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Abstract

Collective transport phenomena of condensed matters such as charge density waves and
flux line lattices are investigated. In the presence of randomness, due to impurities or de-
fects, the periodic properties of such systems are disordered and they show highly nonlinear
conductive response to the external drive. Dynamical phase transition from “plastic flow
phase” to “moving solid phase”, which is expected to occur by increasing the driving force,
attracts much attention. This transition occurs between two nonequilibrium steady states
and has much outstanding issues such as the very existence of the ordered state, moving
solid phase. We numerically investigate the dynamics of these systems based on the driven
random-field XY model, which can treat plastic deformations, with paying special atten-
tion to the spatio-temporal long range order. There are two kinds of orders, one is for the
DC velocity, which is related to the steady plastic deformation, and another is crystalline
periodic order.

At first, I discuss the driving force dependence of various physical quantities, which are
comparable with the experimental measurements. A lot of characteristic phenomena in the
present systems are reproduced in our simulations such as peak effect, delayed switching
and broad band noise. I show that plastic deformation plays an important role in these
phenomena.

The second subject is to clarify the possibility of the moving solid phase, which is
characterized by infinitely large co-moving cluster. We introduce a new method to analyze
the transition between plastic flow and moving solid phase using the idea of percolation
transition. It is found that such a cluster tears in a finite life time in the presence of
randomness and the life time is exponentially increases with the driving force.

Finally, the instantaneous periodic order of the system is argued. This order grows with
the driving force. From the analysis of the behavior of dislocations, we found that the effect
of random potential in the sliding state is represented by an effective temperature which is
proportional to the inverse of the driving force. The long range ordered state which is seen
in a clean system is, however, destroyed by weak randomness.

Here, I note the construction of this thesis. In chapter 1, an introduction to our study
is made including a review of experimental and theoretical works for the present problem
and explanation of the model to analyze. In chapter 2, general feature of our simulation
results is overviewed with focusing on the comparison with experiments. In chapter 3 and
4, the possibility of moving solid and spatial periodic orderings are discussed, respectively.
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Chapter 1

Introduction

Collective transport of condensed matter with random pinning attracts much attention
from a view point of solid state physics, nonlinear dynamics and statistical mechanics.
There are numerous systems which belong to this class of dynamics, for example directed
polymer chains, various domain walls, crack fronts and faults in earthquakes. We are
interested particularly in periodic structures such as charge density waves (CDW) [1], spin
density waves, flux line lattices (FLL) [2] , colloidal lattices and Wigner crystals. They
have many common properties as well as differences due to the dimensionality of space and
deformation. It is significant to study them in a systematic way. If these systems are put on
perfectly clean environment, they hold long range periodicity. Random pinning will destroy
this periodicity and yield many metastable states, then the whole system does not move
under smaller driving force than the threshold value and shows highly nonlinear conduction
above it. These can be generalized as a frictional dynamics which include maximum static
frictional force and dynamic friction.

Recent attractive topic in these systems is a phase transition between two nonequilibrium
steady states, “plastic flow phase” and “moving solid phase”, which occurs above depinning
threshold force [3, 4]. Plastic flow phase and moving solid phase are distinguished by the
uniformity of local DC velocity, which is related to the existence of plastic deformation.
This transition is triggered by the change of the driving force.

In the theoretical studies of these systems the elastic manifold model is intensively inves-
tigated, where periodic structure is expressed as a continuous elastic body whose dynamics
is governed by classical mechanics. This picture explains a number of experimentally ob-
served facts such as depinning, mode locking and memory effect of CDW [5, 6, 7]. There
are, however, a lot of phenomena where plastic deformation is considered to play an impor-
tant role. Therefore we adopt an extended model in order to treat plastic flow and perform
numerical simulations.

In this chapter I make an introduction to our study. At first the phenomena which
interest us are reviewed including both of experimental and theoretical studies. Next I
introduce the model to analyze and briefly summarize several previous works based on the
same model with the present one. At the last I position the present work in the background.

1.1 Nonlinear Conduction, Depinning

At first I present a brief overview of the nonlinear collective motion in random media taking
CDWs as an example. In some quasi one dimensional metals such as NbSe3, which has
strong conductive anisotropy, Peierls transition occurs and the charge density is periodically
modulated with a half of the Fermi wave length in the low temperature phase [8]. This
transiting is characterized by the complex order parameter ρeiθ. Here, ρ and θ are related
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Figure 1.1: (left) Temperature dependence of conductivity of TaS3 as a function of electric field
[10]. (right) Conductivity obtained by the numerical simulation based on Fukuyama-Lee-Rice model
[5]. The horizontal axis indicates the electric field normalized by depinning threshold.
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Figure 1.2: Schematic diagram of depinning transition and thermal creep.

to the amplitude and the phase of CDW. There is an energy band gap, called Peierls gap,
at the Fermi surface. The material behaves as an insulator and conductivity decreases
as temperature becomes lower. However CDW can carry the electric charge even at zero
temperature. The current owing to the motion of CDW shows highly nonlinear response to
the electric field even for very small field.

The ratio of the period of CDW to the lattice constant of crystal is generally an ir-
rational number then the crystal makes incommensurate periodic potential for the CDW.
The system has a translational invariance because the local gain of the potential energy due
to translation is canceled by the loss in other place. Thus CDW can freely move. Frölich
suggested that this is the mechanism of superconductivity [9]. It turned out to be incor-
rect because some dissipation mechanisms exist. Much crucial reason is the pinning due to
impurities.

depinning

In the presence of random pinning potential there are many metastable pinned states.
These states survive at finite but small driving force and vanish at the threshold driving
force fT and depinning happens. The left panel of Figure1.1 shows experimentally mea-
sured conductivity σ = I/E normalized by the value in the high electric field limit. As
temperature decreases, depinning behavior becomes sharper because quasi particles, i.e.
excited conduction electrons, are suppressed. CDW can be regarded as a elastic continuum
driven by external force, which can deform in order to lower the impurity potential energy.
The conductivity obtained by numerical simulations based on the elastic model, so-called
Fukuyama-Lee-Rice model, is also shown in Figure1.1 and it reproduces depinning behavior.

D. S. Fisher showed that this depinning has an aspect of a critical phenomena [11].
Correlation length diverges at the driving force fT . Here correlation length is defined as
a velocity-velocity correlation length above the critical force and an avalanche propagation
length, which is induced by local perturbation, below the critical force. Additionally velocity
obeys to power law v ∝ (f − fT )β in the vicinity of the critical point and it is regarded as a
kind of order parameter of continuous phase transition (See Figure 1.2). Unfortunately the
critical region of this transition is very narrow and sample size in experiments is too small
to observe this critical behavior.
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Figure 1.3: Peak effect for the FLL in 2H-NbSe2 [15]. Left figure shows voltage-current character
for various magnetic fields. Right figure shows magnetic field dependences of the depinning threshold
values, both for electric current and for converted force on vortices. They have peaks at Hp, which
is slightly smaller than Hc2 ≈ 7.0T.

creep

This depinning transition is rounded at finite temperature because creep motion with ther-
mal activation occurs below fT . This creep motion is expressed as v ∝ exp(−Cf−µ/T ) [12].
This creep law is very clearly observed in the magnetic domain wall in an ultra-thin film,
which driven by external magnetic field. Stretched exponential behavior is observed over
twenty decades of velocity [13].

This behavior is understood as follows. We consider the situation that elastic body
pinned by random potential moves slowly assisted by thermal activation. It is supposed
that the displacement of elastic body, u, grows with distance r as u ∼ rν , which comes from
quasi long range order discussed later. The elastic energy (∇u)2 of a subsystem with size
L is proportional to Ld−2+2ν . The energy gain under external force f is given by fLd+ν .
Considering the balance between these energies, the size of moving domain is estimated as
f−1/(2−ν) then its energy barrier is expressed as f−(d−2+2ν)/(2−ν) = f−µ.

plastic deformation

So far I assume that the pinned and moving states does not coexist in single system.
Coexistence of these two states, which yields non-uniform state, should be realized by strong
pinning centers which are inhomogeneously distributed in space. These form domains which
have various pinning strength and mobilities. At the boundary between the neighboring
domains which have different mobilities, strain and stress become larger with time then
tearing and slip occurs when the stress reaches the yield stress. When the slip distance
reaches one period, i.e. 2π of phase, it can be regarded as the same state as the initial one
before tearing. This process, which is characteristic for periodic systems, is called phase
slip. In the presence of such tearing, each domain takes depinning independently depending
on the local pinning strength. We call this phenomenon plastic depinning. It brings no
critical behavior with the divergence of the correlation length as a matter of course. In the
steady state phase slips happen recurrently between domains with different velocities.

Plastic deformation has much clear image in the case of lattices made by particle-
like compositions such as FLL. Most remarkable phenomenon which manifests the role
of plasticity is observed in FLL system. Type II superconductor has a mixed state of
Meissner and normal states, which is predicted by Abrikosov at first [14]. Magnetic field in
the sample is localized as a vortex whose magnetic flux is quantized by h/2e. These have
a repulsive interaction and form a two dimensional triangular lattice in the plain which is
perpendicular to the magnetic field. When electric current exists, flux line catches Lorentz
force. The motion of flux lines results voltage drop, then superconductivity is destroyed.
Impurity pinning of FLLs keeps zero resistivity up to depinning threshold current. Then the
pinning of vortices has an important meaning to develop superconducting material which
bear large electric current.

In the “peak effect” for FLL systems, the threshold force takes the maximum value near
the second critical magnetic field Hc2, above which the mixed state vanishes, as shown in
Figure 1.3. It is believed that FLL melts as increasing magnetic field, then the depinning
happens as a local event above the melting point and threshold force takes a peak value at
the melting point.
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Figure 1.4: Left figure shows the image obtained by Lorentzian microscopy, where plastic flow in
a channel (red vortices) is observed in real time [16]. Right figure is the observation of moving
FLL by the magnetic decoration method [17]. The left column (RS) shows snapshot of vortices.
Central column (FT) is its Fourier transformation and right column (FF) shows real space image
after Fourier filtering. The upper row shows smectic flow state in relatively low magnetic field and
the lower row shows Bragg glass state in high field.

Figure 1.5: Dynamical phase diagram of anisotropic super conductor 2H-NbSe2 [15].

1.2 Dynamical Solid-Fluid Transition

Above the driving force where plastic depinning occurs, there are both of moving and static
regions in one sample. Slightly above the depinning threshold moving regions are distant
from each other and move independently with proper local velocity. As the driving force
increases, the fraction of moving regions becomes larger and the domains tend to have
same DC velocity with neighboring domains in order to prevent plastic deformation. Then
the transition between spatially nonuniform and uniform moving states is expected. We
call these states plastic flow and moving solid respectively. This transition is intensively
investigated in FLL systems, where real time observation of flux line motion is possible by
Lorentz microscopy or STM. The images obtained by these methods are shown in Figure
1.4.

1.2.1 Various Steady States

Here I describe several types of moving states and their property. FLL system is taken as
an example but the same types of states are found in other systems such as CDW.

Plastic Flow

In the plastic flow phase, local velocity is spatially nonuniform and the system shows fluid
like behavior. At the boundary of two regions which have different DC velocities strain and
stress grow with time and plastic deformation occurs when stress reaches yield stress. The
stress is small just after the slip occurs but it becomes larger again then plastic deformation
is steadily happens. In FLL systems moving regions appear as winding channels which run
through pinned regions.

Moving Solid

In the moving solid phase, the whole system moves at the same DC velocity, then phase
slip does not occur. Some stages of ordering are observed in FLL systems. Anisotropic
ordered state is called “smectic flow”, in which straight channels align in the direction of
drive and the system has spatial periodic order only in the direction perpendicular to the
driving force. Each vortex has the same velocity inside channels but the velocity of each
channel is not uniform then slips occur between channels.

The system recovers two dimensional periodicity under stronger driving but it is consid-
ered that true long range order does not exist in these disordered systems. Moving Bragg
glass phase, which has a two dimensional quasi long range order, is believed to exist. We
mention this more closely in the later section. The images of both smectic flow and moving
Bragg glass are shown in the right panel of Figure 1.4.
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Figure 1.6: The result of molecular dynamics simulation for two dimensional FLL systems [18].
Upper row shows trajectory of vortices and bottom row shows its structure factors. The driving
forces are 0.5, 2 and 7 from the left column to the left one. These indicate plastic flow, smectic flow
and moving solid respectively.

1.2.2 Dynamical Melting

Which type of moving state the system takes depends on many factors such as driving force,
pinning strength and temperature. Experimentally obtained phase diagram of FLL system
in driving force - magnetic field plane is shown in Figure 1.5. Magnetic field dependence
in the case of FLL is complex because it affects on many other parameters through the
number density of flux line. I concentrate in a pure mechanical process, zero temperature
dynamics with the control of driving force.

Molecular dynamics simulation is a powerful tool to observe the moving state directly.
Figure 1.6 shows three moving states. Connected lines in the upper rows show the channels
along which vortices move. The structure factors shown in the bottom row indicate their
ordering. In the plastic flow state, only single peak at the origin, which indicates mean
density of vortices, is observed. Smectic ordered phase has additional two symmetrical
peaks on the axis perpendicular to the driving direction. Six fold rotational symmetry
peaks which suggest triangular lattice order is seen in moving Bragg glass state.

Basic picture of the melting transition which is observed by decreasing the driving force
is as follows. When we are on the inertial system which moves at the same velocity with that
of the periodic structure, static random potential V (r) turns to have time dependence as
V (r + vt). It yields fluctuating random force which has short range correlation in both time
and space. This is similar to thermal kicking on local parts of periodic structure, such as
single vortex. This force changes more rapidly as the translational velocity increases and the
system becomes not able to respond to it. Both of the mean value and amplitude of random
force become close to zero as velocity becomes higher. Koshelev and Vinokur calculated
spatio-temporal correlation of random pinning forces Fp and found that it behaves like a
thermal noise [3]. They define “shaking temperature” from fluctuation dissipation theorem
as

Tsh =
1

4η

∑

α

∫

drdt
〈

Fpα(0, 0)Fpα(r, t)
〉

. (1.1)

η is dissipation coefficient and α denotes the component, x or y. Tsh is found to be propor-
tional to the inverse of the velocity then high velocity regime is related to the low tempera-
ture regime. Melting transition should occurs when effective temperature Treal + Tsh equals
to equilibrium melting temperature Tm.

Although many experimental evidences of both of solid and fluid moving states are
reported, whether this melting transition is continuous, discontinuous or crossover is still
an unsettled question in spite of extensive studies.

Some CDW samples show hysteresis in current-voltage curves and there are current gaps
between bistable states similarly to the first order transition [19]. Some people consider this
behavior as a transition between plastic flow and elastic flow, which corresponds to moving
solid, phases. Strange switching behavior is observed in the vicinity of the edge where lower
current state becomes unstable as shown Figure 1.7 [20, 21]. When a little larger electric
field than higher edge value is suddenly imposed, it takes some delay time before current
starts. This is called “delayed switching”. The delay time has probability distribution.
Both of its mean value and deviation seems to diverge as approaching the edge value.
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Figure 1.7: Highly nonlinear conductive property of CDW in K0.3MoO3. (Top left) Hysteresis
curves in current-voltage character. (Top right) Current switching with delay time. (Bottom) Delay
time distribution function. [21].

1.2.3 Spatial Order in Quenched Disordered Systems

The possibility of (quasi) long range order in the systems which have quenched randomness
is a long standing problem even in the static case. Imry and Ma stated that long range order
is destroyed by infinitesimally weak random-field in the systems below four dimensions [22].
They estimate the typical energy of an elastic domain whose linear size is L. Elastic energy
Uel ∝ (∇u)2 is expressed as KLd−2. Here u is deformation field. Energy gain of the random
potential averaged in this elastic domain is proportional to the square root of number of
impurities in the domain then Uimp ≈ h(cLd)1/2. Here c is a impurity concentration. Thus
the total energy is written as

u(L) ≈ KLd−2 − hc1/2Ld/2. (1.2)

This can be regarded as a nucleation energy to make a domain of size L in the flat state.
If d > 4, u(L) is positive and an increasing function for large L then large size domains
are suppressed. For d < 4, u(L) turns to decrease and becomes negative at the scale of
L = Lc ≈ (K2/h2c)1/(4−d). Elastic coherence is not held beyond Lc and the system is
divided into domains of order Lc. Elastic coherence length Lc is called Larkin length [23]
for FLL and Fukuyama-Lee-Rice length for CDW [24, 25]. No long range order exists
because Lc is finite for arbitrary small h as far as d < 4.

Recently Giarmarchi and Le Doussal suggested the existence of new ordering state in
three dimensions [26]. It is named Bragg glass, which has two dimensional quasi long
range order and shows Bragg peaks as its evidence. They analyzed the elastic model for
periodic systems by Gaussian variational method and functional renormalization group
method. They assume the absence of dislocation then treat an elastic manifold. The

relative displacement B(r) =
〈

(u(r) − u(0))2
〉

/2 is logarithmically grows with distance r

for large r while it is proportional to r4−d below Larkin length. Then correlation function
C(r) = e−B(r) decays as the power function r−η. The exponent η is an universal value and
depends only on the dimension.

They also predicted that this quasi long range order exists even in nonequilibrium steady
moving state and named it moving Bragg glass [27]. DC velocity is assumed to be uniform
in this state. The transverse glass state, which is equivalent to smectic flow, in the two
dimensional system is also claimed. Their main method is functional renormalization group
of the action in the Martin-Siggia-Rose formalism [28].

Next, I show the scaling argument of the moving system by Balents and Fisher [4].
There is two time scales, one is a diffusion time tφ = ηL2/K . Another is a refreshing time
t0 = L/v in which random potential below the domain is renewed. Both of which are much
larger than microscopic time scale a/v. The net potential energy, averaged over tφ, become
small with the factor of (tφ/t0)

−1/2 = (K/ηv)1/2L−1/2 compared with h(cLd)1/2 in eq.(1.2).
It reduces the critical dimensions to three. In three dimensions, the nucleation energy is

expressed as u(L) ∼
(

K − (h2cK/ηv)1/2
)

L. At critical velocity vc ∼ K/h2cη, the energy

changes its sign. Thus the system obtains quasi long range order in the high velocity regime
above vc.

1.2.4 Temporal Order

The solid-fluid transition mentioned above is notable at the point of temporal regularity.
We have a picture as follows. In the plastic flow state, the nonlinearity which corresponds

9



Figure 1.8: Power spectrum of conduction noise of TaS3 [10]. Narrow band noise peaks are seen in
left figure. The peaks shift to higher frequency as current grows. Right figure shows 1/f behavior of
low frequency spectrum.

Figure 1.9: The minimization of narrow band noise peak by the control of the electric field (left)
and phase diagram drawn by it (right) for the CDW in TaS3 [19].

to plastic deformation causes chaotic dynamics. On the contrary, moving lattice phase
shows temporally periodic motion which is closely related to the spatial periodicity. These
differences are detected by observing fluctuating component of velocity.

Narrow Band Noise

In the moving lattice state, velocity oscillates with characteristic frequency ωNBN = 2πv/a.
Here a is a lattice constant of a periodic structure. This oscillation results sharp peak in
power spectrum and called narrow band noise (NBN). This is experimentally observed in
both CDW [10] and FLL systems [29]. The power spectrum of CDW current is shown in
Figure1.8. A simple explanation of this phenomena is as follows. Each impurity results a
periodic potential for the CDW with a period a. The dynamics of CDW is likened to the
motion of a particle on the tilted washboard, which results oscillating motion. Then NBN
is also called “washboard noise”.

The magnitude of total potential of multiple impurities for rigid crystal is proportional
to (cLd

sample)
1/2. The amplitude of washboard noise is proportional to this. In the presence

of spatial quasi long range order, in which correlation decays as r−η, and temporal true long
range order, power spectrum of NBN is expressed as S(ω) ∼ A2−η/2δ(ω−ωNBN). Here, A is
a cross section of the sample. The coefficient of the delta function is the order parameter for
temporal phase transition. If assuming scaling relation S(ω) ∼ ǫyS̃[(ω − ωNBN)ǫ−zν , Aǫ2ν ],
delta peak component vanishes as ǫy+ν(4−η+z) at the critical point [4]. Here ǫ is a reduced
driving force |f − fc|/fc, z and η are dynamical and correlation length critical exponents.

Balents and Fisher stated that three dimensional CDW system has a state with spatial
quasi long range order and true temporal long range order based on scaling argument
mentioned in the previous section and renormalization group argument [4]. They predicted
that the amplitude of NBN vanishes at the boundary with the plastic flow phase as shown
above. The minimization of the NBN amplitude is observed experimentally for CDW in
TaS3. (See Figure 1.9).

Broad Band Noise

In the plastic flow state, the current noise has broad spectrum then it is called broad band
noise (BBN). There would be two reasons for BBN, one is lack of temporal periodicity and
another is spatial non-uniformity of ωNBN.

In the presence of finite phase coherence length, the current of a domain with size ξ
oscillates with an amplitude of order (cξd)1/2. The oscillation amplitude of current through
cross section of A, where A/ξd−1 of domains are revealed, is proportional to (cAξ)1/2.
The power spectrum of fluctuating current should be given by Lorentzian (1 + ω2τ2)−1 for
finite time correlation. Some experiments, however, shows ω−1 dependence of the power
spectrum, so called 1/f noise, in the low frequency regime at very low temperature as shown
in Figure 1.8.
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Figure 1.10: Schematic diagram of deformation of two dimensional interface and rectangular lattice.
The difference between them is that parameter space and deformation vectors are vertical or parallel.

1.3 Phase Field Model

We perform numerical simulation based on the driven random-field XY model. It is the
modified version of the intensively investigated elastic manifold model, such as Fukuyama-
Lee-Rice model for CDW [24, 25]. I introduce the elastic model at the beginning of this
section and then extend it to treat plastic deformation with considering its physical mean-
ings.

1.3.1 Elastic Manifold Model

In the beginning I consider a domain wall in three dimensional space as shown in Figure
1.10, that is two dimensional plane, as an example. When this plane has no folding, the
density of this structure can be described by scalar deformation field u(r) as

ρ(r, t) = ρ2Dδ(z − u(r⊥)) where r⊥ = (x, y). (1.3)

The domain wall is supposed to be nearly flat and parallel to xy-plane. In general elastic
manifolds are classified by a pair of dimension numbers, d for space r and N for deformation
u and named (d + N)-system in this thesis. In the case of domain walls of D dimensional
system, d = D − 1 and N = 1. Polymer chain or single flux line in three dimensions is a
(1+2)-system.

The distorted periodic density can be described as

ρ(r, t) = ρ0 +
∑

q

ρq cos
(

q · (r− u(r, t))
)

. (1.4)

Here, q’s are reciprocal lattice vectors. Higher harmonic components are ignored as the
first order approximation, which are needed for lattice made by particles. u(r, t) is a
deformation field and embedded on the same plain made by lattice constant vectors (See
Figure 1.10). CDW is a (3+1)-system and has a strong anisotropy due to crystal structure.
This anisotropy is eliminated by rescaling length scale. FLL is a (3+2)-system but a (2+2)-
system in thin film superconductor is also well investigated.

In the case that periodic order is only for one direction as one dimensional CDW,

q = qx̂, ρ(r, t) = ρ0 cos
(

qx − θ(r, t)
)

, scalar phase field θ(r, t) = qux(r, t) is adequate. In

the case of two dimensional lattice such as FLL, two component field is needed. There is
anisotropy between them due to the direction of driving force even if ignoring that it is
triangular lattice. In this thesis we only treat the case of single phase field, which couples
to the driving force. This model is most appropriate for CDWs but we expect that essential
features of the dynamics of FLL are captured. The observable transport quantity such as
electric current for CDWs and voltage drop for FLLs is proportional to the translational
velocity θ̇(r, t)/q.

The Hamiltonian of the elastic model is written as

H =

∫

dr
[

K(∇θ(r, t))2 + ρ(r, t)V (r) − Fθ(r, t)
]

. (1.5)

The first term is an elastic deformation energy and V (r) in the second term is quenched
random potential. F is an uniform driving force representing electric field for CDW and
electric current for FLL. This Hamiltonian illustrates the domain wall in d + 1 dimensional
space where potential, Ṽ (r, θ) = ρ(r, θ)V (r), is periodic for θ and random for r. Such

11
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Figure 1.11: Schematic diagram of plastic domains. There are shown the phase, the amplitude and
the density. Phases rarely changes in the domain. At the domain boundary, amplitude vanishes,
then the energy cost due to phase deformation is suppressed.

periodicity in potential energy changes universality class [27]. The equation of motion for
phase is as follows.

ηθ̇(r, t) = −K△θ(r, t) − ρ0V (r) sin
(

θ(r, t) − qx
)

+ F. (1.6)

We ignore the inertial term which is considered to be much smaller than frictional term on
the left hand side.

The Hamiltonian of lattice model version is written as

H =
J

2z

∑

〈i,j〉

(θi − θj)
2 +

∑

i

hi cos(θi − βi) −
∑

i

fθi. (1.7)

Here z is the number of nearest neighbor sites. The effect of impurity potential is supposed
to be very short ranged as V (r) =

∑

j Vjδ(r − rj) to pin the local phase of impurity site
j to βj = qxj. hi = ρ0Vi is finite if i is an impurity site. Due to the randomness of
impurity positions, βi’s can be regarded as uniform random numbers between 0 and 2π.
So far we consider only the degree of freedom for phase, i.e. amplitude is approximated
to be a constant value ρ0. If considering only the elastic energy of phase, steady plastic
flow is never realized. In order to treat plastic deformation precisely, we have to treat the
fluctuation of amplitude ρ(r, t) such as soft-spin model [4] however it is tangling to manage
two order parameters. Then we adopt the single phase model with nonlinear coupling.

1.3.2 Driven Random-Field XY Model

The most simple way to treat plastic deformation is to replace the harmonic coupling
(θi − θj)

2/2 in eq.(1.7) with sinusoidal coupling 1 − cos(θi − θj) [30]. They coincide in the
limit where phase differences go to zero. In this sinusoidal coupling in a lattice model, i.e.
XY spin model, stress-strain relation is given by sin(θi − θj) while it is given by Hook’s
low, linear to θi − θj, in the elastic model. Sinusoidal coupling makes plastic deformation
possible because it has an yield stress and translational invariance of energy for phase with
the period of 2π.

Such a nonlinear coupling model does not have continuous limit that lattice constant
goes to zero. The lattice points have physical meaning, the indices i’s are indicating semi
macroscopic domains in which phase coherence is always held. It is illustrated in Figure1.11.
At the domain boundary, where stress is particularly concentrated, the amplitude of the
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Figure 1.12: Schematic diagram of phase slip cycle between domains which have different mobility.
Solid line shows phase equivalent plain, which can be related to the position of particle.

Figure 1.13: (left) velocity-force character. (right) phase diagram in coupling constant-force space.

density sometimes vanishes and the phase can be discontinuous. The domains are formed
by the balance between pinning strength and rigidity of periodic structures. Plastic defor-
mation occurs only at the boundary of these domains. In other words, the domains are
minimum units which is never dissolved.

One can treat plastic flow state where DC velocity is inhomogeneous by this model (See
Figure 1.12). However there is a problem that the current does not satisfy the continuum

equation,
〈

div(θ̇(r, t)x̂)
〉

time
= 0, when phase slip occurs. It is not a problem in the case of

CDW because electrons joining CDW state are transformed to normal electrons, or opposite
direction, at the boundary where phase slip occurs.

The overdamped equations of motion for phases of domains are expressed as

θ̇i = −
J

z

∑

j

sin(θi − θj) − sin(θi − βi) + f. (1.8)

We can choose the units of time and space that both of friction coefficient and impurity
strength are unity. Then there are only two independent parameters, coupling constant
J and driving force f . The reason why we set h = 1 instead of usual J = 1 is that the
disordered phase is confined around the origin of J − f phase space as shown in the next
chapter.

I call these domains on the lattice points as “sites” hereafter to avoid confusion.

1.3.3 Review of Previous Works

There are a few studies based on the driven random-field XY model. Here I briefly sum-
marize them.

Mean Field Approximation

Strogatz et al. analyzed eq.(1.8) by mean field approximation, in other wards an infinite
range interaction model, and found a discontinuous transition by changing external field
[30]. There are three regimes, pinned static state below fc1, coherent moving state above fc2

and the bistable regime between fc1 and fc2, which causes a hysteresis loop in velocity-force
curve (See Figure 1.13). Phase coherence order parameter is also calculated and it takes
finite value only when velocity is finite. Spatially inhomogeneous motion never appears
in mean field treatment. fc1 and fc2 goes to zero at J = 1.5 and 2.0 respectively. Then
linear response is realized for large J . They also studied delayed switching [31], that is, it
takes some time to starts moving when the driving force is suddenly raised up to slightly
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Figure 1.14: (left) delayed switching of phase coherence and velocity. (right) power divergence of
delay time.

Figure 1.15: (Left) pinning strength dependence of phase velocity (top) and the maximum Lyap-
nov exponent (bottom). (Right) pinning strength dependence in the fraction of moving sites with
coherent velocity (square) and stopping sites (circle). Filled symbol indicates chaotic states and
unfilled one denotes regular motion.

Figure 1.16: The fraction of moving sites and averaged velocity as a function of reduced driving
force. Both of them obey to power law near the depinning threshold.

above fc2 (See Figure 1.14). The pinned state is unstable then the lowest eigenvalue of the
Hessian is negative but its absolute value is small and goes to zero at f = fc2. Then it
takes a long time to leave away from unstable fixed point and the delay time diverges as
(f − fc2)

−1, which is shown Figure 1.14. Such behavior is consistent with experiments of
switching sample of CDW mentioned in section 1.2.2.

Temporal Order Transition

Huse performed three dimensional simulation of this model [32]. He calculated Lyapnov
exponent and fraction of no-moving site (See Figure 1.15). Spatio-temporal order transition
between spatially uniform temporally regular motion and nonuniform chaotic one happens
by changing pinning strength [32]. These motions are related to moving solid and plastic flow
respectively. It is similar to a first order transition and physical quantity shows hysteresis
loop as a function of pinning strength owing to the difference of initial conditions. He
implies the possibility that this transition can be understood as a percolation of uniform
velocity cluster, which we investigate in chapter 3.

Plastic Depinning

Kawaguchi investigated the plastic depinning of one dimensional system in the strong pin-
ning regime [33, 34]. He found that local depinning has the same critical exponent β = 1/2,
v ∝ (f − fT )β , as one body model. And the number of moving sites also have power depen-
dence on nmv ∝ (f − fT )α. The total current which is approximated as a product of these
two quantities proportional to (f − fT )β+α just above fT .

1.4 The Scope of the Present Work

In the following chapters, I show the results of our numerical simulations based on the driven
random-field XY model. In chapter 2, I discuss the driving force dependence of physical
quantities. They are compared with the experimental results which are characteristic in
the transport of CDW and FLL systems, such as depinning threshold and current noise.
Additionally the statistics of local values are investigated in detail because we have an inter-
est in the transition between homogeneous and inhomogeneous moving state. I show that
various experimental facts, in which plastic deformation is essential, are semi-quantitatively
explained in our simulations.

In chapter 3 and 4, I discuss the spatio-temporal order of the periodic structures in the
nonequilibrium steady state. There are two kinds of orderings, one is for phase, which is
related to the spatial periodicity, and another is for DC velocity. The states are divided
into liquid, glass, Bragg glass and crystal phases by the phase order and into plastic flow
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and moving solid phases by the DC velocity order. It is usually considered that the spatio-
temporal order of phase and spatial order of DC velocity is established together, i.e. plastic
flow state does not have spatial long range order and moving solid is a collective term for
moving glasses and crystal. Then phase ordering has been mainly discussed.

In chapter 3, we concentrate into the distinction of dynamical property between plastic
flow and moving solid, which has not been discussed closely, and discuss DC velocity ordering
independently of phase order. This transition is investigated focusing on the existence of
plastic deformation. When macroscopic solid cluster in which plastic deformation does not
occur exists, we determine it is the moving solid phase. We propose a new well-defined
analysis based on an idea of a bond percolation transition. Spatial long range order can
be discussed by the finite size scaling for this transition. The long time behavior is also
discussed according to the observation time dependence. Note that if plastic deformation
occurs as a temporally local event and the phase configuration returns to the initial one
after it, long range order of phase is possible in the plastic flow phase following to the
present definition. Our results show that macroscopic plastic deformation is always occurs
in infinitely long time in the presence of pinning potential but the system behaves as a
moving solid for shorter time observation than the typical life time, which exponentially
grows with the driving force.

In chapter 4, phase order in steady state is investigated by analyzing the correlation
function and structure factor. We do not find any long range order. Additionally I discuss
the driving force dependence of the behavior of topological defects and show that it is
characterized by an effective temperature which is proportional to the inverse of the driving
force.
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Chapter 2

Fundamental Features

We numerically analyze the dynamics of the driven random-field XY model. In this chapter,
I show the results which tell us the fundamental feature of this model. These results quan-
titatively reproduce experimental facts which are beyond the scope of the elastic manifold
model. Here, I do not argue the sample size dependence of physical quantities in deep. The
behavior in the thermodynamic limit is discussed in the later chapters. The qualitative
behavior on almost all aspects is same in one, two and three dimensions. So we show only
the result of three dimensional system here.

2.1 Simulation Settings

We numerically solve the equations of motion,

θ̇i = −
J

z

∑

j

sin(θi − θj) − sin(θi − βi) + f, (2.1)

which is introduced in the previous chapter by the forth order Runge-Kutta method. θi’s
are put on regularly on the lattice points of square lattice in two dimensions and simple
cubic lattice in three dimensions. Periodic boundary condition is imposed. The linear size
of sample L is taken from 4 to 128 in three dimensions. The finite size effect is quite large in
these continuous variable systems and it appears as the correlation length overcomes about
10% of L.

N(= Ld) of random number β’s are needed for a single d-dimensional sample. These are
introduced as follows. We prepare 2πm/Ld where m = 1, 2, . . . , N and randomly distribute
them on each site in order to hold the global rotational symmetry,

∑

j eiβj = 0, even in
small samples. As L becomes larger, the result becomes closer to that in the case that
an uniform random number is given independently on each site. Almost all quantities to
calculate, which are defined later, are averaged values for samples at the final step.

The initial states are given by two opposite ways. One is an uniform state where θi = 0
for all i and another is a random state which is obtained by the same way as β’s. Uniform
shift by a constant in the former case does not yield meaningful change. Physical quantities
are calculated after some precursory running for the relaxation to the steady state from the
initial state. When same type of calculations are performed for various parameters, f and J ,
we use the final state for the former parameter as the next initial state to save the calculation
time and quantities are calculated after relatively short precursory time. When we repeat
such processes with changing parameter monotonically, quantities shows hysteresis between
increasing and decreasing cases. It is not only due to the lack of complete relaxation but also
to the appearance of metastable states in disordered systems. When parameter changing

16



(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

f
T
 (J=1.0)

f
c
 (J=1.0)

ω
DC

= f

J = 2.0

J = 1.5

J = 1.0ω D
C

f

L
  8
 16
 32
 64

0.00 0.05 0.10 0.15 0.20
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

f
T
 (J=1.0)

J = 2.5 J = 2.0

J = 1.5

J = 1.0

ω D
C

f

L
  8
 16
 32
 64

Figure 2.1: DC phase velocity - driving force character in normal scale (a) and semi-logarithmic
scale (b).

step is enough small, the hysteretic behavior is similar to that in simulations with sweeping
the parameter continuously.

We set the time step for discretized integration as ∆t = 2π/ndivv0. Here, ndiv = 8 and
v0 = J + f for J + f > 1 or v0 = 1 for J + f < 1. The ∆t independence of the solution is
checked for smaller ∆t’s if ignoring chaotic sensitivity to the error in the plastic flow regime.

The case of coupling constant J = 1.0, relatively weak coupling, is intensively investi-
gated because we are interested in the plastic behavior. I will make discussions with this
case in mind when the value of J is not declared.

2.2 Nonlinear Conduction

Most fundamental transport quantity is the phase velocity, which is proportional to the
electric current for CDW and the voltage drop for FLL. Spatially averaged DC velocity is
calculated as

ωDC = 〈θ̇i(t)〉i,t =
1

N

∑

i

θi(T ) − θi(0)

T
(2.2)

Here I consider the driving force dependence of the velocity fixing the coupling constant. In
Figure 2.1, ωDC − f character curves for various J ’s are shown. These curves are obtained
by force decreasing simulation. Two important features are seen. One is the existence of
threshold value fT (J), below which the whole system is pinned. Another feature is drastic
increasing of velocity around fc(J) which is related to the spatial ordering of DC velocity.
With much stronger drive, the behavior of the system become close to the the linear response
ωDC = f − O(f0). There are three regimes divided by fT and fc, i.e. “pinned”, “plastic
flow” and “moving solid” regimes, as shown below. Generally speaking, as J increases, the
rapidly growing region of ωDC comes closer to the origin f = 0 and ωDC − f characteristics
approach to ωDC = f .

2.2.1 Plastic Depinning

Here I discuss the depinning behavior. Whether each site is pinned or not is determined by
whether θi(T ) − θi(0) is larger than 2π or not. Here T is the observation time. Then the
resolution of the DC velocity is 2π/T . Under this criterion there is a finite threshold driving
force fT below which all of the sites are pinned. For sufficiently large T, the magnitude of
fT does not depend on T . Only the most weekly pinned region starts to move just on fT

when plastic deformation is allowed while all sites move even just above fT in the elastic
coupling model when seeing in the enough long time scale.
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Figure 2.2: (a) The relation between nmv and f − fT . (b) The relation between f − fT and mean
velocity of moving sites ωDC/nmv.

If J = 0 i.e. no interaction, θi on each site shows same time evolution except constant
time and phase shifts since pinning strength is uniform. The equation of motion θ̇ =
− sin θ + f is integrable for one period, 2π/ωDC, then we obtain ωDC =

√

f2 − 1 for f > 1
and ωDC = 0 for f < 1. Critical exponent β = 1/2 and fT = 1 in ωDC ∼ (f − fT )β .
Although every site is depinned at the same threshold when J = 0, this is not significant
because it comes from the artificial factor that we have set pinning strength uniform. The
nonuiformity of local depinning threshold due to the randomness of β appears as far as
J > 0.

In the vicinity of the depinning point, moving sites are quite rare and all of neighboring
sites of a certain site i which starts moving are stopping. When J ≪ 1, the interaction
potential with neighboring sites which keep stopping is regarded as a static potential. Then
it yields an effective static pinning force f ′

T i as

J

z

∑

j

sin(θi − θj) + sin(θi − βi) = f ′
T i sin(θi − β′

i). (2.3)

Here θj = βj + sin−1 f + O(J). f ′
T i gives a local depinning force. This is minimized when

βj +sin−1 f = βi +π for all j. Such most weakly pinned site can be found in a large system.
Thus pinning force equals (1 − J) sin(θi − βi) and fT = 1 − J .

The fraction of moving sites nmv becomes larger with the driving force above f = fT .
It is expressed as

nmv =

∫ ∞

2π/T
dωDCP (ωDC) =

∫ f

fT

df ′
T P (f ′

T ). (2.4)

Here P (ωDC) and P (f ′
T ) are distribution functions of local DC phase velocity and the local

effective depinning force for each site. It increases as

nmv ∼ (f − fT )α (2.5)

in the vicinity of fT as shown in Figure 2.2(a). Then P (f ′
T ) ∼ (f − f ′

T )α−1. In the case of
elastic coupling the DC velocity is always uniform and nmv takes only zero or one. If one
supposes that each site is depinned independently and has the same exponent β,

ωDC ∝

∫ f

fT

df ′
T P (f ′

T )(f−f ′
T )β ∼

∫ f

fT

df ′
T (f−f ′

T )β(f ′
T −fT )α−1 = const.×(f−fT )α+β. (2.6)

Here β does not necessarily equal to 1/2, which is obtained for one body problem, because
the neighboring sites should move to some degree as far as they do not advance by 2π. In
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the case of J = 1.0, we obtain fT = 0.055, α = 3.0 and β = 0.75. It is hard to estimate fT

accurately because the exponent α is rather large compared with 1 then the function nmv(f)
is flat at f = fT . We calculate fT and α directly from the curve nmv(f) and estimate β
using ωDC/nmv ∼ (f −fT )β as shown in Figure 2.2. Of course, ωDC is well described by the
exponent α + β obtained above. The exponent α starts to grow with J at J ≈ 1.5. Then
nmv grows rapidly with f and plastic flow regime becomes narrower.

2.2.2 DC Velocity Distribution

The most important difference between the plastic and elastic models is whether spatially
nonuniform DC velocity configuration is possible or not. Here I focus on the distribution
function of ωi

DC =< θ̇i >time.

Before investigating distribution function, I note the spatial configuration of ωDC. When
nmv ≪ 1, moving sites are isolated and form very small clusters, which are typically consist
of single site and surrounded by stopping sites. Spatial configurations of ωi

DC for several f ’s
are shown in Figure 2.3. These small moving cluster behaves as if they were in the static
potential. The motions are periodic and each site has the same ωDC inside each cluster.
Such behavior is observed only as far as the radius of a cluster is below two or so. In a
larger cluster, the periodicity of the motion is broken. This is because cluster size grows
with f faster than the ωDC coherence length does and overcomes it.

As the driving force increases, more and more sites are depinned. The sizes of moving
clusters become larger then come to contact with each other. Such clusters are combined
and percolation of a moving cluster over the whole system occurs at f ≈ 0.75. As a result
small islands made by pinned sites are left. Here nmv become O(1) then power low that
is observed near the depinning point is broken. At this point most of sites are depinned
but each moving site takes various values of velocity then phase slips happen between sites
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.

which have different DC velocity. As the driving force becomes more larger, moving sites
come to interact with each other then the velocity becomes uniform at f ≈ 0.90.

The distribution function of ωDC is shown in Figure 2.4. In the vicinity of fT , the shape
of distribution function is estimated by some scaling argument as

P (ωDC) =

(

P (f ′
T )

∣

∣

∣

∣

df ′
T

dωDC

∣

∣

∣

∣

)

ωDC=(f−f ′

T
)β

∼ ω
(1−β)/β
DC

(

ω1/β
max − ω

1/β
DC

)α−1
. (2.7)

Here ωmax ∝ (f − fT )β. P (ωDC) behaves as ω
(1−β)/β
DC for small ωDC, where β = 0.75 for

J = 1.0. The power, however, seems rather larger than (1 − β)/β = 0.33 in Figure 2.7(a).
P (ωDC) goes to zero at ωmax. Strong delta function peak at the origin is also exist. The
tail of the peak at the origin turns to be apparent at f ≈ 0.4. This and another tail of high
velocity group make a roughly flat continuous band.

The uniformity of DC velocity

At f = 0.75, a peak at ωDC = ωp(f) becomes apparent. This peak corresponds to the
narrow band noise peak and ωp(f) coincides with the washboard frequency ωNBN as shown
later. This means the creation of large co-moving clusters with a particular velocity which
depends on f . In Figure 2.5(a), ωp(f) is plotted as a function of f . The linear dependence
in the high velocity regime, f > 0.90, is smoothly extended to the lower region, where the
site averaged velocity ωDC is smaller than ωp.

The peak hight P (ωp(f)) is shown in Figure 2.5(b). We found the exponential increase
of peak hight as

P
(

ωp(f)
)

∝ exp(f/f0). (2.8)

Here f0 = 0.025 for J = 1.0. For f > 0.88, eq.(2.8) collapses. Here DC velocity in
each sample becomes unique in the resolution of 2π/T and the deviation of ωDC in each
sample becomes smaller than the deviation of ωp for samples Sample averaged distribution
function has multiple peaks with lower hight. This strong uniformity of ωDC in each sample
is, however, considered to be a finite size effect. We do not obtain meaningful values above
f = 0.88. As far as f < 0.88, singular behavior, which implies a phase transition, is not
observed.

In Figure 2.6(a), P (ωDC) plotted with ωDC − ωp(f). It is shown that the peak width
becomes narrower while the peak hight become taller. In Figure 2.6(b) the P (ωDC) and
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Figure 2.6: (a) P (ωDC) plotted with ωDC − ωp(f). (b) P (ωDC) and ωDC − ωp(f) divided and
multiplied by P (ωp(f)) respectively.

ωDC − ωp(f) are divided and multiplied by P (ωp) respectively. Such scaling will yield the
convergence if the distribution function is expressed by a homothetic function which does
not depend on f . On the other hand if the delta function peak grows with f at ωDC = ωp,
P (ωp) is larger than the peak hight of non-singular part, ω 6= ωp, then the scaled width
becomes larger. Although Figure 2.6(b) shows that the width grows with f , it is suspicious
that the grows is due to the delta function peak. It is likely to be caused by that the sites
with very small ωDC join the peak at ωp.

The uniformity of ωDC and the periodicity of time evolution have strong correlation.
When ωDC is distributed widely, phase slips occurs frequently at which interaction is highly
nonlinear. In this regime the motion is irregular and chaotic. It becomes gradually periodic
with growth of the uniformity of ωDC. The time evolution of the system becomes completely
periodic above certain f where all sites, except very rare stopping ones, have exactly same
ωDC. But this limit cycle motion comes from the finite size effect as discussed in chapter 3.

Power Law Peaks

The distribution function P (ωDC) has power law shape at two points. One is at ωDC = 0
as shown in Figure 2.7(a).

P (ωDC) ∝ ω−γ0

DC (2.9)

Such behavior is most apparent at f ≈ 0.75 where the percolation of moving site just occurs.
Here, γ0 ≈ 0.78. At this point, many stopping or slowly moving sites remain and this peak
is contributed by them. They seem stopping for almost all time but intermittently advances
by 2π. These motion is quite irregular and there is no typical time scale. The exponent
γ0 = 0.78 seems not to change with f below f = 0.75 although the tail of the growing peak
at ωp makes it unclear. The coefficient decreases rapidly for f > 0.75 and exponent seems
to be smaller than 0.78.

Another region where power divergence occurs is slightly below the peak position ωp (See
Figure 2.7(b)). This peak is constructed with almost regularly moving sites. Intermittent
events are important similar to the peak at ωDC ≈ 0. Phase slip occurs irregularly and not
frequently between domains with similar ωDC. The distribution is expressed as

P (ωDC) ∝ (ωp − ωDC)−γ1 . (2.10)

The exponent γ1 equals to 1.7. It is larger than 1, thus this peak must be rounded when
ωp−ωDC is smaller than certain cut-off value. Otherwise the integrated value of P (ωDC) goes
to infinity which should be unity. Such flat region becomes narrower as f increasing. The
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Figure 2.7: The Power low behavior of P (ωDC) around ωDC = 0 (a) and ωDC = ωp(f) (b).

peak continuously becomes sharper rather than delta function peak component δ(ωDC−ωp),
which indicates an infinite co-moving solid cluster, grows. This is closely argued in chapter
3.

The meanings of these power lows behavior are not clear. The case around ωp may be a
kind of self organized criticality. This is also discussed in chapter 3. Power low behavior is
not seen on the upper side of ωp and P (ωDC) seems to decrease exponentially. The origin
of such asymmetry is an open question.

2.3 Spatial Periodicity

When the uniformity of DC velocity grows, the phase correlation length also becomes longer.
This is related to the periodicity of the moving solid. The degree of periodicity is measured
by the ferromagnetic order parameter r, which is written as

r =
1

T

∫ T

0
dt

∣

∣

∣

∣

1

N

∑

i

eiθi(t)

∣

∣

∣

∣

(2.11)

This shows the instantaneous ordering in space and does not capture temporal order because
time averaging is performed after taking absolute value. To argue spatio-temporal ordering,
one has to know the velocity of moving frame ωmf and calculate 〈ei(θ−ωmf t)〉. But ωmf is
difficult both to define and to calculate precisely in spite that the order parameter in long
time scale is strongly sensitive to the value of ωmf . The most possible candidate of ωmf

is the peak position of P (ωDC) but it is calculated only to an accuracy of 2π/T , which is
insufficient.

The driving force dependence of r is shown in Figure 2.8(a). It rapidly increases at
f ≈ 0.8 and become O(1). This indicates a second order phase transition but strong size,
L, dependence is observed. The magnitude of r for fixed f decreases with L and shows
no tendency to converge to a finite value. The critical force also shifts to higher value. It
suggests that there is not any transition but a crossover. I discuss the phase ordering in
more detail in chapter 4.

The phase coherence length ℓ can be roughly estimated from r. When long range order
is not established, r equals zero in an infinite size system. In a finite size system, r has a

finite value as a fluctuation which is proportional to N
−1/2
domain. Here Ndomain is a number of

phase coherent domains which equals to Ld/ℓd. Then r ∼ (L/ℓ)−d/2 or

ℓ ∼ Lr2/d. (2.12)
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takes very long time to eliminate unbounded dislocations.

The proportional coefficient should be O(1). When this scaling is performed for various L’s,
we obtain a conversion to the universal curve as shown in Figure 2.8(b). Curves for each
sample size leave away from the universal one when ℓ reaches about 20% of the system size
and ℓ rapidly saturates to the sample size. As far as ℓ does not saturate, it seems to grow
as an exponential function of f above f = 0.70 for J = 1.0. There is a faint sign, however,
that ℓ saturates to 8.0 in the case J = 1.0 and L = 64. This is not a finite size effect, which
is discussed closely in chapter 4.

2.4 Hysteresis

So far I have shown the results of force decreasing simulations, which start with uniform
initial conditions at large f . All quantities show the hysteresis to a varying degree, the
system takes more ordered state in the f decreasing case than in the f increasing case at
the same f in a certain region. The hysteresis curves of ωDC and ℓ are shown in Figure 2.9.
This hysteresis does not vanish even if the sweep rate of f is decreased sufficiently. The area
of hysteresis loop

∫

df [a↑(f) − a↓(f)], however, becomes smaller as the system size become
larger and its position shift to larger f direction. The hysteresis starts at the same point
where the behavior of ℓ ∼ Lr2/d goes away from the universal curve and f of the starting
point increases with L. Then it is expected that hysteresis is caused by the finite size effect
and vanishes in the infinite size limit.
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Figure 2.9 shows data averaged over samples, which are smoothly changing. Single
sample results show much larger hysteresis and the behavior of small samples is similar to
a first order transition as shown in Figure 2.10. There is two edge values of the driving
force, fc1 for the transition from order to disorder and fc2(> fc1) for the transition in
the opposite direction (Some samples show multi step transitions). This discontinuous
transition resembles to the case of the infinite range model mentioned in section 1.3.3. The
lower branch, both in ωDC and r, indicates pinned regime in that model, on the other hand
it is chaotic and disordered plastic flow state in the present model. The Upper branch
denotes perfectly periodic and phase coherent moving state.

Small systems have small number of metastable states, only two states exist in the
extreme cases. The number becomes larger with system size and the gaps of intensive
quantities between neighboring states become narrower. Then such quantity changes more
smoothly as an accumulation of small steps of change.

Around the depinning threshold fT , hysteresis does not appear because no metastability
exists at the plastic depinning where each site moves independently. In the case of the elastic
model, depinning is a nonlocal event. It can be proved, however, that the configuration
which is initially set on behind the another configuration on the driving direction never
passes the preceding one [35]. Then unique fT can be determined.

2.4.1 Switching

Delayed switching mentioned in section 1.2.2 and 1.3.3 is also found in our simulations for
very small samples. The switching from plastic flow to coherent flow occurs near and above
fc2, where plastic flow is unstable. A very sharp transition in time evolution with time
delay τd is observed as shown in lower graph of Figure 2.11(a). The simulations start at
t = 0 with some random phase configurations and f is fixed. Initially non periodic plastic
flow is realized. Precursor of switching is hardly observed and the system seems as if it
were in the stable steady state before switching. The delay times, which are much larger
than the microscopic time scale 2π/ωDC, considerably vary depending on the initial random
configurations. We also try the case that the driving force is imposed after relaxation at
f = 0 but it yields almost same results, averaged delay time, then the time t = 0 can be
identified as the time at which external driving force is imposed.

We also find the opposite direction switching from coherent flow to plastic flow near and
below fc1, where coherent flow is unstable. The switching is shown in the upper graph of
Figure 2.11. In this case the initial condition is uniform. The delay times for various initial
constant phases fall within the range of 2π/ωDC around the averaged value.
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The delay time τd diverges as

τd ∝ |f − fci|
−zi , i = 1, 2 (2.13)

when approaching the critical point from below fc1 and above fc2. The delay time is plotted
as a function of reduced driving force |f − fci|/fci in Figure 2.11(b). The critical exponents
zi’s are obviously different for fc1 and fc2 and they seem to be simple numbers, z1 = 1/2
and z2 = 3. These exponents do not depend on samples. The delay time widely varies
depending on the random initial condition above fc2. The dispersion of delay time is also
diverges at fc2 with the same exponent z2. It means that there are many quasi-metastable
plastic flow states which have various degree of instability.

Strogatz et al. obtain z2 = 1 by linear stability analysis of static solution with mean
field approximation. All of these exponents are clearly different. This reflects the difference
among the natures of unstable attractors in these cases, that are limit cycle, chaotic and
static ones. (Of course it is more likely mean field treatment have changed the exponent.)

In the experiment of CDW in K0.3MoO3 [21], the exponent is estimated z′2 = 2.03. The
magnitude of current indicates the switching from pinned state to elastic flow is observed.
It is consistent with the result z′2 = 2 for the elastic model with inhomogeneous driving
force [36]. If it is true, the difference between z′2 = 2 and the present result z2 = 3 provides
the criterion for the identification of the plastic flow.

2.5 Conduction Noise

Here I discuss about the temporal fluctuation of the current that is proportional to θ̇. The
power spectrum of current is defined as follows.

S(ω) =
1

T
j(ω)j(−ω), j(ω) =

∫ T

0
dt

1

N

∑

i

θ̇i(t)e
iωt (2.14)

S(ω) for various f ’s are shown in Figure 2.12(a).
The sample size dependence of S(ω) is shown in Figure 2.12(b) where the product of

system volume N and S(k) is plotted. NS(k) does not show L dependence except f = 0.90.

It means that the amplitude of fluctuating part in θ̇(t) = N−1 ∑N
i θ̇i(t) is proportional to
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Figure 2.12: Power spectrum of spatially averaged phase velocity. (a) Driving force dependence.
(b) Sample size dependence.

N−1/2, which comes from the lack of phase coherence of local phase velocity θ̇i(t). Note that
the phase coherence of oscillation in θ̇i(t) and θi(t) itself do not coexist, e.g. if θi(t) = θ(t)
for all i, the phase of θ̇i(t) = f − sin(θ(t) − βi) is perfectly random. For f = 0.95 smaller
sample takes more periodic motion and low frequency component is smaller. This comes
from the falling of the system into the limit cycle motion.

When the driving force is small and plastic flow occurs, the power spectrum has a broad
band. In the vicinity of the depinning threshold, it has a single peak with a large width.
This is constructed by the superposition of delta function peaks with various frequency ac-
companying harmonics, which is related to the periodic motion of localized moving clusters.
The magnitude of S(ω) decreases as ω goes to zero in this regime.

Low frequency component grows above f = 0.50 as the moving cluster becomes larger
with the driving force. In this regime, some moving sites make relatively large clusters and
periodic motion is not realized in them. The spectrum is flat for small frequency, which
means the dynamics loses correlation in long time. The shape of the spectrum for small
ω can be expressed by the Lorentzian S(ω) ∼ (1 + ω2τ2)−1 for t ∼ 0.80. It means that
temporal correlation of total current exponentially decays and there is a correlation time
τ(f). It is checked that this does not correspond to the relaxation time to the steady state.
This correlation time is expected to correspond to the mean interval between phase slips
among moving neighboring domains. Then τ(f) increases with the driving force as the
temporal periodicity holds for longer time and phase slips occur less frequently.

In Figure 2.13(a) the low frequency part of current power spectrum in relatively high
velocity regime is shown, which are comparable with the broad band noise in CDW and
FLL systems. The spectrum behaves as a power function of frequency. It is shown that as
the driving force becomes larger, power low behavior holds down to the smaller frequency
and the exponent seems slowly growing up to 2.6. Additionally it takes a crossover to
another power low with a lower exponent ∼ 1 not to a constant which is expected for finite
correlation time. We need, however, more careful and long time investigation to discuss 1/f
noise.

In the high frequency region some peaks with constant spacing exist. These indicate
the narrow band noise. The peak position with lowest frequency is well matching with that
of the distribution function of ωDC as compared in Figure 2.13(b). Then this fundamental
frequency is equivalent to ωp. Higher frequency components are its harmonics and the peak
positions are integral multiple of ωp. The peak position ωp becomes larger with f (See
Figure 2.5).

The widths of peaks become narrower and the heights grow with f . There is two reasons
for this sharpening, the growth of temporal periodicity for each site and the unifromization
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that S(ω) is plotted in an arbitrary unit.

of local DC velocity. The latter is more dominant and the shape of the peak for S(ω) is
well correspond to that of P (ωDC).

The system obtains a perfect periodicity at sufficiently large driving force. In this regime
the DC velocity of each site is unique. The only exception is a stopping site, whose phase
oscillates around the constant with the same frequency with that of moving sites. Here the
phase coherence r becomes O(1) then the uniformity of ωDC is considered to be a finite size
effect. We found that a smaller sample falls into this limit cycle motion at smaller f .

The peak still has a rather large width in this periodic regime (See the spectrum for
f = 1.0 in Figure 2.12(a) ), this is because the observation time T is not an integral multiple
of the period 2π/ωp. The power spectrum of single frequency oscillation is written as

S(ωj) ∝
1 − cos[(ωj − ωp)T ]

1 − cos[(ωj − ωp)∆t]
where ωj = 2πj/T and j = 1, 2, . . . , T/∆t, (2.15)

which results finite width unless ωpT/2π is an integer.

2.6 Peak Effect

In this section, I discuss the coupling constant dependence of the depinning threshold force
and its relation to the peak effect in FLL system. Figure 2.14 shows J dependence of the
depinning threshold fT , which is defined as the value of driving force below which phases
of all sites does not advances over 2π within observation time. fT is calculated for each
samples then averaged over samples. It gives a larger value than the fT of an infinite size
system, that is estimated by fitting to < nmv >∝ (f − fT )α. It is practically impossible to
perform it due to very large α for larger J , e.g. α = 9.5 for J = 2.0. The difference becomes
smaller as the sample size become larger.

There is a non trivial peak at J = Jp ≈ 2.2, which becomes sharper with the system size
L. We consider that this should correspond to the peak effect observed in FLL systems due
to the melting of vortex lattice. In that case the peak appears at the boundary between
pinned solid and pinned liquid by changing magnetic field as shown in Figure 1.5. Unfor-
tunately the relation between magnetic field and the parameters in the present model is
not clear. This is because magnetic field affects all of the quantities for continuum descrip-
tion, dissipation coefficient, elastic modulus, the coupling to impurities and driving force,
through the number density of flux lines and their changes are not in simple ways near the
melting point.
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We consider, however, that Jp corresponds to the melting point because the phase
coherence r of pinned state becomes O(1) above Jp. (The phase coherence r at f = 0 is
plotted as a function of J in Figure 2.14.) The pinned state below and above Jp is regarded
as the pinned liquid (or glass) and the pinned lattice respectively. Then the decrease of J
is related to the increase of magnetic field near the melting point at least in the vicinity of
Jp.

This peak results reentrant to the pinned state and non-monotonic character of velocity
when changing J with fixed small f . In Figure 2.15(a) DC velocities is plotted as functions
of the coupling constant for various fixed f ’s. For f = 0.05, ωDC decreases with f above
J = 1.4 and takes a minimum value at J = 2.0 slightly below Jp. We don’t find “re-pinning”
around Jp which is expected for small f because ωDC is an averaged value over samples and
there is a sample which have extremely small fT . The ωDC−f curve is comparable with the
relation between voltage drop and magnetic field with fixed current for super conductors
[15]. We can not ask the good correspondence, however, between them in the wide range of
J by simple conversion of J to magnetic field because negative (linear) correlation between
J and magnetic field can be assumed only in the vicinity of Jp.

Next I discuss the origin of the peak effect. The depinning threshold calculated with
the elastic model is also shown in Figure 2.14. It coincides with that of plastic model
when J ≫ 1 where phase differences between neighboring sites are small. The plastic
depinning threshold grows faster than the elastic one as J decreases. This is because the
phase coherence length of the plastic model is smaller than that of the elastic model and the
pinning force per unit volume, ∼ 〈sin(θi − βi)〉, becomes smaller when it is averaged in the
larger phase coherent domain. In another limit of small J , fT can be described as 1− J as
discussed in section 2.2.1. Then fT goes to zero at J = 1 if this expression is extrapolated.
If one tries to connect two curves in opposite limits, small J(∼ 1) and large J , around the
melting point Jp, non-monotonically changing curve is necessary because a large gap exists
between them. The crossover from elastic depinning to plastic one results the peak effect.

The reason why the depinning threshold decreases as leaving away from Jp is understood
in different ways as follows. On the upper side of Jp, the effect of random potential is
averaged in a large size depinning cluster then net pinning force per volume becomes weak
as phase coherence grows. Here the lowering effect on fT due to the effective pinning
potential made by surrounding pinned sites is weak because it appears only on the surface
of a cluster. This effect is dominant for small clusters. Then fT become lower as decreasing
J below Jp because the depinning clusters become smaller as J decreases from Jp.
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Figure 2.15: (a) Coupling constant dependence of ωDC for various fixed f ’s. (b) The f dependence
of r around the depinning point.

Finally, I consider the difference of phase coherence between the states before and after
depinning. The f dependence of phase coherence r around the fT is shown in Figure 2.15(b).
The depinning occurs as a local event below Jp and hardly affects on r while above Jp, the
system behaves as an elastic cluster both below and above fT then r rarely change at fT also
in this regime. Only in the vicinity of Jp, where collective depinning begins to occur, the
phase order drastically changes at the depinning point, i.e. the system is rapidly solidified
just after depinning.

2.7 Phase Diagram

Here I argue the phase diagram in the J-f plain. There are three kinds of boundary which
indicate depinning, phase ordering and DC velocity ordering respectively. These are roughly
estimated from the result of finite size samples in the way as explained below and rigorous
argument is put off till the following chapters.

Depinning line, which distinguishes pinned and plastic flow states, is drawn by fT (J)
discussed in the previous section. Phase ordering boundary is given by the maximum point
of ∂r/∂f |J . This derivative diverges as approaching the critical point from above and equals
to zero below it if the second order phase transition occurs.

DC velocity ordering boundary is most difficult to identify. The velocity of moving
frame ωmf is defined in the ordered state, where macroscopic number of sites moves with
this velocity. Then we can adopt

q =
〈
∣

∣

∣

〈

ei(θi(t)−φ(t))
〉

t

∣

∣

∣

〉

i
where φ(t) = ωmft (2.16)

as the order parameter. This does not capture spatial order of phase but only temporal

one because absolute value is taken before site averaging.
〈

ei(θi(t)−φ(t))
〉

t
does not equal to

zero only when ωi
DC = ωmf . q has a similar behavior to the component of current power

spectrum at ω = ωmf . The difference is order of i-summation and Fourier integral. Then q
is quite sensitive to the value of ωmf when the narrow band noise peak is very sharp. If one
wants to capture the delta function component which means temporal order, exact ωmf is

needed. Here we approximate the phase of moving frame φ(t) as r(t)eiφ(t) =
〈

eiθ(t)i
〉

i
. In

this way, φ̇(t) does not always equal to ωmf but fluctuates in some degree. φ(t) sometimes
takes discontinuous jump where amplitude r(t) is very small. It works well when r(t) is
sufficiently large and the system size is large where the fluctuation of φ̇(t) is small. The f
dependence of q is shown in Figure 2.16. It has a value of O(1) in the high velocity ordered
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Figure 2.17: The phase diagram for the driven random-field XY model. (a) J-f plane. (b) h-f
plane.

region, which indicates moving solid order. q also takes a large value in small f region. But
this does not indicate moving solid order because φ(t) is static governed by majority pinned
sites and they contribute to q in this regime. We draw DC velocity ordering boundary in
the same way as phase ordering, by the maximum points of ∂q/∂f |J .

The obtained phase diagram is shown in Figure 2.17(a). The boundary of DC velocity
ordering and phase ordering seems to be almost same. The difference grows, however, with
the simulation sample size and phase ordering boundary shifts faster to the high f side
than DC velocity ordering boundary. In the region between these boundaries, DC velocity
is ordered but phase is disordered. Therefore this region is identified as a moving glass
phase. The upper side of phase ordering boundary is the moving crystal phase. Roughly
speaking, the moving state changes in the order of pinned state, plastic flow, moving glass,
moving solid as increasing f or J . Reminding both J and f is scaled by pinning strength h,
the phase diagram in h-f plain, scaled by J , is easily obtained. It is also shown in Figure
2.17(b).

2.8 Discussion

In this chapter, I showed that the driven random-field XY model successively describes the
many experimental results for CDW and FLL systems beyond the elastic model, e.g. local
depinning, plastic flow, hysteresis, delayed switching, broad band noises and peak effect. In
these phenomena plastic deformation plays an important role.
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At first, I focused on the boundary between pinned and plastic flow states where plastic
depinning occurs. We obtain the same formula v ∝ (f − fT )α+β as the depinning transition
in the elastic model. However this is not a cooperative phenomenon in a long scale. The
local depinning is described by a single degree of freedom (and a few neighbors at most)
and the exponent β is determined from its dynamics. The exponent α, which reflects the
distribution of local depinning thresholds, depends on the distribution of local effective
pinning force which can be calculated by analyzing randomly provided local configuration
of β’s.

We also investigate the coupling constant dependence of the depinning and found a
peak of fT as a result of crossover between ordered and disordered states in the pinned
regime. This mechanism discussed here is considered to be applied to the peak effect of
superconductors.

In addition to the depinning behaviors, We investigate the ordering of both phase and
DC velocity in steady moving states by analyzing order parameter of phase coherence and
distribution function of DC velocity. We found the growth of the peak in it which indicates
the uniformity of DC velocities. But it is hard to clarify whether the delta function peak
exists or not because remaining of nearly stopping sites, whose dynamics is qualitatively
different from the sites in peak, disturbs quantitative argument. In the next chapter I
introduce better analysis in which the spatial configuration of DC velocities is also taken
into account.

Additionally the temporal periodicity of the motion is investigated by the power spec-
trum of the velocity. We found not only narrow band noise, which is also but also observed
in elastic model, but also broad band noise. They represent periodic and chaotic motion
respectively. The uniformity of DC velocity and temporal periodicity have strong correla-
tion.

First order like transition and hysteresis are observed clearly in the small samples. The
system with N < 43 shows very sharp discontinuous transition and hysteresis. At the
edges of bistable region, delayed switching is observed. Although first order transition like
hysteresis and power divergence of delay time are observed, this is not a phase transition in
thermodynamic meaning but a bifurcation in the system with small degrees of freedom. Such
switching events should also happen locally in the large systems, but the wide distribution
of local fc’s and small gaps smear them away. Smooth and non history independent driving
force dependence for physical quantities are implied in the large size limit.

The features seen in small samples, however, agree with some experimental results of
CDWs quite well, which are mentioned in 1.2.2. In our simulations each degree of freedom
is regarded as the semi macroscopic domain in which plastic deformation never occurs. The
experimental situations are not necessarily related to the thermodynamic limit L → ∞. It
is reasonable to suggest that real samples should have only a few such domains whose sizes
are the same order as the sample size. We hope that these are clarified in the experiments.
If one requires more quantitative speculation, the model parameters involving the size of the
units, elastic domain, and interaction between them should be calculated with microscopic
picture, which is also a challenging problem.

Finally I showed the phase diagram of the driven random-field XY model. There are
four dynamical regimes; pinned, plastic flow, moving glass and moving solid regimes in order
from small to large driving force f . There is a tendency, however, that phase boundaries
both of DC velocity and phase orderings shift to the high driving force direction as the
system size increases and it would not converge. It is implied that they are not phase
transitions but crossovers. In addition to the finite size effect we have to pay attention to
the finiteness of observation time which makes the temporal order overestimated. In short
time observation one has low resolution of DC velocity although we have to analyze some
delta function peaks in DC velocity distribution function or current power spectrum to
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discuss temporal long range order. Thus there remains the theoretical interest in whether
the ordered state such as moving crystal or moving glass holds or not in infinitely long scale
of space and time. This is the theme of the rest of this thesis.
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Chapter 3

Dynamic Phase Transition between

Plastic Flow and Moving Solid

In this chapter, I argue the possibility of the moving solid phase. The moving solid phase is
characterized by the cluster which extends to the system size and its constituents have the
same DC velocity in contrast to the plastic flow regime. Here, I concentrate only in the DC
velocity ordering and do not care about the phase ordering, i.e. liquid, crystal and (Bragg)
glass are not distinguished, which is discussed in the next chapter.

As shown in the previous chapter, the DC velocity on each site has closer value as the
driving force becomes larger. Finite size system has a finite fraction of sites with the exactly
same DC velocity simultaneously with the acquisition of perfect temporal periodicity. Here
I try to clarify the temporal behavior of the spatially infinite system.

3.1 Bond Percolation Analysis

At first, I explain how to identify plastic flow and moving solid. One view point to dis-
tinguish these two phases is the uniformity of the time averaged sliding velocity. It is
characterized by the single delta function peak in the distribution function of ωDC but this
is difficult to deal with as mentioned in the previous chapter. To make matter worse, the
distribution function lacks the information of spatial configuration about sites with the same
velocity.

The spatial correlation function of local DC velocity, 〈(ωi
DC − 〈ωDC〉)(ω

j
DC − 〈ωDC〉)〉,

is also a candidate which characterizes the moving solid phase. This correlation function
is, however, governed by a few pinned sites although we have an interest in the very small
difference in DC velocities between moving sites. In the relatively large f regime where
solidification transition is argued, the number of pinned sites is very small and each of them
is isolated but they contribute to the correlation function so much because of the large
difference of the velocity from moving sites. This irrelevant factor can not be eliminated
in a straight forward way. We need better method to treat the spatial correlation of ωDC

precisely.

Here we focus on the phase slip process to discuss the spatial correlation of the motion.
This is closely related to the uniformity of DC velocity. We characterize the moving solid
phase by an infinitely large cluster which is made from the sites connected by bonds on
which phase slip does not occurs. In contrast, only finite size clusters exist in the plastic
flow phase.

Note that the dynamical transition discussed here is not identical to the transition
between liquid and crystal (or Bragg glass) on the moving frame, i.e. the phase order is
irrelevant. Steadily occurring plastic deformation, in which accumulation of stress and yield
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(a) (b)

Figure 3.1: Spatial configuration of DC velocities on site (a) and ∆vDC on bond (b) in two
dimensional system. The DC velocities divided by 2π/T from 2730 to 2820 are plotted with
gray scale from white to black. log ∆vDC changes from 0 to log(400) in logarithmic scale
with the unit 2π/T . Connected bonds are plotted with white color. This is the result of
two dimensional system with L = 256, T ≈ 27000, and f = 1.0. Critical force for this T is
about 1.06.

are repeated alternately, are the matter. Corresponding transition to the present one is not
defined in the static regime.

The concrete method is as follows. Phase slip is a process in which phase difference
between neighboring sites increases or decreases by 2π. It results no change in the coupling
energy. In order to clarify the phase slip process, we calculate DC velocity vi

DC = 〈θ̇i(t)〉T
and its difference ∆vi,j

DC = vi
DC − vj

DC on each bond between neighboring sites i and j.
Here 〈. . .〉T denotes time averaging for the observation time T . The resolution of DC
velocity is given by 2π/T . When |∆vi,j

DC | is larger than this resolution, the phase difference
grows over 2π, therefore some phase slips have happened and we determine that this bond is
“disconnected”. Otherwise if |∆vDC | < 2π/T , the bond is “connected” and two sites belong
to the same cluster. When both of pair sites are pinned, i.e. vi

DC , vj
DC < 2π/T , ∆vDC is

less than 2π/T but we regard such a bond as disconnected. It is because such bonds make
non-moving solid clusters. We analyze the bond percolation transition by controlling the
driving force. Percolating phase is then the moving solid phase. Typical configuration of
local vDC and ∆vDC in a two dimensional system is shown in Fig.3.1. It is slightly below
the critical point and shows fractal domain structure, where phase slip bonds play a role of
domain boundaries.

We divide the system into subsystems, whose size L is smaller than the real sample size
Lmax. Then we determine that percolation occurs if a certain cluster reaches on both of two
opposite edges in two dimensions or plains in three dimensions of each subsystems. The
statics on them yields percolation probability P (f, L, T ). The sample numbers used here
are 32,16,16,4 for Lmax=16,32,64,128 respectively. The numbers of subsystems are given by
multiplying (Lmax/L)3. We don’t use the data for L = Lmax because of the small number
of samples.

3.2 Check of Relaxation to the Steady State

In this section, I clarify the reliability of the present numerical results. There are two
points to check. One is whether the relaxation to the steady state is sufficiently achieved
in the precursor running. Another is the effect of irrelevant length scale to the percolation
transition, the phase coherence length.
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Figure 3.2: The relaxation to the steady state of total energy(a) and vortex density(b). The
data for various f , Lmax and initial conditions (random and uniform) are shown. The curves
for different initial conditions are drawn with the same color but they are distinguished by
the fact that the value for the random initial condition is always larger when t is very
small for both energy and vortex density. Vertical solid line indicates the typical precursor
simulation time. The sample number is 128, 16, 2 for L = 32, 64, 128 then the total number
of sites are same. Note that the data points are skipped in not constant time spacing.

Total energy

The relaxation of total energy, the summation of interaction energy and random potential
energy, per site e is shown in Figure 3.2(a). I show the data for f=0.80, 0.85 and 0.90 for
system sizes Lmax=32, 64 and 128. The simulations start with random and uniform initial
conditions at t = 0. The plot range of time is twice of that for the precursor running.

For f=0.80, all of the data rapidly converges to the same constant value e = 0.942 at
t = 2000 then we obtain the steady state which does not depend on both Lmax and initial
conditions.

For f=0.85, the energies for Lmax=64 and 128 converge to e=0.912 at t = 5000 but
the data for Lmax=32 does not. The system is in the region of hysteresis, where the phase
coherence length ℓ is comparable to Lmax as discussed in section 2.4. The whole system
takes periodic motion for uniform initial condition and irregular events such as phase slips
are highly suppressed then moving solid state is realized below true fc. This is more crucial
problem than relaxation. We can analyze the ωDC ordering appropriately when Lmax is
much larger than the phase coherence length.

For f=0.90, the data for all Lmax does not converge. The uniform initial condition,
which yields the initial state with lower energy, seems to give saturation, e.g. e=0.882
above t = 10000 for Lmax=128. The steady states are, however, depend on the Lmax. This
is because the phase coherence length saturates Lmax and the system falls into the limit
cycle motion. We check that some samples with L = 32 show perfectly periodic motion
here. Although such saturation occurs, steady states are achieved when the uniform initial
conditions are employed. The property of percolation transition systematically changes
with Lmax, e.g. the critical force saturate to a finite value with T in order from smaller
samples.

Vortex density

In Figure 3.2(b), the relaxation of vortex density nv, which will be defined in section 4.2.1 is
shown. Here I show it only to confirm that the steady states for different initial conditions
have same degree of phase order. (There was a possibility that even if total energy is the
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Figure 3.3: Precursor running time dependence of the fraction of connected bonds. The
data for various Lmax, T and initial conditions (random and uniform) are shown.

same, the ratio of interaction energy to the random potential energy is different because of
the difference of phase configuration. This actually occurs in the quenching without driving
force.) For very small t, nv is large for random initial conditions and small for uniform
ones. The conversion occurs in the same way with e and steady states for different initial
conditions have same value of nv then phase configuration is considered to be qualitatively
same.

Fraction of Connected Bond

In Figure 3.3, the fraction of the connected bonds p(f, T ) is plotted as a function of the
precursor running time. The convergence to the steady state is obtained in the same time
scale with that of total energy. Uniform and Random initial conditions yield the states
similar to moving solid with small p and plastic flow with large p respectively for short
precursor running. For f = 0.85, p(f, T ) with Lmax > 64 converges to the same value for
t > 5000 for all subsystem size Lmax and observation time T . For f = 0.90, p(f, T ) for
random initial condition does not show the convergence to the value of steady state in the
plot range of t. On the other hand p(f, T ) for uniform one keeps 1 independently of both
Lmax and T because phase slip does not occurs in the limit cycle motion where ωDC is
uniform.

Percolation Probability

In Figure 3.4(a), the percolation probability P (f, L = 8, T ) for f = 0.85 is plotted as a
function of the precursor running time. The values of the steady state for Lmax ≥ 64 do
not depend on T , Lmax and an initial condition as well as the other quantities. There is
no tendency that the relaxation of P (f, L, T ) with larger T is much slower than that with
smaller T . We also check the subsystem size, L, independence of the relaxation in Figure
3.4(b).

The Limit of Calculation

Finally I show the limit of f below which our simulation captures appropriate steady states.
In Figure 3.5(a) total energies are plotted with respect to t for f = 0.875 and 0.885. Note
that the data for individual samples are shown together there. For f = 0.875 the data of all
samples for both of initial conditions converge to e = 0.902. For f = 0.885 random initial
condition yields the steady state with unique energy for f = 0.885. In contrast two samples
with uniform initial conditions converge to the same energy state but another two samples,
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Figure 3.4: Precursor running time dependence of the percolation probability for f = 0.85.
(a) The data for various Lmax, T and initial conditions (random and uniform) are shown.
Subsystem size is fixed to 8. (b) The data for various T , L and initial conditions (random
and uniform) are shown. Lmax is fixed to 128.
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Figure 3.5: (a) The relaxation of total energy at f = 0.875 starting from random and initial
conditions. The results for four samples with L = 128 are shown for each f and initial
conditions. (b) Precursor running time dependence of percolation probability at f = 0.875
for various observation times and subsystem sizes.

which show small fluctuations, have different smaller energies. The latter’s are falling into
limit cycle motions. Thus the data for f ≤ 0.875 are considered not to be affected by the
finite size. The precursor running time dependence of percolation probability for f = 0.875
is shown in Figure 3.5(b). We use the data above t = 20000 for f = 0.875.

3.3 Solid-Fluid Transition in Finite Time Observation

In the previous section I show that percolation probabilities in steady states are obtained
for uniform initial conditions. Next, I analyze the percolation transition in three dimensions
in the case of J = 1.0. First, we consider the limit of large L at fixed T based on finite size
scaling and then the large T limit.

3.3.1 Percolation Probability

Connected bond density p(f, T ) is plotted as a function of the driving force in Figure 3.6(a).
p(f, T ) exponentially grows with f and saturate to 1 then the transition from plastic flow
to moving solid is expected to occur on the way. It decreases roughly logarithmically with
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Figure 3.6: (a) The relation between fraction of connected bonds and the driving force.
Each colored curves indicate the different observation time. (b) The relation between per-
colation probability and connected bond density. The results for different subsystem size
and observation time are plotted in the same figure. Note that p is plotted in logarithmic
scale. Here Lmax = 64.
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Figure 3.7: The raw data of percolation probabilities for various size and observation time
(a) and result of finite size scaling (b). This is the result of three dimensional samples with
Lmax = 64 and maximum observation time T ≈ 26000.

the observation time T at fixed f . This is because the bond on which phase slips occur less
frequently is counted as a disconnected one for the longer time observation. This implies
that the critical driving force for the percolation transition depends on the observation time
and becomes larger with T . Although all curves seem to converge to 1 at f ≈ 0.89, this is
due to the finite size effect as discussed in the previous section.

Percolation probability P (f, L, T ) is plotted as a function of f in the Figure 3.7(a).
P (f, L, T ) grows with f . Its shape becomes closer to a step function as L becomes larger.
There is a certain f for each T , below and above which L dependence is opposite and the
value just on it does not depend on L. This is the critical point of the percolation transition.

In Figure 3.6(b) P (f, L, T ) is plotted as a function of p(f, T ). Much weaker T dependence
is seen in comparison with the plot with f then P (f, L, T ) seems to be a function of only
p(f, T ). There seems to be an unique crossing point, p ∼ 0.1 and P ∼ 0.25, for curves with
different L, which rarely depends on T . The curves for very small T yields a little smaller
P (f, L, T ) for the same value of p(f, T ). This is because they are related to smaller f , at
which remaining pinned sites prevent the percolation.

Whether percolation occurs or not is determined not only by the magnitude of the
connected bond density p(f, T ) but the spatial correlation of bonds is also important. Both
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of connected and disconnected bonds have attractive correlation as seen in Figure 3.1(b) and
roundish domains and their boundary are formed. Then critical value, pc(T ) = p(fc, T ) ≈
0.10, is smaller than the critical probability for the purely stochastic percolation transition,
in which pc is about 0.249 for three dimensional simple cubic lattice, due to the attractive
nature of connected bonds.

3.3.2 Finite Size Scaling

Finite size scaling can be performed in the same way as stochastic percolations [37]. The
curves for different L’s converge to the universal one as the driving force is scaled as

x =
f − fc

fc
L1/ν (3.1)

with the suitable choice of the critical force fc and the critical exponent ν. Here, ν is
the critical exponent which characterize the divergence of DC velocity coherence length as
∼ (f − fc)

−ν . We use

g(x) =
1

2
+

1

2
tanh

(

x − x1

x0

)

(3.2)

as a scaling function and it works quite well. x0 and x1 are fitting parameter and allowed
to have T dependence.

Quite good conversion is obtained for each T as shown in Figure 3.7(b). Therefore
fc(T )’s and ν(T )’s are obtained for each T . For example, fc = 0.84 and ν = 1.3 in the case
of J = 1.0 and T ≈ 13000. A little T dependence is found in Figure 3.7(b). We consider,
however, that the T dependence vanishes for sufficiently large T except in the value of fc ,
which is discussed in section 3.4.2.

3.4 Observation Time Dependence of the Critical Force

3.4.1 Glass Crossover Time

T dependence of fc for several Lmax’s are shown is shown in Figure 3.8(a). That is expressed
as

fc(T ) = f0 log(T/t1), (3.3)

for large T . Here, t1 and f0 are constants. f0 = 0.025 coincides well with the constant
which characterize the growth of the peak hight in the distribution function of ωDC (See
Figure 2.5(b)). We consider the reason for the disagreement between the present data and
eq.(3.3) for smaller f and smaller Lmax as follows.

For T < 3000, fc’s for smaller T is a little larger than that expected from eq.(3.3). We
consider the reason for this at first. The dynamics of sites in samples are roughly classified
into two groups. One is represented by the power peak of the distribution function of ωDC

at the origin (see section 2.2.2) and another is represented by the power peak at ωp. The
sites which belong to the percolating cluster are in the latter group and ωp is 0.35∼0.55
for f = 0.75 ∼ 0.875. The sites of former group do not affect the percolation in large L
subsystems when they are rare and isolated. For smaller f , however, these are not rare, e.g
the fractions of sites with ωDC < 0.050 are 0.51, 0.090 and 0.00054 for f=0.75, 0.80 and
0.85 respectively. The percolation probability becomes larger in such case of lattice with
“defects”. These sites decrease rapidly with f and have less effect on fc for higher T .

The another problem is that there remains another kind of size dependence at large f
although finite size scaling has been already performed. For small Lmax, fc shows saturating
behavior to a finite value above certain T , which becomes larger with Lmax. This is caused
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Figure 3.8: (a) The observation time dependence of the critical force. The curve is regarded
as the phase boundary in f − t plain which distinguish between plastic flow and moving
glass. Note that horizontal axis is in a logarithmic scale. The solid line indicates f =
0.025 ln T + 0.60. The sample number used here is 32,16,8,4 for Lmax=16,32,64,128. The
number of subsystems is (Lmax/L)3. (b) Glass crossover time τ as a function of the driving
force in a normal scale.

by the falling of the system into the limit cycle motion when the phase coherence length
becomes the same order with Lmax as discussed in section 3.2.

For T ≤ 51500, the results for L = 64 and L = 128 hardly differ and they shows reliable
fc < 0.870. (We have shown that limit cycle motion does not appears for L = 128 below
f = 0.875 in section 3.2. fc is sensitive only to the data in the vicinity of the crossing point
of P (f, L, T ) while the critical exponent ν is affected by the data for f > 0.875) Eq.(3.3) is
expected to hold till the infinite T . It means that fc diverges logarithmically as T goes to
infinity and the moving solid phase which is defined in the long time limit does not exist as
far as in the present definition. According to the preliminary research this behavior does
not change for the system with stronger coupling.

In another point of view, Eq.(3.3) is regarded as the phase boundary in a force-time
plane between the plastic flow and the moving solid regimes (See Figure 3.8(a)), which is
moving glass rather than moving crystal or Bragg glass as shown in chapter 4. Considering
the observation with fixed f , the glass crossover time τ(f) can be obtained from eq.(3.3) as

τ(f) = t1 exp(f/f0). (3.4)

The system behaves as if it were in the moving glass phase with the shorter observation
time than τ(f). Beyond this time, cracks of plastic deformation, they are the sheets of
phase slip bonds, propagate to macroscopic scale and fluid-like property is revealed.

In a finite size system, τ(f) diverges above certain f , where the system falls into the
limit cycle, which is related to the saturation of fc(T ). In Figure 3.8(b), τ is plotted as a
function of the driving force. The extrapolated exponential curve for Lmax → ∞, which is
drawn by a dotted line, shows so rapid rising that τ seems to diverge at a certain f and
the phase transition exists. However this is hard to insist when watching the plot of τ in
a logarithmic scale, which is obtained by the exchange of horizontal and vertical axises of
Figure 3.8(a). Contrary the curve for Lmax = 128 bends with a tendency for saturation of
τ(f) and rather suggests the exponential divergence at f = ∞. The additional fact that
implies the absence of the phase transition is that τ seems to diverge even in finite size
systems. This is in contrast to the case of usual phase transitions where the characteristic
time scale saturates to a finite value, which increases with the system size.
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The exponential growth in eq.(3.4) can be translated as a thermal activation process,

τ ∝ exp

(

V

kBTeff

)

, Teff =
V

kB

f0

f
(3.5)

when an effective temperature Teff which is proportional to f−1 ≈ v−1
DC is introduced. Here

V means the typical energy barrier between metastable states. This is consistent with the
idea of “shaking temperature” proposed by Koshelev and Vinokur [3]. We also found that
the excitation of dislocations is also governed by this temperature, which is shown in the
next chapter. Teff should not depend on the potential barrier V then f0 ∝ V −1.

3.4.2 Universality of Percolation Transition for Different T

So far, it is shown that percolation transition of an elastic moving cluster really happens
even if it is defined in the finite time observation. We can obtain some information of the
spatial pattern of DC velocity from the analysis of percolation transition. The property
at f is investigated by the percolation transition with the observation time T = τ(f),
which yields fc = f . We discuss the self-similarity of DC velocity configuration for different
f based on the universality of these transitions for different T . These appears in the
critical exponent ν, the connected bond density pc(T ) = p(fc, T ) and percolation probability
Pc(T ) = P (fc, L, T ) at the critical point.

The T dependence of the critical exponent ν−1 is shown in Figure 3.9(a). For small T ,
ν−1 is constant, ≈ 0.8 for L = 64, 128 but it goes to zero as T increases and universality
seems not to exist. This decreasing is, however, finite size effect which corresponds to the
phase ordering as discussed above and ν is expected to have an universal value. In the
limit cycle motion, the dynamics of all sites are regular with the period 2π/ωp then phase
slip does not occur except between stopping and moving sites. When the phase coherence
length saturate to Lmax, percolation probability is forced to rise and go to 1 in the same way
for all L’s. ν−1 = 0 means the curves for various L’s are convergent without any scaling.
ν tends to keep constant value up to higher T for larger Lmax and is expected to have a
unique value independent of T in the large size limit. ν is roughly estimated to be 1.3 (0.88
for stochastic percolation). The T dependences of connected bond density and percolation
probability at fc(T ) are shown in Figure 3.9(b). We roughly estimate that pc = 0.10 and
Pc = 0.28. It may be difficult to insist the universality of percolation transitions in the
present results. Other much more clear evidences of the universality, however, are seen in
the cluster statistics, which is discussed in the next section.

The universality of the critical point for T is related to the self similarity of ωDC structure
for various f ’s. DC velocity has a scaleless spatial pattern which does not depend on f if
one chooses proper time scale τ(f). This may be a kind of self-organized criticality, the
system is in the critical state without tuning the parameter to the special value, i.e. critical
point. Finite time observation means the course-graining of ωDC and ∆ωDC by 2π/T . Note
that space is not rescaled as usual critical phenomena.

3.5 Statistics of Co-moving Clusters

Next, I argue the fractal dimension of clusters and the size distribution of them.

3.5.1 Fractal Dimensions at the Critical Point

At first we investigate the dimension of the clusters, both non-percolating ones and perco-
lating ones at the critical point. The volume of the cluster s is identified with the number
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Figure 3.9: The observation time and system size Lmax dependence of the critical exponent
ν−1 (a) and percolation probability and the connected bond density at the critical point
(b).
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(b) The system size dependence of the size of the maximum cluster in each subsystem. Here
Lmax = 64.

of contained sites. The radius can be estimated by the root mean square of the distance
from the center of mass as

r̄ =

〈

√

√

√

√

1

s

∑

i

(

ri −
1

s

∑

j

rj

)2
〉

s

. (3.6)

Here 〈. . .〉s means average for clusters with the same sizes, which can have various radius
depending on their shapes. The relation between this radius and the volume of cluster s
are shown in Figure 3.10(a). We find that s is not proportional to r̄3 but to r̄2.4 in three
dimensions except for very small clusters and ones which saturate to the system size. The
fractal dimension of the cluster, D, equals 2.4 and does not depend on T . This holds in all
region of f except the percolating cluster above fc, which has the same dimension with the
space.

The percolating cluster at the critical point is also fractal. This is estimated by box
counting for the maximum clusters in subsystems smax. smax in the sample of size L
is plotted as a function of f in Figure 3.11 where the scaling result is also shown. It
shows divergent behavior at the critical point although the finite sample size suppresses
this divergence. The L dependence of smax at f = fc for various T is shown in Figure
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3.10(b). We obtain
smax(f = fc) ∝ LD. (3.7)

The T dependence is not rarely seen both in D = 2.4 and coefficient. The percolating cluster
at fc(T ) can not be distinguished from its shape. This indicates the universality among
the percolation transitions for different observation times and then supports the existence
of the self-similar configuration of DC velocity for different f . The fractal dimension of
percolating cluster at the critical point coincides with that of non-percolating clusters.

3.5.2 Size Distribution

The distribution functions of cluster size P (s) for various f ’s are shown in Figure 3.12(a).
The normalization condition is

∑

s sP (s) = 1. It has a power low shape P (s) ∝ s−τ at the
critical point fc. The exponent τ is about 2.0. For f < fc there is a cut-off of s, i.e. a
cluster larger than it does not exist. This cut-off diverges at fc but is finite again above
fc when ignoring the percolating cluster. The cut-off, which gives the correlation length,
is much sharper than that expected from the exponential decay. Each curves seem to have
different exponents from 2 for fc, which become larger as leaving away from fc, rather than
the slope is rounded by cut-off function.

In Figure 3.12(b), P (s)’s at the critical point fc for different observation time are shown.
There is little difference beyond the error in both the exponent and coefficient, which
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Figure 3.13: The distribution function of ∆ωDC in semi (a) and double (b) logarithmic
scale.

strongly suggests that the DC velocity has an universal spatial structure independent of
T .

3.6 Statistics of Phase Slip Frequency on Each Bond

Next, I focus on the DC velocity difference ∆ωDC. So far, we have analyzed the percolation
transition using the connected bonds on which no phase slip occurs. Whether phase slip
occurs or not is determined by ∆ωDC then only the initial and final states are taken into
account. This is justified by the fact that each bond has a favorable direction, i.e. ∆ωi,j

DC on
each bond is steadily positive or negative independently of when and how long it is observed.
Furthermore it is expected that phase slip rate ∆ωi,j

DC converges to a certain value as the
observation time goes to infinity. The spatial DC velocity pattern is static in sufficiently
large length and long time scales because it is governed by the quenched random potential,
not fluctuating noise. If the sign of ∆ωDC depended on when it is observed, the distribution
function would take a Gaussian form but such form is not seen.

∆ωDC on each bond indicates how frequently phase slips occur. The distribution func-
tion of the DC velocity difference P (∆ωDC) is plotted in Figure 3.13. Even if the observation
time becomes longer, the shape of the distribution function does not change. The curve is
only smoothly extended to the lower ∆ωDC region. The bonds contributing to this region
was counted as connected bonds in shorter time observation. Then the connected bond
density is obeys to a differential equation,

dp(f, T )

dT
= P (∆ωDC =

2π

T
)

d

dT

2π

T
= −

2π

T 2
P (∆ωDC =

2π

T
). (3.8)

The peak in P (ωDC) at ωDC = 0 and ωDC = ωp discussed in section 2.2.2 is useful
to understand the behavior of P (∆ωDC). Large ∆ωDC part is contributed by the bonds
between a nearly stopping site and an almost periodically moving site while the small ∆ωDC

part comes from the bonds between sites which have nearly same velocity. When f is small,
the |∆ωDC| is same with the ωDC itself of the one site because the velocities of neighboring
sites are almost always zero. Then P (∆ωDC) is similar to P (ωDC) when the fraction of
moving sites is small.

The peak at the origin is governed by the bond between the sites with nearly same
velocities. Two types of power divergence with exponents, ζ0 and ζ1, are observed for
relatively lower and higher f (See Figure 3.13(b)).

P (∆ωDC) = (∆ωDC)−ζi , i = 0, 1 (3.9)
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They correspond to the divergence of P (ωDC) at ω0 and ωp which are discussed in the
section 2.2.2. The exponent for lower f , ζ0 ≈ 0.74 is almost equivalent to γ0 ≈ 0.78. This
implies that the bond which contribute to this power law part is connected to the stopping
site. As the driving force increases, the number of pinned or small velocity sites decrease
and the peak with exponent ζ0 fades away.

On the other hand bonds between sites with similar velocities whose motions are nearly
periodic make the peak with the exponent ζ1, which should be related to γ1 ≈ 1.7 in anyway.
ζ1 equals about 1.0. ζ1 = 1 is a critical value because at which logarithmic decay of p(f, T )

p(f, T ) = const. − log T. (3.10)

is derived from eq. (3.8). When ζ1 is larger than 1, p(f, T ) ∼ −T ζ1−1.

3.7 Discussion

In this chapter I have discussed the possibility of the moving solid phase by defining it as the
phase which has a macroscopic cluster moving with the same DC velocity. To analyze this
numerically, percolation transition of bonds which never take any phase slip is investigated.
We pay attention to the effect of both finite size and the finite observation time. Clear per-
colation transition is obtained at finite time observation. The critical force logarithmically
diverges with the observation time. Then the moving solid phase is concluded not to exist
for the infinite time observation.

The condition for the connected bond, that no phase slip occurs eternally, may seem
too strict. For example all bonds necessarily takes phase slips if thermal fluctuation exists.
It is important, however, to note that there is not the local symmetry, 〈∆ωDC,i〉 = 0 at the
beginning. The local stress monotonically increases and the bond steadily takes a phase
slip on the same direction no matter how rarely it occurs. The phase transition discussed
here may be rounded at the finite temperature even in the finite time observation.

We focused on the macroscopic plastic deformation and attempt to distinguish between
plastic flow and moving solid. This stance is different from the conventional interest in
the liquid-crystal(Bragg glass) transition in principle though it seems natural that these
transitions occurs at the same time. The absence of the moving solid phase discussed here
is not immediately related to the absence of the periodic long range order. When the
propagation of plastic deformation along the domain boundary is temporally localized, the
spatial phase order in long span can exist in the plastic flow phase. On the other hand we
see that the saturation of phase correlation length to the system size results the limit cycle
motion and plastic deformation is suppressed. Then if the transition from liquid to crystal
or Bragg glass occurs in moving state, the present transition would happen at the same
time.

From the observation time dependence of the critical driving force, glass crossover time
can be defined clearly, the system behaves like a moving glass in shorter time scale than
this, beyond which macroscopic plastic deformation occurs. This crossover time increases
exponentially with the driving force. Its characteristic scale of a driving force, f0 ≈ 0.025,
is very small compared with the scale such as pinning strength ∼ 1 and the driving force,
∼ 0.75, at which the number of depinned sites becomes O(N). Therefore it grows very
rapidly in narrow region of f and would overcome the macroscopic time scale at not so
large f . This is a possible reason why moving solid phase is observed in experiments. The
situation might be similar to the case of structure glasses, whose viscosity grows quite large
and show slow dynamics. Then it is hard to distinguish whether the equilibrium phase
transition exists or not.

Even though a certain connected cluster has a finite life time, however, there are always
some percolating networks in a short time scale which are not permanent but dynamically
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change their shapes. (Unfortunately we can not define the instantaneous solidification order
clearly because phase slip is temporally discrete event and DC velocity ordering is discussed
in long time scheme.) It is interesting to investigate the mechanical property mediated by
this percolating network, such as shear modulus and yield stress. The response to the AC
external field especially significant which may capture the glass crossover time. It is expected
that the system shows elastic response to the shear with high frequency modulation and
rheological property to that with low frequency.

I showed some evidences which implies that the spatial configuration of DC velocity has
the universal structure if one makes a course-graining and ignoring small fluctuation below
proper threshold, which depends on f . This means that the self-similar pattern is obtained
even though the space is not scaled but only field variable is done. The physical meaning
of this is an open question.
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Chapter 4

Phase Ordering on Moving Frame

In the previous chapter, I showed that the moving solid phase, where DC velocity is spatially
homogeneous, becomes unstable in a finite life time. Although the absence of moving solid
order does not directly correspond to liquid like state, permanent phase ordering on the
moving frame is also expected not to exist.

In this chapter, I discuss the phase ordering, which is related to the periodicity of the
moving structures. We mainly focus on the instantaneous order. We attempt to capture
temporal order with a spatio-temporal correlation function and argue the relation to the
life time of the moving solid phase τ(f) which is discussed in the previous chapter. In
the last part of this chapter, dislocations, which take a important role on the disorder, is
investigated closely.

4.1 Phase Correlation

I have shown that the ferromagnetic order parameter r grows with the driving force but
decreases with the system size in section 2.3, which indicates that there is not the phase
with true long range order. To obtain more information about this problem, we investigate
the spatial correlation function and some quantities of similar kind.

As shown in section 3.2, we obtain initial condition independent steady states below
f ≈ 0.88 for L = 128. The phase coherence length saturates to the system size above it and
we only obtain the steady state, which shows periodic motion, for uniform initial condition.
Note that I only show the results with the uniform initial conditions in this chapter.

4.1.1 Correlation Function

At first I consider the phase correlation function which reflects the 2π invariance of the
phase.

C(r) =
〈

cos(θi+r − θi)
〉

(4.1)

Here 〈. . .〉 means the averaging for time, random samples and the starting point i. We treat
only the correlation on the direction of (1,0,0) and symmetric ones with it. C(r) is also
averaged for such directions. When the distance r is sufficiently large, anisotropy due to
the cubic lattice is not so significant.

This correlation function exponentially decays with r and goes to zero when any long
range order does not exist. In the presence of true long range order, it exponentially
decreases to a finite value. In the quasi long range ordered phase such as Bragg glass,
C(r) goes to zero at r = ∞ but slowly decays as a power function r−η. Bragg glass phase
in equilibrium is considered to have an universal exponent η for power decay which only
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Figure 4.1: Correlation function of phase in normal scale (a) and semi-logarithmic scale (b).
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Figure 4.2: The correlation function for various sample size is shown in semi-logarithmic
(a) and double-logarithmic scales.

depends on dimensionality [38] in contrast to the ordered phase of the pure two dimensional
XY model [39], where exponent depends on temperature.

The f dependence of the correlation function is shown in Figure 4.1. As f increases,
the correlation holds for longer distance. At f ≈ 0.90, the correlation length saturates to
the system size and then the periodic boundary condition strongly affects on C(r).

The sample size L dependence is shown in Figure 4.2. Strong size dependence is observed
for almost all region of r above f = 0.90, where the phase coherence length is larger than
the linear system size and the dynamics becomes periodic. As discussed in section 3.2 initial
condition independent steady state is obtained below f = 0.875 for L = 128. As far as the
finite size effect does not appears, C(r) looks an exponential function rather than a power
function.

4.1.2 Phase Displacement

Next we consider the displacement function

B(r) =
1

2

〈

|θi+r − θi|
2
〉

. (4.2)

This is directly related to the correlation function for the elastic manifold as

Cel(r) =
〈(

θi − 〈θ〉
)(

θi+r − 〈θ〉
)〉

= 2
[〈

|θi − 〈θ〉|2
〉

−
1

2

〈

|θi+r − θi|
2
〉]

. (4.3)
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In the present model, in which the mod 2π invariance of phase exists, the direct difference
of θ does not have meaning. Then we define the phase difference between the phases of sites
apart by a distance r as

θi+r − θi =
i+r−1
∑

j=i

∆θj where ∆θi = θi+1 − θi ∈ (−π, π). (4.4)

This coincides with the direct phase difference when no phase slip occurs and the absolute
coordinate of phase can be defined. In Figure 4.3(a), displacement function for various f ’s
are shown. When f is small and phase correlation is weak, B(r) linearly grows with r
like a random walk. This means that ∆θi loses the correlation in a very short range. The
correlation length of phase is estimated from the distance where B(r) excess over the π2.

As f becomes larger, the coefficient of linear growth becomes smaller due to the growth
of short range order. The behavior changes at f ≈ 0.85. Above which, the growth rate
becomes larger around r = 10 than linear one. As a result, the crossing of curves for
different f ’s occurs as shown in the Figure 4.3(a). Same kind of crossing also exists in the
case of C(r) in Figure 4.2(a). This seems strange because the phase coherence is considered
to grow monotonically with f .

The origin of this decline of phase order with f is considered to be in the crossover
between plastic flow and moving solid as explained below. The phase difference on bond is
restricted between −π and π then most disordered configuration is ∆θ = ±π. This state
is unstable because at which the interaction potential, − cos ∆θ, takes a maximum value.
Of course, such configuration can be stabilized by the balance with the pinning potential in
a static state. In the moving state, contrastingly, temporal fluctuation of phase and phase
slip are induced by the fluctuation of pinning potential, − cos(θ(t)−β), and ∆θ spends the
time on smaller value rather than keeps the value near ±π. Phase difference is suppressed
in this mechanism.

Such effect becomes smaller as the phase slips are suppressed. Tentative growth of
disorder with f is observed if the reduction of such fluctuation is faster than growth of net
phase correlation. For much larger f , the phase order grows as the phase difference, which
does not fluctuate so much, becomes smaller. This explanation is consistent with the fact
that such tentative order decreasing is not observed both in the non driven model, in which
order grows with the coupling constant, and in the elastic model.

Saturation of B(r) due to the periodic boundary condition becomes apparent above
f ≈ 0.87, which is rarely found below f = 0.87. (The saturation is remarkable in the fact
dB(r)/dr equals zero at r = L/2.) The system size dependence of B(r) is shown in Figure
4.3(b). Size independent behavior can be observed only in the linearly growing regime. At
f = 0.92, the size effect is not negligible even at r ≈ 3. In the large f regime, the growth of
B(r) show the trend to become faster as L becomes larger. The curve for L = ∞ is expected
to grow faster than a linear one. The present result implies that the logarithmic growth,
which characterizes the quasi long range order, does not exist since logarithmic growth is
slower than the linear one. If quasi long range order really exists, much longer range of r
in more several decades is needed to observe it

4.1.3 Structure Factor

C(r) and B(r) is considerably affected by the finite size above f ≈ 0.90 as shown in Figure
4.2(b) and 4.3(b). It is better to see the phase correlation in the momentum space. Then
we investigate the structure factor

S(k) =
1

N

∑

r

C(r)eik·r =
1

N

∣

∣

∣M(k)
∣

∣

∣

2
(4.5)
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Figure 4.3: Phase displacement at distance r. (a) f dependence with small steps. (b)
system size dependence for several f ’s.

where

M(k) =
∑

r

M(r)eik·r, M(r) =
(

cos θ(r), sin θ(r)
)

(4.6)

The usual structure factor for the density field has peaks at the reciprocal vectors when
a periodic order exists and the k = 0 component indicates the mean density. In contrast,
the structure factor of Mi has a peak at the origin which indicate the periodicity because
θ means the fluctuation measured from a certain periodic state as ei(q·r−θ).

The f dependence of the structure factor is shown in Figure 4.4(a). As f increases,
the short wave length component decreases and long wave length component increases
conversely. We find that S(k) of a snapshot behaves as a squared Lorentzian,

S(k) ∝ (1 + k2ξ2)−2, (4.7)

for small k. Here, ξ means the phase correlation length. Fitting curves are shown in
Fig.4.4(b), where the data for several sample sizes are plotted in the same figure. Sample
size dependence is observed little in S(k). Phase correlation length ξ grows with f and get
over the linear size of a simulation system. It is difficult to determine directly whether the
correlation length diverges or not because we can obtain ξ’s only in one decade. Instead we
employ the sum rule,

∑

k

S(k) = Ld, (4.8)

to argue the possibility of the divergence of correlation length at a finite f [40]. We first
assume that ξ diverges in the large f regime and S(k) behaves as k−4. Then

∑

k6=0

S(k) ≈

(

2π

L

)d ∫ ∞

2π/L
dkk(d−1)−4 ∝ L4. (4.9)

If d < 4, sum rule would be broken as L goes to infinity. Hence the finite short wave number
cut off, 2π/ξ, must exist. The present result indicates that both long range and quasi long
range order do not exist even instantaneously. These behavior does not change even in the
weak pinning regime, J ≫ 2.0.

In the case of the simple exponential correlation function, the structure factor takes a
Lorentzian form. The power of k decreases by 2 in the presence of the random field and it
makes the lower critical dimension higher from 2 to 4. In other wards, an effective dimension
decreases. This is called dimensional reduction.
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Figure 4.4: (a) The structure factors of three dimensional systems for several f ’s. It is
averaged for time, samples and the directions, (1,0,0) and its symmetric ones. (b) S(k)’s
for several sample sizes. Solid lines show fitting to the squared Lorentzian.

4.1.4 The Magnitude of Bragg Peak

The k = 0 component of S(k) is related to the magnitude of the Bragg peak of the scattering
intensity. The system size dependence which is rarely seen in S(k 6= 0) is received by S(0).
In the presence of the true long range order, S(0) is proportional to the system volume,
then O(N) while it is O(1) in the state with the short range order. S(0) for the quasi long
range ordered phase is a power function of N whose exponent is between zero and one.
Here we investigate the system size dependence of the Bragg peak.

S(0)’s for various L’s are plotted as a function of the driving force in Figure 4.5(a). The
data is less affected by the boundary condition when we use subsystems as the case of the
investigation of the percolation transition in the previous chapter. S(0) is closely related to
the ferromagnetic order parameter r.

S(0) =
1

N

〈∣

∣

∣

∑

j

eiθj

∣

∣

∣

2〉

= N
〈

r(t)2
〉

∼ ℓd (4.10)

Here ℓ ∼ Lr2/d is a phase coherence length defined in eq(2.12). In the range where scaling,
ℓ ∼ Lr2/d, works well, S(0) does not depend on L, then O(1). S(0) starts to grow roughly
exponentially with f at f = 0.75, above which the number of depinned sites is O(N).
Moving sites are much more free from the impurity potential than pinned sites and phase
coherence grows. There is, however, the stop of growth around f = 0.84 and even decreasing
with f in the range 0.84 < f < 0.88. Such peak is not seen in the small sample with L < 64.

The L dependence of S(k) is shown in Figure 4.5(b). As L becomes larger, S(0) saturates
to a finite value below f = 0.88 for Lmax = 128. Then S(0) is O(1). In the large f regime,
N linear dependence of S(0) is observed. But this is considered to be a finite size effect
because such behavior becomes apparent above smaller value of f for smaller Lmax. The L
independent decreasing of S(0) is expected to continue above f = 0.88 for larger Lmax.

It is strange that phase correlation decreases with f , we have considered that increasing
f is related to decreasing effective temperature as mentioned in section 1.2.2. This is not due
to the decreasing of the temporal fluctuation of r(t) because 〈|r(t)|〉t also shows the same
peak. We can not investigate L independent behavior above f = 0.88 in three dimensions
due to the computational time limit.

Two dimensional system shows qualitatively same behavior and allows us to investigate
higher f regime above the peak. The second increase without L dependence is observed.
as shown in Figure 4.6. Same behavior is expected in three dimensions. This indicates that
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Figure 4.5: (a) The f dependence of the k = 0 component of the structure factor. Results
for various subsystem sizes L and real sample sizes Lmax are shown. (b) The system size
dependence of S(0) for several driving forces f . The value for L = Lmax become rather
small below f = 0.72. This is caused by the global rotational symmetry, 〈eiβ〉 = 0, and zero
correlation length.
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Figure 4.6: The results of the same quantity shown in Figure 4.5 for the two dimensional
system. (a) The f dependence of the S(0). (b) The system size dependence of S(0).

the short range order of phase grows with f and the system approaches to the perfectly
periodic state at f = ∞.

The acceleration of the growth rate for phase displacement B(r) occurs in the same
region of f where the peak and tentative decreasing of S(0) with f is observed. We consider
these have the same origin, i.e. crossover between plastic and elastic regime, as discussed
in section 4.1.2. Observation of reentrant-like, non-monotonic changes is expected in the
diffraction experiment.

4.1.5 Comparison with Static and Elastic Models

We also investigate the phase ordering in the absence of the driving force by changing the
coupling constant J and obtain the same result that the structure factor is described with
squared Lorentzian. It is shown in Figure 4.7 with the displacement function B(r). We
can see k−4 behavior more clearly up to the large k regime because temporal fluctuation
in short wave length scale, which is quite large in moving state, does not exist. The sim-
ulation is started with the uniform initial condition and there are always smaller number
of dislocations than for any random initial conditions. Although relaxation is sufficient,
we have to pay more attention to argue whether it is the ground state or not because the
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Figure 4.8: The displacement function (a) and the structure factor for the elastic manifold
model without drive.

energy landscape of the disordered system is not trivial. The phase correlation grows with
J and the k = 0 component of the structure factor becomes larger. The peak and tentative
decreasing for S(k = 0) as a function of J is not seen in the static regime.

Additionally we investigate the elastic model both driven and not driven cases and found
that they show the same results with XY model in large J and f region as might have been
expected. In these regions each phase differences are enough small and the nonlinearity of
sinusoidal coupling is not relevant. The structure factor, which is the Fourier transformation
of the elastic correlation function in eq.(4.3), and displacement function at f = 0 are shown
in Figure 4.8. Almost no difference is observed between the results of elastic model and
plastic model in Figure 4.7 at J = 4. Then all of the present results are consistent with
classical Imry and Ma argument, i.e. any long range order does not exist in the system with
quenched randomness and contradict the picture of Bragg glass which is widely believed.
This is discussed in section 4.3.

4.1.6 Spatio-Temporal Correlation Function

So far, we found neither true nor quasi long range order even instantaneously in the random
field XY model. Then the moving solid phase in finite time observation is expected to be a
moving glass phase. In order to confirm this, I discuss here the glassy order, which means
the temporal freezing of the disordered configuration. Such order is captured by the four
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body correlation function which is expressed as

C(r, t) =

〈

cos
[(

θi(t
′) − θi+r(t

′)
)

−
(

θi(t
′ + t) − θi+r(t

′ + t)
)]

〉

i,t′
. (4.11)

This measure the temporal freezing of relative phase difference. This correlation function
largely oscillates with t due to the washboard motion and the temporal decay, which we
have interest in, hides behind it. Additionally it is technically hard to take the average for
t′ because it needs very large amount of the memory resource. Instead we calculate a little
different type of correlation function,

C(r, t) =

〈∣

∣

∣

∣

1

t

∫ t

0
dt′ exp

[
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(

θi(t
′) − θi+r(t

′)
)]

∣

∣
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∣

2〉

i
. (4.12)

θi(t) can be expressed as

θi(t) = θi
0(t) + ωi

pt + δθi(t). (4.13)

The first term is an intermittently changing part. It seems to be a constant for much longer
time scale than 2π/ωp but suddenly increases or decreases like a step function when phase
slip occurs between the elastic domains to which site i and j belong separately. Very slow
and smooth change inside the elastic domain is also included in θ0. The second part is a
linearly increasing part. The motion of θi seems periodic in short time scale. The velocity
ωi

p is a little different from ωi
DC due to the change in the first term. (This part is essential

in the transition between plastic flow and moving solid.) The third term is the fluctuating
part with the frequency ωp and 〈δθi(t)〉t = 0. Of course, there is not strict separation as
this but it is useful to consider the mechanism of decay of the correlation function. When
δθi(t) is small, the integrand in eq.(4.12) is approximated by

exp
[

i(θi
0(t) − θi+r

0 (t))
]

exp
[

i(ωi
p − ωi+r

p )t
]

. (4.14)

There is two reasons for the temporal decay of correlation function in eq.(4.12). One is
comes from the difference of the frequency ωp on the second factor in eq.(4.14). If ωi

p 6= ωi+r
p ,

the temporal integral in eq.(4.12) is O(t0) for t ≫ 2π/(ωi
p−ωi+r

p ) and C(r, t) decreases with
t−2.

Another reason is the change of constant like part, θi
0(t)−θi+r

0 (t). Note that if the jump
of θi

0(t)−θi+r
0 (t) is by ±2π at a single phase slip, it hardly affects on the glassy order defined

here. For this reason the temporal phase order does not necessarily conflict with plastic
flow. If the jump is not integral multiple of 2π and randomly changes constant-like phase,
the integral is proportional to t1/2 then C(r, t) decreases with t−1. Same t dependence
appears when θi

0(t) − θi+r
0 (t) smoothly changes and loses the temporal correlation.

The spatio-temporal correlation function is shown in Figure 4.9(a). The distance r is
fixed and C(r, t) is plotted as a function of t. Here microscopic time scale 2π/ωp is about 15
in this region of f . We checked that C(r, t) does not decrease any more if r becomes larger
in the range of f shown in Figure 4.9. For small f , large correlation remains at t = ∞.
This is contributed by the couple of sites which are stopping or almost stopping sites. The
phase differences between them do not change. Then we should not count these constants.

The short time correlation holds for longer time as f becomes larger. C(r, t) decays
with a long tail for large t > 103, which is described by t−1 rather than t−2. Then it is
indicated that the decay of correlation function is governed by the change of θi

0(t)− θi+r
0 (t)

rather than the difference of ωp.
In Figure 4.9(b), C(r, t) is plotted with a time scaled by the glass crossover time τ(f),

which is calculated in the previous chapter. At the same time, the constant value C(r, t =
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Figure 4.9: (a) Spatio temporal correlation function which measure the glassy order. The
distance is fixed as r = L/2 = 32. (b) C(r, t) − C(r,∞) is plotted with a time scaled by
glass crossover time τ(f).

Figure 4.10: (left) A fundamental plaquette which contain a vortex. (center) A vortex loop
in three dimensions. (right) The vortex loop with minimum size. The circles indicates the
center of plaquettes, which is perpendicular to the paper, with a vortex.

∞), which is obtained by the fitting to t−1, is subtracted from C(r, t) for each f . Each
curves roughly converges by such scaling. The correlation decays in the time scale of the
same order with glass crossover time τ(f). It is speculated that the glassy long range order
collapse with the same life time with that of the moving solid. We need more quantitative
argument to conclude it.

4.2 Topological Defects

The phase ordering is strongly affected by unbounded dislocations. Its importance is re-
marked in the Kosterlitz-Thouless transition for the two dimensional XY model [39]. In
the low temperature phase which has quasi long range order, each vortex and anti-vortex
are bounded as a pair and such pairs disorder the phase only in a short range while the
long range order of the system is disordered by unbounded vortices in the high temperature
phase. For three dimensional disordered system, it is believed that unbounded dislocation
does not exist in the Bragg glass phase and quasi long range order exists. In contrast the
pure three dimensional XY model in thermal equilibrium has a low temperature phase with
true long range order [41]. The present model has a middle nature between them, quenched
disorder exists but it is washed out by the high velocity translation.

4.2.1 Dislocation Loops

The O(2) model, in which the present model is involved, can have topological defects i.e.
vortices. In three dimensions, such dislocations form one dimensional objects, vortex loops
while the vortex is a point in two dimensions. The existence of vortex is defined by the
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Figure 4.11: The vortex density nv is plotted as a function of a driving force f both normal
scale for several J ’s (a) and semi logarithmic scale for J = 1.0 (b). nv is averaged value over
time and samples. A dashed line in the graph indicates nv = e−(f−0.79)/0.014. L denotes the
linear sample size.

non-zero loop integral of the phase gradient as follows.

∮

ds · ∇θ(r, t) = 2πm, m = ±1,±2, . . . (4.15)

In the case of the lattice model, we determine that vortex runs through a fundamental
plaquette if the summation of phase differences, which are restricted between −π and π,
along the anticlockwise path equals ±2π (See Figure 4.10). There is three types of plaquettes
in a three dimensional sample, which are parallel to xy, yz and zx-plains. The vortex density
nv is defined as a fraction of plaquettes occupied by vortices. The sign of the vortex is not
taken into account here.

Here, we restricted ourselves into the case of coupling constant J = 1.0. Qualitative
behavior does not change as far as J is less than 2.0, so-called the strong pinning regime.
In this regime, Pinned state is very disordered and has a lot of vortices. As the phase
coherence grows with f , the number of vortices becomes smaller.

The f dependence of the vortex density is shown in Figure 4.11. If the phases are given
perfectly at random, the probability that a vortex exists in the plaquette is 1/4. In the
present results, nv is always lower than this value. nv starts to decrease rapidly around
f = 0.75 for J = 1.0 where the fraction of moving sites becomes O(1). Below f = 0.75, nv

hardly depends on f .

In the lower row of Figure 4.12, typical vortex configurations are shown. Patterns of
the local DC velocity ωi

DC = 〈θ̇i〉t are also plotted in the upper column for the comparison.
These profiles hardly change for a much longer time than microscopic time scale 2π/ωDC

because they are strongly connected to the quenched random potential. There is a strong
correlation between local nv and ωDC, a smoothly moving high velocity region is more
free from vortices than a discontinuously moving slow velocity region. Although it may be
difficult to notice a good correspondence between the two local quantities at a glance of
only a single layer of three dimensional system in Figure 4.12, it can be seen much clearly
in the case of two dimensional system.

For smaller f , plaquettes with vortices exist almost homogeneously and we can not
distinguish the size of each vortex loop in the lattice model. On the other hand, each vortex
loop is clearly distinguished and has very small radius for f > 0.9, where vortices are very
rare, nv < 10−4. In this region, most of vortex loops consists of four plaquettes, which is
the minimum size of a loop. The disorder effect of a very small vortex loop is in short range
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Figure 4.12: Shading plots of the vortex density and DC velocity. These show the patterns
in a certain 64×64 single layer for the driving force, f = 0.70,0.75,0.80,0.85 and 0.90 from
the left to the right. nv is averaged over time and three plaquettes in the cubic of each unit
cell. The value increases from 0.0 to 0.45 between white and black for nv and decreases
from 0.50 to 0.0 for vDC .

because it looks a vortex-anti-vortex pair seeing in a proper cross section. This implies that
long range order but it does not exist as discussed in the previous section.

4.2.2 Effective Temperature

The number of remaining vortices decreases exponentially with f

nv ∝ exp(−f/f1) (4.16)

for large f(> 0.9) as shown in Figure 4.11(b). In the case of a pure three dimensional
XY model in thermal equilibrium, vortex loops are bounded and individually excited at
very low temperature. Therefore the vortex density is proportional to Boltzmann weight
e−ǫv/kBT [42]. Here ǫv is the energy of an isolated vortex loop with the smallest radius. The
exponential decreasing of nv with f in the present driven dirty system can be interpreted as
that the effect of random potential is represented by the effective temperature proportional
to f−1.

kBTeff = ǫv(f/f1)
−1 (4.17)

Indeed almost all of vortex loops have minimum size in the exponentially decreasing regime.
In this regime the velocity is nearly proportional to f , so the present result agrees with the
speculation by Koshelev and Vinokur, Tsh ∝ v−1. This is also consistent with the effective
temperature which characterizes the thermal activation of moving glass state discussed in
section 3.4.1.

4.2.3 Power Relaxation

When the initial condition is given as a random state, the phase order grows in order to
lower the local interaction energy. Larger wave number component becomes more important
as the relaxation advances up to the correlation length in the steady state. This results a
relaxation described by a power function. Then nv is expressed as

nv(t) = const. × t−δ + nv(t = ∞). (4.18)

nv(t) for random initial condition is shown in Figure 4.13(a). When constant value for the
steady state is subtracted, the power decay is seen in the wide range of f as shown in Figure
4.13(b).
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Figure 4.13: (a) The decay of vortex density with time. (b) The result after subtraction of
the value at the steady state.

We find two different exponents, δ = 2.2 for small f and δ = 0.86 for large f . The
crossover occurs around f = 0.9, above which nv in the steady state decreases exponentially
with f . In the former case, the random potential takes an important role. Characteristic
time scale does not seen even at f = 0 although the coupling constant is relatively small
and the phase correlation length is almost zero. In the large f regime above f = 1.2 where
δ = 0.86, the curve of nv(t) hardly changes with f even if f and microscopic time scale
2π/f changes for several decades. It is checked that this dynamics is same with that in the
absence of the pinning potential.

4.3 Discussion

In this chapter, I have discussed the phase order, mainly instantaneous one. It is shown
that the structure factor has k−4 shape in the long wave length regime, which indicates that
the phase correlation length is always finite based on the sum rule of the structure factor
then both true and quasi long range ordered phase do not exist.

We can not eliminate the possibility that the crossover to the quasi long range order
behavior would occur in much smaller k, i.e. the structure factor changes its shape from
k−4 to the more slowly divergent form which is related to the power decay.

Giarmarchi and Doussal, who analyze the periodic elastic model for FLL systems in
detail, states that such crossover appears only when all the higher harmonic components of
displacement field, that denote the localized nature of flux line, are taken into account [38].
This may be a reason why the quasi long range order is not found in the present calculation.

Although any evidence of quasi long range order is found in our simulations, we need
more careful argument to conclude the absence of such ordered state. In the disordered
systems, the energy landscapes are complex and the ground states are not obtained easily.
Here I show several studies on three dimensional models and compare the present one with
them. Although the Bragg glass phase for FLL systems is widely believed according to some
analytic studies [26, 43, 44, 27], there are few numerical studies for the random field model
even in static case in comparison with other random spin systems such as spin glasses [45]
and vortex glasses [46, 47, 48].

Gingras and Huse performed Monte Carlo simulations based on the random field XY
model [49]. The difference from the present model is only the randomness in pinning
strength h which is constant in the present one. They showed that the average spacing
between static dislocations becomes smaller with the pinning strength weakened faster than
the elastic coherence length estimated by Imry and Ma [22]. Then they predict the phase
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transition to the quasi long range ordered state at the finite pinning strength.
Fisch performed Monte Carlo simulations based on the ZN ferromagnet model with

random field, N is up to 12 [50]. He shows that there are paramagnetic, ferromagnetic
and quasi long range ordered phases. The main basis of the phase transition between
ferromagnetic and quasi long range ordered states is that the exponent of the structure
factor is proportional to k−3 and k−2.87 respectively. He also made some studies on modified
models [51, 40].

McNamara et. al. calculate the exact ground state of an elastic manifold in the periodic
random potential [52] and found that the structure factor is proportional to k−3. This is
obviously contradict to the present result, k−4. In their simulations the random potential is
given by random variables for discretized phase θi while the model we analyze has sinusoidal
one, cos(θi − βi). I consider this difference may be relevant because the former potential
would yield much more local minima at various θi’s then the conflict between ferromagnetic
coupling and random potential becomes weaker.

All of these works suggest the quasi long range order. It is likely that our results for
static case does not capture the ground state, which is speculated to have quite different
nature from other metastable states. However there are few works and certain degree of
variations exists in the detail of models. Further studies are desired to conclude the presence
of Bragg glass.

In the nonequilibrium case, which is our main target, we obtain macroscopically same
steady states independently of the initial conditions at least. They may be related to the
metastable states obtained by quenching in static case. It is very difficult problem, however,
whether we can define the steady state in a dissipative system which is comparable to the
ground state in the static case. I note that there is a possibility that the observation
of steady state is related to that of equilibrium state rather than quenched metastable
state since the system may have a “ergodicity” due to the chaotic dynamics even at zero
temperature. Nevertheless this is an opened question.

In the last part of this chapter, we argued the behavior of dislocations which takes
an important role on the disorder of phase. We found that vortex density exponentially
decreases with the driving force then vortices are excited as if it were in the thermal equi-
librium state with shaking temperature. It seems that Koshelev and Vinokur’s idea of
shaking temperature works well in the nonperturbative scheme where topological defects
are excited.

There is a large difference, however, between disordered moving systems and pure equi-
librium systems. The three dimensional XY model takes a phase transition at finite tem-
perature between para magnetic phase and ferro magnetic phase [42]. On the contrary, we
found that the driven random-field XY model does not have any long range order of phase
variable at finite external field and coupling constant by analyzing structure factor. When
the phase correlation length is much longer than the radius of vortex loop, however, the
energy of a bounded small vortex loop in the present model should hardly differs from that
in the ferromagnetic phase. We consider this is the reason why we obtain a good mapping
onto the pure system in equilibrium. To clarify the difference among the ordering of three
systems, i.e. a moving system with quenched disorder, an equilibrium state of pure system
and an equilibrium state with quenched disorder, is a future work.
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Chapter 5

Summary and Discussion

In this thesis, I discuss the dynamics of the periodic structures under the external drive
based on the driven random field XY model. The most advantage of this model over the
well investigated elastic model is that it allows the plastic flow state in which the local
velocity is inhomogeneous and plastic deformation occurs steadily. Our goal is to clarify
whether there is any moving phase with the spatio-temporal long range order or not within
the range of the model. There are two kinds of view point, the DC velocity order, which
distinguishes plastic flow and moving solid, and crystalline order, which distinguishes liquid,
glass and crystal. The transition controlled by the driving force is particularly studied.

At first I showed that this model qualitatively reproduces various experimental results
for CDWs, FLLs and so on in chapter 2. The most drastic difference from the elastic model
description appears in the depinning. When plastic deformation is allowed, only a small
fraction of the system moves in the vicinity of the depinning point. As the ratio of the
internal coupling to the pinning strength increases, the crossover to the elastic behavior
occurs and the depinning threshold shows a peak. This is considered to correspond to the
peak effect which is observed in the experiment of FLL systems.

Spatially inhomogeneous plastic flow is observed above the depinning threshold. We
investigate the distribution of local DC velocities, in which some power low behaviors are
found. The orders both of phase and local DC velocity grows with the driving force.
The uniformity of DC velocity is strongly correlated with the temporal periodicity of the
dynamics. The broad band noise and narrow band noise are observed in the plastic flow
and moving solid regimes respectively.

The behavior of the systems with small degrees of freedom is quite different from that
of large ones. They show discontinuous transitions and hysteresis. These describe the ex-
periments of CDW systems considerably, the most remarkable feature is delayed switching.
This provides some information about the size of the domains, which can be regarded as an
elastic body, in comparison with the sample size in experiments.

After we showed the validity of this model, the spatial order of DC velocity was investi-
gated in chapter 3. We consider that the moving solid phase is represented by an infinitely
large cluster in which no plastic deformation occurs, then analyze the percolation transition
of the non phase slip bond, which represents the transition between plastic flow and mov-
ing solid. This is a new point of view to analyze the dynamical correlation, not of phase
but of DC velocity, in the nonequilibrium steady state. In the finite time observation, the
percolation transition actually occurs. The critical driving force, however, increases with
the observation time and logarithmically diverges. Moving solid phase which holds for an
infinitely long time does not exist in the presence of quenched disorder. The glass crossover
time, i.e. the life time of moving solid phase, can be clearly defined from the analysis of the
observation time dependence of the percolation transition. This time scale exponentially
increases with the driving force. We found that the spatial configuration of DC velocity is
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universal when one observes in this time scale.
In chapter 4 the instantaneous phase ordering is discussed. We do not find any long

range order. This does not depend on whether driving force is imposed or not and whether
the interaction is elastic or sinusoidal. Such disordered configuration is speculated to freeze
as long as the moving solid remains according to the spatio-temporal correlation function.

We found that the excitation of dislocations are expressed exponential of the driving
force as well as the glass crossover time. This indicates that the idea of shaking temperature
[3], which is proportional to the inverse of the driving force, well characterize the internal
state of moving systems in the high velocity regime. The phase correlation in the long scale
is, however, different from that in the pure ferro coupling system at finite temperature. The
effect of quenched randomness is not entirely replaced by the effective temperature however
fast the system moves.

The quasi long range ordered state in three dimensions, Bragg glass, is widely believed
to exist in FLL systems. The present results contradict it even if ignoring the possibility
that the size of samples in our simulations is inadequate to observe it. In the static case,
the most likely reason is that the ground state is not obtained. It the driven case, we obtain
initial condition independent steady states. However there is a far more difficult problem
whether the state related to the ground state can be defined or not in nonequilibrium steady
state.

Several other reasons are considered for this contradiction. One is the lack of large wave
number components in the present model as implied in Ref.[38]. If one want to treat the
localized nature of flux lines properly, the density field should have higher components of
reciprocal vectors while we only treat the fundamental component.

I note that there is a possibility of spatio temporal ordered phase considering another
factor. Balents and Fisher studied the elastic manifold model with different type of energy
dissipation, which is expressed by the term proportional to the covariant derivative of phase,
∂t + v∇, and found the ordered phase in the high velocity regime [4]. Such term works only
in the moving regime then if this term is essential to the long range order, the orderings in
steadily moving state are fundamentally different from that in equilibrium state.

Although there are not a few theoretical and experimental studies which support the
quasi long range order, there are just a few numerical studies even for elastic models and
the existence of the Bragg glass phase is still an unsettled problem. Even if the long range
order is established by introducing other factor, which is not involved in the present model,
the qualitative features shown in chapter 2 are considered not to change so much, e.g. peak
effect occurs in the same mechanism.

Many extended study is considered in addition to the higher harmonics and covariant
derivative dissipation. One of the examples is the finite temperature effect, which is related
to the creep motion in the pinned regime at the zero temperature. There are some reports
of power function behavior in the current power spectrum in the presence of thermal noise
[53]. Another is the multi component phase field related to high dimensional periodicity,
which makes it possible to investigate anisotropic ordered states, such as smectic flow. The
study of the systems with higher dimension for the space, where the phase transition is
much probable, will yield the knowledge which is useful to investigate lower dimensional
systems.

61



Acknowledgment

I would like to express my sincere gratitude to my adviser, Prof. Hiroshi Matsukawa, for
valuable discussions and comments on the present thesis and all of my studies. I am also
grateful to Dr. Hajime Yoshino for his helpful suggestions and collaborations. Finally I
gratefully thank the stuff and students of Akai group in Osaka University for their warm
supports and encouragement.

62



Bibliography
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