)

X

2+ m? ((Qz— m$+ mg)2 + 4Q2(k2+:m$))

1 < m2 ) . (3.4)

on Qo(n) = 2m/g . In the equal mass case, this reduces to usual
dispersion type but the mass inequality forbids such

representation. C1

I is expressed by three diagrams in Fig.13 and

is rather complicated?s)

1—v) T+v 1-v

1+v1 T1-v
) - L)

-4l(v,) + 1(vf) s 1

T+v 1-v
S41(vy) + 1(v3) + L(—2) - 1(—2) ) )
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- (a8 d,2,.3 4 d+v
-+ 16 3V -+ gV + gV ) ln(1tv)
+~%2v - %v2+ 6v ln(1;V) - 4v 1ln(v)
+ M(v,v1,v2) } (3+5a)
where
1 2 1+v1 v1 1+v2 v2
M(V,V1,V2) =3 (1+v™) ( ln(1—v1) ln(;—) + ln(1—v2) ln(;—) )
: T1+v 1+v
1 1 1 1 1 1 2
+ 5V ( (=— - =) 1n( ) + (— - =) 1n( ) )
2 Vi v 1—v1 v, v 1—v2
+ 2 v 1ln(g/q) + 3y ln(m,/m.)
d 2 171
(m1—m2)2 1+v mf— m5
+ v —— — v l1ln(F) - —— ln(m/m,) ) ,
g q
(3-5b)
with
s v _ s v
Y1 T S + m2 - m2 ' Y2 * s - m2 + m
1 2 1 2
and

X
l(X)=—Jdtl—ngl-—t)
0

We neglect temperature dependence of C} ( AC} ) for the
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present. We have estimated,Aci-amﬂ'found:itfnegligible in the
charmonium case. We expect the situation is mot -different in this
case. As for CG , it is given by diagrams in Fig.14. We calculate

these diagrams following Yazaki et al. Wé have to enumerate

s

(2w)3

Tr ( Y5Sp(k)y, Sp(k)y Sp(k)y s (k)ySSF(k v, Sp(k')
+ v5Sp(k)y, Splkly S (k)YSSF(k )y s (k') § (k")

+ YSSF(k)YusF(k)YSSF(k')YpSF(k')YpsF(k‘)YuSF(k')

+ v5Sp(k)y, Sp(k)y Sp(k)y Sp(k)y Sp(k)ysSpik')

+ y5Sp(k)yg8p(k )y Sptk')y Sk )y Sp(k )y Bp(k') ) ,
(3-6)
where SF and §F are fermion propagator of heavy and light quark
respectively, and k' = k-q . Analytic calculation is difficult
and complicated because of the inequality of masses. We take
internal mode sum analytically by the use of mathematical
formula and integrate numerically with respect to |k|. See

Appendix C for further details.

Secondary we mention the semi relativistic potential model

used on the hadron side, which enables us to treat strange quark
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relativistically. This method was developed by J.Morishita,

6)

T.Morii and M.Kawaguchi? Their basic strategy of
semi-relativistic method is treating light quark
relativistically and heavy quark non-relativistically. Startingv
from fully relativistic potential model with scalar and vector
potential introduced by Fermi and Yang, Foldy transformation is
applied for heavy quark. This proéedure reduces the number of
cdmponents by eight and the hamiltonian is expanded in the
inverse power series of heavy quark mass. To investigate mass
spectrum, we separate the hamiltonian inti two part. One is upto
1st inverse power of heavy quark mass and the other is the
remainder. Then we apply many dimensional variational method to
the former hamiltonian and treat the latter by perturbation. The
trial function is a Gaussian type, which is a product of
polynomial and Gaussian weight exp(—rz/(ZAZ)), and the
extension parameter A is taken as the variational parameter. One
attention is here in order. The hamiltonian is still partially
relativistic and has no energy positivity. They cure this point
by the use of virial theorem, which says that the virial should
vanish for the stationary solution. Then we vary the extension
parameter observing the virial and fix the value when the virial
vanish.

We try this method for various values of string tension
contained in the scalar potential and obtained mass spectrum as
a function of string tension. As for the value of wave function

at the origin, the direct value of the trial function is not so
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reliable that we used a relation which corresponds to (2*21) in
charmonium case to determin the value.

In Table 1, we show the value of fitted extension
parameter, mass éf F-meson, and 4n]W(O)[2 . We can see that as
string tension becomes smaller, the extension parameter becomes
larger and the wave function becomes broader. Masses gradually
decreaée as string tension becomes smaller, which shows thé same
tendency as in the charmonium case. The values of wave function
at the origin fluctuate slightly comparing the smooth chaﬁge of
mass, but it also decreases as the string tension becomes
smaller. The string tension dependencejof mass and 4n]W(O)|2
are shown in Fig.15a and 15b, respectively.

We introduce the decay constant of F-meson by the following

matrix element in the standard way,
<F|5Yuyss|0> = _ifFPu' (3-7)

The resonance part of Im[[(s) can be expressed by the use of this
decay constant as follows :
2

ms) = T £2 M, s(s-M2) , (3-8)

I g Ir M

m
res.

for pseudo scalar current.
Let the light quark be non-relativistic, so that one finds

that
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ngF « |ly(0)|2 ' (3-9)

for ordinary wave function. In what follows, we use this
relation for relativistic quarks as well. The quantity [W(O)]z
has been already given as functions of gluon condensate, and we
find the decay constant fF as a function of gluon condensate. As
for continuum part, Bochkarev ana Shaposhnikov used temperature
‘dependent resonance continuum model requiring the saﬁuration
above threshold. But we simply parametrize by the use of
asymptotic value of ImCI based on the asymptotically free nature
of QCD :

I N(s) = CI(w)e(s-So) ’ (3.10)

m
cont.

where CI(w) = 1lim ImCI(s) and S0 is an effective threshold.
S+ _
This completes the parametrization of our sum rule.
We adopt cosine type one in the choice of weight function.

In the actual use of our sum rule, we fix vy = g and we have

2
the following explicit form as our sum rule.
21 o 2mn n a .a
E‘n£1(cos(—§~ - (=)7) (Cy(n) + CG<<Gquuv>>)

cosh( (§-x)F)-1

sinh(%g) ’

(3<11)

= J ds Imli(s)
0

where 0 < x < B . 1f we take zero temperature limit, factors

3
éﬂ(-)n and 1/sinh(@E/2) on left and right hand side
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respectively tend to zero. This shows that sum rule (3°12) has
~the same zero temperature limit as one with naive cosine weight
fuonction and the meaning of x as cut off parameter does not
change.

By the use of some models, we have reduced the number of
parameters and finally we have two parameters, i.e., gluon
condensate and effective threshold. As x plays a role of duméing
parameter on the s axis (exp(—ﬁg) at T=0), when x is small this
factor dis not so effective and information contained in Imll(s)
at large s is enhancéd in the sum rule. On the other hand, when
X is large, this factor becomes effective and the weight on the
resonance region increases. So the non-perturbative effect
appears in the large x region. As for our parameters, thev
threshold is related with the small x region and the gluon
condensate with large x region. Thus, the effective regions of
these parameters are different in x and we can determine both
threshold and gluon condensate by this single sum rule

naturally.

3.2 Results

Before proceeding to the analysis at finite temperature, we

have to fix decay constant fF at zero temperature. We take

My = 1.970 GeV and S, = (3.5 Gev)?
(3.12)

on the hadron side and
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m_ = 1.47 Gev , m, = 0.15 GeVv ,

o = 0.23 and <G G2 > = 0.1884 Gev’
UV UV
(3.13)

on the QCD side. Using these values we check the L/R-ratio for
various values of fF‘ The contributionsAfrom each terms in QCD
side and hadron side are shown in Fig.16a and 16b, respectively,
An zero temperature .limit. We can see on the hadron side that we
have contribution from continuum part in the small x region but
generally at large x it decreases very rapidly as mentioned
above. On QCD side, the contribution from gluon condensate has
positive sign contrary to the charmonium case. But it also
increses as x becomes large and we can see that non-perturbative
effect plays an essential role in saturating the resonance
contribution on the hadron side. We plot L/R-ratio for several
values of fF in Fig.17. As the best value for keeping the

L/R-ratio unity, we find
f_, = 0.80 GeV . (3-14)

This is one of our result. This value is rather large comparing

fD = 0.22 GeV and fB = 0.14 GeV ,which was found by Shuryak27)
(D and B means D-meson and B-meson, respectively). The charm
quark and strange quark are in the same doublet, but charm and

u,d or beauty and u,d do not belong to the same one. So
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suppresion from Cabbibo angle is EXpettedifnr“iD:and*fB-‘This
would be the reason why fF is larger'than'fD and,ﬁB.

Next we proceed to finite temperature case. The L/R-ratio
is shown in Fig.18 at T = 100 MeV for parameters fixed at
T = 0 MeV. L/R-ratio deviates largely from unity, which shows
some modification of the parameter Valueé is necessary at finite
temperature; We can see L/R-ratio for various values of gluon
condensate in Fig.19. The L/R-ratio becomeé near to unity as
gluon condensate decreases and the sum rule is recovered. We
search the value of gluon condensate which keep the L/R—fatio
unity in widest region of x and it gives the value of gluon
condensate at T = 100 MeV . We have

<<G2 G& 5> = 0.15 Gev? (T = 100 Mev) . (3-15)
HVY uv

Investigating the sum rule at several femperature in this way,
we find temperature dependence of the gluon condensate. The
result is shown in Fig.20. We can also find temperaure
dependence of effective threshold at small values of x. The
result is in Fig.21. It also decreases and becomes (3.O'GeV)2 at
T = 100 MeV from the value (3.5 GeV)2 at T = 0 MeV . We can
also find temperéture dependence of mass and decay constant of
F-meson from that of gluon condensate. They are in Fig.22a and
22b, respectively. Typically we can see that F-meson mass shifts

by about 20 MeV toward lower side at T = 100 MeV , i.e.,
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Mg = 1940 MeV (T = 100 MeV) . {3+16)
The decay constant also decrease and at the same temperatue its
value becomes 90% of the value at zero temperature.

fF(T = 100 MevV) = 0.9 fF(T = 0 MeV) . (317)

Comparing results obtained in charmonium channel and
F-meson channel, the region where sum rule holds is -small in the
latter case. Effects of higher condensates becomes dominant at
large x and théy increase for small mass. We suppose that the
break down of the sum rule at small values of x in F-meson
channel is caused by small strange quark mass through this
general mechanism.

In F-meson channel, we have measured temperature dependence
of effective threshold quantitatively. It is true that it shifts
toward lower side as temperature becomes higher but it has a
value about (3.0 GeV)2 at maximum temperatufe which we have
studied and it is still larger than squared resonance mass. We
can not observe the phenomenon that effective threshold becomes
lower than squared resonance mass within the temperature we have
investigated.

The temperature dependences obtained from analyses of
different channels have same tendency that they decrease as
temperature becomes high. The decrese is slightly larger in

charmonium channel but the difference is small. They show almost
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same behaviour quantitatively in both channel. This fact
indigates the universality of temperature dependence of gluon
condensate. We consider this universality assures the
reliability of the temperature dependence of hadronic

parameters, i.e., masses, widths and decay constant.



§4. Summary and discussion

We have considered QCD sum rule at finite temperature based
on the success at zero temperature. It gives a method to
investigate non-perturbative effect at finite temperature, which
is interesting in connection with hadron and quark-gluon phase
transition and hadron physics.at finite temperature. Finite
temperéture QCD sum rule was considered by Bochkarev and
Shaposhnikov first to study the phase transition. But they
neglected the temperature dependence of non-perturbative effects.
We have proposed a new sum rule which enables us to take this |
dependence into account. Our basic strategy is to extend the
method by Shifman et al. to finite temperature substituting
vacuum expectétion value by Gibbs ensemble average. There were
two altered points : 1) we use finite temperature perturbation
theory in the calculation of Wilson coefficients and 2) the lack
of experimental data is supplemented by spectroscopic models
depending on vacuum condensates. We adopt Matsubara's method for
1) and parametrize masses and widths (or decay constant) by gluon
condensate in terms of the combination of potential models and
flux tube model to cure the lack of 2). This latter procedure
reduces the number of parameters and we can determine remaining
parameters without ambiguity. Essential point here is that

Matsubara's method gives correct values of Wilson coefficients
_ 27in
= =3 ,

of dispersion relation with a weight function on these points.

only on qo(n) so that we summed up the both hand sides
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This is our proposal of discrete mode sum rule. It has a merit
that it does not need analytic continuation which is difficult
for Wilson coefficients of higher consensates. It simplifies the
calculation very much and information contained in this sum rule
is not less than that of continuous version. Some proper choice
of weight function on imaginary energy axis leads to damping
factor on the real axis. Choosing appropriate strenéth of this
damping factor, we can enhanée resonance region where
dnformation on non-perturbative effects is rich. The criterion
to determine vacuum expectation value is the agreement of both
hand sides in as wider region of damping parameter as possible.

To check our sum rule, we compared our results and that of
Shifman et al. in charmonium channel at zero temperature. Their
sum rule was moment type one and completely different from our
discrete mode sum rule, but both predictions about gluon
condensate agree each other. This fact supports the reliability
of our new sum rule.

We have applied our sum rule to charmonium channel first,
and next proceed to F-meson analysis. In these channels, we can
extract gluon condensate effectively. We concentrate on
temperature dependence of gluon condensate and hadron physics at
finite temperature. We have found gluon condensate decrease
gradually as temperatere becomes higher. Typically it becomes
80% at T = 100 MeV . This behaviour is seen in both channels
and the amounts of the decrease show quantitative agreement.

Gluon condensate is a nature of true QCD vacuum and its
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“temperature dependence should be channel independent. We have
verified this universality through the analyses of these
different chanels. We summerize the results on hadron physics at
finite temperature.

1) Charmonium masses shift toward lower side. J/y and y'
masses decrease about 30 MeV and 80 MeV at T = 100 MeV ,
respectively.

2) Leptdnic decay widths of charmonium also decrease and
at T = 100 MeV they becomes 80% of their zero temperature
values.

3) As there is no experimental data on decay constant of
F-meson, we have determined its value by the use of parameter
values fixed by charmonium channei. The result is fF = 0.8 GeV
at zero temperature.

4) F-meson mass shifts to the lower side by 20 MeV at T =
100 MeV.

5) The decay constant of F-meson aiso shifts to the lower
side and it becomes 80% of its zero temperature value at T =
100 MeV .

6) Effective threshold decreases from (3.5 GeV)2 to about
(3.0 GeV)? at T = 100 MeV .

The value of fF is reasonable in comparison with fD or fB
determined by Shuryak. We consider that verified universality
. gives a support on these results. We cannot see the phenomenon

that threshold becomes lower than squared resonance mass within

the temperature we have investigated. Unfortunately we cannot
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apply our sum rule at higher temperature than 130 MeV. We used
oscillating weight functin on the imaginary energy axis to make
damping factor on the real axis. Such behaviour of weight
function results in the periodicity of cut off parameter x. The
parameter x has a period B and the significant region becomes
smaller as temperature becomes higher. This limits the highest
temperatﬁre of our sum rule. To overcome this defect, we need
alternative weight functions.‘One of possible choices is

(-)

nCA with appropriate normalization -factor, which makes
difference on qo(n) and directly corresponds to moment sum rule
by Shifman et al.

We have assumed that gluon propagator is proportional to
metric tensor and it is Lorentz covariant. We have condensate
<<szGiv>> as a result of this assumption. But at finite
temperature, there is no Lorentz covariance, color electric
and magmetic field can condense independently. We will be able
to know theése precise information on finite temperature
condensate decomposing gluon propagator by 0O(3) invariant
tensors.

Other interesting applications are analyses of different
channels. By these analyses, we will be able to confirm the
universality of temperature dependence of gluon condensate and
study that of other condensates. Especially, we can investigate
temperature dependence of chiral condensate in D-meson channel

which is another typical condensate of QCD vacuum. Because

D-meson contains light u or d quark, chiral condensate becomes
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important in this channel. The development from F-meson channel
to D-meson channel is rather straightforward with respect to
potential model as the semi-relativistic one is also applicable
to this channel, though some other technical difficulties are

expected. We hope it will be realized in near future.
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Appendix A

The basic object in QCD sum rule is the current-current

commutator, which is defined by
I _(x-y) = <0| T 3%(x) 3%y |o> (3=1)
uv _ u v !
where ju is a current and given by
3V(x) = @(x) vy, a(x) (A-2)
u YU
in vector current. In momentum space, we have

Huv(q)

i [ af expliatx-y)) <0f T 3700 3w [0>

2 2
( quqv - guvq ) I(Q7) (A<3)

by the use of gauge invariance. The dispersion relation for

1(0%) is the following,

ne?) = 1 J? gs ImA(s) (Ae4)
s + Q
To derive non-perturbative effects, we calculate H(Qz) on
the left hand side by QCD with operator product expansion and
input experimental data to ImH(Qz). The right hand side is

represented by Willson coefficients and vacuum expectation
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values of local operators “through “operator “product expansion.
The vacuum expectation values reflect the non-perturbative
effects of QCD. These are determined from experimental data
through (A+4) and we can obtain information about universal
vacuum structure of QCD.

The force between quarks becomes stronger as they are
separated at larger distance, i.e., there works confining force
between quarks which is non—pérturbative effect of QCD. On the
other hand, the interaction .between quarks becomes smaller at
shorter distance and they behave like free particles, which
shows that QCD has asymptotically free nature. This fact means
that there exists some scale A which characterizes QCD and we
can treat QCD perturbatively at smaller distance than A but
non-perturbative effects dominate at larger distance than A.
Operator product expansion (OPE) gives a general framework of
treating such a situation, i.e., different phenomena with
different scales. The basic idea of OPE is to expand operators
for small x/A. It is a short distance expansion and it contains
furtherlinformation about long distance behaviour as we take
higher order terms into account.

In QCD, we can extract gluon condensate <G3vGiv>, chiral
condensate <¥¥> and other vacuum condensate as vacuum
expectation values of local operators by applying OPE to the
time ordered current-current commutator (left hand side of
(A-4)). So we can determine these universal vacuum parameters

from QCD sum rule with the input of hadron side data.
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“To know “how these condensates can be extracted actually, we
need some technical preparation on Fock-Schwinger gauge.
Fock-Schwinger géuge condition was introduced by Fock in quantum
electro dynamics (QED), and then, independently, by Schwinger.
After that it has been rediscovered several times in the context

of QCD. It is given by
( x - x)¥ Aj(x) =0, (A+5)

where Xg is an arbitary fixed point in the space and plays the
role of gauge parameter. It keeps Lorentz invariance but breaks
transformational symmetry. The latter should be restored in
gauge invariant quantitiesvand Xe disappears. This serves as an
additional check of correctness of calculation. Hereafter, we
take Xe = 0 for simplicity.

This-gauge condition has two main virtues, 1) the gauge
fiéld is expressed by field strength, 2) it allaws covariant
Taylor expansion. |

1) Usually field strength Giv(x) is expressed by gauge
field Az(x) :

_ 90 _ ja _ 9 _ pa
(x) = A (x) S Au(x) + f

axM v ox

abc ,b c
v Au(X) Av(X) ’
where fabc 's are structure constans of the gauge group. But in

this gauge, the gauge field Az(x) is expressed by field strength

a .
Guv(x) vice versa :
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1
a a
A = G .
u(x) Joda a xp pu(czx) ’ (A*6)

which can be derived easily as follows.

Following identity :

R ; s — 332 (x)
2%(x) = <4+ ( xP a%(x) ) - xP —L— (A7)
Ll axu D . BXU

holds for arbitrary gaugeﬁfield,AiLx)“iﬁheaiirst term vanishes

from the gauge condition. The second one is rewritten as

2 922 (x)
- xP Gup(x) - xP ’ (A-8)

axP

also by the use of the gauge condition. Then we have

a
a a 0 A (x)
%P 62 (x) = aA%(x) + xP —H— | (A-9)
pu u 5xP
A tricky substitution of x to ax gives
P g2 1 a .
ax Gpu(GX) = 3 ¢ Au(ax) . (A-10)

After integrating the both sides by a from zero to unity we have
(A-6).
2) Expanding Ai(x) in the gauge condition (A.5) at the

origine by Taylor expansion, we obtain



X ( A (0) + x %3 A (0) + % x Ba aBA (0) + eveee ) =0 .

(A11)

This equation holds for any x, -hence each -order of xmust egual

to zero,
qui(O) =0 , (A-12a)
u_a a _ .
x*9 2%(0) = 0, (A-12b)
u_o_B. a _ -
xx*x"3 3,87 (0) = 0 . (A-12¢)

Using these equations, covariant Taylor expansion of any
gquantity can be easily derived. Typically next two expansions

are important. For fermions,

Y(x) = ¥(0) + anaW(O) + % xaxsaaaBY(O) + esesee (A-13)

Combining (A.6) and covariant Taylor expansion of Giv(ax) in it,

we can see for gauge field Ai(x) that

p(D G L(0))

a __1  _pRa 1
By = 5oer ¥76,,(0) + 34y

1 «%xByP ceces .
7351 x" (D DBGp (0)) + (A<14)

+

Using (A+14) and (A-13), we can extract gluon condensate
and chiral condensate, respectively. We have the former in the

channel which contains only heavy quarks. We can treat fermion
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perturbatively in this channel, though gluon is under
non-perturbative effect. So we use usual perturbation for
fermion propagator applying (A<14) for gluon field. Then it is
straight forward to find gluon condensate in this channel. As
for chiral condensate, it becomes important when light quark is
concerned. In this case, the light fermion is under
noﬁ—pe:turbative effect and we have to use expansion (A-13) to
it. Easy calculation léads us to chiral condensate in such

a channel.

Next we discuss the hadron side (right hand side) to
complete the QCD sum rule. The imaginary part of the time
ordered current-current corelator is related to the cross
section of corresponding channel through the optical theorem.

The cross section can be determined by experiments. If
perturbative QCD works well at all scales, the imaginary part of
the time ordered current-current commutator should have almost
the same structure as Imcg+1(s). But Imcg+1(s) has no
resonances, which do exist in the real world. The vacuum
expectation of local operators reflects these deviations from
perturbative calculations. It is possible to use precise fit of
experimental data, but we parametrize the cross section with a
few characteristic parameters, i.e., resonancs masses, widths
and threshold by the use of resonance continuum model.

There are several ways of actual use of the QCD sum rule.

The first one- is "moment" sum rule, which compairs the

right and left hand sides by their derivatives with respect to
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'Qz*atﬂthe~0rigine,

_ +0
M o= -1 (—-*;é;)n T | 5 = 1 as El:%ﬁ—’ :

(A«15)
This type of sum rule was used by M.A.Shifman et al. in the
analysis of resonance physics at T=0.

The second one is given by integrating Q2 from zero to
infinity éfter multiplying appropriate function. In the actual
ause tro .extract mon-pertnrbative information in combination with
OPE effectively, its form is somewhat restrected.

As QCD has asymptotically free nature, Imll is sufficiently
satulated by Cg(QZ) at large qz, which means this type of sum
rule is almost trivial for g(qz) = 1 . The non-perturbative
effects show theirselves in the small q2 region as resonances,
we must choose functions to enhance such a region and determine
vacuum condensates of QCD, for example

/2/ MZ)

g(qz) = ekp(vq , (A<16)
whrer MZ is a parameter.

In the case of applying the sum rule for channels including
light quarks, we need further improvement called Borel
transformation. The OPE method gives inverse power expansion
with respect to Q2 because the product of local operators have
their own dimensions. Borel trnsformation gives one way of

changing this expansion to faster convergent series. This
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‘transformation is defined by

A

£ = ==

2mi

.C+iw 1
J Eexp(A/x)vf(x),x-dfg).=mLk(f(x)) ,

c-iow
(A«17)

where the integration contour runs to the right of all
singularities of the function f(x), and I()) is called Borel
transform of f(x). Its inverse transform is

—+o

f(x) = J f(l)—exp(—x/x) dﬁ%) - (A18)

0

We can see this easily. From (A-18),

+o

x £x) = [ FO) exp(-a/x) ax = (D), (2-19)
0

where F(x) is Laplace transform of I()). The inverse

transformation of Laplace transformation is Mellin

transformation :

~ 1 s C+ico
f(r) = T Jc—iw exp(Ax) F(x) dx . (A-20)
So we have
- 1 (Crie 1 1
B0 = 5ip [c_im exp(A/x) F(L) ad) (Ae21)

and the right hand side of this formula coincids with the

definition of Borel transformation, which proves our assertion.
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‘Borel ~transformation of f(x) is the inverse Laplace transform of

X. £(x) with respect to 1/x. For example, we use the Borel

k

transformation of (1/02) to the wvariable M2 with respect to Q2

in the improvement of the sum rule, which gives formula :

L, (1/0%)%) = ey miE (a-22)
M !
Next form is comvenient to see the relation between moment

sum rule s:and Borel transformation. We can rewrite Borel

transform of H(QZ) as follows :

L (%) ) = 1)
M
1 2.n 1 .n 2
= 1lim —— (Q7)" (- —=)" 10(Q") , (A-23)
Qé,n L o (B=1)1 402
where Q2/ n = M2 (fixed) .

This identity can be verified by the action on ( 1/Q2)k, which
reproduces (A.22). We notice that Borel transformation is one
kind of extended moment sum rule and new series obtained after
Borel transformation shows faster convergence because of the
factor 1/(k-1)!.

Finally we show the Borel transformation of dispersion

relation (A.4). Noticing

L, ( ——) = 15 exp(-s/¥°) , (A+24)



we have

11 J*“ . I 1 1 ki
—- — ds Imll(s) exp(-s/M°) = J Y= )" h ,
i MZ 0 k=0 i (k-1)! M2 k
(A.25)
. 2 .
where we expanded HQCD(Q ) by OPE :
4 0i
2 k
Tyep(Q™) = 1 1 ' (A-26)
Qcb k=0 I (5K
i i
and hy = <0| O [0> .

Shifman et al. investigated charmonium channei to extract
gluon condensate. Heavy charm allows them to extract gluon

condensate. They found

@ G2 5 - 0.1884 Gev? |, (A+27)
HvV uv

by the use of moment sum rule. They applied their sum rule for

p-meson channel and found the value

Fy> =-250 Mev> (A-28)

is consistent with experimental data.
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Appendix B

The basic idea of the sum rule by Bochkarev and
Shaposhnikov is to write down a sum rule for spectral density of

Gibbs ensemble average of current-current comutator :
R
HU\)(q;T'U) =

i [ a*x explialx-y)) 6lxgmyg) << [3,(x),3, (1>,
(B+1)
where R means retarded, << >> is the Gibbs ensemble average, T
and y are temperature and chemical potrntial. Hﬁv(q;T,u) is an
analytic function in the upper half plane of the complex energy

plane and the dispersion relation for Hﬁv(q;T,u) is

puv(w.E;T,u)
w - qo— i€

R +o0
I (95 T,u) = J_w du , (B+2)

where puv(w'a;T'“) is the spectral density of Hﬁv(q;T,u) and its

concrete form can be written as

> . _ 3 _ 3.2 ¢ _
puv(w,q,T,u) = (27) mgn exp((Q En)/T) §7(g-k ) 8lw-w, )
X <n|Ju(O)|m> <m]Jv(O)|n> (1—exp(—wmn/T)) , (B+3)
where o = E - E_ Emn= Km- Kn and Q = - T Tr(-(H-pN)/T) .

Perturbative calculation of spectral density allows one to
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require next relation, i.e., QCD sum rule for spectral density

at finite temperature :

-
J dw g(w) ouv(w,q;T,u) =

-

J dw g(w) Imﬂﬁv(w;le,q;T,u) + N.P. , (B-4)

where Hﬁv(giig,a;T,u) has same definition as HEV(QPT:U) and is
analytically continued after calculated on qo(n) =~2%Ei by

Matsubara's method. N.P. means non-perturbative effects such as
gluon condensate or chiral cqndensate etc.

Here we pay attention to the tensorial form of Hﬁv(q;T,u).
At finite temperature there is no full Lorentz symmetry and it
reduces to spacial O(3) symmetry. Because of this breaking of
the Lorentz symmetry, Hﬁv(q;T,u) is decomposed into two
invariant form factors, i.e., transversal one Hz(QO;T,u) and
longitudinal one H?(QO;T,u) :

&% 1Sy &) (B-5a)

R

R . _ 2 2,2 R >

2 2 »>2 R >,
* 93959/ (9p-a") T;(Q4,qiT,u) - (B+5Db)
where Qo = -iqo . General argument requires that H? and Hi
should coincise each other at momentum rest frame E =0 :
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R _ R
T3(Qp78=03T,y) = My(Qy,8=0;Tu) = TN(QyiT,m) . (B 6)

This allows us rewrite (B.4) to the sum rule for HR(QO;T,M) at

momentum rest frame.

Jw ds g(s) p(s}T,u) = JQ ds g(s)-ImHM(s;T,u) + N.P. ,

0 0 : (5-7)
gwhere;Imngksz,u)'can be determined by Matsubara's method and
p(s;T,u) is the true spectral function of HR(QO;T,u) . We have
given p(s;T,y) value from experimental data at zero temperature,
but at finite temperature there is no such data to input.
Therefore it is natural to parametrize this cross sec&ion
in terms of resonance-continuum model which contains resonance
masses and threshold as parameters and they should be determined
through this sum rule.

A.I. Bochkarev and M.E. Shaposhnikov discussed along this
line and applied this type of sum rule for p-meson channel in
the case y = 0 . They calculate ImnM(s;T,u) at 1-loop level

in perturbation theory using corresponding current
$P(x) = & ( G(x)y ulx) - d(x)y d(x . B.8)
30 = 3 UGy ulx) - dlx)y d(x) ) (
The result is

pl(s) = pO(S) e(s—4m§) th(/s/4T)
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+00
+ 8(s) J 2 ds' po(s') 2nF(/s'/2T) , (B+9)
4dm
q
with
2 2
2m 4m
_ 1 e _—a ,1/2

where temperature dependence shows itself in the tangent
hypabolic and fermionic statistical factor. As for the true
spectral function p(s;T), because p pole dominates in the

spectrum, it is set as

pls) = presonance(s) + pcontinuum(s) (B-10a)
2 2
pres(s) = fpmp 6(s-mp) (B+10b)
1 +e
pcont(s) = 5;5 e(s—so) th(w/4T) + &6(s) Js ds ZnF(/§72T) .
0 (B+10c)

The contribution from s larger than threshold cancel on both

hands sides. The final form of the sum rule is
f m2/ M2 exp(—mz/ M2) =

S
—§J 098 ( exp(-s/M%) th(/5/4T) + 2n,(/5/2T) ) + N.P.
M ,
(B+11)

They discussed the hadron and quark-gluon phase transition by
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the use of this sum .rule. They found the solution that the
threshold becomes lower than squared resonanceimass. In such a
situation hadron will become breakable. They identified this
phenomena and the phase transition, and obtaint critical

temperature
TC = 130 MeV. (B«12)

But we have a question about the treatment of non-perturbative
effect. It seems possible that they have temperature dependence,
as is suggested by Monte Carlo simulation at high tempeature. We
think some improvement is needed to take temperature dependence
of non-perturbative effects into account, which is one of our

motivations of this work.
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Appendix C

We can see from the same reason .as in Appendix A that we
must calculate diagrams in Fig.14 to obtain Wilson coefficient
CG of gluon condensate in F-meson channel. The situation is
complicated because of mass inequality of quarks. We show how we
calculate thié coefficient in this Appendix. We usé Matsubara's
method and choose a frame in which the external momentum equals

to zero.

After taking trace, we have next expression from (3-6).

(o)
3 J04npsdps

4 2 2.2 2 4 2 3 2_4 2 2 2 2 2
—16[4m1 2+3m m,p +2m r +5m1m2rp+m2p +m,m,p rp+6m1(rp) +2p“(rp)°)
/(p%em2)*(z%+m2)? - (m«> my, p < 1) (C-1a,1b)

3 3 3.2 3 2 2 2 2.2 2.2 2.2
+16(4m1m2+3m m5p +3m 1m,T +6m1 2rp+2m1m2p r +3m2p rp+3m1r rp

2 3 2 '
+4m1m2(rp) +4(rp)~) /(p +m ) (r +M, ) (Ce1c)
2 2 4 4 2 2
+16(4m1m2+5m1pr+2m1m2p +2m1p pr+2m1m2p +p pr)/(p +m} ) (r +m2)
+ (m1++ m,, p «> r) » (Ce1d,1e)
where r = p-g and p = ( %l(n+%) P ) s a = %ﬂ(n+%—l) ; 0)
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As we calculate in Euclidean metric, the inner product is taken

with metric tensor § and p2 = (~%ﬂxn+%))2 + p2 , r2 =

MV
2m 2 2 2 271, 2

B (n+%—l))2 +p° , rep = % (P~ + 1" - (535)7) . Here we

introduce the notation DMN(a,b,c) defined as

(pz)a(rzlb(pr)c

. 400
1
D, .(a,b,c) = = 7§ ’ (C.2)
MN T n=-o ((n+5) 2425 ((ns3-1) 287N
Ny _ B 2. 2 _ B 2. 2 . .
with A = > v/ pT+ my and B = o7 v p+ m, . It is obvious from

(C-1) that CG can be calculated by single integration of the
summation of DMN(a,b,c)'s with mass coefficient up to
normalization. /'We calculate DMN(a,b,c) annalytically.

Following reduction formula can be easily verified.

2 2
P Dyy = Py n — ™7 Duy (C-3a)
2 2
T Dyny = Dy n-1 ~ M2 Dy (C-3b)
1 2, 2.2
P Dyy = 2 (Py_1 n* Dy N1~ (My#m3+qg)Dyy - (Ce3c)

Iterative use of these reduction formula allows us to express

DMN(a,b,c) by linear combination of DMN(O,O,O) = DMN . DMN can
be calculated through next derivative formula :
M-1 N-1
(-) (-) 9 _M-1, 3 |N-1
D = ( ) (—) D . (C-4)
MN (M=1)! (N-1)! 8A2 882 11

And the mode sum in DMN can be taken annalytically by the use
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of mathematical formula, the result is

1 1
Div =7 1.2 .2 T .2 .2
n=-o ((n+§) +A )((n+§—l) +B7)
-1 A-B tanh(ma) - A+B tanh(7A)
2B (A—B)2+12 A 2B (A+B)2+12 A
1 A-B tanh(7B) 1 A+B tanh(nB)
+ = + = R (C.5)
2A (A—B)2+12 B 2A (A+B)2+12 B

In equal mass case, we have A = B and D11 reduces to

2 tanh(wA)
{

D = A -

11 l2+ 4A2

Unfortunately inequal mass case, D11 has four component and
this is the origine of complexity.

By the combination of (C+3) - (C<5) , we can obtain
analytic form for DMN(a,b,c) . This is the way of analytic
internal mode sum. Explicit form is lengthy so we do not quote
here. Finally integrating numerically with respect to Py + We

have the value of CG .
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Appendix D

The semi-relativistic potential model was proposed by
Morishita et al. which gives very good mass spectrum of F, D and
B-mesons. We have used this model to parametrize F-meson mass
and the value of wave function at the origin (4n|W(O)]2) by
string tension. We introduce brief outiine of this method to
help the understanding of §3. Please see reference 26 for
precise contents.

Semi-relativistic potential model gives us a general method
to investigate two fermion system in which one is light and the
other is heavy, i.e., atom like system. In the following we
identify heavy one as charm quark and light one as strenge
guark. They start frqm relativistic two body hamiltonian
introduced by Fermi and Yang. It is sufficient to take scalar
and vector potential into account to our purpose. The

hamiltonian is

> > > > > >
P_+ quq) + (anQ+ BQmQ) + BqBQS + (1—aan)V

H =
(aq q

(De1)
where subscripts g , Q denotevs , ¢ (or s , c) in our case,
respectively. If Q is sufficiently heavy for us to treat it
non-relativistically, we can apply Fordy transformation to Q.
Resultant eigen value equation which they find is

(HO+ H

1+ Ho+ H3+ H4)$ = E§ , ‘ (De2)
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with

H0 = &ng + Bq(mq+ S) + VvV,
>2 2 2 2 2
Hy = my + P /2mQ— BqS B /2mQ + Vv / 8mQ
1 1 ,dS av -
H2$ T o4l T (dqu- ar) ¢ 0QT
m
Q
1 > > iv' > >
H, =— Va&p-+—23ain,
3 mQ q 2mQ q
1_dv » > >
Hpb = - ZmQ dr 0Lq@ Og*nt v

- 54/8mé

(D.3-0)

(De3-1)

(D.3-2)

(D.3-3)

(D+3-4)

where $ai has two subscripts o and i , the former corresponds

to four component of Dirac spinor of light quark and the iatter

shows the two component of the spinor state of heavy quark.

The wave function can be expanded in terms of scalar and

M

M
JJ ! ?JJ+1) as

vector spherical harmonics (Y? P X

§ = A(X)YI(@) + B(r)3XI Q) + C(r)TTY ) (2) + D

where

M = J(3+1)/(23+1) T + /I/(23+1) ¥

J(+) J J+1

(r)&Ye

M
J J+1

J(+

y (2)

(D-4)

But in this case, they define the rotated spherical harmonics

((Iéf‘m "}%M ,"J,irM ,'}‘ZM ) , which are defined as
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with

U- — (i F
I \-F

They satisfy next two remarkable relations

IM JM
3qﬁ'g_A = -Y%5 , for (a,B)=(B,A)=(1,+)=(2,-) , (D-6)
and
> IM JM
qT %-A = - (k+1) %A ’ .(D.7)
where k = -(J+1), J, J+1, -3 for A =1,

2, +, -,

respectively. Following relations are useful to see these
relations :

M = - ——— AxT M, (D+8-1)
J(+) JT(a+1) J
M - M
Yroy =-mY5, (D-8-2)
21 .

M M
3 ?JJ = - JI(J+1) TYJ , (D+8-3)

and
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—
=y
i
—
4
Sy
It
o
—
SY
X
=4
I
o

el =0, Aedd = 1 , ne(nxl) =0 ,
(BxT)eT = 0, (BxD):d = 0, (AxD).(&xl) =172, (D+9-1)
and
TxT = i1 , IxA = 2if% - fxd , Ix(@xD) = & T% idx1
.1 =0, BxA = 0 , (AxI)xI = inxT ,
(BxT)xT = ifxT , (AxI)xd = T, AxD)x(hx1) = -i1 . (D+9-2)

(D+6) and (D.7) simplify the calculation very much and under

these bases the wave function is written as

y o . ;

5 = ( A ) (D-10)
Yp
with
JM
_(Fc c
Yo =\, am )
lcrcl
where (C,C') = (1,+), (2,-), (+,1), (-,2) . (A,B) = (1,2) pair

corresponds to parity (—)J and (+,-) to (—)J+1 .’}iM and%&{M
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are L = J+1 , S = 1 and{%fM andqégM are mixed states of L =

J , S=0 and L =J , S =1 . The singlet dominates in the

former and the triplet in the latter, and they are called 1J

and 3JJ , respectively. Then the eigen value equation (D.2) is

written as

H. + K K y Y
( 0 1 2 ) ( A ) _ E ( A ) (D+11)
K2 HO + K y Yy

where K1 corresponds to H1, H3 and the diagonal part of H2’ H4.

If the heavy quark mass tends to infinity, only HO term remains

and (D«11) decompose into two usual radial Dirac

J

except m

Q

equation for each V¥

m_ + S + V - 4 + K u u
/ g dr r C\ C
L d " } = E ’ (D'12)
ar + - mq + S + V VC VC
where uns= rFC r Vo= rGC and «k = -(J+%') , J, J+1 , -J for
cC =1, 2, +, — . This is the reason why they have taken rotated
scalar and vector spherical harmonics.
In the actual use of this model, they take
scalar potential : S(r) = kr + b
and vector potential : V{(r) = - % % .
To investigate the mass spectrum from (De¢11), dimensional

variational method is used. They consider diagonal part up to

1st inverse power of heavy quark mass,

>2 2 »
(HO+ My + P /ZmQ)¢ =E $ , {(D<13)
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which has similar form as (D+12). They treat the remainder of
the hamiltonian perturbatively. They consider n dimensional

functional space composed of next trial functions

n
Z k+a r 2) , (D-14)

L apr exp(—%(x)
for each u and v (o may have different value for u and v).

The expansion parameter A is the variational parameter. Taking
the matrix element of the hamiltonian in this functional space
§nd diagonalizing this nxn matrix, they have n energy .levels
éorrespond to quantum number k . The essential point here is
that the hamiltonian is still relativistic so that the usual
variational criterion of energy minimum does not work in this
case. Another criterion to fix the variational parameter is
needed. The quantum virial theorem is used for this purpose. The

statment is that the virial should vanish for stationaly states,

i.e.,
< [rp,H] > =0 . (D15)

We vary the variational parameter observing the virial and the
value is determined when the virial is nearest to zero.

Because of this lack of positivity, these n eigen values contain
negative ones. We choose only positive eigen values. At this

stage, the states which have same value of « are degenerate. For
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example ]SO {J=0) and 351 (J=1) gives same « = ~1 and they are

spritted by the perturbation of remaining hamiltonian. We
estimated the lowest level variation of string tension. The

fesult is shown in Fig.15a.
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k (Gev?) A Em) | Ts (mev) | am|¥(o) |2
xio%
0.17 2.16 1967 4.768
0.16 2.25 1957 4.661
0.15 2.19 1943 4.177
0.13 2.35 1924 3.803
0.11 2.50 1903 3.364
0.10 2.53 1890 3.100
0.07 2.84 1853 12.399
0.05 3.35 1825 1.970
0.03 4.04 1791 1.453
0.01 5.50 1746 0.877

Table : The extension parameter,

lowest mass and value of wave

function at the origin for

v various values of string tension.




Figure Captions

Fig.la

1b.

Fig.2
Fig.3
Fig.4
Fig.5a
5b
Fig.6a
6b

Fig.7

Fig.8

Fig.9

Fig.10

The diagram which represents -invariant form factor
for vector current.

The diagram which represents invariant form factor
for pseudo scalar current.

The diagram of Cg in charmonium channel.

The diagrams of C} in charmonium channel.

The diagrams of C. in charmonium channel.

G
Masses of J/y and ¢' as functions of string tension
and gluon condensate (linear in k).

Decay widths of J/¢ and {¢' as functions of string
tension and gluon condensate (linear in k).
Contributions form terms in QCD side at zero
temperature in charmonium channel.

Contributions form terms ih hadron side at zero
temperature in charmonium channel.

The effect of gluon condensate to L/R-ratio at zero
temperature in charmonium channel.

The break down of sum rule for zero temperature
parameters at finite temperature in charmonium
channel.

Restoration of sum rule by the variation of gluon
condensate in charmonium channel.

Temperature dependence of gluon condensate in

charmonium channel.



Fig.11a Temperature dependence of masses of J/¢y and ¢'.
11b Temperature dependence of leptonic decay widths
of J/v and ¢' normalized at zero temperature.

Fig.12 The diagram of Cg in F-meson channel. .

Fig.13 The diagrams of C} in F-meson channel.

Fig.14 The diagrams of CG in F-meson channel.

Fig.15a Masses of F-meson ésvfunction of string tension
and gluon condensate (linear in k).

15b Decay constant of F-meson as function of string
tension and gluon condensate (linear in k).

Fig.16a Contributions form terms in QCD side at zero

temperature in F-meson channel.
16b Contributions form terms in hadron side at zero
temperature in F-meson channel.

Fig.17 L/R-ratio for various values of fF at zero
temperature.

Fig.18 The break down of sum rule for zero temperature
parameters at finite temperature in F-meson
channel.

Fig.19 Restoration of sum rule by the variation of gluon
condensate in F-meson channel.

Fig.20 Temperature dependence of gluon condensate in
F-meson channel.

Fig.21 Temperature dependence of effective threshold in
F-meson channel.

Fig.22a. Temperature dependence of F-meson mass.



Fig.22b Temperature dependence of decay constant fF

noemalized at zero temperature.
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