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Abstract

The distributed mutual exclusion problem has been recognized as one of the most fun-
damental and important problems in distributed computing since it frequently arises in
various kinds of applications. This problem is to guarantee that no more than one com-
puting node will simultaneously access a shared resource that requires exclusive access. In
the past two decades, a number of mutual exclusion schemes have been proposed. Among
them, quorum-based schemes are known to be elegant and especially robust. In order to
achieve mutual exclusion, these schemes use a special set of node groups, called a coterie.
In a coterie, any two node groups have at least one node in common (intersection prop-
erty), and the node groups are called quorums. In a quorum-based scheme, a node has to
acquire permission from all the nodes in at least one quorum before entering the critical
section. In addition, each node is allowed to give its permission to at most one node.
Then, by the intersection property, it is guaranteed that at most one node can enter the

critical section at a time.

The performance and dependability of a quorum-based scheme is critically dependent
on the coterie adopted. For example, when node or link failures occur, the critical section
can be entered only if there is a quorum whose nodes remain connected with each other. So

coteries that have a large number of quorums are often desirable in terms of dependability.

The problem of constructing and evaluating coteries have been extensively studied, and
a number of methods have been developed. However, most of the design and evaluation
methods do not take the topology of the system into account. Though there are a few
- exceptions, their applicability is limited to special kind of topologies. Coteries on networks
with general topologies have not been studied sufficiently yet, and little is known about
how to construct or evaluate them. In this dissertation, we address these design and

evaluation issues related to coteries on general networks.



For design issues, we consider two performance measures. The first measure is maz-
delay, that is, the maximum communication delay needed for delivering a message between
a node wishing to enter the critical section and members of a quorum. The second measure
we consider is availability, which is the probability that the critical section can be entered
in spite of failures. Both the problem of finding coteries with minimal max-delay and the
problem of finding coteries with maximal availability have been solved only for the case
where the system has special kinds of topologies, such as a tree or a ring. On the contrary,

for general networks, these problems have been left open.

In this dissertation, we tackle these problems. We first propose a new algorithm to
find max-delay optimal coteries for networks with arbitrary topologies, and show that its

time complexity is O(n®logn) where n is the number of nodes.

Then, we propose a method based on 0-1 integer linear programming for constructing
coteries with optimal availability. This is an extension of an approach previously proposed
by Tang and Natarajan. A major weakness of the original approach is that there has been
no analytic method for calculating the values of some parameters used for problem formu-
lation in the case where the system has a general topology. To cope with this weakness,
we have developed a new algorithm that computes these parameters and succeeded in
obtaining optimal coteries for various networks. To the best of our knowledge, this is the
first time that optimal coteries are obtained for general networks with unreliable nodes

and links.

As for evaluation issues, we propose graph-theoretic methods for evaluating dependability-
related measures. Given a coterie, performance—related measures, such as message com-
plexity or maximum communication delay, are easily computed. However, measures re-
lated to dependability are very difficult to compute when the network topology is arbitrary
and nodes and links may fail. Only Monte-Carlo simulation and exhaustive state enumer-

ation have been used for this purpose so far.

The first method we propose is for evaluating the availability of coteries. We introduce
a new notion called a Minimal Quorum Spanning Tree (MQST) and develop the analytic

evaluation method based on this notion.

In addition, for assessing dependability of wr-coteries, which are an extension of co-

teries, we propose a method for evaluation of site resiliency. This evaluation method is
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conceptually similar to the method of availability evaluation for coteries. We also demon-
strate the use of the evaluation method for optimizing dependability of a well-known
replication control scheme called the weighted voting scheme.

This dissertation is organized as follows: The first and second chapters are introductory
ones. In Chapter 1, we summarize related progress and topics and describe an outline of
the dissertation. In Chapter 2, we describe a basic model of systems and introduce some
basic notions related to quorums and coteries. |

In Chapters 3 and 4, we discuss problems of constructing optimal coteries. In Chap-
ter 3, we explain the propoéed approach for constructing max-delay optimal coteries on
general networks. In Chapter 4, we describe the 0-1 integer programming approach for
finding optimal coteries that maximize availability.

In Chapter 5, we present evaluation methods for two measures related to dependability.
Both methods employ similar graph-theoretic notions to compute the measures effectively.
Through running time analysis, we show their feasibility.

In Chapter 6, we propose another failure model, which is an extension of the model
assumed in Chapters 4 and 5. We discuss how to adapt the proposed optimization and
evaluation techniques to the new failure model.

Finally, in Chapter 7, we conclude this dissertation with a summary and directions

for future work.
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Chapter 1

Introduction

1.1 Background

Recent advances in computer network technology have led to the increasing popularity of
distributed computing systems. A distributed computing system is a system consisting of
a collection of autonomous computing nodes connected by a communication network. The
nodes typically do not share memory, and communication is solely by means of message
passing.

Practical motivations for distributed systems include higher performance or through-
put, increased reliability, and sharing resources over a geographically dispersed area. How-
ever, pursuing these potential advantages has exposed a broad set of new problems.

Among the problems arising in distributed computing, the distributed mutual exclusion
problem is recognized as one of the most fundamental and important problems because it
frequently arises in various kinds of applications. This problem is to guarantee that no
more than one computing node will have access to a shared resource simultaneously. The
resource could be, for example, a printer or other device that needs exclusive usage. Or
it could be a database or other data structure that requires exclusive access in order to
avoid interference among the operations by different processes. A process or computing
node currently accessing the resource is said to be in a critical section.

In the past two decades, a number of mutual exclusion schemes have been proposed.
These schemes are classified into two classes[55]. The first class is token-based schemes

(e.g., [48, 60]). In a token-based scheme, a token is circulated among the nodes and only



the node that owns the token is allowed to enter the critical section. Though the token-
based schemes can achieve mutual exclusion with small communication overhead, they
have low fault-tolerance because a failure of a node holding the token leads immediately
to the failure of the schemes. Though recovering from such a situation is possible by
detecting the failure and regenerating a token, a complex protocol is needed for achieving

this (e.g., [43]).

The second class is non-token-based schemes. Among the schemes in this class, those
employing the notion of guorums are known to be superior to others. In a quorum-based
scheme, a node can enter the critical section only when it has gained permission from
a certain node group, called a quorum, by message-passing. As described below, these
schemes are inherently more fault-tolerant, unlike token-based schemes or other types of
non-token-based schemes (e.g.,[50]). Moreover, they are especially suitable for controlling
access to shared data that are replicated and distributed throughout the system. Specifi-
cally, applications include replication control in database systems[2, 16, 22, 32, 49], name
servers[42], emulation of shared memory([36], and dissemination of information[65]. In this

dissertation, we focus our discussion on the quorum-based schemes.

In order to achieve mutual exclusion, a quorum-based scheme uses a special set of
node groups, called a coterie[21]. In a coterie, any two node groups have at least one
node in common (intersection property), and no group is a superset of any other node
group (minimality property). A quorum means a node group in a coterie. Once a coterie
is determined, mutual exclusion can be achieved as follows: Before entering the critical
section, a node has to acquire permission from all the nodes in at least one quorum by
communication. In addition, each node is allowed to give its permission to at most one
node. Then, by the intersection property, it is guaranteed that at most one node can

enter the critical section at a time.

The performance of a quorum-based scheme depends critically on the coterie adopted.
For example, if quorums are composed of a small number of nodes, the number of messages
a node needs to send for executing the critical section also becomes small. Dependability
also depends strongly on the coterie. Even when node or link failures occur, the critical
section can still be entered if there is a quorum whose nodes remain connected with each

other. Roughly speaking, therefore, coteries that have a large number of quorums are



often desirable in terms of dependafbility.

The problem of constructing coteries with desirable characteristics has been extensively
studied and a number of schemes have been developed. One of the schemes uses voting
to specify quorums|22, 63]. In voting, each node is assigned some votes, and any subset
of nodes that has more than half of the system’s total votes is considered as a node group
containing a quorum. Extensions of voting can be found in [4] and [61]. Most of the other
schemes exploit logical structures to construct coteries, such as trees[2], grids[3, 16, 45],
hierarchical systems[32, 49], and finite projective planes[37]. A geometric approach is
proposed in [35].

Coteries generated by these schemes have different advantages and disadvantages of
their own. Generally speaking, coteries with high dependability have low performance
(e.g. large message-complexity) and vice versa. Therefore, an appropriate coterie should
be chosen accofding to the requirement of the application. Like coterie construction
schemes, various methods have been proposed for evaluating coteries (see [5] for a recent
survey). They include attempts to evaluate coteries by capturing the trade-off between
dependability and performance (e.g., [33, 40, 52]).

However, most of the design and evaluation methods do not take the topology of the
system into account. Though there are a few exceptions, the applicability of such methods
is limited to special kinds of topology. Coteries in networks with general topology have
not been studied sufficiently yet, and little is known about how to construct or evaluate
them. This dissertation addresses these design and evaluation issues related to coteries

in general networks.

1.2 Main Results

1.2.1 Design of Coteries

For design issues, we consider two measures and propose methods for constructing coteries
that optimize these measures. The first measure is maz-delay, that is, the maximum
communication delay needed for delivering a message between a node wishing to enter
the critical section and the members of a quorum(19]. In [19], Fu proposed a delay model

and showed that the communication delay depends critically on the coterie. She also



proved that polynomial algorithms to find coteries with optimal max-delay exist if the
topology of the network is a tree or a ring. However, finding max-delay optimal coteries

in general networks has been left as an open problem.

In this dissertation, we solve this problem. We propose an algorithm to find max-delay
optimal coteries for networks with arbitrary topology, and show that its time complexity

is O(n®logn) where n is the number of nodes.

The second measure we consider is availability in the presence of node and link failures.
Availability is defined as the probability that the critical section can be entered in spite
of failures. The problem to find optimal coteries that maximize availability has been
extensively studied for the past decade. For some classes of networks, methods for finding
optimal coteries have been proposed[18, 29, 59, 62, 64]. For general networks, however,
coteries with optimal availability are very difficult to construct, and only some properties

have been investigated recently from a graph-theoretical aspect[23].

To overcome this problem, we propose a new method by extending a 0-1 integer-
programming approach proposed by Tang and Natarajan [62]. In its original form, this
approach has two main weaknesses. First, for networks with arbitrary topology, there
has been no analytic method for calculating the values of some parameters used for the
problem formulation. Specifically, this approach requires that for every subset of nodes
the probability that it forms an isolated node group due to failures is known. However, no
feasible method has existed for computing this probability. The second weakness is that
the number of inequality constraints in the formulated problem becomes so large that it

cannot be handled practically when the system size grows.

In order to cope with the shortcomings, we propose a new algorithm that computes the
probability that each node group becomes an isolated node group. Furthermore, we show
that the constraints in the formulated integer-programming problem can be drastically
reduced when the network graph has a small number of edges. By means of these results,
we have succeeded in obtaining optimal coteries in various networks. To the best of our
knowledge, this is the first time that optimal coteries are obtained for general networks

with unreliable nodes and links.



1.2.2 Ewvaluation of Coteries

Coteries that are optimal in some specific measures may have disadvantage in terms of
other factors. This means that optimal coteries may not always be adopted. Since an
appropriate coterie should be chosen according to the requirement of the application,
studying the evaluation of coteries is important as well as developing methods for con-
structing optimal coteries.

Given a coterie, performance-related measures, such as message complexity or maxi-
mum communication delay, are easily computed. For example, since message complexity
is known to be proportional to the size of a quorum, it can be computed even without
considering the network topology.

On the other hand, measures related to dependability are very difficult to compute
when the network topology is arbitrary and nodes and links may fail. Only Monte-Carlo
simulation and exhaustive state enumeration have been used for this purpose so far.

In this dissertation, we propose a graph-theoretic method for evaluating the avail-
ability of coteries analytically. Though this measure is the most common measure for
assessing the dependability of coteries, most of the analytical evaluation methods pro-
posed previously assume partition-free networks and consider neither the topology of the
networks nor link failures (see [5] for a recent survey). To overcome this problem, we
introduce a new notion called a Minimal Quorum Spanning Tree (MQST) and develop an
analytic evaluation method based on this notion.

In addition, for evaluating wr-coteries, which are an extension of coteries, we propose
a method for assessing site resiliency[49]. Site resiliency is an important measure for eval-
uating schemes for controlling replicated data in distributed database systems. This eval-
uation method is conceptually similar to the method of availability evaluation for coteries.
We also demonstrate the use of the evaluation scheme for optimizing the dependability

of a well-known replication control scheme called the weighted voting scheme[22].

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, we describe a basic

model of distributed systéms and introduce some basic notions related to quorums and



coteries.

In Chapter 3, we explain the proposed approach for constructing max-delay optimal
coteries in general networks.

In Chapter 4, we describe the 0-1 integer programming approach for finding optimal
coteries that maximize availability. In this chapter, we first present a brief explanation
of the work by Tang and Natarajan[62], and clarify their shortcomings. Then we show a
new algorithm to compute the probability that each node group becomes an isolated node
group due to failures, and discuss how to reduce the inequity constraints in the formulated
integer-programming problem. By using these proposed techniques, we obtained optimal
coteries for various networks. We show the result of this experiment.

In Chapter 5, we present the methods of evaluating the dependability-related measures.
All of these methods employ similar graph-theoretic notions to assess the measures more
efficiently than exhaustive state enumeration. Through running time analysis, we show
their feasibility.

In Chapter 6, we propose another failure model, which is an extension of the model
assumed in Chapters 4 and 5. We explain how to adapt the optimization and evaluation
techniques to the new failure model.

Finally, we conclude this dissertation with a summary and directions for future work

in Chapter 7.



Chapter 2

Basic Concepts

2.1 System Model and Definitions

We consider a computer network modeled by an undirected graph G = (V, E), where
V = {v;,vy,---, v,} is a set of vertices and F is a set of edges incident on vertices
in V. Each vertex v; € V represents a computing element. We refer to the computing
elements as computing nodes (nodes, for short). Though this suggesfs that they are pieces
of hardware, it is also possible to think of them instead as logical software processes. We
use the letter n to denote |V|, the number of nodes in the network. Each edge ¢;; € E
represents a communication link (a link, for short) between node v; and node v;. We use
the term component to indicate a node or a link. Without loss of generality, we assume

that G is connected and has no self-loops and no parallel edges.

2.2 Coteries
Now we formally define a coterie. The notion of coterie was first introduced by Garcia-
Molina and Barbara in [21].

Definition 1 (coterie and quorum) A coterie C under the set of all nodes V is a set

of nonempty subsets of V' such that both of the following two conditions hold:*

(1) Intersection property: For any @, Q'(# @) € C, @ and @’ have at least one node in
common, that is, @ N Q' # §.

*When V is understood, we will drop it from the discussion.



(ii) Minimality property: For any @ € C, there is no other element @’ in C such that
Q' CQ.
Each element in a coterie is called a quorum of the coterie.

In the following, we will refer to a nonempty subset of V' as a node group to avoid confusion.

Example 1 Let the set of all nodes V be {v1,v;,v3,v4}. Then consider the following sets
of node groups, Cy,C,,C5 and Cy.

G = {{w}}

Ca = {{vi,v2}, {v1,vs}, {v2,v3}}
Cs {{v1,v2}, {vs, va}}

Cs = {{v1}, {vi,v2,vs}}

Among the four sets of nQde groups, C; and C, are coteries. C; is not a coterie because it

does not satisfy the intersection property. C4 is not a coterie either because it does not

satisfy the minimality property.

A coterie is used to achieve mutual exclusion as follows: Before entering the critical
section, a node is asked to obtain permission from every nodes in at least one quorum in
the coterie. Each node is allowed to give permission to at most one node. If the node has
obtained permission from every node in a quorum, it enters the critical section and holds
the permission until it leaves the critical section. Because of the intersection property,
it is always guaranteed that no two nodes can be in the critical section simultaneously
even in the presence of nodes and link failures. (For detailed description of quorum-based

mutual exclusion algorithms, see [11, 37, 53].)

2.3 Write-Read Coterie for Replicétion Control

In distributed database systems, data are usually replicated and distributed throughout
the nodes of the systems in a redundant manner. One of the most impoftant advantages
of replicatioﬁ is that it masks and tolerates nodes and links failures. Such systems are
generally called replicated database systems(4, 26).

In replicated databases systems, the replication should be transparent to the users.

In order to achieve this, some replication control scheme is required for ensuring that



operations performed on a logical data item are reflected on the physical replicas while
maintaining their consistency{17]. The replication control scheme must also ensure that
the system always presents the most current state of the data even under node and link
failures.

For replication control, the notion of a coterie is extended to write-read coteries|28].

Definition 2 (wr-coterie) A write-read coterie (wr-coterie, for short) (W, R) under the
set of all nodes V is an ordered pair of two sets of nonempty subsets of V such that all of

the following four conditions hold:

(i) For any @ € R,Q" € W, @ and Q' have at least one node in comon, that is,
QNE #0.

(ii) For any Q,Q'(# Q) € W, Q and Q' have at least one node in common, that is,
QNQ #0.

(iii) For any @ € R, there is no other element @’ in R such that Q' C Q.
(vi) For any @ € W, there is no other element @' in W such that @' C Q.

Given a wr-coterie (W, R), each element in W is called a write quorum, while each element
in R is called a read quorum. W and R are called the write quorum set and the read

quorum set, respectively.

Exploitihg these properties of a wr-coterie, a quorum-based replication control scheme
achieves one-copy transparency as follows: A write or read operation can be allowed to
proceed to completion if it can get permission from all nodes of a write quorum or a read
quorum, respectively. Then the properties of a wr-coterie ensure not only synchroniza-
tion of conflicting operations but also presenting the single copy view to the uses of the
system. Specifically, in a replicated data system, concurrent read and write operations
and concurrent write and write operations are the conflicting combinations of operations
that have to be synchronized.

For the combination of read and write operations, the condition (i) ensures that the
two operations cannot be processed concurrently. This also ensures that read operations
will return the latest value written by the last write operation. Likewise, the condition

(ii) ensures that write operations are not executed concurrently.
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Obviously, if C is a coterie, (C,C) is a wr-coterie. This means that a coterie can also

be used for replication control as is.

Example 2 Let the set of all nodes V be {v;,v,,v3,v4}. The following pairs of sets of
node groups, (Wy, R1), (Wa, R2), and (W3, R3) are examples of wr-coteries.

Wi, R = ({{v1,02,05,04}}, {{v1}, {02}, {vs}, {va}})

(Wa,R2) = ({{v1,v2,v3}, {v1,v2,v4}, {v1,v3,v4}, {v2, 03,04} },
{{v1,v2}, {v1, 03}, {v1, va}, {v2, 03}, {2, va}, {v3, va}})

Ws,Rs) = ({{vi, 02}, {v2,va}, {v1, vs}}, {{v1, 02}, {v2, 03}, {1, 03}})

10



Chapter 3

Minimizing Communication Delay

3.1 Introduction

Besides availability and communication complexity, the communication delay needed for
achieving mutual exclusion is also being recognized as an important factor for evaluating
coteries[19].

In a quorum-based scheme, since a node wishing to enter the critical section has to
exchange messages with multiple nodes in the network, communication delay can be a
bottleneck in the response time. Precisely, the response time is defined as the length of
time that a requesting node spends after it sends request messages and before it exists
its critical section[56]. Obviously, it depends on the delay needed for delivering messages
between the requesting node and all members of a quorum, and in the algorithm in {37], for
example, the response time is equal to 2D + C, where D is the delay and C is the critical
section execution time[56]. In the following, we refer to the delay D as the communication

delay (or the delay, for short), and discuss its minimization.

Recently, the notions of maz-delay and mean-delay of coteries have been introduced by
Fu [19]. The max-delay of a coterie is the maximum of the delays among all nodes, while
the mean-delay is the average. She has shown that there must be a delay-optimal coterie
in a special subset of coteries, called nondominated (ND) coteries. Based on this result,
she has proposed polynomial-time algorithms to find max-delay optimal and mean-delay
optimal coteries for systems with special topology, such as trees and rings. Since the

number of ND coteries in such networks is very small, the algorithms can efficiently find
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delay optimal coteries by enumerating ND coteries.

However, finding delay-optimal coteries on general graphs has been left as an open
problem. The difficulty of this problem is mainly due to the fact that enumerative ap-
proaches are impractical for networks with general topology. This is because the number
of ND coteries explodes when the number of nodes exceeds only five [21]. Recently, Bioch
and Ibaraki developed an enumeration method based on Boolean algebra [10]. Acéording
to [10], however, the method was practically feasible only when the network has less than
eight nodes.

In this chapter, we consider the problem of finding max-delay optimal coteries in
networks with arbitrary topology. We propose two algorithms to solve this problem.
These algorithms take a completely different approach from Fu’s in the sense that they
do not use the notion of ND coteries. The first algorithm we present finds a max-delay
optimal coterie in an arbitrary network with time complexity O(n®logn), where n is equal
to the number of nodes. The second algorithm is a modification of the first algorithm.
By incorporating heuristics, this algorithm finds a max-delay optimal coterie with smaller
mean-delay than the original one. The time complexity of the second algorithm is also
O(n?). |

The rest of this chapter is organized as follows: In the next section, we describes
the delay model proposed by Fu[19]. In 3.3, we propose an algorithm to find max-delay
optimal coteries. In 3.4, we extend the proposed algorithm in order to generate max-
delay optimal coteries with smaller mean-delay. In 3.5, we show the results obtained by

applying the proposed algorithms to several sample networks.

3.2 A Delay Model

We adopt the model used in [19] and describe it in this section.

3.2.1 Virtual Distance

We assume that each edge e € F of the network graph G is assigned a positive real number
w(e)(> 0) as its weight. Figure 3.1 illustrates an example of a computer network. The

number attached to each edge represents its weight.
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Figure 3.1: An example of a network.

For two distinct nodes v; and v;, the virtual distance dist(v;, v;)(= dist(vj,v;)) between
the two nodes is defined as the length of the shortest path on G, where the length of a
path is the sum of the weights assigned to the edges in the path. The virtual distance
represents the communication delay between the two nodes. In Figure 3.1, for example,
dist(vy,ve) is equal to 5.6. We assume that for any node v;, the virtual distance dist(v;, v;)

is equal to zero.

3.2.2 Delay of Coteries

Adopting definitions from [19], we introduce the notions of the delay of a node in a coterie
and the max-delay and the mean-delay of a coterie. The delay of node v; in coterie C, or

delay(v;,C), is given by
delay(v;,C) = %lé?{rfeag{dwt(v“ v)}},
and the max-delay and the mean-delay of coterie C are given by

maz-delay(C) = mea‘ac{delay(v, C)}

1 > delay(v,C)

mean-delay(C) =
|V| veV

Intuitively, the delay of a node in a coterie means the communication delay for achiev-
ing consensus when the node accesses its nearest quorum. The max-delay of a coterie
is the maximum of the delays among all nodes, and the mean-delay of a coterie is the

arithmetic mean of the délays of all nodes.
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Example 3 Consider a network shown in Figure 3.1. Let C = {{vq,v4}(= @1), {v2, vs}(=
Q2),{vs,vs}(= @3)} be a coterie in the network. Now take a node v; as an exam-
ple. Among the three quorums, @, is the nearest quorum from v;, and delay(v,,C)
is equal to iré%)zc{dist(vl,v)} = disi(vl,v5) = 4.1. For vy,vs, vy, 5,0, such nearest
quorums are @y, @2, Q1,Q3,Qs, respectively. Since delay(v,,C) = 4.1, delay(vy,C) =
2.5, delay(vs,C) = 2.2, delay(vs,C) = 2.5, delay(vs,C) = 2.6, and delay(vs,C) = 2.0,
maz-delay(C) and mean-delay(C) are equal to 4.1 and 2.65, respectively.

Then, a max-delay optimal coterie is defined as follows:

Definition 3 (Max-delay optimal coterie) Let UC be the set of all coteries. A coterie

C € UC is said to be max-delay optimal if and only if

maz-delay(C) = crlréidlc{ma:v-delay(c )}

3.2.3 Delay of Write-Read Coteries

Given a wr-coterie B = (W, R), the write-delay and the read-delay for node v; is given
by
write-delay(vi, B) = ggy%{r&aéc{dzst(vi,v)}},
read-delay(v;, B) = glé%{r&%x{dzst(v,-, v)}}.
The delay of node v; in V and the max-delay of wr-coterie B are given by
delay(v;,B) = max{write-delay(v;, B),read-delay(v;, B)}
maz-delay(B) = rrga‘}{delay(v,B)}

Lemma 1 (A.Fu [19]) If C is a max-delay optimal coterie, (C,C) is a wr-coterie with

smallest max-delay.

This lemma allows us to reduce the problem of finding a max-delay optimal wr-coterie
to that of finding a max-delay optimal coterie. In the following, therefore, we focus our

discussion on finding max-delay optimal coteries.
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3.3 Finding Max-Delay Optimal Coteries

As mentioned before, the problemrwe consider in this chapter is to find a max-delay
optimal coterie for given G = (V, F) and w.

Suppose that virtual distance dist(v;, v;) for any v;,v; € V has been computed from
G and w. In fact, this is possible in polynomial time by using some previously proposed
algorithms (e.g., [41]). Then, we can restate the problem by explicitly specifying a quorum

from which each node gets consensus.

Problem 1 Given V and virtual distance dist(v;, v;) for any v;,v; € V, find an n-tuple of
node groﬁps (Ny, Ns, . , N,.) that minimizes &}g‘)/c{{]réa}mv)i({dist(vi, v)}}, under the conditions
that (i) for any two groups N; and N;, N; N N; # 0, and (ii) for any two groups N; and
N;, N; ¢ N;.

Suppose (Ny, Ny, ---,N,) is an optimal solution to Problem 1, and let C be the set
of all N’s (i = 1,2,---,n). Note that the number of elements in C is not necessarily n
since N; may be equal to N; for some ¢,7(# 7). Then, C is obviously a max-delay optimal
coterie.

In order to solve this problem, we consider a more tractable problem, removing Con-

dition (ii) from Problem 1.

Problem 2 Given V and virtual distance dist(v;, v;) for any v;,v; € V, find an n-tuple of
node groups (Ny, Ny, - - -, N,,) that minimizes mg‘);{néz}vx{dist(vi, v)}}, under the condition

that for any two node groups N; and N;, N; N N; # 0.

Lemma 2 Suppose that (N, Ny, ---, N,,) is an optimal solution to Problem 2. Let C
‘be the set of N;’s such that any other N;(z # j) is not a proper subset of N;, i.e.,
C = {Ni|N; € N such that VN; € N — {N;},N; ¢ N;}, where N is the set of all N;’s
(i =1,2,---,n). (Note that the number of elements in N is not necessarily n since N;
may be equal to N J for some 17, j(# 1).) Then, C is a max-delay optimal coterie.

Proof: By definition, it is clear that C is a coterie. If N, is not in C, then there is another
node group N; in C such that N; C N;. Now consider another n-tuple (M, My, ---, M,)
such that if N; € C, then M; = N;, otherwise M; is equal to a node group N, in C such
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that N; C N;. Then, since M; C N; holds for any 1, né%};{dist(v,-,v)} < ng,vx{dist(v,-,v)}
also holds for any 7. It is then clear ﬁ}g‘)/({trjré%{dzst(vi, v)}} < E}xgg‘)f({%z}v)f{dzst(v;,v)}}.

In addition, since (N, No,---, N,,) is an optimal solution to Problem 2,
E}{;g&c{f}rel%{dzst(vi, v)}} > 1&2&({%%({&313(1)5,1))}}. Hence wgg{%%{dzst(vi, v)}} =
mga({né?vx{dist(vi,v)}}. This implies that (M, M,---, M,) is also an optimal solution
to Problem 2.

Since Problem 2 differs from Problem 1 only in that it does not impose Condition
(i) on solutions, the inequality g}g&({%%{dzst(v,,v)}} < g}g&({%%)‘_({dzst(v,,v)}} holds
if (Ly,Ls,--+,Ly,) is an optimal solution to Problem 1. Notice that (My, Ma,---, M,)
satisfies Conditions (i) and (ii) in Problem 1. Hence, it is also an optimal solution to

Problem 1. By definition, C is equal to the set of M,’s, thus C is a max-delay optimal

coterie. ' O

Now we define NB;(r) as the set of all nodes whose virtual distance from v; is equal
to or smaller than r, i.e., NB;(r) = {v € V|dist(v;,v) < r}. In addition, let min be
the smallest positive real number such that for any v;,v; € V, NB;(min) and N B;(min)
intersect, i.e., N B;(min) N NBj(min) # 0. Then the following lemma holds.

Lemma 3 (N B;(min), NBy(min),---, NB,(min)) is an optimal solution to Problem 2.

Proof. (By contradiction.) If (NBy(min), NBy(min),---, NB,(min)) is not an opti-
mal solution to Problem 2, there exists another n-tuple (N1, N, -+, N,) such that N; N
N; # 0 for any ¢,j and min > {)?gac{{)ré%i{{dist(v,-,v)}}. Let d = g?g&({iré%>f{dist(vi,v)}}.
Then, since N; € N B;(d) holds for any ¢, NB;(d) N NB;(d) # 0 for any 7,j. Because
max{ r]{}ax(d){dist(vi,v)}} =d, (NBy(d), NBy(d),---,NB,(d)) is also an opfimal solu-

v; €V veENB;
tion to Problem 2. Since d < min, this is a contradiction to the definition of min. a

Let C.p: be the set of NB;(min)’s such that any NB;(min)(z # j) is not a proper
subset of NB;(min), i.e., Copy = {NB;(min)|NB;(min) € NB such that VNB;(min) €
NB — {NB;j(min)}, NB;(min) ¢ NB;(min)}, where N'B is the set of all NB;(min)’s

(:=1,2,---,n). Then, we obtain the following theorem.

Theorem 1 C,,; is a max-delay optimal coterie.

Proof. 1t is clear from Lemma 1 and Lemma 2. o
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Theorem 1 leads to an algorithm for finding a max-delay optimal coterie. Figure 3.2

shows this algorithm. It consists of three steps.

At Step 1, the virtual distance between every pair of nodes is calculated. This can be
done, for example, by using Floyd’s classical algorithm with time complexity O(n®) [20].

(There are also faster algorithms such as [41].)

At Step 2, min and N B;(min)’s are calculated. At the beginning of this step, elements
of U {dist(v;,v;)}, that is, all candidates for min are sorted in ascending order and
stot;g:iein a1, as,- - Using this data structure and Function Intersection_Check, min can
be obtained by binary search. Function Intersection_Check checks whether NB;(r) N

NBj(r) # 0 holds for any ¢, j or not.

Since the number of candidates for min is at most ZL—(”Z—_Q, it takes O(n%logn) time for
sorting them by merge sort or heap sort in the worst case. The while loop in Step 2 is
iterated O(log n?) times. Function Intersection_Check requires O(n®) time per invocation
because the for loop in this function is repeated at most ﬂ";—ll times and the if statement
checking whether or not D; N D; is empty takes O(n) time. Hence it takes O(n®logn)
time for completing the while loop. Thus the time complexity of Step 2 is O(n®logn).

At Step 3, all supersets are removed from N B;(min)’s. The remaining elements form
a max-delay optimal coterie. The time complexity of this step is O(n?®) time because each
if statement takes O(n) and the for loop is iterated 1("7'—12 times. Consequently, it is seen

that the time complexity of this algorithm is O(n®logn).

Example 4 Consider the network shown in Figure 3.1. The proposed algorithm works as
follows: At Step 1, the virtual distance between every pair of nodes is calculated. Then,
the value of min and N B;(min)’s are calculated. First, candidates for min are sorted as

follows:

1.5, 1.8, 2.0, 2.1, 2.2, 2.5, 2.6, 3.6, 4.1, 4.3, 4.5, 5.6

Using binary search, the value of min is calculated. In this case, min = 3.6. Then, each
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N B;(min) is calculated and stored in D; as follows:

Dy = {v, Vg, V3 }

D, = {Ul, V2, V3,4 }

Dj3 = {vl, U2, V3, Us, Ue}

Dy = {v,, Vg, Vs, Ve }

Ds = {vs, v4, Us,ve}

D¢ = {Ua, U4, Us, ve}

We can obtain a max-delay optimal coterie by removing all supersets from the N B;(min)’s.
In this case, it is {{v1, v, v3}, {va, va, vs, ve}, {v3,v4,v5,v6}}. Obviously, its max-delay is

3.6. The mean-delay of this coterie is 2.533.

3.4 Extension for Reducing Mean-Delay

The algorithm presented in the previous section can successfully find a max-delay optimal
coterie Cop: for any given network G. However, there may be other max-delay optimal
coteries whose mean delay is smaller than C,,:. In order to find such a max-delay optimal
coterie with small mean-delay, we propose a new algorithm by modifying the original
algorithm.

Specifically, we insert a new step (referred to as Step 2’) into the original algorithm
between Step 2 and Step 3. At the end of Step 2, NBy(min), N By(min), - - -, NB,(min)
have been obtained. Each NB;(min) is stored in D; in the algorithm in Figure 3.2. In
Step 2’, we examine the nodes in Dy, Ds,---, D, one by one, in a certain order, and
remove those nodes whose removal does not destroy the property that every pair of D;
~and D; intersect. Even with such an additional stage that reduces D;’s, it is guaranteed
that the obtained coterie is max-delay optimal and its mean-delay is not larger than C,y.

The following theorem ensures this.

Theorem 2 Let (Ny, Ny, -+, N,) be an n-tuple of node groups such that N; N N; # )
for any v;,v; € V and N; € NBj(min) for any v; € V. Let C be the set of N;’s such
that no other N;(i # j) is a proper subset of N;, i.e., C = {N;|N; € N such that VN; €
N—{N;},N; ¢ N;}, where N is the set of all N;’s (i = 1,2,---,n). Then, C is a max-delay

optimal coterie and mean-delay(C) < mean-delay(C,).
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Step 1: /* Calculate the virtual distance between every pair of nodes */

Execute an algorithm such as [20] or [41].

Step 2: /* Find min by binary search */

Sort |J {dist(v;,v;)} in ascending order and store in ay,as, ..., am
v, v;EV

il:=1,iu:=m
While (i # iu) do
= (il +iu)/2]
If Intersection_Check(a;} = true then tu:=ielse il := i+ 1
END_While
D; := {v € V|dist(vi,v) < ay} for all v; € V /* min = ay, D; = N B;(min) */

Step 3: /* Remove all supersets from N B;(min)’s. */
tmp = a list of D;’s
For all pair v;,v; €V do
If D; C D; remove D; from tmp
If D; C D; remove D; from tmp
END_For
Copt := a set of node groups in ¢tmp /* max-delay optimal coterie */

END

Function Intersection_Check(r)
D; := {v € Vl|dist(v;,v) <r} foral v, eV
For all pair v;,v; € V do
If D; N D; = § then return(false)
END_For
return(true)

END_Function

Figure 3.2: Proposed algorithm for obtaining a max-delay optimal coterie.
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Proof: Since N,-‘ C NB;(min) for any ¢, {Jréz}v)f{dist(vi,v)} < veﬁiﬁin){dist(vi,v)}
holds for any 7. By Lemma 2, (NBj(min), N By(min),---,NB,(min)) is an optimal
solution to Problem 2. Hence Tg}/({gréz}v}f{dist(vi,v)}} = min and (N1, N3,---, N,) is also
an optimal solution to Problem 2. By Lemma 1, it is then clear that C is a max-delay
optimal coterie. By definition, for any quorum @ € C,p, there is Q' € C such that Q' C Q.
Note that if Q' C @, then for any node v; g&)}g{dist(vi,vj)} < f}rj;g%({dist(vi,vj)}. Hence

mean-delay(C) < mean-delay(Copt)- ‘ O

In order to determine which nodes are checked and removed, we do the following: Let
a tuple (D;,v;) denote a node v; in D;. (So there are ) |D;| tuples that have to be
considered.) We choose (D;,v;) with the largest value 2fe ‘Zlist(vi,vj) first, since this is
intuitively natural. If there are more than one tuple with the largest value, a node is
chosen from D; such that |D;| is the largest. Figure 3.3 shows Step 2’ of the modified
algorithm. (Steps 1, 2 and 3 are omitted since they are exactly the same as the original
algorithm shown in Figure 3.2.)

Since the total number of tuples considered is less than n?, the while loop in Step 2’ is.
repeated no more than n? times. Likewise, one tuple can be selected in O(n?) time at an
iteration of the while loop. Checking the intersection property also requires O(n?) time.
Hence the time complexity of this step is O(n*). Since the original algorithm, which is
the one without Step 2’, is of O(n>logn) time complexity, that of the modified algorithm
is O(n?).

Example 5 Consider the network shown in Figure 3.1. Since Steps 1 and 2 of the mod-
ified algorithm are the same as the original algorithm, each D; in the modified algorithm
has been set to NB;(min) at the end of Step 2, as shown in the previous example. Thus
there are 24 tuples that have to be considered in this case.

Step 2’ reduces D;’s as follows: First, among the 24 tuples, tuple (D;,v;) such that the
value of dist(v;,v;) is the largest is selected. In this case, (Ds,ve) and (Ds,vs) have the
greatest value 3.6(= dist(vs,vs) = dist(ve,vs)). Since |D3|(= 5) is larger than |Dg|(= 4),
(D3, ve) is chosen first. Because D3 — {ve}, i.e., {v1,v2,v3,v5} has at least one common

node with each of Dy, Dy, D4, Ds, and Dg, vg is removed from D;. Then D;’s become as

follows:
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Step 2°: /* Reduce D;’s */

POOL = U {(D,’,’Uj)l'l}j (S Di}
Di:1<i<n

While POOL # ¢ do
/* Select one tuple (D;,v;) */
From POOL, choose (D;,v;) such that
dist(v;,v;) = {dist(vi, v;)}.

(If the number of such tuples is more than one,

max
(D.‘,vj)EPOOL

choose a tuple with the largest value of |D;| from them.)
POOL := POOL — (D;,v;)
/* Check whether (D;,v;) can be removed or not */
D; := D; — {v;}
For all Dy with & # ¢
fD;NDr=0
D; := D; U {v;}, Break the for loop
END_For
END_While

Figure 3.3: Step 2’ of the modified algorithm.

Dy = {v1,v2,v3}

Dy = {v1,v2,v3,v4}
D; = {Ul,vz,vs,vs}
Dy = {v3,v4,v5,v6}
Dy = {vs, v4,v5,v6}

D¢ = {Us, V4, Vs, '06}

Next, (Ds,v3) is chosen for checking. However, if v3 is removed from Dg, Dg no
longer intersects with D;. Thus this node is not removed. (D, vs) is chosen next since
dist(vy,vs) 1s the largest among the remaining unchecked tuples. This process is repeated

until all tuples have been checked. Consequently, D;’s become as follows:
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D, = {Uz, Us}

Dy = {vy,v3}
D3 = {vy,v3}
Dy = {vy,v6}
Ds = {vs,ve}
Dg = {v3,v6}

A max-delay optimal coterie is derived from the D;’s at Step 3. In this case, it is
{{ve,v3}, {v2,v6},{vs,v6}}. The mean-delay of this coterie is 2.433. (Recall that the
mean-delay of the coterie obtained by the original algorithm is 2.533.)

3.5 Experimental Results

Using C language, we coded the original algorithm and the modified algorithm. For Step
1, we adopted Floyd’s algorithm [20]. We took a collection of networks from [14] shown
in Figure 3.4, and used it as the topology of sample networks. Weights were assigned
to the edges randomly. For each network in Figure 3.4, we executed the programs on a
SUN Ultra 1 workstation and obtained max-delay coteries. In all cases, the running time
needed to generate a max-delay optimal coterie was less than 0.1 second.

Tables 3.1 and 3.2 show max-delay coteries obtained by the two algorithms. Table 3.3
summarizes the max-delays and mean-delays of the coteries. This result clearly shows that
the max-delay optimal coteries generated by the modified algorithm have much smaller
mean-delays than those generated by the original algorithms. For Network 6, for example,
the mean-delay of the coterie generated by the modified algorithm is smaller than that of
the coterie generated by the original algorithm by about 35%.

The modified algorithm is an approximation method for solving the problem to find
a max-delay optimal coterie such that its mean-delay is minimized. Unfortunately, we
have not yet developed an optimal algorithm to solve this problem, and we do not know
the complexity of this problem either. Besides, finding mean-delay optimal coteries in

arbitrary networks is still left as an open problem.
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Figure 3.4: Sample networks.

Table 3.1: Optimal coteries generated by the original algorithm.

Network Max-delay optimal coterie

{{vhvz,vs.}, {v%vs»Ue;W}, {Ul,vs,v4,vs,ve}, {Uz,v3,v4avs,vs}}

{{vl’ v2av5}’ {05, 176,177}a {vl, U3, V4, Ue}}

{{'03"07)’087”9}’ {’01,’02,’03,’04,’05}, {’01,1)2,113, ’04,’09},

{vla V4, Us, Vs, V7, ’Ug}, {'U4, Vs, Vg, U7, Us, ’09}}

{{'07, V10, vn}, {04, Vs, Vg, Uu}, {Ul’ Vg, U3, V4, Vs, Ve, U7, Us}}

{{'07,’08,'010}, {’01,'03,’04,’07,’1)8,'09}, {’1)1,’02,'03,1)5,1)6,1)7, 'Ug},

{1)2, V3, Us, Vs, V7, ’U87‘,09}}

{{Ul, U2, U3, 07}, {Us, Vg, U7, Ugy V10, V11, V13, 014},

{Ue, V7, Ug, Vg, V10, V11, V12, 014}, {U4, Vs, Vs, U7, Vg, Vg, V10, V11, 2)12},

{vz, V3, V4, Us, Vg, U7, Vg, V12, V13, '014}a

{vz, U3, V4, Us, Vs, U7, Ug, Vg, V10, V11, U14}},
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Table 3.2: Optimal coteries generated by the modified algorithm.

Network

Max-delay optimal coterie

{{UZ’US}a {02,04}’ {02,’06}, {03,P4,UG}}

{{vlvv5}’ {vlaUG} {’05,’1)6}}

{{vs,v4}, {vsa,v7}, {vs,v8}, {vs, 07, vs}}

{{vs,v7}, {vs,v11}, {v7,v1}}

{{’Ué,’Us}, {'03) US}’ {v7708}, {’02,’03,7)7}}

1
2
3
4
)
6

{{’02,'07}, {’04,’07}, {'Ue,’l)7}, {’1)7, ’014}, {’02, ’04,'06,’014}}

Table 3.3: Max-delay and mean-delay of obtained coteries.

Network Max-delay Mean-delay

Original algorithm Modified algorithm

S R W e

44.0 36.86 28.57
51.0 40.86 37.86
62.0 58.33 47.78
41.0 34.09 28.91
56.0 45.90 30.50
63.0 55.79 36.71
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Chapter 4

Maximizing Availability in the

Presence of Failures

4.1 Introduction

In many distributed systems a mutual exclusion mechanism is required to work even
when nodes or communication links fail. For example, consider a system that manages
replicated data. If failures partition the system into isolated node groups, which we call
partition groups, we probably do not want users at different partition groups to update
the replicated data concurrently since this would make the data inconsistent.

In such a situation, quorum-based mechanisms provide desirable fault-tolerance ca-
pability: When network partitioning occurs due to failures, only nodes in the partition
group that includes a quorum are allowed to enter the critical section. (Notice that by
definition, there is no more than one partition group that includes a quorum.)

Given for each component the probability that it is operational, the availability of a
mutual exclusion mechanism is defined as the probability that the critical section can be
entered in spite of failures[8]. This means that the availability is equal to the probability
that there is at least one quorum whose nodes are operational and connected. It is then
obvious that the availability of the mutual exclusion mechanism depends completely on the
structure of the coterie adopted by the mechanism. Thus we use the term the availability
of a coterie to refer to the availability of the mutual exclusion mechanism based on this

coterie.

25



As stated before, a number of schemes for coterie construction have been developed.
Among them, voting[22, 63] is shown to be especially effective for generating highly avail-
able coteries. Especially for partition-free systems, such as fully connected networks with
perfectly reliable links and ethernet-like systems, Spasojevic and Berman proved in [59]
that coteries constructed by voting have optimal availability if votes are assigned to nodes
by Tong and Kain’s algorithm[64].

However, when network partitioning has to be taken into account, coteries that opti-
mize availability are very difficult to construct. Only for networks with special topologies,
such as trees and rings[29], polynomial-time algorithms have been developed based on
graph theory.” For coteries in general networks, only some properties have been investi-
gated recently from a graph-theoretical aspect[23].

Apart form these graph-theoretical approaches, Tang and Natarajan proposed an
integer-programming approach[62]. They formulated the problem of finding optimal co-
teries as a sparse 0-1 integer programming problem. Using this approach, they obtained
optimal coteries for five example networks.

Since this approach does not rely on any spe(_:ial topologies of networks, we expect that
it is the only viable approach for designing optimal coteries in general networks. waever,
this approach has two main weaknesses. First, it requires the probability that each node
group becomes a partition group for formulating the problem, but no analytic method for
calculating the probability has been proposed. In fact, they computed the probability by
case-by-case analysis, assuming that links of the five networks are failure-free to make the
computation easier.

The second weakness is its scalability. In the integer programming problem, the num-
ber of variables and that of inequality constraints grow exponentially as the number of
nodes increases. Hence when the number of nodes exceeds 10, the original approach is no
longer feasible.

The purpose of our study is to overcome these problems: As for the first problem, we
newly develop an algorithm that computes the probability that each node group forms a
partition group. Furthermore, for the second problem, we show that the constraints in the

formulated integer-programming problem can be drastically reduced when the network

*Assuming that links are reliable and nodes have the same reliability, Diks et al. proposed a method

for constructing optimal coteries on complete multipartite graphs[18].
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graph has a small number of edges.

By combining these results with the work in [62], we have succeeded in obtaining
optimal coteries for various networks. To the best of our knowledge, this is the first time
that optimal coteries have been obtained for general networks with unreliable nodes and
links.

The rest of this chapter is organized as follows: In 4.2, we describe a failure model
that we assume. In 4.3, we explain the approach by Tang and Natarajan[62], and clarify
its weaknesses. In 4.4, we show the new algorithm for computing the probability that
each partition group is formed. In 4.5, we show how to reduce the inequality constraints
in the integer programming problem. In 4.6, we present the result of an experiment we
conducted. In the experiment, we obtained optimal coteries in various networks by the
proposed method. In addition, we conduct comparison study of the optimal coteries and

heuristically-designed coteries.

4.2 Model and Definitions

4.2.1 A Failure Model

We assume that each component may fail and has two states: operational and failed.
Failures of components are mutually independent and they are fail-stop failures. We
assume that for every component the probability that it is operational is given a priori.
Let p;(0 < p; < 1) and p; ;(0 < p; < 1) denote the probability that v; is operational and
the probability that e; ; is operational, respectively. We refer to these probabilities as the
reliabilities of components.

Based on these assumption, we introduce some definitions in the following. For VC C
V and EC C E, we call a tuple (VC, EC) a configuration of G. Note that a configuration
may not be a graph because it may have an edge incident on a node that is not included in
the configuration. The current configuration is defined as a configuration (VC, EC) such
that VC and EC are the set of all currently operational nodes and the set of all currently
operational edges. In other words, the current configuration represents the current status

of the network. The universe of all possible configurations UC is defined as follows:
UC ={(VC,EC)|VC CV and EC C E}
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(a) An example of a network. (b) Configuration when
v5 and €, g have failed.

Figure 4.1: An example of a network.

Nodes in a configuration may be divided into some isolated groups called partition groups.

Definition 4 (partition group) Given a configuration (VC,EC) € UC, a partition
group in (VC, EC) is defined as a subset of V, say N(C V), such that all of the following

conditions hold.
(i) NCVC.
(i) All nodes in N are connected by links in EC.

(ii1) For any of N’s proper supersets, say N', either N’ € VC, or not all nodes in N’ are
connected by links in EC.

We use notation P(VC, EC) to represent the set of all partition groups appearing in a
configuration (VC, EC).

Example 6 Consider a network G = (V, E) shown in Figure 4.1(a). When a node
vs and an edge ey¢ have failed, the current configuration becomes ({vy,vs,vs,v4,v6},
{e12,€1,3, €23, €24, €34,€35, €a5,€56}). Figure 4.1(b) schematically illustrates the current
configuration (say (VC,EC)). (Note that a configuration may not be a subgraph of
G.) All partition groups appearing in (VC, EC) are {v1,vs,vs3,v4} and {vs}, that is,
P(VC,EC) = {{v1,vs,v3,v4}, {v6}}.

4.2.2 Availability of Coterie

In the presence of node and link failures, the critical section can be entered if and only if

there is a partition group that contains a quorum in the current configuration. Therefore,
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the availability of the mutual exclusion mechanism, i.e., the availability of the coterie on
which the mechanism works, is equal to the probability that there is such a partition
group in the current configuration. In this subsection, we present the formal definition of
the availability of a coterie C in a network G = (V, E).-

Given a coterie C, let UC¢(C UC) be the set of all configurations in which there is a

partition group that contains a quorum in C, that is,
UC; = {(VC,EC) € UC| there exist Q(€ C) and N(€ P(VC, EC)) such that Q C N}.

For example, consider a coterie C = {{vs,v4}, {vs,ve},{vs,v6}} on the network shown
in Figure 4.1(a). In this case, UC¢ includes the configuration (VC, EC) illustrated in
Figure 4.1(b) because there are partition group N = {v,vs,v3,v4}(€ P(VC, EC)) and
quorum @ = {vs,vs}(€ C) such that ) C N. In other words, the critical section can still

be entered if and only if the current configuration belongs to UC¢.

Definition 5 (availability) The availability of a coterie C is the probability that there
is a partition group that contains a quorum of the coterie C in the current configuration,

i.e.,

Availability = > prob(VC, EC),
(VC,EC)eUCk

where prob(VC, EC) is the probability that the current configuration is (VC, EC).

The value of prob(VC, EC) can be obtained as follows: Let u; and u;; be Boolean
variables that represent the event that a node v, is operational and the event that a link
e;x is operational, respectively. Then, the event that the current configuration is equal
to (VC, EC) is represented by a Boolean product

A wn A wmA N\ wgn N Ty
wEVC wueV-ve e ;€EC ei;€EE-EC
Since failures of components are assumed to be independent, and the probability that the
event corresponding to u; (or u;;) occurs is equal to p; (or p;;), prob(VC, EC) is given
by
probVC,EC)= T » Il (=p) II psi II Q=i

vu€eVC vy evV-vVC ei ;EEC e ;EE-EC

In this chapter, we say a coterie C under V is optimal, if its availability is higher than or

equal to any other coteries under V.
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4.3 An Integer-Programing Approach

Tang and Natarajan proposed an integer-programming approach for obtaining optimal
coteries[62]. Since this approach is not specialized in topologies of networks, we expect
that it is the only reasonable way to design optimal coteries in general networks. In this

section, we explain this approach and clarify its shortcomings.

4.3.1 Acceptance Set

Precisely, Tang and Natarajan proposed a method for finding an optimal acceptance set,

instead of an optimal coterie.

Definition 6 (acceptance set) An acceptance set S under the set of all nodes V is a

set of nonempty subsets of V such that the following condition holds.

(i) Intersection property: If @ and Q'(# Q) are in S, then @) and @’ have at least one
node in common, that is, @ N Q' # 0.

Thus an acceptance set differs from a coterie only in that the minimality property is
not required for an acceptance set. Thus, for any acceptance set S, a set of minimal node
groups in & comprises a coterie.

Let h{N) be the probability that a node group N forms a partition group in the current
configuration, i.e.,

h(N) = > prob(VC, EC).
{(VC,EC)EUCINEP(V C,EC)}

An acceptance set S is said to be optimal if 3° A(N) is the largest among all possible
Nes

acceptance sets. Since the notion of an acceptance set is very similar to that of a coterie,

we can easily show that an optimal coterie is obtained directly from a given optimal

acceptance set.

Lemma 4 If an acceptance set S is optimal, then a set of node groups C = {N € S|VN' €
S,N’ ¢ N} is a coterie with the maximum availability. |

Proof: (by contrddiction) Given an optimal acceptance set S, another acceptance set

§' = {N|3N' € §,N' C N C V} is determined uniquely. Since § C &', &' is also
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optimal. By the definition of S, {N € S'|VN' € §',N' ¢ N} is equal to C. Now suppose
C is not optimal, and there is another coterie C’(# C) with higher availability than C.
Consider an acceptance set $” = {N|IN' € C',N' C N C V}. By the definition of h(N),

the availability of C (or C') is > h(N) (or > h(N)). Hence,
{N3QeC.OCNCV) (NI3QectocNCY)

the availability of C is equal to 3~ h(N), and the availability of C"is >~ A(N). Then
Nes' Nes

> h(N)< ¥ h(N). Since this is a contradiction to the optimality of S, C is optimal.
Nes' Nes
]

This lemma indicates that if an acceptance set S that maximizes Y A(N) is found,
Nes

an optimal coterie can be obtained directly from it by removing all nonminimal elements.

4.3.2 Formulation

The problem of finding an optimal acceptance set can be formulated as a 0-1 integer
programming problem as follows:

First, we define a partition of V' as a set of disjoint node groups such that any node
in V appears in exactly one of the node groups. Since the total number of node groups is
2" — 1, each partition of V can be represented by a 0-1 row vector of length 2" — 1, where
the sth element is a 1 if and only if the ith node group exists in that partition.” Let F(R)
denote this (row) vector corresponding to a partition R. Additionally, let H be a row
vector of length 2™ — 1, where the ith element is a real number equal to the probability
that the 7th node group becomes a partition group, i.e., h(NN) where N denotes the ith
node group.

Now let A be a 0-1 column vector of length 2* — 1. A can specify any set of node
groups uniquely in such a way that a 1 in the ¢th position of A represents that the sth node
group is an element of this set, while a 0 means that it is not. If A specifies an acceptance

set S, then it is clear that HA = Y h(N) holds. Tang et al. have proven that the
Nes

necessary and sufficient condition that the set corresponding to A is an acceptance set is

that F(R)A < 1 holds for every partition R. Consequently, the problem of finding an

'In principle, any encoding scheme that establishes a one to one map between the set of all node
groups and the set of integers {1,2,---,2" — 1} is adequate for this purpose. In this chapter, we encode
a given node group N C V as an integer 4 in such a way that the binary representation of 7 is equal to

bpbn_1---by where b; is 1 iff v; is included in N.
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acceptance set S that maximizes )~ h(N) is formulated into a 0-1 integer-programming
Nés

problem shown below:

Maximize H A subject to the constraint F(R)A <1 for every R.

&

Here elements in A are variables to be optimized. Commercial packages are available for
solving the integer-programming problem. If an optimal solution of A is obtained, its

corresponding acceptance set is the one we want to find.

Example 7 Consider a network G = (V, E), where V = {vq,v;,v3} and E = {e12,€13}.
Concerning reliabilities of components, assume p; = 0.7,p, = 0.8,p3 = 0.9 and p,; =
p13 = 0.9. In this case, there are seven different node groups. Suppose that they are

ordered as follows:

(o}, {02}, {01, 02}, {053, {1, 05}, {03, 0}, {01, 03, v}

All partitions of V are

{{v1}, {v2, v} }, {{va}, {v1,va}}, {{vs}, {va, v} ), {{we ), {’Uz}a {va}}, {{vr,v2,va}}-

Any partition R can be represented by a 0-1 row vector F(R) in length seven. For

example, given a partition R = {{v,}, {v2,v3}}, its corresponding vector is
F(R)=[1000010]

Vector H has seven elements, each of which is for one node group, and each element
is equal to A(NV), that is, the probability that its corresponding node group N appears as
a partition group. For the system, H is

H = [h({v1}) h({v2}) h({vl,%}) h({vs}) h({v1,vs}) h({v2,vs}) h({vlav2av3})]
= [0.037240 0.296000 0.095760 0.333000 0.158760 0.000000 0.408240]

For example, {v;} becomes a partition group when both of the following two conditions
hold, provided that v, is operational. The first condition is that ey or v; has failed, while
the second one is that ey 5 or vs has failed. So h({v;}) is 0.7 x ((1 —0.9) + (1 —0.8) — (1 —
0.9)(1 — 0.8)) x ((1 — 0.9) + (1 = 0.9) — (1 — 0.9)(1 — 0.9)) = 0.7 x 0.28 x 0.19 = 0.03724.
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Let A be a 0-1 column vector of length 7. Then the problem of finding an optimal

acceptance set is formulated into the following integer programming problem.

Maximize H A subject to
[1000010]A<LT,
0100100]A <1,
0011000]A<1,
(1101000]A <1,
0000001]A<L1.

Some commercial linear-programming packages are available for solving the integer
programming problem. The following are the optimal value of the objective function

H A, and one of the optimal solutions of A.
HA=090, and AT=[0001111].

“This result means that the optimal availability is equal to 0.90 and that an acceptance

set S that maximizes 3= A(N) is {{vs}, {v1,vs}, {v2,v3}, {v1,v2,v3}}. Consequently, we
Nés _

obtain the following optimal coterie C by removing all nonminimal elements in S. In this

case,

C = {{vs}}.

4.3.3 Weaknesses

Thus this approach can obtain optimal coteries in networks with arbitrary topology if for
every node group N, the probability that it becomes a partition group, that is, h(N),
is known. In the above example, since the system has only three nodes, this probability
can be obtained by case-by-case analysis. However, it is obvious that such an ad hoc
approach is not feasible for larger systems. (Notice that the total number of node groups
is 2"—1.) Unfortunately, no analytical method for computing such a probability for general
networks has been developed. For example, Venkaiah and Jalote used this probability to

solve another problem[66], and they obtained it by simulation approximately.
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Table 4.1: The size of the formulated 0-1 integer programming problem.

# of nodes # of variables # of inequality constraints

6 63 203
7 127 | 877

8 255 4,140

9 511 21,147
10 1,023 115,975
11 2,047 678,570
12 4,095 4,213,597

Another problem of this approach is its scalability. As is already shown in [62], the
number of variables and that of constraints in the 0-1 integer programming problem
formulated by this approach grow exponentially in the number of nodes of networks.
(Note that each variable corresponds to a node group, while each constraint corresponds
to a partition of V.) Table 4.1 shows the size of the 0-1 integer programming problem
for networks of up to 12 nodes. The number of variables is equal to that of node groups,
i.e., 2" — 1. Here, the number of inequality constrains was corhputed using an algorithm
presented in [62].

From this table, it is found that especially the number of constraints in the problem
grows very rapidly when the number of nodes increases. Therefore, the large number
of the constraints becomes one of the main factors that limit the tractable size of the
problem.

In the following sections, we show how to overcome the shortcomings. First, we propose
a new algorithm for computing the value of h(N) for every node group N. Since the total
number of node groups is already 2" — 1, the problem of computing this probability for
every node group is computationally intractable. In 4.4, therefore, we first explain the

algorithm and then show the feasibility of the algorithm for moderate sized networks.

Moreover, in 4.5, we show that it is possible to reduce the numbers of variables and
inequality constraints in many situations. Roughly speaking, we show that every node

group that does not form a partition group can be ignored in the problem formulation if
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a certain condition holds. Unless G is a complete graph, such node groups always exist.
In 4.6, we show when the network graph has a small number of edges, the numbers of

variables and inequality constraints can be reduced drastically.

4.4 Computing h(N)’s

A straightforward method for computing A{N)’s for all N’s is to examine all possi-
ble configurations.? Specifically, all A(N)’s can be obtained by for every configura-
tion (VC,EC) € UC, determining all partition groups in (VC, EC) and computing
prob(VC,EC).  However, since the total number of possible configurations, that is,
|UC]|, is equal to 2IVI+IFl this method is clearly impractical. /

The key idea behind the proposed algorithm for computing all 2(/V)’s more efficiently
is to examine subgraphs of G, instead of configurations themselves. A subgraph of G
is a special configuration such that for every edge in the configuration, both of its end
nodes are also in the configuration. Since the total number of possible subgraphs is much
less than that of configurations, this algorithm runs much faster than the straightforward

method that examines all configurations.

4.4.1 Basic Analysis

Given a node group V/(C V), we denote by Ey: the set of edges having both of its end
nodes in V’. Additionally, given a set of edges E'(C E), we let E” denote E — E',
regarding E as the universe of all edges and F — E' as the complement of E'.

For a configuration (VC, EC), the maximal subgraph of G embedded in the configu-
ration is uniquely determined by removing edges such that at least one of their end nodes
is not included in VC. That is, this subgraph is equal to (V' S, ES) such that V.S = VC
and ES = EC N Eyc. Now let Conf(V S, ES) be the set of configurations such that
their corresponding maximal subgraph is (VS, ES). Then, Conf(V S, ES) is written as

tOne might think that k-terminal reliability algorithms (e.g.[54]) can be used in order to compute h(N).
(These algorithms compute the probability that all nodes in a given set are connected via operational
paths.) However, they cannot be used for this purpose because for computing A(N), not only the

connectivity of nodes in N but also the (un)connectivity of every superset of N have to be considered.
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follows:

Conf(VS,ES) = {(VC,EC)|VC = VS and ES C EC C ESU ESg}.

Example 8 Consider the network shown in Figure 4.1. For example, for the configura-
tion shown in Figure 4.1(b), the maximal subgraph in this configuration is (V S, ES) =
({v1, v2,v3,v4,V6}, {€1,2,€1,3, €23, €24, €3,4}). On the other hand, since E ¢ is {e35, €45, €56},

all elements of Conf(V S, ES) are as follows:

({vl, V2, V3, V4, Ue}, {61,2, €1,3,€2,3,€2,4, 63,4}),
({vla V2, U3, U4, ve}, {61,27 €1,3,€2,3,€24,€34, 63.5}),
({vla Vg, U3, V4, UG}, {61,2, 61,3, €23, 62,47 63,4) 64.5})’
({Ul, U2, U3, U4, Ue}, {61,2, €1,3,€23,€2,4,€34, 85.6}),

({U1, Vg, U3, U4, Ue}, {61,2, €1,3, 62,3’ €2,4,€34,€35, 64,5}),
({’01,'02, U3, U4, v6}7 {81,2a €1,3,€2,3, €24, €34, €35, 65,6}),
({vh Vg, U3, U4, ve}, {61,2, €1,3; €2,3, €24, €34, €4.5, 85,6}),

({vh V2, U3, V4, ve}, {61,2, €1,3,€2,3,€2,4,€34,€35,€4,5, 65,6})

By definition, Con f(V S1, ES1)NConf(V S, ES;) = 0 for any two different subgraphs

(VS1,ES;) and (VS,, ES;), and UC = U  Conf(VS,ES) where US is the uni-
(VS,ES)eUS

verse of all subgraphs of G. In addition, partition groups appearing in a configuration are

exactly the same as those appearing in its corresponding maximal subgraph. Hence, the

probability that a node group N becomes a partition group is written as follows:

h(N) = > > prob(VC, EC)
{(V$,ES)€US|N€eP(V S,ES)} (VC,EC)eConf(VS,ES)

= > prob(VS,ES),
{(VS,ES)EUSINEP(VS,ES)}

where prob(VS,ES) = > prob(VC,EC). In other words, prob(V S, ES)
(VC,EC)eConf(VS,ES)

is the probability that the corresponding maximal subgraph of the current configuration
is equal to (VS, ES).

Due to the above equation, it is found that if prob(V S, ES) can be obtained easily for
a given subgraph (V S, ES), then A(N) can be computed by examining only subgraphs of

@, instead of all configurations.
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In the following, we show how to calculate prob(V.S,ES). The event that a con-
figuration (VC, EC) belonging to Conf(V S, ES) becomes the current configuration is
represented by the following Boolean expression

/\ U; A /\ U,‘ A /\ U, 5 A /\ ’l_l,-,',j.

v EVC vuEV-VC e; ;EEC e, ;€EE-EC

Now note that E is partitioned into four disjoint subsets EC N Eyg(= ES), EC°NEys(=
Eys — ES), EC N E¢g, and EC°N Efg. Then, the above expression is transformed as

follows:
A wn A wmA N uwi A A T A N u A A Ty
v EVS v EV-VS ei;EES e; j€Eys—ES ei,jEECNEY ¢ ei jEEC°NES, o

In the expression, A wuiA A WA A u; A A U; ; is independent of EC
v;EVS v, €V-VS e,',jEES e,;’jEEvs—ES
and can be determined only by (V' S, ES). Let Uvs,gsy denote this part. Then, the event

that the current configuration belongs to Conf(VS, ES) is represented by

V (Uwsesyh N wih N Ty)

{(VC,EC)eConf(VS,ES)} ei ;€ECNES ¢ ei ;€ECNES, ¢
= Uwsgs) A V ( AN win A Ty
{(VC,EC)eConf(VS,ES)} ei;EECNEY ¢ e ;€EEC°NEy ¢
= Uwss) A V (A A A i)
{EC|ESCECCESUES, 5} e ;€ECNES g ei;€ECNES ¢

Since ES N ES g = (), the following equation holds.

V C A uwih o A my)= VA wih A wy)

{EC|ESCECCESUES ¢} e, ;€ECNES ¢ ei;€EECNES ¢ {0CE'CES g} ei€EE! ei,;€EES o—E

Clearly, the above expression is tautology, that is, this expression is always satisfied
regardless of assignment for u;;’s. Thus, it is found that Uvsgs) corresponds to the

event that the current configuration belongs to Conf(V S, ES). Consequently, we obtain

prob(V S, ES II »: I a-») ) II pis II -py).

v, €EVS v EV-VS ei;EES e;,j€EEvs—ES

4.4.2 Algorithm for Computing h(N)’s

Based on the above equation, we develop an algorithm for computing the probability

that each node group becomes a partition group. For every subgraph (VS,ES), the
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proposed algorithm determines all partition groups in (VS, ES) and then accumulates
prob(V S, ES) for the partition groups. Figure 4.2 shows a formal description of this
algorithm. In this algorithm, all partition groups appearing in a subgraph are deter-
mined incrementally and stored in a set Set_PGs at substep 2.1. Then, prob(V S, ES) is

computed and accumulated at substep 2.2.

/* Step 1: Initialization */
For (every node group N) do
h(N):=0
END _For
/* Step 2: Accumulation of prob(V S, ES) */
For (every subgraph (V S, ES)) do
/* Substep 2.1 Determination of Partition Groups in (V S, ES) */
V' :=VS8, Set PGs:= 0
While (N’ is not empty) do
Select one node v; from N’
PG := {v;}, N':== N — {v;}
AN := {v; € N'|vj is adjacent to v;}
While (AN is not empty) do
PG := PG+ AN, N':= N' — AN
AN := {v; € N'|v; is adjacent to a node in PG}
END_While
Set_PGs := Set_PGs + PG
END_While
/* Substep 2.2 Computation and Accumulation of prob(V S, ES) */
Evyg :={ei,; € E| both v; and v; are in V.S}
Compute prob
[* prob:= Hu,-evs Pi Hu,-ev—vs(l - pi) He.-,,-eEs Pi,j He,-,jEEAVS—ES(l = pij) ¥/
For (every node group N in Set_PGs) do
h(N) := h(N) + prob
END_For
END _For

Figure 4.2: Algorithm for computing A(N)’s

4.5 Reduction of Variables and Inequality Constrains

In this section, we show how to reduce the numbers of variables and inequality constraints
in the integer programming problem. In Tong and Natarajan’s approach, the number of

variables is equal to 2" — 1, and the number of inequality constraints is the same as that of
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all partitions of V. As described above, these numbers grow very rapidly as the network
size grows, and this becomes a major bottleneck to the feasibility of the approach.

We show that if there are node groups that never form partition groups (i.e., node
groups N1, N2,--- such that h(N1) = A(N2) = --- = 0), the problem is transformed
into a problem with fewer variables and inequality constraints. Such node groups always
exist unless the network graph G is a complete graph. Let K denote the set of all of these
node groups, i.e., K = {N|N C V,N # 0, h(N) = 0}.

It is easy to show that variables corresponding to these node groups are not neces-
sary for formulating the problem. Note that if A(N1) = 0, for any acceptance set S,

> h(N)= ¥ h(N). Therefore we can only consider acceptance sets not including

NEs Nes—{N1}
such node groups. This means the optimization problem is formulated as

Maximize H'A’ subject to the constraint F'(R)A’ <1 for every R.

where H', A’, and F'(R) are vectors of length 2" —1 — |K| that are obtained by removing
elements corresponding to the node groups in K from H, A, and, F(R), respectively.
At this point, the number of inequalities in the constraint part of this problem is the
same as the number of all partitions of V. Next we show that for any partition R including
node groups in K, the inequality constraint F'(R)A’ < 1 can be omitted if h({v;}) > 0
holds for every v; € V. More formally, we show that if 2({v;}) > 0 holds for every v; € V,

F'(R)A' <1 for every R
is equivalent to
F'(R)A’ <1 for every R such that VN € R, h(N) # 0.

We can prove this by showing that for any partition R including a node group in X, there

exists another partition R’ such that 1) N € K for every N € R/, and 2) F'(R')A’ > 1

holds whenever F/(R)A’ > 1 holds. In fact, given any partition R of V, |J {N} U
N

€ER~-K
U {{v}} becomes such a partition R’ of V if h({v;}) # 0 for every v; € V.
NeRNK veN
Consequently, if h({v;}) # 0 for every v; € V, the problem of finding an optimal

acceptance set is formulated into the following 0-1 integer programming problem.

Maximize H'A’ subject to the constraint F'(R)A’ <1 for every R such that
VN € R,h(N) # 0.
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Example 9 Consider the network discussed in the previous example. Since k({vs,v3}) =
0, we consider acceptance sets not including {vs,vs}. Suppose that the possible node

groups excluding {vq,v3} are ordered as follows:
{v1}, {v2}, {v1, v2}, {vs}, {v1, vs}, {v1, vz, v3}-
Then H' becomes

H' = [h({n}) h({v2}) h({v1,v2}) h({vs}) R({v1,vs}) A({v1,v2,v3})]
— [0.037240 0.296000 0.095760 0.333000 0.158760 0.408240]

All partitions of V such that {vs,vs} is not included are

{{02}a {vlavl’»}}a {{US}’ {’01, ’1)2}}, {{vl}’ {v2}’ {UB}}v {{’01,’02,’03}}.

Any of these partitions can be represented by a 0-1 row vector F'(R) of length six. For

example, given a partition R = {{v2}, {v1,v3}}, its corresponding vector is
F'(R)=[010010]

Let A’ be a 0-1 column vector of length six. Then the problem of finding an optimal

acceptance set is formulated as the following integer programming problem.

Maximize H'A’ subject to
[010010]A<]1,
001100])A <1,
[110100]A <1,
000001]ALI.

(Note that there is no inequality constraint corresponding to a partition {{v;}, {vs, vs}},
since if F'({{v1},{vz,v3}})A’ = [1000 0 0]JA" > 1, then F'({{v1}, {v2},{vs}})A’ =
1101004’ >1)

Solving this integer programming problem, we obtain the optimal value of the objective

function H'A’, and an optimal solution of A’ as follows:
H'A’=090, and AT =[000111].
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(a) Network 1.

\¢ Y4 V7
vc@ vs
V3 6

O
(d) Network 4. (e) Network 5. (f) Network 6.

Figure 4.3: Sample networks.

This result means that the optimal availability is equal to 0.90 and that an acceptance
set S that maximizes Y. h(N) is {{vs}, {v1,vs}, {v1,v2,vs}}. Consequently, we obtain
Nés

the following optimal coterie C by removing all nonminimal elements in S.

C = {{vs}}

4.6 Experimental Results

In this section, we present the results of an experiment we conducted for various
networks using a SUN Ultra 1 workstation. Figure 4.3 shows the networks used in this
experiment, which were taken from [58]. In the experiment, we assumed p; = 0.90 for
every node v; and p; ; = 0.95 for every link e; ; just for simplicity.

For each of these networks, we first generated a text file representing the 0-1 integer
programming problem by the proposed approach. This process was completed within 10
seconds for any network. The sizes of the formulated problems are shown in Table 4.2.
From this table, it is seen that the number of variables and that of inequality constraints
are drastically redﬁced. In the case of Network 5, for example, the number of variables is
205 and that of inequalities is 1389. This means that due to the proposed technique, the
variables are reduced by half and the inequality constraints are decreased almost by 97%.

Then, we solved these problems using a linear programming package called Lindo.
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Table 4.2: Number of variables and number of constraints.
Network # of variables # of inequality constraints

1 92 312
2 97 356
3 159 862
4 130 539
5 205 1389
6 229 1670

Lindo needed only a few seconds to solve the problem for any network. The first column
of Table 4.3 shows the optimal coteries we obtained. Their availabilities are summarized
in the corresponding column of Table 4.4. We also show their unavailabilities in Table
4.5. Here we define the unavailability of a coterie as 1 - (the availability of the coterie).

Moreover, we evaluated the availabilities (and unavailabilities) of heuristically-designed
coteries for comparison by using an evaluation method presented in the next chapter. We
chose two heuristic schemes proposed by Barbara and Garcia-Molina[8] and Tong and
Kain[64]. Both heuristics are based on voting, and they are designed to construct highly
available coteries. Specifically, they explicitly take reliabilities of nodes and links into
consideration, unlike other heuristics. In the following, we abbreviate the two heuristics
by B&G heuristic and T&K heuristic. We show the results of this evaluation in Tables
4.4 and 4.5.

From these tables, it can be seen that the two heuristics achieve almost the same
availability in all cases. In contrast, the difference in the availability (and unavailability)
between the optimal coterie and the heuristically-constructed coteries becomes larger
when the size of the networks grows. Especially for Network 6, the unavailability of
the optimal coterie is only 45 percent of that of B&G coterie. This fact implies that
the risk that the mutual exclusion mechanism is not functional can be reduced by half
by adopting an optimal coterie. Besides, this improvement of availability is obtained
without introducing any additional redundancy. Thus we can conclude that choosing an

appropriate coterie is a very significant task for achieving reliable mutual exclusion.
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Table 4.3: Optimal coteries.

Network Optimal Coterie

1 {{vs, vs, v7}, {vs, v4,vs, v7}, {v1,v4,vs,v7},
{v1,v3,v6,v7}, {v2,v6,v7}, {v3,va,vs5,v7}, {v1,v4,0s5,v7}, {v1,v3,0s5,v7},
{va, vs5,v7}, {v2,v4,v7}, {v2,v3,v7}, {va,vs,v6}, {va,v3,v4,v6}, {v1,v2,v4,v6},
{v1,v2,v3,v6}, {v2,v3, 04,5}, {v1,v2,v4, 05}, {v1,v2,v3,v5}}

2 {{vs,ve,v7}, {v3,v4,v6,v7}, {v2,v4,v6,v7}, {v1,v4,v6,v7}, {v1,v3,v6,07} ,
{v2,v4,Vs,v7} , {v2,v3,05,v7} , {v1,v2,v5,07} , {v1,vs,v4,v7}, {v1, V2, va,v7},
{vs,vs,v6}, {v1,vs,vs,v6}, {vi1,v3,v4,06}, {vo,vs,ve}, {v1,v2,vs},
{va,v3,v4,v5}, {v1,v3,v4,05}, {v1,v2,v4,v5}, {Ul,vz,’va,vs}}

3 {{v1,v4,v6,v7,v8}, {v3,vs,vs,v7,v8}, {v2,v4,vs,v7,08}, {v1,vs,vs,v7,08},
{v1,v2,v5, v7,v8}, {v3, V4, Vs, vs}, {ve, v3, Vs, vs}, {v1, Vs, ve,vs}, {v2, s, v5,v8},
{va, v4, 5, v6, v7}, {v1,va,vs, 6,07}, {vs, v4, vs, 7}, {vs,vs, v6,v7},
{v1,vs,ve,v7}, {vs,va,vs,v6}, {v2,v3,v5,06}, {v1,v3,0s5,v6}, {v1,v2,vs,v6},
{v2,v3,va}, {v1,v3,va}, {v1,v2,v4}, {v1,v2,v3}}

4 {{vs, ve,v7,v8}, {v4,vs,v7,'vg}, {v2,v4,vs,v7,v8}, {v1,v3,v6,v8}, {v3,v4,v7},
{v1,v2,v4,v7}, {v4, 05,06}, {v1, Vs, vs5,v6}, {vs,va,v6}, {v2,vs,v6}, {vs,va,v5},
{v1,v2,v4,05}}

5 {{vg,vg,vs,v7,v8,v9}, {v1,v3,v4,v7, 08,09},
{v1,v2,vs,v7,v8, v}, {v1,v3, U5, v8, V9 }, {v4, V6, v7,v8}, {v5, ve,v8}, {va, v5,08},
{vi,v2,vs,v8}, {vs,ve,v7}, {v1,vs,ve,v7}, {v1,v2,v5,v6}, {v1,vs, va,v6},
{v1,v2,vs,v6}, {v2,va, 05}, {v1,v4,v5}}

6 {{va,v7,v8,v9}, {ve,vs,v9}, {va,vs,v7,v9}, {v1,v3,vs,v7,09}, {v2,vs,v7,09},

{’06,1)7,’08}, {v4)v51v8}7 {'02,'“3;”4;1)8}’ {'01,’1)2,'04,1}8}, {'Ul,‘l}3,1)5,116,’07},

{'Ug,’Us,’Ue,’U’?}, {’U4"06:’U7}9 {'1)4,’()5,1)5}, {02,1)3,’04,’06}, {UI)UZ)U‘I:UG}}

43



Table 4.4: Availabilities of coteries.
Network  Optimal B&G T&K

0.9838306 0.9819189 0.9819189
0.9897070 0.9886633 0.9891055
0.9862471 0.9804574 0.9848071
0.9770368 0.9617256 0.9683837
0.9802050 0.9737180 0.9737180
0.9853954 0.9675312 0.9670036

[= =L S-S I S

Table 4.5: Unavailabilities of coteries.

Network Optimal B&G T&K

1 1.61694x10"% 1.80811x1072 1.80811x10~2
1.02930x1072  1.13367x10~2 1.08945x10~2
1.37529%1072  1.95426x1072 1.51929x 1072
2.20632x1072 3.82744x1072 3.16163x1072
1.97950x1072  2.62820x1072 2.62820x10~2
1.46046x1072 3.24688x107% 3.29964x 1072

S Gt W N
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Chapter 5

Evaluation of Dependability

Measures

5.1 Introduction

In this chapter, we propose graph-theoretic methods for dependability evaluation of co-
teries and wr-coteries. As stated before, a number of schemes have been developed for
constructing coteries or wr-coteries (e.g., [1, 16, 22, 37, 32, 49, 63]). Coteries generated
by these schemes have different advantages and disadvantages of their own. Generally
speaking, coteries with high dependability have low performance (e.g. large message-
complexity) and vice versa. There are some attempts to evaluate coteries by capturing
such a trade-off (e.g., [33, 40, 52]), but these approaches, as well as most of the previous
dependability evaluation methods, assume partition-free networks and consider neither
the topology of the networks nor link failures (see [5] for a recent survey). Exceptions
include [8, 13, 64, 66], where network topologies and link failures are taken into account.
In [13] a method based on stochastic Petri nets was proposed for dependability evaluation,
while exhaustive state enumeration was used in [8, 64, 66]. However, these approaches
are practical only for small systems since they suffer from state explosion.

To overcome these deficiencies of the previous approaches, we newly propose methods

for dependability evaluation of coteries and wr-coteries in unreliable networks.

First, we propose a method for evaluating the availability of coteries. As stated before,

availability is the most common measure for assessing the robustness of quorum-based
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mutual exclusion mechanisms. This measure is defined as the probability that the critical
section can be entered in the presence of failures. We introduce a new graph-theoretic
notion called a Minimal Quorum Spanning Tree (MQST) and develop the method based
on this notion. '

Next, for wr-coteries, we propose a method for evaluating site resiliency. Site re-
siliency is the probability that a read or write operation issued by a particular node can
be processed successfully in the presence of failures. The proposed site resiliency evalua-
tion method also employs a graph—theorétic approach similar to the proposed availability
evaluation method.

The problem of computing the availability or site resiliency is NP-hard([6, 23]. (Notice
that computing the probability that there is an operational path between two nodes
is already NP-hard[51].) Therefore we show the feasibility of the proposed evaluation
methods through running time analysis using moderate-sized networks.

The rest of this chapter is organized as follows: In the next section, we describe the
proposed method of evaluating the availability of coteries. In 5.3, we explain the site

resiliency evaluation method.

5.2 Availability Evaluation of Coteries

5.2.1 Minimal Quorum Spanning Trees (M QSTs)

The availability of a coterie is equal to the probability that there is a partition group that
includes at least one quorum in the coterie. As described in the previous chapter, this
is because the nodes in such a partition group can enter the critical section by acquiring
permission from a quorum. In graph-theoretical terms, the availability of a coterie C is
the probability that there is a connected subgraph G’ = (V’, ') of G consisting only of
operational nodes and edges, such that  C V' for some @ € C.

Let SUB(C) denote the set of all connected subgraphs of G that include all nodes
of at least one quorum in C. It is then clear that the availability of a coterie C is the
probability that at least one subgraph in SUB(C) remains operational. Now we define
Minimal Quorum Spanning Trees (MQSTs) as follows.

Definition 7 (MQST) An element of SUB(C) is an MQST if and only if no other
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element of SUB(C) is a proper subgraph of it. (Notice that MQST's are necessarily trees.)

Example 10 Consider a network in Figure 4.1 and a coterie C = {{vs,v4}, {'02,’03,’05},
{vs,vs}, {v2,v4,06}, {v3,v5,06}}. Suppose that a connected subgraph ({vi, vs, vs, v4},
{e12,€13, €23,€24,€34}) of G remains operational, as in Figure 4.1(b). Since this con-
nected subgraph spans all nodes of a quorum {vs,vs}, the critical section can still be
entered in this case. However this is not an MQST because some of its proper connected
subgraphs, for example, ({v2,vs,v4}, {€2,3,€24}), also include all nodes of this quorum.
On the other hand, for ({vs,vs,v4}, {€2,3,€24}), none of its proper connected subgraphs

spans any quorum in C. Hence this connected subgraph of G' is an MQST.

Intuitively speaking, an MQST is a minimal subgraph of G enabling the critical section to
be entered. By definition, an MQST is operational if and only if a subgraph in SUB(C)

remains operational. Hence the following equation holds.
Availability = Pr[At least one MQST is operational.]

Based on this equation, we can compute the availability of a coterie by éonsidering only
MQSTs, instead of all elements of SUB(C). Specifically, the availability can be calculated

in the following two phases:
Phase 1. Enumerate all MQSTs for a given coterie C.

Phase 2. Calculate the probability that at least one MQST is operational.

5.2.2 Phase 1: Enumeration of all MQSTs

For enumeration of all MQSTs, we develop a new algorithm based on breadth-first search.
This algorithm, shown in Figure 5.1, generates all MQST's in nondecreasing order of their
sizes, where the size of a tree is the number of edges in it.

‘First, the algorithm checks whether or not each node in V' constitutes a quorum by
itself in a given coterie. If the node (say v,) constitutes a quorum, then ({v,},0) is stored
in a set FOUND and deleted from T RY . After all elements in T RY have been checked,
every node remaining in T'RY is expanded by adding each of its adjacent links and nodes.

Thus all trees of size 1 such that at least one node in TRY is included are generated.
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Then, for each of these trees, whether it spans a quorum is checked. When the nodes of
the tree include a quorum, then the tree is stored in FOUN D and removed from TRY
if none of the previously found trees in FOUND is a subgraph of it; otherwise the tree
- is simply removed from T RY since it is not minimal. This procedure is repeated for all
possible sizes of MQSTs up to |V| — 1.

This algorithm thus consists of a checking step and an expanding step. In the checking
step, each tree t stored in a set TRY is first tested to determine whether or not it spans
all nodes of at least one quorum. Once it is found that ¢ includes a quorum, ¢ is deleted
from TRY and t will not be expanded further because any tree containing ¢t as a proper
subgraph is not an MQST. Then, whether ¢ is an MQST is determined by checking
whether none of the previously found MQSTs, stored in a set FOUND, is a subgraph of
t. If a subgraph of ¢ already exists in FOUND, then ¢ is not an MQST. Otherwise ¢ is
an MQST, thus it is added to FOUND.

Once the checking process has been completed, only trees spanning none of the quo-
rums remain in the set TRY. Then the ezpanding process is performed in order to increase
the size of each tree in TRY by adding a new adjacent vertex to it. After increasing the
size of each tree in T RY by one, the checking process is performed again. When no further

expansion is possible, the algorithm terminates.

5.2.3 Phase 2: Computation of the Availability

Once all MQST's have been found, the next phase is to calculate the probability that at
least one of them is operational.

Let u; and u;; be Boolean variables that represent the event that a node v; is opera-
tional and the event that a link e is operational, respectively. Then, the event that all
components of an MQST (V’, E') are operational is represented by a Boolean product

A win N ui
v EV’ e;kEE!
Hence, the event that for at least one MQST, its all components are operational is repre-
sented by the following Boolean sum of products.

V (A u A A up)

for every MQST(V',E’) v; €V e; kEE’
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/* Step 1: Initialization */
TRY = {({n},0), -+, ({vn},0)}
FOUND =9
/* Step 2: Generation of all MQSTs */
While (TRY # 9) do
/* 2.1 Checking Step */
For all t € TRY do
If (¢ spans all nodes in at least one quorum of the given coterie C) Then
If (any tree in FOUND is not a subgraph of t)
Then
add t to FOUND
remove t from TRY
Else
remove t from TRY
END.If
END._If
END_For
/* 2.2 Ezpanding Step */
NEW := ¢
Forallt = (V',E') € TRY do
AFE := set of all adjacent edges to ¢
AE' := {eap € AE|(va € V' Avp g V') V(vp €V Ave ¢ V')}
For all (e, € AE’) do
newt := (V' U{va, v}, E' U{eqap})
add newt to NEW
END _For
END.For
TRY := NEW
END._While

Figure 5.1: Algorithm for MQST enumeration.
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Obviously, the availability is equal to the probability that the event represented by this
Boolean sum of products occurs. However, computing this probability cannot be done
in a straightforward fashion because these products usually share common variables. In
order to compute the probability, therefore, we first transform the Boolean expression into
another equivalent Boolean sum of mutually exclusive products. Then, we can obtain this
probability as the sum of the probabilities of the events corresponding to these exclusive

products.

Fortunately, techniques for such a transformation have already been studied well, and
several algorithms, such as SYREL[25] and CAREL[58], have been proposed. These algo-
rithm, called terminal reliability algorithms, were originally developed for computing the
probability that there exists an operational path between two nodes in an unreliable net-
work. In our experiments, we implemented the algorithm SYREL[25] and used it in Phase
2. For example, if the MQSTs are ({v1,v2}, {e12}), ({v1,vs},{e13}), and ({vs,v3}, {e23}),
then the event that at least one MQST is operational is represented by a Boolean sum of
products uqusuy 2 V uguzuy 3V ugusuz 3. SYREL transforms this expression into an equiva-
lent Boolean sum of mutually exclusive products uyusu 2 Vuyugty 3(Ustis 2) Vuausug 3(t; )V
uuzug 3(U1% 2Us 3).* From this expression, the availability is directly obtained as follows:
p1Pap1a + P1pap13(1 — papi2) + papsp2a(l — p1) + p2pspas(pi(l — p12)(1 — p1s)).

Different terminal reliability algorithms have different time complexity. For example,

the complexity of SYREL is O(m?) [25], where m denotes the number of MQSTs.

Example 11 Consider again the network shown in Figure 4.1 and coterie C = {{vs, v4},
{ve,v3,vs}, {va,vs}, {v2,vs,v6}, {v3,v5,v6}}. Applying the algorithm shown in Figure
5.1, we find that there exist a total of nine MQSTs, shown in Figure 5.2. Using SYREL
and assuming p; = 0.9 and p; ; = 0.9 for every node v; and link v; ;, the probability that
at least one of the MQSTs is operational is found to be 0.9646616. This probability is

equal to the availability of the coterie C.

*The details of the algorithm are omitted here. Interested readers are referred to [25].
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Figure 5.2: MQSTs.

5.2.4 Running Time Evaluation

In this section, we show the results of running time evaluation of the proposed evaluation
method. We demonstrate the feasibility of the method via this evaluation, since computing
the availability of coteries in unreliable networks is NP-hard[23]. We implemented the
proposed method in C language and conducted the evaluation in a UNIX environment on

a Sun Ultra 1 workstation.

We used a collection of networks from [14] as sample networks. For each network, we
evaluated the availability of a coterie constructed by majority voting[63]. This coterie
is composed of all node groups consisting of exactly [LnTﬂl] nodes. For example, when
V = {v;,v,,v3}, this coterie is {{vy,vs}, {v1,v3}, {v2,v3}}. There are several reasons for
choosing this coterie. First, it has been well-studied in the literature (e.g., [8, 23, 63]).
Second, the coterie is defined uniquely regardless of the topology of the network. In
addition, this coterie has the largest number of quorums among all possible coteries, if
the number of nodes is odd. Roughly speaking, therefore, the evaluation of this coterie is
relatively difficult, compared to other coteries.

Table 5.1 show the result of the evaluation. In this table, the time needed for Phase
1 and Phase 2, the total running time, the number of MQSTs, and the availability of
the coterie are shown for each network. The availability was calculated assuming that all
nodes and links have the same reliability 0.9. (Needless to say, this assumption was made

for simplicity only. The actual reliabilities of components do not have any effect on the
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Figure 5.3: Sample networks.

running time of the proposed method.)

The table shows that the running time increases rapidly as the size of the network
grows. Obviously, this is because the number of MQSTs increases exponentially in the
network size. For all the networks, however, the proposed method completed the evalua-

tion within a sufficiently admissible amount of time.

It is also seen that the time needed for the second phase was dominant in the total
running time. Though we used SYREL|25] for this phase in this experiment, other ter-
minal algorithms proposed more recently, such as CAREL[58], might run faster. So we

conjecture that there is still room for further improvement of the running time.

For comparison, we also implemented a program that evaluates the availability by
exhaustive enumeration of network states (i.e., configurations). The pseudo-code of this
program is shown in Figure 5.4. We also slightly modified the algorithm for computing
h(N) shown in Figure 4.2, and conducted the evaluation using this algorithm. (Notice
that the availability is > h(N).) Table 5.2 shows the running times of the

{N|3Q€eC,QCNCV}
two enumerative methods. When the number of nodes is 10, the state enumeration-based

method could not complete the evaluation within 24 hours. These results clearly show

that the proposed method based on MQSTs is superior to the other methods.
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Table 5.1: Running times of the proposed method.
Network Phase1 Phase2 Total Time # of MQSTs Availability

1 0.02s 0.07s 0.09s 111 0.99013
2 0.03s 0.05s 0.08s 126 0.94505
3 0.05s 0.13s 0.18s 182 0.95621
4 5.31s 142.98s 148.29s 2595 0.99078
5 20.59s  701.61s 722.20s 4265 0.97665

Table 5.2: Running times of state enumeration-based method and the subgraph enumer-

ation method.

Network = State enumeration Subgraph enumeration

1 11.36s 0.51s
2 12.91s 0.48s
3 124.63s 1.73s
4 89331.8s 231.3s
5 N/A 851.81s
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Availability := 0
For (every state (V/(C V), E'(C E)) do
/* Determination of Partition Groups in (V', E’) */
N := V', Set_PGs := 0 "
While (N is not empty) do
Select one node v; from N
PG := {v;}, N:= N - {v;}
AN := {v; € Nlv; is adjacent to v;}
While (AN is not empty) do
PG := PG+ AN, N :=N - AN
AN := {v; € N|v; is adjacent to a node in PG}
END_While
Set_PGs := Set_PGs + PG
END_While
/* Accumulation of availability */
If (there are g € Set_PGs and q € C such that ¢ C g) do

prob = [T, evr 2 Losev—vrt = PO TL., sepr s Iy epom (1~ i)
Availability := Availability + prob
END.If
END_For

Figure 5.4: Evaluation algorithm by state enumeration.

5.3 Site Resiliency Evaluation

In this section, we address the issue of dependability evaluation of wr-coteries. In order
to assess the dependability of replication control schemes based on wr-coteries, several
measures have been proposed so far[7, 40, 49]. Here we select site resiliency[49] as a
measure to be evaluated because its concept is natural and it clearly takes into consider-
ation the difference between read operations and write operations. Site resiliency is the
probability that a node that wishes to perform a read or write operation can successfully
find a group of operational nodes that enables the operation by agreeing to it. In other
words, this measure represents the availability of each operation. Based on graph theory,
we first show that such a group of operational nodes can be found if and only if a tree
satisfying some conditions remains operational on the network graph. Then, we propose
a new algorithm for enumerating all trees that satisfy these conditions. Once the trees
are found, the site resiliency can be obtained by computing the probability that at least
one of these trees is operational.

In the rest of this section, we assume that a fraction r, 0 < r < 1, of all operations
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Figure 5.5: Network with four nodes.

are read operations, and a fraction w(= 1 — r) of all operations are write operations.

5.3.1 Site Resiliency

The site resiliency of a particular node v; is the probability that if node v; initiates a
read or write operation, then it can acquire permission for the operation given that v; is

operational[49]. Formally, it is defined as follows:

Definition 8 (Site Resiliency) Suppose that a wr-coterie (W, R) is adopted. Let
P{(D) (D € {W,R}) be the conditional probability that node v; can acquire permis-
sion from all nodes in at least one quorum in D, given that v; is operational. The site
resiliency of v;, Restl;, is |

Resil; = rP(R) + wP,(W).

Example 12 Consider a small network shown in Figure 5.5 and assume r = w = 0.5,
p; = 0.9 for every v; € V, and p;; = 0.9 for every e;; € E. When a wr-coterie (W =
{{v1,v9,v4},{v2,v3,v4}}, R = {{v1,v2}, {ve, v3}, {va}}) is adopted, the site resiliency of
vy is determined as follows: From Figure 5.5, one can see that node v; can get permission
from a read quorum in R if and only if nodes v; and v, and link e; 5 are operational.
When node v; is known to be operational, the probability that all of these components are
operational is pyp; 2 = 0.81(= P;(R)). Similarly, node vy can get permission from a write
quorum in W if and only if there is an operational path from v; to vs. The conditional

probability that such an operational path exists when v; is known to be operational is
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P12P2(P2a + (1 — p2,a)P2,3P3psa)ps = 0.7092(= P;(W)). Then, the site resiliency of v; is
Resily = rP(R) + wP (W) = 0.7596.

Clearly, calculation in such an ad hoc manner is possible only for very small systems
like the one in the above example. In the next section, we explain the proposed method

that computes site resiliency in a systematic fashion.

5.3.2 Basic Analysis

In order to evaluate site resiliency analytically, we first investigate graph-theoretical prop-
erties that necessarily hold when an operation can be processed successfully. In this sec-
tion, we will not distinguish the read quorum set from the write quorum set, and represent
the quorum set of interest by D without loss of generality.

As described in the previous chapter, we assume that a node v; can acquire permission
from a node v; if and only if there is an operational path from v; to v;. This means that
if there is an operational connected subgraph containing node v;, then v; can attain
permission from all nodes in the subgraph.

Now let SUB;(D) be the set of all connected subgraphs of G that include v; and all
nodes of at least one quorum in D. It is then clear that v; can acquire permission from
all nodes of at least one quorum if and only if at least one subgraph in SUB;(D) remains
operational.

Next, we consider the minimality of subgraphs in SUB;(D). We say that a subgraph
K € SUB;(D) of G is minimal if there is no element K’ € SUB;(D) such that K’ is a
proper subgraph of K. Let M;(D) be the set of all minimal subgraphs in SUB;(D). Then
it is seen that v; can acquire permission from all nodes of at least one quorum if and only
if at least one subgraph in M;(D) remains operational.

By definition, any subgraph T in M;(D) is a tree. Hence, M;(D) is the set of minimal

trees such that v; and at least one quorum in D are included.

Example 13 Consider the network shown in Figure 5.5 again and suppose that the wr-
coterie (W = {{v1,vq,v4}, {v2,v3,v4}}, R = {{v1,v2}, {vs,vs}, {vs4}}) is adopted. Then,
all elements in M;(R) are |

({v1,v2}, {e12}),
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while all elements in M;(W) are

({Ul, V2, '04}, {61,2, 62,4})

({Ula V2, U3, 04}, {61,2, €2,3, 63,4})-

It is then clear that the following equation holds.
P;(D) = Pr[At least one tree in M;(D) is operational. | v; is operational.]

Due to this equation, P;(D), that is, the probability that node v; can acquire permission

from at least one quorum in D, can be computed in the following two phases:
Phase 1. Enumerate all trees in M;(D).
Phase 2. Calculate the conditional probability P;(D).

Once P;(R) and P;(W) are calculated, the site resiliency of v; can easily be obtained,
since it is equal to r P;(R)+wP;(W). (Note that when the read and write quorum sets are
the same, computation of P;(W) can be omitted.) In the rest of this section, we explain

the proposed method for calculating P;(D).

5.3.3 Phase 1: Enumeration of trees in M;(D)

For enumeration of all trees in M;(D), we develop an algorithm based on breadth-first
search, similar to the algorithm shown in 5.1. Figure 5.6 shows the pseudo-code of the
algorithm. This algorithm generates all trees in M;(D) in nondecreasing order of their
size, where the size of a tree is defined as the number of edges in it.

First, the algorithm checks whether node v; is a quorum in D. If so, then ({v;},0)
is the only element in M;(D). Otherwise, v; is expanded by adding each of its adjacent
links and nodes. Thus trees of size 1 where node v; is included are generated. Then, for
each of these trees, whether or not its nodes include a quorum is checked. This procedure

is repeated for all possible sizes of trees in M,;(D) up to |V|— 1.
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/* Step 1: Initialization */
TRY = {({u:},8)}
FOUND :=9
/* Step 2: Generation of all trees in M,‘y('D) */
While (TRY # @) do
/* 2.1 Checking Step */
For all t € TRY do
If (¢ includes at least one quorum in D) Then
If (any tree in FOUND is not a subgraph of t)
Then
add ¢t to FOUND
remove ¢ from TRY
Else
remove t from TRY
ENDIf
ENDIf
END For
/* 2.2 Ezpanding Step */
NEW = ¢
For all t = (V',E’) € TRY do
AE := set of all adjacent edges to ¢
AE :={eqp € AE|(va € V' Avp g V') V(vp € V! Ava g V')}
For all (e, € AE’) do
newt := (V' U {vp}, F" U {eqs})
add newt to NEW
END For
END For
TRY := NEW
END_While

Figure 5.6: Algorithm for enumeration of trees in M;(D).
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5.3.4 Phase 2: Calculation of P;(D)

Once all trees in M;(D) have been foﬁnd, the next phase is to calculate the conditional
probability that at least one of them is operational given that node v; is operational.
Let u; and u;; be Boolean variables that represent the event that a node v; is opera-
tional and the event that a link e, is operational, respectively. Then, the event that all
components of a tree (V' E') except for v; are operational is represented by a Boolean

product

/\ Uj A /\ Uj k-

v €V —{v;} e; kEE’
Hence, the event that for at least one tree in M;(D), all of its components except v; are
operational is represented by the following Boolean sum of products.

Voo A wA A w)

(V’,E’)EM;('D) vJ'GV’—{’U,‘} e; kEE'

Obviously, P;(D) is equal to the probability that the event represented by this Boolean
sum of products occurs. As described before, we can compute this probability by applying

a terminal reliability algorithm, such as SYREL[25] or CAREL([58].

5.3.5 Case Study: Determining Optimal Thresholds of the
Weighted Voting Scheme

In this section, we demonstrate the use of the evaluation method for optimizing the site

resiliency of a well-known replication control scheme called the weighted voting scheme|[22].

Weighted Voting

In the weighted voting scheme, each node is assigned zero or more votes. Let z;(> 0)
denote the number of votes assigned to node v;. Any node that wants to perform a read
operation on the data must first collect at least a predefined number of votes from the
nodes in the system before it can actually read the data. Let R denote the predefined
number. Similarly, a node must first acquire at least another predefined number of votes
before it can write the data. Let W denote the predefined number. R and W are called
the read threshold and the write threshold, respectively. Let X be the total number of
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votes of all nodes, i.e.,

X-——Ex,-.

v eV
In replicated database systems, simultaneous read and write operations, and simultaneous

write and write operations on replicas must be disallowed to preserve their cohsistency.

To achieve this, these thresholds must satisfy the following two conditions:
(1) R+ W > X, and
(2) 2W > X.

The first condition guarantees that a read operation and a write operation cannot be per-
formed concurrently. Similarly, the second condition guaranteés that two write operations
cannot be performed concurrently.

The assignment of votes and thresholds determines a wr-coterie implicitly. That is,
if a node group has R (or W) votes or more, the node group contains a read (or write)

quorum.

Example 14 Consider the network shown in Figure 5.5 and suppose that each of vy, v,
and v; has one vote, while v, is assigned two votes. Let the read threshold R be 2 and the
write threshold W be 4. These satisfy the conditions on a threshold assignment. Then

this vote and threshold assignment defines the following wr-coterie.

W,R) = {{v1,v2,v4},{v1,v3,04}, {va,v3,v4}}
{{vly, '02}, {Ul, 03}, {02, Us}, {04}}

Determination of Optimal Thresholds

By applying the site resiliency evaluation method to all possible pairs of the threshold val-
ues, we can determine optimal thresholds that maximize dependability. In this section, we
demonstrate such an application of the evaluation method to dependability optimization.

Formally, the optimization problem we discuss here is stated as follows:

Given a network graph G = (V, E), the probability of each component being
operational {p;|v; € V} and {p; jle;; € E}, the number of votes assigned to

each node {z;Jv; € V}, and the probability of read operation r, determine
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System C

Figure 5.7: Examples of networks.

the values of the read threshold R and the write threshold W such that an

objective function is maximized.

As the objective function, we consider the average value of the site resiliency of all
nodes in a system. Let Av_Resil denote this measure. Formally Av_Resil can be written

as follows:
1

Av_Resil =
Vi

Z Resil;.

weV

As examples, we consider three networks shown in Figure 5.7. (The topologies of these
networks were taken from [47] and [58].) We assume that for every v; € V, p; = 0.99 and
that for every e;; € E, p;; = 0.97. These values were used for modeling a real LAN[24].
To determine a vote assignment, we used a heuristic method proposed in [64]. In this
case, since for any node the probability of being operational is the same and high, this
heuristic assigns one vote to every node for all the networks. That is, we assume z; = 1
for any v;.

To find optimal values of the two thresholds, we implemented the proposed method
using C language and computed Av_Resil for all possible pairs of the two values, i.e., B

and W. For example, since in System A the total number of votes is equal to nine, all

61



possible pairs of the thresholds in this system are as follows:

(1,9),(2,8),(3,7),(4,6),(5,5).

Table 5.3 shows the results of this computation. (The running times are shown in Tables
5.6, 5.7, and 5.8.) Similarly, Tables 5.4 and 5.5 show the results for System B and
System C, respectively. In the tables, figures written in boldface indicate optimal values
of Av_Resil for various values of r.

Form these tables, optimal values of the thresholds can easily be found for each value
of r. In System A, for example, when r = 0.99, the optimal values of R and W are
two and eight, respectively. In contrast, when r is equal to or less than 0.60, Av_Res:l
is maximized by assigning the same value to both R and W. For Systems B and C,
the optimal values of the thresholds vary similarly, according to the probability of read
operations, r.

Interestingly, even when r is 0.99, a well-known scheme called the read one write all
(ROWA) scheme[26] is not effective for all the systems. (In this case, the weighted voting
scheme is equivalent to ROWA when R is one and W is equal to the total number of
votes.) This is because in ROWA any node failure or network partition blocks write
operations, and the probability that all nodes are connected via reliable links becomes
rather low.

It is also seen that the values of Av_Resil in the case of System C are considerably
higher than System A and System B. This is due to the fact that System C has larger
degree of replication. More precisely, this can be explained as follows: When the number of
replicas increases, the number of trees that enable read or writes operations also increases.
As a result, the site resiliency improves in spite of an increase in the number of necessary
votes. However, when a system has a smaller number of edges, it may not exhibit such
scalability. For example, imagine a system modeled by a single path, and let v; be the
node located at one end of the system. In this case, M;(R) and M;(W) have only one
element regardless of the values of the thresholds. This means that even if the size of
the system, that is, the degree of replication increases, the site resiliency never improves.
Though this is an extreme case, a similar situation occurs when the topology of the system

is a ring or a tree.
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Table 5.3: Average values of site resiliency for System A.

(RW)| r=099 | r=095 | r=090 | r=080 | r=070 | r=060 | r=0.50 | »=10.30
(1,9) 0.99921 | 0.99604 | 0.99208 | 0.98417 | 0.97625 | 0.96833 | 0.96042 | 0.94458
(2, 8) || 0.99957 | 0.99939 | 0.99915 | 0.99868 | 0.99821 | 0.99774 | 0.99727 | 0.99634
3,7 0.99948 | 0.99942 | 0.99936 | 0.99922 | 0.99908 | 0.99895 | 0.99881 | 0.99854
(4, 6) 0.99928 | 0.99926. | 0.99923 | 0.99916 | 0.99909 | 0.99902 | 0.99895 | 0.99881
(5, 5) 0.99890 | 0.99890 | 0.99890 | 0.99890 | 0.99890 | 0.99890 | 0.99890 | 0.99890
Table 5.4: Average values of site resiliency for System B.
(RW)|| r=099 | r=095 |{ r=090 | r=080 | r=0.70 | r=0.60 | r=0.50 | r=0.30
(1,9) 0.99918 | 0.99592 | 0.99185 | 0.98370 | 0.97564 | 0.96739 | 0.95924 | 0.94293
(2, 8) || 0.99922 | 0.99898 | 0.99867 | 0.99806 | 0.99744 | 0.99683 | 0.99621 | 0.99498
3,7 0.99890 | 0.99886 | 0.99880 | 0.99868 | 0.99857 | 0.99846 | 0.99834 | 0.99812
(4, 6) 0.99885 | 0.99884 | 0.99883 | 0.99880 | 0.99878 | 0.99875 | 0.99873 | 0.99868
(5, 5) 0.99877 | 0.99877 | 0.99877 | 0.99877 | 0.99877 | 0.99877 | 0.99877 | 0.99877
Table 5.5: Average values of site resiliency for System C.
(RW)|| r=099 | r=095 | r=090 | r=080 | r=070 | r=060 | »=0.50 | r=10.30
(1, 11) || 0.99904 | 0.99520 | 0.99040 | 0.98081 | 0.97121 | 0.96162 | 0.95202 | 0.93283
(2,10) || 0.99990 | 0.99971 | 0.99947 | 0.99900 | 0.99853 | 0.99805 | 0.99758 | 0.99663
(3,9) | 0.99991 | 0.99989 | 0.99986 | 0.99982 | 0.99977 | 0.99972 | 0.99967 | 0.99957
(4, 8) 0.99986 | 0.99985 | 0.99984 | 0.99983 | 0.99981 | 0.99979 | 0.99978 | 0.99974
5,7) 0.99984 | 0.99984 | 0.99984 | 0.99983 | 0.99983 | 0.99982 | 0.99982 | 0.99981
(6, 6) 0.99983 | 0.99983 | 0.99983 | 0.99983 | 0.99983 | 0.99983 | 0.99983 | 0.99983
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Table 5.6: Running time per node in System A.

(R,W) || for P(R) | for Pi(W) || for Resil;
(1,9 || o0.04 2.84 2.88
2,8 | 0.04 411 4.15
3,7) 0.04 1.53 1.57
(4,6) | 0.6 0.33 0.39
(5,5) [ 0.10 — 0.10

(Unit: Second)

Table 5.7: Running time per node in System B.

(R,W) || for Pi(R) | for P;(W) || for Resil;
1, 9) 0.03 0.62 0.65
(2, 8) 0.04 0.91 0.95
(3,7) 0.04 0.47 0.51
(4, 6) 0.05 0.16 0.21
(5, 5) 0.07 — 0.07

(Unit: Second)

Table 5.8: Running time per node in System C.

(R,W) || for P(R) | for P;(W) || for Resil;
1,11) | 0.04 492.03 | 492.07
(2, 10) 0.04 805.82 805.86
(3, 9) 0.04 203.69 203.73
(4, 8) 0.05 29.44 29.49
(5, 7) 0.10 3.04 3.14
(6, 6) 0.38 — 0.38

(Unit: Second)
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Chapter 6

Extension of Failure Model

6.1 Introduction

In Chapters 4 and 5, we assumed that each component was either operational or failed.
However, this assumption may result in an underestimate of the dependability because
communication may be possible via a computing node even when this node is not fully
operational. This is the case when, for example, the software process in the node fails but
the computing node is still working. In such a situation, though the node can no longer
request or grant permission, it can still relay messages issued by other nodes. Thus,
even when intermediate nodes are not fully operational, if they can still correctly relay
messages, two distinct operational nodes can communicate mutually via these nodes.

To take such a situation into consideration, we introduce a new failure model in this
chapter. In the new failure model, we consider a degraded operational mode of nodes,
in addition to an operational mode and a failed mode. We assume that when a node is
in this degraded operational mode, the node neither requests to enter the critical section

nor gives permission to other nodes, but communication via the node is possible.

6.2 An Extended Failure Model

We assume that a node is in one of the three modes given below.

e Fully operational mode.
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e Degraded operational mode: If a node is in this mode, the node neither requests to
enter the critical section nor grants permission to other nodes, but communication

via this node is possible.
o Completely failed mode.

On the other hand, for links, we assume a conventional two-mode failure model, that is,
we assume that each link is either operational or failed. Failures of nodes and links are
assumed to be mutually independent.

For each node v;, the probability of being in the fully operational mode is denoted by
p;. Similarly, that of being in the degraded operational mode is denoted by ¢;. For each
link v;;, the probability of being operational is represented by p;;. The failure model
based on the assumption of two-mode failures is a special case of the three-mode failure
model in which ¢; = 0 for every node v;.

Under the new failure model, we can represent the status of the network GG as a triplet
(VO,V D, EQ) where VO is the set of all fully-operational nodes, VD is the set of all

degraded-operational nodes, and FO is the set of all operational links.

Example 15 Consider a network G = (V, E) shown in Figure 4.1(a). Figure 6.1 schemat-
ically represents the status of the network where vz is in the completely failed mode, vy

is in the degraded operational mode, and links e; 4 and e46 are completely failed.

In the previous chapter, we defined a partition group as a maximal node group such

that all nodes in that group can communicate with each other. We can adopt this notion

QO Fully operational

94,6 @ Degraded operational
\ @ Completely failed

—— Operational
- - - Failed

Figure 6.1: Three-mode failures of nodes.
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in the same way under the new failure model. For instance, in Example 15, {v;,v,} and

{v4,vs} are the only partition groups.

6.3 Augmenting the Network Graph

It is not straightforward to adapt the techniques proposed in the previous chapters to the
new failure model because they are based on the assumption that each node or link has
only two states. To do so, we introduce another undirected graph AG = (AV, AE).

AG = (AV,AE) is an augmented graph of G = (V,E), and it is generated by
adding a new vertex v,;; and a new edge e;,4; to each node v; € V, ie., AV =
V U {vnt1,Vn42, 2.} and AE = E U {€e1,n41,€2n+2,"** s €n2n}. In order to repre-
sent the status of the network by AG, we assign one of the two states up and down to
every vertex and edge according to the following rules. Here f; and f;; denote the state

of v; and that of e, ;.

up v, € VOUVD
For v; € V, fi=

down otherwise

U Vi—n € VO
Forv; € AV -V, f;= P

down otherwise

: up € ; € EO
For ei; € F, fi,j =
down otherwise
up v; € VO
For €; € AE — F, f,"j =
down otherwise
Intuitively, in the augmented graph AG, vertex v; with ¢+ < n represents message
relay function of node v;, while vertex v, ; represents the function for requesting the
critical section and granting permission to other nodes. The state of the node v; is thus
represented by a small subgraph ({vi, vn4:i}, {€in+i}) of AG. (Edge €;n+: has no physical
meaning. ) |
For AV’ C AV and AE’ C AE, we call a tuple (AV'; AE') a configuration of AG. The
current configuration is defined as a configuration (AV’, AE’) such that AV’ and AE' are

the set of all currently up vertices and the set of all currently up edges. Thus the current

configuration represents the current status of the network.
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(b)

Figure 6.2: Augmented graph AG.

Example 16 Consider the network discussed in the previous example. Figure 6.2(a)
éhows the augmented graph AG corresponding to this network. When the status of the
network is the same as that illustrated in Figure 6.1, the current configuration of AG is
({vl, V2, U4, Us, Vs, U7, U8, V10, 1112_}, {61,2, €1,3,€2,3,€34,€35,€45, €56,€1,7, €28, €4,10, 66,12})- Fig-

ure 6.2(b) depicts this configuration.

Let u; be the event that vertex v; is up and let u;; be the event that edge e;; is up,

respectively. Then, the probabilities of these events are given as follows:

For v; €V, Pr(w;) = pi + 4
PI‘(U,"U,’_n) == IT:EIIL%
Pr(u;jui=,) = 0
For €; €L, Pr(u;;) = pi;
PI‘(U,’J'U,’) = 1

Pr(u,-,j |ﬂ:) = 0

For wv; € AV -V, {

For e;; € AE—FE, {

6.4 Computing hA(N)’s under the Extended Failure
Model

Let S be the maximal subgraph embedded in the current configuration (AV’, AE’), that
is, S = (SV, SE) where SV = AV’ and SE is the set of edges in AE’ whose end nodes are
both in AV’. Let CC;,CCs,--- € SV be the connected components of S. It is then clear
that {v;_,|v; € CC; — V} for each C'C; is a partition group in the current network status
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unless it is an empty set. For example, if the current configuration of AG is as shown
1n Flgure 62(b), S is ({Ul, U2, U4, Us, Vg, U7, Usg, V10, ’012}, {81,2, 64,5, 65,6, 61’7, 62’8, 64110, 66,12}).
All connected components of S are {vy,vs, v7,vs} and {vs, vs, Vs, V10, V12}, and all partition

groups are {vq,v,} and {vy, ve}.

This fact allows us to adopt the algorithm shown in Figure 4.2; which computes the
probability that each node group becomes a partition group under the two-mode failure

model, to the extended failure model with only slight modification.

From the discussion in 4.5, it is seen that the event that the maximal subgraph in the
current configuration becomes (SV, SE) is represented by the following Boolean expres-
sion:

/\ u; A\ /\ u; A /\ U j A /\ Ui,j

v €SV v, €AV -SV e; ;ESE e ;€EAEsy~SE

where AEsy is the set of edges in AE whose end nodes are both in SV.

Let prob(SV, SE) be the probability that the maximal subgraph in the current con-
figuration becomes (SV, SE). If there is neither vertex v; € SV — V such that v;_n € SV
nor edge e;; € SE — E such that v; € SV, this probability is

prob(sv,SE) = II w I X I -0 I -2

wesvav  wesv-v Pi T4 v E(AV-SV)nNV v, €EAV~SV -V pi + 4

II »i II (1—pij)

i ;€ESENE ei,;E(AEsy—~SE)NE

Otherwise, prob(SV,SE) = 0.

Based on the above equation, we can compute, by an algorithm similar to the one
shown in Figure 4.2, the probability that each node group becomes a partition group.
Figure 6.3 shows the formal description of this algorithm. For every subgraph S =
(SV,SE) of AG, the proposed algorithm determines all connected components of S, and
computes all partition groups from these node groups. Then it calculates prob(SV, SE)
and accumulates it for the partition groups. Once h(N) is obtained for all N, a coterie with
the maximum availability can be obtained using the 0-1 integer programming approach

described in Chapter 4.
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/* Step 1: Initialization */
For (every node group N of V) do
R{N):=0
END _For
/* Step 2: Accumulation of prob(SV,SE) */
For (every subgraph (SV, SE) of AG) do
If v; € SV — V such that v;_, € SV or e; ; € SE — E such that v; ¢ SV exist,
then go to the next iteration.
/* Substep 2.1 Determination of Partition Groups in (SV,SE) */
N':=8V,5etCCs:= 0
While (N’ is not empty) do
Select one node v; from N’
CC = {v;}, N := N — {v}
AN := {v; € N'|v; is adjacent to v}
While (AN is not empty) do
CC:=CCUAN, N':= N'— AN
AN := {v; € N'|v; is adjacent to a node in CC}
END_While
Set_CCs := Set_CCs 4+ CC
END_While
Set PGs:=0
While (Set.CC's is not empty) do
© Select one node group CC from Set.CC's
Set CCs := Set_ CCs — {CC}
PG := {vi_p|lvi eCC -V}
END_While
/* Substep 2.2 Computation and Accumulation of prob(SV, SE) */
If (PG is not empty) Then
Compute prob(SV, SE)
For (every node group N in Set_PGs) do
h(N) := h(N}) + prob
END_For
End_If
END _For

Figure 6.3: Algorithm for computing 2(N)’s under the three-model failure model.
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6.5 Computing Availability under the Extended Fail-
ure Model

The evaluation methods for the availability of coteries and the site resiliency of wr-coteries
can also be adapted to the new failure model with slight modification. As stated in
Chapter 5, the evaluation methods are conceptually similar, so we only discuss how to

evaluate the availability of coteries under the new failure model in this chapter.

By definition, it is clear that on the augmented graph AG, if there is a path consisting
of up vertices and up edges between v;(: > n) and v;(j > n), then two nodes v;_,, and
v;_, can communicate with each other. For example, consider the case where the status
of the network corresponds to the configuration in Figure 6.2(b). In this case, there is a

path between vio and vi3, so it is seen that nodes v4 and v can communicate with each

other in spite of failures.

Now let C be a given coterie and let A(Q)(Q € C) denote {v;y,|v; € Q}. As discussed
in Chapter 5, there are some nodes that can enter the critical section in spite of failures, if
and only if at least one quorum whose members can communicate with each other exists.
This means that the critical section can be entered if and only if there is a connected
subgraph of AG that consists of up vertices and edges and spans all vertices in A(Q) for

at least one quorum @ € C.

Based on this fact, we now define an MQST under the three-failure model as a tree of
AG that contains all vertices of A(Q) for at least one quorum @ € C. It is then clear that
the critical section can be entered, if and only if for at least one MQST all of its vertices
and edges are up. Therefore, the availability of a coterie under the three-mode failure
model can be computed in the same manner as the method we proposed for the two-mode
failure model. That is, it can be computed by (1) enumerating all MQSTs on AG, and
then (2) calculating the probability that at least one MQST consists of up vertices and
up edges.

Figure 6.4 shows an algorithm for enumerating MQSTs on AG. This algorithm is the
same as the original algorithm shown in Figure 5.1, except that it does not examine trees
consisting of one vertex but starts with tree ({vi,vign}, {€iitn}) for i =1,2,---,n. Once

all MQSTs are found, availability can be computed using a terminal reliability algorithm,
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such as [25] or [58].

/* Step 1: Initialization */
TRY := {({v1,vnt1};{e1,n+1})s s ({vn:vns1}, {en,2n}}
FOUND =9
/* Step 2: Generation of all MQSTs */
While (TRY # 9) do
/* 2.1 Checking Step */
For all t € TRY do
If (¢ spans all vertices of A(Q) for at least one quorum Q in the given coterie C) Then
If (any treé in FOUND is not a subgraph of t)
Then
add t to FOUND
remove t from TRY
Else
remove t from TRY
ENDIf
END.If
END_For
/* 2.2 Ezpanding Step */
NEW =0
For all t = (V/,E') € TRY do
IE :=set of all.incident edges on ¢
IE' ;= {eqp € AE[(va € V' Aup € V') V(vp € V' Ava € V')}
For ‘a.ll (ea,p €IE') do
newt := (V' U {va, v}, E' U{eap})
add newt to NEW
END For
END_For
TRY := NEW
END_While

Figure 6.4: Algorithm for MQST enumeration under the three-mode failure model.
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Chapter 7

Conclusions

7.1 Achievements

In this dissertation, research on design and evaluation of coteries in networks with ar-
bitrary topology was addressed. First, we focused on design issues, then we discussed
evaluation issues.

In the area of design of coteries, we considered two performance measures, and pro-
posed methods for constructing coteries that are optimal in these measures. The first
measure is max-delay, that is, the maximum communication delay needed for delivering
a message between a node wishing to enter the critical section and the members of a quo-
rum. The second measure we discussed is availability, which is the probability that the
critical section can be entered in spite of failures. Both the problem of finding the coteries
with optimal max-delay and the problem of finding those with optimal availability had
been solved only for the case where the system has special kinds of topologies, and for
general networks, these problems had been left open.

We proposed an algorithm to find max-delay optimal coteries for systems with arbi-
trary topology, and showed that its time complexity is O(n®logn) where n is the number
of nodes.

In addition, we proposed a method based on 0-1 integer programming for constructing
coteries with optimal availability. This is an extension of an approach previously proposed
by Tang and Natarajan in [62]. A major weakness of the original approach was that there

had been no analytic method for calculating the values of some parameters used for the
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problem formulation. By developing a new algorithm that computes these parameters,
we coped with this weakness and succeeded in obtaining optimal coteries for various
nétworks. To the best of our knowledge, this is the first time that optimal coteries have
been obtained for general networks with unreliable nodes and links.

As for evaluation issues, we proposed graph-theoretic methods for evaluating dependability-
related measures. The first method we proposed was for evaluating the availability of
coteries. We introduced a new notion called a Minimal Quorum Spanning Tree (MQST)
and developed the evaluation method based on this notion. -

In addition, we proposed a method for evaluating the site resiliency of wr-coteries.
This method is conceptually similar to the availability evaluation method for coteries.
We also demonstrated the use of the evaluation method for optimizing the dependability
of a well-known replication control scheme called the weighted voting scheme.

Moreover, we proposed a new failure model that considers the status of nodes in more

detail, and showed a way to adapt the proposed techniques to this extended model.

7.2 Future Research

There are several directions in which further work is needed. As for minimizing communi-
cation delays, we have left open the problem of finding mean-delay optimal coteries. We
also leave open the problem of finding delay-optimal coteries when the network reliability
is not high, so that operations blocked by failures should be considered.

The problem of constructing wr-coteries with maximum availability is also left open.
Though in [62] a formulation of this problem into a 0-1 integer programming problem was
proposed, this formulation imposes a restriction that any read quorum is a subset of a
write quorum. It is an open problem whether there are situations in which no optimal wr-
coterie satisfies this restriction. This is of interest since if there always exists an optimal
wr-coterie that satisfies this restriction, we will be able to obtain it using 0-1 integer
programming.

Concerning evaluation issues, we think that there is room for improvement of the
proposed evaluation methods. These methods are conceptually simple since they consist
of two phases. However, a large number of intermediate trees have to be examined at the

first phase in order to produce inputs to the second phase. If we could develop a one-phase
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algorithm that computes availability or site-resiliency directly from a given network, it
would work much faster than the proposed methods. In fact, such refinement can be seen
in the case of the algorithms for computing distributed program reliability. Though the
first algorithm consists of two phases[34], several one-phase algorithms were developed
after the original algorithm had been proposed (e.g.,[12]).

Considering more severe failures is a problem that deserves further study. For example,
malicious failures cannot be tolerated by using a coterie because two quorums in a coterie
may have only one node in common, and if this node behaves maliciously, mutual exclusion
is no longer achieved. Recently, a notion called a Byzantine gquorum system has been
proposed by Malkhi et al[38]. In a Byzantine quorum system, any pair of quorums shares
more than one node for tolerating arbitrary failures. On the other hand, some researchers
proposed variants of coteries in which requirement of the intersection property is loosened
to some extent (e.g, [31, 39]). These new notions are used for achieving higher concurrency
at the cost of weaker consistency requirement. Optimizing the availability of such variants
of coteries has not been studied sufficiently, thus it should be explored in the future.

Throughout this dissertation, we have assumed that a coterie does not change once it
has been determined. On the contrary, some researchers proposed adaptive schemes that
reconfigure coteries dynamically according to the change of the system state (e.g.,[9, 27,
30]). Though such dynamic schemes need additional protocols for detecting failures and
reconfiguring coteries, and therefore tend to be complex, they may be preferred in terms
of dependability. Design and evaluation of such dynamic schemes also deserve further

study.
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