

Title	ニ酸化炭素を作動流体とする動力発生プラントに関す る研究
Author(s)	藤井, 照重
Citation	大阪大学, 1980, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/2015
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

二酸化炭素を作動流体とする動力発生プラント に関する研究

昭和54年7月

藤井照重

次

序						侖 …	••••	••••	• • • •	•••••	••••	•••	•••	••••	••••	••••	•••	••••	••••	••••	•••••	••••	• • • •	••••	• • • • •	••••	• • • • • •	•		1
第	1	編		サ	1.	クル論的	的伊	Ŧ究		••••	••••	•••	• • • •	•••	••••	••••	•.••	• • •	••••	••••	••••		•••••		•••••	••••	••••	••		6
	記			-	号	•••	••••	••••	••••	••••	••••		•••	••••	••••	••••	•••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••	•••••	••		
	第	1	章	Ă	槠			論		••••	••••	•••	••••	•••	••••	••••	•••	•••	• • • • •	••••	••••	• • • • •	••••	••••	••••	••••	••••	••		9
		1.	1	2	本	研究の	目的	5	••	• • • • •	••••	• • •	• • • •	•••	••••	••••	•••	•••	• • • • •	••••	••••		••••	••••	•••••	••••	• • • • •	••		9
		1.	2	í	従	来の研究	究と	:本	研	究の	特	徴		•••	••••	••••	•••	• • •	• • • • •	• • • •	••••	• • • • •	•••••		•••••	••••	••••	••		9
	第	2	章		ブ	レイト	ンサ	トイ	þ	ル改	良	\sim	の-	一夫	ī法		••	•••	••••	••••	••••	••••	••••		•••••	••••	••••	••	1	2
		2.	1	ž	緒			Ì		••••	••••	•••		•••	••••	••••	•••	•••	• • • • •	••••	••••	• • • • •	• • • • •	••••	•••••	••••		••	1	2
		2.	2		ブ	レイト	ン!	ナイ	ク	ル改	良	Ø	原理	里	••	••••	•••	••••	••••	••••	•••••	•••••	• • • •	••••	•••••	••••		•	1	2
			2.	2.	1	完全	単糸	电ガ	ス	Я —	・ビ	ン	サ	11	r r		•••	••••	••••	•••	•••••	• • • • •	••••	••••	• • • • •	•••••	• • • • •	•	1	2
			2.	2.	2	再生	ĸ	よる	効	率改	善		•••	••••	••••	••••	•••	• • • •	••••	••••		••••	••••	••••			•••••	•	1	4
			2.	2.	3	圧縮 :	過利	星の	等	温化	K	ŗ	る?	効率	函数	善		•••	••••	•••	•••••	••••	• • • •	••••		••••	• • • • • •	•	1	5
		2.	3	2	完	全ガス	とし	した	熱	力学	的	解	析		••••	••••	•••	• • • •	••••	••••	••••	••••	••••	••••		••••	• • • • • •	•	1	6
			2.	3.	1	熱	交	ታ		率		•••	•••	••••			•••		••••	•••	••••	•••••	••••	••••	••••			•	1	6
			2.	3.	2	作業	流体	 本の	相	違に	ŗ	る	影	副		••••	•••	• • • •	••••	••••	•••••	••••	• • • •	••••			• • • • • •	•	2	0
			2.	3.	3	再生	K 1	にる	特	性数	ŢΦ		•••	••••	••••	••••	•••		••••	•••	•••••	••••	••••	••••	•••••	• • • • •	• • • • • •	•	2	2
		2.	4		実	在作業	츘攵	<u></u> 本へ	0	応用		•••	•••	••••	••••	••••	•••	• • • •	••••	•••	•••••	•••••	• • • •	••••	•••••		• • • • • •	•	2	5
			2.	4.	1	作	業	流		体	•••	•••	•••	••••		• • • •	••••	••••	••••	••••	••••	••••	••••	••••					2	5
			2.	4.	2	完全	ガン	マと	L	た検	討		•••	••••	••••	••••	•••	• • • •	••••	••••	•••••		• • • •	••••	• • • • •		• • • • • •		2	6
			2.	4.	3	実在	ガン	z 1/C	対	する	検	討		••••	••••		•••		••••	••••	•••••			••••	••••		• • • • • •	•	2	7
				2.	4.	3. 1	Т-	- 8	i	線	図		•••	••••	••••	••••	•••		••••	••••	•••••		• • • • •	•••••		••••	• • • • • •	•	2	8
				2.	4.	3. 2	熱		効		率		•••	••••	••••	•.•••	•••	• • • •	••••	••••	•••••	••••	••••	••••		••••		•	3	0
				2.	4.	3.3 -	各		仕		事		•••	••••	••••	• • • •	•••	••••	••••	••••		••••	••••	••••		••••	• • • • • •	•	3	2
		2.	5	į	結			目	-	••••	• • • •	•••	•••	••••	••••		•••	• • • •	••••	••••	•••••	• • • • •	••••	••••	••••	••••			3	3
	第	3	章		С	O₂液相	圧	縮走	召臨	ī界E	ЕIJ	- イ	ク	n	••	••••	•••		••••	••••	•••••	••••	• • • •	••••		••••	•••••	•	3	5
		3.	1	ź	緒			言				•••	•••	••••	• • • •	••••	•••		••••	••••	•••••	••••	• • • • •	••••			• • • • • •	•	.3	5
		3.	2		サ	イクル	構反	¢	•••	••••			•••	••••	••••	••••	•••		••••	••••	•••••	••••	• • • •	••••	••••			•	3	5
		3.	3	ţ	熱	劾 2	率	式		••••		•••	•••	••••	••••		•••		••••	•••	••••		••••	••••		••••		•	3	6

	•	
3.4 非再熱サイクルの特性	38	;
3.4.1 タービン入口圧力 P ₁ ,温度 t ₃ の影響		}
3.4.2 凝縮器圧力 P ₂ の影響	4 0)
3.4.3 各機械効率 $\eta_{\rm T}$, $\eta_{\rm C}$, $\eta_{\rm P}$ の影響	41	
3.4.4 再生器冷端末温度差 $ riangle t$, $ riangle t$ ₁ , $ riangle t$ ₂ の影響	4-1	L
3.4.5 圧力損失の影響	4 3	}
3.4.6 断熱熱落差,流量割合αおよび各機械仕事	•••••• 4.4	ŀ
3.4.6.1 断熱熱落差	44	6
3.4.6.2 流量割合α	4.6	3
3.4.6.3 各機械仕事,比出力および仕事比	4.8	3
3.5 タービン通過流量,タービンの大きさ,熱伝達率および圧力損失		
のH ₂ O との比較	4.9)
3.5.1 容積流量	49)
3.5.2 タービンの大きさ	50)
3.5.3 熱 伝 達 率	5.1	l
3.5.4 圧 力 損 失	5 2	3
3.6 再熱サイクルの特性	5 4	1
3.6.1 再熱圧力 P _R ,温度 <i>t_Rの</i> 影響	5 4	1
3.6.1.1 一段再熱の場合	5 4	4
3. 6. 1. 2 二段再熱の場合	5 5	5
3.6.2 タービン入口圧力 P1, 温度 t8の影響	5 6	6
3.6.3 凝縮器圧力 P ₂ の影響	5 8	3
3.6.4 最適再熱圧力,温度の選定	5 8	3
3.6.5 再熱段数の影響	60)
3.7 他サイクルとの熱効率比較	6 1	Ĺ
3.8 結 言	6 2	8
第4章 物性値などの近似による解析	6 5	5
4.1 緒 言	6 5	5
4.2 適用サイクル	65	5
4.3 CO ₂ の物性値	······ 6 (3
ii ii		

	4.	4		近		亻	y.		式	•••••	• • • •	••••	• • • • •	•••••	•••	••••	••••	••••	•••	•••••	••••	••••	•••••	•••••	•••	6	6
		4.	4	1		х:	19	r	ピ ,	エン	٢	פצ	•	•••••	•••	••••	••••	••••	••••	•••••	••••	•••••	•••••		•••	6	6
		4	4	. 2		タ -	- ビ	· ン	,日	E縮機	, ;	ポン	プ仕	上事	(••••	••••	••••	••••	••••	••••	•••••	•••••	•••••	•••	6	9
		4.	4.	3		再生	と器	冷	端末	ミエン	Э .	ルヒ	差∠	≤ <i>i</i> 1	,	riangle i	2	••••	• • • •	•••••	••••	•••••	•••••	•••••	•••	7	1
	4.	5		揀	交	为率	医假	手性	ŧ	•••••	••••	••••		•••••	•••	•••••	• • • • •	••••	••••	• • • • • •	••••	••••	•••••	•••••	•••	7	7
		4.	5.	1		非再	 「 生	サ	11	ケル	•••	••••		••••	•••	••••	••••	• • • • •	••••	• • • • • •	••••	••••	•••	•••••	•••	7	7
		4.	5.	2		Ę	没再	生	サイ	イクル		••••	• • • •	•••••	•••	••••	• • • • •	••••	••••	•••••	••••	••••	•••••	•••••	•••	7	9
		4	5.	. 3		<u>_</u> [没再	生	サイ	イクル		••••		•••••	•••	••••	• • • • •	••••	••••	•••••	••••	•••••	••••••	•••••	•••	8	5
	4.	6		最	:適	再煮	執圧	カ	,涟	昰度	•••	••••	• • • • • •	•••••	•••	•••••		••••	••••	•••••	••••		••••••	•••••	•••	. 8	7
	4.	7		H	出	力,	仕	事.	比	•••••	• • • •	••••	••••	••••	•••	•••••		••••	••••	•••••	••••	•••••	•••••	•••••	•••	9	0
	4.	8		結	i				F			••••	• • • • •	•••••	•••	•••••		••••	••••	•••••	••••	••••	••••	•••••	•••	9	1
第	5	章		熱	力	学育	食二	法	則亿	c 基づ	< 1	解析	ŕ.	•••••	•••	• • • • •	• • • • •	••••	••••	•••••	••••	••••	•••••	•••••	•••	9	2
	5.	1		緒	<u>.</u>				言	••••		••••	••••	•••••	•••	••••	•••••	••••	••••	•••••	••••	•••••		•••••	•••	9	2
	5.	2		I	. 1	セノ	レギ	線	図	••••	••••	••••	••••	•••••	•••	•••••		••••	••••	•••••	••••	•••••	•••••	•••••	•••	9	2
	5.	3		第	;	種打	員失	: (I >	クセル	ギ	損失	÷),	効	率く	の算	出王	Ċ	••••	•••••	••••	••••	•••••	•••••	•••	9	4
		5.	3.	1		加		熱		器	•••	• • • • •	••••	•••••	••••	•••••		••••	••••	•••••	••••	•••••	••••	••••••	•••	9	4
		5.	3.	. 2		再		生		器	•••	••••	••••	•••••	•••		• • • • •	••••	••••	•••••	••••	•••••	•••••	••••••	•••	9	5
		5.	3.	. 3		タ		-	Ľ	ン		••••	••••	•••••	•••	••••	• • • • •	••••	••••	•••••	••••	•••••	•••••		•••	9	5
		5.	3.	4		Æ		縮		機	•••	••••	•••••	•••••	•••	•••••		••••	••••		••••	•••••	••••	•••••	•••	9	5
		5.	3.	. 5		ポ		ン		プ	•••		••••	•••••	•••	• • • • •		••••		• • • • • •	••••	•••••	••••	•••••	•••	9	5
		5.	3.	. 6		凝		縮		器	•••	••••		•••••	•••	•••••	• • • • •	••••	••••		••••	•••••	••••	•••••	•••	9	5
		5.	3.	. 7		サ	1 :	<i>ク</i>)	レ全	体	•••	••••	• • • • •	•••••	•••		• • • • •	•••••			••••	•••••	•••••	••••	•••	9	5
	5.	4		I	- 1	セノ	レギ	K	よえ	らサイ	ク.	ル特	性	•••	•••	••••	•••••	••••	••••	•••••	••••	•••••	•••••	••••	•••	9	6
		5.	4.	1		g -	- Ľ	· ン	入口	コ温度	t _s	Ø	影響	••••	•••	• • • • •		••••	••••	•••••	••••	•••••	•••••	•••••	•••	9	6
		5.	4	. 2		g -	- ビ	`ン	入口] 圧力	Pı	Ø	影響		••••			••••	••••	•••••	•••	· • • •	• • • • • • •	•••••	•••	9	8
		5.	4.	3		凝約	宿器	Æ	力 F	₽ ₂ の景	巨響	Ş	••••	•••••	••••			••••	• • • •	•••••	••••	•••••	•••••		•••	9	7
		5.	4.	4		再⋸	と器	冷	端末	卡温 度	差。	$\triangle t$	1, <i>4</i>	Δt	20	D影	響	•••	••••	•••••	••••	•••••	•••••	••••••	•••	10	4
		5.	4.	5		各根	 後械	効	率7	7 _T , 2	7c	Ø	影響	<u>s</u>		••••	•••••	•••••	••••	•••••	••••	•••••	: ••••••	•••••	•••	10	5
	5.	5		名	成	分核	幾器	Ø	損タ	も 率 と	全(体の	損り	を率	<u>ک</u>	の関	係	•••	••••	•••••	••••	••••	•••••	•••••	•••	1 0	6
	5.	6		名	- C	0 2	サ	1 :	ケル	の第二	二利	損	失比	較		••••		•••••		••••	••••				•••	10	8

5. 7 結 言	110
第6章 結 論	
	119
第 2 編 動力発生プラントの実証的研究	117
記 号	117
第1章 緒 論	120
1.1 本研究の目的	120
1.2 従来の研究と本研究の特徴	120
第2章 実験用動力発生プラント	122
2.1 緒 言	122
2.2 実験用プラントの計画と系統	122
991 宇殿田プラットの計画	199
	1.0.0
	122
2.2.3 機器主要目	125
2.2.4 測 定 系 統	130
2.3 タービンおよびプロワ	••••••••••••••••••••••••••••••••••••••
2.4 結 言	134
第3章 プラントの静特性	135
3.1 緒 言	135
3.2 起動手順と実験方法	····· 1 3 5
3.2.1 起動手順	1 3 5
3.2.2 実 輪 方 法	135
	196
	1.0.0
ο.ο.1 王平♡村は	130
3.3.2 出 刀 符 性	139
3.3.3 再生器特性	139
3.3.4 ポンブ特性	140
3.4 タービン,プロワの空気運転による性能	1 4 0
3.4.1 実験装置および実験方法	140
iv i i i i i i i i i i i i i i i i i i	

		3.	4.	2	Ŗ	-	- 1	<u>_</u> * ;	ン	特	性		••••••		1	41
		3.	4.	3	ブ	. 1		ワ	惈	手 1	生	•••	•••••		1	44
	3.	5		co	2	R	L .	る	タ・		ピン	,	ロワ特性	••••••	1	46
	3.	6		結					曺	Ī	••••	•••	•••••		1	47
第	4	章		プラ	・ン	ト	動	特	性	0	理論	¢€	「究		1 ·	49
	4.	1		緒					言	Ī	••••	•••	•••••		1 4	49
	4.	2		解	沂	Ø	手	= /	順	••	••••	•••	•••••		1 4	49
	4.	3		物性	主伯	直(D	近	似	Į	••••	••	•••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	1	50
	4.	4		加索	、器	Ø	動	特	性	鮃	析				1	52
		4.	4.	1	仮	定	2		·般	法	礎王	£,		••••	1 4	52
		4	4.	2	線	形	モ	デ	' r	~ VC	よえ	51			1 !	5 2
		4.	4	3	差	分	法	K	l	ろ	解法	Ę	•••••••••••••••••••••••••••••••••••••••		1 (63
		4.	4.	4	各	モ	デ	n	0	過	渡风	5	2較		1 (65
		4.	4.	5	ブ	Ē	1 3	י צ	<i>1</i>	線	図			•••••••••	1 (68
	4.	5		再生	器	Ø	動	特	性	解	析				1 (69
		4.	5.	1	仮	泛	Ē	<u>L</u> :	モ	デ	r				1 1	70
		4.	5.	2	線	形	モ	デ	ル	NC	よる	3\$			17	72
		4.	5.	3	差	分	·法	K	ŗ	ろ	解没	Ę			17	78
		4.	5.	4	各	モ	デ	n	О	過	渡坑	2:	、較		18	30
		4.	5.	5	ブ		ッ	1	繚	2図	•	•••			18	33
	4.	6		その	~他	Ø	動	特	性	解	析				18	33
		4	6.	1	ポ			ン			プ		•••••		18	33
		4.	6.	2	g	_	Ľ	ン	お	・よ	びァ	7	••••••••••••••••		18	33
		4	6.	3	Я		ピ	ン	入	. 🗆	蒸気	ī,			18	39
		4.	6.	4	配			管			系				1 9	€1
		4	6.	5	圧		カ		降	:	下				19) 1
	4.	7		全体	、 の	ブ		ッ	1	線	図		•••••		1	3
	4.	8	į	結					言	•	••••	••		······································	19) 3
第	5	章		プラ	ン	ŀ	動	特	性	Ø	実験	ۃ	究]	19)6
	5.	1	ł	緒					言	•	••••	•••	•••••		19) 6

	5.	2		実	験	装置	しお	よび	び実	験方	法	•	• • • •	• • • •	•••	•••	••••	• • • • •	••••	•••		• • • •	••••	••••	•••••	•••••	1	96	1
	5.	3		過	渡	応	答判	時	生	••••		•••	• • • •	••••	•••	••••	• • • • •		••••	• • • •	••••	• • • •	•••••	••••		•••••	1 9	9-8	;
		5.	3.	1		加熱	量	Q	のス	テッ	プ変	:1Ł	;K	対	すン	る応	答	•	••••	• • • •	••••	••••	•••••	• • • • •	•••••	•••••	1 9	98	;
		5.	3.	2		ポン	゚゚゚゚゚゚゚゚゚゚	流士	量 G	рØ.	ステ	ッ	プタ	変化	Łκ	対	すみ	3応	答	•••	••••	••••	•••	•••••	•••••	•••••	2 (0 0	ł
		5.	3.	3	:	灵蒸	(弁	閞	度 V	のス	テッ	フ	'変	化	КŻ	付す	る	応名	*		••••	••••	••••	· · · · ·	•••••	••••	2	01	
		5.	3.	4		ブロ	ワ	負犭	苛弁	開度	ΒV	Ø	ス	テ	ッフ	「変	化	て対	す	る	芯答	••••	••••	•••••	•••••	•••••	2 (02)
	5.	4		各	応	答の)比i	較。	と検	討	••••	•••	••••	••••	•••	••••		•••••	••••	••••	••••	••••	••••	• • • • •	•••••	••••	2 (02	;
		5.	4.	1	4	動特	性	に厚	関す	る諸	定数	ξ	••	••••	•••	••••	••••	• • • • •	••••	• • •		• • • •	•••••		•••••	••••	2 (03	;
		5.	4.	2	:	無次	元	表表	示化	よる	比較	: Ł	検	討		• • • • •	••••	••••	••••	••••	•••••	••••	••••		•••••	••••	2 (04	,
			5.	4.	2.	1	温	Ē	度	応	答	•	••••	• • • •	•••	••••		•••••	••••	• • • •	••••	••••	••••	••••	•••••	••••	2	04	1
			5.	4.	2.	2	Æ	2	カ	応	答	•		• • • •	•••	• • • • •	••••	• • • • •	••••	• • • •		• • • • •	••••	••••	•••••	•••••	2 (06	
			5.	4	2.	3	口	転	数	応	答	•	••••	••••	•••	••••	••••	• • • • •	••••		••••	 .	•••••	••••,•	•••••	••••	2 (08	;
	5.	5		結				-	Ì	••••	•••••	• • •	••••	••••	•••	••••	• • • • •		••••	••••		• • • • •		••••	•••••	•••••	2]	1 0	I
第	6	章		動	特	性の	理	論。	と実	験と	の比	較	5	•••	•••	••••	••••	• • • • •	••••			• • • • •	••••	••••	•••••	••••	2]	12	
	6.	1		緒				-lar		••••	•••••	•••	••••	••••	•••	· • • • •		• • • • •	••••	••••	•••••	••••	••••	••••	•••••	••••	2	12	
	6.	2		理	論	と実	、験	20	D比	較		•••	••••	••••	•••	••••	••••	• • • • •	••••	••••	••••	••••	••••	• • • • •	•••••	•••••	2	12	;
		6.	2.	1	-	加熱	量	Q۵	のス	テッ	プ変	51Ł	:K	対·	す	る応	答	•	••••	••••	••••	••••	••••	•••••	•••••	•••••	2	12	
		6.	2.	2		ポン	ノプ	流量	量 G	рØ.	ステ	ッ	プタ	変化	kk	対·	する	ら応	答	. 	••••	••••	••••	• • • • •	•••••	•••••	2]	13	
		6.	2.	3		灵蒸	(弁	開周	度 V	のス	テッ	フ	変	化	КŚ	付す	ろ)	応答	÷	••••	••••	• • • • •	••••	••••	•••••	••••	2	14	ļ
		6.	2.	4		ブロ	ワ	負有		開度	BV	Ø	ス	テッ	ッフ	′変	化	て対	す	る「	も答		••••	•••••	•••••	• • • • •	2	1.5	,
	6.	3		結				ų.		•••••	•••••	•••	••••	••••	•••	••••	• • • •	••••	••••	• • • •	••••		••••	· • • • •	•••••	•••••	2	15	
第	7	章		結				1) T	侖	•••••	• • • • • •	•••	••••	• • • •	•••	••••		• • • • •	••••	• • • •	••••	• • • •	••••	•••••	•••••	•••••	2	16	
1	参		考		文	献	2 N	•••	••••	•••••	••••	•••	••••	••••	•••	••••	• • • •		••••	••••	••••	••••	••••		•••••	••••	2	17	,
謝					Î	鋅		•••	••••	••••	• • • • • •	•••	••••	••••	•••	••••			•••••	••••	•••••	• • • • •	••••	••••	•••••	•••••	2	1 8	1
付					Ś	録																							

٧İ

熱機関の熱効率改善は,古くはJames Wattの分離型復水器の研究やSadi Carnotの理 論的研究にまでさかのぼることができるから,熱機関の歴史とともに始まった古い問題であ るが,とくに1973年秋の石油ショック以来,省エネルギーが改めて重要かつ緊急の課題と なった。しかし,従来から使用されている熱機関では蒸気原動所,内燃機関,ガスタ ービンなどのいずれにおいても,これら単独には,もはや大巾な効率の向上は望めない状態 にまで発達しているとされている⁽⁶⁾。すなわち現在発電の大部分を占める蒸気原動所を例に とれば,その蒸気条件は1959年運転開始のEddystone発電所1号機における350気圧, 650℃を頂点に20年もの間にわたり停滞し^{(6),(7)},現在250気圧,540℃級が選ばれて いる場合が多く,タービン効率の改善や出力の増大による効率の改善は続いているけれども, 蒸気条件の向上による熱効率の改善は事実上断念されている状況に立ち至っている。高効率 を特長としてきたディーゼル機関においても45%の壁を突破することは,至難とされてい る。

今後,熱機関の効率改善には、次の4者の検討が必要になってくるものとされている。

a) ガスタービンと蒸気タービンの複合サイクル

b) 水と他の流体との二流体サイクル

c) 水以外の作業流体を使うサイクル

d) スターリングサイクルの実用化

ことで, a) については既に研究が盛んにおこなわれ,我国においても発電用に実用 され ている例もある。b) についてはアメリカで水銀 – 水の二流体 サイクル発電所が運転されて おり,また水-フレオンの二流体サイクルはアメリカと日本で独立に研究されている⁽⁷⁾。さ らにd) についても最近研究報告が出現しはじめている^{(8) ~(10)} が,これは内燃機関の出力領 域を目的としたもので,発電などの大容量用を目的としたのではない。c) については最近, 宇宙空間飛しょう体の所内動力源として液体金属(水銀, Rb, Na など)を,また中,低温 度熱源の利用についてフレオン,フロリノール 85などを作業流体とする研究が進められて いる。しかしまだ大容量ブラントにおいて水に代る作業流体は現われていない。ただ高温原 子炉の冷却媒体としてHe, N2O4 などとともに CO2 も対象にされている。つまり1964年 の第7回世界動力会議上でKeller,Strub⁽¹¹⁾により,高温ガス炉直結のガスタービン用 流体としてHe, CO2の提案がなされ,Dekhtyarevは500MW以上のCO2プラントの一

- 1 -

試算から, CO2による動力コストは蒸気タービンのそれよりも安価であるとしている。(た だし, これを否定する意見もある)。

大出力熱機関作業流体としてのCO^{*}の長所は次のようである。

- i) 古くはフレオンにとって代られるまで冷凍機の冷媒として賞用されたことから分るように、その化学的性質は安定で不活性、不燃性であり、腐食性も小さい。高速増殖炉の 一次冷却材のNaに対して二次冷却材の水との反応が安全上から問題にされているが、 COaではこの危険性が少ない。
- ii) 比体積が同温,同圧の水蒸気に比べて小さく,CO2サイクルではタービン出口圧力が 水蒸気ライキンサイクルに比べて非常に高いので,現在の大容量水蒸気タービンの巨大 化に対して非常に小型に,したがってまた安価にし得る。
- Ⅲ)作業流体自身の価格の面においても水や空気よりは高価ながら,他の作業流体(He, N₂O₄, Na, 水銀など)と比べれば非常に安価である。

このような背景のもと、西欧においては高速増殖炉用の冷却流体としてのCO2 を用いた (13)~(18) 研究が、そのサイクル構成、サイクル効率および経済性に関連して若干なされつつある。 しかし、Heに比べてまだ体系だった研究はなく、我国においてもその種の研究は全くとい ってよいほどなされていない。

本研究は水(水蒸気)以外の作業流体として特に CO2 を選び,各容量熱機関への適用に関 するサイクル論上および動特性上の問題を体系的に研究したものである。すなわち,

- 1)まず、サイクル論的研究によってCO2に最適のサイクル方式を明らかにし、その熱効 率特性を明確にする。これはCO2動力プラントの最適設計および経済性の今後の検討 に対する資料となる。
- 2) CO2 動力プラントを実際に設計,製作し,動力発生を実証しつつ,運転上の諸問題, 各機器の静特性,動特性を解明し,今後の設計および制御系計画に対する資料を得る。

上記 1), 2)の研究結果をまとめたものが各々本論文の第 I, I編である。なお 2)の研究は, CO2 プラントに対するだけでなく,比較的飽和温度の低い媒体(たとえばフレオンなど)を用いた貫流型式の加熱器とタービンから構成される将来の小容量モデルにも参考になるであろう。

まず第1編ではプレイトンサイクル効率改善への一方法としてCO2サイクルを位置づけそ

^{*} 動力発生のなされない単なる冷却媒体としては過去 Calder Hall 型原子力発電所(英国, 1956年),東 海原子力発電所(日本, 1965年)で天然ウラン黒鉛減速の冷却材として使用されている。

の有利性を明確にする。次に CO₂サイクルの高温,高圧化におけるサイクル効率の上昇,タ ービン背圧,各機械効率,圧力損失などの熱効率への影響度,さらに再熱した場合の各圧力, 温度の影響およびその選定基準を論じる。さらにこれら各因子の影響を考える場合,従来の ガスタービンサイクル論でなされている理論式との対比を容易にするために,新しく物性値 近似による半理論式をたて,各因子の熱効率に及ぼす影響などをより分り易く明確なものと した。また最近エネルギの質的評価の一手段として注目されているエクセルギ(有効エネル ギ)の概念^{(19)~(21)}を用いてサイクルの解析をおこない,CO₂サイクルの原因別損失分析 を試みた。

次に第2編ではCO2プラントの実証的研究として,ポンプ,再生器,加熱器,タービン・ プロワおよび凝縮器から成る液相圧縮超臨界圧の実験装置を実際に設計,製作,運転し,各 機器の静特性と動特性を調べ各構成機器要素の伝達関数を求め,これらを総合して系全体の シミュレーションをおこなった。さらに個々の加熱器,再生器については線形解析による解 法のほかに非線形解析による方法(差分法)を示し,各モデル解による結果と比較検討した。

なお,本研究は次に掲げる論文および口頭発表をまとめたものである。

発表論文(学会誌等)

- 赤川浩爾,藤井照重,坂口忠司,青田光弘:二酸化炭素を作動流体とするサイクルの研究 (第1報,二つの基本液相圧縮復水サイクルについて),日本機械学会論文集,45巻, 391号(昭54-3),370-379.
- 赤川浩爾,藤井照重,坂口忠司,青田光弘:二酸化炭素を作動流体とするサイクルの研究 (第2報,種々のサイクル配置について),日本機械学会論文集,45巻,392号(昭 54-4),533-542.
- 赤川浩爾,藤井照重,坂口忠司:二酸化炭素を作動流体とするサイクルの研究(第3報,物性値などの近似による定式化),日本機械学会論文集,45巻,392号(昭54-4),544-552.
- 赤川浩爾,藤井照重,坂口忠司,ほか5名:二酸化炭素を作動流体とする動力発生プラントの研究(第1報,静特性実験結果),日本機械学会論文集,45巻,394号(昭54-6),877-886.
- 赤川浩爾,藤井照重,坂口忠司, ほか2名:二酸化炭素を作動流体とする動力発生プラントの研究(第2報,動特性実験結果),日本機械学会論文集投稿中

赤川浩爾,藤井照重,坂口忠司,二酸化炭素を作動流体とする動力発生プラントの研究

- 3 -

(第3報,動特性理論解析結果と実験との比較),日本機械学会論文集掲載予定 赤川浩爾,藤井照重,坂口忠司,二酸化炭素を作動流体とする動力発生ブラントの研究,

火力原子力発電, 29巻, 3号(昭53-3),280-290

- 赤川浩爾,藤井照重,二酸化炭素による動力ブラント,機械の研究,31巻,1号(昭 54-1),181-187.
- K.Akagawa, T.Fujii, T.Sakaguchi and M.Aota, Studies on Carbon Dioxide Cycles for Power Generation (1st Report, Fundamental Condensation Cycles), Bulletin of the JSME, Vol. 25, Nal73(1979-11).
- K.Akagawa , T.Fujii , T.Sakaguchi and M.Aota , Studies on Carbon Dioxide cycles for Power Generation (2nd Report , Discussion on Several Proposed Cycles), Bulletin of the JSME, Vol. 22, Nal74 (1979 -12).
- K.Akagawa, T.Fujii and T.Sakaguchi, Studies on Carbon Dioxide Cycles for Power Generation (3rd Report, Analysis with Approximate Equations of States of CO₂), Bulletin of the JSME, Vol. 22, Nal74 (1979-12).
- K.Akagawa , T.Fujii , T.Sakaguchi , K.Kawabata , et al., Studies on Carbon Dioxide Power Plant (1st Report , Experimental Results of Static Characteristics), Bulletin of the JSME, Vol. 23, Nal76 (1980-2).

口頭発表

- 赤川浩爾,藤井照重,坂口忠司,小倉啓助,二酸化炭素を作動流体とした動力発生プラントの基礎研究,日本機械学会関西支部第50期定時総会講演会,№754-5(昭50-3), 73-75.
- 藤井照重,赤川浩爾,坂口忠司,液相圧縮 CO₂ガスタービンサイクルの研究,日本機械学 会関西支部第50期定時総会講演会,№754-5(昭50-3),76-78.
- 赤川浩爾,藤井照重,坂口忠司,黒田敏公,宮田忠明,超臨界圧二酸化炭素タービンプラントに関する研究(実験用タービン系の特性),日本機械学会関西支部第51期定時総会講演会,Na764-5(昭51-3),40-43.

藤井照重,赤川浩爾,坂口忠司,小倉啓助,二酸化炭素を作動流体とした動力発生プラン

- 4 -

トの基礎研究(タービンを除く系の動特性について),日本機械学会第53期通常総会 学術講演会,Na 760-4(昭51-4),61-64

- 藤井照重,赤川浩爾,坂口忠司,二酸化炭素を作動流体とした動力発生プラントの基礎研究(超一超臨界圧サイクルの熱効率について),日本機械学会第54期全国大会講演会, Na760-16(昭51-10),55-58.
- 藤井照重,赤川浩爾,坂口忠司,二酸化炭素を用いる動力プラントの復水サイクルの研究 (再熱サイクルの熱効率について),日本機械学会第875回熱工学講演会,№760-19(昭51-11),171-173.
- 赤川浩爾,藤井照重,坂口忠司,川端康介,宮田忠明,二酸化炭素を用いる加熱管の動特 性解析,日本機械学会関西支部第52期定時総会講演会,Na 774-4(昭52-3),

17 - 19.

- 赤川浩爾,坂口忠司,藤井照重,川端康介,伊藤裕,二酸化炭素動力プラントの経済性に 関する研究,日本機械学会関西支部第53期定時総会講演会,Nu784-3(昭53-3), 84-86.
- 石谷清幹,藤井照重,赤川浩爾,中西重康,井上清,ブレイトンサイクル改良への一方法, 日本機械学会第902回熱工学講演会,Na 780-18(昭53-11),230-232.

他 7 篇

- 5 -

第1編 サイクル論的研究

第 1 編 の 記 号

第1編において用いる主な記号を以下に述べる。これ以外については,各々文中において 説明する。

Α	仕事の熱当量
C_p , C_v	定圧あるいは定容比熱
$\mathbf{C}_{\boldsymbol{n}}$	ノズル出口絶対速度
D, <i>d</i>	管在
D_n	ノズルピッチ円直径
$\mathbf{E}_{\mathbf{F}}$	燃料の化学エクセルギ
Е, е	エクセルギ
$\mathbf{E}_{\mathbf{X}}$	未利用エクセルギ
Es	供給エクセルギ
G	流 量
g	重力加速度
Ha	熱落差
H_h , H_ℓ	燃料の高位,低位発熱量
h	熱伝達率
h_n	ノズル長
i	エンタルピ
riangle i	再生器における冷端末エンタルピ差
L	蒸 発 潜 熱
L_{T} , L_{P} , L	vc 単位流量当りの各タービン,ポンプ,圧縮機仕事
L_S	比 出 力
LW	熱力学第二法則に基づく第二種損失
l	長さ
l w	第二種損失を入力エクセルギ値で除した無次元値
Μ	分子量
m	$m = \frac{\kappa - 1}{\kappa}$
	- 6 -

Ν	回転数
Nu	ヌッセルト数 (= $\frac{h D}{\lambda}$)
Р	圧力または出力
P_{R}	プラントル数(= $\frac{\mu C_p}{\lambda}$)または再熱圧力
△P	圧力損失
Q 1	単位流量当り加熱器で吸収する熱量
Q 2	単位流量当り凝縮器で捨てる熱量
q .	単位流量当りの熱量
R	ガス定数 または仕事比($=rac{\mathrm{Ls}}{\mathrm{L_T}}$)
Re	レイノルズ数 ($=\frac{ud}{v}$)
r	再生による損失改善比(式(2-5)参照)
S	エントロピ
riangle S	エントロピ差
Τ, t	温 度
$r rac{t}{r}$	再生器に おける冷端末温度差
$t_{ m R}$	再 熱 温 度
U	熱貫流 率
u	流速またはタービン周速度
V	容積流量
v	比 容 積
Z	タービン段数
α	タービン通過流量に対して凝縮器へ向う流量割合またはノズル出口角度
r	比重量
$\varepsilon_{\rm B}$, $\varepsilon_{\rm RF}$,	ℑ _{RE} 加熱器および再生器の受熱,給熱側における各圧力損失率
$\eta_{\mathrm{T}}, \eta_{\mathrm{C}}, \eta_{\mathrm{I}}$	p 各タービン,ポンプ,圧縮機の断熱効率
η_{th}	熱効率
$\eta_{ m RX}$, i	再生器の熱量効率
$\eta_{\rm RX,T}$	再生器の温度効率
к	比熱比($=\frac{C_p}{C_v}$)
λ	熱 伝 導 率

- 7 -

μ		粘性係数		
ν		動粘性係数		
ξ		速度比		
π		臣力比 ($=\frac{P_1}{P_2}$)		
Q		密 度		
τ		温度比(= <mark>T </mark> 3)		
τ_n		ノズル通路減少率		
Ф		再生による熱効率改善の可能性を示す特性値 (式(2-5)参照)
添	字			

adi 断熱を意味する

第1章 緒

1.1 本研究の目的

従来の火力発電では,水を作業流体としたランキンサイクルと空気(燃焼ガス)を用いた プレイトンサイクルが主となっている。これら以外の作業流体およびサイクルについての研 究は従来あまりなされていない。第1編ではまず,サイクル論的研究を次の目的で行った。

論

- i) プレイトンサイクルの効率はその圧縮過程を等温で行なえば改善されるが、これを近 * 似的に実現したものとして液相圧縮超臨界圧サイクルを位置づけ、プレイトンサイクル およびランキンサイクルとの関係においてその特質を明らかにする。
- ii) CO2を用いた液相圧縮超臨界圧サイクルの最適設計に必要な資料の基礎データを得る。
- Ⅲ)従来のサイクル論では、熱力学第二法則の運用の点で未開拓分野が存在すると指摘されているが、その応用としてエクセルギの概念を用いてCO2サイクルを解析し、原因別損失の所在を明らかにする。

1.2 従来の研究と本研究の特徴

CO2は高速増殖炉の動力発生用媒体としてHe などとともに注目され始めているが、その 研究は未だ少ない。すなわち1968年第7回世界動力会議に おいてスイスのStrub, Keller により高温ガス炉直結の閉サイクルガスタービン用媒体としてCO2が提示され,数種サイク ルの数例の効率試算例が発表されている⁽¹¹⁾。これによると,熱効率は(a)タービン入口温度 700℃一定で、タービン入口圧力70bar,第一段圧縮機入口圧力,温度10bar,30℃ の一段中間冷却ガスタービンサイクルの場合39.8%、タービン入口圧力140bar,圧縮機 入口圧力,温度21bar,30℃の一段中間冷却,一段再熱ガスタービンサイクルで40.5% であり、またこれに部分凝縮を加えたサイクルで43.1%である。また、(b)タービン入口温度 696℃でタービン入口圧力160bar,第一段圧縮機入口圧力,温度15bar,30℃の二 段中間冷却,一部凝縮するサイクルで40.8%、(c)タービン入口温度 800℃ でタービン入口 圧力140bar,第一段圧縮機入口圧力,温度15bar,30℃の一段中間冷却ガスタービン 程であり,Heの代りにCO₂を用いるか否かは両流体の核的性質やレイアウト,原子炉本体 を含む各成分機器の設計,製造への影響など相対的なメリットから判断されねばならないと している。

1967, 1968年にはイタリアのAngelino⁽¹⁸⁾⁽¹⁴⁾により液相圧縮する数種サイクルの 非再熱の場合においてかなり広範囲(タービン入口圧力,温度300ata,800℃まで)の 熱効率試算がなされ,高温域(650℃以上)における熱効率の有利性および低温域(400 ~500℃)においても従来の水蒸気原動所と比べその熱効率は劣っても装置配置の簡単さ から経済的な流体,サイクル配置になると報告している。

1971、1974年にはソ連のSmal'ko⁽¹⁵⁾、Gokhshteinら⁽¹⁶⁾による液相圧縮サイクル の数例の試算例、ドイッでは1971年Watzel⁽¹⁷⁾によりNa 冷却高速増殖炉の二次媒体と してCO2を用いる高圧、低圧系2種のガスタービンブラントの検討がおこをわれ、 水の場 合の165ata、505℃で効率40.3%(300MW)に対して、CO2の低圧系の場合タービン 入口圧力、温度150ata、508℃、第一段圧縮機入口圧力、温度30ata、30℃で31.8 %(232.5MW)、またタービン入口圧力、温度300ata、505℃、圧縮機入口圧力、温度 80ata、30℃で効率3485%(254MW)の試算をおこない、単位出力当りの建設費と運 転経費が水の場合に比べ減少するとしている。また1971年ドイッのPfost、Seitz⁽¹⁸⁾ はWatzelと同じくタービン入口圧力、温度300bar、500℃、圧縮器入口圧力、温度 80bar、30℃のガスタービンサイクルの熱効率39%の試算をおこない、タービン入口温 度100℃の上昇に対して効率が3~4%上昇することを示し、超一超臨界圧(タービン入口 圧力がよびタービン出口圧力がともに臨界圧力以上)ガスタービンプラントは比較的高い効 率が得られるとともに、簡単な装置配置のために高速増殖炉において実用的であるとしてい る。

以上のように従来の研究特にサイクル論的研究において、スイスのStrub,Keller,ド イッのWatzel,Pfostらによる超臨界圧ガスタービンサイクルもしくはそれに一部凝縮を 加えたサイクルの一定サイクル条件下での熱効率試算がなされているが、広範囲の圧力、温 度に亘る検討は一部Angelinoが1967、1968年に液相圧縮超臨界圧サイクルで検討し ているにすぎない。

すなわち本論文で取りあげる液相圧縮サイクルの特性について研究されているものは現在, 対応状態原理より完全ガスからの偏奇から計算したAngelinoによるもののみであり,詳し くサイクル上の各因子による熱効率特性や再熱の場合について論じたものはない。

-10 -

また従来, CO2 液相圧縮サイクル構成の熱力学上占める位置づけや作動流体として果し てCO2 が好適かどうかについて明確にされていない。さらにエクセルギ概念によるサイク ルの解析は従来のサイクル論においても余り試みられていないが, この手法の適用による原 因別損失分析および各機器のエクセルギ効率と全体効率との関係は今後の研究重点をきめる 上で必須の資料である。

本研究では上述のような従来未検討の諸問題を中心としてCO2 サイクルを解析し,その 熱力学的特性を総合的に明らかにする。

すなわち,第2章では液相圧縮超臨界圧サイクルを従来のプレイトンサイクルの効率改善の一方法としてとらえる。そしてプレイトンサイクルの等温圧縮過程を凝縮過程でおき換えたサイクルの作業流体として4種の流体を取り上げ,CO2サイクルの位置づけを明確なものとし,再生サイクル採用の場合のCO2の優位性を明らかにする。

次に第3章では,再熱の場合を含め,CO2サイクルのサイクル特性を詳細に調べるととも に,従来の水蒸気ランキンサイクル,ガスタービンサイクルなどとの熱効率比較をおこない, 高温化が実現すれば,CO2サイクルの優位性が増すことを示す。

一方, この種のサイクル計算では数値計算で効率や出力を各種条件に対し個別的に求めて いるので, 各種因子の影響のしかたが把握し難いという欠点が残されている。そこで第4章 では, エンタルピなどの物性値や各機械仕事などの精度の良い近似式を求め, これを用いて 熱効率や出力などの算出式を作成した。それによって一段および二段再生液相圧縮サイクル の熱効率や各機械仕事, さらに再生器冷端末エンタルビ差などが各種因子の関数として式に よって表示し得, サイクル特性が把握し易くなった。さらに最適再熱圧力も式の形で表わさ れ, 容易に算出し得るようになった。

また従来のサイクル計算はすべてエンタルビ勘定によるもので,エネルギの原因別損失分 析などの質的評価は困難であった。そのために,第5章でエクセルギ(有効エネルギ)勘定 を,CO2サイクルの二段再生液相圧縮サイクルに適用し,各パラメータの変化が各機器の非 可逆損失割合にどの様に影響するかを示し,かつ各成分機器のエクセルギ効率とサイクル全 体の効率との関係を明らかにした。

-11-

第2章 ブレイトンサイクル改良への一方法

2.1 緒

本論文で推奨するサイクルは,従来のブレイトンサイクルの圧縮過程を等温圧縮過程にお きかえたサイクルと考えることが出来る。

本章では,プレイトンサイクル効率改善の一方法とされている圧縮過程の等温化および再 生について一般的に取り扱い,

(a) T-S線図上における等価図示法の検討。

言

- (b) 再生による損失改善比 r および再生による熱効率改善の可能性を表わす新しい特性値 Øの導入。
- (c) 各因子とくに作業流体の違いを示す比熱比 Kの影響を明らかにする。
- (d) 各種作業流体の内とくに好適と考えられるNH₈, SO₂, CO₂, H₂Oの4種をとりあげ、
 CO₂液相圧縮超臨界圧サイクルの優位性を明らかにする。
- (e) 最後に実在ガスとした試算を行ない,その裏付けをはかる。

2.2 プレイトンサイクル改良の原理
 2.2.1 完全単純ガスタービンサイクル
 図 2.1に示すように η_T = η_C = 1で完全
 ガスを作業流体とするプレイトンサイクル
 を以下では完全単純ガスタービンサイクル
 とよぶ。

ここで,

過程 $1 \rightarrow 2$:断熱圧縮(圧縮機),

4→1:等圧放熱

2→3:等圧加熱(燃焼室), 3→4:断熱膨張(タービン),

なお,絶対零度に対応する点5.6はエ ントロビ軸の-∞の位置にあるが,完全ガ スを仮定する限り5.6間の水平距離は図

図 2.1 完全単純 ガスタービンサイクルのT-S線図 ($\eta_T = \eta_C = 1$)

上の△Sに等しく,また垂線22'と等圧線26と横軸で囲まれる面積は有限である。このこ

-12 -

とを表現する意味で点 5, 6を横軸上に便宜的に図示し,面積(26512)などと呼ぶことにする。

周知のように、T-S線図上の等圧線に関し、次の関係が成立する。

- (a) 各等圧線の勾配はT/Cpである。
- (b) 任意の等圧線上の二点<2, 3>間の下側面積は,その二点間のエンタルピの増加量 *2) を表わす。
- (c) 二つの等圧線 < P1, P2>間の等温線上の水平距離 △S*3) は完全カスの場合

$$\Delta S = A R \ln \frac{P_1}{P_2} = \frac{\kappa - 1}{\kappa} C_p \ln \frac{P_1}{P_2} = \frac{1.9865}{M} \ln \frac{P_1}{P_2}$$
(2-1)

(d) 二つの等圧線 $< P_1$, $P_2 > 間で等エントロピ変化をする$ 二点の温度間には完全ガスの場合,

 $\frac{T_2}{T_1} = \frac{T_3}{T_4} = \left(\frac{P_1}{P_2}\right) \frac{\kappa - 1}{\kappa}$ (2-2)

(e) 各熱量および仕事は, T-S線図上で次のように表わされる。

加熱量 $Q_1 = i_8 - i_2 = 面積(3263'3) - 面積$

(262'2)=面積(322'3'3)

放熱量 $Q_2 = i_4 - i_1 = 面積(4153'4) - 面積$

 $タ-ビン仕事 A \cdot L_T = i_3 - i_4 = 面積(3263'3) - 面積$

(4153'4)=面積(3265143)

*1) 熱力学の一般関係式²⁾からC_p = (∂q / ∂T)_p また可逆変化に対してdq = T · dS よって(∂T / ∂S)_p = T / C_p

*2) 可逆変化において成り立つ関係式 dq = di - AvdPにおいて,等圧線上ではdP = 0よりdq = diすなわち q < 2. 3 >= $i_3 - i_2$

*3) 完全ガスに対して dS=dq/T=Cv(dT/T)+AR(dv/v)より

$$S_{2} - S_{1} = C_{v} \ln \frac{T_{2}}{T_{1}} + A R \ln \frac{v_{2}}{v_{1}},$$

$$C_{p} - C_{v} = A R = 1.9865 \text{/M } \text{L } \text{b}$$

$$S_{2} - S_{1} = C_{p} \ln \frac{T_{2}}{T_{1}} - A R \ln \frac{P_{2}}{P_{1}}$$

-13-

圧縮機仕事 $AL_C = i_2 - i_1 = 面積(262'2) - 面積$

 $(152'1) = \overline{a} \overline{f} (26512)$

よって有効仕事(比出力)ALs = <タービン仕事ALT >-< 圧縮機仕事ALC>

=面積(32143) = <加熱量Q1>-<放熱量Q2>

=面積(A)(図中 ○○ 部)

(2-3)

次に $\eta_{T} < 1$, $\eta_{C} < 1$ の非可逆変化をもつ場合の有効仕事の図示法を図 2.2(サイク ル18371)において説明する。 $\eta_{T} < 1$, $\eta_{C} < 1$

に対するタービン仕事および圧縮機仕事は,

=面積(12341)-面積(B)
-面積(D)
(2-4)

図2.2 **η**_T, η_C<1のときの等 価図示法

2.2.2 再生による効率改善

完全単純ガスタービンサイクルが完全再生を行った場合,熱量的に等価な図示法を図2.3

イクルの等価図示法

において説明する。サイクル <12341>(再生は4-7 \leftrightarrow 2 - 8)において点4を通る等温線と点2からの 垂線との交点5より等圧線を引き,点3を通る等温線と の交点6を求める。次に点6より垂線を下ろし,等圧線 14との交点を7'とすると,点7'と7は一致する(∵ $\overline{27}=\overline{59}=\overline{27'}$)。ここで面積(2847)=面積(2597), 面積(3843)=面積(6596)だから,もとのサイク ルの面積(12341)=面積(1256971)となり, <1256971>はもとのサイクル<12341> と熱量 的に等価なサイクルとなる。 不完全再生サイクル(再生4-B $\leftrightarrow 2-A$)の場合,同図中<15671>において等圧 線65の等圧延長線と点Aを通る等温線との交点A'を求めると,各等圧線上のA'5 およ びB7の下側の面積はそれぞれ加熱量,放熱量の増分を示し,そのお互いの面積は等しい。 そして再生の有無にかかわらず,有効仕事の大きさ(面積(15671)または(12341)) は一定であり,再生の熱力学的意味は,同一有効出力に対し系外への放熱の節約(または入 熱の節約)による効率の改善にあるといえる。

そこで再生による損失改善比rを次のように定義する。

$$r = (q_{BO} - q_{BRX}) / q_{BO} = C_p \{ (T_4 - T_1) - (T_B - T_1) \} / C_p (T_4 - T_1)$$
$$= (T_4 - T_B) / (T_4 - T_1) = \frac{T_4 - T_B}{T_4 - T_B} \cdot \frac{T_4 - T_2}{T_4 - T_4}$$

$$= \frac{\triangle T_B}{\triangle T_2} \cdot \frac{\triangle T_2}{\triangle T_1} = \eta_{RX} \cdot \Phi$$
 (2-5)

ここで、 q_{BO} :非再生の時に捨てる熱量比(= $C_p(T_4-T_1)/(12341>)$

q_{BBX}: 再生の時に捨てる熱量比(=C_p(T_B-T₁)/<12341>)

 η_{RX} : 再生器効率 (=(T₄-T_B)/(T₄-T₂)または= $\Delta T_B / \Delta T_2$) 上式における ϕ (= $\Delta T_2 / \Delta T_1$)がもとのサイクル <12341>の再生による効率改善の 可能性を表わす大切な特性値を意味し、非再生時のサイクル条件によって定まる。

2.2.3 圧縮過程の等温化による効率改善

プレイトンサイクルの断熱圧縮過程を多段圧縮,多段冷却することによって等温圧縮過程 に近づけると、効率が良くなるとされているが、その意味を吟味しよう。

ここで図 2.4(a)の線分1-2 で示す完全等温圧縮過程は実現し難いが,Kを臨界点にもつ 作業流体を使うと近似的に実現出来ることを指摘しておく。

断熱圧縮する完全単純ガスタービンサイクル

く15341 >の熱効率 η_{th} は、次式で与えら (23)、(24)

$$\eta_{th} = 1 - \frac{T_1}{T_5}$$
 (2-6)

このサイクルに三角形 <1 251>のサイクルを附加すると、同一下限温度 T_1 の等温圧縮ガ スタービンサイクル <1 2341>になる。そして <1 251>の附加サイクルにおいて、熱は 区間 2 - 5 の平均温度 T_{feed} (<T₅)で供給され、温度 T_1 の区間12で放出されると考え ることができる。 したがって、その熱効率 $\eta_{th,I < 1251} = 1 - \frac{T_1}{T_{feed}, \Psi_{h}}$ (2-7)

ここで、
$$T_{feed}$$
、平均 $< T_5$ より

$$\eta_{th, 1 < 1251} < 1 - \frac{T_1}{T_5} = \eta_{th < 15841} >$$
 (2-8)

すなわち,完全単純ガスタービンサイクル<15341>の断熱圧縮過程を等温圧縮過程におきかえた場合,効率はかえって悪くなる。

しかし,完全再生サイクルとして比較 すると,図2.4(b)において完全再生断熱 圧縮サイクル<15341>の等価サイク ルは<189a1>で,またサイクル <26752>と等価である。一方,完全 再生等温圧縮サイクル<12341>は, <26712>と等価であり,同一入熱 (区間67の下側の面積)に対して出力 は面積<1251>つまり面積 I だけ大き く,熱効率上有利となる。これは不完全 再生サイクルについても同様に成立する。

図 2.4 等温圧縮サイクルと断熱圧縮サイク ルの比較

)

2.3 完全ガスとした熱力学的解析

従来,完全等温圧縮するガスタービンサイクルの特性について詳しく発表されたものは ないようである。そこでその特性についてまず明らかにする。

2.3.1 熱効率

等温圧縮ガスタービンサイクル(図2.4(b)の<12341>)において、4-B→2-Aの 再生をおこなった場合、サイクルに供給される熱量

$$Q_1 = C_p (T_3 - T_A)$$
 (2-9)

再生器の温度効率 **η**_{RX} は,

$$\eta_{RX} = (T_4' - T_B) / (T_4' - T_2) = (T_A - T_2) / (T_4' - T_2)$$
 (2-10)

ここで、 添字 4' は η_{T} を考慮した β - ビン出口点を意味する。

よって、
$$T_A = T_2 + \eta_{RX} \cdot (T_4' - T_2)$$
、式(2-9)に代入して、
 $Q_1 = C_p \{ (T_3 - T_2) - \eta_{RX} \cdot (T_4' - T_2) \}$
(2-11)

放出される熱量Q2は,

$$\begin{split} Q_{2} = ART_{1} \ln \frac{P_{1}}{P_{2}} / \eta_{C} + C_{p} \cdot (T_{B} - T_{1}) \\ = ART_{1} \ln \frac{P_{1}}{P_{2}} / \eta_{C} + C_{p} \{ (T_{4}' - T_{1}) - \eta_{RX} \cdot (T_{4}' - T_{2}) \} \quad (2 - 12) \\ - \bar{\mathcal{T}}, \ AL_{T} = C_{p} (T_{3} - T_{4}') = \eta_{T}C_{p}(T_{3} - T_{4}) \\ = \eta_{T}C_{p}T_{3} (1 - \frac{T_{4}}{T_{3}}) = \eta_{T}C_{p}T_{3} \{ 1 - \frac{1}{(\frac{P_{1}}{P_{2}})^{\frac{\kappa-1}{\kappa}} \} \quad (2 - 13) \\ \pm \circ \tau, \ T_{3} - T_{4}' = \eta_{T}T_{3} (1 - \pi^{-m}) \\ \varepsilon \geq \tau, \ \pi = \frac{P_{1}}{P_{2}}, \ m = \frac{\kappa - 1}{\kappa} \geq \pm \langle \rangle, \\ \therefore \ T_{4}' = T_{3} \cdot \{ 1 - \eta_{T} (1 - \pi^{-m}) \} \quad (2 - 14) \\ Q_{1}, \ Q_{2} \notin \tilde{\pi} (2 - 11), \ (2 - 12), \ (2 - 14) \pm \psi, \\ Q_{1} = C_{p} C (T_{3} - T_{2}) - \eta_{RX} \cdot T_{3} \{ 1 - \eta_{T} (1 - \pi^{-m}) \} + \eta_{RX} \cdot T_{2}) \\ = C_{p}T_{1} (\tau - 1 - \eta_{RX} \tau \{ 1 - \eta_{T} (1 - \pi^{-m}) \} + \eta_{RX}) \quad (2 - 15) \\ \varepsilon \geq \tau, \ \tau = \frac{T_{3}}{T_{1}} \\ Q_{2} = ART_{1} \ln \pi / \eta_{C} + C_{p} (T_{3} \{ 1 - \eta_{T} (1 - \pi^{-m}) \} - T_{1} \\ - \eta_{RX} \cdot T_{3} \{ 1 - \eta_{T} (1 - \pi^{-m}) \} + \eta_{RX} \cdot T_{2}) \\ = C_{p}T_{1} (m \ln \pi / \eta_{C} + (1 - \eta_{RX}) \cdot (\tau \{ 1 - \eta_{T} (1 - \pi^{-m}) \} - 1)) \\ \end{split}$$

故に等温圧縮ガスタービンサイクルの熱効率 η_{th} は,次式で表わされる。

$$\eta_{th} = 1 - \frac{\frac{m \ln \pi}{\eta_{\rm C}} + (1 - \eta_{\rm RX}) \cdot \{(\tau - 1) - \tau \eta_{\rm T} (1 - \pi^{-m})\}}{(\tau - 1)(1 - \eta_{\rm RX}) + \eta_{\rm RX} \cdot \tau \cdot \eta_{\rm T} (1 - \pi^{-m})}$$
(2-17)

サイクル上の各因子のη_{th}に及ぼす影響は次のようである。

(i) ての影響

$$\frac{\partial \eta_{th}}{\partial \tau} = \frac{1}{\{(\tau - 1)(1 - \eta_{RX}) + \eta_{RX} \cdot \tau \eta_{T}(1 - \pi^{-m})\}^{2}} \left[\frac{1 - \eta_{RX}}{\eta_{C}}\{m \ln \pi - \eta_{C} \eta_{T}(1 - \pi^{-m})\} + \frac{\eta_{T} \cdot (1 - \pi^{-m}) \cdot m \ln \pi}{\eta_{C}}\right]$$
(2-18)

ここで上式中の $m \ln \pi - \eta_C \eta_T (1 - \pi^{-m}) = F(m, \pi)$ に対して, (f) $\frac{\partial F(m, \pi)}{\partial \pi} |_{m} = \frac{m}{\pi} (1 - \frac{\eta_{\mathrm{C}} \eta_{\mathrm{T}}}{\pi^{m}}) \ge 0$ F (m, π) | $\pi = 1^{-0}$ よって π (π >1)の変化に対してF(m, π)は,常に正 $\frac{\partial F(m, \pi)}{\partial m} \Big|_{\pi} = \ln \pi + \eta_{\rm C} \eta_{\rm T} \cdot \frac{\ln \pi}{\pi^m} \ge 0$ (ロ) F (*m*, π) | m=0 = 0よって, m(m > 0)の変化に対して $F(m, \pi)$ は常に正 つまり,式(2-20)は $\pi > 1$, m > 0に対して常に正となる。 よって, τ の大なる程, η_{th} は大きい。 70 (jj) πの影響 τ=5 π = 20 60 ો_≪ =0.8 nc=0.85 , nex==0.8 , № **η_**=0,9 50 τ 60 = 6 ≫₄₀ 5 50 20 % 4 K=1.33 10 ⁵⁴⁰ 0 0.8 0.9 0.5 0.6 0.7 $\boldsymbol{\eta}_{T}$ 30 (b) η_T, η_Cの影響 3 = 1.33 1.40 70 , η_τ= 0.9 K= 1.33 τ = 5 1.66

nc = } 1.0

0.9

0.8

0.7

0.6

0.5

1.40

1.66

1.0

20

図 2.5 等温圧縮ガスタービンサイクルの熱効率

-18 -

$$\frac{\partial \eta_{th}}{\partial \pi} = \frac{-m}{\{(\tau-1)(1-\eta_{RX})+\eta_{RX}\cdot\tau\eta_{T}(1-\pi^{-m})\}^{2}\pi^{m-1}\cdot\eta_{C}} [\pi^{m}\{(\tau-1)(1-\eta_{RX}) + \eta_{RX}\cdot\tau\eta_{T}\} - m\eta_{RX}\cdot\tau\eta_{T} \ln \pi - \pi\eta_{T}\{\eta_{RX}+\eta_{C}(1-\eta_{RX})\cdot(\tau-1)\}] (2-19)$$

よって、 η_{th} を最大とする最適圧力比 $\pi_{\eta_{th},opt}$ が存在し、 $\frac{\partial \eta_{th}}{\partial \pi} = 0$ より次式を満足

るπの値となる。

$$\pi^{m} \{ (\tau - 1) (1 - \eta_{RX}) + \eta_{RX} \cdot \tau \cdot \eta_{T} \} - m \eta_{RX} \cdot \tau \eta_{T} \ln \pi$$

- $\tau \eta_{T} \{ \eta_{RX} + \eta_{C} (1 - \eta_{RX}) \cdot (\tau - 1) \} = 0$ (2-20)

 $\partial \pi$

更に、 η_{T} , η_{C} , η_{BX} の大なる程、 η_{th} は大となる(証明略)。

以上の各因子の η_{th} への影響を図 2.5(a), (b), (c)に示す。図 2.5(a)は $\kappa = 1.33$, 1.40, 1.66に対する圧力比 π ,温度比 τ と η_{th} の関係で、同図(b)、(c)は η_{T} 、 η_{C} および η_{RX} の η_{th} に及ぼす影響を示す。つまり $\kappa = 1.33$, 1.40, 1.66は一般に CO_2 ,空気, Heの場合 の完全ガスに対する比熱比である。以上から等温圧縮ガスタービンサイクルでは τ , η_{BX} , η_{T} , η_{C} の大なる程, η_{th} は向上し, π については最適値(同図(a)中二点鎖線で示す)が存 在することになる。

イクルのπ, τとη_{th}の関係⁽²³⁾, また図2.6の断熱圧縮ガスタービン

断熱圧縮ガスタービンサイクル 図 2.6

-19 -

$$\eta_{th} = \frac{(\pi^{m} - 1)(\eta_{T}\eta_{C}\tau\pi^{-m} - 1)}{\eta_{C}(\tau - 1) + 1 - \pi^{m} - \eta_{RX} \cdot \{\eta_{C}(\tau - 1) + 1 - \pi^{m}\} + \eta_{C}\eta_{T}\eta_{RX} \cdot \tau(1 - \pi^{-m})} \quad (2 - 21)$$

の場合と比較すると,等温圧縮ガスタービンサイクルの方が圧力比 π の η_{th} に及ぼす影響 (変化割合)が小さく,同一圧力比 π ,温度比 τ における熱効率 η_{th} も高く,最適圧力比の $値 \pi_{\eta_{th}, \text{opt}}$ (各図中二点鎖線で示す)も増加する。

2.3.2 作業流体の相違による影響

従来,水と空気が非常に身近で,便利な作業流体であったがために,各サイクルに適した 流体は何かという問題はあまり検討されていない。すなわち作業流体を選んでから,そのサ イクルに適したサイクル条件が検討されてきた。そこで,「ある圧力,温度などの設定され た条件下で,熱効率を最大とする最適作業流体は何か?」という問題について,等温圧縮ガ スタービンサイクルにおいて以下明らかにしよう。

前式(2-17)において、作業流体の相違による熱効率への影響因子は、比熱比 κ のみで表わされることが分る。よって、式(2-17)から $\frac{\partial \eta t h}{\partial m}$ は、

$$\frac{\partial \eta_{th}}{\partial m} = \frac{-\ln \pi}{\pi^m \{(\tau-1)(1-\eta_{\mathrm{RX}}) + \eta_{\mathrm{RX}} \cdot \tau \eta_{\mathrm{T}}(1-\pi^{-m})\}^2} \left[\frac{(\tau-1)(1-\eta_{\mathrm{RX}})}{\eta_{\mathrm{C}}} \cdot \pi^m\right]$$

$$+\frac{\eta_{\mathrm{RX}}\tau\eta_{\mathrm{T}}}{\eta_{\mathrm{C}}}\cdot\pi^{m}-\tau\eta_{\mathrm{T}}\left\{\frac{\eta_{\mathrm{RX}}}{\eta_{\mathrm{C}}}+\frac{m\eta_{\mathrm{RX}}\ln\pi}{\eta_{\mathrm{C}}}+(1-\eta_{\mathrm{RX}})(\tau-1)\right\}\right\} \quad (2-22)$$

ここで,上式右辺の〔 〕=Aとおくと,

$$\frac{\partial \mathbf{A}}{\partial m} = \frac{\ln \pi}{\eta_{\mathrm{C}}} \left\{ (\tau - 1) (1 - \eta_{\mathrm{RX}}) \cdot \pi^{m} + \tau \eta_{\mathrm{T}} \eta_{\mathrm{RX}} (\pi^{m} - 1) \right\} > 0$$

また A |
$$m=0 = (\tau - 1)(1 - \eta_{\text{RX}})(\frac{1}{\eta_{\text{C}}} - \tau \eta_{\text{T}})$$

 $\tau > \frac{1}{\eta_T \eta_C}$ のとき $\eta_{th, max}$ となる K 値が存在する。

そのときの最適に値は式(2-22)より,次式を満足するに値となる。

$$(\tau - 1) \cdot (1 - \eta_{RX}) \cdot \pi^{m} + \eta_{RX} \cdot \tau \eta_{T} \cdot \pi^{m} - \tau \cdot \eta_{T} \{\eta_{RX} + m \eta_{RX} \cdot \ln \pi + \eta_{C} (1 - \eta_{RX}) \cdot (\tau - 1)\}$$

= 0 (2-23)

この最適 κ 値に及ぼす各因子(π , τ , η_{T} , η_{C} , η_{RX})の影響を図 2.7(a)~(d)に示す。

図 2.7 各因子の最適 6 値への影響

圧力比πの大きい程,温度比τの小さい程,最適κ値は減少し,また $\eta_{\rm T}$, $\eta_{\rm C}$ の増大する程, $\eta_{\rm RX}$ の減少する程,最適κ値は増大する。そして $\eta_{\rm RX} = 1$ の完全再生のときの等温ガスター ビンサイクルでは,完全単純ガスタービンサイクルの場合(付録,表2.1(a))と逆に, κの 小さい作業流体程熱効率は改善されることになる。

ここで各作業流体たとえばHe,空気, CO_2 に対する完全ガスとした κ はそれぞれ 1.6 6, 1.4 0, 1.3 3 であり,選定サイクル条件によって最適作業流体が存在することになる。

しかし,ある圧力比πの下で,最適π値を与える式(2-25)とあるπの下で最適圧力比 を与える式(2-22)は一致し,他のサイクル条件が同一の場合ともにπ^m=一定を満足す

^{*1)} 付録表 2.1 にこの κ の η_{th} への影響について,基本的な各プレイトンサイクルについてまとめて示す。 これより,各サイクルによる κ の η_{th} への影響度を知ることができる。

る π , m値である。すなわち κ (作業流体)の相違による最大熱効率値は $\pi^m = -$ 定を満足 する圧力比 π を選びさえすれば同一の一定値をとり、どの作業流体を採用しようが最大熱効 率値は同一となる。逆に、これは各作業流体の相違による最大熱効率値には圧力比 π が重要 な役割を果すことを意味する。

2.3.3 再生による特性数 •

再生による効率改善の可能性を示す新しい特性数のを前節2.2.2の式(2-5)によって 定義した。この値は、サイクルの圧力比の温度範囲を決定すれば算出でき、再生による効率 改善の限界を表わすものである。

断熱圧縮および等温圧縮を行う各完全ガスタービンサイクルのΦは, 断熱圧縮ガスタービンサイクルにおいて,

$$\Phi < \text{Sfree} >= \frac{\tau \{ 1 - \eta_{\mathrm{T}} (1 - \pi^{-m}) \} - \{ 1 + (\pi^{m} - 1) / \eta_{\mathrm{C}} \}}{\tau \{ 1 - \eta_{\mathrm{T}} (1 - \pi^{-m}) \} - 1}$$
(2-24)

等温圧縮 ガスタービンサイクルにおいて,

$$\Phi < \label{eq:phi} \Phi < \mbox{$$ $$} \mbox{$$ $$} \mbox{$$ $$ \mbox{$$ $$ $$} \mbox{$$ $$ $$} \mbox{$$ $$ $$} \mbox{$$ $} \mbox{$$ $$} \mbox{$$ $$} \mbox{$$ $} \mbox{$$ $$} \mbox{$$ $$} \mbox{$$ $$} \mbox{$$ $$} \mbox{$$ $} \mbox{$$ $$} \mbox{$$ $} \mbox{$$ $$$

上式より特性数 ϕ は τ , π , η_{T} , η_{C} , mの関数であり, これら因子の ϕ に及ぼす影響は次のようである。

(i) Tによる影響

$$\frac{\partial \varphi < \text{stress}}{\partial \tau} = \frac{\frac{1}{\eta_{\text{C}}} (\pi^m - 1)}{(\tau \{ 1 - \eta_{\text{T}} (1 - \pi^{-m}) \} - 1)^2} \cdot \{ 1 - \eta_{\text{T}} (1 - \pi^{-m}) \} > 0$$

(2-26)

$$\frac{\partial \varphi \langle \# \square \rangle}{\partial \tau} = \frac{\frac{m \ln \pi}{\eta_{\mathrm{C}}} \{1 - \eta_{\mathrm{T}} (1 - \pi^{-m})\}}{(\tau \{1 - \eta_{\mathrm{T}} (1 - \pi^{-m})\} - 1 + \frac{m \ln \pi}{\eta_{\mathrm{C}}})^2} > 0$$

すなわち、 τ の大なる程特性数 ϕ は大きく、再生による効率改善への可能性が大きい。 (ii) π による影響

$$\frac{\partial \Phi < \forall f \not m}{\partial \pi} \stackrel{=}{=} \frac{\frac{1}{\eta_{\rm C}}}{(\tau \{ 1 - \eta_{\rm T} (1 - \pi^{-m}) \} - 1)^2} (m\pi^{m-1} (\tau \{ 1 - \eta_{\rm T} (1 - \pi^{-m}) - 1 \} + (\pi^m - 1) \cdot m\tau \cdot \eta_{\rm T} \pi^{-m-1}] < 0$$

-22 -

$$\frac{\partial \Phi < \# a}{\partial \pi} = \frac{-m}{(\tau \{1 - \eta_{\mathrm{T}}(1 - \pi^{-m})\} - 1 + \frac{m \ln \pi}{\eta_{\mathrm{C}}})^2} \left(\frac{1}{\eta_{\mathrm{C}}} \cdot \frac{1}{\pi} (\tau \{1 - \eta_{\mathrm{T}}(1 - \pi^{-m})\}\right)$$

$$-1] + \frac{m \tau \eta_{\rm T} \ln \pi}{\eta_{\rm C} \pi^m}] < 0$$
 (2-27)

すなわちπの小なる程,特性数Φは大

(前) m (K)による影響

 $\frac{\partial \Phi < \text{Kfr}}{\partial m} = \frac{-\frac{1}{\eta_{\text{C}}}}{(\tau \{1 - \eta_{\text{T}}(1 - \pi^{-m})\} - 1)^2} (\pi^m \ln \pi (\tau \{1 - \eta_{\text{T}}(1 - \pi^{-m})\} - 1)$

+
$$(\pi^{m}-1) \cdot \frac{\pi^{m}}{\pi^{m}} < 0$$

$$\frac{\partial \Phi < \# \mathbb{R} >}{\partial m} = \frac{-\ln \pi}{(\tau \{1 - \eta_{\mathrm{T}}(1 - \pi^{-m})\} - 1 + \frac{m \ln \pi}{\eta_{\mathrm{C}}})^2} \left(\frac{1}{\eta_{\mathrm{C}}} \{\tau \{1 - \eta_{\mathrm{T}}(1 - \pi^{-m})\} - 1\right) + \frac{m \tau \eta_{\mathrm{T}}(1 - \pi^{-m})}{\eta_{\mathrm{C}}} + \frac{m \tau \eta_{\mathrm{T}} \ln \pi}{\eta_{\mathrm{C}} \cdot \pi^{m}} \right) < 0 \qquad (2 - 2.8)$$

よってm(κ)の小なる程特性数Φは大きい。

(N) Ŋ_Tによる影響

$$\frac{\partial \Phi < \text{sfr} \Rightarrow}{\partial \eta_{\mathrm{T}}} = \frac{-\frac{1}{\eta_{\mathrm{C}}} (\pi^{m} - 1)}{(\tau \{ 1 - \eta_{\mathrm{T}} (1 - \pi^{-m}) \} - 1)^{2}} \{ \tau (1 - \pi^{-m}) \} < 0$$

$$\frac{\partial \Phi \langle \# \Xi \rangle}{\partial \eta_{\rm T}} = \frac{-m \ln \pi}{\eta_{\rm C} (\tau \{1 - \eta_{\rm T} (1 - \pi^{-m})\} - 1 + \frac{m \ln \pi}{\eta_{\rm C}})^2} \langle \tau (1 - \pi^{-m}) \rangle < 0 \quad (2 - 29)$$

よって η_{T} の小さい程,特性数 ϕ_{T} は大きくなる。

(V) ŊCによる影響

$$\frac{\partial \Phi < \text{tff} \, \underline{m} >}{\partial \eta_{\rm C}} = \frac{(\pi^m - 1)}{(\tau \{ 1 - \eta_{\rm T} (1 - \pi^{-m}) \} - 1)^2} \left(\frac{1}{\eta_{\rm C}^2} (\tau \{ 1 - \eta_{\rm T} (1 - \pi^{-m}) - 1 \} > 0 \right)$$

$$\frac{\partial \Phi < \# \mathbb{R} >}{\partial \eta_{\mathrm{C}}} = \frac{(\tau \{ 1 - \eta_{\mathrm{T}} (1 - \pi^{-m}) \} - 1) \cdot m \ln \pi}{\eta_{\mathrm{C}}^{2} (\tau \{ 1 - \eta_{\mathrm{T}} (1 - \pi^{-m}) \} - 1 + \frac{m \ln \pi}{\eta_{\mathrm{C}}})^{2}} > 0 \qquad (2 - 3 0)$$

よって η_{c} の大きい程,特性数 ϕ は大きい。

(a) て、 K の影響

図 2.8 各因子の再生特性数(♥)への影響

以上の各因子 π , τ , κ , η_{T} , η_{C} と ϕ との関係を図 2.8(a)~(c)(図中実線は等温圧縮, 破線は断熱圧縮ガスタービンサイクル)に示す。

上記解析結果から分るように、 τ の大きい程、 π の小さい程特性数のは大となり、 π , τ の増加とともにのの変化は小さくなる。また η_{T} , κ の小さい程, η_{C} の大なる程のは増加する。そして同一条件(π , τ , η_{T} , η_{C} , κ の同一)では等温圧縮の方が、断熱圧縮ガスタービンサイクルの場合よりのが大となり、再生による熱効率改善への効果が大きい。

上記両サイクルの再生による損失改善比r(式(2-5))と熱効率との関係は非再生お よび再生時の各熱効率を各々 $\eta_{th,0}$, $\eta_{th,R}$ とすると、ともに次の関係が成立する。

-24-

この関係を横軸に損失改善比 $r(=\eta_{RX})$ ・ Ø),縦軸に熱効率改善度(=η_{th} _B− $\eta_{th,0}$), $\vec{n} \neq - \beta \kappa \eta_{th,0} = 20$, 30, 40, 50 %をとって示すと,図29 のようである。すなわち、ガスタービン サイクルにとって再生による熱効率改善 の方法は非常に有効で、r = 0.6に対し て熱効率改善度は約20%に達する。

2.4 実在作業流体への応用

2.4.1 作業流体

動力プラントの作業流体として考えら れる物質の熱力学的特性を付録表 2.2 に 示す。その飽和圧力ー温度の関係を一部 プロットすると、図2.10のようである。

これらより, 適当な凝縮圧力, 温度を もち、高温において比較的安定な流体と して, NH3, SO2, CO2, H20の4つ があげられる(表2.1参照)。

つまり、フレオン系冷媒は約350℃で熱

改善度との関係

図2.10 飽和圧力-温度

項 目 流	分 子	臨界温度	臨界圧力	κ	P sat	25℃の飽 潜熱	和 状 態 比重量(kg	(r ∕m ⁸)
体	量	ler(°C)	$P_{cr}(atm)$		(atm)	(kcal/kg)	液	蒸気
NH 3	17	132.4	1115	1.34	9.9 2	278.7	602.9	7.77
SO2	6 4.1	157.2	77.7	1.27	3.8 3	8 5.5	1367.9	1 0.6 5
CO2	44	3 1.1	7 3.0	1.33	6 3.5 6	2 8.1	698.8	240.7
H ₂ O	18	374.2	218.4	1.33	0.031	583.4	997.2	0.023

表 2.1 NH₃, SO₂, CO₂とH₂Oの熱力学定数

附録表 2.2 参照。

分解を引き起こし, 一方K, Na などの液体金属はたとえばKはその蒸気圧力は 5 6 0℃に対 して, 0.1 0 5 kg/cm² ab と非常に低い。

2.4.2 完全カスとした検討

以上四種の流体(NH₃,SO₂,CO₂,H₂O)につき,前節2.3で示した完全ガスとした 等温圧縮するガスタービンサイクル(ただし, $\eta_{C} = 1$)として検討する。

非再生の場合,下限温度 t_1 ,タービン入口圧力 P_1 ,タービン入口温度 t_8 ,および η_T 一定に対して各熱効率 η_{th} に影響を及ぼす因子は式(2-17)より比熱比 κ ,圧力比 π の二 つであり,その内 κ は表 2.3 に示したように $\kappa \neq 1.3$ と四者ほぼ同様の値をとる。よって, 各作業流体に対する熱効率 η_{th} は τ , η_T の同一条件下では,圧力比 π に対してのみ影響を 受け,同一 π 値であれば同じ熱効率を示すことになる。しかし,下限温度一定に対してその 凝縮器圧力は大きく異なり(表 2.3 参照),後述図 2.1 5 の横軸下方に示すように各タービ ン入口圧力に対して CO₂, NH₈, SO₂, H₂Oの順に圧力比 π が大きくなる。よって付録表 2.1 の(e)に示すように, η_{th} を最大とする最適圧力比 $\pi = (\eta_T \tau) \overline{m}$ たとえば $\kappa = 1.3$, t_1 = 25°C, $\eta_T = 1$ で $t_8 = 1000$, 800, 600°Cの場合, π_{opt} は各々5934, 257.2,76.0 となり,実用タービン入口圧力に対して, π_{opt} は CO₂ に対しては大きすぎ, H₂O に対し ては小さすぎることが明らかとなる。つまり,前節 2.8.2 で示したように,各作業流体に対

して最適圧力比を任意に選ぶことが出 来るならば,その最高熱効率値は同一 となるが,各タービン入口圧力に対す る圧力比の相違により,熱効率に差を 生じる。たとえば,タービン入口温度 $t_3=1000$ °C においては最適圧力比 からもっともかけ離れているCO₂が, 最も熱効率が悪くなる。 $t_1=25$ °C, $\eta_T = 1$, $t_3=1000$, 800,600 °Cに対して式(2-17)より計算する と,図 2.11のようになり,同一ター ビン入口圧力,温度に対してその熱効

図2.11 非再生時の熱効率(完全ガス)

^{*} ただし、この場合は液相圧縮過程をもつが、その仕事は小さいとして無視し、近似的に実現させるサイク ルとして等温圧縮ガスタービンサイクルを用いる(節2.2.3参照)。

率は, SO₂, NH₈, CO₂の順に悪化していく。

再生を行った場合,たとえば前図 2.8(ただし $\eta_T = 0.9$, $\eta_C = 0.85$, $\kappa = 1.33$ の場合) に示したように,再生による特性数 ϕ は圧力比の小なる程大きく,熱効率改善効果が大きい。 つまり再生による損失改善比rおよび特性数 ϕ は前式(2-5),(2-25)より,次式で表わ される。

$$r = \frac{C_p (T_4 - T_B)}{C_p (T_4 - T_1) + A R T_1 \ln \pi} = \frac{\tau \{ 1 - \eta_T (1 - \pi^{-m}) \} - 1 - \frac{\Delta \tau}{T_1}}{\tau \{ 1 - \eta_T (1 - \pi^{-m}) \} - 1 + m \ln \pi}$$
(2-32)

$$\Phi = \frac{C_p (T_4 - T_1)}{C_p (T_4 - T_1) + A B T_1 \ln \pi} = \frac{\tau \{ 1 - \eta_T (1 - \pi^{-m}) \} - 1}{\tau \{ 1 - \eta_T (1 - \pi^{-m}) \} - 1 + m \ln \pi}$$
(2.-33)

 $t_1 = 25 °C$, $\eta_T = 0.9 - 定 と し た <math>\phi$ および $\Delta t = 15 °C - c$ と し た r は 図 2.1 2(a)(b)のようで あり, 各 ϕ , r は CO₂ が最も大きく, 次に NH₈, SO₂ の順で, H₂O は β - ビン出口 温度 が T_B より低くなり $r = \phi = 0$ で再生による効果は期待出来ない。つまり,その熱効率試算は 図 2.1 3 のようであり再生によって圧力比の最も小さい CO₂ が最高の熱効率を示す結果と なる。

(a) 再生による効果を表わす特性数 Ø (完全ガス)

図 2.1 2

2.4.3 実在ガスに対する検討

各作業流体につき、実在ガスとして以下検討する。

(29),(30) ここで,H₂O,CO₂は物性値表 から,NH3,SO2 に対する物性値は (30),(31),(32) 対応状態原理の方法 より算出し、そのときのタービン 出口温度は次式により算出する。 $(S_{8}^{*}-S_{8})+\int_{T_{a}}^{T_{4}}\frac{C_{p}^{*}}{T}dT-R\ln t$ $(P_1/P_2) - (S_4^* - S_4) = 0$ (2 - 34)ここで*は半理想ガス状態を示す。 2.4.3.1 T-S線図 各作業流体のT-S線図をター ビン入口圧力 250 ata,タービン 入口温度1000℃,凝縮器(下限) 温度 25℃, η_T=90%一定に対し, 図 2.1 4(a)~(d)に示す。これより $\eta_{\rm T} = \eta_{\rm P} = 100\%$ とした単位流

図2.13 再生時の熱効率(完全ガス)

量当りの各有効仕事は図中サイクル
く12341>の囲む面積によって表わされ、その大きさ は CO_2 <SO₂<NH₃<H₂Oとなる。

つまり,同一圧力間の等温線上の水平距離△SはH2Oがもっとも大きく, CO2がもっとも 小さい。

次に,等圧線の勾配はSO2, CO2はH2O, NH3に比べて大きい。またH2Oにおいては タービン出口温度が凝縮域に入り,前節2.2.2で述べた再生による効率改善は,期待出来ない。

ここで各作業流体の相違によるT-S線図上のサイクル,つまり単位流量当りの有効仕事 やその形状を知る概略の方法は,

(1) 前式(2-1),

$$\Delta S = \frac{1.9865}{M} \ln \frac{P_1}{P_2}$$
 (2-1)

から作業流体の分子量Mの小さい程,タービン入口圧力と凝縮器圧力の比P1/P2の大き

(b) S()2

図 2.14 T-S線図 (P1=250 atm, $t_3 = 1000$ °C, $t_1 = 25$ °C)

い程, ΔSは大きい。すなわち, 圧力比がもっとも小さく, 分子量の大きいCO2 のΔSがもっとも小さく, 圧力比がもっとも大きく, 分子量の小さいH2OのΔSがもっ とも大きくなる。

一方、凝縮域の各飽和線間のエントロピムSはHildebrandの通則(液体のモル 蒸発エントロピー $\frac{L}{T}$ は蒸気密度が等しいとき、物質の種類に無関係に等しい)から、 一般に蒸気圧が2000mmHg以下に対して、次の式が適用できる⁽³⁴⁾。

(通常液体) L=23.61 · T ($\frac{P}{T}$)^{-0,119} (cal/g-mol·K) (特異液体) L=27.98 · T ($\frac{P}{T}$)^{-0,105} (cal/g-mol·K) } (2-35) ここで、L:潜熱(cal/g-mol)

P:温度TKNにおける蒸気圧(mmHg)

特異液体とはOH基を有する水、アルコール類、有機酸類を意味する。

これより、下限温度 t_1 一定に対する各流体間の蒸発潜熱およびその蒸発エントロピ \triangle Sの大きさは、 t_1 に対する飽和圧力 P_2 の小さい程、また分子量Mの小さいもの程大 きくなる。よって H_2 Oの場合がもっとも大きく、 NH_8 、 SO_2 、 CO_2 の順に小さくな る。

(ii) T - S線図上の等圧線の勾配は、 T/C_p で表わされるから C_p の大きいもの程、その等 圧線の傾斜は小さくなる。

ここで、各四つの流体に対する半理想ガスの定圧比熱 C_p を示すと(12(14)*),各温度に おいて、表2.2に示す値をもち、cal/g-mol·Kで表わした C_p^0 はほぼ同様な値をとり、 kcal/kg·Kで表わした C_p^0 では分子量Mに逆比例する。すなわち、各流体の同一温度に おける等圧線の勾配(K/kcal/kg·K)は分子量Mの小さい程小さくなる。

TK	分了	cal/g-mol•K								cal/g•K
命 作	于量	273	400	500	600	800	1000	1200	1500	273~1500
NH 3	17	8.29	9.23	9.95	10.66	12.03	13.35	14.61	16.38	0.49~0.97
S O 2	64.1	9.29	10.36	11.05	11.62	12.45	12.95	1 3.2 1	13.37	0.14~0.21
CO ₂	44	8.79	9.8 1	10.53	11.18	12.26	1 3.0 7	1 3.5 8	13.83	0.20~0.31
H 2 O	18	7.86	8.13	8.33	8.53	8.91	9.27	9.61	10.07	0.43~0.56

表 2.2 各流体の C_p⁰

2.4.3.2 熱効率

各作業流体の下限(凝縮)温度 $t_1 = 25$ C一定として、各タービン入口圧力 P_1 ,温度 t_8 における非再生時の熱効率の計算結果を図2.15に示す。ただし、圧縮(ポンプ)仕事は液相圧縮で小さい(後節2.4.3.3参照)ものとして無視し、 $\eta_T = 100$ %とした。 これより、非再生の場合の熱効率は、 $H_2O>SO_2>NH_8>CO_2$ の順に悪化し、CO $_2$ に対

*) NH₃: $C_p^0 = 6.189 + 7.887 \times 10^{-3} \text{ T} - 0.728 \times 10^{-6} \text{ T}^2$ SO₂: $C_p^0 = 6.147 + 1.3844 \times 10^{-3} \text{ T} - 9.103 \times 10^{-6} \text{ T}^2 + 2.057 \times 10^{-9} \text{ T}^3$ CO₂: $C_p^0 = 6.214 + 10.396 \times 10^{-3} \text{ T} - 3.545 \times 10^{-6} \text{ T}^2$ H₂O: $C_p^0 = 7.256 + 2.298 \times 10^{-3} \text{ T} + 0.283 \times 10^{-6} \text{ T}^2$ $\gtrsim \sub{C}_p^0$: cal/g-mol·K, T:K

(a) 再生による特性数 Øi (実在 ガス)

する熱効率が最も悪く,H2O の熱 効率が高い。

また, タービン入口圧力の影響は H20の場合小さく, CO2の場合大 きい。

なお,このときの各流体による熱 効率の結果は前節2.4.2の完全ガス とした数式検討結果の傾向とほぼ対 応している。

しかし,対臨界圧力 P_r が大きく, 対臨界温度 T_R の非常に小さい,すな わち,理想気体状態からの偏奇が著 しい(付録図 2.1参照) H_2O がも っとも定量的に誤差が大きい。しか し,いずれも定性的な傾向は一致し ているといえる。

次に各作業流体による再生の効率 改善効果を調べるために,前節2.2.2

⁽b) 再生による損失改善比r_i(実在ガス)

図 2.16

-31-

図 2.17 再生の時の熱効率

で導入した特性値 ϕ_i および損失改善比 τ_i の結果を図 2.16(a), (b)に示す(ただし,この場 合実在流体としたものであり,完全ガスの場合と区別するために添字 i で区別する。 なお算 出式は前式(2-5)において C_p Tの代りにエンタルビ値を用いたものに相当する)。 CO_2 に対する ϕ_i が0.8~0.9と最も大きく,再生による効率改善効果の最も大きいことが分 る(前図 2.12 参照)。 次に NH₈, SO₂ の順であり,H₂O の場合は図 2.14のT -S線図から分るように,タービン出口は湿り域に入るので, ϕ_i =0であり,その効果は期 待出来ない。つまり,再生器冷端末温度差 Δt =15℃一定,7T = 90%,下限(凝縮)温度 25℃一定とした再生時の熱効率結果は図 2.17(同図(a)は圧縮機仕事を無視,(b)は考慮し た場合)のようになり,P₁≥200ataにおけるCO₂の熱効率の優位性が実証でき,NH₈

一方, H2Oは再生による効果が望めないために、その熱効率は4者の内最も悪くなる。
2.4.3.3 各 仕 事

タービン仕事は完全ガスにおいて,

-32-

$$AL_{T} = \eta_{T} C_{p} T_{3} (1 - \frac{1}{\pi^{m}})$$

圧縮機(ポンプ)仕事は液相圧縮より,

$$L_{P} = \frac{v \cdot (P_{1} - P_{2})}{\eta_{P}}$$
 (2-37)

つまり、タービン仕事は C_p , 圧力比 π の大きい程増加する。また $\eta_T = \eta_C = 1$ とした有 効仕事AL_T - AL_P は前図 2.1 4 のT - S 線図の面積(12341)で表わされることにより、 $H_2O > NH_8 > SO_2 > CO_2$ の順に小さくなることが予想出来る。

下限温度25℃一定とし、各タービン入口圧力、温度における各断熱熱落差を図218, 2.19 に示す。すなわち,同一出力を出すに要する重量流量は CO₂, SO₂, NH₃の順に多

図 2.18 タービン断熱熱落差

2.1参照 CO2 ≑64 atm, H2O ≑0.03

(2-36)

atm)の相違により,必ずしもCO2の各機器が大きくなるのでなく,逆にH2Oの場合より タービンはコンパクトにし得る(後節3.5.2参照)。

2.5 結 言

液相圧縮超臨界圧サイクルを等温圧縮ガスタービンサイクルの近似サイクルとして位置づ

け,完全ガスとした熱力学解析によりその特性を調べ,CO2 を作業流体とした再 生サイクルの熱効率の優位性を明らかにした。概要を示すと次のようである。

- 1) 基本となる単純および再生ガスタービンサイクルのT-S線図上での等価図示法を示した。
- 2) 再生による熱効率改善の熱力学的意味を明確にするとともに,再生による損失改善比 rを式(2-5)で定義し,ガスタービンサイクルの再生による熱効率改善度を表わす 新しい特性値の(式2-5)を導入した。
- 3) 本液相圧縮超臨界圧サイクルの近似サイクルとして等温圧縮ガスタービンサイクルの 熱力学的解析を行ない,熱効率に及ぼす各因子の影響、とくに作業流体(比熱比 κ)の 相違による熱効率への影響を明確にした。すなわち,その熱効率は式(2-17)で表わ され,温度比 τ ,各機械効率 η_{T} , η_{C} および再生器効率 η_{RX} の大なる程,熱効率は高 く,圧力比πに対しては最適圧力比が存在し,式(2-20)で表わされる。また熱効率 を最大とする最適作業流体は同一温度比において圧力比を任意に選べるならば、どの流 体を選んでも関係なく、サイクル上の実用最高、最小圧力の範囲において考慮される必 要があることを示した。
- 4) 再生による熱効率改善度を表わす新しい特性数Φについて、等温圧縮および断熱圧縮 カスタービンサイクルにおいてその特性を明らかにした。すなわち、両サイクルのΦは 式(2-24),(2-25)で表わされ、温度比τ、圧縮機効率ηCの大なる程、圧力比π、 比熱比κ、タービン効率ηTの小なる程Φは大きく再生による熱効率改善の効果が大きい。
- 5) 液相圧縮超臨界圧サイクルに適用可能と考えられる各4種の作業流体(NH₃,SO₂, CO₂,H₂O)をとりあげ,完全ガスおよび実在ガスとして比較検討し,圧力比の最も小 さいCO₂の再生による特性値 **0**が 0.8~0.9と最も大きくなることを示し,CO₂サイク ルの熱効率上の優位性を証明した。

第3章 CO2液相圧縮超臨界圧サイクル

3.1 緒 言

本章では前章節 2.2.2 で示した一段再生,さらに効率改善をはかるために圧縮機を付加し た二段再生の二つの液相圧縮超臨界圧サイクルをとりあげ,再熱の場合を含めそのサイクル 特性を直接物性値データから解析した。つまり高効率を得るためのサイクル条件や各因子の 熱効率に及ぼす影響を明らかにし,最適プラント設計への資料を得ることを目的とする。次 に,同一出力を出すに要する流量,熱伝達率,圧力損失およびタービン機器の大きさなどに ついて検討し、従来のH₂O ランキンサイクルの場合と比較検討する。

3.2 サイクル構成

再生液相圧縮超臨界圧サイクルの配置図とそのT-S線図を図 3.1(a)~(c)に示す。同図 (a)は前章節 2.2.2 で示した一段再生の場合である(以下簡単に一段再生サイクルと呼ぶ)。

H:加熱器, R:再生器, T:タービン, C:圧縮機, W:凝縮器, G:発電機 (a) 一段再生サイクル (b) 二段再生サイクル (c) T-S線図

図 3.1 液相圧縮再生サイクル配置図とT-S線図

同図(b)は図(a)の再生器 Rにおいて高,低圧側を流れる両流体の比熱 C_p の違いによって生じる温度差が原因となって発生する非可逆損失を流量分流することによって減少させ、その結果一段再生サイクルの場合の熱効率をさらに改善させるものである。すなわち、タービンTで膨張した(図中点3→4)排ガスが高温再生器 R2,低温再生器 R1で高圧側流体と熱交換した(点4→8→5)のち、点5において凝縮器 Wへ向う流量(流量割合α)と圧縮機 Cへ向う流量(流量割合(1-α))に二分される。そして凝縮器で凝縮した(点5→1)液(流量割合α)がポンプpで加圧され(点1→2),低温再生器 R1を経て(点2→7)-

-35-

方の圧縮機 C で圧縮された(点 5 \rightarrow 7)ガス体(流量割合($1 - \alpha$))と合流し、高温再生器 R 2 に入り(点 7 \rightarrow 6)、次に加熱器で所定の温度まで加熱される(点 6 \rightarrow 3)。

すなわち,そのプロセスは図1(c)中点1→2→7→6→3→4→8→5→1である(以下 二段再生サイクルと記す)。ここで,流量割合αとはタービン通過流量を1とした流量αを 意味し,低温再生器R1における熱量バランスから,

$$\alpha = (i_8 - i_5) / (i_7 - i_2) \le 1$$
(3-1)

3.3 熱効率式

両サイクルにおける各熱量バランスは次のようになる。ただし, 統字(1), (2)はそれぞれー 段再生, 二段再生サイクルを意味する。

一段再生サイクルに対して:

 Q_{1} , (1) + A · L_P (1) = A · L_T (1) + Q_{2} (1) $Q_{1}(1) = A \cdot L_{T}(1) + \Delta i$ (3-2) $Q_{2,(1)} = A \cdot L_{P,(1)} + \Delta i$ $i_{6}' - i_{2} = i_{4} - i_{5}$ $\subset \subset \mathcal{C}$, $\bigtriangleup i = i_5 - i_2$ 二段再生サイクルに対して: $Q_{1,(2)} + \alpha \cdot A \cdot L_{P,(2)} + (1-\alpha) \cdot A \cdot L_{C} = A \cdot L_{T,(2)} + \alpha \cdot Q_{2,(2)}$ $Q_{1}(2) = A \cdot L_{T}(2) + \triangle i_{2}$ (3-3) $Q_{2}(2) = A \cdot L_{P}(2) + \triangle i_{1}$ $i_8 - i_5 = \mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} + \Delta i_2$ $i_7 - i_8 = \mathbf{A} \cdot \mathbf{L}_0 + \Delta i_1$ $c \in \mathcal{C}$, $\Delta i_1 = i_5 - i_2$, $\Delta i_1 = i_8 - i_7$ 同一サイクル条件すなわちL_{T,(1)}=L_{T,(2)}=L_T,L_{P,(1)}=L_{P,(2)}=L_P,Q_{2,(1)}=Q_{2,(2)} =Q2の場合,両サイクルの加熱量差△Q1は,式(3-1)~(3-3)から, $-(1-\alpha)\cdot A\cdot L_{C} = (1-\alpha)(Q_{2}-A\cdot L_{P}+A\cdot L_{C}) = (1-\alpha)\cdot (A\cdot L_{P}+\Delta i_{1})$ $-\mathbf{A} \cdot \mathbf{L}_{\mathbf{P}} + \mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} = (1 - \alpha) \cdot (\mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} + \Delta i_{1}) = (1 - \frac{\mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} + \Delta i_{2}}{\mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} + \Delta i_{1}}) (\mathbf{A} \cdot \mathbf{L}_{\mathbf{C}} + \Delta i_{1})$ $= \triangle i_1 - \triangle i_2$ (3-4)同じく凝縮器での放熱量の差△Q2は,

よって二段再生サイクルは同一サイクル条件下の一段再生サイクルの場合より加熱量が Δi_1 - Δi_2 , 凝縮器放熱量が(1- α)・Q₂ また有効出力が $\Delta i_1 - \Delta i_2 - (1 - \alpha) \cdot Q_2$ だけ減少している。

両者の熱効率 $\eta_{th}(1)$, $\eta_{th}(2)$ は式(3-2), (3-3) より,

$$\eta_{th}(1) = 1 - Q_{2}(1)/Q_{1}(1) = 1 - \frac{A \cdot L_{P}(1) + \Delta i}{A \cdot L_{T}(1) + \Delta i}$$
 (3-6)

$$\eta_{th,(2)} = 1 - \alpha \cdot Q_{2,(2)} / Q_{1,(2)} = 1 - \frac{A \cdot L_{0} + \Delta i_{2}}{A \cdot L_{0} + \Delta i_{1}} \cdot \frac{A \cdot L_{P,(2)} + \Delta i_{1}}{A \cdot L_{T,(2)} + \Delta i_{2}} \quad (3-7)$$

 α は式(3-1)より,

$$\alpha = \frac{i_8 - i_5}{i_7 - i_2} = \frac{A \cdot L_C + \triangle i_2}{A \cdot L_C + \triangle i_1} \le 1$$
 (3-8)

ここで両者の熱効率差 $\Delta \eta_{th}$ は、両サイクルが同一条件にある(タービン入口圧力 P_1 ,タ ービン入口温度 t_3 、凝縮器圧力 P_2 、 η_T 、 η_P が等しくかつ $\Delta t = \Delta t_1$)とき、式(3-6)、(3-7)から、

 $\Delta i_1 - \Delta i_2 = (1 - \alpha) \cdot (A \cdot L_C + \Delta i_1)$ を代入して,

$$\simeq \eta_{th} = \eta_{th} (2) - \eta_{th} (1) = \frac{A \cdot (A \cdot L_P + \Delta i_1) \cdot (1 - \alpha) \cdot (L_T - L_C)}{(A \cdot L_T + \Delta i_1) \cdot (A \cdot L_T + \Delta i_2)}$$
(3-10)

すなわち、両サイクルの効率の優劣は $\Delta\eta_{th}$ の正負、したがって上式より L_T , L_C 両者の大小関係によって定まり、次の関係を得る。

 $\eta_{th}(2) \ge \eta_{th}(1) \mathcal{O} \& H : L_{T} \ge L_{C}$ (3-11)

 $\texttt{36KL}_{T} = \eta_{T} \cdot L_{T, adi}, \ L_{C} = L_{C, adi} / \eta_{C} \texttt{1} \texttt{9},$

 $\eta_{th}(2) \geq \eta_{th}(1) \mathcal{O} \mathfrak{R} \mathfrak{H} : \eta_{\mathrm{T}} \cdot \eta_{\mathrm{C}} \geq (\mathrm{L}_{\mathrm{C}} / \mathrm{L}_{\mathrm{T}})_{adi}$ (3-12)

すなわち,条件式(3-12)の関係が成立するとき,二段再生サイクルの効率 η_{th} ,(2)が 一段再生サイクルの η_{th} ,(1)より高くなり,成立しない場合は逆に一段再生サイクルの方が 効率は高い。

さらにより高い熱効率をもつ二段再生サイクルを実現するためには、式(3-11)の条件 を満足するとともに、式(3-10)より L_C 、 α 、 $\bigtriangleup i_2$ の小さい方が良い。ここで α は式 (3-8)から L_C , $\bigtriangleup i_2$ の小さい程小さい値をとる。よって、式(3-12)の条件を満足し、しかも出来るだけ η_C を高く、 $\bigtriangleup i_2$ すなわち $\bigtriangleup t_2$ を小さくなるように選べば良い。

3.4 非再熱サイクルの特性

(12) 上記サイクルの熱効率特性を明らかにするために, Vukalovich らの CO 2 物性値データ を用いて各因子の熱効率に及ぼす影響を明らかにする。ただし,計算に際し以下の仮定をお き,次にこれらの値を変化させてその因子の影響を明らかにする。

仮定:(i) $\eta_{T} = 90\%$, $\eta_{C} = \eta_{P} = 85\%$, (ii) $\triangle t = \triangle t_{1} = 15^{\circ}C$, $\triangle t_{2} = 30^{\circ}C$, (iii) $P_{2} = 50 \text{ at a}$, (W各機器,配管類の圧力損失は無視する。

なお放熱損失はすべての計算に際し無視する。

3.4.1 タービン入口圧力 P₁,温度 t₈の影響

 $タ - ビン入口圧力 P_1$,温度 t_8 が熱効率に及ぼす影響を図 8.2 (a),(b)に示す。同図(a)はタ - ビン入口圧力 P_1 を,(b)はタービン入口温度 t_8 を各横軸にとったもので,実線が二段再生 サイクル,破線が一段再生サイクルの場合に相当する。また図(a)中の二点鎖線は各再生サイ クルにおいてタービン出口排ガス温度 t_4 と低圧側流体の再生器(一段再生 R,二段再生で

図 3.2 タービン入口圧力 P1, タービン入口温度 t3 の影響

は R2)出口 温度 t_5 または t_8 とが等しくなる点を示し、これ以下では上の仮定(ii)の成 立しない領域となる。まず両サイクルとも P_1 の低い領域(一段再生の場合 250 ata 以下、 二段再生では 150 ata 以下)で、熱効率の急激な変化が生じ、それ以上の圧力になると、 P_1 による影響は小さく、極大値(図中。、・印)が存在する。

つまり、二段再生サイクルにおいて $t_8 = 700$ Cのとき、最大熱効率は $P_1 \Rightarrow 350$ at a c 537%であり、 P_1 が250 at a に減少しても534%(その差約0.3%)と P_1 による影響 は小さい。この P_1 による影響を $P_1=250$ at a のときの熱効率と各 P_1 における熱効率との 差で図33に示す。つまり、一段再生サイクルでは、 P_1 の増加による熱効率の改善は50 at a の増加に対して $1 \sim 2\%$ と400~500 at a 付近まで増加の傾向を示すが、二段再生サ イクルでは、200 at a ~ 600 at a 間での熱効率の変動は±1%以内で P_1 の変化による影 響がより小さい。これは水蒸気ランキンサイクルの場合とは異なった特性であり、二段再生 サイクルの場合250 at a 付近で最高効率が得られる。

一方, t_8 の増加に対する両サイクルの効率改善は著しい(図 8.2(b))。たとえば, $P_1 = 250$ at a に対して t_8 を 600 ℃から 700 ℃に増加すると,二段再生の場合 η_{th} , (2) = 49.3 %から 53.4%と 41%, 一段再生で η_{th} , (1) = 42.4%から 45.8%と 3.4%もの熱効率改善が はかれる。

この t3 による影響を式(3-6),

(3-7)から説明しょう。 $\eta_{th}=1-\frac{\alpha \cdot Q_2(ithter ktornow

図3.3 P1=250ataを基準とした熱効率差

すなわち,タービン入口温度 t₈を高くすることは,CO2サイクルの熱効率改善上極めて 有効であるが,タービン入口圧力 P₁に対してはとくに二段 再生サイクルの場合 250 at a 以上 でその効果は小さい。

図 3.4 両再生サイクルの熱効率差

次に,両サイクルの熱効率差(図 3.2(a),(b)に基づく)を同一タービン 入口圧力,温度に対して図3.4に示す。 これより,二段再生サイクルの方が熱 効率面で4~10%程勝れ(前述の式 (3-11)を満足している), tsが 高く,P1が低い程顕著となる。

3.4.2 凝縮器圧力 P2 の影響

凝縮器圧力は主に凝縮器冷却媒体 の温度や量によって定まる。CO2の臨 界温度は31.05℃(臨界圧力75.3ata) と相当低いので,凝縮させるためには かなり低い冷却媒体温度を必要とする。

一般的な値として冷却媒体温度が28℃のとき凝縮器圧力は約70ataになり、 冬期または

図 3.5 凝縮器圧力の影響

図 3.6 P2=50 at a との熱効率差

寒冷地のようにこれよりも低温の冷却水またはLNGのような低温熱源を大量に利用しえる 場合には、22℃にて60ata、14℃にて50ataの圧力とすることが可能となる。この凝 縮器圧力(横軸にその飽和温度 t_s も併せ示す)の熱効率に及ぼす影響を P_1 , t_8 が300 ata, 600℃と400ata, 800℃および一段再生サイクルに対しては、さらに450ata, 600℃;200ata、600℃について図3.5に示す。

両サイクルとも凝縮器圧力の低い程,熱効率は高いが,ほぼ圧力 P2 に逆比例して変化していることが分る。

次に、 $P_2 = 50$ at a のときの熱効率を基準にとってその熱効率差を図 3.6 に示す。両サイ クルとも凝縮器圧力が 5 at a 減少すると、熱効率は 0.6~1.0%改善できる。

3.4.3 各機械効率 $\eta_{\rm T}$, $\eta_{\rm C}$, $\eta_{\rm P}$ の影響

二段再生サイクルの η_{T} , η_{C} および一段再生サイクルの η_{T} , η_{P} の熱効率に及ぼす影響を $P_{1} = 250$ at a, $t_{8} = 800$ C の例について図 8.7 に示す。これによると、 η_{T} の 1% の減 少に対して熱効率は二段再生サイク

図 3.7 Ŋ_T, Ŋ_C, Ŋ_Pの影響

たある η_{T} , η_{C} の領域(たとえば図 3.7中, $\eta_{T} = 70%$ に対して $\eta_{C} < 50\%$)において二段 再生サイクルの効率は、一段再生サイクルより低下するが、これは前節 8.3 で明らかにした 式(3-11)の条件すなわち L_{T} と L_{C} の値が η_{T} , η_{C} の大きさによって逆転($L_{C} > L_{T}$) してくるためであり、二段再生サイクルの場合、設計計画点からはずれた部分負荷運転時の η_{T} , η_{C} の悪化に際し考慮しておかねばならない点である。

3.4.4 再生器冷端末温度差△*t*, △*t*₁, △*t*₂の影響

△t, △t1, △t2の熱効率におよぼす影響をP1=300ata, t3=600℃に対して(一)

段再生サイクルについては P_1 , $t_8 = 200$ ata, 600℃;450 ata, 600℃ の場合も併 せ示す)図 3.8(a)に示す。図中二段再生サイクルに対して比出力1 kW当りの二つの 再生器 (図 3.1(b)中の R1, R2)の伝熱面積合計が一定となる線を二点鎖線で示す。ただし, この 伝熱面積は次の仮定:(i)内管径 20mmの向流型二重管式熱交換器,(ii)管内,外流速はともに 10m/s一定,(ii)各熱伝達率は給液管内側にはStyrikowitschの式 Nu = 0.023 Re^{0.8}・

Mc Ad ams の式 Nu=0.0 2 3 ·Re^{0.8}・ Pr^{0.4} が成立し⁽³⁵⁾, 各物性値は 出入口の平均温度に対する値とす る,により算出したものである。

Pr^{0.8}, タービン排気の外管側は

以上の仮定で求めた熱貫流値U (kcal/m²h[°])を Δt_1 , Δt_2 に対して同図(b)に示す。つまり, Uには Δt_2 より Δt_1 の因子によ る影響が大きく,たとえば低温再 生器 R 1で Δt_1 =15°, Δt_2 = 30°の状態(この時のU=828

(a) 熱効率に及ぼす影響

図 3.8 再生器冷端末温度差 Δt , Δt_1 , Δt_2 の影響

kcal/m²h[°])から各々15[°][°]増加した時のUの低下量は Δt_1 の変化に対して約32kcal/m²h[°][°]であるのに対し、 Δt_2 に対しては約8kcal/m²h[°][°]である。一方高温再生器の Δt_1 、 Δt_2 の変化による影響は一般に小さいが、その場合にも Δt_2 より Δt_1 の変化による影響の方が大きい。また低温再生器の熱貫流値(U=700~900kcal/m²h[°])の方が高温再生器のそれ(U=640~680kcal/m²h[°])よりも大きい。

次に,蒸気条件を変えた場合の熱貫流値 U を $\Delta t_1 = 15$ °、 $\Delta t_2 = 30$ °一定に対し て同図(c)に示す。低温再生器はサイクル構成上タービン入口圧力P1 に影響を受けるが、タ ービン入口温度 t8 には関係しないので、各P1 に対して一本の線で表わされ、P1 の低い程 大きい熱貫流値を示す。たとえば、P1=350 ata で795 kcal/m² h° であるが、P1= 250 ata に低下すると、その熱貫流値は 835 kcal/m² h° まで増大する。一方、高温再 生器では P1 が 250~350 ata 以上になると、Uは P1 に対してほぼ一定の値をとり、t8 の低い程高い値をとる。たとえば、P1=250 ata でt8=1000° の場合U=573 kcal/ m² h° であり、600° に減少するとU=659 kcal/m² h° に増大する。これらの熱貫流値 は一般に従来の水蒸気ランキンサイクルの再生熱交換器のU(概略 1500~2500 kcal/ m² h°)に比べると、小さい(ただし、H2Oサイクルの場合一流体は液相の水である。ま た同圧、同温における水蒸気とCO2ガスの熱伝達率の比較は次節 8.5.2 で述べる)。しかし 本計算では流速を10m/sと仮定した値であり、設計上流速を増加することが可能となれば、 上記U値の約($\frac{流速}{10}$)^{0.8}倍にすることが出来るであろう。

熱効率に及ぼす影響は図 3.8(a) より各々 Δt_1 , Δt_2 に増加に対して、熱効率はほぼ一様 に低下し、各 Δt_1 , Δt_2 の 10 °Cの増加に対して各々 $0.9 \sim 1.2\%$, $0.9 \sim 0.4\%$ の低下となる。 そして Δt_2 より Δt_1 を小さくとる方が熱効率改善上有効であり、またこの方が伝熱面積一 定の線より再生器の大きさの面においても有利である。

3.4.5 圧力損失の影響

以上の計算では,各機器などで生じる圧力損失は無視したが,実際のプラント運転時に は圧力損失による熱効率の低下が必ず生じる。各圧力損失を次のように表わす。

加熱器および再生器の高圧側,低圧側における各圧力損失を各々 $\triangle P_B$, $\triangle P_{RF}$, $\triangle P_{RE}$ とし、タービン入口圧力 P1,凝縮器圧力 P2 により無次元化した値 $\epsilon_B = \triangle P_B / P_1$, $\epsilon_{RF} = \triangle P_{RF} / P_1$, $\epsilon_{RF} = \triangle P_{RF} / P_2$ を用いる。

一段再生サイクルに対して,

ポンプ出口圧力= $P_1 \cdot (1 + \varepsilon_B + \varepsilon_{RF})$

-43-

加熱器入口圧力= $P_1 \cdot (1 + \varepsilon_B)$

二段再生サイクルに対して,

ポンプ出口圧力= $P_1 \cdot (1 + \varepsilon_B + \varepsilon_{RF1} + \varepsilon_{RF2})$ 圧縮機出口圧力= $P_1 \cdot (1 + \varepsilon_B + \varepsilon_{RF1})$ 加熱器入口圧力= $P_1 \cdot (1 + \varepsilon_B)$ $\beta - ビン出口圧力=P_2 \cdot (1 + \varepsilon_{RE1} + \varepsilon_{RE2})$ 低圧側高温再生器出口圧力= $P_2 \cdot (1 + \varepsilon_{RE2})$

(3-14)

(3-13)

ここで、 $\epsilon_{\rm RF}$ 、 $\epsilon_{\rm RE}$ の添字 1、2は二段再生サイクルの各高温、低温再生器 R1、R2を意味する。

これより,各 ε_{B} , ε_{R} の変化に対して熱効 率は一様に変化し,上記両蒸気条件とも ε_{B} の1%(2.5 kg/cm²,3 kg/cm²に相当) の増加で一段再生サイクルで約0.08%,二段 再生サイクルで約0.16%の熱効率減少を,各 ε_{R} の1%(2.5 kg/cm²,3kg/cm²に相当) の増加に対して一段再生サイクルで0.2%, 二段再生サイクルで0.6~0.7%の効率低下 をもたらすことが明らかとなる。

3.4.6 断熱熱落差,流量割合α および各 機械仕事

3.4.6.1 断熱熱落差

実際にプラントを設計する場合には,以上 の熱効率特性以外に各機器の大きさを算出す るため各機械仕事の大きさや各通過流量が重

-44-

要な因子となる。

まずタービン出力としてある圧力,温度から背圧50ataまたは70ataまで断熱膨張したときの熱落差を図3.10(a)に,圧縮機仕事として入口圧力P2=50ataまたは70ataのある温度 t5 からある吐出圧力P1まで断熱圧縮したときの熱落差を同図(b)に示す。これらはまた前節3.3で示した一段,二段両再生サイクルの熱効率の逆転するときの条件式(3-12)を算出する際の資料ともなる。

同様にポンプにおいて,凝縮器圧力P2=50ata,70ataの飽和液状態から各吐出圧力まで断熱圧縮したときの熱落差を同図(c)に示す。いずれも実線が50ata,破線が70ataの場合である。

A·L_T, *adi*, A·L_C, *adi* はともに温度に対してほぼ一様に, 圧力に対しては放物線上に変 化する。 $P_1=250$ ata, $P_2=50$ ataに対して t_8 が 600° のとき A·L_T, *adi* = 5 6.49 kcal/kg で, 800° にあげると70. 81kcal/kg と1432kcal/kg程増加する。一方, 圧縮機では吐出圧力 250 ata, 入口圧力 50 ataに対して入口温度 が 50° から 100° に

変化すると、A·LC, adiは22.74 kcal/kg

(a) 断熱膨張熱落差(タービン, A·L_T, adi)

(b) 断熱圧縮熱落差
 (圧縮機, A·Lc, adi)

(c) 液相域断熱熱落差
 (ポンプ, A・L_{P.} adi)

図 3.10 可逆断熱熱落差

-45-

から28.96kcal/kgと6.22kcal/kg程増大する。ポンプ熱落差は上の二つに比べると小 さく,吐出圧力の変化にほぼ比例し, $P_2 = 50$ at a に対して P_1 が250 at a のとき5.86 kcal/kgで, P_1 が600 at a に増加すると,16.36 kcal/kg程度となる。

3.4.6.2 流量割合α

二段再生サイクルでは流量分流割合αが凝縮流量及び圧縮機流量に影響する。 前式(3-8)より,

 $\alpha = \frac{A \cdot L_{C} + \triangle i_{2}}{A \cdot L_{C} + \triangle i_{1}} \leq 1$ (3-8)

これより、αはタービン入口温度 t_8 には影響されず、タービン入口圧力 P1、凝縮器圧力 P2、 η_C 、 η_P 、 Δt_1 および Δt_2 によって値が変わる。一方、実際運転もしくはサイクル 計画においてαを独立変数とみなし、αを決めることによって Δi または、 Δi_2 が変化す る様な運転方法、計画もとりうるが、ここではサイクル計算上、式(3-8)より Δi_1 、 Δi_2 、 L_C から決定される従属変数として取り扱う。つまり αを独立変数として取扱っても 結局、式(3-8)から Δi_1 もしくは Δi_2 が従属変数となるだけで計算上同じことであり αを従属変数とする方が処理し易い。

まず α の影響因子となる Δi_1 , Δi_2 と圧力, 温度との関係を $\Delta t=0$, 15℃, 凝縮器圧力 P₂=50, 70 at a の場合に対して図 3.11(a), (b)に示す。 図中圧力が高く, 温度が低い程

(a) P₂=50ataの場合

(b) $P_2 = 70$ at a の場合

図3.11 圧力,温度とへiの関係

臨界点近傍に位置するので、△iは△t=0℃でも非常に大きな値をとる。

 α の値はこの Δi とA·L_{C, ad i}の値を式(3-8)に代入することによって求められる。 たとえば、P₁による α への影響を $\eta_{C} = \eta_{P} = 85\%$ 、 $\Delta t_{1} = 15$ C、 $\Delta t_{2} = 30$ C 一定 でP₂ = 50、70 at a に対して示すと、図 3.1 2(a)の実線のようである。

さらに $P_2 = 50 \text{ ata} - 定で, 各 P_1, \eta_C を変化したときの<math>\alpha$ を同図中破線で示し, $P_1 = 300 \text{ ata}, \eta_C = 85\%$ のときの各 P_2 の変化による α の値を〇印で示す。

図3.12 流量分流割合αの値

600ataに対して0.6~0.8の値をとる。

次に $P_1=250$ ata, $P_2=50$ ataの場合, $\Delta t_1 \ge \Delta t_2$ の変化による影響,さらに η_c の 変化による α への影響を図 3.1 2(b)に示す。 η_c が高い程小さい α の値をとるのは前図と同 様であるが, Δt_1 の大きい程, Δt_2 の小さい程 α の値も小さくなり(式(3-8参照)), Δt_2 の変化に対してはほぼ直線上に, Δt_1 の変化に対しては放物線上に変化し, 熱効率へ の影響と同様 α の変化へも Δt_1 による影響の方が大きいことが明らかとなる。

* このように、完全ガス領域から偏奇してくるので、本サイクルを完全ガスとした解析では定量的にかなり の誤差が生じる。 3.4.6.3 各機械仕事,比出力および仕事比

各機械仕事および比出力,仕事比などは前節 3.4.6.1, 3.4.6.2 で示した各値(図3.10 (a),(b),(c))を用いることによって求められる。 $P_2=50$ ata, $\eta_T=90\%$, $\eta_C=\eta_P=$ 8.5%, $\Delta t_1=15$ °C, $\Delta t_2=30$ °C としたときの各タービン入口圧力,温度に対する比出力, ポンプ,圧縮機仕事(単位 kcal/kg)を図 3.13に,その仕事比を図 3.14に示す。

図 3.1 3 比出力,ポンプ,圧縮機仕事

図3.14 仕 事 比 R

比出力 $A \cdot L_S = A \cdot L_T - (1 - \alpha) \cdot A \cdot L_C - \alpha \cdot A \cdot L_P$ 仕事比 R = $A \cdot L_S / A \cdot L_T$ (3-15)

ここで、一段再生サイクルの場合 $\alpha = 1$

図314より仕事比Rは P_1 が低く、 t_8 の高い程大きい。すなわちタービン出力に対する 所内動力の圧縮機、ポンプ仕事割合が小さくなっていく。たとえば、 $P_1=250$ at a、 t_8 =800℃の場合所内動力仕事のタービン出力に占める割合は一段再生サイクルで約10%、 二段再生サイクルで約25%である。

比出力A·L_Sは図 3.13 ょりP₁, t_8 の増加とともに増大し, P₁=300 at a, t_8 =800 ℃に対して二段再生の場合 53.74kcal/kg(一段再生サイクルでは 61.32kcal/kg, ここ でA·L_T=69.93kcal/kg, A·L_C=31.24kcal/kg, A·L_P=8.61kcal/kg, α =0.665) 程である。 3.5 タービン通過流量,タービンの大きさ,熱伝 達率および圧力損失のH2Oとの比較

3.5.1 容積流量

CO₂とH₂Oの場合につき $\eta_T = 90\%$ 一定とした タービン熱落差およびその比を図 3.15に示す。ただ し、背圧はCO₂:50 ata, H₂O:0.05 ataである。 CO₂のタービン熱落差は 100kcal/kg以下で、 H₂Oは200~500kcal/kgである。たとえばター ビン入口圧力,温度300 ata, 800℃の場合CO₂ の熱落差は約70kcal/kg,H₂Oは417kcal/kg で,CO₂はH₂Oの熱落差の約 $\frac{1}{6}$ となる。

よって,タービン同一出力当りの重量流量は逆に CO2サイクルはH2Oランキンサイクルの約6倍を 必要とする。さらに,各機器,配管類の大きさを決

定する因子としては重量流量の他に容積流量が関係してくる。 CO 2 の二段再生サイクルと 水蒸気ランキンサイクルに対して,比出力1 kWを発生するに要する容積流量(m³/h) を タービン入口,出口状態に対して図 3.1 6(a)に示し,その比を同図(b)に示す。これより,同

ー比出力を出すに要する容積流量は,タービン入口状態でCO2はH2Oの約(3~10)倍

(a) 容 積 流 量

(b) 容積流量比

図 3.16 タービン入口圧力,温度による容積流量とその比

必要とし、 P_1 に殆んど影響されず、 t_8 の高い程その差は小さい。しかし、タービン出口側では凝縮器圧力の違いおよび同圧、同温でもCO₂とH₂Oの比重量の差(CO₂ は H₂Oの約2倍)から、逆にCO₂はH₂Oの約1/(50~200)となり、P₁の高い程、 t_8 の低い程、その比率は小さい。 たとえば、P₁=300ata、 $t_8=800$ ℃の場合その容積流量(m³/h/1kW)はタービン入口状態でH₂O:0.034m³/hに対し、CO₂:0.116m⁸/hとH₂Oの約3.5倍であるが、タービン出口側ではH₂O:53.43m⁸/hに対してCO₂:0.51m³/hとH₂Oの約 $\frac{1}{100}$ となり、H₂Oタービンに比べ、高圧部での翼先端の漏洩損失比が小になり、低圧部ではタービン翼の大きさが非常に小さくなる。さらに、タービン熟落差も同条件でCO₂はH₂Oの約1/(7~8)と小さいので、タービン段数も少なく、タービン設計上好ましい傾向となる(次項参照)。

3.5.2 タービンの大きさ

CO2, H2O両流体におけるタービンの大きさを比較する。

まず,重量流量Gは出力P,断熱熱落差Haから,

 $G = 8 6 0 \cdot P / \eta_{T} \cdot \eta_{m} \cdot \eta_{g} \cdot Ha \qquad (3-16)$

またノズルを全円周に配置すると

式 (3-16), (3-17)より,

 $G = \pi \cdot D_n \cdot h_n \cdot \tau_n \cdot \gamma_n \cdot C_n \cdot \sin \alpha \qquad (3-17)$

ここで、 C_n は周速度uと速度比 ξ の関係より

 $C_n = u / \xi = \pi \cdot N \cdot D_n / 6 \ 0 \cdot \xi \propto N \cdot D_n / \xi \qquad (3 - 18)$

ここで、P:発電端出力、 η_T 、 η_n 、 η_g :各タービン、機械、発電機効率、 H_a : 断熱熱 落差、 D_n :ノズルピッチ円直径、 h_n :ノズルの長さ、 τ_n :通路減少率、 γ_n :比 重量、 C_n :出口絶対速度、 α :出口角、 ξ :速度比、u:周速、N:回転数

 $D_{n} = \frac{860 \cdot P}{(\pi \cdot h_{n} \cdot \tau_{n} \cdot \gamma_{n} \cdot C_{n} \cdot \sin \alpha \cdot \eta_{T} \cdot \eta_{m} \cdot \eta_{g} \cdot H_{a})}$ (3-19)

式(3-19)に式(3-18)を代入し、 η_{T} 、 η_{m} 、 η_{g} を両流体タービンで同一と仮定すると、

$$D_n^2 \propto \frac{P\xi}{h_n \cdot \tau_n \cdot \gamma_n \cdot N \cdot \sin \alpha \cdot H_a}$$
(3-20)

またノズル出口長さは翼の強度の面から一般に、

 $\frac{h_n}{D_n} \leq \left(\frac{1}{4} \sim \frac{1}{3}\right) \equiv K_0 \quad (\text{ cbw })$

-50 -

したがって、 $h_n = K_0 \cdot D_n$ を式 (3-20) に代入して、

$$D_n^3 \propto \frac{P\xi}{K_0 \cdot \tau_n \cdot \gamma_n \cdot N \cdot \sin \alpha \cdot H_a}$$
(3-21)

両タービンの翼長を比較するため式(3-21)において、(I)出力 P,回転数Nを同一、(II) Ko,最適速度比 ξ ,ノズル出口角 α ,流路減少率 τ_n を両タービンにおいて等しいと仮定 すると式(3-21)より、

$$D_n \propto \sqrt[3]{\frac{1}{\gamma_n \cdot H_a}} \qquad (3-22)$$

つまり、タービンのノズルもしくは翼長のビッチ円直径 D_n は $\sqrt[3]{\frac{1}{r_n \cdot H_a}}$ に比例する。よって、各タービン入口圧力、温度における両流体の D_n の比をタービン入口,出口状態の r_n および各断熱熱落差 H_a の値(両流体の各タービン入口圧力、温度における熱落差およびその比は図 3.15参照)を用いて式(3-22)より求めると、図 3.17のようになる。つまり、タービンの最終段翼直径は CO2 は H2Oの約 $\frac{1}{5}$ 程度になる。

一方,段数Zも一段当りの熱落差がともに等しいと考えると、図3.15の両流体の熱落差 比から明らかなように、CO2はH2Oの約($1/4 \sim 1/8$)であり、タービンの大きさ ∞ ($D_n^2 \cdot Z$)よりCO2 タービンがH2Oに比べ非常にコンパクトになることが分る。

図 3.17 タービン翼直径 Dn の比

変形して,
$$h = 0.023 \cdot \frac{u^{0.8}}{d^{0.2}} \cdot \frac{\lambda}{\nu^{0.8}} \cdot P_r^{0.8}$$

3.5.3 熱伝達率

加熱器,再生器などの熱交換器設 計に際し,その大きさの重要な一因 子となる熱伝達率をCO₂,H₂O両 流体に対して比較する。ここで,超 臨界圧域の熱伝達率の計算には次の Styrikowitschの式⁽³⁵⁾を採用す る。

 $N_u = 0.0 \ 2 \ 3 \ \cdot R_e^{0.8} \ \cdot P_r^{0.8}$

$$(3-23)$$

$$(3-24)$$

また,亜臨界圧領域の計算には Mc Ad am s の式を用い,上式において, $P_r^{0.4}$ とする。 つまり,両流体の熱伝達率 h は流速 u, 管径 d および $\frac{\lambda}{\nu^{0.8}} \cdot P_r^{0.8(0.4)}$ によって決まる。

図 3.18
$$\frac{\lambda}{\nu^{0.8}}$$
 · P_r^{0.8(0.4)} の 値

そこで流体の物性値によって決まる $\lambda \cdot P_r^{0.8(0.4)} / \nu^{0.8}$ の値を各圧力,温度に対して 図 3.1 8(a)に、その比を同図(b)に示す。つまり CO₂ の熱伝達率は式(3-24)および図 3.18 (a)より同一管径,流速であれば,圧力が高く,温度 が低い程高い熱伝達率を示すことにな る。H₂Oとの比較では圧力が低く,温度の高い程 $\frac{\lambda}{\nu^{0.8(0.4)}} \cdot P_r^{0.8(0.4)}$ の差は小さく, その比が1に近づき,同一管径,流速であれば,温度レベルの高い熱交換器ではほぼ同じ位 の熱伝達能力をもつが,温度レベルの低い領域の熱交換器では,CO₂の熱伝達能力はH₂O の支以下となる(前節 3.4.4参照)。

3.5.4 圧力損失

CO2とH2Oの圧力損失の比較には、次のBlasiusの式を採用する。

$$\Delta P = 0.3 \ 1 \ 6 \ 4 \cdot R_e^{-1/4} \cdot \frac{1}{2} \cdot \rho \cdot u^2 \frac{l}{d}$$
(3-25)

変形して,

$$\Delta P = 0.1582 \cdot \left(\frac{l \cdot u^{7/4}}{d^{5/4}}\right) \cdot \gamma^{3/4} \cdot \mu^{1/4} \qquad (3-26)$$

式(3-26)において流体の物性値によって決まる $\gamma^{8/4}$, $\mu^{1/4}$ の値を図 3.19(a)に,そ

(b) アキ・ルオの比

図 3.19 $\gamma^{3/4} \cdot \mu^{1/4}$ の値とその比(CO2とH2O)

の比を(b)に示す。その値は両流体とも一般に圧力が高く、温度が低い程大きく、また同一圧力、温度におけるその比は温度が約500℃以上になってくると、CO2の方が大きく、圧力が250ata近辺でほぼ2倍になり、式(3-26)より同一管径、管長、流速であれば圧力損失もH2Oの場合の約2倍要する。しかし、逆に温度が300℃近辺ではCO2の圧力損失は、H2Oの約まとなる。

次に, 管径 d を決める因子は容積流量 V と許容流速 u であるから,

 $V = -\frac{u}{4} d^2 \times u \times 3600 (V : 容積流量m³/h, d : 管内径m, u : 管内流速m/s),$ 上式と式 (3-26)からd を消去すると

 $\frac{\triangle P}{l \cdot u^{\frac{19}{8}}} = 4.098 \cdot \gamma^{\frac{3}{4}} \cdot \mu^{\frac{1}{4}} / \sqrt{5/8}$ (3-27)

ここで,容積流量 V として図 3.16(a) に示した 1 kWの比出力を発生するに要するタービン 入口状態の値を用い,H₂O,CO₂ 両流体に対して上式右辺の項を計算すると,図 3.20(a), (b)のようになる。これより,同一タービン入口圧力,温度に対して同一比出力を発生するの に必要な容積流量がすべて一本の管内を同一流速で流れると仮定した場合,同図(b)よりCO₂ の方がH₂Oよりその圧力損失は小さくなり,タービン入口温度の低い程,その差は大きく なっていくことが分る。

-53-

図 3.20 圧力損失に及ぼす物性因子の値

8.6 再熱サイクルの特性

熱効率の向上をはかるために、タービンにおけ る膨張過程を等温変化に近づける再熱方式(図 3.21)が一般に考えられる。本節ではその再熱 による熱効率の改善と各因子(タービン入口圧力, 温度 P1, t_8 , 再熱圧力, 温度 P_R, t_R , 凝縮器 圧力 P₂ など) との関係および最適再熱圧力, 温 度について明らかにする。各計算上の仮定は, 前 節3.4の非再熱サイクルのときの計算に用いた条 件と同一とし, さらにタービン各段での η_T を同一とする。

図 3.2 1 タービンにおける 再熱 方式

3.6.1 再熱圧力 P_R,温度 t_Rの影響

3.6.1.1 一段再熱の場合

 $P_1=300 \text{ ata}, t_8 = 600 \ C$ の場合一段再熱する一段,二段両再生サイクルに対して, 再熱圧力 P_R ,温度 t_R の熱効率に及ぼす影響を図 3.2 2(a),(b)に示す。再熱することによっ て,各熱効率は非再熱二段再生サイクルの49.5%(一段再生のとき 43.69%,図中 $P_R=$ 300 ata のときの〇印に相当)から、タービン入口温度 t_8 と再熱温度 t_R が等しい(t_8 = t_R)ときの最大52.2%(46.0%)まで2.7%(3.2%)増大し、再熱温度が各20 C 減少

-54-

図 3.22 再熱圧力,温度の影響(一段再熱)

するごとに両サイクルとも 0.3~0.6%ずつ減少する。

また各再熱温度に対して、熱効率を最大とする最適再熱圧力($P_{R,opt}$,図中破線で示す) が存在し、両再生サイクルにおいて同一の値をとることが分り、 $t_8 = t_R = 600$ ℃に対して $P_{R,opt = 123}$ ata, $t_R = 540$ ℃に対して $P_{R,opt = 100}$ ataと再熱温度の減少につれ、 最適再熱圧力も減少していく(図 3.23参照)。

3.6.1.2 二段再熱の場合

タービン入口圧力 $P_1=300ata$, 凝縮器圧力 $P_2=50ata$, タービン入口温度 t_8 と各再 熱温度 t_{R1}, t_{R2} を 600℃ 同一とした ltrimax. 二段再熱,二段再生サイクルの場合の, Re 20 53 ala 第一段,第二段再熱圧力P_{B1}, P_{B2} と 40 熱効率との関係を図3.24に示す。横軸 $^{\circ}$ 160 130 P1=300 ata 52 2tR. max = 52.2 180 t₃=600 °c ð (一段再熱) at $P_2 = 50$ ata $\eta_{\rm th}$ 110 200 సి n_T = 90 % P1=300 ata AP THE THE .,opt ղ_= դ_= 85 % t₃=t_{R1,2}= 600 °c ∆t1 (∆t)=15 °C م بي ٥٥ 220 t₂ = 30 ℃ $P_2 = 50$ at a η_T= 90 % 51 ກ_= 1_= 85 % Δt1=15 °C , Δt2=30 °C 70 100 150 500 600 200 250 ťR °C ata PRI

図 3.24 再熱圧力の影響(二段再熱)

が第一段再熱圧力 P_{R1} , パラメーターが第二段 再熱圧力 P_{R2} を示す。一段再熱時(図中, P_{R2} = 50 ataに相当) 熱効率の最大値 52.5%(図 中, 0)に対し、二段再熱によって最大 1%の 熱効率改善が得られる。そして一段再熱のとき と同様、二段再熱の場合にも熱効率を最大とする 最適再熱圧力が存在し、本条件の場合 $P_{R1, opt} =$ 165 ata, $P_{R2, opt} = 90$ ataである。

次に, 再熱温度の影響を P_1 =300ata に対し て図 3.25に示す。ただし, P_{R_1} として最適再熱 圧力165ata, タービン入口温度と第一段 再熱 温度を同一とした場合で, 横軸に第二段再熱圧力 P_{R_2} , パラメーターとして第二段再熱温度 t_{R_2} を とって示す。

同様に最適再熱圧力が存在し、最適第二段再熱 E力は第二段再熱温度 t_{R_2} が タービン入口温 度 t_8 と同一のとき、いずれも約90 ata であり、第二段再熱温度が20℃減少するごとにそ の圧力も約3~10 ata 減少し、熱効率も 0.2~0.4%程悪化していく。

3.6.2 タービン入口圧力 P1,温度 t3の影響

タービン入口温度 t_8 , 再熱温度 t_R をともに 600 C または 800 C 一定 (ただし前節 3.5.1 において, 再熱温度の高い程, 熱効率は高く, 最適再熱圧力も上昇 することを明らかにし たので, ここでは $t_8 = t_R$ とする)とした一段再熱, 二段再生サイクルにおいて, タービン 入口圧力, 再熱圧力と熱効率との関係を図 3.2 6(a), (b)に示す。これより非再熱サイクルの 場合と同様, 熱効率を最大とする最適タービン入口圧力 P_1 が存在し, かつ各 P_1 に対して図 中破線で示す最適再熱圧力 P_R , opt が存在する。

そして P_1 =300ataの場合,ともに $P_{R,opt} = 125$ ataであり, P_1 =400ata, t_8 = 600℃の場合(図326(b)) $P_{R,opt} = 140$ で,同図(a)の800℃の場合,140ata より大きい再熱圧力($P_{R,opt} = 150$ ata)で最高熱効率を示し、タービン入口温度 t_8 によって最適再熱圧力が異なってくることが明らかとなる。

次に各タービン入口圧力,温度に対して,両サイクルの非再熱と一段再熱をした場合の熱

図 3.26 タービン入口圧力,温度の影響(一段再熱)

図 3.27 一段再熱による熱効率改善度

効率差を図 3.27 に示す。ただし,各再熱圧 カとして $P_R = \sqrt{P_1 \cdot P_2}$ (後節 3.5.4参照), 再熱温度 t_R をタービン入口温度 t_8 と同一と した場合である。これより、タービン入口圧 力が高く、タービン入口温度が低い程、熱効 率改 善は大きく、一段再生サイクルより 二段再生サイクルの場合の方がその効果 は顕著 である。たとえば、 $P_1 = 300$ at a, $t_8 = 800$ ℃の場合、二段再生サイクルで約

2.2%(一段再生のとき約2.0%)に対して、 $t_3 = 600$ °Cでは約2.8%(約2.4%)の熱 効率改善が得られる。また、このように P_1 が高い程、熱効率改善上有効であるので、 再熱 サイクルにおいて熱効率を最大とする最適タービン入口圧力は、 $t_3 = 600$ °C の場合非再 熱の320 ataに対して約400 ata、 $t_3 = 800$ °C の390 ataに対して約450 ataと、熱 効率を最大とする最適 P_1 は増大する。しかし、図3.26(a)、(b)から分るように、この再熱時 の最適タービン入口圧力から P_1 が±50 ata変化してもその熱効率変化は、最大0.2%と小 さく、非再熱再生サイクルの場合と同様、熱効率改善上タービン入口圧力はそれ程大きな因

図3.28 凝縮器圧力の影響(一段再熱)

子とはならない。

3.6.3 凝縮器圧力 P2 の影響

 $P_1=300ata, t_8=t_R=600$ °C ー 定として各凝縮器圧力による再熱圧力 P_R と熱効率の関係を 図 3.28 に示す。この 最適再熱圧力 $P_{R,opt}$ は二点鎖線で示すが、 P_2 の増加とともに増大し、たとえば両サ イクルとも $P_2=35ata$ から70ataに増 大するにつれて P_R , opt は約100 から 150ataへと増し、熱効率も P_2 が5ata 上昇すると 0.7~2% 程低下する。

3.6.4 最適再熱圧力,温度の選定 以上から,熱効率を最大とする最適再熱 圧力はタービン入口圧力,凝縮器圧力およ び再熱温度の高い程,大きい値をとること

が分った。そこで,最適再熱圧力,温度の選定方法について考察する。 再熱時の一段,二段両再生サイクルの熱効率は,もとのサイクルの熱効率の式(3-6), (3-7)において,A·L_Tをタービン総計出力とすると,同一式となる。すなわち,

$$\eta_{t h_{i}(1)} = 1 - \frac{A \cdot L_{P_{i}(1)} + \triangle i}{A \cdot L_{T_{i}(1)} + \triangle i}$$
(3-6')

$$\eta_{th,(2)} = 1 - \alpha \cdot \frac{\mathbf{A} \cdot \mathbf{L}_{\mathbf{P},(1)} + \Delta i_1}{\mathbf{A} \cdot \mathbf{L}_{\mathbf{T},(2)} + \Delta i_2} \tag{3-7'}$$

上式において、 L_P , Δi , α , Δi_1 , Δi_2 は、 再熱圧力, 温度に関係なく定まる値であり、 L_T のみが再熱圧力, 温度によって変化する。そして各熱効率は、 L_T の大きい方が高い。す なわち、熱効率を最大とする最適再熱圧力, 温度とは L_T を最大にする再熱圧力, 温度を意 味する。これを示す例として、図 3.2 2(a), (b)に対応する再熱圧力, 温度, 図 3.2 6(a), (b) に対応したタービン入口圧力, 再熱圧力, また図 3.2 8に対応した凝縮器圧力と、各AL_T の関係を各々図 3.2 9(a)~(c)に示すが、AL_Tを最大とする再熱圧力(各図中 P_{R} , L_T opt で示す)と各前図の最適再熱圧力 P_{R} , optとは一致 する。すなわち

$$P_{R_{i}} o p t = P_{R_{i}} L_{T max}$$
 (3-28)

(a) 再熱圧力,温度の影響

図 3.29 タービン総計出力 ΣAL_T (図中。印は非再熱の時の $AL_T を示す$) またこの図より一段再熱による $A \cdot L_T$ の増加量が分り、たとえば図 3.29(b)の $t_8 = t_R = 800$ $\mathbb{C}(600\mathbb{C})$ に対して最適一段再熱することによって、 $A \cdot L_T$ の増加比は $P_1 = 600$ at a の 場合、非再熱の $A \cdot L_T$ の10.7%(12.0%)から $P_1 = 250$ at a の場合の 6.5%(7.9%) とほ ぼ 6~12%の増大がはかれる。

次に,タービン仕事すなわち熱効率を最大とする最適再熱圧力の選定方法について考える。 一般に,再熱による全タービン仕事A·LT, totalは作動流体を完全ガスと仮定すると,次 のように表わされる⁽²⁸⁾。

-59-

A·L_{T, total} = C_p
$$\sum_{n=1}^{\Sigma} \eta_{T, n} \cdot T_n \{ 1 - (P_n/P_{n-1})^{-m} \}$$
 (3-29)

ここで、 T_n は各段の入口温度(K)、 $m=(\kappa-1)/\kappa$ 、また添字nは各再熱段を意味する。 A·L_T, total を最大にする再熱圧力すなわち最適再熱圧力 Pn, opt は(∂A·L_T, total $/\partial P_n$) = 0 mb,

$$P_{n,opt} = \frac{2m}{\sqrt{\frac{\eta_{T,n}}{\eta_{T,n-1}}} \cdot \frac{T_n}{T_{n-1}}} \cdot \sqrt{P_{n-1} \cdot P_{n+1}}$$
(3-30)

ここで、 η_{T} および T_{n} が各段において等しい場合上式より

$$- 段再熱: P_{R, opt} = \sqrt{P_1 \cdot P_2}$$

二段再熱: P_{R1, opt} = $\sqrt[3]{P_1^2 \cdot P_2}$
P_{R2, opt} = $\sqrt[3]{P_1 \cdot P_2^2}$

$$(3-31)$$

そして一段再熱で再熱温度 $t_{\rm R} = \beta - ビン入口温度 t_8$ の場合の式(3-31)による計算結 果と前節の物性値計算より求めた各最適再熱圧力の比較を図3.30に示す。タービン入口圧

力の変化に対して最大10ata ほどの差が みられるが、再熱圧力が最適再熱圧力から 15%変化しても熱効率への影響はせいぜい 0.1~0.2%程度であり,完全ガスと近似して 求めた式(3-30),(3-31)が十分精度 良く使用し得ることが明らかとなる。

3. 6. 5 再熱段数の影響

再熱段数の増加に対する熱効率の変化およ び効率改善度を P1=300 ata, 600 ata の二例について、各タービン入口温度に対し て図 3 3 1 (a), (b)に示す。ただし,各再熱温度はタービン入口温度と同一とし,各再熱圧力 は式(3-29)から求めた値である。

つまり、CO2サイクルの再熱による熱効率の改善はタービン入口圧力が高く、タービン入 口温度が低い程顕著であり、P1=300 ataの場合一段再熱で 2~3%, 二段再熱で 0.5~ 1%,三段再熱で0.3~0.5%と段数を増していくにつれてその効果は小さくなっていく。

図 3.30 最適再熱圧力(PR. opt)

-60 -

図 3.3 1 再熱段数の影響

3.7 他サイクルとの熱効率比較

水蒸気 ランキンおよび ガスタービン (プレイトン)サイクルとの熱効率比較をタービン入口温度の変化に対して図 8.32に示す。ただし、CO2 および H2Oサイクルは P1=300ata ー定し、プレイトンサイクルは $\kappa = 1.33$ ー定とした完全ガスの理論計算式(第2章式(2 -23))から求めた最適圧力比における熱効率値である。また他の計算条件は、図中に示 す通りである。これより、ガスタービンサイクルと比較すると、タービン入口温度による熱 効率への影響傾向は大変良く似ているが、いずれも同一温度における熱効率は高く、凝縮過 程でおき変えた本サイクルの優位性が明らかとなる。また、水蒸気ランキンサイクルと比 較すると、タービン入口温度が約650℃以上になると有利になり、タービン入口温度の上昇 とともにその優位性は大きくなっていく。

つまり,タービン入口温度の変化による熱効率の変化割合は,CO2サイクルはプレイトン サイクルと同様,100℃の増加に対して3~5%の7thの改善を示すのに対し,H2Oサイ

-61 -

図 3.32 他サイクルとの熱効率比較

クルはその半分位である。またタービン入口圧力の変化に対しては CO₂ の二段再生サイク ルは既に説明した様に η_{th} の改善はほとんどなく、250ata 程度の圧力ですでに高効率が 得られる。一方、H₂Oランキンサイクルの場合には、P₁の100ataの増加に対して 1~ 1.5%ほどの η_{th} の向上がある⁽⁷⁾が、タービン入口温度による CO₂ と H₂O サイクル両者間 の η_{th} の差が非常に大きく、高温域(650 °C 以上)での CO₂ サイクルの優位性は明ら かである。

3.8 結

言

二酸化炭素を作業流体とする一段再生,二段再生の液相圧縮超臨界圧サイクルに関する熱効率特性を調べ、タービン入口圧力200-300ata、タービン入口温度650℃以上になってくると非常に有利なサイクルとなることを示した。次に再熱した場合の特性について詳

しく調べ,各因子の熱効率に及ぼす影響および最適再熱圧力,温度について明らかにした。 さらに同一比出力当りの容積流量,熱伝達率,圧力損失,タービンの大きさなどについて従 来の水蒸気ランキンサイクルの場合と比較検討したが,これらを要約すると,次のようであ る。

- (1) 同一蒸気条件にある一段および二段再生液相圧縮超臨界圧サイクルの効率の大小関係 は、 $L_T \ge L_C$ の大小によってきまる。つまり部分負荷運転の $\eta_C < \frac{1}{\eta_T} (L_C/L_T)_{adi}$ の場合一段再生サイクルの効率の方が圧縮機導入の二段再生の場合よりも高い。しかし、 一般に二段再生サイクルの方が一段再生サイクルより約 3.5~7% 程熱効率が高い。
- (2) 両サイクルの熱効率ともタービン入口温度による影響が大きく、タービン入口圧力による影響は、熱効率を最大とする最適値が存在するが、ある圧力以上(二段再生サイクルで200ata)では小さい。
- (3) 液相圧縮させるためにかなり低い冷却媒体温度(約31℃以下)が必要となるので、 特に寒冷地で低温の冷却を大量に利用出来るところが有利となる。
- (4) 凝縮器圧力を増していくと、両熱効率はほぼ一様に減少し、5 ataの増加に対して 0.6~1%程の減少となる。
- (5) η_{T} の熱効率に及ぼす影響がもっとも大きく、次に、 η_{C} 、 η_{P} の順となる。
- (6) 再生器冷端末温度差△t1,△t2の熱効率への影響は、△t2より△t1の及ぼす影響の方が大きい。また両者の変化に対して熱効率は、ほぼ一様に減少する。管内外流速を10m/sと仮定した再生器熱貫流率は、低温再生器で800~900kcal/m²h℃,高温再生器で600~700kcal/m²h℃程度である。
- (7) 圧力損失の熱効率に及ぼす影響は、圧力損失の増加に対して熱効率が一様に減少していく。
- (8) 二段再生サイクルの流量分流αは、 $\alpha = \frac{A \cdot Lc + \Delta i_2}{A \cdot Lc + \Delta i_1}$ で表わされ、圧縮機械効率 7 c が悪い程、タービン入口圧力 P1、凝縮器圧力 P2 が増加する程 大きい値をとり、一般に 0.6~0.8の値である。
- (9) CO2サイクルの比出力は、タービン入口圧力300ata、タービン入口温度600℃ 同一の水蒸気ランキンサイクル(但し背圧0.05ata)の約¹/8程度であるので、同一 比出力を出すに要する重量流量は約8倍を要するが、CO2は比容積が水蒸気の約½, かつタービン出口圧力が50ataと高いため、特にタービン出口では水蒸気サイクルの 約¹/110の容積流量で良いことになる。よって、タービン部を非常に小型化し得る。

-63-

(10) 再熱サイクルにおいて熱効率を最大とする最適再熱圧力が存在し、タービン入口圧力、 凝縮圧力が高い程、その最適再熱圧力は上昇する。そして、この最適再熱圧力、温度と はタービン仕事を最大にする再熱圧力、温度である。

最適再熱圧力は, 概略一段再熱で $\sqrt{P_1 \cdot P_2}$, 二段再熱の場合 $\sqrt[3]{P_1^2 \cdot P_2}$, $\sqrt[3]{P_1 \cdot P_2^2}$, で求められ, 最適再熱温度に対しては高い程良い。

- (11) 再熱による熱効率改善は、タービン入口圧力が高く、タービン入口温度が低い程大きい。また再熱段数による影響は、P1=300ataの場合一段再熱で2~3%、二段再熱で0.5~1%、三段再熱で0.3~0.5%と段数を増していくにつれ、その効果は小さくなっていく。
- (12) CO2の二段再生液相圧縮サイクルは、熱効率面において従来のガスタービンサイクルより有利である。またH2Oランキンサイクルと比ると、タービン入口温度が650℃以上で有利になり、高い程その優位性は増す。
第4章 物性値などの近似による解析

4.1 緒 言

従来のガスタービンサイクル論⁽²³⁾ では完全ガスとした解析から各種理論式が作成され, サイクル特性の検討が式の上でなされている。一方,本CO2サイクルはランキンサイクルと ブレイトンサイクル両方の熱力学的特性を有し,臨界点近傍や凝縮域で完全ガスからの偏奇 が著るしい。つまりその熱力学的特性を解析して,ブレイトンサイクルのような理論式を作 成することは,現在水蒸気ランキンサイクルでなされていないと同様困難なことであり,あ る仮定のもとに作成しても概略の定性的な傾向は把握し得るが,定量的な面で問題が残るも のと考えられる。

そこで本章では物性値や各機械仕事などの精度の良い近似式を求めることによって、CO2 サイクルの特性を解析し、各因子の影響および最適再熱圧力の選定を明らかにした。

4.2 適用サイクル

対象とするサイクルは、前章に示した液相圧縮超臨界圧サイクル(第3章第31)とし、 そのi-s線図、P-v線図を図 41a、bに示す。各機器の構成およびその説明は前章で 説明したので省略するが、図中そのプロセスは一段再生サイクルに対して:点1-2-6'-3-4-1、二段再生サイクルに対して点:1-2-7-6-3-4-8-5-1である。 そのほか、再生の行わない非再生サイクル(プロセス点1-2-3-4-1)についても簡 単に記す。

図 4.1 本サイクルのi-s, P-v線図

4.3 CO₂の物性値

CO2は冷媒として多くの長所(安価,非可燃性,化学的安定性,高濃度のみ有害)を有 し、フレオンにとって代わられるまで長い間,冷凍プラントの冷媒として使用されてきた。 その関係上,物性値に対する研究も1870年代から盛んに行われ、1968年にはM.E.I. (the Moscow Power Institute)においてVukalovich やAltunin らによって今ま での実験データーをもとに広範囲の領域にわたってまとめた。本サイクルの計算もこの物性 値データおよび算出式⁽¹²⁾を基にしている。ただし、エンタルピ、エントロピの基準値は零 Kでの固体 CO2 の状態である。

4.4 近 似 式

解析をおこなうに当って、エンタルピ、各機械仕事および△i1、△i2 などの数値近似式 を求める。

4.4.1 エンタルピ,エントロピ

CO2のエンタルピi(kcal/kg), エントロピs(kcal/kg℃またはkcal/kgK)

図4.2 CO2のエンタルピ、エントロビ

-66-

を温度 $t(\[cm]\]$)、圧力 P(kg/cm²)(ただし 50 $\leq t \leq 1000\[cm]\]$ 、50 $\leq P \leq 600\[kg/\]$ cm²)に対して図 4.2 に示す。これを P(kg/cm²), $t(\[cm]\]$)の一次式で近似し、表 4.1(a),(b) に示す。これを P, tに対して整理 すると、各圧力、温度範囲に対して

項目 t Ю	近 似 式	最大誤差(50 ata≦P≦600ata)
1000	$i = 456.73 + 3.470 \times 10^{-3}$ · P	+0.03 % -0.05
950	$i = 4 4 1.30 + 2.433 \times 10^{-8}$ · P	+0.03 -0.06
900	$i = 4.25.96 + 1.288 \times 10^{-3}$ · P	+0.04 -0.06
850	$i = 4 \ 1 \ 0.7 \ 5 - 1.3 \ 4 \ 0 \times 1 \ 0^{-5} \cdot P$	+0.05 -0.07
800	$i = 395.674 - 1.393 \times 10^{-3}$ · P	+0.08 -0.08
750	$i = 380.74 - 3002 \times 10^{-8}$ · P	+0.06 -0.01
700	$i = 3 \ 6 \ 5.9 \ 2 - 4.7 \ 6 \ 5 \times 1 \ 0^{-3} \cdot P$	+0.07 -0.11
650	$i = 351.25 - 6.818 \times 10^{-8}$ · P	+0.09 -0.14
600	$i = 3 \ 3 \ 6.7 \ 5 - 9.1 \ 4 \ 9 \times 1 \ 0^{-3} \cdot P$	+0.11 -0.17
550	$i = 3 2 2.4 0 6 - 1 1.8 1 7 \times 10^{-8} \cdot P$	+0.14 -0.21
500	$i = 3 \ 0 \ 8.2 \ 4 - 1 \ 4.9 \ 1.2 \times 1 \ 0^{-8} \cdot P$	+0.17 -0.26
450	$i = 2 9 4 2 5 4 - 1 8 5 2 6 \times 10^{-3} \cdot P$	+0.22 -0.34
400	$i = 2 8 0.4 6 - 2 2.8 3 3 \times 10^{-8} \cdot P$	+0.29 -0.45
350	$i = 2.6.8.3 - 27.9.92 \times 1.0^{-3}$ · P	+0.40 -0.62
300	$i = 253.32 - 34.246 \times 10^{-3}$ · P	+0.55 -0.85
250	$i = 2 \ 3 \ 9.8 \ 7 - 4 \ 1.9 \ 8 \ 3 \times 1 \ 0^{-8} \cdot P$	+0.81 -1.22
200	$i = 226.125 - 51.194 \times 10^{-8} \cdot P$	+ 1. 3 2 - 1. 9 0
150	$i = 2 \ 1 \ 1.4 \ 3 - 6 \ 2.0 \ 5 \ 6 \times 1 \ 0^{-8} \cdot P$	+2.41 -3.02
100	$i = 1 9 2.5 8 - 6 4.3 6 6 \times 10^{-8} \cdot P$	+ 4, 7 0 - 5, 9 7
50	$i = 1 \ 6 \ 5.3 \ 7 - 5 \ 3.8 \ 6 \ 8 \times 1 \ 0^{-3} \cdot P$	+7.30 -13.05

表 4.1(a) エンタルピの近似式

-67-

表4.1(b) エンタルピ,エントロピの近似

項目	近似式	最	大誤	差 %/
Pata		$1000^{\circ}C \leq t \leq 300^{\circ}C$	3 00°C <t<200°c< td=""><td>2 0 0°C≦t≦150°C</td></t<200°c<>	2 0 0°C≦t≦150°C
6.0.0	$i = 1 \ 3 \ 7.0 \ 5 + 0.3 \ 2 \ 3 \ 1 \ 2 \ \cdot \ t$	$0.27 \sim -0.62$	$1.00 \sim -0.30$	3.30~ 0.0
600	$s = 0.8 \ 6 \ 1 \ 7 + 4 \ 0 \ 6 \ 5 \cdot 10^{-4} \cdot t$	2.18~-1.65	2.8 9 ~ - 0.1 2	5.69~ 0.0
	$i = 1 \ 3 \ 8.0 \ 3 + 0.3 \ 2 \ 1 \ 8 \ 2 \cdot t$	$0.2 \ 0 \sim -0.6 \ 4$	1.26 \sim -0.28	3.4 ~ 0.0
550	$s = 0.8 \ 6 \ 7 \ 6 + 4 \ 0 \ 4 \ 7 \ \cdot 10^{-4} \cdot t$	2.15~−1.63	2.88~-0.13	5.64~ 0.0
* 0.0	$i = 1 \ 3 \ 9.2 \ 7 + 0.3 \ 2 \ 0 \ 2 \ 2 \ \cdot \ t$	$0.22 \sim -0.65$	$1.24 \sim -0.40$	3.30~ 0.0
500	$s = 0.8741 + 4027 \cdot 10^{-4} \cdot t$	2.12~-1.61	2.8 5~-0.1 4	5.65~ 0.0
	$i = 1 \ 4 \ 0.7 \ 6 + 0.3 \ 1 \ 8 \ 3 \ 4 \ \cdot \ t$	0.19~-0.61	$1.20 \sim -0.45$	3.40~ 0.0
450	$s = 0.8814 + 4003 \cdot 10^{-4} \cdot t$	2.1 0~-1.5 8	2.81~-0.15	5.64~ 0.0
	$i = 1 \ 4 \ 2.5 \ 8 + 0.3 \ 1 \ 6 \ 0 \ 9 \ \cdot \ t$	$0.17 \sim -0.64$	1.44~-0.41	3.50~00
400	$s = 0.8897 + 3973 \cdot 10^{-4} \cdot t$	2.0 5 \sim - 1.5 6	2.74~-0.18	5.61~00
	$i = 144.79 + 0.31337 \cdot t$	0.14~-0.61	$0.9 \ 3 \sim -0.5 \ 1$	3.3 ~ 0.0
350	$s = 0.8990 + 3939 \cdot 10^{-4} \cdot t$	2.00~-1.52	2.72~-0.18	5.50~ 0.0
	$i = 1 4 7.4 5 + 0.3 1 0 1 0 \cdot t$	$0.12 \sim -0.55$	$0.70 \sim -0.51$	3.0 ~ 0.0
300	$s = 0.9 \ 1 \ 0 \ 4 \ 5 + 3 \ 8 \ 9 \ 0 \cdot 10^{-4} \cdot t$	1.92~-1.45	2.5 1~-0.1 6	5.32~ 0.0
	$i = 150.63 + 0.30622 \cdot t$	0.14~-0.48	$0.3 9 \sim -0.4 8$	2.39~ 0.0
250	$s = 0.9238 + 3833 \cdot 10^{-4} \cdot t$	1.84~-1.36	2.33~-0.14	4.96~ 0.0
	$i = 154.32 + 0.30173 \cdot t$	$0.20 \sim -0.41$	$0.01 \sim -0.41$	1.4 3~ 0.0
200	$s = 0.9 \ 3 \ 9 \ 7 + 3 \ 7 \ 6 \ 6 \ \cdot 10^{-4} \cdot t$	1.74~-1.25	$2.13 \sim -0.09$	4.45~ 0.0
	$i = 158.44 + 0.29672 \cdot t$	$0.3 \ 0 \sim -0.3 \ 2$	$0.0 \sim -0.41$	$0.24 \sim -0.41$
150	$s = 0.95935 + 3689 \cdot 10^{-4} \cdot t$	1.60~-1.14	$1.9 \ 1 \sim -0.0 \ 5$	3.79~ 0.0
1.0.0	$i = 1 \ 6 \ 2.8 \ 4 + 0.2 \ 9 \ 1 \ 4 \ 0 \ \cdot t$	$0.49 \sim -0.64$	$0.0 \sim -0.85$	$0.0 \sim -0.96$
100	$s = 0.98465 + 3608 \cdot 10^{-4} \cdot t$	1.47 \sim - 1.03	$1.69 \sim -0.0$	3.1 5~ 0.0
	$i = 1 \ 6 \ 7.3 \ 7 + 0.2 \ 8 \ 5 \ 9 \ 8 \ \cdot t$	$0.67 \sim -0.83$	$0.0 \sim -1.26$	$0.0 \sim -1.98$
50	$s = 1.0\ 2\ 3 + 3\ 5\ 2\ 7\ \cdot 1\ 0^{-4} \cdot t$	$1.32 \sim -0.89$	1.4 4 \sim - 0.0	2.5 6~ 0.0

 $(i: kcal/kg, s: kcal/kg^{\circ}, t:^{\circ})$

(i) $5 \ 0 \le t \le 1 \ 0 \ 0 \ 0^{\circ}$, $5 \ 0 \le P \le 6 \ 0 \ 0 \ a \ t a$

$$i = \{16\ 6.1\ 8+2\ 8.7\ 2\ 2\ \cdot\ \left(\frac{t}{1\ 0\ 0}\right)\} - \{5.4\ 8\ 5-0.6\ 72\ 3\ \left(\frac{t}{1\ 0\ 0}\right)\} \cdot \left(\frac{P}{1\ 0\ 0}\right)$$

$$(4-1)$$

$$s = \{ 1.0003 + 0.03555 \cdot \left(\frac{t}{100}\right) \} - \{ 0.02599 - 9.662 \times 10^{-4} \left(\frac{t}{100}\right) \} \cdot \left(\frac{P}{100}\right)$$

$$(4-2)$$

$$i = \{173.46 + 25.654 \cdot (\frac{t}{100}) + 0.2661 \cdot (\frac{t}{100})^2\} - \{8.364 - 1.877 \cdot (\frac{t}{100})^2\}$$

$$+ 0.1034 \cdot \left(\frac{t}{100}\right)^{2} \left\{ \left(\frac{P}{100}\right) \right\}$$
 (4-3)

その精度は, $t \ge 300$ で最大 1%, $t \ge 150$ で最大 2% である。 また低温度領域($0 \le t \le 200$)に対して

(ii) $0 \le t \le 200$ °C, $200 \le P \le 600$ at a

$$i = \{121.55+1.834 \cdot (P/100)+0.286 \cdot (P/100)^2\}+\{61.598-6.585 \cdot (P/100)+0.491 \cdot (P/100)^2\}\cdot (t/100)$$
 (4-4)
その誤差は 2%以内である。

一方,サイクルの低圧,低温領域に対するエンタルビ値は図43のようであり,同図中 に示す近似式を得,一般化して,

誤差0.4%以内で表わされる。

442 タービン, 圧縮機, ポンプ仕事 タービン仕事 L_T, 圧縮機仕事 Lcは, 作業流体が完全ガスの場合次式で表わされる⁽⁴⁾。

$$A \cdot L_{T} = \eta_{T} \cdot C_{p} \cdot T_{8} \left(1 - \pi \frac{1 - \kappa}{\kappa} \right)$$
 (4-6)

$$A \cdot L_{C} = C_{p} \cdot T_{5} \left(\frac{\kappa - 1}{\kappa} - 1 \right) / \eta_{C}$$

$$(4 - 7)$$

一方,本サイクルの各圧力,温度領域におけるCO2の定圧比熱は,図44に示すように

図4.3 低温域のi

図4.4 二酸化炭素の定圧比熱

高温度(700℃以上)になってくると圧力に関係なく比較的一様な値($C_p \Rightarrow 0.31$ kcal/kg ℃)を示すが、低温度域とくに、 臨界点(31.04℃、73.3 ata)に近づくにつれ、大き く変化し、完全ガス状態から大きくかけ離れてくる。したがって、上式が本サイクルの蒸気 条件全体にわたって熱力学的性質を満足する式ではないが、定性的な傾向は表わしている。 そこで上式中の C_p 、Kを本来の熱力学的意味をもつ数値でなく、単にある圧力、温度に対 する変数値と考え、数値近似式として採用した。

つまり、タービン出口圧力、圧縮機入口圧力を50ata一定とし、各入口温度(図41中 t_3 または t_5)に対してタービン入口圧力、圧縮機出口圧力を600ataから10ataずつ 50ataまで変化させ、物性値データから数値計算より求めた値から最適の $C_{pT, C}$ 、 $\kappa_{T, C}$ 値^{*}を求める。

その値とそれを用いたときの最大誤差を各入口温度(t_8 または t_5)に対して表 4.2(a), (b)に,物性値データから直接求めたA·L_T,A·L_Cと上記 C_{pT,C}, $\kappa_{T,C}$ による式(4-6), (4-7)の結果を表 4.3(a),(b)に示す。これによると、実用的な圧力,温度範囲($P_1 \ge 200$ ata, $t_8 \ge 500^{\circ}$, $50 \le t_5 \le 120^{\circ}$)では,A·L_T,A·L_Cの精度はいずれも1%以下 であって、本近似値による精度は非常に良い。一方、タービン出口圧力または圧縮機入口圧 力が 30 ata~臨界圧力までの変化範囲に対して、上記 C_{pT},C, $\kappa_{T,C}$ 値を用いたときの精

^{*} ただし、これらのCpT,C,KT,C値は実際の定圧比熱、断熱指数の値を与えるものでなく、単に仕事を 式(4-6)、(4-7)から求める場合の計算式に用いられる数値であることに注意されたい。

度は A・L_T の場合最大 4%程であ るが, A・L_C の場合入口温度が 80℃以下の低いとき, とくに精 度が悪くなるので, 各圧縮機入口 圧力, 温度に対して図 4.5に示す 異なった C_{pC}, K_C値を採用する 必要がある。

次に, ポンプ仕事は, 流体を非 圧縮性とみなすことにより, 第2 章式(2-40)で表わされ, ポン プ入口圧力30ata ~臨界圧力近 傍迄に対して7を近似することに より

A · L_P = { A · (P₁ - P₂) · 1 0⁴ } $/(\gamma \cdot \eta_P)$ (2-40)

 $\gamma = -8.899 \cdot P_2 + 1252.753$

(kg/m⁸) (4-8)
 このA・Lpの上記による計算値
 と物性値から直接求めた値との比
 較は図 4.6 に示す。

4.4.3 再生器冷端末エンタル ビ差 △i₁, △i₂

この場合とくに、 △i1 は臨界 点近傍の状態の値であるため、完 全ガスとした解析では精度が悪く、 次のようにして数値近似式を求め る。

4.4.3.1 △11の近似

まずポンプ出口温度 t2 の近似 をおこなう。 t2 は i2 すなわち 表 4.2(a) A·L_Tに対 する C_{pT}, K_T 値 とその 誤差

項目 t _{3℃}	С _{рт}	最大誤差 200≦P ₁ ≦ 600 at a
	0400	
1000	0.428	+ 0.3 8
	1.117	- 0.6 2
000	0.407	+ 0.32
900	1.1 2 4	- 1.1 0
0.00	0.370	+ 0.37
800	1.139	- 0.5 5
700	0.344	+ 0.28
700	1.151	- 1.06
600	0.301	- 0.2 9
000	1.177	- 0.3 0
500	0.250	- 0.28
500	1.222	+ 0.58
4.0.0	0.194	- 0.2 5
400	1.308	+ 0.60
200	0.145	- 0.9 0
3.00	1.447	- 1.47
200	0.082	- 1.66
200	2.262	- 2.15

表 4.2(b) A·Lcに対する Cpc, Kc値とその誤差

E		
月 月	$C_{p_{C}}$	最大誤差 $200 \le P_1 \le 600$ at a
5 °C	κ_{T}	$(\%)$ 100 $\leq P_1$
2.0	0.060	+ 0.82
	1.756	- 5.2 8
3.0	0.074	+ 0.70
	1.642	- 4.74
4.0	0.084	- 1.5 5
40	1.584	- 3.09
5.0	0.092	+ 0.75
50	1.548	- 3.2 7
6.0	0.098	+ 0.60
	1.524	- 3.71
80	0.110	+ 0.49
	1.481	- 2.7 6
100	0.123	+ 0.5 3
100	1.438	- 2.37
120	0.133	+ 0.60
120	1.4 1 1	- 2.0 6
14.0	0.139	+ 0.39
140	1.397	- 2.15

表 4.3(a) タービン仕事A・Lr = Cp T₈(1 - π 6)

$rac{P_1}{t_3}$ ata			600 ata	550	500	4.5.0	400	350	300	250	200	150	100
2 0	K1117	実際値	125.255	121.254	116.725	111.978	106.383	1 0 0.1 1 0	9 2.8 87	84.550	73.894	59.551	38.399
1000°C	-111 - 7	計算値	124.874	121.028	116.775	112.024	106.651	100.478	93.243	84.535	73.648	59.231	38.161
	CpT - 0.4 60	鹮差 %	-0.31	-0.19	+0.04	+0.04	+0.25	+0.37	+0.38	- 0.0 2	-0.33	-0.54	- 0.6 2
	r - 1 1 9 4	実際値	114.715	111127	107.178	102.841	97.918	92.064	85.545	77.426	67.525	54.799	35.540
0 0 0 C	+ 0 + 0 4 0 4	計算値	114.484	110.983	107.109	102.779	97.879	92.245	8 5.6 3 8	77.677	67.713	54.500	3 5.1 5 0
	1. pT -0.401	觀 花 &	-0.20	- 0.1 3	- 0.0 -	- 0.0 6	- 0.0 4	+0.20	+0.1 1	+0.32	+0.28	-0.55	- 1.1 0
		実際値	104.105	100.926	97.187	93.319	8 8.9 1 2	8 3.6 7 1	77.701	70761	61.945	5 0.0 9 4	3 2.2 9 1
800°C	$a_{0} = 0$	計算値	103.867	100.737	97.270	93.391	88.994	83932	77.986	7 0.8 0 7	6 1.8 0 0	49.821	32.206
	u v en - Ldn	誤差る	-0.23	- 0.1 9	+0.09	+0.08	+0.09	+0.31	+0.37	+0.06	-0.23	-0.55	-0.26
		実際値	93.370	90.489	87.191	83.606	79.732	75.212	69.932	63.556	5 5.5 8 9	45.012	29.409
700℃		計算値	93.128	9 0.3 5 4	87.279	83.834	79.927	75.423	7 0.1 2 5	63.719	5 5.6 6 7	44.933	29.099
	CpT=0.3 4 4	製港る	-0.26	-0.15	+0.10	+0.27	+0.24	+0.28	+0.28	+0.26	+0.14	-0.18	- 1.0 6
		実際値	82.188	79.646	76.930	7 3.8 2 2	7 0.9 9 5	66.529	6 2.0 1 6	56.361	49.548	40.096	26.095
600°C	$\mathbf{v}_{\mathrm{T}} = 1 \cdot 1 \cdot 1$	計算値	81.948	79.566	76.921	7 3.9 5 2	70.577	6 6.6 7 7	62.078	56.497	49.457	40.024	26.016
	n en - Lda	観港る	-0.29	010-	-0.01	+0.18	+0.12	+0.22	+0.10	+0.24	- 0.1 8	- 0.0 5	-0.30
	r 1 90 0	実際値	70.415	68.392	6 6.0 5 7	63.694	60.801	57.604	5 3.7 4 5	48.948	43.130	35.177	2 2.7 3 7
5 0 0°C	$\mathbf{v}_{\mathbf{T}} = -\mathbf{v}_{0} \mathbf{\varepsilon}_{\mathbf{v}}$	計算値	7 0.2 1 8	68.257	6 6.0 7 4	63.615	6 0.8 1 1	57.558	5 3.7 0 3	4.9.002	43.033	34.971	2 2.8 7 0
	ncon-Ldn	設施 あ	-0.28	- 0.2 0	+0.02	-0.12	+0.02	-0.08	- 0.0 8	+0.11	-0.23	- 0.5 8	+0.58
	r -1300	実際値	57.954	5 6.3 5 4	54.569	52.706	5 0.4 4 8	47.904	45.055	41.240	36.462	29.924	19.549
4 0 0°C		計算値	57.847	56.342	54.656	52.749	5 0.5 6 0	48.003	44950	41.194	36.371	29.767	19.666
	to TU-Juda	誤差る	-0.18	-0.02	+0.16	+0.08	+0.22	+0.21	-0.23	-0.11	-0.25	-0.52	+0.60
	r	実際値	44.419	43.211	41.998	40.712	3 9.1 5 5	37.563	35.495	32.854	29441	24.274	16.241
300°C		計算値	44.536	43.485	42.301	4 0.9 5 1	39.389	3 7.5 4 8	3 5.3 2 6	3 2.5 5 8	28.950	23.917	16.019
	of ron-Ida	誤差る	+0.26	+0.63	+0.72	+0.59	+0.60	-0.04	- 0.4 8	- 0.9 0	-1.67	-1.47	-1.37
	r -0960	実際値	29.591	28.705	27.858	27.057	26.235	25.397	24.353	23.094	21.198	18.169	1 2.5 8 8
200°C		計算値	29.099	28.617	28.061	27.411	26.637	2 5.6 9 7	24.520	22.991	2 0.8 9 6	17.79	12.443
	rpT-uvor	観差る	-1.66	- 0.3 1	+0.73	+1.31	+1.53	+1.18	+0.69	- 0.4 5	-1.43	-2.15	-115

(単位kcal Ag,%)

表 4.3(b) 圧縮機仕事 A·LC=CpT5 ·($\pi - 1$), P2=50 at a の場合

		600 ata	550	500	450	400	350	300	250	200	150	100
	実際値	3 3.8 9 6	31.853	29.801	27.589	25.328	2 2.8 7 2	2 0.2 8 6	17.534	14.445	1 0.8 9 1	6.4.57
	計算値	33.680	31.795	29.810	27.708	25468	23.062	20.452	17.580	14.359	10.637	6.116
	設差る	-0.64	-0.18	+0.03	+0.43	+0.55	+0.82	+0.82	+0.26	-0.59	-2.33	-5.28
0 7	実際値	37.0532	34.9745	3 2.7870	30.463	27.972	25.397	22.635	1 9.5 67	16.228	12.260	7.331
3 -	計算値	36.837	34.854	3 2.7 5 9	3 0.5 3 1	28.148	25.575	22.767	1 9.6 5 7	16.140	12.037	6.983
P -	鹮差 &	- 0.5 8	+0.34	- 0.0 9	+0.22	+0.63	+0.70	+0.58	+046	- 0.5 4	-1.82	- 4.7 4
4 8 3	実際値	39.658	37.418	3 5.0 7 0	32.704	3 0.0 3 2	28.032	24.428	21.188	17.532	1 3.248	7.903
	計算値	39.448	37.372	35.173	3 2.8 3 1	3 0.3 1 8	27.598	24.620	21.309	1 7.5 49	13.136	7.659
₽ 0	調差る	-0.5 3	-0.12	+0.29	+0.39	+0.95	-1.5 5	+0.78	+0.57	+0.1 0	-0.8 5	- 3.0 9
0	実際値	42.145	39.808	37370	34.835	32.141	29.316	26.134	22.740	18.917	14.282	8.548
	計算値	41.922	39.749	37.444	34,984	32,341	29.476	26.331	2 2.8 2 7	18.835	14.133	8.2.68
196	誤差 %	- 0.5 3	-0.15	+0.20	+0.43	+0.62	+0.55	+0.75	+0.38	-0.43	-1.05	- 3.27
К 0 Л.	実際値	44.318	41.966	39.411	36.704	3 3.9 1 6	3 0.9 5 9	27.637	24.137	20.022	15.179	9.125
μ φ	計算値	44.074	41.812	39.412	36.848	34.090	31.095	27.804	24.131	19.938	14.985	8.787
9 9	誤差る	-0.5 5	- 0.3 7	+ 0.0 0	+0.39	+0.51	+044	+ 0.6 0	- 0.0 3	-0.42	-1.28	- 3.7 1
	実際値	46.450	43.868	41.262	38.524	35.643	3 2.5 0 9	29.082	2 5.3 2 6	21.078	1 6.079	9.583
	計算値	46.199	43.847	41.348	38.677	35.801	3 2.6 7 6	29.238	25.396	2 1.0 03	1 5.8 0 5	9.283
2	調差る	- 0.5 4	- 6.05	+0.21	+0.40	+0.44	+0.51	+0.54	+0.28	- 0.3 5	-1.71	-3.14
	実際値	48.441	45.858	43.161	4 0.3 2 7	3 7.295	34.084	3 0.5 5 2	2 6.6 1 8	22.148	16.944	1 0.0 8 7
10	計算値	48.220	45.794	43.214	40453	37.477	34.238	3 0.6 6 9	26.672	2 2.0 9 2	16.656	9.8 0 7
2	誤差 %	-0.46	- 0.1 4	+0.122	+0.31	+0.49	+0.45	+0.38	+0.20	-0.26	-1.70	-2.76

-73-

表 4.3(b) 続

410

P ₁ ata ts °C			600 ata	550	5 00	450	400	350	300	250	200	150	100
1	-	実際値	5 0.2 7 9	47.7.19	44.873	41.954	38.789	35.450	31.843	27.811	23.212	17.668	10.559
0.0 f		計算値	5 0.0 3 6	47.549	44.901	42.064	39.002	3 5.6 6 4	31.981	27.848	23.100	17.449	1 0.3 0 1
	$c_{p}c_{=0.117}$	誤差 &	-0.48	-0.36	+ 0.0 6	+0.26	+0.55	+0.60	+0.43	+0.13	-0.48	-1.24	-2.44
		実際値	52.145	49.480	46.637	4 3.5 7 9	40.449	3 6.9 9 7	33.141	28.959	24.197	18430	1 1.0 5 1
100℃	AC = 1.438	計算値	51938	4 9.3 7 9	46.653	43.730	40.572	37.125	3 3.3 1 7	2.9.038	24.114	18.240	1 0.7 8 9
	$c_{p}c = 0.123$	觀差 &	-0.4 0	-0.20	+0.03	+0.35	+0.30	+0.35	+0.53	+0.27	- 0.3 4	-1.0 3	-2.37
		実際値	54.116	51.219	48.386	4 5.2 6 5	41.933	38.395	34.452	3 0.2 0 0	25201	1 9.1 9 7	11.547
110°C	$\mathbf{k}_{\mathrm{C}} = 1.425$	計算値	5 3.8 6 3	51.226	48416	45.401	42.141	38.581	34.644	3 0.2 1 5	25.112	1 9.0 1 5	11.263
	$C_{p}C=0.128$	裴差 %	- 0.47	+0.01	+ 0.0 6	+0.30	+0.50	+0.49	+0.56	+0.05	-0.36	- 095	-2.46
		実際値	5 5.8 5 2	52.966	49.921	46.772	4 3.3 5 1	3 9.6 4 1	3 5.7 1 7	31.267	26.036	19.893	11.944
12.0°C	$v_{\rm C} = 1.411$	計算値	55.545	5 2.8 4 7	49.968	46.877	43.533	3 9.8 7 7	3 5.8 3 0	31.273	2 6.0 1 4	19.720	11.699
	$C_{p} C = 0.133$	誤差 %	- 0.5 5	-0.22	+0.09	+0.23	+0.42	+0.60	+0.3 2	+0.02	-0.08	- 0.8 7	-2.06
		実際値	57.571	54.669	51.625	48.302	4 4.8 7 6	41.076	36.946	3 2.3 1 5	26.962	2 0.6 0 1	12.439
1 3 0°C	$\kappa_{\rm C} = 1.405$	計算値	57.396	54.616	5 1.6 5 0	48465	4.5.017	41.247	37.071	3 2.3 6 6	26.934	20427	12.126
	$C_{p0} = 0.130$	戳	- 0,3 1	-0.10	+0.05	+0.3 4	+0.31	+0.42	+0.3 4	+ 0.1 6	-0.10	- 0.8 5	- 2.5 2
		実際値	5 9.1 3 8	5 6.2 2 7	5 3.0 2 6	49.682	4 6.088	4,2.289	37.988	33.294	27.774	21172	1 2.7 7 8
140°C	$\mathbf{v}_{\mathbf{C}} = 1_{\mathbf{S}} \mathbf{v}_{\mathbf{C}}$	計算値	58.932	5 6.0 9 0	5 3.0 5 7	4 9.798	4 6.2 6 8	42.407	38.128	3 3.3 0 3	27.728	21.044	1 2.5 0 3
	cbC=0.1 a a	鹮差 多	-0.3 5	- 0.2 4	+ 0.0 6	+0.23	+0.39	+0.28	+0.37	+ 0.0 3	-0.17	- 0.6 1	-2.15
		計算値	6 0.9 3 7	57.824	54.569	51.172	47.480	43.627	39.212	34.356	28.747	21892	13.189
1 5 0°C		実際値	6 0.6 4 2	57.736	54.634	51.298	47.683	43.725	39.335	34.380	28.647	21.763	1 2.9 8 8
	CpC=0.1 44	誤差 %	- 0.4 8	- 0.1 5	+0.12	+0.25	+0.43	+0.23	+0.31	+ 0.0 7	-0.34	-0.59	- 1.8 2

-74-

図4.7 ボンプ出口温度 t₂ とボンプ仕事 A・L_Pの関係

-7:5-

次に、図 4 1 中の点 5 のエンタルビ i_5 は $t_5 = t_2 + \Delta t_1 (\Delta t)$ より式(4-4)に t_5 を代入し、 i_5 を求め、 $\Delta i_1 = i_5 - i_2 = i_5 - (i_1 + A \cdot L_P)$ より、

 $\triangle i_1 = a - b \cdot (A \cdot L_P) + c \cdot \triangle t_1$

(4-10)

ここで、各a, b, cは各ポンプ入口圧力に対して表44, 図49に示す値である。たとえば、 $P_2 = 50$ at a の場合、 P_1 , η_P , Δt_1 の変化に対して直接物性値より求めた結果(図中,前図45と同じ印で示す)と(式4-10)による結果(図中実線)を図410に示すが、良

図4.9 凝縮器圧力 P2の変化によるa, b, c値

表4.4 $\bigtriangleup i_1 = a - b \cdot A \cdot L_P + c \cdot \bigtriangleup t_1$

P2 項目 ata	ts c	а	b	с
2.0	30 < ts < 20	0 63.91	0.507	0.247
50	0≤5≦3	0 61.99	0.401	0.301
40	40 < t ₅ < 20	0 57.71	0.439	0.257
40	$0 \leq t_5 \leq 40$	54.70	0.260	0.339
CO	50 < t ₅ < 20	0 51.66	0.359	0.266
50	0 ≦t ₅ ≦ 5	0 47.54	0.093	0.377
00	60 < t ₅ < 20	0 45.48	0.261	0,275
60	0 ≦ t5 ≦ 60	40.37	-0.093	0.407
70	$70 < t_5 < 20$	0 38.47	0.152	0.284
10	$0 \leq t_5 \leq 70$	33.43	-0.268	0.424

図410 $\bigtriangleup i_1 \ge A \cdot L_P$ の関係

とる。

く一致する。

443.2 △i2の近似

二段再生サイクルに対する $\Delta i_2 (=i_8 - i_7)$ は $i_7 = i_5 + A \cdot L_C$ と式(4-3),(4-5), (4-10)を用い,さらに簡略することによって,凝縮器圧力 $P_2 = 50$ at a に対して次式 を得る。

 $\triangle i_{2} = -0.271 \cdot A \cdot L_{P} \cdot K + 0.283 \cdot \triangle t_{2} - 0.188 \cdot \triangle t_{1} \cdot K - 0.423 \cdot A \cdot L_{C} \cdot K - \{ 0.478 \cdot (P_{1}/100)^{2} - 6.147 \cdot (P_{1}/100) - 5.907 \}, (50 < t_{5} < 200\%)$ $\triangle i_{2} = -0.582 \cdot A \cdot L_{P} \cdot K + 0.283 \cdot \triangle t_{2} - 0.159 \cdot \triangle t_{1} \cdot K - 0.423 \cdot A \cdot L_{C} \cdot K - \{ 0.487 \cdot (P_{1}/100)^{2} - 6.256 \cdot (P_{1}/100) - 6.503 \}, (0 \le t_{5} \le 50\%)$

(4 - 11)

(4 - 12)

 $\angle \angle \neg$, K = 0.0 3 0 5 · (P₁ / 100) + 0.163

A·L₀ = $\left\{ -0.920 + 8.223 \cdot (P_1 / 100) - 0.4336 \cdot (P_1 / 100)^2 \right\}$

+ { 3.2 6 × 10⁻⁴ + 0.0 5 4 0 5 \cdot (P1/100) - 3.9 9 3×10⁻⁸ (P1/100)² }

×(2.405 ·A·Lp+16.51+ Δt_1))/ η_{C} これらのA·Lp, Δi_1 , A·Lc, Δi_2 に対 して式(4-8), (4-10), (4-11), (4-12)により計算した各値(図中実線) と物性値より直接求めた値(図中。印)と を各タービン入口圧力に対して図411に 示す。それぞれ良く一致し,各式の精度の 良いことが確かめられる。

4.5 熱効率特性

4.5.1 非再生サイクル

熱効率ηthは次式で表わされる。

 $\eta_{th} = (Q_1 - Q_2) / Q_2 = A (L_T - L_P)$ /($i_8 - i_1 - A \cdot L_P$)

60 2L1 50 kcal kg P2=50 ata n_=n= 85 % 40 =15°C ∆ t2=30 °C .⊿ ح_30 ALc, AL, , ∆ί, 0 Δĺ2 ALP 0 100 400 500 200 300 600 ata P. 図411 P₁ ≿A·L_C, A·L_P, $\triangle i_1$ ≈ L^U

 $\triangle i_2$

(4 - 13)

上式の L_T , L_P , i_8 に各々式(4-3), (4-6), (4-8)を代入することによって、 η_{th} は 算出出来る。ここで、 i_1 は各凝縮器圧力に対する飽和液のエンタルピ(図412)で、 P_2 =30,40,50,60,70 at a に対して各々115.18,121.42,127.21,133.25, 141.56kcal/kgである。

そして、P2=50ataに対して求めた各タービン入口圧力,温度による熱効率の変化を直接物性値から求めたものを実線で、上記式より算出した値を。印で図413に示すが、両者は非常に良く一致する。

ただし,非再生サイクルの場合,その熱効率は他のサイクルに比し悪く(参照第2章図 2.15),非再生のまま使用されることはないと考えられるので,各因子の熱効率特性に 及ぼす影響については簡単に述べる。

まず、 η_{T} 、 η_{P} の η_{th} に及ぼす影響は式(4-13)(ここで、A·L_T = η_{T} ·A·L_T, adi, $A \cdot L_P = \frac{A \cdot L_{P, adi}}{\eta_P}$)より、 η_T に対しては η_T の一次直線で、 η_P については双曲線で表わ されることが分る。またタービン人口温度一 1000 定に対してリthを最大とする最適タービン入 ロ圧力 P_{1. opt}は, ($\partial \cdot \eta_{th} / \partial \cdot P_1$)=0 503 ^w から求められ、その結果を図414に示す。 η_{T} , η_{P} が高い程, P_{2} が小さい程, P_{1} , opt <u>ି</u> କୁ 600 Ē は増大し、 ŊT, ŊP がともに 80% 以上で タ-ビン入口温度が400℃以上では, P1, opt 400 =50 ata rb= 80 % は600ata以上の点に存在し,タービン入口 $\eta_0 = 70$ · 圧力の熱効率に及ぼす影響は二段再生サイク 900 1000 400 500 600 700 800 ĉ タービン入口温度 ち ルの場合より顕著である。

図414 最適初圧 P1 opt (非再生)

4.5.2 一段再生サイクル

i) 熱効率の算出

熱効率刃thは次式で表わされる。

 $\eta_{th} = (A \cdot L_T - A \cdot L_P)/Q_1 = A(L_T - L_P)/(A \cdot L_T + \Delta i_1)$ (4-14) 上式のA·L_T, A·L_P, Δi_1 に式(4-6), (4-8), (4-10)を代入することによって,

$$\eta_{th} = \frac{A \cdot \{\eta_{\mathrm{T}} \cdot C_{p\mathrm{T}} \cdot T_{8} \cdot (1 - \pi \frac{1 - \kappa_{\mathrm{T}}}{\kappa_{\mathrm{T}}}) - \frac{(P_{1} - P_{2}) \cdot 10^{4}}{\gamma \cdot \eta_{\mathrm{P}}}\}}{A \cdot \eta_{\mathrm{T}} \cdot C_{p\mathrm{T}} \cdot T_{8} \cdot (1 - \pi \frac{1 - \kappa_{\mathrm{T}}}{\kappa_{\mathrm{T}}}) + a - b \cdot A \cdot \frac{(P_{1} - P_{2}) \cdot 10^{4}}{\gamma \cdot \eta_{\mathrm{P}}} + c \cdot \Delta t} \quad (4 - 15)$$

表42,表44に示した C_{pT} , κ_{T} , a,b,cの各値を各タービン入口温度 t_8 ,凝縮器圧力 P_2 に対して代入することにより、 η_{th} は各条件に対して上式より算出し得る。 たとえば、 $P_2=50$ at a の場合、各タービン入口圧力、温度に対して上式より求めた熱 効率を図415(ただし図中には次項45.3の二段再生サイクルの場合も併せ示す)に 破線で示す。図中。印が物性値から直接求めた値で、タービン入口圧力100 at a を除 くと、非常に良く近似し得る。

II) η_Tのη_{th}に及ぼす影響

図4.15 タービン入口圧力,温度と熱効率の関係(一段,二段再生)

$$\frac{\partial \eta_{th}}{\partial \eta_{T}} = \frac{C_{pT}T_{3} \cdot (1 - \pi^{-m_{T}})(1 - b) \cdot A \cdot L_{P} + C_{pT}T_{3}(1 - \pi^{-m_{T}})(a + c \cdot \triangle t)}{\{\eta_{T}C_{pT}T_{3}(1 - \pi^{-m_{T}}) + a - b \cdot A \cdot L_{P} + c \cdot \triangle t\}^{2}} > 0$$

(4-16)

つまり、式(4-15),(4-16)から $\eta_{th}-\eta_T$ のグラフは η_T の増加とともに η_{th} の 増す単調増加のグラフとなり、 $\eta_T = \infty$ (実際には有り得ない)で $\eta_{th} = 1$ (100%) の双曲線となり、その勾配は η_T の増加とともに小さくなっていく。

たとえば、 P1=250 at a, P2=50 at a, △t1=15℃一定で, t8=1000℃の場 合, A·L_T は表 4.2 より t8=1000℃に対して CpT=0.428, KT=1.117 より, -mT = $\frac{1-\kappa_{T}}{\kappa_{T}}$ =-0.10474 故に, A·L_T=7T·CpTT8(1- π^{-m} T)=7T×0.428× (1000+273)·{1-($\frac{250}{50}$)^{-0.10474}}=84.525·7T, -方, A·Lp は式(4-8), (4-9)から, τ =-8899×50+1252753=807.803, A·Lp= $\frac{A(P_{1}-P_{2})\cdot10^{4}}{7\cdot7p}$ = $\frac{(250-50)10^{4}}{427\times807.803\times7p}$ = $\frac{5.798}{7p}$, また t2 は式(4-9)から, t2=2.409·A·Lp+ 16.51=2.409· $\frac{5.798}{7p}$ +16.51= $\frac{13.967}{7p}$ +16.51, よって, t5=t2+ Δ t= ($\frac{13.967}{7p}$ +16.51)+15= $\frac{13.967}{7p}$ +31.51, ここで, 7p>75.5%のとき t5 < 50 ℃から△i1は表 4.4, 式(4-10)より, △i1=47.54-0.093·A·Lp+0.377× △t=47.54-0.093· $\frac{5.798}{7p}$ +0.377×15=53.195- $\frac{0.539}{7p}$, また 7p≤75.5%の とき, 阿様に△i1=51.66-0.359·A·Lp+0.266×△t=55.65- $\frac{2.081}{7p}$ よって, 7t4 は式(4-14)から次式で表わされる。

$$\eta_{th} = \frac{A \cdot (L_{T} - L_{P})}{A \cdot L_{T} + \Delta i_{1}} = \frac{8 4.5 2 5 \cdot \eta_{T} - \frac{5.798}{\eta_{P}}}{8 4.5 2 5 \cdot \eta_{T} + 5 3.195 - \frac{0.539}{\eta_{P}}}, (\eta_{P} > 75.5\%)$$

$$(4-17)$$

$$= \frac{84.525 \cdot \eta_{\rm T} - \frac{5.798}{\eta_{\rm P}}}{84.525 \cdot \eta_{\rm T} + 55.65 - \frac{2.081}{\eta_{\rm P}}}, (\eta_{\rm P} \le 75.5\%)$$

また同一圧力 P_1 , P_2 , 同一再生器端末温度差 Δt では, タービン入口温度 t_8 の変化による $A \cdot L_P$, Δi_1 の変化はなく, $A \cdot L_T$ のみ変化するので, <u>タービン入口温度 $t_8 = 600$ </u>に対して, 前記と同様にして次式を得る。

$$\eta_{th} = \frac{56.488 \cdot \eta_{\rm T} - \frac{5.798}{\eta_{\rm P}}}{56.488 \cdot \eta_{\rm T} + 53.195 - \frac{0.539}{\eta_{\rm P}}}, (\eta_{\rm P} > 75.5\%)$$

$$= \frac{56.488 \cdot \eta_{\rm T} + 53.195 - \frac{0.539}{\eta_{\rm P}}}{56.488 \cdot \eta_{\rm T} - \frac{5.798}{\eta_{\rm P}}}, (\eta_{\rm P} \le 75.5\%)$$

$$= \frac{56.488 \cdot \eta_{\rm T} + 55.65 - \frac{2.081}{\eta_{\rm P}}}{56.488 \cdot \eta_{\rm T} + 55.65 - \frac{2.081}{\eta_{\rm P}}}, (\eta_{\rm P} \le 75.5\%)$$

η_P

18)

また $P_1 = 400 \text{ ata}$, $P_2 = 50 \text{ ata}$, $\Delta t = 15 \degree \ c \ t_8 = 1000 \degree$, $(600 \degree)$ に対する 各 η_{th} は次のようである。ただし, 式中の()の中が $t_8 = 600 \degree$ の場合を示す。

$$\eta_{th} = \frac{106.638(70.565) \cdot \eta_{T} - \frac{10.147}{\eta_{P}}}{106.638(70.565) \cdot \eta_{T} + 55.65 - \frac{3.643}{\eta_{P}}}$$
(4-19)

この結果を $\eta_P = 0.85$ 一定に対して図 416に示す。図中×、。印が、近似式(4-18)、 (4-19)によるもので、実、破線が物性値から直接求めたものである。両者は非常に 良く一致しており、本近似式から η_T 、 η_P の熱効率特性に及ぼす影響が式の形ではっき りと表わすことが出来、より明瞭となる。

ⅲ) △t の影響

熱効率刃_{th}は式(4-10)および式(4-14)より,

<u>℃(600℃)</u>のとき,前項と同様にして.A・L_T=83.909(55.860)kcal/kg,A・L_P = 8.527kcal/kg,△i=48.599+0.226・△tから式(4-20)に代入し,

	8 3.9 0 9 (5 5.8 6 0) - 8.5 2 7	75.382(47.333)
$\eta_{th} =$	$\frac{1}{83.909(55.860)+48.599+0.266} =$	$\frac{132508(104459)+0.266\cdot \Delta t}{132508(104459)+0.266\cdot \Delta t}$
同様に	1, <u>P1=500ata</u> で他の条件は上記る	と同様のときのŊ _{th} は,
	105.085 (69.217) - 15.348	89.737(53.869)
$\eta_{th} =$	$\frac{105.085(69.217)+46.150+0.266}{105.085(69.217)+46.150+0.266}$	$= \frac{151235(115.367) + 0.266 \cdot ct}{151235(115.367) + 0.266 \cdot ct}$
またP	2º が変化したときつまり, <u>P1=300</u>	ata, $P_2 = 70 \text{ ata}$, $\eta_T = 90\%$, $\eta_P = 85\%$
Ct3	=1000℃(600℃)の場合,	
	00000(**060) 10096	7 9 0 7 9 (14094)

83.909(55.860)-10.936	72973(44924)
$\eta_{th} = \frac{1}{83.909(55.860) + 36.808 + 0.284 \cdot \Delta t}$	$= \frac{120.717(92668) + 0.284}{120.717(92668) + 0.284} \cdot \triangle t$

(4 - 24)

この△tの変化による結果を式(4-22), (4-23)に対して, 図4-17に示す。 W) 圧力損失の影響

これより,

$$\mathbf{A} \cdot \mathbf{L}_{\mathrm{T}} = \boldsymbol{\eta}_{\mathrm{T}} \cdot \mathbf{C}_{p_{\mathrm{T}}} \cdot \mathbf{T}_{\mathrm{s}} \left\{ 1 - \left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2} \left(1 + \boldsymbol{\varepsilon}_{\mathrm{RE}}\right)}\right)^{-m_{\mathrm{T}}} \right\} = \boldsymbol{\eta}_{\mathrm{T}} \cdot \mathbf{C}_{p_{\mathrm{T}}} \cdot \mathbf{T}_{\mathrm{s}} \left\{ 1 - \left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{-m_{\mathrm{T}}} \cdot \left(1 + \boldsymbol{\varepsilon}_{\mathrm{RE}}\right)^{m_{\mathrm{T}}} \right\}$$

$$A \cdot L_{P} = A \cdot \frac{\{P_{1}(1 + \varepsilon_{B} + \varepsilon_{RF}) - P_{2}\} \times 10^{4}}{\gamma \cdot \eta_{P}} = A \cdot \frac{\{P_{1} - P_{2} + P_{1}(\varepsilon_{B} + \varepsilon_{RF})\} \times 10^{4}}{\gamma \cdot \eta_{P}}$$

(4-26)

-82-

 $P_1=300ata, t_8=1000$ °C, 600°C, $P_2=50ata, \Delta t=15$ °C, $\eta_T=90$ %, $\eta_P=85$ %の場合

$$\eta_{th} = \frac{481833 - 406.450(1 + \epsilon_{\rm RE})^{0.10474} - 10.232 \cdot (\epsilon_{\rm B} + \epsilon_{\rm RF})}{542.949 - 406.450(1 + \epsilon_{\rm RE})^{0.10474} - 3673(\epsilon_{\rm B} + \epsilon_{\rm RF})}$$
(4-27)

t₃ = 600℃に対して

$$\eta_{th} = \frac{227.969 - 180.635(1 + \epsilon_{\rm RE})^{0.15038} - 10.232(\epsilon_{\rm B} + \epsilon_{\rm RF})}{289.085 - 180.635(1 + \epsilon_{\rm RE})^{0.15038} - 3.673(\epsilon_{\rm B} + \epsilon_{\rm RF})}$$
(4-28)

これらの結果を $\epsilon_{B} = \epsilon_{RF} = \epsilon_{RE} = 0$ との熱効率差として図418に。・×印で示し、 直接物性値から得た値を実線,破線で示す。

V)凝縮器圧力P2の影響

 P_2 の影響について $P_1=300$ ata, $t_3=800$ °C, $\eta_T=90$ %, $\eta_P=85$ %, $\Delta t=15$ °Cの場合につき同様にして近似式を示すと,

 $\eta_{th} = \frac{376.932 \left\{ 1 - \left(\frac{300}{P_2}\right)^{-0.1189} \right\} - \frac{(300 - P_2) \times 10^4}{362.95 (-8.899P_2 + 1252.753)}}{376.932 \left\{ 1 - \left(\frac{300}{P_2}\right)^{-0.1189} \right\} + a - \frac{b(300 - P_2) \times 10^4}{362.95 (-8.899P_2 + 1252.753)} + 15 \cdot c}$

(4 - 29)

上式に各 P2 に対応した表 4 6 の a, b, c の値を代入することによって, その影響が 算出し得る。その結果を。印で図 4.19 に 示し,物性値により直接求めた結果を実線 にて示すが, P2 の異なった場合にも本近 似式の精度の良いことが確かめられる。ま たこの解析結果より, P2 の 7 th に及ぼす 影響は タービン入口圧力,温度の変化に関 係なく,ほぼ一様に変化していくことが明 らかとなる。

図4.18 各圧力損失の影響(一段再生)

VI) フ_{th}を最大とする最適 タービン入口圧力

第3章節 3.4.1 で述べたように、 η_{th} に及ぼす P_1 の影響はあるタービン入口圧力(約200 at a 以上)を越えると顕著でなくなるが、最適タービン入口圧力 $P_{1, opt}$ が存在する。その $P_{1, opt}$ も本近似式から算出し得る。つまり、 $P_{1, opt}$ は($\partial \eta_{th}/\partial P_1$)=0から次式を満足する P_1 である。

$$(1-b+\frac{a+c\cdot \bigtriangleup t}{C_{p_{\mathrm{T}}}T_{8}\cdot \eta_{\mathrm{T}}}) \cdot \mathrm{P}_{1}\frac{\frac{2\kappa_{\mathrm{T}}-1}{\kappa_{\mathrm{T}}}}{\kappa_{\mathrm{T}}} - \frac{2\kappa_{\mathrm{T}}-1}{\kappa_{\mathrm{T}}} \cdot (1-b) \cdot \mathrm{P}_{2}\frac{\kappa_{\mathrm{T}}-1}{\kappa_{\mathrm{T}}} \cdot \mathrm{P}_{1}$$

$$-\frac{\kappa_{\rm T}-1}{\kappa_{\rm T}} \left\{ \frac{\gamma \cdot \eta_{\rm P}(a+c \cdot \triangle t)}{10^4 \cdot {\rm A}} - {\rm P}_2(1-b) \right\} \cdot {\rm P}_2 \frac{\kappa_{\rm T}-1}{\kappa_{\rm T}} = 0 \qquad (4-30)$$

これより、 η_{T} 、 η_{P} と $P_{1,opt}$ の関係を $t_{8}=1000$ 、700°C、 $P_{2}=50$ ata、 Δt_{1} = 15°C 一定に対して図 420 に示す。たとえば、 $\eta_{T}=90$ %、 $\eta_{P}=85$ % でタービン入 口温度 1000、700°C のとき、 $P_{1,opt}$ は各々約 600、500 ataとなり、これは直接 物性値から計算された値(第2章第 3.2参照)と一致している。また η_{T} 、 η_{P} の高い程

段再生)

 $P_{1,opt}$ は増大し、 Δt の5°の増加に対して $P_{1,opt}$ も2~5ata増大していくことが確かめられる。

vii) Ŋ_Rによる表示

再生器の性能表示の一つに、熱量効率 $\eta_{\text{RX},i} = (i_4 - i_5)/(i_4 - i_2)$ が用いられることがある。今、この $\eta_{\text{RX},i}$ を用いて、 η_{th} を示すと、

 $Q_{1} = i_{3} - i_{6} = i_{3} - \{ i_{4} - (1 - \eta_{RX}, i) \cdot (i_{4} - i_{2}) \} = (1 - \eta_{RX}, i) \cdot (i_{3} - i_{1} - A \cdot L_{P}) + \eta_{RX}, i \cdot A \cdot L_{T} \downarrow b$

$$\eta_{th} = \frac{A \cdot (L_{T} - L_{P})}{(1 - \eta_{RX, i}) (i_{3} - i_{1} - A \cdot L_{P}) + \eta_{RX, i} \cdot A \cdot L_{T}}$$
(4-31)

ここで,非再生サイクルの熱効率をη_{th}*とすると,両サイクルの熱効率の関係は,次 式で表わされる。

$$\eta_{th} = \frac{\eta_{th}^{*}}{1 - \eta_{RX}, i(1 - \frac{\eta_{th}^{*}}{R})}$$
(4-32)

ここで、R =仕事比= $\frac{D_{\Gamma}}{L_{T}}$ 。すなわち、一段再生の熱効率 η_{th} は非再生サイクルの η_{th} * および仕事比Rが既知であれば、 $\eta_{RX, t}$ の関数として算出し得る。 本 CO_2 サイクルの $\eta_{RX, i}$ は再生器における高、低圧側流体の比熱の差が大きいために、 $\Delta t_1 = 0^{\circ}$ のときの $\eta_{RX, i}$, max でも1より小さく、 $P_1 = 250$ ata、 $P_2 = 50$ ata、

 $t_8 = 1000$ °C, 700°Cの場合 η_{RX} , *i*, max = 0.81, 0.73 である。

また $\eta_{\mathrm{RX},i}$ と Δi_1 (Δt)の関係は次のように表わせ、同様に前述近似式を用いて算出し得る。

$$\eta_{\text{RX}, i} = 1 - \triangle i_1 / (i_3 - i_1 - A \cdot L_T - A \cdot L_P)$$
 (4-33)
4.5.3 二段再生サイクル

i)熱効率

熱効率は第3章式(3-7)より,

$$\eta_{th} = 1 - \frac{\mathbf{A} \cdot \mathbf{L}_{\mathrm{C}} + \Delta i_{2}}{\mathbf{A} \cdot \mathbf{L}_{\mathrm{C}} + \Delta i_{1}} \cdot \frac{\mathbf{A} \cdot \mathbf{L}_{\mathrm{P}} + \Delta i_{1}}{\mathbf{A} \cdot \mathbf{L}_{\mathrm{T}} + \Delta i_{2}}$$
(3-7)

凝縮器圧力 $P_2 = 50$ ata に対して η_{th} は,式(4-6),(4-8),(4-10),(4-11), (4-12)を代入して,算出出来,この結果を $\Delta t_1 = 15$ °C, $\Delta t_2 = 30$ °C, $\eta_T = 90$ %, $\eta_P = \eta_C = 85$ % 一定として各タービン入口圧力,温度に対して前図 415 中実線にて示 す。図中。印が物性値より直接求めたもので,一段再生サイクルの場合と同様 $P_1 = 100$ ataの場合を除くと良く近似し得る。

± t, $∂ η_{th} / ∂ △ i_2 = {A(A \cdot L_P + △ i_1) (L_C - L_T)} / {(A \cdot L_C + △ i_1) (A \cdot L_T + △ i_1$

-85-

 Δi_2)² となり $L_T > L_C$ の場合には Δi_2 に対して($\partial \eta_{th} / \partial \Delta i_2$)<0となり、 Δi_2 の小さい方が η_{th} の良いことが、証明し得る。同様に、 Δi_1 , L_C の小さい方が η_{th} は良い。

||) η_T, η_Cのη_{th}に及ぼす影響

10075

 $\underline{P_1 = 250 \text{ ata}, P_2 = 50 \text{ ata}, \Delta t_1 = 15^{\circ} (\Delta t_2 = 30^{\circ} (\Lambda_P = 85\%) \text{ obs}, A \neq - ビ \times \overline{\lambda} \Box \mathbb{B}$ $- \overline{U} \times \overline{\lambda} \Box \mathbb{B}$ $\mathbf{x}_T, \eta_C \geq \eta_t \wedge \mathcal{O}$ $\mathbf{x}_f (4-8), (2-57) \leq y_T = 807.803$ $\mathbf{x}_g / \mathbf{m}^3, A \cdot \mathbf{L}_P = 6.82 \text{ kcal/kg}, \pm \overline{\lambda} \overrightarrow{\alpha} (4-7) \leq y A \cdot \mathbf{L}_C = \frac{22.224}{\eta_C}$ $\overline{\tau} \overrightarrow{\alpha} (4-10)$ $\mathbf{x}_b \Delta i_1 = 52.549 \text{ kcal/kg}, \Delta i_2 \text{ dts} \overrightarrow{\tau} \overrightarrow{\alpha} (4-9) \leq b t_5 = t_2 + \Delta t_1 = 32.916$ $+ 15 = 47.916^{\circ} < 50^{\circ} C \overrightarrow{\alpha} (4-11) \leq b, \Delta i_2 = 26.069 - \frac{2.249}{\eta_C}$ $\overline{\eta} \subset \overline{\lambda} = 10^{\circ} \text{ cts}$ $\overline{\eta} \subset \overline{\eta} = 10^{\circ} \text{ cts}$ $\overline{\eta} \subset \overline{\eta} = 10^{\circ} \text{ cts}$ $\overline{\eta} = 10^{\circ} \text{ ct$

$$\eta_{th} = 1 - \frac{\frac{700 + 10}{7} + 26.069}{\frac{22.224}{7} + 52.549} + \frac{59.369}{A \cdot L_{T} + 26.069 - \frac{2249}{7}}$$
(4-34)

同様に, $P_1 = 400 \text{ ata}$, $P_2 = 50 \text{ ata}$, $\Delta t_1 = 15$ °C, $\Delta t_2 = 30$ °C のとき, 各タービン入口温度に対して

$$\eta_{th} = 1 - \frac{\frac{3\ 0.1}{\eta_{\rm C}} + 2\ 9.\ 6\ 1\ 1}{\frac{3\ 4.2\ 2\ 6}{2\ 6} + 5\ 1.3\ 7\ 4} \cdot \frac{6\ 3.3\ 1\ 1}{{\rm A}\cdot{\rm L}_{\rm T}} + 2\ 9.\ 6\ 1\ 1 - \frac{4.1\ 2\ 6}{7\ C} \tag{4-35}$$

ここで、A·L_T は各タービン入口温度に対して表 4 2 、式(4-6)から算出でき、 P1=250ata、 t_8 =1000℃(600℃)の場合、

A·L_T = 84.525 η_{T} (56.488 η_{T}) P₁=400ata, ts=1000°C(600°C)の場合, (4-36)

 $A \cdot L_{T} = 106.638\eta_{T} (70.565\eta_{T})$

このようにして算出した η_{T} , η_{C} による η_{th} への影響を図421に各印にて示す。また図中には直接物性値から求めた例を250ata, 600 $^{\circ}$ に対して示すが,良く一致しており,またこれより同一タービン入口圧力であれば,タービン入口温度の高い程,

 η_{T} , η_{C} による η_{th} への影響割合が小さくなっていくことが明らかとなる。

Ⅲ) 再生器冷端末温度差△t1, △t2の影響

同様に、 △t1、 △t2の影響が各近似式により求められ、次のようである。

 $P_1 = 250 \text{ ata}$, $P_2 = 50 \text{ ata}$, $\eta_C = \eta_P = 85\%$ 一定の各タービン入口温度に対して:

m 1	$39.59 + 0.0718 \cdot ct_1 + 0.283 \cdot ct_2$	$56.035 + 0.2663 \cdot c_1$
$\eta_{th} = 1 -$	$73.4073 + 0.3963 \cdot t_1$	$\cdot \frac{1}{\mathbf{A} \cdot \mathbf{L}_{\mathrm{T}} + 0.283 \cdot \mathbf{\Delta} t_{2} - 0.0581 \cdot \mathbf{\Delta} t_{1}}$
		(4-37)

$$\eta_{th} = 1 - \frac{54.97 + 0.1043 \cdot \triangle t_1 + 0.283 \cdot \triangle t_2}{84.952 + 0.446 \cdot \triangle t_1} \cdot \frac{59.317 + 0.2663 \cdot \triangle t_1}{A \cdot L_T + 0.283 \cdot \triangle t_2 - 0.0581 \cdot \triangle t_1}$$

$$(4 - 3.8)$$

ここで例として、 $t_8 = 1000$ °C、600°C に対して前式(4-36)を代入し、 $\Delta t_1 = 15$ °C、 $\Delta t_2 = 30$ °Cを基準にとった η_{th} の差として図4.2.2(各記号は図4.2.1と同じ)に示すが、物性値から直接計算した結果(図中実線)と×印とは良く一致し、より複雑な二段再生サイクルの場合にも、各タービン入口圧力、温度の変化による Δt_1 、 Δt_2 の影響が式の上で容易に判断し得る。

4.6 最適再熱圧力,温度

P1=400ata に対して

既に第3章節3.5.4で明らかにしたように,最大の熱効率を得るための最適再熱圧力と 各タービン仕事の総和を最大とする再熱圧力とは一致し,その最適再熱圧力は,流体を完全 ガスと仮定して導かれた式(3-30,31)により概略求められた。しかし,この式 は、完全ガスと仮定した結果であり、最大10 at a ほどの差異が生じる。そこで、本章においてタービン仕事を表わす精度の良い近似式を得たので、この式を用いて最適再熱圧力について検討する。

表42の C_{pT} , κ_{T} によるA· L_{T} の近似式(4-6)をタービン出口圧力が600ata まで変化したときに用いた場合の精度は、たとえばタービン入口温度 t_{8} =1000°C, 600°Cに対して図423(a), (b)に示すようにいずれもタービン出口圧力とほぼ比例関係にあり、タービン出口圧力の増加とともに、その誤差は大きくなっていく。そして、実際のA· L_{T} と本近似式によって計算したA· L_{T} , cal との関係は、 $P_{2} \ge 100$ ataに対して、タービン入口温度の如何に関わらず、次式のように表わすことが出来る。

図 4.23 P2 の変化による式(4-6)の精度

 $\mathbf{A} \cdot \mathbf{L}_{\mathrm{T}} = (1 + \kappa_{\mathrm{T}} \cdot \mathbf{P}_{2}) \cdot \mathbf{A} \cdot \mathbf{L}_{\mathrm{T}cal}$

(4 - 39)

ここで, $\kappa_{T} \Rightarrow 3 \times 10^{-4}$ ($P_{2} \ge 100 \text{ ata}$) よって再熱によるタービン仕事の総和 A・L_T, total は

 $A \cdot L_{T, total} = \sum_{n} \left(\left(1 + \kappa_{T} \cdot P_{n+1} \right) \cdot \eta_{T, n} \cdot C_{pT, n} \cdot T_{n} \left\{ 1 - \left(\frac{P_{n}}{P_{n+1}} \right)^{-m} \right\} \right)$

ここで, 添字 n は各再熱段数。

これより、タービン仕事の総和、すなわち熱効率を最大とする最適再熱圧力 $P_{R,opt}$ は ($\partial A \cdot L_{T,total} / \partial P_{n+1}$)=0から、次式を満足する P_n となる。

$$\sum_{n} \left(\eta_{\mathrm{T}, n} \cdot \mathrm{C}_{p\mathrm{T}, n} \cdot \mathrm{T}_{n} \cdot \left\{ \kappa_{\mathrm{T}} - \frac{m_{\mathrm{T}, n}}{\mathrm{P}_{n+1}} \left(\frac{\mathrm{P}_{n+1}}{\mathrm{P}_{n}} \right)^{m} \mathcal{T}_{n} - \kappa_{\mathrm{T}} \left(m_{\mathrm{T}, n} + 1 \right) \left(\frac{\mathrm{P}_{n+1}}{\mathrm{P}_{n}} \right)^{m} \mathcal{T}_{n} \right\} \right) = 0$$

$$(4 - 41)$$

一方, CO₂サイクルの再熱による効率改善は第3章355で示したように, 二段再熱以上 は余り効果がなく, 全タービン熱落差も水蒸気ランキンサイクルなどと比べ小さいので, 実 用的には一段再熱が妥当であると考えられ,以下一段再熱について記す。しかし, 二段再 熱以上でも上式(4-41)を解くことにより, 求めることはできる。

式(4-41)を一段再熱に対して解くと,

$$P_{R, opt} = m_{T,1} + m_{T,2} \sqrt{\frac{\eta_{T2} \cdot C_{pT2} \cdot T_{2} \cdot m_{T,2}}{\eta_{T1} \cdot C_{pT1} \cdot T_{1} \cdot m_{T,1}}} P_{1} m_{T,1} \cdot P_{2} m_{T,2} \left(1 + \kappa_{T} \cdot P_{R} \left(\frac{1}{m_{T,1}} \left\{ 1 - \left(\frac{P_{1}}{P_{R}} \right)^{m_{T,1}} \right\} + 1 \right) \right) \right)$$

$$(4 - 42)$$

$$T_{1} = T_{R}, \quad A \otimes \mathcal{O} \eta_{T} \stackrel{j_{1}}{\longrightarrow} \Box - \mathcal{O} \ \& A \otimes C_{pT}, \quad \kappa_{T} \Box - \mathfrak{L} \otimes \mathcal{O},$$
$$P_{R, opt} = \sqrt{P_{1} \cdot P_{2}} \cdot \stackrel{-2 m_{T}}{\longrightarrow} 1 + \kappa_{T} \cdot P_{R} \left[\frac{1}{m_{T}} \left\{ \frac{P_{1}}{P_{R}} \right\}^{m_{T}} - 1 \right\} + 1 \right] \qquad (4 - 43)$$

ここで、完全ガスとして求めた最適再熱圧力は $P_{R} = \sqrt{P_{1} \cdot P_{2}}$ (第3章式(3-31))であ り、上式中 $-2m_{T}\sqrt{1+\kappa_{T}P_{R}(\frac{1}{m_{T}}\{(\frac{P_{1}}{P_{R}})^{m_{T}}-1\}+1)}$ が、実在流体に対する補正項を意味する。 これよりまず $P_{R} = \sqrt{P_{1} \cdot P_{2}}$ より P_{R} を求め、式(4-43)の補正項に遂次代入する手法によって、谷タービン人口温度における $P_{R,opt}$ が求められる。

このようにして求めた最適再熱圧力 $P_{B, opt}$ の結 果をタービン人口温度 $t_8 =$ 再熱温度 $t_R =$ 1000℃,800℃一定で各タービン入口圧力の 変化に対して図 4.2 4に示す。即ち、タービン 入口圧力が、高い程完全ガスとして求めた (図中実線)値より大きくなり、最大10%ほ どの差異が生じる。

一方, タービン入口圧力P1が400ata以下 ではその影響は小さい(式(4-43)中の補正 項≑1)ことが明らかとなる。

図4.2.4 最適再熱圧力 P_R opt

次に,再熱温度の最適再熱圧力に及ぼす影響については,第3章節 8.5.1 で再熱温度がター ビン入口温度から低下する程減少していくことが示されたが,ここで P_1 =300ata, P_2 = 50ata,タービン入口温度 $t_8 = 600$ °C,再熱温度 t_B が500°Cの場合について式 (4-42)より求めると,補正項÷1で, $P_R = 78.8$ ata を得,実際に求めた値 (第3章図 8.2 2参照)の結果と良く一致する。つまり,再熱温度がタービン入口温度と同 じときの $P_{R,opt}$ は123ataであり,約40ata程度の低下が生じる。つまり,この場合も タービン入口圧力が400ata以下に対して次式(4-44)によって,その影響が算出出来 η_T の異なる場合も同様に式(4-44)によって求められる。

$$P_{R, opt} = m_{T_1} + m_{T_2} \frac{\eta_{T_2} \cdot C_{pT_2} \cdot m_{T_2}}{\eta_{T_1} \cdot C_{pT_1} \cdot m_{T_1}} P_1^{m_{T_1}} \cdot P_2^{m_{T_2}}$$
(4-44)

4.7 比出力,仕事比

タービンを通過する単位流量当りの比出力A·L_S,仕事比 Rは、前章式(3-15)より、 A·L_S = A·L_T - (1 - α)·A·L_C - α ·A·L_P R = L_S/L_T (3-15)

ここで、 $\alpha = \frac{A \cdot L_{C} + \Delta i_{2}}{A \cdot L_{C} + \Delta i_{1}}$, 一段再生サイクルの場合 $\alpha = 1$, すなわち, 各比出力A·L_S, 仕事比 Rは上式に式(4-6), (4-7), (4-8), (4-10), (4-11)を代入すること によって、算出し得る。P₂=50ataにおける比出力を各タービン入口圧力, 温度に対して 図425に示す。図中 $\circ \cdot \times$ 印が上式から求めたもので、実破線が直接物性値から求めたも のである。

そして、比出力を最大とする最適タービン入口圧力 $P_{1, S}$ opt は ($\partial A \cdot L_{S} / \partial P_{1}$)=0から、 非再生、一段再生サイクルに対して次式を得る。

$$P_{1,S opt} = P_2 \frac{1 - \kappa_T}{1 - 2\kappa_T} \left(1 + \varepsilon_R \right)^{\frac{1 - \kappa_T}{1 - 2\kappa_T}} \left\{ \frac{1 - 2\kappa_T}{\kappa_T} \sqrt{\frac{\kappa_T}{\kappa_T - 1}} \cdot A \cdot (1 + \varepsilon_B) \cdot 10^4 / (\gamma \cdot \eta_T \cdot \eta_P \cdot C_{pT} \cdot T_8) \right\}$$

(4 - 45)

ここで、各 $\epsilon_{\rm B}$, $\epsilon_{\rm R}$ は前節 4.5.2 で示した各圧力損失率であり、圧力損失を考慮しない場合 $\epsilon_{\rm B} = \epsilon_{\rm R} = 0_{\rm o}$

このようにして求めた $P_{1, Sopt}$ を、 $\epsilon_{B} = \epsilon_{R} = 0$ に対して図 4 2 1 中に 一点鎖線で示すが、いずれも高いタービン入口圧力で最大となり、図中二点鎖線で示した熱効率を最大とする $P_{1, opt}$ と 大きく異なっていることが分る。

次に、仕事比 Rは $\{\partial R / \partial (P_1 / P_2)\}$ < 0, ($\partial R / \partial t_8$)>0より圧力比(P_1 / P_2)が小さく、タービン入口温度 t_8 の高い程大きくなる。

同様に、上記A·L_S/A·L_Tより求められ、 P₁=300ataで $t_8=1000$ ℃、700℃ の場合二段再生(非、一段再生)に対して 各々0.81(0.90)、0.74(0.86)程度と なる(参照第3章図 3.14)。

4.8 結 言

CO2のエンタルビ,エントロビおよび熱 落差などの精度の良い近似式を用いて, サイクル特性を表わす近似式を得,各因 子の熱効率特性に及ぼす影響を示した。 要約すると次のようである。

図 4.25 比 出 力

- 1) エンタルピ,エントロピ,さらに各機械仕事および再生器の冷端末エンタルピ差を算 出する精度の良い近似式を求めた。
- 2)上の近似式に基づいてCO2サイクルの熱効率の算出式を作成し,直接物性値によらな くても算出することが可能となった。
- 8) 熱効率に及ぼす各因子の影響を式の形で表わし、熱効率に及ぼす各特性を明確に判断 出来るようになった。
- 4)前章で熱効率を最大とする最適再熱圧力が式(3-30)で概略求められることを示したが、本章でさらに精度の良い算出式(4-41)を得た。
- 5) 比出力を最大とする最適タービン入口圧力 $P_{1, S}$ opt が存在し、その値はタービン入口 温度 $t_{3} \ge 600$ C C $P_{1, S, opt} \ge 550$ at a と熱効率を最大とする最適タービン入口圧力 $P_{1, opt}$ よりはるかに大きい。

第5章 熱力学第二法則に基づく解析

5.1 緒 言

現在省エネルギ問題に対して,従来の熱力学第一法則に基づくエンタルビ計算によるエ ネルギの量的評価に加えて,熱力学第二法則に基づくエクセルギを用いた質的評価の必要性 が認識されつつある。。

一方,熱機関における従来のサイクル論では,熱力学第二法則の適用による原因別損失分 析について論じたものは少なく,この面での見直しが必要とされている。

本章ではこのエクセルギの概念を用いて、CO2サイクルの質的評価をおこない、サイクル 効率悪化の原因となる非可逆損失の所在および大きさを明確にし、かつ各成分機器の損失率 が全体損失率に影響する程度を表わす関係式を導き、今後の熱効率改善への判断資料とする。

5.2 エクセルギ線図

ントロピ。

ー般に、流れ系における二点<1、2>において作業流体の持つ最大仕事 Lmaxは⁽³⁹⁾、 Lmax = $i_1 - i_2 - T_0(s_1 - s_2)$ (5-1) ここで、 i_1 、 i_2 および s_1 、 s_2 は流動系の点<1、2>の作業流体の持つエンタルピ、エ

作業流体(状態値: i_1 , s_1)が外界状態(i_0 , s_0)に対して持つ最大仕事は,

 $L_{max} = i_1 - i_0 - T_0(s_1 - s_0) \equiv x \rho \pi v \pi e$ (5-2) 二点 <1, 2 >において,実際に得られる仕事は L = $i_1 - i_2$,よって,入口,出口の状態 <1,2 >に対して非可逆変化が原因となって発生する仕事の損失 LWは,

 $LW = L_{max} - L = T_0 (s_2 - s_1) = T_0 \cdot \triangle s$ (5-3)

ここでCO2に対して求めた流れ系の e - S線図[★](ただし,外界基準状態として大気圧, 20℃, $i_0 = 191.97$ kcal/kg, $s_0 = 1.1566$ kcal/kgK)を図 5.1 に示す。この線図よ り各最大仕事(エクセルギ)の大きさおよび非可逆損失 To・ Δs が容易に算出することがで きる。

また,二段再生液相圧縮サイクル(第3章図31,第4章図41に相当)の e - S線図例 を図52に示すが, t - S線図(図31), i - S線図(図41)に比べ, タービン出口側

^{*} このエクセル+線図よりある圧力,温度における物質の持つ最大仕事(質的)の大きさが直ちに判断し得る。従 来の*i*-S線図に比べ温度一定に対して圧力の低下によってエクセルギが大きく減少するのが特徴といえる。

-93-

の点4,8,5のエクセルギが高圧側の点6,7,2よりそれ ぞれ低いことが指摘し得る。つまり作業物質の持つエンタ ルビや温度は点4,8,5は各々点6,7,2の状態より高い が,圧力が低いために物質の無秩序性を示す尺度として のエントロビが大であり,その質的な価値すなわち保有す るエクセルギは低い。

5.3 各エクセルギ損失(第二種損失*),効率の算出式

5.3.1 加熱器

加熱器におけるエクセルギ損失(第二種損失)LW_H は 従来のボイラ形式を考えた場合,次の三つの原因別損失に 分類できる。つまり,投入燃料の保有する化学エクセルギ に対して:

(1) 燃料の燃焼過程で生じる非可逆変化に基づく損失

(ii) 加熱器(熱交換器)の伝熱過程で生じる非可逆過程による損失

(III) 有効に利用されないでそのまま煙突から排出される排ガス熱量としての損失(未利用 エクセルギ)

である。

しかし、ここでボイラ効率 $\eta_B = 100\%$ すなわち、加熱器で正味吸収した熱量そのものを 入熱量とすると、上記三つの損失原因のうち(iii) は除外される。

次に,液体燃料のもつ化学エクセルギ Er(kcal/kg)⁽¹⁹⁾は、

 $E_F \approx 0.975 \cdot H_h \approx H_e$

ここで, H_h:燃料の高位発熱量(kcal/kg)

よって,加熱器の燃料として液体燃料(例えば重油など)を想定した場合,

供給エクセルギ $E_S = 加熱器での吸収熱量Q_1$ (5-5)

すなわち,加熱器での第二種損失 LW_H(燃焼損失+伝熱損失)は

 $LW_{H} = E_{S} - (E_{8} - E_{6})$

(5-6)

(5-4)

一方,加熱器における熱量(ボイラ)効率は上記仮定により100%で,加熱器のエクセルギ

* 石谷 によりLW=Lost Work=第二種損失と名づけられ、従来のエンタルビバランスによる損 失を第一種損失として区別される。 効率(有効率) $\eta_{\rm HE}$ を次のように定義する。

 $\eta_{\rm HE} = (E_8 - E_6) / E_8$ (5-7)

ここで式(5-2)よりE₈-E₆= $h_8-h_6-T_0(s_8-s_6)$ を上式に代入して、

 $\eta_{\rm HE} = \{ i_{8} - i_{6} - T_{0} (s_{8} - s_{0}) \} / E_{\rm S} = \{ Q_{1} - T_{0} (s_{8} - s_{0}) \} / Q_{1}$

$$= 1 - \frac{T_{0}(s_{8} - s_{6})}{E_{8}}$$
 (5-8)

5.3.2 再 生 器

高温再生器(R2)の高,低圧側におけるエクセルギ変化は式(5-2)より,

高圧側: $E_6 - E_7 = i_6 - i_7 - T_0(s_6 - s_7)$

低圧側: $E_4 - E_8 = i_4 - i_8 - T_0(s_4 - s_8)$

よって高温再生器の伝熱過程の温度差が原因となって発生する第二種損失 LW_{R2} は:

 $LW_{R_{2}} = (E_{4} - E_{8}) - (E_{6} - E_{7}) = T_{0} \{ (s_{6} - s_{7}) - (s_{4} - s_{8}) \} (5 - 9)$ エクセルギ効率 $\eta_{R_{2}} E d :$

$$\eta_{R_{2}E} = (E_{6} - E_{7}) / (E_{4} - E_{8})$$
 (5-10)

低温再生器(R1)に対しても同様に,

 $LW_{R_{1}} = (E_{8} - E_{5}) - \alpha (E_{7} - E_{2}) = T_{0} \{ \alpha (s_{7} - s_{2}) - (s_{8} - s_{5}) \}$ (5-11) $\eta_{R_{1}E} = \alpha \cdot (E_{7} - E_{2}) / (E_{8} - E_{5})$ (5-12)

5.3.3 タービン

タービンの第二種損失 L W_T は, タービン入口, 出口でのエクセルギを E₈, E₄ とし, タービン仕事 A·L_T = $i_8 - i_4$ より,

 $LW_{T} = (E_{3} - E_{4}) - A \cdot L_{T} = i_{3} - i_{4} - T_{0}(s_{3} - s_{4}) - A \cdot L_{T} = T_{0}(s_{4} - s_{3})$ (5-13) \$\frac{1}{3}\$ \$\tau_{7}\$,

 $\eta_{\mathrm{TE}} = \mathrm{A} \cdot \mathrm{L}_{\mathrm{T}} / (\mathrm{E}_{3} - \mathrm{E}_{4})$

5.3.4 圧 縮 機

圧縮機 W_C によって圧縮機入口エクセルギ E_5 が出口エクセルギ E_7 まで増加し、その非可逆変化による第二種損失 L W_C は、

$$LW_{C} = (1 - \alpha) \cdot \{A \cdot L_{C} - (E_{7} - E_{5})\}$$
(5-15)

エクセルギ効率 η_{CE} は,

$$\eta_{\rm CE} = (E_7 - E_5) / A \cdot L_{\rm C} = 1 - T_0 (s_7 - s_5) / A \cdot L_{\rm C}$$
(5-16)

-95-

5.3.5 ポンプ

圧縮機の場合と同様、その第二種損失 LW_R およびエクセルギ効率 η_{PE} は、

$LW_{P} = \alpha \cdot \{A \cdot L_{P} - (E_{2} - E_{1})\}$	(5-17)

 $\eta_{\rm PE} = (E_2 - E_1) / A \cdot L_{\rm P} = 1 - T_0 (s_2 / s_1) / A \cdot L_{\rm P}$ (5-18)

5.3.6 凝 縮 器

凝縮器において点 5 から点 1 までのエクセルギは,未利用エネルギとして系外に捨てられ, これを未利用エクセルギ Ex と名付け⁽¹⁹⁾,

$$E_{x} = \alpha \cdot (E_{5} - E_{1})$$
 (5-19)

5.3.7 サイクル全体

サイクル全体のエクセルギおよび熱量バランスは,

$$E_{S} = A \cdot L_{T} - (1 - \alpha) \cdot A \cdot L_{C} - \alpha \cdot A \cdot L_{P} + \Sigma (LW) + E_{X}$$

$$Q_{01} = A \cdot L_{T} - (1 - \alpha) \cdot A \cdot L_{C} - \alpha \cdot A \cdot L_{P} + \alpha Q_{2}$$

$$(5 - 20)$$

式(5-5)から,

 $\alpha Q_2 = \Sigma (LW) + E_X$ (5-21)

サイクルのエクセルギ効率nth.Eは,

$$\eta_{th} = \{ A \cdot L_{T} (1-\alpha) \cdot A \cdot L_{C} - \alpha \cdot A \cdot L_{P} \} / E_{S} = \{ E_{S} - \Sigma (LW) - E_{X} \} / E_{S}$$
$$= 1 - \{ \Sigma (LW) + E_{X} \} / E_{S}$$
(5-22)

式(5-20), (5-21)より,

 $\eta_{th, E} = (Q_1 - \alpha Q_2) / E_s = 1 - \alpha Q_2 / Q_1 = \eta_{th}$ (5-23) すなわち,加熱器(ボイラ)効率を100%とすると、サイクルのエクセルギ効率 $\eta_{th, E}$ とその熱量効率(従来のサイクル効率) η_{th} は等しくなる。

5.4 エクセルギによるサイクル特性

以上の各算出式に基づいて、第二種損失LW およびエクセルギ効率 η_E がサイクル上の各因子によってどの様に影響をうけるかを次に示し、効率悪化への原因特性について明らかにする。ただし、計算の基準状態としては凝縮器圧力における飽和液の値(たとえば $P_2=50$ ataのとき $h_0 = 127.21$ kcal/kg、 $\delta_0 = 0.769$ kcal/kg°)を採用する。

5.4.1 タービン入口温度 t₃ の影響

タービン入口圧力 $P_1=200$ ata一定のとき、タービン入口温度 t_8 の変化による供給エクセルギ E_8 (= Q_1),各機械仕事 $A \cdot L_{T, C, P}$,放熱量 αQ_2 および凝縮器における未利用

-96-

エクセルギExの値を図 5.3(a)に示す。

 t_8 の増加とともに、 $E_8(=Q_1)$, A·L_T および有効出力A·L_S は同じ割合(6~7kcal/kg/ 100°C)で増大する。一方,放熱量 αQ_2 (図中破線)は t_8 に関係なく一定で、3431kcal /kgもの熱量を有しているのに、そのエクセルギ(未利用エクセルギE_X)はほぼ0に等しく、 質的にはもはや何の価値もないことになる。すなわち凝縮器に捨てる熱量は効率悪化への原 因ではないことが明らかとなる。式(5-21)より、 $\alpha Q_2 = \Sigma(LW) + E_X \Rightarrow \Sigma(LW)$ であ り、量的なエンタルビバランスによる第一種損失 αQ_2 は、各機器の非可逆過程に基づく第 二種損失の結果生じたものとなる。

(c) 各エクセルギ効率

図 5.3 タービン入口温度 t₃ の影響

次に各機器の非可逆損失(第二種損失)を入力エクセルギE_Sで除したLW/E_Sを図 5.3 (b)に,各エクセルギ効率を同図(c)に示す。

ここで、図 5.3(b)、(c)に示すサイクルのエクセルギ効率 $\eta_{th,E}$ は式(5-22)の関係よりサイクルの熱量効率 η_{th} と等しくなることを断わっておく。

また、図(c)には従来のエンタルビ計算による高、低温再生器(R2,R1)の熱量効率(ただし、 $\eta_{R2} = (i_6 - i_7)/(i_4 - i_7), \eta_{R1} = \alpha (i_7 - i_2)/(i_8 - \alpha \cdot i_2)$ と定義) も参考に破線で示す。

まず、図(b)よりタービン入口温度 t_8 の増加(400→1000℃)に伴い、第二種損失合計の E_8 に占める割合が 62%から 38.5% と大きく減少し、逆にサイクルのエクセルギ効率 η_{th} E は 38%から 61.5%へと大きく改善できる。

そして、原因箇所別損失として加熱器がもっとも大きな割合、全損失中約70~80%を 占めるとともに、タービン入口温度増加による効率改善への主因が加熱器の非可逆損失減少 に存在することが明らかとなる。またそのエクセルギ効率 $\eta_{H,E}$ も $t_8=400,1000$ ℃に 対して約50%、74%と $\eta_B=100$ %に比し悪く、 t_8 の増加とともに増大していく。

次に、高温再生器 R2ではタービン入口温度の増加とともに熱交換量が増大し、 t_8 が400 ℃から1000℃に増加すると、第二種損失割合(LW_{R2}/E₈)も1%から6%に増大し、 $全エクセルギ損失中の約\frac{1}{6}(16%)を占める。しかし、図(c)よりそのエクセルギ効率7_{R2Ē}$ $は90%から95%と逆に増大する。つまり、<math>t_8$ の増加によってその変換効率は改善できる が、再生器の占める役割が増してくるので第二種損失割合は増大する結果となる。そこで、 この解決として、さらに圧縮機を付加する三段再生サイクルの採用が提案出来る(後節5.6 参照)。

低温再生器, 圧縮機, ポンプにおけるエクセルギ損失の絶対値は, タービン入口温度の変化に関係なく一定(図(c)中の η_{R1E} , η_{CE} , η_{PE} も一定)である。しかし,入力エクセルギ E_S がタービン入口温度の増加とともに増大していくので,その割合は減少する。また両再 生器におけるエクセルギ効率 η_{R1E} , η_{R2E} は,熱量効率 η_{R1} , η_{R2} (図 5.5 中の破線,た だし $\eta_{R1} = a \cdot (h_7 - h_2) / (i_8 - a \cdot i_2), \eta_{R2} = (i_6 - i_7) / (i_4 - i_7)$ と定義) に比べいずれも高い。

5.4.2 タービン入口圧力 P1 の影響

タービン入口温度を100℃一定として前項と同様の図を図 5.4(a), (b), (c)に示す。これより、タービン入口圧力 P_1 が η_{thE} (または η_{th})に及ぼす影響の小さいことが分り、400

-98 -

図 5.4 タービン入口圧力 P₁の影響

ata付近で極大値をとる。

個々の原因別損失をみると、加熱器における第二種損失がもっとも大きい割合を占め、P₁ = 200 ata, 600 ata に対して各々26.28%と全損失中の約70%を占め,効率悪化の主 因を成す。一方、7_{HE}は約73%と一定で、タービン入口圧力の増加は加熱器およびサイク ルのエクセルギ効率にほとんど影響を及ぼさないことが明らかとなる。

しかし、高温再生器 R2の第二種損失割合は P1=200ataから600ataに増大させると、約6%から1%に減少し、その変化がもっとも顕著である。これはタービン入口圧力の増加 とともに、タービン出口温度 t_4 が低下し、高温再生器の占める役割が小さくなっていくた めである。しかし、そのエクセルギ効率 η_{R_2E} は、タービン入口圧力の増加とともに高くな る。 η_{R1E} はタービン入口圧力が増加すると増大するが、これは t_5 一定に対して t_8 の温度 が増加していくためと考えられる。

5.4.3 凝縮器圧力P2の影響

 $P_1=300$ at a, $t_8=600$ ℃ 一定のとき, P_2 と加熱量 Q_{01} (= E_S), 凝縮器 での放熱量

Q2および各機械仕事との関係を図 5.5(a)に示す。これによると,P2 が 30 ata から 70 ataに増加すると,Qol (=Es)は86kcal/kgから69kcal/kg,各タービン,圧縮機仕 事は各々 68→47 kcal/kg, 16→8 kcal/kgと減少し,比出力A·Ls も 48→31 kcal/ kgへと減少する。

次に、 P_2 のLWおよび $\eta_{th, E}$ に及ぼす影響を図 5.5(b)、(c)に示す。これより、 P_2 の変化 は高温再生器 R 2のエクセルギ損失 LW R 2 および凝縮器における未利用エクセルギ Ex 損失 にもっとも影響してくることが明らかとなる。つまり,P2が30ataから70ata に増加

(b) 各エクセルギ損失割合

-100 -
すると、高温再生器の第二種損失割合 LWR2/Esおよび η_{R_2E} は各々約0→2%、95→90%と変化する。この非可逆損失割合の増大は P_1 の変化の場合と同様、 P_2 の増加に伴いタービン出口温度 t_4 が上昇し、高温再生器の果す役割が増大(熱交換器の増大)するためである。

また, 凝縮器での未利用エクセルギ E_X は P_1 の増加とともに t_5 の温度が上昇するので、ほ G_5 のから 1.73 kcal kg (2.5%)へと増大する。

その熱量効率 η_{R_2} (図(c)中破線)は P_2 が30から70ataに増加すると、17%から68 %へと増大するが、 $\eta_{R_2 E}$ は95%から90%へと逆に減少し、熱量効率 η_{R_2} は向上しても、 そのエクセルギ効率 $\eta_{R_2 E}$ は低下する。すなわち、熱力学第一法則に基づく熱量効率 η_R で は、熱交換器内の各流体の温度レベルが異なっていても、各高温側、低温側出、入口のエン タルビ差さえ等しければ、同一の η_R を示す。しかし熱交換器のエクセルギ効率(変換率) η_{RE} を考えれば、図5.6において、点①、②間のエクセルギ差△ED③は、

$$\Delta E_{\text{D}} = E_{1} - E_{2} = i_{1} - i_{2} - T_{0} (s_{1} - s_{2})$$

$$= q_{12} - l_{t 12} - T_{0} (s_{1} - s_{2})$$

$$= \int_{1}^{2} \frac{T - T_{0}}{T} dq - l_{t 12}$$

ここで,過程①②,③④に対して各等圧変化と仮定し,外 部仕事はない($\ell_{t12}=0$)とすると,

$$\Delta E_{\text{D}} = \int_{1}^{2} \frac{\text{T}-\text{T}_{0}}{\text{T}} dq = \int_{1}^{2} \frac{\text{T}-\text{T}_{0}}{\text{T}} \cdot \text{C} \cdot \text{G} \cdot d\text{T}$$
(5-24)

図 5.6 再生器内の温度変化

$$G_h \cdot C_h \int_2^1 \frac{T - T_0}{T} dT = G_c \cdot C_c \int_3^4 \frac{T - T_0}{T} dq + LW$$

$$(5-25)$$

(5-23)

すなわち,エクセルギ効率刀_{RE}は,

よって,

$$\eta_{\rm RE} = \frac{\triangle E_{(3)}}{\triangle E_{(2)}} = \frac{G_c \cdot C_c \int_{-8}^{4} \frac{T - T_0}{T} dT}{G_h \cdot C_h \int_{-2}^{1} \frac{T - T_0}{T} dT} = \frac{G_c \cdot C_c [(T_4 - T_8) - T_0 \ln \frac{T_4}{T_8}]}{G_h \cdot C_h [(T_1 - T_2) - T_0 \ln \frac{T_1}{T_2}]}$$
(5-26)

ここで、放熱損失を無視すると、 $G_h \cdot C_h(T_1 - T_2) = G_C C_C(T_4 - T_8)$ より、

-101 -

$$\eta_{\rm RE} = \frac{1 - \frac{T_0 \ln \frac{T_4}{T_8}}{T_4 - T_8}}{1 - \frac{T_0 \ln \frac{T_2}{T_1}}{T_1 - T_2}} = \frac{1 - \frac{T_0}{T_{cm}}}{1 - \frac{T_0}{T_{hm}}}$$

 $c < \mathcal{C}, T_{cm} = \frac{T_4 - T_3}{\ln \frac{T_4}{T_3}}, T_{hm} = \frac{T_1 - T_2}{\ln \frac{T_1}{T_2}}$

すなわち、熱交換器のエクセルギ効率 $\eta_{R,E}$ には両流体の温度レベル Th_m , T_{cm} が関係する。 そこで、さらに η_{RE} の高い設計の条件を考えると、再生器冷端末温度差へtを導入して、

$$T_{2} - T_{3} = \Delta t, \ G_{h}C_{h}(T_{1} - T_{2}) = G_{c}C_{c}(T_{4} - T_{3}) \pm b, \ T_{4} = \frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{1} - T_{3})$$

$$\Delta t) + T_{3} \notin \mathcal{K}(5-26) \ltimes \mathcal{K} \land \cup \mathcal{I},$$

$$1 - \frac{W_{c}C_{c}}{W_{h}C_{h}} \cdot \frac{T_{0}}{(\frac{T_{1}}{T_{3}} - 1 - \frac{\Delta t}{T_{3}}) \cdot T_{3}} \cdot \ln(1 + \frac{W_{h}C_{h}}{W_{c}C_{c}}(\frac{T_{1}}{T_{3}} - 1 - \frac{\Delta t}{T_{3}}))$$

$$\eta_{RE} = \frac{1 - \frac{T_{0}}{(\frac{T_{1}}{T_{3}} - 1 - \frac{\Delta t}{T_{3}}) \cdot T_{3}}}{(\frac{T_{1}}{T_{3}} - 1 - \frac{\Delta t}{T_{3}}) \cdot T_{3}} \cdot \ln \frac{\frac{T_{1}}{T_{3}}}{1 + \frac{\Delta t}{T_{3}}}$$

$$(5-28)$$

この結果をT₀=29315K一定, t₃=20℃, 50℃の例で, 図 5.7(a), (b)に示す。つまり, ある条件においてη_{RE}の最小値が存在し, 必ずしも高温側入口温度 t₁ を上げてもη_{RE}

(a) T₈=T₀=293.15Kの場合

(b) T₈=323.15Kの場合

(5-27)

G. C.

図 5.7 再生器のエクセルギ効率

-102 -

は改善されないことになる。

そこで,次の近似式を式(5-28)に代入して,

$$\frac{T_{1} - T_{2}}{\ln \frac{T_{1}}{T_{2}}} \stackrel{=}{=} \frac{T_{1} + T_{2}}{2}, \quad \frac{T_{4} - T_{8}}{\ln \frac{T_{4}}{T_{8}}} \stackrel{=}{=} \frac{T_{4} + T_{8}}{2} \quad (5 - 29)$$

$$\eta_{\rm RE} = \frac{1 - \frac{T_0}{T_{cm}}}{1 - \frac{T_0}{T_{hm}}} = \frac{1 - \frac{2 T_0}{2 T_3 + \frac{G_h C_h}{G_c C_c} (T_1 - T_3 - \triangle t)}}{1 - \frac{2 T_0}{T_1 + T_3 + \triangle t}}$$
(5-30)

変形して,

$$\eta_{\rm RE} = \frac{(1+\frac{\Delta t}{T_3})(2\cdot\frac{G_cC_c}{G_hC_h}-2\frac{G_cC_c}{G_hC_h}\cdot\frac{T_0}{T_3}-1-\frac{\Delta t}{T_3})(\frac{T_3}{T_1}+\frac{1}{1+\frac{\Delta t}{T_3}})(\frac{T_3}{T_1}+\frac{1}{2\frac{G_cC_c}{G_hC_h}-2\frac{G_cC_c}{G_hC_h}\cdot\frac{T_0}{T_3}-1-\frac{\Delta t}{T_3}})}{(2\frac{G_cC_c}{G_hC_h}-1-\frac{\Delta t}{T_3})(1+\frac{\Delta t}{T_3}-\frac{2T_0}{T_3})(\frac{T_3}{T_1}+\frac{1}{2\frac{G_cC_c}{G_hC_h}-1-\frac{\Delta t}{T_3}})(\frac{T_3}{T_1}+\frac{1}{2\frac{G_cC_c}{G_hC_h}-1-\frac{\Delta t}{T_3}})(\frac{T_3}{T_1}+\frac{1}{1+\frac{\Delta t}{T_3}-\frac{2T_0}{T_3}})$$

そと結果,

$$\frac{GeCo}{G_{h}C_{h}} > 1 + \frac{\frac{\Delta L}{T_{8}}}{1 - \frac{T_{0}}{T_{8}}}$$
のとき,極小 η_{RE} が存在し,その最小 η_{RE} の値は式(5-31)より次

式を満足するT1値である。

$$\frac{G_{h}C_{h}}{G_{c}C_{c}}T_{0}\left(1-\frac{G_{h}C_{h}}{G_{c}C_{c}}\right)\cdot(T_{1})^{2}+2\cdot T_{0}\cdot\frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{3}+\Delta t)-T_{3}+\Delta t\right)\cdot(T_{1})+T_{0}\cdot\left\{4T_{3}\frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{3}+\Delta t)-T_{0}\cdot\left(T_{1}\right)+T_{0}\cdot\left\{4T_{3}\frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{3}+\Delta t)-T_{0}\cdot\left(T_{1}\right)+T_{0}\cdot\left\{4T_{3}\frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{3}+\Delta t)-T_{0}\cdot\left(T_{1}\right)+T_{0}\cdot\left\{4T_{3}\frac{G_{h}C_{h}}{G_{c}C_{c}}(T_{3}+\Delta t)-T_{0}\cdot\left(T_{1}\right)+T_{$$

$$+ \Delta t) - 4T_0 \cdot \frac{G_h C_h}{G_c C_c} (T_3 + \Delta t) - 4T_3^2 + 4T_0 T_3 + \frac{G_h C_h}{G_c C_c} (T_3 + \Delta t)^2 - (\frac{G_h C_h}{G_c C_c})^2 \cdot (T_3 + \Delta t) \} = 0$$

$$(5-32)$$

$$\frac{G_{c}C_{c}}{G_{h}C_{h}} \leq 1 + \frac{\Delta t}{T_{8}} \quad \text{observed} observed constraints} \\ 1 - \frac{T_{0}}{T_{8}} \quad \text{observed} observed constraints}$$

大なる方が刃Eは高い。

さらに、 T_1 、 T_8 、 Δt が一定の場合 $\frac{G_e C_e}{G_h C_h}$ が1に近い程、 η_E の高い設計ができる。これは本二段再生サイクル採用の理由に値する。

(ただしT1 + T₈ > △T₀)より, (T1+T₈)の大なる方がη_{RE}は高いことになる。つま り,高温再生器 R2において,タービン入口圧力およびP2の増加とともにη_{R2E}が変化する のは,上の結果より説明し得,また熱交換器におけるエクセルギ効率(変換率)の高い設計 への判断が可能となる。

5.4.4 再生器冷端末温度差 △ t₁, △ t₂ の影響

P1=300ata, $t_8 = 600 \degree$, P2=50ataの場合の Δt_1 , $\Delta t_2 \ge Q_1$, Q_2 , 各機械 仕事との関係を各々図 5.8(a), 5.9(a)に示す。これより, $Q_1(=E_S)$ および αQ_2 は, Δt_1 = 15 \degree -定の場合 Δt_2 が0から100 \degree に増大すると, 各々 72→98kcal/kg ≥ 36%, 34→54kcal/kg ≥ 58.8%の増加がみられるのに対して, Δt_1 の0→100 \degree の増大に対 して $Q_1(=E_S)$ が9.8%の減少, αQ_2 が10%の増加を示し, $\eta_{th,E}$ に及ぼす影響は Δt_1 の変化の方が Δt_2 の同一温度変化によるよりも大きくなる。

また Δt_1 , Δt_2 の各エクセルギ損失割合および η_{th} E に及ぼす影響を図 5.8(b), (c), 図 5.9(b), (c)に示すが, Δt_1 , Δt_2 の変化は両再生器の損失割合にもっとも影響してくることが分る。

(a)

(b) 各エクセルギ損失割合

図 5.8 △ t1 の影響

-104 -

さらに、 Δt_1 の増加に対して未利用エクセルギ E_X の割合が増大するが、これは Δt_1 すなわち凝縮器入口温度 t_5 の増大にともない低圧側低温再生器出口におけるエクセルギが増大するためと考えられる。

(b) 各エクセルギ損失割合

図 5.9 △ t 2 の 影響

5.4.5 各機械効率 $\eta_{\rm T}$, $\eta_{\rm C}$ の影響

 $P_1 = 300 \text{ at } a$, $t_8 = 600 \text{ C}$, $P_2 = 50 \text{ at } a - \varpi \text{ b } \text{ b } \tau$, $\eta_C \text{ c } c \text{ b } \text{ c } A$ 機械仕事, αQ_2 , E_X との関係を図 5.10(a), 5.11(a) に, 各エクセルギ損失割合およびエクセルギ効率 に及ぼす影響を同図(b), (c) に示す。これより、 η_T の方が η_C よりサイクルのエクセルギ効率 改善への影響が大きく、 η_T の変化に対してタービンの損失割合およびタービンエクセルギ 効率 η_{TE} とが大きく変化し(たとえば $\eta_T = 50 \rightarrow 100\%$ に対し(LW_T/E_S) = 22 $\rightarrow 0\%$, $\eta_{TE} = 71 \sim 100\%$), 高温再生器の損失割合もその影響でタービン出口温度の変化をも たらし、 η_T の悪化とともにわずか増大する。一方、 η_C の悪化に対しても同様に(LW_C /E_S)がもっとも大きく増加し η_{CE} も悪化するが、 $\eta_{th,E}$ (= η_{th})に及ぼす影響は同 図(b)より、 η_T による程大きくないことが明らかとなる。

5.5 各成分機器の損失率と全体の損失率との関係

各成分機器の第二種損失が, サイクル全体の効率 $\eta_{th,E}$ または η_{th} にどのように影響

するかは前節式(5-22), すなわち $\eta_{th,E}(=\eta_{th})=1-\frac{\Sigma(LW)+E_X}{E_S}$ の関係より明らかとなった。一方,各成分機器のエクセルギ効率 η_E が全体の効率改善にどの程度寄与するかは定かでない。そこで、この関係について明らかにする。

前節 5.3 において,各第二種損失LWの算出式を示したが,これを各機器の入力エクセル ギ値で除した次の無次元値 *l w*を導入し,

$$(lw)_{\rm H} = \frac{(LW)_{\rm H}}{E_{\rm S}} = 1 - \frac{E_{\rm S} - E_{\rm G}}{E_{\rm S}} = 1 - \eta_{\rm H, E}$$

 $(lw)_{\rm T} = \frac{(LW)_{\rm T}}{E_{\rm S} - E_{\rm G}} = 1 - \frac{A \cdot L_{\rm T}}{E_{\rm S} - E_{\rm G}} = 1 - \eta_{\rm T, E}$

$$(lw)_{\rm C} = \frac{(LW)_{\rm C}}{(1-\alpha)_{\rm A}\cdot_{\rm LC}} = 1 - \frac{E_{\rm 7}-E_{\rm 5}}{A\cdot_{\rm LC}} = 1 - \eta_{\rm C, E}$$

$$(lw)_{R2} = \frac{(LW)_{R2}}{E_4 - E_8} = 1 - \frac{E_8 - E_7}{E_4 - E_8} = 1 - \eta_{R2, E}$$

(5-33)

$$(lw)_{R1} = \frac{(LW)_{R1}}{E_8 - E_5} = 1 - \frac{\alpha (E_7 - E_2)}{E_8 - E_5} = 1 - \eta_{R1, E}$$

$$(lw)_{\rm P} = \frac{(LW)_{\rm P}}{\alpha \, {\rm A} \cdot {\rm L}_{\rm P}} = 1 - \frac{{\rm E}_2 - {\rm E}_1}{{\rm A} \cdot {\rm L}_{\rm P}} = 1 - \eta_{\rm P, E}$$

$$(e_X) = \frac{E_X}{\alpha E_5} = 1 - \frac{E_1}{E_5} = 1 - \eta_{X, B}$$

上式より、次の関係を得る。

$$\frac{\Sigma'(LW) + E_X}{E_S} = 1 \cdot (lw)_H + \frac{E_3 - E_4}{E_S} \cdot (lw)_T + \frac{(1 - \alpha)A \cdot L_C}{E_S} \cdot (lw)_C + \frac{E_4 - E_2}{E_S} (lw)_{B2}$$

$$+\frac{\mathbf{E}_{8}-\mathbf{E}_{5}}{\mathbf{E}_{8}}\cdot(lw)_{\mathrm{R}1}+\frac{\alpha\mathbf{A}\cdot\mathbf{L}_{\mathrm{P}}}{\mathbf{E}_{8}}\cdot(lw)_{\mathrm{P}}+\frac{\alpha\mathbf{E}_{5}}{\mathbf{E}_{8}}(e_{\mathrm{X}})=\mathcal{L}(\mathbf{K}_{\mathrm{E}}\{(lw)+e_{\mathrm{X}}\})$$

= $\sum \{K_E \cdot (1 - \eta_E)\} = \sum \{K_E \cdot (\frac{1}{4} + \sum_{E_S} (1 - \eta_E)\}$ (5-34) す なわち,全体の損失率 $\frac{\sum (LW) + E_X}{E_S} (= 1 - \eta_{th,E})$ と各成分機器の損失率 $\ell_w, \ell_X (= 1 - \eta_E)$ との関係は上式で表わされ, K_E がその寄与度を示す大切な特性値を意味する。 ここで、谷機器のエクセルギ効率 η_E ,および $\frac{LW}{E_S}, \frac{E_X}{E_S} (式(5 - 34))$ における(各 K_E) × (損失率)および η_E)は前節で詳しく示した。 そこで、 $P_1 = 250 \text{ ata}$, $t_8 = 600$ °C, $P_2 = 50 \text{ ata}$ の場合についてそれらの関係を図 5.1 2(a), (b)に示す。図(a)は二段再生サイクル, (b)が一段再生サイクルに対するものであり、 実線が各機器の損失率,一点鎖線が全体への寄与度 K_E ,二点鎖線が全体の効率悪化への損 失率 ($\frac{LW}{E_S}$)を表わす。

図 5.12 各成分機器の損失率と全体損失割合との関係

これより,各成分機器単体の損失率は加熱器,再生器,ボンブ,圧縮機,タービンの順に大きい(参照前節各図(c)の(1- η_E)に相当)が,その全体損失率に寄与する程度K_Eは,加熱器の次にタービン,再生器,圧縮機,ボンブの順となることが明らかとなる。たとえば、二段再生サイクルにおけるポンプを考えると,その損失率は 0.1 4 と加熱器,低温再生器に次いで大きいが,寄与度K_Eは 0.059と最も低く,その結果全体に占める損失率($\frac{LW_P}{E_S}$)は 0.008と小さい。つまり,ポンプ自体の損失率を努力して減少させてもその寄与度K_Eが小さく,全体の効率改善には大して貢献してこないことがはっきりとする。

5.6 各CO2 サイクルの第二種損失比較

各種 CO2 サイクルに対して タービン入口圧力 200 ata, タービン入口温度 600℃一定 として求めたエクセルギ損失およびその割合 <u>LW</u> Es

て示す。)	t3 20° :	~	100.00	37.69	17.00	1.45	1.90		5.80	63,84	36.16
美したして	(e) ^d t _{im} =63,5	kcal	100.38	37.85	17.06	1.46	1.91		5.82	64.03	56.30
過流量 1 kg	0 ° C Ly	~	100.00	37.13	0.32 2.90 5.691 3.69	0.84 1.24 1.24	3.47	0.67	0,46	50.52	49.48
はタービン通	(d) $\Delta t_{\rm Ams} = 31,$ $\Delta t_{\rm Bmz} = 30,$	kcal	58.33	21.66	0.19 1.69 2.15	0.37] 0.72]1.09	2.03	0.39	0.27	29.47	28.86
¢ ca 1∕kg k	t 5.6°C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100.00	35.49	4.93 3.58	1.20	2.72	0.65	0.45	49.07	50.93
(単位」	(C) A t _{sm2} = 45 = 21.6 c	kcalkg	70.02	24.85	^{5.43} 2.51	0.84	1.90	0.46	0.31	34,36	35.66
失分析	0°C t3	2	100.00	38.02	4.02 7.76	1.25	3.02	0.68	0.45	51.21	48.79
因別損	(b) $\Delta t_{km2} = 44$ Δt_{km1} = 21.6	kcal	67.12	25.52	2.70 2.51	0.84	2.03	0.46	0.31	34.37	32.75
5.1 原	t.	20	100.00	41.20	15,00		2.03	0.79	0.54	59.62	40.38
蔌	(a) ▲t _{im} =62,0	kcal	97.33	40.10	14.60		2.03	0.77	0.53	58.03	39.30
	ata ata 55% c ^c	単位	エクセルギ	セルギ損失	セルギ損失	セルギ損失	セルギ損失	セルギ損失	器)くの ょっ ギ	損失合計 ^ セルギ	仕事
	$P_{2} = 500$ $P_{2} = 500$ $\eta_{T} = 900$ $\eta_{C} = \eta_{0} = 900$ $\eta_{C} = \eta_{0} = 900$ $\eta_{C} = \eta_{0} = 900$		熱器での供給	熟器でのエク	も器でのエク	宿機でのエク	ービンでのエク	ノブでのエク	緒器(冷却 利 用 ェ ク	エクセルギ 未利用エノ	赘
	志1		加嗪	加基	围	¥ 王	*	*	凝末	各+	쵠

-109-

まず,表中のサイクル(a),(b),(c)は第3章で示した一段,二段再生の液相圧縮サイクルおよび一段再熱の場合であり,(d)は,本節5.4.1で提案した三段再生サイクルの場合である。また(e)は従来のプレイトンサイクルを一段中間冷却,一段再熱したものである。

つまり,効率悪化の原因である第二種損失の占める大部分は加熱器,次に再生器に存在する。 すなわち,投入エネルギの約35~50%が有効に利用され,有効に利用されなかった残りの 65~50%の中の35~40%が加熱器の非可逆損失に,5~20%が再生器での非可逆損失 に費やされることになる。

また,表中のサイクル(a)と(b)を比べると,圧縮機を付加した(b)のサイクルは流量分流をお こなうことにより,再生器でのエクセルギ損失が1460kcal/kg(熱効率低下に及ぼす損 失割合は15.0%)から5.21kcal/kg(7.76%)と大巾に減少し,一方圧縮機でのエクセ ルギ損失増加は,0.84kcal/kg(その割合1.25%)と小さくその結果サイクルの効率が 40.88%から48.79%と大きく向上する。また(b)を一段再熱した(c)はタービン出口温度 の上昇より高温再生器での非可逆損失が増大する(2.70→3.49kcal/kg)が,タービン, 加熱器での非可逆損失減少につながり,熱効率も48.79%から50.93%へと向上する。 (e)は再生器での非可逆損失,冷却器での未利用エクセルギが大きく,熱効率は他サイクル に比べ劣る。(d)の三段再生サイクルは,(b)の二段再生サイクルよりさらに再生器での非可逆 損失を減少させる目的で新しく提案したものであり,その結果再生器での損失が403kcal

∧kg(6.91%)と減少し、熱効率も2.14%程向上させることが出来る。

次に,全体のエクセルギの流れを示すために,図 5.1 3 に二段再生液相圧縮サイクルのエ クセルギ流れ図を示す。図中の流れ図の線の巾がエクセルギ (有効エネルギ) (ただし基 準状態として凝縮器における圧力 50 at a,温度 1403℃をとる)およびエクセルギ損失 LWの大きさを示す。これより,サイクルにおけるエクセルギの流れの状態が明らかとなり, これまでの熱量計算に比べ原因損失の把握が容易になる。

5.7 結 言

熱力学第二法則に基づくエクセルギの手法を用いて、CO2のエクセルギ線図を作成し、二 段再生液相圧縮サイクルの質的評価をおこない、各因子の熱効率に及ぼす影響さらに各CO2 サイクルの原因別損失比較を示した。その結果を要約すると、次のようである。

(1) 全体に加熱器における非可逆損失(第二種損失)が効率悪化の主要因であり,次に再 生器における伝熱過程によって生じる非可逆損失である。

-110 -

- (2) タービン入口温度増加による熱効率向 上の主因は、加熱器の非可逆損失減少に ある。一方、タービン入口圧力の増加に よる損失減少は期待出来ない。また、高 温再生器においてタービン入口温度の増 加によってその重要性は増してくるが、 タービン入口圧力の増加によっては、逆 に減少していく。
- (3) △t1の増加に対して、低温再生器、凝 縮器での未利用エクセルギの損失の増加 が大きく、△t2の増加に対しては、高低 温再生器の損失に大きく影響してくるが、

図5.13 エクセルギの流れ図(単位kcal/kg)

ともに加熱器の非可逆損失割合の減少にはほとんど効果をもたらさない。

- (4) 7T,7Cの改善に対しては、タービン、圧縮機における非可逆損失減少が主原因で熱効率が向上し、次に高温再生器の非可逆損失減少につながり、他にはほとんど影響を及ぼさない。
- (5) 再生器の非可逆損失をへらすためには,流量分流に効果があり,タービン入口温度の上昇に伴い,三段再生サイクルが有効となる。
- (6) 一般に熱交換器の計画(低温側入口温度 T₈,冷端末温度差 $\Delta t \overline{c}$)に対してそのエ クセルギ効率 η_{RE} は両流体の水当量比 $\frac{G_c C_c}{G_h C_h} \leq 1 + \frac{\Delta t}{1 - \frac{T_0}{T_8}}$ のとき,高温側入口温度 t_1 の高い程,そのエクセルギ効率は高いが, $\frac{G_c C_c}{G_h C_h} > 1 + \frac{\Delta t}{1 - \frac{T_0}{T_8}}$ のときは必ずし

もそうでなく最適値が存在する。

(7) 各成分機器の損失率とサイクルの効率悪化への(全体)損失率との関係式(5-34) を導き,各機器のエクセルギ効率の改善が全体の効率改善にどの程度寄与するかを明確 にした。その結果,本サイクルにおける個々の損失率の全体損失率に及ぼす寄与度KE は,温度の高い機器程大きな値をとる。

第6章 結 論

第1編では今後の作業流体,CO2に関するサイクル論的研究として,まずCO2サイクルの 位置づけおよび熱効率面での優位性を示し(第2章),次にそのサイクル特性をCO2の物性 値データを用いて詳細に検討した(第3章)。またCO2の物性値の精度の良い近似式を基に そのサイクル特性を式の形で表わし,各因子の影響などについて解析した(第4章)。さらに熱 力学第二法則に基づく質的評価の手法としてエクセルギを用い,本サイクルの評価をおこな い,原因別損失を明らかにするとともに,そのエクセルギ効率の全体効率改善への寄与度を 明らかにした(第5章)。

以上の各研究の結論はすでに各章の末尾で述べたとおりであるが,総括して要約すると次のようである。

- (1) プレイトンサイクルの等価図示法をT-S線図上で示すとともに本CO2サイクルの効率向上の意味をプレイトンサイクルと比べ明らかにした。
- (2) サイクルの再生による損失改善を表わす大切な特性数 Φ (式 2 5)を定義し、その 特性を完全ガスとして解析した。これによって、サイクル条件および作業流体の相違に 対して、再生による損失改善の程度が明らかとなった。一般に温度比 τ, η_C が大きく、圧 力比 π, η_T, κ の小さい程再生による損失改善の効果が期待できる。
- (3) 液相圧縮超臨界圧サイクルについて好適と考えられる四種の作業流体(NH3,SO2, CO2,H2O)を用いて上記特性数のおよび熱効率を完全ガス,実在ガスとして検討し, CO2サイクルの再生による損失改善比が最も大きく,熱効率面での優位性を明らかにした。
- (4) CO2サイクルの一段再生および二段再生液相圧縮サイクル間で熱効率の優位となる条件式(3-12)を導き、各サイクル特性を詳細に検討した。一般に二段再生サイクルの方が3.5~7%程熱効率は高く、ともにタービン入口温度の上昇による熱効率改善効果が大きい(3~5%/100℃)。またタービン入口圧力による影響は小さいが、最適圧力が存在する。
- (5) 凝縮器圧力5 at a の増加によって熱効率は 0.6~1%程低下するが、CO2の臨界温度は t_{cr} = 31.05℃と低いので、特に寒冷地で低温の冷却水を大量に利用し得る地域が有 利である。
- (6) 再生器の設計に際しては、ヘt2よりヘt1を小さく選ぶ方が、熱効率および伝熱面積

-112 -

上有利となる。また一般にその熱貫流率は,600~1000kcal/m²h℃程度である。

- (7) CO2は水蒸気に比べその比容積が小さく、かつタービン出口圧力が水蒸気に比べ非常 に大きいので、タービンが特にコンパクトになる。ただし、その断熱熱落差は水蒸気の 約¹/₅~10程である。
- (8) 本サイクルの最適再熱圧力はタービン仕事を最大とする再熱圧力であり(式(3-28)),その値は式(4-41)によって求められ、特に一段再熱の場合式(4-44)で表わせる。一般に一段再熱によってその効率は約2~3%程改善出来るが、二段再熱以上は余りその効果は期待出来ない。
- (9) 一般に CO 2サイクルは熱効率上タービン入口圧力 200~300 at a が最適であり、
 650℃以上のタービン入口温度で従来の水蒸気ランキンサイクルより高効率が得られる。
- (10) CO2のエンタピル,エントロピの精度の良い近似式(4-1)~(4-5)を作成するとともに、各機械仕事、再生器の冷端末エンタルピ差を算出する近似式を得た。またこの近似式に基いて本CO2サイクルの解析をおこない、各因子の影響をどを式の形で表わしその影響を明瞭かつ把握し易いものとした。
- (11)熱力学第二法則に基くエクセルギの概念を用いて本サイクルの質的評価解析をおこない、原因別損失特性を明らかにした。これより、本サイクルの効率悪化の主原因は加熱器に存在し、次に再生器に存在することが分ったが、タービン入口温度増加による熱効率向上の原因は加熱器における損失減少に起因し、タービン入口圧力増加による場合はその損失減少は期待出来ない。
- (12)各成分機器の損失率とサイクル効率悪化の(全体)損失率との関係式(5-34)を導き,各機器のエクセルギ効率の改善が全体の効率改善にどの程度寄与するかを明らかにした。つまり,一般に温度の高い機器程その寄与度が大きい。

-113 -

参考文献

- (1) 内田, ボイラ研究, 150(昭50-4), 17.
- (2) 崎川.エネルギー, (昭50), 3, 日本経済新聞社.
- (3) 日本熱エネルギー技術協会,省エネルギー技術開発シンポジウム(昭53-6),1.
- (4) 伍賀,機械学会特別講演会テキスト(昭50-2),15・
- (5) B.Wood, Proc, Instn.Mech.Engrs. 184-40(1969), 713.
- (6) 石谷,小林,加藤,火力発電,16-2(昭40-2),28.
- (7) 石谷,赤川,蒸気工学(昭49),60,コロナ社.
- (8) 吉識,橋本,機講論,780-18(昭53-11),233.
- (9) T.Finkelstein, Trans, ASME, 84(1962).
- (10) 星野,川喜田,機講論,780-18(昭53-11),236.
- (11) C.Keller, R.A.Strub : Paper Nn 167 at the 7th World Power Conference, (1968), 55.
- (12) M.P.Vukalovich, V.V.Altunin, Thermophysical Properties of Carbon
 Dioxide, (1968), 4, Collet's (Publishers)LTd.
- (13) G.Angelino, Trans, ASME. 89-2 (1967), 229.
- (14) G.Angelino, Trans, ASME. 90-3 (1968), 287.
- (15) A.A.Smalko, Teploenergetika, 18-2(1971), 83.
- (16) D.P.Gokhshtein, V.L.Dekhtyarev, Teploenergetika, 18-4(1971), 36.
- (17) G.V.P. Watzel, B.W.K., 23-9(1971), 395.
- (18) H.Pfost, K.Seitz, B.W.K. 23-9(1971), 400.
- (19) 石谷, 熱管理士教本(昭52), 1, 共立出版
- (20) 石谷,中西,加治,機械の研究(昭51-10),1175.
- (21) 西川, 機誌, 79-697(昭51-12), 1163.
- (22) 谷下,工業熱力学(昭49),91, 裳華房
- (23) 佐藤, ガスタービンサイクル論, (昭47), 39.山海堂.
- (24) 中西訳,工業熱力学(昭49),498,コロナ社.
- (25) D.P. Gokhshtein, G.P. Verkhivker, Teploenergetika, 16-1 (1969), 54.
- (26) 内田, 冷凍機器 ハンドブック, (昭42), 219, 朝倉書店.

(27)山田,冷凍および空気調和,(昭41),29,養賢堂.

- (28) Central Electricity Generating Board, Modern Power Stations Practice, 8(1970), 331, Pergamon Press.
- (29) 谷下, 蒸気表, (1968), 6, 日本機械学会.
- (30) M.P.Vukalovich, V.V.Altunin, Thermophysical Properties of Carbon Dioxide, (1968), 243, Collet's (Publishers) Ltd.
- (31) 手塚,物性定数,(昭35),4,日刊工業.
- (32) 大竹他訳, 化学反応工学Ⅱ, (昭50), 70, 丸善.
- (33) J.S.Gordon, Journal of chemical and Engineering Data, 6-3(1961),
 390.
- (84) 佐藤,物性定数推算法,(昭52),223,丸善.
- (85) 谷下, 伝熱工学資料, (1966), 85, 日本機械学会.
- (36) 石谷,中西,加治,舶機講論,15(昭48-5),87.
- (37) 石谷,中西,加治,機械の研究,28-7(昭51-7),813.
- (38) 石谷,中西,加治,機械の研究,28-9(昭51-9),1051.
- (39) 柘植, 機械熱力学, (昭43), 91, 朝倉書店.
- (40) 石谷, 工学概論(增補版), (昭52), 270.
- (41) 石谷, 第13回日本伝熱 シンポ講論, (昭51-4), 445.

第2編 動力発生プラントの実証的研究

第2編の記号

第2編に用いる主な記号を以下に述べる。これ以外については各々文中において説明する。

- A 仕事の熱当量
- B 各物性値の係数(式(4-5)~(4-8)参照)
- b ブロワ出口羽根巾
- C_N ノズル周速度
- C₀ ノズル噴出速度
- C_P 定圧比熱
- D_T タービンノズル間距離
- d_B ブロワの外径
- F_N ノズル断面積
- G 流 量
- GL タービン洩れ量
- G(s) 伝達関数
- g 重力加速度
- Hadi 断熱熱落差
- H 長さ当りの熱伝達率
- I, i $x > y \wedge r'$
- J 熱の仕事当量
- L むだ時間,長さ,またはタービンにおける摩擦損失
- N 回転数
- P 圧 力
- △P 圧力損 失
- Q 加熱量
- QB ブロワ容積流量
- R カス定 数
- S エントロピ

8	ラブラス演算子
Т	時 定 数
t	温度または時間
u _B	ブロワ周速度
V	比 体 積
W	仕 事
α	熱 伝 達 率
r	比重量
η	効 率
θ	温 度
κ	比熱比
λ _B	ブロワの軸動力係数(無次元)
π	圧 力 比
Φ	絞り係数(式(5-9)参照)
arphi	流量係数(無次元)
ψ_{B}	プロワの圧力係数(無次元)
ω	角速度
Π	慣性モーメント

添字その他

a d B	断煮	、変	化
В	ブ		ワ
B _M	ブロ	ヮŦ	均值
f	最終	を整定	已值
G	流		皇
N)	ズ	ル
0	初	期	値
Р	ポ	ン	プ
Q	加	熱	皇
RH	再	生	器
S	蒸		気

Т	タービン
0	ラプラス変換した状態

無次元数

第1章緒 論

1.1 本研究の目的

CO₂を作業流体とする液相圧縮超臨界圧サイクルは、従来のプレイトンサイクルと比べ、 また水蒸気ランキンサイクルと比べてもタービン入口温度が 650℃以上で有利となることを 第1編において示した。

本編の目的は,第1編のサイクル論的研究に続いて,実用プラント開発への実証的研究と して実際に CO2による動力発生プラントを製作し,その静特性,動特性について調べ,将来 の実用化への障壁を少しても取り除くべく研究をおこなうことにある。

そのためにまずポンプ,再生器,加熱器,タービン,プロワおよび凝縮器から成る一段再 生液相圧縮超臨界圧サイクルの動力発生プラントを設計,製作し,実際に稼動することによ って動力発生を実証するとともに,運転上の諸問題および各構成機器の特性を調べ,CO2プ ラントへの基礎資料を得る。次に,動力発生プラントにおける動特性の実験を行ない,その 過渡的特性を明らかにするとともに,理論解析を行ない,将来のCO2プラントの制御系の構 成および最適制御系の計画に対する基礎資料を得ることをはかる。

1.2 従来の研究と本研究の特徴

従来, CO2動力発生ブラントの研究については,第1編で記したように,そのサイクル特性について部分的に研究され発表されたものはあるが,さらに CO2による動力発生ブラント 装置を設計,製作し,運転上の諸問題およびその静特性,動特性について研究したものはないようである。その意味で本研究は将来の CO2ブラント開発への端緒ともなるべきものであり,今後の開発への基礎資料と成し得る。

本編の研究は、次の二つの実験的および理論的研究から成る。

1) プラントの静特性に関する研究

ⅰ)動特性に関する研究

つまり, i)でCO2を作業流体とした液相圧縮超臨界圧サイクルを実現し,その確証を得るとともに,第1編のサイクル的研究のみでは確かめ得ない運転上の諸問題および各機器の特性を明らかにする。次に, jj)においてCO2プラントの最適制御を目指した各制御系への設計,計画にあたって必要となる過渡応答特性を実験および理論的に明らかにする。

各構成機器のうち、タービンは従来の軸流型式でなくピトー型式(後述、第2章23節)

-120 -

を採用した^{*}。このタービンはタービン入口容積流量の関係上,従来の型式と異なったもの となるが,わずか3kWで30~40%というかなりの高効率が得られ,このような特殊なタ ービン型式の採用により実用ユニット規模のミニチュア化が可能になった。この種のタービ ンの特性は,従来Stodolaの本⁽¹⁾に簡単に記述されているのみで余り知られていないが,好 適出力範囲が軸流型に比べて極めて小さいので,将来小容量タービンプラントが実用される 場合には出現の可能性がある。

一方,動特性の理論研究に関しては,現在の蒸気原動所や化学ブラント装置の動特性研究 に共通し,例えば加熱器においては従来蒸気原動所のボイラを対象として,寺野⁽²⁾,世古口, 竹内⁽⁴⁾⁽⁵⁾⁽⁶⁾,島,小笠原⁽⁷⁾ら数多くの研究発表がなされ,現在ほぼ充足している状況にあると考 えられる。しかし,例えば寺野が導いた予熱または過熱器に適用し得るV = - cの分布定数 系とした解⁽²⁾において入口流量または加熱量突変に対する出口温度過渡応答結果は,従来寺 野⁽²⁾,竹内ら⁽⁴⁾による近似解でしか求められていない。本研究ではその解を直接 Floyd の 方法を用いて解き,一般図を作成した。

次に,再生器においても従来増淵^{(8),(9)},高橋⁽¹⁰⁾,藤堂⁽¹¹⁾,Paynter⁽¹²⁾,Stermole⁽¹³⁾,ら数多くの論文が発表されているが,一般に相の変化を考慮した解析,また非 線型解析もなされていないようである。そこで,集中定数系モデルとして超臨界圧領域の移 相境界点の移動を考慮した解析解を導くとともに,差分法による非線型解析を行ない,これ ら各解析結果を一実験条件に対して比較した。

また系全体の動特性シミュレーションにおいては,各構成機器を個々にモデル解析し,次 に得た結果を総合して系全体のプロック線図を得,それをディジタル数値解によって求め実 験結果と比較検討した。

つまり、本動特性研究は従来とは異なった作業流体、サイクル構成に対するものであり、 従来の蒸気原動所の動特性の研究においてもブラント全体に亘った実験および理論解析は少 ないので、CO2ブラントに対する本研究は現在の各ブラントの動特性研究にも役立つであろ う。

*)設計は赤川浩爾(神戸大学),船川正哉(当時川重技研室長)による。

第2章 実験用動力発生プラント

2.1 緒

CO2動力発生プラント実現への第一ステップとしてCO2を作業流体とした液相圧縮超臨 界圧サイクルを実現し、その確証を得るためポンプ、再生器、タービン、プロワ、凝縮器から成る一段再生の液相圧縮超臨界圧動力発生装置を製作した。本章では、その計画および装置の概要について述べる。

2.2 実験用プラントの計画と系統

言

2.2.1 実験用フラントの計画

2.2.2 全体の系統

装置の系統線図およびその主要配管寸法を図 2.2 に示す。主要機器はポンプ,再生器,加 熱器,タービン,凝縮器,ブロワおよび冷却器であり,次にその系統を流れに従って説明す る。凝縮器を出た液相の CO₂ は無段変速機付三連型ブランジャポンプより送り出され,流 量脈動吸収用アキュムレータ(N₂ 封入)を経て,フィルター(20μメッシュ)により固型 不純物を除去し再生器で予熱された後,並列 2本の加熱器で直接通電(交流加熱)により所

^{*1)} サイクル効率は、以上のような関係から設計点において約11%と低いが、これは第1編で明らかにしているように、タービン入口圧力、温度の向上、さらには圧縮機の導入による二段再生サイクルの実現 により高効率が可能となる。

^{*2)} 実用ブラントのスケールに比べると小規模となるが,開発への第一ステップと考えているものであり, 本研究の目的に特に大きな支障となるものではない。

図 2.1 計画 t-s, i-s線図

図 2.2 実験用ブラントの系統線図(主要配管寸法含)

定の温度まで加熱される。そしてタービン入口圧力調節弁を経て、タービンに至る。タービンを出た高温のガスは背圧調節弁を経て、再生器で熱交換したのち、凝縮器で冷却液化される。そのプロセスは図中点0-1-2-2-3-4-5-6-7-8-9-10-11-12-20

-0である。なお、凝縮器は二段から成り、第一段の冷却水はクーリングタワーにより、第 二段の冷却水は冷凍機により供給される。

一方,タービンで発生した動力はタービンと一体に構成される負荷制御用プロワによって 吸収され、プロワから排出された CO2はプロワ負荷制御弁を経て、フイン付冷却器に送られ、 送風機によって空冷され、プロワ入口に至る閉ループを形成する(図中点 13-14-15)。

(a)

(b)

写真 2.1 CO 2 動力発生装置

また,タービンバイパスおよび再生器バイパス系路があり,タービン,プロワ間には両圧 カバランス用に連絡配管(図中16)を設け,プロワ側配管と第一段凝縮器入口とをつなぐ 配管(図中19)とともに運転初期のプロワループの暖機の際に用いる。

運転初期における装置へのCO2充填はCO2ボンベ(圧力50atg×30kg/1本)により,二段の凝縮器中間から注入する。そして,加熱器出口には安全弁を設け,加熱器フランジにはテフロン製パッキンを挿入し,他のループと電気的に絶縁する。

次に,全体の概要写真を写 2.1(a),(b)に,各機器を含めた配管系統図を図 2.3 に示す。但 し,冷却塔(クーリングタワー)は別の場所(屋上)に設置してあり,冷却塔を除く装置全 体の概略寸法は 4 m×2m×3m高さの中に配置される。

2.2.3 機器主要目

各機器の主要目を表 2.1 に加熱器,再生器,凝縮器およびプロワ側冷却器の組立図を図

協器名称(製作会社)	項目	要 目				
	型式	2本並列コイル管				
hut 杰·哭	加熱管寸法	13.8 mm ^{0.D.} × 3.0 mm ^t × 7.8 m ^L × 2本				
(祕製作所(株))	加熱方式	交流直接通電				
	加熱量	最大 15.7 KW × 2				
	伝熱面積	0.233 m ² × 2本				
	型式	ピトー型タービン				
	出力	計画 3.0 к₩				
タ ー ビ ン (三真製作所(株))	回転数	計画 17,000 rpm				
	ノズル寸法	φ1.9 mm × 2個 , ノズル間距離 99.35 mm				
	軸受方式	気体軸受(⑴ TiltingPad Journal Bearin 2点 ⑵ SipiralGroove Thrust Bearing 14				
	型式	遠心式ラジアルファン				
動力吸収用 プロワ	容量	330.95 mmAq × 0.0146 m ³ ∕min				
(三真製作所(株))	インペラー 寸 法	外径 φ76 mm , 翼枚数 12枚				
	型式	コイル状向流型二重管式				
н ж	伝熱面積	0.344 m ²				
(桜製作所(株))	寸 法	高圧側 17.3 mm ^{0.} D. × 3.2 mm ^t × 7.7 m ^L 低圧側 48.6 mm ^{0.} D. × 5.1 mm ^t × 7.7 m ^L				
	計画交換熱量	725 kcal⁄kg				

表 2.1 各機器要目

主ポンプ	型式	WR-253 三連プランジャ型	
	容量	120 atg × 400 kg∕h	
(极裂作所(优)	回転数	15 ~ 210 rpm (ブーリー 2段切換式)	
キポンプ用	型式	減速機構付ブーリー駆動型 3ACP	
無段変速機	减速比	1/4	
(任友車磯(株))	モータ	2.2 kW $ imes$ 4 P $ imes$ AC 200 V	
	型式	機嚴固定管板式	
凝縮器	冷却面積	4.2 m ² × 2段	
(桜製作所(株))	冷却管寸法	48.6 mm ^{0.D.} × 5.1 mm ^t × 5本 × 2段	
	冷却能力	第一段 21500 kcal/h 第二段 11500 kcal/h	
	型式	放熱フィン付 4段直管型	
	管寸法	34 mm ^{0.D.} × 4.5 mm ^t × 2 m ^L	
アロリ系 冷却器	マンす法	ϕ 48 mm × ϕ 34 mm × 2 mm t × 496枚	
(桜製作所(株))	冷却面積	0.36 m ²	
	冷却能力	2850 kcal/h	
	型式	S — 1 型ラジアルフ _ア ン	
同 上 用 ファン	容量	30 mmAq × 6 m ³ ∕min	- -
(中島送風機(株))	モータ	200 ₩ × 4 P	
	型式	DLC-37W型チリングユニット	
	冷媒	フレオン 12 , 充てん量 11 kg	
疑	冷却能力	11500 kcal/h 計画 出口水温 25 °C) 水硫 量 770 kg/h	
	モ ー タ	3.7 KW , AC 200 V	
	型式	SBC50 型	
冷 却 塔 (信和産業(株))	冷却能力	128000 kcal/h 計画 入口水温 30 °C 出口水温 25 °C)水流聲 430 ℓ/min	
	モ - タ	1.5 KW , AC 200 V	
	型式	MPB-4 型	
アキュムレータ	最高作動圧力	120 atg	
()++・イン 工 仮強 (7本) /	ガス容積	N2 ガス 1-1ℓ	
フィルター	型式	OLWE #450 型	
(焼結金属(株))	ろ過精度	20 μ	

(C) 凝縮器

2.4(a)~(d)に示す。加熱器は2本のコイル状管 から成る貫流型式(13.8mm^{0.D}×3.0mm^t× 7.8m^L×2本)のもので,再生器はコイル状の 向流型二重管式熱交換器(伝熱面積 0.344m²) で,受熱流体を内管流れとする。また2段の凝 縮器は共にシェルアンドチューブ型式の同一寸 法(伝熱面積 42m²×2段)のもので,冷却水 を内管流れとした。プロワ側の冷却器は強制空 冷方式のフィン付4段直管型式(伝熱面積 0.36m²,図2.4(d)参照)を用いる。

(d) ブロワ系冷却器 (フィンチューブ)

タービンは 2 個のノズル (1.9 mm Ø)をもつ ピトー型タービンで,プロワは径向き羽根を

12枚有する遠心式ラジアルファンである。各機器の寸法を図24(a)~(d)に,タービンプロ ワを後節23の図25に示す。タービン,プロワは230mmØ×297mmLの1つのケーシ ング(SUS製)の中に,加熱器,再生器は共に700mm^D×1600mm^{高さ}の中(図24(a) 参照)に収納される。なお,再生器,加熱器,タービン主要部の材質はすべてステンレス鋼 製(SUS304)である。また各配管の材質は第二凝縮器出口からポンプ入口までSGP,ポ ンプ出口から出口流量計までSTPT材で,他の配管はすべてSUS304製である。

2.2.4 測 定 系 統

各測定点は図 2.2 中に示す P(圧力), T(温度), G(流量), Q(回転数), (ア_B(ブロワ差圧) および (W_a) (供給電力)の各箇所で,その測定方法および機器は次 のようである。

- (i) ポンプ出口,タービン入口,プロワの各流量 Gp,Gs,GB は各フランジ部に挿入したオリフィスの差圧をDP型差圧計で検出し、動歪計を経て、4点式レクチグラフ または24点式ビジグラフ上に記録する。またブロワ上昇圧力△PBも同じくDP型差 圧計、動歪計より24点式ビジグラフ上に記録する。
- (1) 各圧力 P はブルドン管式圧力計で測定するとともに,圧力変換器から増巾器を経 て、4点式レクチグラフまたは24点式ビジグラフに記録する。
- (iii) 各温度 Θはシース型 C A 熱電対から打点式温度計または、多点式ディジタルボルトメータにより測定記録され、一部は12点式ディジタルブリンタに出力する。
- (Ⅳ) タービン回転数Nはタービン軸に設けられた切欠きと電極棒(40mm¢のCu棒)との間の静電容量の変化を微小変位計で検出し、増巾器を経て、FVコンバータまたはカウンター、シンクロスコープにて読み取る。
- (M 加熱管への供給交流電力WaはA.C.200V電源から電力調整器,変圧器を経て供給し,分流器を用いた電力計にて読み取る。

2.3 タービンおよびプロワ

本ブラントのタービン入口の容積流量は設計点の100ata,350℃,390kg/h にお いて464m⁸/h と極めて小さい値であるので,タービンを通常の軸流あるいは軸流型式で 構成することは困難である。そこで純反動力によって作動するラジアルタービン型式(参照 図 2.5,以下これをビトー型式と呼ぶ)を採用する。この型式のタービンは,紀元前のHero のタービン(紀元前75年アレキサンドリアのヘロンによって作られた汽力計にその原型が みられる)として知られている極めて単純な形のものであるが,従来その実験値は知られて なく,ただStodolaの本⁽¹⁾に効率に関して簡単に記述されているにすぎない。またタービ ンの回転数が高く,しかも小型で高圧のために外部へのシールが極めて困難であり,さらに 高温のために内部の軸受にも潤滑油を用いることができない。従って,タービンケーシング を密封式とし,軸受作業流体の二酸化炭素自体による動圧気体軸受方式を採用する。このよ うにタービンケーシングを密封式とするので,タービンの出力軸を外部に取り出すことが出 来ず,タービンの発生動力はタービンと一体に構成されるブロワによって吸収させ,ブロワ 側流路もタービン出口圧力にほぼ等しい圧力となる CO 2の閉回路で構成する。このタービン ,プロワの全体組立断面図(各軸受,パッキンを除くとすべて SUS製)を図2.5 に,タービ ン作動原理を図2.6 に示す。またタービン,プロワの写真を写2.2 (a),(b)にケーシングを除 いたタービン,プロワの組立図を写2.3 に示す。

つまり, このタービンは流 体がノズルから噴出する際の 純反動力によって作動するピ トー型タービンである。図 2.5において流体はタービン ケーシングの蒸気入口孔①か

図 2.5 タービン・ブロワ組立断面図

図2.6 タービン円板部

ら流入し,カーボン製のフローティングシール②の溝穴に沿ってタービンの気体導入軸③に 入る。その気体導入軸には半径方向に直径 2.5mm の穴④を 3 個設け, 流入した気体は軸 方向(径 3.5mm)に流れ,回転円板⑤の中心で二分して各々2つのノズル⑥(1.9mmø,ノ ズル間距離 99.35mm)から円周方向に噴出し,ロータに回転力を与え排気管⑦へと流出す る。一方,ブロワ⑧(写 2.2(b)参照)は12枚の径向き羽根から成る遠心式ラジアルファン で,ネジ⑨によってタービン軸部に取り付けられ,写 2.4に示すようにタービンと一体にさ れる。そしてブロワ側では流体は①より流入し,①へ流出する。またタービンとプロワ間に は特にシールを設けずタービン出口圧力とプロワループ内の圧力をバランスさせる。

軸受は写 2.5 に示すように 1組 4 個から成るティルティングパッド(2)(リン青銅製)による 2 点支持の動圧気体軸受方式であり、ティルティングパッドと軸とのクリアランスは各 1 個のビボット形細目ネジ(4)により調整する。このクリアランスは空気運転で 40~50 μ、

(a) タービン部および軸

(b) ブロワ翼と固定用ボ ルト・ナット

写真 2.2

写真 2.3 タービン,プロワ の本体組立

写真 2.4 タービンとプロワ

写真 2.5 ティルティングパット

写真 2.6 推 力 軸 受 CO2運転で60~70µである。一方,流体の流れ方向の変化とタービン,ブロワ間の圧力 差によって生じる推力は写2.6に示す15本のうずまき状の溝(深さ0.11mm)をもつスパ イラルグループ動圧気体軸受(3)(黄銅製)によって受ける。

また静電容量変化による回転数検出のために,タービン軸に2ヶ所平担な切欠き部(3)(写 2.2(a),2.4参照)を設け,他方にはケーシングを貫通して電極棒(4.0mm¢,銅製)を取 付ける。

2.4 結

言

第1編で示した CO2作業流体とする液相圧縮超臨界圧サイクル実現へのステップとして, ボンブ,再生器,加熱器,タービン,凝縮器 およびブロワ系から成る実験用動力発生装置を 製作した。加熱器は直接通電加熱のコイル状質流型式,そして再生器は二重管型式から成る。 さらに、タービンは従来の軸流型式と異なりこの実験装置の大きさに対応したビトー型式が 採用された。その計画および装置の概要について示した。

第3章 プラントの静特性

3.1 緒 言

本章では前章に示した動力発生装置を連続20時間,延べ1500時間運転した結果得られ た運転上の諸問題および各機器の静特性結果について述べる。すなわち,CO2動力発生プラ ントの可能性に対する実証を得るとともに,運転上の問題点および各構成機器の静特性を明 らかにする。

またタービン,プロワに関してはプラントに組み込む前に, i)気体軸受のクリアランス 調整, II)タービンのフローティングシールと気体導入軸との間隙からの漏洩量, III)回転 数検出方法の調査,確認の意味で高圧空気運転によってその性能試験を行ったので,併せ示 す。

3.2 起動方法と実験方法

3.2.1 起動手順

全体系統線図(図 2.2参照)において,その起動手順を説明する。

- i) 運転当初におけるプラントへのCO2充填はブラント内残留空気を真空ポンプで掃引した後,液化CO2ポンベ(圧力50atg)を用いて,二段の凝縮器の中間から注入する。
- ii) 凝縮器に冷却水を流し、ガスを凝縮液化させるとともに、ブランジャポンプを駆動し、 タービンバイパス系統(図22中 点7-18-10-11-12-13)を通る閉ループ内 を循環させ、電気加熱によって徐々に温度を上昇させていく。また凝縮器圧力が高すぎ るときは、プロー弁から流体をプローする。
- ■) タービン, プロワの暖機は、タービンブロワを駆動させず行い、点7-18-9-16-15(13-14)-19および7-8-9の経路に加熱ガスを暫時流すことによりなし、 所定の加熱器出口圧力,温度になるまで継続する。
- Ⅳ)所定の温度になったとき、タービンバイパス弁とタービン入口蒸気弁を手動急操作して切換え、タービン、プロワを自動起動させる。

なおこの手順Ⅰ)~Ⅳ)までの起動に要する時間は4~5時間である。

3.2.2 実験方法

図 3.1 (図中 弁の ▶ は運転中開, ▶ は閉を意味する) において加熱量Q, ポンプ流量Gp を各々設定し, ブロワ負荷制御弁(図中 ▶ で示す)の開度を全閉から全開

図 3.1 実験装置概略図

まで4段階順次変化させ,系が定常状態にな ったことを確認したのち,図に示す各点の圧 力,温度,流量,プロワ上昇圧力,回転数お よび供給電力を計測する。さらにQ, Gpの 各設定点を変え、以上の測定を繰り返す。実 験範囲はQ=(1.98~2.88)×10⁴kcal/h, GP=(235~390)kg/h であり,その実験 範囲をGp,Qとタービン入口温度 Ogとの関 係により図3.2に示す。

3.3 プラントの静特性

3.3.1 全体の特性

運転サイクルを示すT-S線図, およびそ の圧力,温度,エンタルピ分布の代表的な三

400 加熱量 Q 流量 G (kcal∕h) (kg∕h) (a) 23990 244 (a) 300 26670 333 (b) (c) 26060 358 (b) S 200 (C) 100 生器受熱側出口 給熱 0 L 0.7 1.2 0.8 0.9 1.0 1.1 エントロピ S kcal/kg・K 図 3.3 Т - S 線 図

つの実験例を各々図33,0図34に示す(但し,図中の各点は各々図31の各点の番号の位 置に対応する)。一般に, CO 2を用いた動力プラントでは,凝縮器圧力が高いため水蒸気ラ ンキンサイクルに比べタービンにおける熱落差は小さい(よ~ま、第1編図315参照)。 またタービン排ガスの有するエネルギー回収用の再生器では受熱側流体の比熱は給熱側に比べ ると大きい(第1編 図44参照)ので、その温度変化は給熱側より小さい。

阋

-136-

図 3.4 圧力,温度,エンタルピ分布図

つまり,加熱量(75~90)kcal/ kgに対してタービンでの熱落差は(6 ~10)kcal/kgで,再生器では単位 流量当りの交換熱量(35~55)kcal /kgに対し,受熱側温度変化は(20 ~30)℃と給熱側の温度変化の(100 ~200)℃に比べその¹/(5~6)であ る。

一方, 圧力においては図中(b)のポン プ吐出力98ata, 凝縮器圧力68.5 ataの場合に対して再生器受熱側, 加熱器,加熱器出口からタービン入口 までの配管系およびタービン,再生器 給熱側で各々0.7,1.7,2.3,24.3, 0.5 ata程の圧力降下を示し,タービ ンにおける圧力降下が全体の約82% を占める。

次に,図 & 5 にポンプ流量 Gp,加 熱量 Q と 再生器受熱側出口,加熱管出 口,タービン出口,再生器給熱側出口 の 各温度 θ 4, θ 5, θ 9, θ 12 との関 係を示す。加熱量 一定に対して各実験 点は図 8.5 中実線,破線および一点,

二点鎖線で示されるように,各々一本

の線でほぼ表わされる。そして各点の温度は Θ_4 を除けば Θ_5 , Θ_9 , Θ_{12} いずれも加熱量 Q を増加させるか,流量 Gp を減少させることにより単位流量当りの吸熱量が増加し, その温度は上昇する。一方,再生器受熱側出口では,その物性値が臨界点近傍に位置するため,エンタルビ i_4 は図 3.6 に示すように上記と同様の傾向を示すが,その温度 Θ_4 はQ, Gp の変化によって殆んど変化せず一定値をとることが分る。

次に、ポンプ入口温度 t1 と凝縮器圧力との関係を図 3.7 に示す。図中実線で示す飽和線

-137 -

よりいずれも 5~10℃程の過冷の状態にあり,夏・冬の実験でその温度 t1 に差異が生じる。 図 8.8 にタービンにおける圧力降下と流量 Gp,およびタービン入口圧力,温度から算出 したタービン入口比体積との関係を示す。これより,タービンでの圧力降下△P_T(kg/cm²) はGp(kg/h)と入口比体積 Vg(m⁸/kg)により,次式の関係が成立する。

 $\triangle P_{T} = 2.12 1 \times 10^{-2} \cdot V_{8} \cdot G_{P}^{2}$

(3-1)

つまり,凝縮器圧力は冷却水の冷却能力および CO2 充塡量から定まるが,図 3.7に示した ように夏・冬の実験において凝縮器圧力に差異が生じている(55~68 at a)。そしてター ビン入口圧力分布は,この凝縮器圧力に再生器給熱側および式(3-1)によるタービン圧 力降下を加算して決まる。

3.3.2 出力特性

タービン・プロワの性能曲線は後節 3.4, 3.5で述べるので, ここではタービン出力特性 (但し, タービン出力は後述式 (3-10)から, タービン入口, 出口圧力, 入口温度を用いて 算出した断熱出力Wadr(kcal/h))を加熱量Q, 流量Gp に対して図 3.9に示す。 流量を

一定にして加熱量を増加すると,ター ビン入口温度が上昇し,タービン出力 は増大するが,加熱量を一定にして流 量を増加すると,タービン入口温度の 減少により,タービン断熱出力は減少 する傾向がみられる。

また,最大断熱出力は計画点390

kg∕h ,入口圧力温度 100ata,350℃において 31kWであり,そのときのブラント熱効 率はタービン断熱出力を出力とした場合約 10%である。

3.3.3 再生器特性

再生器の熱量効率 η_{RH} (ここで $\eta_{\text{RH}} = (i_{10} - i_{12})/(i_{10} - i_1), i_{10}, i_{12}, i_1$ は図 8.1 中に示した番号に対応した各点のエンタルビ)を実験結果より算出し、図 8.10に示す。 加熱量の増大する程,流量の減少する程,すなわちタービン出口温度の上昇する程 η_{RH} は増加し、ほぼ 20~30%である。

またこの時の再生器熱貫流率を図 3.1 1 に示す。図中には給熱側熱伝達率を Colburn, 受熱側を Styrikowitsch による各実験式(前編式(3-23)) および管壁の影響を考慮し, 流体平均温度,圧力における各物性値を用いて算出した結果を実線で示すが,良く一致して いる。また熱貫流率は 150~250 kcal/m² h C (再生器給熱側および受熱側熱伝達率は各 各約 200,2000 kcal/m² h C)であり,従来の蒸気 - 水の発電プラントの熱交換器の値

図311 再生器熱貫流率

(1500~2500kcal/m²h℃)に比べ低いが,これは熱伝達率の小さい給熱側ガス流速 が1~2m/sと低かったためであり, 流速を10m/secに上げることにより熱貫流率を 900~1400kcal/m²h℃にすることは可能であると考えられる。

3.3.4 ポンプ特性

ボンブは定量型の三連ブランジャボンブであり,夏と冬の実験による凝縮器圧力,過冷度 などの違いにより,同一回転数Np(rpm)でも,ボンブ流量Gp(kg/h)に差異が生じ, 例えば冬(12~1月)に行なった実験結果を示すと図 3.12のようであり,次式で表わさ れる。

 $G_P = (-0.0\ 0\ 7\ 5\ \cdot\ P + 2.7\ 5\)\ \cdot\ N_P$ (3-2)

ここで, G_P : kg/h, P : kg/cm², NP : rpm このように同一回転数であっても, 叶出圧

力 P の増加とともにポンプ流量 Gp が減少 する垂下特性を示す。

図 3.12 ポンプ特性

3.4 タービン、プロワの空気運転による性能

タービンプロワをCO2プラントで運転する前に,空気による性能確認試験を行った。 3.4.1 実験装置および実験方法

実験装置概要を図3.13に示す。圧縮機より送り出された常温の空気は流量調整弁を通り, ストレーナを経て、タービンに入る。タービンを出た空気は排気圧力調整弁を経て、大気に

放出される。タービンで発生した動力は プロワ動力とタービンプロワ系の摩擦仕 事に費やされ、プロワで圧縮された空気 は負荷制御弁を経て、プロワに戻る閉ル ープを形成する。各測定は流量:直管流 量計と水マノメータ、圧力:プルドン管 式圧力計、温度:C-A 熱電対と多点温 度記録計、プロワでの圧力上昇:水マノ メータを用いてなされる。またタービン 回転数は,前述したようにタービン軸の切欠きと電極間の電気容量の変化をブリッジ,微小 変位計で検出し,直流増巾器を経て,カウンタから読み取り,シンクロスコープで確認する。 同時に,F-Vコンバータによっても測定し,多点ミリボルト記録計で記録する。

実験方法はまずブロワ負荷制御弁の開度を一定に保ち,タービン入口流量調節弁によりタ ービン入口圧力を順次変え,各点における圧力,温度および回転数を測定する。次に、ター ビン出口圧力を変えて同様の測定を行い,さらにプロワ負荷制御弁の開度を変え,以上の測 定を繰り返す。実験範囲はタービン入口圧力,1.0~6.77ata,タービン出口圧力1.0~2.0 ata,タービン入口流量 0~19.8 kg/h である。なおタービン入口温度は実験中 30±2℃の 範囲でほぼ一定に保たれた。

3.4.2 タービン特性

ピトー型タービンの出力 $W_T(kg-m/s)$ は前図 2.6 における作動原理より、ノズル噴出流量 $G_N(kg/s)$ 、ノズル噴出速度 $C_O(m/s)$ およびノズル周速度 $C_N(m/s)$ から次のように表わされる。

$$W_{T} = G_{N} \cdot (C_{0} - C_{N}) \cdot C_{N} \neq g \qquad (3-3)$$

$$\geq \geq \tau, \quad G_{N} = \varphi_{T} \cdot F_{N} \cdot P_{1} \sqrt{\frac{2 g \kappa}{(\kappa - 1) R(t_{1} + 273)}} \{ (\frac{P_{2}}{P_{1}})^{\frac{\kappa}{\kappa}} - (\frac{P_{2}}{P_{1}})^{\frac{\kappa + 1}{\kappa}} \}, (P_{2} > P_{cr})$$

$$= \varphi_{T} \cdot F_{N} \cdot P_{1} \sqrt{\frac{g \kappa}{R(t_{1} + 273)}} (\frac{2}{\kappa + 1})^{\frac{\kappa + 1}{\kappa}} , (P_{2} \le P_{cr})$$

(3-4)

$$C_{0} = \varphi_{C} \cdot \sqrt{\frac{2 g \kappa R}{\kappa - 1}} (t_{1} + 273) \{ 1 - (\frac{P_{2}}{P_{1}})^{\frac{\kappa - 1}{\kappa}} \}, (P_{2} > P_{c\tau})$$

= $\varphi_{C} \cdot \sqrt{2 g \kappa R(t_{1} + 273)/(\kappa - 1)} , (P_{2} \le P_{c\tau})$

また、 $C_N = \frac{\pi DN}{60}$, φ_T :/ズルの流量係数, φ_C :/ズルの速度係数, P_1 , P_2 は各々ター ビン入口, 出口圧力。上記式において G_N はタービンノズルを通過する流量であり,タービン 出口にて測定したタービン出口流量 G_T (タービン入口流量と等しい)とは異なる。 すなわ ち,気体導入軸とフローティングシール(前図 2.5 中の③と②)との間隙から直接排気管へ 流出する漏洩があり, $G_N \ge G_T \ge td$ 一致しない。しかし,運転状態では, G_N を直接測定す ることが困難なので, タービンロータのみを取り出し,ノズルの流量検定を行い,式(3-4) 中の流量係数 φ_T の値を求めた。その結果を横軸に P_1/P_2 をとって図 3.14に示す。これより

-141 -

タービンノズルの流量係数 φ_TはP2>Pcrのとき P1 $/P_2$ の増加とともに一様に増加し、 $P_2 \leq P_{cr}$ の 臨界圧力に達するとほぼ一定の値をとることが分る。 すなわち,

$$\varphi_{\rm T} = 0.1 \ 1 \ 9 \ 2 \cdot \left(\frac{P_1}{P_2}\right) + 0.400 \qquad (P_2 > P_{cr}) \\ = 0.6 \ 2 \ 8 \ 7 \qquad (P_2 \le P_{cr}) \\ (3-6)$$

タービンノズルの流量係数 図 3.14

$$(3-6)$$

また式(3-5)におけるノズルの速度係数φcは平行ノズルの特性に関する青木の式⁽¹⁴⁾,(15) より, $\varphi_{\rm C} = 0.98$ である。

式(3-5)より計算したタービンノズル流量GNと測定から得たタービン出口流量(=タ ービン入口流量)GrEをタービン入口圧力に対して図3.15に示す。これよりGrEとGNと の差に相当する間隙漏洩量は入口流量の約60%に及ぶ。つまり気体導入軸が長い(55mm) ため,わずかな偏心によってもフローティングシール(カーボン製)との間の摩擦が大きく なりタービンの自動起動が困難となるため,カーボンシールの穴を大きくしたことによって

いる。

以上の結果,式(3-3)~(3-6)より求めたター ビン出力Wrと回転数Nとの関係を図3.16に示す。図 中の実線および一点鎖線はプロワ負荷制御弁開度一定, およびタービン出口圧力一定の下でタービン入口圧力 を変化させたときに得られる特性曲線であり、破線は タービン入口圧力を一定にして,プロワ負荷(タービ ン出口圧力およびプロワ負荷制御弁開度)を変化させた ときに得られる特性曲線である。例えば、タービン入 口圧力,負荷制御弁開度を一定にしてタービン出口圧 力を上昇させると、タービン出力WT、回転数Nとの 関係は図中破線で示す特性線上を左下方へ減少してい

この部分の改良および調整によつて漏洩を減少させることは可能であるが、本研究の目的は出力の絶対値 を問題にしているのではなく,主として定性的な特性および動特性を問題にしているので運転の容易さと 信頼性の面からこのままで実験を行った。

くことになる(図中 ○→□→△または●→■→▲)。

次に、各タービン入口、出口圧力 に対して、 W_T をタービン出口の比 重量rで除した W_T/r で整理するこ とにより、各負荷制御弁開度および 回転数Nに対して、ほぼ一本の曲線 でまとめられる。この結果を後述の 二酸化炭素運転と併せ図 8.17に示 す。

次に、タービン効率η_Tを次式で 定義し、その効率を回転数に対して 後節のCO2運転と併せ、図3.18に 示す。

$$\eta_{\mathrm{T}} = W_{\mathrm{T}} / W_{ad_{\mathrm{T}}} = W_{\mathrm{T}} / G_{\mathrm{N}} \cdot H_{ad_{\mathrm{T}}}$$
 (3-

$$H_{adT} = \frac{\kappa}{\kappa - 1} \cdot R \cdot T_1 \{ 1 - (P_2 / P_1)^{\frac{\kappa - 1}{\kappa}} \} \quad (P_2 > P_{c\tau}) \\ = \frac{\kappa}{\kappa + 1} R \cdot T_1 \qquad (P_2 > P_{c\tau}) \}$$
(3-8)

式 (3-3), (3-8)より, η_T が最大となるのは $C_N = C_0 / 2$ のときでこのときの $W_T = G_N \cdot C_0^2 / 4g$, $\eta_{Tmax} = 50%$ となることが分る。これは純反動力で作動するビトー形タービンの特徴である。

図3.17 タービン出力特性(空気,OO2)

図3.18 タービン効率特性

3.4.3 ブロワ特性

ブロワにおける断熱ヘッドHadBはブロワ入口温度Tsと入口圧力Psおよび出口圧力Pd/Cより次式で表わされる。

$$H_{adB} = \frac{\kappa}{\kappa - 1} \operatorname{RT}_{8} \left\{ \left(\frac{P_{4}}{P_{8}} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right\}$$
(3-9)

ここで, 圧力比(P_4/P_8)が小さいとき(<1.1), ブロワ出入口平均比重量 r_m を用いて, $H_{adB} = \frac{P_4 - P_3}{r_m}$

一方、ブロワ断熱出力WadBは重量流量GBと断熱ヘッドHadBとの積で次のように表わされる。

$$W_{adB} = G_B \cdot H_{adB} = \gamma_m Q_B \cdot H_{adB} \qquad (3-10)$$

図 3.19 QB, HadB, WadB とNの関係(比例法則)

-144-

各 プロ ワ 負荷制御弁開度に おける ブ ロ ワ 体積流量 Q_B , プロ ワ 断熱 ヘッド $H_{ad B}$, ブロ ワ 断熱出力 $W_{ad B}$ と回転 数 N, N², N⁸ との関係を図 3.1 9(a), (b), (c) に示す。これより, 負荷弁開度 一定の場合 プロワに おいて次の比例法 則⁽¹⁶⁾ $Q_B \propto N$, $H_{ad B} \propto N^2$, $W_{ad B}$ $\propto \gamma_B N^8$ が本 プロワに 対しても良く成 立していることが確かめられる。

次に,四種類の負荷制御弁開度に対し,プロワ体積流量Q_B,回転数Nと 断熱ヘッドH_{adB}との関係を図320 に示す。実線は負荷制御弁開度一定,

破線は 回転数一定に対して得られ

る線であり、例えば負荷制御弁開度一定の場合N、 Q_B 、 H_{adB} のうち1つが決れば他の値が求められる。次に、式(3-11)より計算したプロワ断熱出力特性を図 3.21に示す。実線

図 3.21 ブロワ断熱出力特性(空気)

は負荷制御弁開度タービン出口圧力を一定に保ち,タービン入口圧力を変化させたときに得られる線であり,破線は回転数一定に対する特性線である。負荷弁開度およびプロワ入口圧力を一定にしてタービン入口圧力を上昇させると,WadB,QBはともに増大し,タービン入口圧力,プロワ入口圧力が一定のとき,負荷制御弁を絞ることによりWadB,QB ともに減少していくことになる。

3.5 CO2によるタービン, ブロワ特性

CO2に対しても前節で述べた空気運転の場合と同様の整理方法により、タービン、プロ ワの特性を表わすことが可能となる。その出力特性を空気運転による結果の図317中に示 す。その結果、空気およびCO2運転両方に対し、負荷制御弁開度の全開および全閉のとき、 その出力は次式で表わされる。

W_T / r=4.89×10⁻⁹・N^{2.15} (ブロワ負荷弁全開) = 2.82×10⁻⁹・N^{2.18} (ブロワ負荷弁全閉) (3-11)

次に、 CO_2 実験によるタービン効率を空気運転による結果の図 8.18中に示す。 CO_2 運転の場合、空気運転に比べ η_{T} は低いが、これはタービン入口、出口の圧力比が空気運転の場合より小さく、初期計画回転数を得ることが出来なかったためである。

また空気運転の場合と同じくプロワ体積流量 Q_B とN,プロワ断熱ヘッド H_{adB} とN²,プロワ断熱出力 W_{adB} / r_B とN⁸の関係を図 3.19(d), (e), (f)に示すが、いずれも負荷制御弁開度一定に対して、 $Q_B \propto N$, $H_{adB} \propto N^2$, $W_{adB} \propto r_B N^3$ の関係が CO_2 に対しても良く成立する。

次に、プロワ特性として、空気運転の場合と同様プロワ体積流量 QB, 断熱ヘッドとの関係を図3-22に示す。実線は等絞り曲線,破線は等N曲線である。この図より、任意の 負荷制御弁開度でのHadBとQB, Nとの関係が明らかとなる。

次に、ブロワ出力特性として、断熱出力WadBをプロワ平均比重量 TBm で除した値と QB との関係を図 3.23 に示す。実線は等絞り曲線、破線は等 N曲線を表わす。

空気および CO 2 でのプロワ特性を比較するために次の三つの無次元数を導入し(17), この関係を図 3.2 4 に示す。

ブロワの流量係数:
$$\varphi_{\rm B} = Q_{\rm B} / (\pi \cdot d_{\rm B} \cdot b \cdot u_{\rm B})$$

ブロワの圧力係数: $\psi_{\rm B} = H_{ad \, B} / (u_{\rm B}^2 / 2g)$ (3-13)
ブロワの軸動力係数: $\lambda_{\rm D} = W_{ad \, B} / (\pi d_{\rm D} \cdot br_{\rm D} \cdot u_{\rm D}^3 / 2g)$

$$-146-$$

図 3.2 2 ブロワ特性(CO₂)

ここで、 d_B : ブロワの外径、b: ブロワ出口羽 根巾、 u_B : ブロワ周速度である。つまり CO_2 運転と空気運転の各結果をまとめた上記無次元 係数値は各一本の曲線で表わされる。そして本 ブロワと同一形式のブロワに対してこの線図を 適用することにより、その性能を推定すること が可能となる。

図3.23 プロワの断熱出力特性(OO2)

図 3.24 ブロワの無次元係数曲線

3.6 結 言

CO2実験装置を連続20時間,延べ1500時間程運転することによってCO2を作業流体 とする液相圧縮動力発生プラントへの可能性を実証するとともに,プラント各機器の静特性 を明らかにした。また,ピトー型タービンに対する暖機および起動も問題なく遂行し得,さ らにこの種タービンの特性を明らかにした。それらを要約すると次のようである。

1)再生器における受熱側流体はサイクル配置上,臨界点近傍に位置するため,その温度 上昇は吸収熱量に対して著しく小さくなる。

^{*1)} 一般に遠心式羽根車内の流れは理論的解析が困難であり,実際の設計には経験値の統一的整理法が利用され,式(3-13)などの特性曲線を基に設計がなされる⁽¹⁷⁾。

- ii) 再生器の平均熱貫流率は従来のColburn,Styrikowitschの式を用いた結果と良く 合い,約900~1500kcal/m²h℃の見通しを得た。また,加熱器では2000~3000 kcal/m²h℃程である。
- ⅲ)凝縮器圧力は夏と冬で大きく変動する。
- IV) ビトー型タービンの出力は式(3-3)で表わされ,最大効率は $C_N = \frac{C_0}{2}$ の時の50%, 最大出力 $W_{T, max} = G_N \cdot \frac{C_0^2}{4g}$ であり,その出力特性,効率特性曲線を得た。また,負 荷一定のとき,式(3-3)より求めたタービン出力 W_T を出口比重量で除した W_T / T は, ほぼ回転数の二乗に比例する。
- V)本プロワに対する特性曲線および無次元係数曲線を空気, CO2に対して示した。
- なお、ピトー型タービンに関する問題点として次の点があげられる。
- i) タービンのフローティングシールと気体導入軸との間隙からの漏洩量が大きく、この 面での設計の見直しが必要である。

第4章 プラント動特性の理論的研究

4.1 緒 言

負荷変動などの外乱に対してプラント全体を安定に応答の早い制御性のすぐれたものとす るためには、各成分機器およびシステム全体の過渡応答特性を明らかにしておく必要がある。 特に、CO₂液相圧縮超臨界圧プラントは従来のサイクル構成、作業流体と異なるものであり、 その特性を明らかにすることは意味をもつ。

本章ではCO2ブラント各機器の動特性の理論的解析を示し、それらを総合して集中定数系 とした系全体のブロック線図を作成する。また各機器の中、タービン、ブロワは加熱器など と比べその応答が早く単容量系とした取扱いで十分であるとされている⁽¹⁸⁾が、加熱器、再 生器については実規模プラントの計画に対し分布定数系とした解析も必要になってくると考 えられるので集中定数系とした解析とともに、分布定数系による非線形解法も併せ示し、本 実験条件に対して他のモデルと比較・検討する。

4.2 解析の手順

CO2動力プラントの各構成要素はポンプ,再生器,加熱器,タービン入口蒸気弁,タービ ン,プロワ(発電機),凝縮器およびそれらを結ぶ連絡配管系の多要素から成る。そのため に全体の動特性解析にはまず特性の異なった各構成要素の動特性を個々に解析し,次にそれ らを総合して系全体のシミュレーションを行う必要がある。

また,各構成機器要素の動特性を解析するにはその質量,エネルギ,運動量の各保存式を たて,その偏微分方程式を次の二つの解法:(i)微小変動法を用いて二次以上の無次元変数項 を無視する線形化による方法,(ii)電子計算機による非線形のままの数値解法(差分法,有限 要素法など)により求める方法がある。この内(ii)の解法は,非線形解析のため解き方によっ て精度の高い解が求まるが,(i)と比較すると,各因子による影響を把握し得る式の形で求め られず、かつ膨大な計算時間を要する。

ここでは解法が比較的簡単でしかも各因子の影響が式の形で示されている(i)の線形近似に よる方法を採用する。つまり、各構成要素をすべて集中または分布定数系にモデル化し、線 形化して各伝達関数を求め、次にこれらを総合して、系全体のシミュレーションを行う。し かし、CO2プラント全体の動特性の中で、加熱器と再生器は大きな役割を果すことになると 考えられるので、(ii)の差分法による解法、さらに再生器では集中定数系で、移相境界点の移 動を考慮した線形化解析も併せ示し、ブラント全体のシミュレーションに用いる他の線形解 析モデルとの比較を本実験条件に対して試みた。

系全体のシミュレーションに当っては、次の仮定をおく。

- (i) 凝縮器圧力は、冷却水および流入してくるCO2の温度、量によって影響をうけるが、 突変量に対してその凝縮能力は大きく、圧力および出口温度は一定とする。
- (ii) 系の圧力変動は各構成要素内で同時に発生すると考えられるので、その区間内圧力は
 一様とし、流動摩擦による圧力降下は各要素の区間の終端で集中的に発生するものとする。
- (III) タービンケーシングを除く放熱の動特性に及ぼす影響は小さいものとして無視する。
 また、以下の解析においてプラント各位置の物性およびその他の諸量は図3.1に示される番号をその位置を示す添字として用いる。

4.3 物性値の近似

理論解析する場合差分法による非線形解法では,各物性データをすべて計算機に入力して, その変化を非線形のまま処理出来るが,線形化解析では圧力,温度などの関数として直線近 似しておく必要がある。よって,CO2のエンタルピI,圧力P,比体積V,温度のの関係を 物性値表(前編参考文献⁽¹²⁾による)により直線近似し,線形無次元化して用いる。次にそ の近似式を示す(図41,42参照)。

図 4.1 物性値の近似 (比体積)

図4.2 物性値の近似 (温度)

o 超臨界圧予熱領域(P ≥ 75.3 ata, I ≤ 150 kcal/kg)

$$V = 0.20185 \times 10^{-4} \cdot I - 0.13864 \times 10^{-4}$$
 (4-1)

o 超臨界圧過熱領域(P≥75.3 ata, I≥150 kcal/kg)

$$V = (-0.1 \ 4 \ 3 \ 1 \ 1 \ \times \ 1 \ 0^{-5} \ \cdot \ P + 0.2 \ 3 \ 2 \ 0 \ 6 \ \times \ 1 \ 0^{-8}) \cdot (I - 1 \ 5 \ 0.0 \) + 0.1 \ 6 \ 3 \ 3 \ 5 \ (4 - 2)$$

o 亜臨界圧過熱領域($50 \le P \le 75.3$ ata, I ≥ 150 kcal/kg)

$$V = (0.26829 \times 10^{-5} \cdot P + 0.31335 \times 10^{-8}) \cdot (I - 142.01)$$
 (4-3)

o 温度とエンタルピの関係(50≤P≤120ata, 100≤Θ≤350℃)

$$\Theta = (-0.62096 \times 10^{-2} \cdot P + 4.1472)(I - 282.93) + 412.71$$
 (4-4)

ここで,V:m⁸/kg,P:ata, Θ :℃,I:kcal/kg

式(4-1)~(4-4)を定常値(添字0)からの微小偏差を考えて線形近似し,無次元化して次式を得る。

o超臨界圧予熱領域

$$v = B_a \cdot i, \ B_a = \frac{0.2 \ 0.1 \ 85 \times 10^{-4} \cdot (I_{50} - I_{40})}{0.2 \ 0.1 \ 85 \times 10^{-4} \cdot I_0 - 0.1 \ 386 \ 4 \times 10^{-4}}$$
(4-5)

o 超臨界圧過熱領域

$$v = B_b \cdot i - B_c \cdot p \qquad (4-6)$$

$$B_b = (-0.14311 \times 10^{-5} \cdot P_0 + 0.23206 \times 10^{-8}) \cdot (I_{50} - I_{40}) / V_0$$

 $B_c = 0.14311 \times 10^{-5} \cdot (I_0 - 150.0) \cdot P_0 / V_0$

o 亜臨界圧過熱領域

$$v = B_d \cdot i - B_e \cdot P \tag{4-7}$$

 $B_d = (-0.26829 \times 10^{-5} \cdot P_0 + 0.31335 \times 10^{-8}) \cdot (I_{50} - I_{40}) / V_0$

 $B_e = 0.26829 \times 10^{-5} \cdot (I_0 - 14201) \cdot P_0 / V_0$

o温度とエンタルピの関係(50≤P≤120ata, 100≤Θ≤350℃)

 $i = B_f \cdot \theta + B_g \cdot P$ $B_f = (\theta_{50} - \theta_{40}) / \{ (I_{50} - I_{40}) \cdot (-0.62096 \times 10^{-2} \cdot P_0 + 4.1472) \}$ (4-8)

 $B_g = 0.62096 \times 10^{-2} (I_0 - 28293) / \{(-0.62096 \times 10^{-2} \cdot P_0 + 414.72)\}$

 $\cdot (I_{50} - I_{40})$

4.4 加熱器の動特性解析

4.4.1 仮定と一般基礎式

解析に当って、その主な仮定は次のようである^{(2)、(3)}。

i) 管は長さ方向に半径と厚みが一様,つまり管の熱容量の長さ方向の変化はない。

ii) 管に流入する熱量分布は内部流体の状態や流量に無関係で,管の長さ方向に一様である。

■)管壁の温度は半径方向に一様でかつ長さ方向への熱移動はない。

- IV) 管内の流体は半径方向に一様な状態にある。
- また差分解(後出①モデル)を除く他の解析については.

V)管内流動による圧力損失を無視して区間内の圧力はいたるところ一様とする。

- 以上より、加熱器の一般基礎方程式は次のように表わされる。
- i) 内部流体のエネルギ収支の式:Qi=F· $\frac{\partial r U}{\partial t} + \frac{\partial IG}{\partial x}$ (4-9-a)
- ii) 内部流体の物質収支の式: $\frac{\partial G}{\partial x} = \frac{F}{V^2} \cdot \frac{\partial V}{\partial t}$ (4-9-b)
- iii) 管の動特性の式: Qo-Qi=A_Pr_PC_P $\frac{\partial \Theta_P}{\partial t}$ (4-9-c)
- Ⅳ)管内面と流体の熱伝達の式:Qi=H・($\Theta_{P} \Theta$) (4-9-d)
- V) 内部流体の圧力降下の式: $\frac{\partial P}{\partial x} = -K \cdot G^2 \cdot V$ (4-9-e)

上記の基礎式をもとに、次の四種類のモデル(以下④、 ③、 ③ モデルと呼ぶ)につい て解析するが、そのモデルと各基礎式を表 4 1 に示す。すなわち④は集中定数系で、管内流 体の圧縮性を考慮したモデル、 ⑧は分布定数系で流体の比体積を一定(非圧縮性)とした寺 野⁽²⁾によるモデル、さらに ◎は従来の世古口ら⁽³⁾による分布定数系で流体の圧縮性を考慮し た式に管壁の側容量効果を別に導入したものである。次に、 ◎は管内圧力損失の式(4-5) を考慮した差分解による非線形解法モデルである。

442 線形モデルによる解法

4.4.2.1 圧縮性集中定数系モデル〔④〕による解

表41に示した④モデルの基礎式を微小変動法によって線形,無次元化することにより, ラプラス変換した各基礎式は次のように表わされる。

管内流体のエネルギ式

$$\hat{i}_{4} - \hat{i}_{5} - \hat{g}_{4} + \hat{g}_{5} = T_{e} \cdot S(\hat{i}_{5} - \frac{AP_{50}V_{50}}{I_{50} - I_{40}} \cdot \hat{p}_{5})$$
 (4-10)
-152-

表 4.1 加熱器のモデルと基礎式

·		-	t	
項 目		B		
モデル系	集中定数系		分布定数系	
流体の圧縮性	考慮	無視	考虑	考虑
解析法	線形近	似・ラプラス	変換	差分法
流体のエネルギー式	$G_i I_i = G_e I_e + LQ_i = FL \frac{dU_e}{dt}$	$Q_i = G \frac{\partial I}{\partial X} + \frac{F}{V} \frac{\partial I}{\partial t}$	$Q_i = G\frac{\partial I}{\partial X} + \frac{F \partial I}{V \partial t} - FA\frac{\partial P}{\partial t}$	$Q_i = G \frac{\partial I}{\partial X} + \frac{F}{V} \frac{\partial I}{\partial t} - FA \frac{\partial P}{\partial t}$
連続の式	$G_i - G_e = F L \cdot \frac{d \tilde{r}_e}{d t}$		$\frac{\partial G}{\partial X} = \frac{F}{V^2} \cdot \frac{\partial V}{\partial t}$	$\frac{\partial G}{\partial X} = \frac{F}{V^2} \cdot \frac{\partial V}{\partial t}$
管壁の熱バランスの式	$Q_o - Q_i = C_M \cdot \frac{d \Theta_M}{d t}$	$Q_o - Q_i = C_M \frac{\partial B_M}{\partial t}$	$Q_o - Q_i = C_M \frac{\partial \Theta_M}{\partial t}$	$Q_o - Q_i = C_M \frac{\partial \theta_M}{\partial t}$
管壁から流体への伝熱	$Q_i = H \cdot (\Theta_M - \Theta_e)$	$Q_i = H (\Theta_M - \Theta)$	$Q_i = H (\Theta_M - \Theta)$	$Q_i = H \cdot (\Theta_M - \Theta)$
流体の圧力降下の式				$\frac{\partial P}{\partial X} = -K \cdot G^2 \cdot V$
モ デ ル 図	$\begin{array}{c} G_{i} \\ G_{i} \\ H \\ G_{i} \\ H \\ H \\ G_{i} \\ H \\$	Gi Ii		Ge le

連続の式

 $\mathring{g}_{4} - \mathring{g}_{5} = -\operatorname{T}_{e} \cdot S \, \vartheta_{5} \tag{4-11}$

管壁熱バランス

 $\ddot{q}_0 - \ddot{q}_i = T_M \cdot S \dot{\theta}_M$ (4-12)

熱伝達の式

$$\hat{q}_{i} = \hat{h} + \hat{\theta}_{M} - \frac{T_{e}}{T_{c}} \hat{\theta}_{5}$$

$$(4-13)$$

ここで熱伝達率Hを流量 G4 に比例する($h = g_4$)と仮定し,上式に式(4-6),(4-8)を代入して,各出口温度 θ_5 ,流量 g_5 応答は次のように表わされる。

$$\hat{\theta}_{5} = \frac{1}{T_{e} T_{M} S^{2} + (T_{M} + T_{e} + \frac{T_{e} T_{M}}{T_{c}}) S + 1} \left((T_{M} S + 1) \hat{\theta}_{4} + \hat{q}_{0} - \hat{g}_{4} \right)$$

$$+ (T_{M} T_{e} (\frac{A P_{50} V_{50}}{I_{50} - I_{40}} - B_{g_{5}}) S^{2} + \{ T_{M} (B_{g_{4}} - B_{g_{5}}) - T_{e} (B_{g_{5}} - \frac{A P_{50} V_{50}}{I_{50} - I_{40}}) \} S$$

$$+ (B_{g_{4}} - B_{g_{5}})) \cdot \hat{p}_{5} \right)$$

$$(4 - 14)$$

$$\hat{g}_{5} = \hat{g}_{4} + \frac{T_{e}B_{b5}(\hat{q}_{0} - \hat{g}_{4}) + T_{e}B_{b5}(T_{M}S + 1)S\hat{\theta}_{4}}{T_{e}T_{M}S^{2} + (T_{M} + T_{e} + \frac{T_{e}T_{M}}{T_{c}})S + 1} + \frac{1}{T_{e}T_{M}S^{2} + (T_{M} + T_{e} + \frac{T_{e}T_{M}}{T_{c}})S + 1}$$

$$\times (T_{\rm M}T_{e}^{2}(1+B_{b_{5}}\frac{AP_{50}V_{50}}{I_{50}-I_{40}})S^{8}+T_{e} \{T_{\rm M}B_{b_{5}}B_{g_{4}}+T_{e}B_{b_{5}}\frac{AP_{50}V_{50}}{I_{50}-I_{40}}+B_{b_{5}}B_{g_{5}}\frac{T_{e}}{T_{c}}$$

$$+B_{c5}(T_{M}+T_{e}+\frac{T_{M}T_{e}}{T_{c}}) \}S^{2}+T_{e}(1+T_{e}B_{b5}\cdot B_{g5})\cdot S)\hat{p}_{5} \qquad (4-15)$$

$$c \geq \mathcal{C}, \ \mathbf{T}_{e} = \frac{\mathbf{FL}}{\mathbf{G_{40} \cdot V_{50}}}, \ \mathbf{T}_{\mathbf{M}} = \frac{\mathbf{C}_{\mathbf{M}}}{\mathbf{H}_{0}}, \ \mathbf{T}_{c} = \frac{\mathbf{F} \cdot \mathbf{B} f}{\mathbf{H}_{0} \cdot \mathbf{V}_{50}}$$

4422 非圧縮性分布定数系モデル[圖]による解

一般に,液相部では比体積 V は一定 $\left(\frac{\partial G}{\partial x}=0\right)$ とみなせるが,過熱部特に移相部では比体積 V つまり流速は入口から出口に近づくに従って増大していく。例えば,加熱量q,入口流量 g_i または,入口エンタルビ i_i 変化に対する出口エンタルビ i_e 応答は管壁の容量を無視した場合,後述式(4-34)より,

$$\overset{\circ}{i}_{e} = \frac{1}{-T_{e}S + \ln \frac{V_{e0}}{V_{i0}}} \cdot \left(\ln \frac{V_{e0}}{V_{i0}} - \frac{V_{e0}}{V_{i0}} T_{e} \cdot S \cdot e^{-T_{e}S} \right) \cdot \overset{\circ}{i}_{i} + \frac{\left(\frac{V_{e0}}{V_{i0}} e^{-T_{e}S} - 1 \right)}{\left(1 - \frac{T_{e}S}{V_{i0}} \right) \cdot \left(\frac{V_{e0}}{V_{i0}} - 1 \right)}$$

$$\times (\ddot{q} - \ddot{g}_i) \qquad (4-16)$$

)

各ステップ入力に対する ie の過渡応答は上式を逆ラブラス変換して,

$$i_{e(t)}/i_{i} = 1 - e^{\frac{t}{T_{e}} \cdot \ln \frac{Ve_{0}}{Vi_{0}}} + \frac{Ve_{0}}{Vi_{0}} \cdot e^{\frac{(t-T_{e})}{T_{e}} \cdot \ln \frac{Ve_{0}}{Vi_{0}}} \cdot U(t-T_{e})$$

$$i_{e(t)}/q, -g_{i} = \frac{1}{\frac{V_{e0}}{V_{i0}} - 1} \cdot \left(\frac{t}{e^{T}e^{t}} \ln \frac{V_{e0}}{V_{i0}} - 1 + \frac{V_{e0}}{V_{i0}} - 1 + \frac{V_{e0}}{V_{i0}} \cdot \left\{1 - e^{\frac{(t-T_{e})}{T_{e}}} \cdot \ln \frac{V_{e0}}{V_{i0}}\right\}$$

$$\times U(t - T_e)$$
 (4-17)

すなわち図 43(a), (b)のように入口,出口比体積変化(= $\frac{Veo}{Vio}$)が大きい程凹型応答を示 すことになる。一方,CO2プラントの場合の加熱器の比体積変化は第1編で述べた一段,二 段再生サイクルにおいて各タービン入口圧力,温度に対して入口,出口の比体積変化比で示 すと,図44のように $\frac{Veo}{Vio}$ =1~2の範囲にある。

(b) 加熱量,流量のステップ変化

図4.3 Weo/Vioと出口エンタルビ応答の関係(側容量効果無視)

つまり、その比体積変化は一般に小さく、また 側容量効果が大きいので、流動時定数 T。 は総合時定数に比べて無視出来る程度であると 考えられる。すなわち、流動遅れの細部形状は 余り問題にならないとして Vを全体の平均値お よび圧力変動が温度に及ぼす影響も極めて小さ いとして式(4-9a)~(4-9d)において $\frac{\partial G}{\partial x} = 0$, u = I および熱伝達率Hを流量に比 例するとして次の出口温度解が得られる⁽²⁾。

)

$$\hat{\theta}_{e} = e^{-T_{e} S \left\{1 + \frac{T_{P}}{T_{W}(T_{P}S + 1)}\right\}}.$$

$$\hat{\theta}_{i} = e^{-T_{e} S \left\{1 + \frac{T_{P}}{T_{W}(T_{P}S + 1)}\right\}}.$$

$$\hat{V}_{i0}$$

$$\hat{V}_{i0}$$

$$\hat{V}_{i0}$$

$$\frac{-T_{e} S \left\{1 + \frac{T_{P}}{T_{W}(T_{P}S + 1)}\right\}}{T_{e}S + \frac{T_{e}}{T_{W}} \cdot \frac{T_{P}S}{T_{P}S + 1}}.$$

$$\hat{Q}_{0} - \hat{Q}_{i}$$

$$T_{P}S + 1$$

$$(4-18)$$

$$(2 \le C, T_{e} = \frac{F \cdot L}{V \cdot G_{0}}, T_{W} = \frac{F k_{4}}{k_{5} \cdot V \cdot H}, T_{P} = \frac{A_{P} \gamma_{P} C_{P}}{H}, PV = k_{4} \theta = k_{5} I$$

その近似解として

$$\hat{\theta}_{e} \simeq \frac{1 - e^{-TS}}{T_{S}} \cdot e^{-T_{L}S} \cdot \hat{\theta}_{i} + \frac{1}{\frac{T_{e}}{2}(1 + \frac{T_{P}}{T_{W}})S + 1}} \cdot \frac{\hat{q}_{0} - \hat{g}_{i}}{T_{P}S + 1}$$
(4-19)

$$z \geq \overline{c}, T = \sqrt{24 \cdot \frac{T_e}{T_W}} \cdot T_P, T_L = T_e (1 + \frac{T_P}{T_W}) - \frac{T}{2}$$

そして竹内⁽⁴⁾, Hoger⁽¹⁹⁾らは式(4-18)における θ_i のステップ入力に対する θ_e 応答の 逆ラプラス変換を行い, 次項式(4-21)の数式解を得ている。一方 q_0 , g_i のステップ変 化に対する θ_e の応答は直接式(4-18)から求められておらず, その近似数値解を求め, 一般図を作成する。まず, θ_i のステップ変化に対する θ_e の応答解および計算機によって求 めたその一般応答図を示す。

(i) 入口温度θiのステップ変化に対する出口温度θ。過渡応答の一般図:θiに対するθ。
 の応答の伝達関数G(s)は式(4-18)より

$$\begin{aligned} & \left\{ \begin{array}{l} -T_e s \left\{ 1 + \frac{T_P}{T_W(T_P s + 1)} \right\} = e^{-T_e s} \cdot e^{-\frac{T_e T_P s}{T_W(T_P s + 1)}} & (4 - 20 a) \right\} \\ & z \circ \tau \theta_i \text{ or } x \neq y \forall \lambda \exists r \forall \exists d e \text{ or } h \land f \neq f \in d e \text{ or } h \land f \neq f \in d e \text{ or } h \land f \neq f \in d e \text{ or } h$$

$$L^{-1}\left\{\frac{1}{s}e^{-\frac{T_{P}T_{e}S}{T_{W}(T_{P}S+1)}}\right\} = L^{-1}\left\{e^{-\frac{T_{e}}{T_{W}}}\left(\frac{T_{W}T_{P}}{T_{e}} + \frac{T_{W}}{T_{e}S}\right) \cdot \frac{e^{-\frac{T_{e}}{T_{W}(T_{P}S+1)}}}{\frac{T_{W}(T_{P}S+1)}{T_{e}}}\right\}$$
$$= \frac{T_{W}T_{P}}{T_{e}}e^{-\frac{T_{e}}{T_{W}}}L^{-1}\left\{\frac{e^{-\frac{T_{e}}{T_{W}(T_{P}S+1)}}}{\frac{T_{W}(T_{P}S+1)}{T_{e}}}\right\} + \frac{T_{W}}{T_{e}}e^{-\frac{T_{e}}{T_{W}}}L^{-1}\left\{\frac{1}{s} \cdot \frac{e^{-\frac{T_{e}}{T_{W}(T_{P}S+1)}}}{\frac{T_{W}(T_{P}S+1)}{T_{e}}}\right\}$$
$$-156-$$

$$=e^{-\frac{T_e}{T_W}}\left\{e^{-\frac{t}{T_P}}I_0\left\{2\sqrt{\frac{\bar{T}_e}{T_WT_P}}t\right\}+\frac{1}{T_P}\int_0^t e^{-\frac{\tau}{T_P}}I_0\left(2\sqrt{\frac{T_e}{T_WT_P}}\tau\right)d\tau\right\}$$

$$= e^{-\frac{T_e}{T_W}} \{ 1 + \int_0^t e^{-\frac{\tau}{T_P}} I_1 \left(2 \sqrt{\frac{T_e}{T_W T_P} \tau} \right) \sqrt{\frac{T_e}{T_W T_P \tau}} d\tau \}$$

$$= e^{-\frac{T_e}{T_W}} \{ 1 + \int_0^{t'} e^{-\tau'} I_1 \left(2 \sqrt{\frac{T_e}{T_W} \tau'} \right) \sqrt{\frac{T_e}{T_W \tau'}} d\tau' \} \qquad (4-21)$$

 $\zeta \subset \mathcal{T}, \ \tau' = \frac{t}{T_{P}}$

すなわち、 θ_i のステップ変化に対する θ_e の応答は式(4-21)の第1種変形ベッセル 関数を解き、流動時間 T_e だけ移動(遅らす)することによって求められる。式(4-21) の電子計算機用プログラムを作成(付録1)するとともに、一般図を作成し、横軸に t $/T_P$, パラメータに T_e/T_W をとり、図45に示す。また、図中一部の破線は次節で採 用する Floyd の方法⁽²⁰⁾により直接求めた結果であり、両者非常に良く一致しており、 特に Floyd の方法においても式(4-18)から直接求められる。そしてこの図によって 各動特性に関する諸常数(T_e , T_P , T_W)を知れば、その応答が推定出来る。

(ii) 加熱量 q₀,入口流量 g_iのステップ変化に対する出口温度 θ_e応答の一般図:加熱量
 q₀,入口流量 g_iに対する出口温度 θ_eの応答は式(4-18)から次の伝達関数で表わ
 される。

$$G(s) = \frac{1 - e^{-T_e S \left\{ 1 + \frac{T_P}{T_W(T_P S + 1)} \right\}}}{\left\{ T_e S + \frac{T_e}{T_W} \cdot \frac{T_P S}{T_P S + 1} \right\} (T_P S + 1)}$$
(4-

これをt領域に迎ラプラス変換することは困難であり、その直接解は今まで求められていない。

22)

そこで Floyd の方法を用いて、その q_0 g_i のステップ入力に対する θ_e 応答の一般図 を作成する。

すなわち,式(4-22)の周波数伝達関数G($j\omega$)の実数部 $R_eG(j\omega)$ から,インパルス応答g(t)を次式より求める。

$$g(t) = -\frac{2}{\pi} \int_{0}^{\infty} \mathbf{R}_{e} G(j\omega) \cdot \cos \omega t \cdot d\omega \qquad (4-23)$$

図4.5 伝達函数 e

次に、ステップ入力に対する応答h(t)はg(t)を積分することによって次式から求 められる (8)。

$$h(t) = \int_{0}^{t} g(t) dt \qquad (4-24)$$

このようにして得られた $R_eG(j\omega)$ (プログラムは付録 2 参照)とステップ入力に対する θ e 応答一般図 (プログラム,付録 3参照)を図 46, 47(a), (b)に示す。 Tw の小さい程, T_e , T_P の大きい程その応答は遅くなるが、これより加熱量 q, 入口流量 g_i のステップ変 化に対する出口温度応答が求められることになる。

 $R_e(G(j\omega))の値$ 図 4.6

(b) $T_e = T_p$

図 4.7 G(s) =
$$\frac{1-e}{(T_e S + \frac{T_P}{T_W(T_P S + 1)})}$$
のステップ応答
(T_e S + $\frac{T_e}{T_W} \cdot \frac{T_P S}{T_P S + 1}$) · (T_PS + 1)

442.3 圧縮性分布定数系(◎モデル)

圧縮性つまりVの変化を考慮した厳密な解は,移相域を含む解析として世古口,逆井⁽³⁾が 節44.1であげた仮定 II)の代りに,管から内部流体への伝熱量 Qi が長さ方向に一様

-159 -

(一様熱吸収)そして管壁温度は内部流体温度に等しいと仮定してVをIまたはPの関数近 似式とおくことによって解いたものがある。しかし,この解は管から流体への伝熱量が長さ 方向にわたって一様である($\frac{\partial q_i}{\partial x} = 0$)と仮定している点また,エネルギバランスの式(4 -9 a)において内部エネルギUをエンタルピIに等しいとしてAPV の項を考慮していな いため,圧力項の及ぼす影響においてその項が無視されている(但し,後節444で示すよ うにこの項の影響は小さい)。

その後,島,小笠原ら⁽⁷⁾は,内部流体のエネルギバランスの式において内部エネルギを考 慮し(すなわち式(4-9a)),管から内部流体への伝熱量も変化する(但し,熱伝達率 Hは一定)として解いているが,管内流動がいわゆるダンゴ状にならないであろうと仮定し, 式(4-9b)の連続の式の代りに次式のように管内流体の重量速度が管長方向に一次分布 をするとして解いている。

$$g = g_i + \frac{g_e - g_i}{L} \cdot x \tag{4-25}$$

すなわち,両者の解法はエネルギバランスおよび連続の式(4-9a),(4-9b)を微小変動法による線形化によって,

$$\pm \dot{x} \, \nu \neq \vec{x} : q_{i} = g + L \cdot \frac{\partial i}{\partial x} + \frac{F(I_{e0} - I_{i0})}{Q_{i0}V_{0}} \cdot \frac{\partial i}{\partial t} - \frac{FAP_{0}}{Q_{i0}} \cdot \frac{\partial p}{\partial t}$$
 (4-26)

連続の式 :
$$\frac{\partial g}{\partial x} = \frac{a F(I_{e_0} - I_{i_0})}{G_0 P_0 V_0^2} \cdot \frac{\partial i}{\partial t} - \frac{F}{G_0 \cdot V_0} \cdot \frac{\partial p}{\partial t}$$
 (4-27)

両式を t でラブラス変換をし、g を消去するために式(4-26)を x で微分し、式(4-27) に代入することによって、次の i に関する二階偏微分方程式を得る。

$$L \cdot \frac{\partial i^{2}}{\partial x^{2}} + \frac{F \cdot (I_{e_{0}} - I_{i_{0}})}{Q_{i_{0}} V_{0}} \cdot S \frac{\partial i}{\partial x} = \frac{F P_{0} \cdot (b_{0} - C_{0} V_{0})}{G_{0} V_{0}^{2}} \cdot \frac{\partial p}{\partial t} + \frac{\partial q_{i}}{\partial x} \qquad (4-28)$$

世古口,逆井⁽³⁾は式(4-28)において $\frac{\partial q i}{\partial x} = 0$ とおいてまた式(4-26)における $-\frac{FAP_0}{Qi_0} \cdot \frac{\partial p}{\partial t}$ の項を無視し,式(4-28)と境界条件x = 0において $i = i_i$, $(\frac{\partial i}{\partial x}) = (\frac{\partial i}{\partial x})_0$ より iの解を得ている。また島、小笠原ら⁽⁷⁾は、仮定の式(4-25)を連続の式(4-27)の代りに用いて、1階微分方程式(4-26)を解くことにより解を得ているが、積分の形の残った複雑なものとなり、いずれもその数値解は複雑で求

* 式(4-26)中の $-\frac{FAP_0}{Q_{10}}$ $\frac{\partial p}{\partial t}$ を無視しても管内圧力は一様であるの仮定より $\frac{\partial p}{\partial x} = 0$ から式(4-27) の形は両者同一の形となるが境界条件の算出の際にその項が生じてくる。

めるのに非常な労力を要する。しかし、いずれもそれらの仮定は式(4-26)(4-27) を解くための手段に採用されたものである。そこで、ここでは世古口らの解法において側容 量効果を考える際,管壁温度を内部流体温度に等しいと仮定しているが,CO2の加熱器とし て例えば原子炉の一次冷却材との熱交換を考えた場合には外部熱源(例えばHe などの液体 金属)との熱伝達率は従来のボイラ燃焼ガスの熱伝達率と比べて高く,しかもCO2の熱伝達 率と比べても高いので、管壁温度を内部流体温度に等しいとおくことに疑問が生じてくる。 つまり管壁温度 ØP を独立変数とし,管壁の側容量効果を単容量系で導入して, 簡単化する。 すなわち,前式(4-9c),(4-9d)より,

$$Q_{0m} - Q_{1} = C_{m} \frac{\partial \Theta_{P}}{\partial t} \qquad (4-29)$$

$$Q_i = H(\theta_p - \theta) \qquad (4-30)$$

ここで, Hを定数と考え, 管壁の熱伝達特性を求めると,

$$\mathring{q}_{\mathbf{i}} = \frac{H_{\mathbf{0}}}{C_{m}S + H_{\mathbf{0}}} \cdot \mathring{q}_{\mathbf{0}m} - \frac{C_{m}H_{\mathbf{0}}\left(\frac{\partial \Theta}{\partial \mathbf{I}}\right)_{\mathbf{P}} \Big|_{\mathbf{0}}\left(I_{e\,\mathbf{0}} - I_{i\,\mathbf{0}}\right)}{(C_{m}S + H_{\mathbf{0}})Q_{\mathbf{i}\mathbf{0}}} s \stackrel{\circ}{i} - \frac{C_{m}P_{\mathbf{0}}H_{\mathbf{0}}\left(\frac{\partial \Theta}{\partial \mathbf{P}}\right)}{(C_{m}S + H_{\mathbf{0}})Q_{\mathbf{i}\mathbf{0}}} s \stackrel{\circ}{p}$$

ただし、
$$q_{0m} = \frac{1}{L} \int_{0}^{L_{0}} q_{0} dx$$

Dまり、式(4-28) にかいて $\frac{\partial q_{1}}{\partial x} = 0$ と仮定し、初期条件 $x = 0$ の時($\frac{\partial i}{\partial x}$)=($\frac{\partial i}{\partial x}$)₀.
 $i = i_{1}$ かよび式(4-31)より、各出ロエンタルビ、施量の応答は次式のようになる。
 $\hat{i}_{e} = \frac{1}{Y_{e0}-1} \cdot \frac{1-Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S-1} (\frac{H_{0}}{C_{m}S+H_{0}}\hat{q}_{0m} - \hat{g}_{i})$
 $+ (1-\{\frac{C_{m}H_{0}(\frac{\partial H}{\partial I})_{p}\Big|_{0}(I_{e0}-I_{i_{0}})S + T_{e}(Y_{e_{0}}-1)\}\cdot \frac{1}{Y_{e_{0}}-1}$
 $\cdot \frac{1-Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S-1}\hat{i}_{e} + \frac{P_{0}}{V_{i_{0}}(V_{e0-1})}\cdot \frac{T_{e}S}{T_{e}S-1}[(\frac{Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S-1} + I_{n}Y_{e0})b_{0} - \cdot \frac{C_{0}V_{i_{0}}}{T_{e}S}$
 $\{(Y_{e0}e^{-T_{e}(\ln Y_{e0})S} - 1) + (Y_{e0}-1)(T_{e}S-1)\})\hat{p} + (\frac{FAP_{0}}{Q_{i_{0}}}$
 $- \frac{C_{m}P_{0}H_{0}(\frac{\partial P}{\partial P})I\Big|_{0}}{(C_{m}S+H_{0})\cdot Q_{i_{0}}} \cdot \frac{1}{Y_{e0}-1} \times \frac{1-Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S-1} \cdot S\hat{p} \quad (4-32)$

 $T_{e}S - 1$

同様に、

$$\begin{split} \hat{g}_{e} &= (1 - e^{-T_{e}(\ln Y_{e0})S} - \frac{1}{Y_{e0}} \frac{T_{e}S}{T_{e}S - 1} (1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}) \cdot \frac{H_{0}}{C_{m}S + H_{0}} \hat{q}_{2m} \\ &+ (1 + \frac{C_{m}H_{0}(\frac{\partial H}{\partial 1})_{p} \Big|_{0} (I_{e0} - I_{i0})}{(C_{m}S + H_{0})Q_{10}} - \frac{1}{Y_{e0}} \right) \cdot \frac{T_{e}S}{T_{e}S - 1} (1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}) \\ &- \frac{C_{m}H_{0}(\frac{\partial H}{\partial 1})_{p} \Big|_{0} (I_{e0} - I_{i0})}{(C_{m}S + H_{0})Q_{10}} \cdot (1 - e^{-T_{e}\ln(Y_{e0})S}) \Big|_{i}^{\circ} \\ &+ \frac{P_{0}}{V_{0}} \Big[\frac{T_{e}S}{T_{e}S - 1} \Big\{ (\frac{1}{Y_{e0}} - e^{-T_{e}(\ln Y_{e0})S}) + \frac{T_{e}S}{Y_{e0}} (\ln Y_{e0} - \frac{1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S - 1}) \Big\} \\ &+ \frac{P_{0}}{V_{0}} \Big[\frac{T_{e}S}{T_{e}S - 1} \Big\{ (\frac{1}{Y_{e0}} - e^{-T_{e}(\ln Y_{e0})S}) + \frac{T_{e}S}{Y_{e0}} (1 n Y_{e0} - \frac{1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S - 1}) \Big\} \\ &+ \frac{P_{0}}{V_{0}} \Big[\frac{T_{e}S}{T_{e}S - 1} \Big\{ (\frac{1}{Y_{e0}} - e^{-T_{e}(\ln Y_{e0})S}) + \frac{T_{e}S}{Y_{e0}} (1 n Y_{e0} - \frac{1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S - 1}) \Big\} \\ &+ \frac{P_{0}}{V_{0}} \Big[\frac{T_{e}S}{T_{e}S - 1} \Big\{ (\frac{1}{Y_{e0}} - e^{-T_{e}(\ln Y_{e0})S}) + \frac{T_{e}S}{T_{e}S - 1} \Big\} \Big] \hat{p} \\ &- \Big\{ e^{-T_{e}(\ln Y_{e0})S} + \frac{1}{Y_{e0}} \frac{T_{e}S}{T_{e}S - 1} \Big\{ (1 - Y_{e0}e^{-T_{e}(\ln Y_{e0})S}) \Big\} \Big] \Big\{ \frac{FAP_{0}}{Q_{10}} \\ &- \Big\{ \frac{C_{m}P_{0}H_{0}}{(\frac{\partial P}{\partial P})I} \Big|_{0} \Big\} \Big\} \hat{p} \Big\} \frac{C_{m}P_{0}H_{0}}{(C_{m}S + H_{0})Q_{10}} \hat{p} \Big\} \hat{p} \\ &- \Big\{ 2C_{m}S + H_{0} \Big\} \hat{Q}_{10} \Big\} \hat{p} \Big\} \hat{p} \\ &- \Big\{ 2C_{m}S + H_{0} \Big\} \hat{Q}_{10} \Big\} \hat{p} \Big\} \hat{p} \Big\} \hat{p} \Big\} \hat{p} \\ &- \Big\{ 2C_{m}S + H_{0} \Big\} \hat{Q}_{10} \Big\} \hat{p} \Big\} \hat{p} \Big\} \hat{p} \\ &- \Big\{ 2C_{m}S + H_{0} \Big\} \hat{Q}_{10} \Big\} \hat{p} \Big\} \hat{p} \\ $

管壁の側容量効果無視のとき,

$$\hat{i}_{e} = \frac{1}{Y_{e0} - 1} \cdot \frac{1 - Y_{e0} e^{-T_{e}(\ln Y_{e0})S}}{T_{e}S - 1} \cdot (\hat{q}_{i} - \hat{q}_{i}) + \{1 - \frac{T_{e}S}{T_{e}S - 1} (1 - Y_{e0} e^{-T_{e}(\ln Y_{e0})S}) \hat{i}_{i}\}$$

$$+\frac{P_{0}}{V_{i_{0}}(Y_{e_{0}}-1)}\cdot\frac{T_{e}S}{T_{e}S-1}(\frac{Y_{e_{0}}e^{-T_{e}(\ln Y_{e_{0}})S}-1}{T_{e}S-1}+\ln Y_{e_{0}})b_{0}-\frac{C_{0}V_{i_{0}}}{T_{e}S}\{(Y_{e_{0}}e^{-T_{e}(\ln Y_{e_{0}})S}-1)$$

+
$$(Y_{e_0}-1)(T_eS-1)$$
] \hat{p} + $\frac{FAP_0}{Q_{i_0}} \cdot \frac{1}{Y_{e_0}-1} \cdot \frac{1-Y_{e_0}e^{-T_e(\ln Y_{e_0})S}}{T_eS-1} \cdot s \cdot \hat{p}$ (4-34)

$$\hat{g}_{e} = \left(1 - \frac{1}{Y_{e0}} \cdot \frac{T_{eS}}{T_{eS} - 1} + \frac{e^{-T_{e}(\ln Y_{e0})S}}{T_{eS} - 1}\right) \hat{q}_{i} + \left(\frac{1}{Y_{e0}} \cdot \frac{T_{eS}}{T_{eS} - 1} - \frac{e^{-T_{e}(\ln Y_{e0})S}}{T_{eS} - 1}\right) \hat{g}_{i}$$
$$+ \frac{Y_{e0} - 1}{Y_{e0}} \cdot \frac{T_{eS}}{T_{eS} - 1} \left\{1 - Y_{e0} e^{-T_{e}(\ln Y_{e0})S}\right\} \hat{i}_{i}$$

$$+\frac{P_{0}}{V_{0}}\left(\frac{T_{e}S}{T_{e}S-1}\left\{\left(\frac{1}{Y_{e0}}-e^{-T_{e}\left(\ln Y_{e0}\right)S}\right)+\frac{T_{e}S}{Y_{e0}}\left(\ln Y_{e0}-\frac{1-Y_{e0}e^{-T_{e}\left(\ln Y_{e0}\right)S}}{T_{e}S-1}\right)\right\}b_{0}\right.$$

$$-C_{0}V_{i0}\left\{\left(1-\frac{1}{Y_{e0}}\right)\left(1+T_{e}S\right)-\frac{1}{Y_{e0}}\cdot\frac{1-Y_{e0}e^{-T_{e}\left(\ln Y_{e0}\right)S}}{T_{e}S-1}\right\}\right)\overset{\circ}{p}$$

$$-\left(e^{-T_{e}\left(\ln Y_{e0}\right)S}+\frac{1}{Y_{e0}}\frac{T_{e}S}{T_{e}S-1}\left(1-Y_{e0}e^{-T_{e}\left(\ln Y_{e0}\right)S}\right)-1\right)\cdot\frac{FAP_{0}}{Q_{i0}}s\overset{\circ}{p}$$

$$(4-35)$$

4.4.3 差分法による解法

以上の加熱器の解析においては、いずれも各基礎方程式を微小変動法によって線形化し、 解が得られてきた。しかし、電子計算機の発達してきている現在、各基礎式から数値解によ って非線形のまま求める方法つまり差分によって解は得ることが可能である。そこで、加熱 器の差分法プログラム(Fortran言語)(付録4)を作成するとともに、本実験条件に対す る数値解を求め、他の式の結果と比較する。まず、差分法の基礎式は前式(4-9a)~(4 -9d)と管内圧力損失を考慮した次の式から成る。

圧力損失の式:
$$\frac{\partial P}{\partial x} = -\lambda \frac{1}{D} \cdot \frac{1}{2g} \left(\frac{G}{F}\right)^2 \cdot \frac{1}{r}$$
 (4-36)

 $2 \geq \tau, \ \lambda = 0.3 \ 1 \ 6 \ 4 \cdot R_e^{-\frac{1}{4}}$

また,管から流体への熱伝達率は次のStyrikowitschの式を用いる。

 $N_{u} = 0.0 \ 2 \ 3 \cdot R_{e}^{0.8} \cdot P_{r}^{0.8}$ (4-37)

その解法は次のようである。まず,解を安定させるために式(4-9a)~(4-9d)の特性 曲線方向 $\lambda = \pm 0$, $\frac{Fr}{G}$ で囲まれる依存領域を含むように距離に対して前進差分商を,時間 に対して後進差分商を用いる。また, Δx , Δt のきざみは $\lambda = \left(\frac{G}{Fr}\right)^{-1}$ が流速と同じ伝 播速度を意味するので, $\Delta x / \Delta t$ の比を最小流速すなわち,加熱器の入口流速に合う様に選 ぶ。その計算手順を図4.8において説明する。

(計算手順)

(1) t = 0の初期整定値を長さ方向に亘って Δx 毎に求める。

(2) 加熱器入口(x=0)におけるG,P,Ø,I,Vは境界条件として入口状態が既知のため、各tに対して既知である。また、その時のHも式(4-37)より計算して求められる。

(4-9c), (4-9d) Lb, $\mathbf{Q}_{0} = H(\boldsymbol{\theta}_{\mathbf{P}} - \boldsymbol{\theta}) + \mathbf{A}_{\mathbf{P}} \boldsymbol{\gamma}_{\mathbf{P}} \mathbf{C}_{\mathbf{P}} \cdot \frac{\partial \boldsymbol{\theta}_{\mathbf{P}}}{\partial \boldsymbol{\tau}} \downarrow \boldsymbol{y} ,$ $Q_0 = H(t, x) \cdot \{ \Theta_P(t, x) - \Theta(t, x) \}$ $+A_{\rm P} r_{\rm P} C_{\rm P} \cdot \frac{\theta_{\rm P}(t, x) - \theta_{\rm P}(t - \Delta t, x)}{\Delta t}$ t-dt--3----(4 - 38a)X + dXより求める。 図 4.8 差分法のきざみ (4) 管内伝熱量 Q_i はx = 0に対して式(4-9 d) より. Qi(t, x)=H(t, x) $\cdot \{\Theta_{P}(t, x) - \Theta(t, x)\}$ (4 - 38b)として求める。 (5) (t, x+△x)における重量流量(格子点②)を連続の式の差分近似により求める。 $G(t, x + \Delta x) - G(t, x) \qquad \gamma(t, x) - \gamma(t - \Delta t, x)$ (1 9 9 0)

$$\Delta x$$
 Δt Δ

る値をとり, 既知であるので, (t, x+ムx)の状態すなわち格子点②のGを上式より計算 する。

(6) 内部流体のエネルギ式の差分近似により,格子点②のエンタルピを求める。

$$Q_{i}(t, x) = G(t, x) \cdot \frac{I(t, x + \Delta x) - I(t, x)}{\Delta x} + \frac{F}{V(t, x)} \cdot \frac{I(t, x) - I(t - \Delta t, x)}{\Delta t}$$

$$(4 - 38d)$$

(7) 圧力損失の式より,格子点②の圧力を求める。

(3) 管 壁温度は x = 0 に おける各 t に対して式

- $\frac{P(t, x+\Delta x)-P(t, x)}{\Delta x} = -\lambda \cdot \frac{1}{D} \cdot \frac{1}{2g} \cdot \frac{G^2(t, x)}{F\gamma(t, x)} \qquad (4-38e)$
- (8) 格子点②のⅠ, Pより計算機に記憶させた物性値データより, ②の温度のを求める。
- (9) 上の(3)~(1)の計算を繰返し,加熱器出口(x=L)まで達すると出口境界条件として 与えられた圧力Peと比較し,入口圧力を修正してPeに収束するまで(1)~(9) を繰返し

計算させる。つまりこのプログラムは出口圧力も任意に変えられる様にしている。 (10) 出口圧力 Pe に収束すれば、その時間の計算は終り、次の時間の計算を繰り返す。 444 各モデルの過渡応答比較

以上にあげた各モデルQ, B, O, Dによる数値計算結果の比較例を示す。

計算は一つのステップ入力を与えた場合について行ない,他の入力変数はすべて時間的に 変化せず,一定であるとする。そして,各ステップ入力は, q_0 , g_i , θ_i ,出口圧力 P_e (または@, ③モデルについては系内圧力と同一)の四種類について行なう。そのときの計 算条件を表42に示す。但し,各応答結果は無次元出口温度 θ_e (= $\frac{\triangle \theta_e}{\theta_{e0} - \theta_{i0}}$),出口流量

表4.2 加熱器動特性の計算条件

	加熱量突変	流量突変	入口温度突変	出口温度突変
加熱量 kcal/h	23400 727100	26600	21600	21600
流 量 kg/h	359	275 🗡 322	288	288
系内(出口)圧力 ata	8 8.0	8 2 .0	8 5.0	8 5.0 7 8 8.0
入口温度 ℃	3 7.0	37.5	40.4 🗡 45.0	4 0.0
出口温度 ℃	174.3	334.7	257.8	257.8

<u>^</u>

加熱量 q₀ 突変に対する θ_e, g_e
 の応答

加熱量をステップ状に増加させた ときの各モデルによる出口温度,流 量の過渡応答り。,g。結果を図49 に示す。図中実線,一点鎖線,破線, 二点鎖線が各々@, ®, ©, ①モデ ルに対するものである。

これより,温度,流量応答ともいずれのモデル(但し, ge応答に対する®モデルは非 圧縮性のために0)とも定性的には一致した傾向を示していることが分る。まず,出口 温度応答に対しては,いずれもほぼ一次遅れ状の応答を示すが,非圧縮性分布定数系と

-165-

したBモデルがもっとも応答が早い。

また, 圧縮性を考慮した集中定数系モデル@とその分布定数系モデル@とは非常に良く一致しているが, 差分法の@モデルでは特に管内比体積の変化を遂次計算していくため, 各モ デル中流動時間が最も小さくなり, 整定時間も最も短かくなっている。

次に,出口流量の応答g。は®を除くいずれも比体積の変化を考慮しているため,加熱量 増加による比体積増加の影響で,一時的に増大するが,入口流量一定のため,温度整定時間 と同じく初期定常値0に整定する。そして@, ©, ®モデルともピーク値を示す時期は2~ 3秒でほぼ一致しているが, ®モデルが最も早く, @, ©の順となる。これは,各計算流動 時間に一致していると考えられ,各モデルの流動時間の算出式を考えれば,当然のことと思 われる。しかし,ビークの流量変化は分布定数系の®, ®モデルの場合, @に比べて大きく,約0.2となっているのに対し,集中定数系の®モデルでは,物性値として出入口の平均を用 いている関係から約0.1と半分位になっている。すなわち,ピークの膨出量は分布系とした 方が集中系モデルより大きく算出されることが分るが,その時間積分の膨出量自体はいずれ

図 4.10 入口流量突変に対する応答

もほぼ同じ位であることが確かめられる。

(2) 入口流量 gi 突変に対する θe, ge の応答

入口流量をステップ状に増加させ たときの各応答を図410に示す。 温度応答はいずれも加熱量突変の場 合と正負を逆にすれば,ほぼ同様の 形状を示し(@, ®モデルでは式の 上でも正,負の違いのみで全く同じ) q突変の場合と同じく®, ®モデル の応答が早い。

一方,流量応答は、もし比体積変 化のない非圧縮性の場合((B)モデル) にはt = 0秒で1となり、そのまま の値を保つことになるが、圧縮性を 考慮すると温度減少に伴なう比体積 減少が原因で時間遅れを生じ る。④モデルではその立上り の流量遅れは小さく,まず増 加を示したのち,温度低下に よる比体積減少により,わず かに減少し,のち1に整定し ている。一方,①モデルでは 一次遅れ状に応答する。しか し①モデルではその傾向は④ モデルと同様であるが,突変 後一時的に1.5まで増加し, のち0.5まで減少したのち, 2秒程で1に整定し,特に比 体積変化の影響が顕著に生じ ていることが分る。

(3) 入口温度 θ_i 突変に対する
 応答

入口温度をステップ状に増

図 4.11 入口温度突変に対する応答

加させたときの応答を図 4 1 1 に示す。温度応答は一次遅れないし、二次遅れ状に増加 する④, ⑧モデルと突変後一時的に逆応答を示す◎, ①モデルの二種に大別出来る。つ まり, 流体の圧縮性を④, ⑧モデルより詳細に考慮していると考えられる分布定数系 モデル◎, ①では入口温度の急上昇により, 加熱器入口部で大きな比体積変化を生じ, 下流側の流体を急激に押し出す膨出現象の結果, 温度が一時的に減少する逆応答特性を 示したものと考えられる。しかし, ①の差分法モデルでは, その変化量が-0.05と微小 で, 15秒程続くのに対して, ◎モデルでは-3近くまで変化するが, 2秒程で終了し ている。また④, ⑧モデルでは, 逆応答を示さず, ⑨モデルに比べ立上りが早い。つま り, 入口部での急激な比体積変化を考慮していないためと考えられ, 加熱器で大きな比 体積変化を生じる場合には◎, ⑨モデルのように逆応答特性を示すものと考えられる。

一万,流量応答は,非圧縮性としたBモデルでは流量変化のない,つまり0一定の応答となるが,圧縮性考慮の各モデルでは比体積増加の膨出現象により突変直後流量は急

増加するが、②では突変後の温 度変化が t ÷ 2 秒で大きく、こ の影響で振動的な変化を示す。 但し、④モデルの応答は差分法 ①モデルと定性的に良く一致し ているが、その変化量は小さい。

(4) 出口圧力 P_e, P外乱に対する応答

モデル@, @ では系内圧力P, 差分法 @ モデルでは出口圧力P。 をステップ状に増加させたとき の各応答を図412に示す。但 し,入口エンタルピを一定とし, 入口温度は圧力の変化に対応し て変化するものとする。また, ® モデルでは非圧縮性とした仮 定のため圧力変化に関係なく, 各応答は0と一定で変化しない。

図 4.12 出口圧力突変に対する応答

まず,温度応答は③モデルの場合,突変直後0.5秒まで上昇し,2秒程で0まで下降し, のち整定している。③モデルでは突変直後0.6まで上昇し,直ちに下降してまたわずかに上 昇し,次に-1.7まで下降し,t=3秒で0.1まで上昇した後,ゆるやかに0に減少整定し ていく。一方,差分法の①モデルでは最初わずかな温度減少と共に,2秒程で増加し,以後 0に整定していくが,③を除くいずれもその変化量は小さい。

流量応答は④モデルでは突変後0秒で-∞まで減少し,2秒程で急激に増加し,0に整定 する。◎では突変後0秒で-2.0まで減少し,2秒で1まで増加,その後減少し,3秒程で 整定する。差分法◎モデルでは0.2秒で-11まで減少し,後急増加し,3秒程でほぼ0と なって整定する。つまり④と◎モデルとは定性的に一致し,定量的にもほぼ一致している。 しかし,◎を除くいずれもその変化量は小さく,この圧力項の影響は小さいといえる。

4.4.5 ブロック線図

一般に加熱器において集中定数系もしくは,幾つかに分割したモデル(分布定数系)に構

-168 -

成するかは,熱交換器の無次元長さを表わす次のバラメータαによって,α<10 の時は単 容量系モデルで十分近似し得ることが,ポイラの過熱器の動特性理論解から,竹内により報 告されている⁽⁵⁾。

(4 - 39)

$$a = \frac{\mathrm{H}\pi \mathrm{D}\mathrm{L}}{\mathrm{G}\cdot\mathrm{C}_{\mathrm{P}}} \left(= \frac{\mathrm{T}_{e}}{\mathrm{T}_{\mathrm{C}}} \right)$$

今,この値を本装置に対して求めると、例えば加熱器,再生器に対して、

$$a = \frac{H\pi DL}{G \cdot C_{P}} = \frac{2\ 0\ 0\ 0 \times \pi \times 7.8 \times 10^{-8} \times 7.8}{1\ 5\ 0 \times 0.4} \doteq 6\ 4\ (\ mkmath{mkm})$$
$$= \frac{3\ 0\ 0\ 0 \times \pi \times 1\ 1.1 \times 1\ 0^{-8} \times 7.8}{3\ 0\ 0 \times 1.5} \doteq 1.8\ (\ mkmath{mkm})$$

$$=\frac{200 \times \pi \times 17.3 \times 10^{-8} \times 7.8}{3000 \times 0.2}$$
 ≑ 1.4 (再生器給熱側)

また、高速増殖炉に CO₂を用いた実用規模(10万kW)の熱交換器の筆者らの試算による と、 $a = \frac{7000 \times \pi \times 15 \times 10^{-3} \times 30}{3200 \times 0.3} = 10.3$,つまり、本プラントにおける a の値は 10 以下であり、単容量系の近似モデルで十分適用し得るものと考えられる。そして系全体のシ ミュレーションには Q モデルを採用し、そのプロック線図を図 4.13に示す。

4.5 再生器の動特性解析

従来,再生器(熱交換器)における動特性の研究は,固体壁と蒸気との間の熱交換の動特 性を Profos⁽²⁰⁾が1943年周波数特性によって論じたものを最初として,現在では二流体 間の向流,並流熱交換器の動特性の理論的研究がかなり進んでおり,高橋⁽¹⁰⁾,増淵⁽⁹⁾,藤 ⁽¹¹⁾, Paynter⁽¹²⁾, Stermole⁽¹³⁾, Koppel⁽²¹⁾など数多くの論文が発表されている。 しかし,一般に流体を非圧縮性と仮定した解析がほとんどで,圧縮性の場合でも飽和蒸気で 温度を一定としたもので、かつ,周波数特性によって論じたものが多い。

一方, CO2プラントの再生器では,タービン入口温度の高温化に伴い受熱側流体において, 相の変化が生じ,入口域の液体から出口の過熱域まで,超臨界圧領域の相変化(移相域)が 生じる。しかし,これを厳密に解析することは移相域の静特性計算(例えば熱伝達率など) とも関連して非常に困難なものであり,現在まだ明らかにされていないものと考えられる。 そこで,ここでは将来のタービン入口温度の上昇に伴う再生器の動特性解析を考え,受熱側 流体の移相境界点の移動を考慮した集中定数系モデルの場合について解析し,次に差分法に

-169 -

よる解法を試みる。そして一実験条件のステップ入力に対して他の集中定数系モデルの場合 と比較する。

4.5.1 仮定とモデル

解析に当り、まずその共通の仮定は次のようである。

仮定:

i) 再生器は向流型二重管式熱交換器(低温流体を内管流れ)とし,管は長さ方向に半径 と厚みが一様である。 ■) 管壁の温度は,半径方向に一様で,かつ長さ方向への熱移動はない。

ⅲ)外シェル壁を無視し、外部熱放散は考慮しない。

Ⅳ)流体の半径方向の温度変化は考えず、均一温度とする。

V) 受熱,給熱側の圧力分布はなく,圧力は一様である。

VI)熱伝達率は流量に比例する。(差分法の場合,式(4-49)に従う)

以上の仮定のもとに,各四種のモデルを考え(以下各々を④, ⑤, ①, ①モデルと呼ぶ), それらに対する各基礎式およびモデルを表 4.3 に示す。まず④モデルは最も簡単な非圧縮性集 中定数系としたモデルであり, ⑧は初期定常値の移相境界点で再生器を二分割し,一方を④ モデル,他方の受熱側流体を圧縮性として直列に結合したものである。次に, ①モデルは受 熱側流体の液相と気相の移相境界点の移動を時間的に考慮した集中定数系モデル, ①は 差分 法による非線形解析で,受熱側流体の物性値の変化を遂次考慮する分布定数系数値解法であ る。

各モデルおよびその基礎方程式を表43に示し、①を除く他のモデルについては各基礎方

			(A)	B		\bigcirc		Ū.
	モ	テル系	集中定数系	二分割集中定数系		二分割集中定数系		分布定数系
解析法		線 形 近 似・ラ プ ラ		ス変換		差分法		
内部流体の圧縮性 無 視		無視	一部考虑		考虑		考虑;	
気液相の境界		反相の境界		移動しない		移動を考慮		
熱伝達率		伝達率	流量に比例	流量に比例		流量に比例		式(4-49)
				ļ	П	I	П	
基礎式	受	エネルギー式	$L:Q_{1} + G_{1}:I_{1} - G_{3}:I_{3}$ = FiLCp3 $J_{3} d\theta_{3}/dt$	$L_{I}Q_{iI} + G_{1}I_{1} G_{2}I_{2}$ = F _i L_{I}C _{P2} Y ₂ dO _{2/dt}	$L_{II}Q_{II} + G_{2} _{2} - G_{3} _{3}$ = F _i L _{II} d($\hat{x}_{3}U_{3}$)/dt	$lQ_{i1}+G_{1}I_{1}-G_{2}I_{2}$ =FiCo2V2d(l·B2)/dt	(L-1)Qir+G212-G313 = F1d{(L-1)}3U3/dt	$Q_{i} = G \frac{\partial I}{\partial L} + \frac{r_{1}}{v_{1}} \frac{\partial U_{1}}{\partial t}$
	₩ 側	連続の式			G2-G3=FiLnd/3/dt	$G_1 - G_2 = F_1 Y_2 d d d t$	$G_2 - G_3 = F_1 d [3_3(L-1)]/dt$	
	給	エネルギー式	$-LQ_{h}+G_{10}h_{0}-G_{12}h_{2}$ =F_{h}LC_{p12}j_{2}d\theta_{12}/dt	$-L_{I}Q_{hI} + G_{11}I_{hI} - G_{12}I_{12}$ = $F_{h}L_{I}C_{p_{12}}J_{12}^{d}B_{12}G_{12}$	-LIQhII +G1010-G1111 -Fh LICp11 X1108 Vat	$-LQ_{hI}+G_{11}I_{11}-G_{12}I_{12}$ = FhCp12 Yi2d(LO12)/dt	-(L-2)Q12+Golio-G1111 FhCp112/1d(L-2)@11/1t	$Q_{h} = G_{h} \frac{\partial h}{\partial L} + \frac{F_{h}}{V_{h}} \frac{\partial h}{\partial t}$
	侧	連続の式	$\frac{1}{(Q_{h}=\alpha_{h}A_{h}(\theta_{12}-\theta_{h}))}$	Qnt=0/ht Ant (Ph2-Phat)		G11-G12=Fh 312dl/dt Oht=chtAnt(Alia-Phat)	G10-G11=Fn }i1d(L-1)/dt	$\frac{1}{(\mathbf{P}_{1} - \mathbf{P}_{2})}$
	管壁	熱バランス式	$Q_{h} - Q_{i} = C_{M} \frac{d\Theta_{M}}{dt}$	$Q_{hI} = Q_{iI} = Q_{M} \frac{d\Theta_{MI}}{dt}$	Qhi - Qii = Chdd	L(QnI-QiI)=GMd(10M/tt -GM(1-2)0m1+LOme dL dt	(L-1)(Qr2-QuE)=Gr4(L-1)(Print) -Cm(L-1)(Print)(Print)(Qr4(L-1)) -Cm(L-1)(Print)(Print)(Qr4(L-1))	$C_h - C_i = C_M \frac{d e_M}{d t}$
न	<u>1</u>	デ ル 図	$ \begin{array}{c} G_{12} & \overbrace{h, C_{12}, h_2, \Theta_2} & G_{12} & \overbrace{h, C_{12}, h_2, \Theta_2} & G_{112} \\ \hline I_{12} & \overbrace{\Delta_{11}, \Delta_{11}, Q_{11}} & \overbrace{I_{10}} \\ \hline G_{11} & \overbrace{\Delta_{11}, \Delta_{11}, Q_{11}} & G_{12} \\ \hline G_{11} & \overbrace{\Delta_{11}, \Delta_{11}, Q_{11}} & G_{13} \\ \hline I_{11} & \overbrace{F_{11}, C_{22}, \lambda_{22}, \Theta_{23}} & I_{23} \\ \hline I_{11} & \overbrace{F_{11}, C_{22}, \lambda_{22}, \Theta_{23}} & I_{23} \\ \hline \end{array} $	$ \begin{array}{c} G_{12} \left[F_{h}, C_{P12}, \breve{y}_{12}, \theta_{P12} \right] G_{112} \left[\begin{array}{c} \theta_{112}, \Phi_{11}, \Phi_{11$	11 Fn, Gn, Xi, Фi, Gi Mu, Ahn, Ohn 2 ока Ai 2 Fi X3 U3 13 - Lπ	$ \begin{array}{c} Gr2 [Fi, Cp2] i2, Gr2, Gr2, Gr2, Gr2, Gr2, Gr2, Gr2, Gr$	$\begin{array}{c} 12 & F_{h}, C_{p11}, \tilde{r}_{11}, \Theta_{11} \\ \hline 13 & G_{h11}, A_{h11}, O_{h11} \\ \hline 13 & G_{h11}, A_{h11}, O_{h11} \\ \hline 14 & G_{h11}, O_{h11}, A_{h11} \\ \hline 15 & G_{h11}, O_{h11}, A_{h11} \\ \hline 12 & F_{1}, \tilde{J}_{3}, U_{5} \\ \hline 12 & F_{1}, \tilde{J}_{3}, U_{5} \\ \hline 13 \\ \hline 12 & F_{1}, \tilde{J}_{3}, U_{5} \\ \hline 13 \\ \hline 12 & F_{1}, \tilde{J}_{3}, U_{5} \\ \hline 13 \\ \hline 14 \\ 1$	$ \begin{array}{c} h & \begin{array}{c} A_{h} & \\ \hline h & \begin{array}{c} A_{h} & \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} G_{i} & F_{i} & A_{i} & \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $

表4.3 再生器のモデルと基礎式

程式を線形化した式および得た伝達関数をラプラス変換した形で示す。

4.5.2 線形モデルによる解法

4.5.2.1 非圧縮性集中定数形(Aモデル)とした解(無次元式)

受熱側流体について

エネルギ式	$ \overset{\circ}{q}_{\ell} - K_1 (\overset{\circ}{\theta}_3 - \overset{\circ}{\theta}_1) - \overset{\circ}{g}_1 = K_1 T_{\ell} S \overset{\circ}{\theta}_3 $
管からの伝熱	$\ddot{q}_{l} = \ddot{\alpha}_{l} + K_{2} (\ddot{\theta}_{M} - \ddot{\theta}_{3})$
熱伝達率	$\mathring{\alpha}_{l} = \mathring{g}_{1}$

給熱側流体について

エネルギ式
$$-\overset{\circ}{q}_{h} - \overset{\circ}{\theta}_{12} + \overset{\circ}{\theta}_{10} + \overset{\circ}{g}_{10} = T_{h} S \overset{\circ}{\theta}_{12}$$

管からの伝熱 $\overset{\circ}{q}_{h} = \overset{\circ}{\alpha}_{h} + K_{8} (\overset{\circ}{\theta}_{12} - \overset{\circ}{\theta}_{M})$
熱伝達率 $\overset{\circ}{\alpha}_{h} = \overset{\circ}{g}_{10}$

管壁について

エネルギ式 $\mathring{q}_{h} - \mathring{q}_{l} = K_{3} T_{M} S \overset{\circ}{\theta}_{M}$

ことで

$$g_{1} = \frac{\triangle G_{1}}{G_{10}}, \quad g_{10} = \frac{\triangle G_{10}}{G_{100}}, \quad q_{\ell} = \frac{\triangle Q_{\ell}}{Q_{\ell 0}}, \quad q_{h} = \frac{\triangle Q_{h}}{Q_{h 0}}$$

$$\theta_{1} = \frac{\triangle \theta_{1}}{\theta_{100} - \theta_{120}}, \quad \theta_{8} = \frac{\triangle \theta_{8}}{\theta_{100} - \theta_{120}}, \quad \theta_{10} = \frac{\triangle \theta_{10}}{\theta_{100} - \theta_{120}}, \quad \theta_{12} = \frac{\triangle \theta_{12}}{\theta_{100} - \theta_{120}}$$

$$\theta_{M} = \frac{\triangle \theta_{M}}{\theta_{100} - \theta_{120}}, \quad \alpha_{\ell} = \frac{\triangle \alpha_{\ell}}{\alpha_{\ell 0}}, \quad \alpha_{h} = \frac{\triangle \alpha_{h}}{\alpha_{h 0}}$$

$$T_{\ell} = \frac{F_{\ell} \perp T_{8}}{G_{30}}, \quad T_{h} = \frac{F_{h} \perp T_{12}}{G_{120}}, \quad T_{M} = \frac{C_{M}}{\alpha_{h 0} A_{h} \perp}$$

$$K_{1} = \frac{\theta_{100} - \theta_{120}}{\theta_{80} - \theta_{10}}, \quad K_{2} = \frac{\theta_{100} - \theta_{120}}{\theta_{M 0} - \theta_{30}}, \quad K_{3} = \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{M0}}$$

$$(\text{ G } \notin \text{B} M)$$

$$\hat{\theta}_{8} = \frac{K_{8} \hat{\theta}_{10} + (T_{h} S + K_{8} + 1)(-\hat{\theta}_{1} + \hat{\theta}_{10}) + \{ (T_{M} S + K_{8} - K_{2} + 1) - K_{8}^{2} - K_{2} \} K_{1} \hat{\theta}_{1}}{K_{1} (T_{\ell} T_{M} T_{k} S^{3} + \{T_{\ell} T_{M} (K_{8} + 1) + T_{M} T_{k} (K_{2} - K_{1} + 1) + T_{k} T_{\ell} (K_{8} - K_{2} + 1) \}$$

+{ (K₃+K₃/K₂+1)T_l+(K₂/K₁+1)(K₃+1)T_M+(K₈/K₁+K₃/K₂+1)T_k}S+K₃/K₁+K₃+K₈/K₂+1)

$$(4 - 4 1 a)$$

(4 - 40)

$$\hat{\theta}_{12} = \frac{\hat{\theta}_{10}}{T_h S + K_8 + 1} + \frac{K_8 (K_1 T_l S + K_2 + K_1)}{K_2 (T_h S + K_8 + 1)} \hat{\theta}_8 - \frac{K_8 K_1}{K_2 (T_h S + K_8 + 1)} \hat{\theta}_1 \quad (4 - 4 1 b)$$

4.5.2.2 二分割モデル(B)による解 (無次元式)

区間I

受熱側流体について

エネルギ式 $K_a \overset{\circ}{\theta}_1 - K_a (1 + T_{ll} S) \overset{\circ}{\theta}_2 - \overset{\circ}{g}_1 + \overset{\circ}{q}_{ll} = 0$ 管からの伝熱 $\overset{\circ}{q}_{ll} = \overset{\circ}{\alpha}_{ll} + K_e (\overset{\circ}{\theta}_{Ml} - \overset{\circ}{\theta}_2)$ 熱伝達率 $\overset{\circ}{\alpha}_{ll} = \overset{\circ}{g}_1$

給熱側流体について

エネルギ式
$$K_d \overset{\circ}{\theta}_{11} - K_d (1+T_{hIS}) \overset{\circ}{\theta}_{12} + \overset{\circ}{g}_{11} - \overset{\circ}{q}_{hI} = 0$$

管からの伝達 $\overset{\circ}{q}_{hI} = \overset{\circ}{\alpha}_{hI} + K_h (\overset{\circ}{\theta}_{12} - \overset{\circ}{\theta}_{MI})$
熱伝達率 $\overset{\circ}{\alpha}_{hI} = \overset{\circ}{g}_{11}$ (4-42)

管壁について

エネルギ式
$$\hat{q}_{hI} - \hat{q}_{lI} = T_{MI}K_h S \hat{\theta}_{MI}$$

区間Ⅱ

受熱側流体について

エネルギ式 $K_{b} \dot{\theta}_{2} - K_{b} (1 + \frac{T_{I}}{K_{I}}S) \dot{\theta}_{3} + K_{0} \dot{g}_{2} - K_{P} \dot{g}_{3}$

$$+ \mathring{q}_{\ell} \mathbf{I} - \mathbf{T}_{\ell} \mathbf{I} \frac{\mathbf{K}_{P}}{\mathbf{K}_{\ell}} \mathbf{S} \mathring{r}_{3} - (\mathbf{K}_{u} - \mathbf{T}_{\ell} \mathbf{I} \frac{\mathbf{K}_{v}}{\mathbf{K}_{\ell}} \mathbf{S} - \frac{\mathbf{K}_{w}}{\mathbf{K}_{\ell}} \mathbf{S}) \mathring{p} = 0$$

管からの伝熱 $\hat{g}_{ll} = K_f(\hat{\theta}_{Ml} - \check{\theta}_3) + \hat{\alpha}_{ll}$ 連続の式 $\hat{g}_2 - \hat{g}_3 - \frac{T_{ll}}{K_l} S\hat{\gamma}_8 = 0$

 $\ddot{\alpha}_{\ell II} = \ddot{g}_2$

熱伝達率

その他
$$\ddot{v}_{8} = K_{4}\ddot{\theta}_{8} + K_{5}\ddot{p}$$

(4 - 43)

給熱側流体について

エネルギ式
$$K_{C}\hat{\theta}_{10}-K_{C}(1+\frac{T_{h}}{T_{\ell}}S)\hat{\theta}_{11}+\hat{g}_{10}-\hat{q}_{h}=0$$

管からの伝熱 $\hat{q}_{h}=\hat{a}_{h}+K_{g}(\hat{\theta}_{11}-\hat{\theta}_{M})$
熱伝達率 $\hat{a}_{h}=\hat{g}_{10}$

-173-
管壁について

エネルギ式
$$\ddot{q}_{hII} - \ddot{q}_{II} = T_{MII}K_gS\ddot{\theta}_{MII}$$

(伝達関数)

$$\overset{\circ}{\theta}_{2} = \frac{(A_{4}S^{2} + A_{5}S + A_{6})\overset{\circ}{\theta}_{1} + K_{\lambda}\overset{\circ}{\theta}_{11} + (C_{1}S + C_{2})(-\overset{\circ}{g}_{1} + \overset{\circ}{g}_{10})}{A_{1}S^{2} + A_{2}S + A_{3}}$$

$$(4 - 44a)$$

$$\hat{\theta}_{3} = \frac{K_{6}\hat{\theta}_{2} - R_{3}\hat{\theta}_{10} + (R_{4}S + R_{5})\hat{\theta}_{11} + (R_{6}S - K_{u})\hat{P}}{R_{1}S + R_{2}}$$
(4-44b)

$$\overset{\circ}{\theta}_{11} = \frac{-U_4 \overset{\circ}{\theta}_2 + (U_5 S^2 + U_6 S + U_7) \overset{\circ}{\theta}_{10} + (R_1 S + R_2) (-\overset{\circ}{g}_1 + \overset{\circ}{g}_{10}) + (U_8 S - U_9) \overset{\circ}{p}}{R_1 R_7 S^3 + U_1 S^2 + U_2 S + U_8} (4-44c)$$

$$\hat{\theta}_{12} = \frac{-C_3 \hat{\theta}_1 + (C_4 S + C_5) \hat{\theta}_2 + \hat{\theta}_{11}}{C_1 S + C_2}$$
(4-44d)

$$\hat{g}_{3} = \frac{T_{\ell I}}{K_{\ell}} K_{4} \hat{S\theta}_{3} + \hat{g}_{1} + \frac{T_{\ell I}}{K_{\ell}} K_{5} \hat{Sp} \qquad (4 - 44e)$$

4.5.2.3 移相境界点の移動を考慮した集中定数形(Cモデル)とした解 (無次元式)

区間I

受熱側流体について

エネルギ式	$\mathbf{K}_{a}\overset{\circ}{\theta}_{1}-\mathbf{K}_{a}(1+\mathbf{T}_{l}\mathbf{S})\overset{\circ}{\theta}_{2}+\mathbf{K}_{m}\overset{\circ}{g}_{1}-\mathbf{K}_{n}\overset{\circ}{g}_{2}$
	$+ \dot{q}_{l} + \dot{l} - T_{l} K_{n} S \dot{l} = 0$
管からの伝熱	$\hat{q}_{l l} = \hat{\alpha}_{l l} + K_{e} (\hat{\theta}_{M l} - \hat{\theta}_{2})$
連続の式	$\mathring{g}_{1} - \mathring{g}_{2} = T_{\ell} S \mathring{\ell}$
熱伝達率	$\mathring{lpha}_{l\ I}=\mathring{g}_{1}$
その他	$\overset{\circ}{\theta}_2 = \mathrm{K}_{\mathbf{\theta}}\overset{\circ}{p}$

給熱側流体について

エネルギ式	$\overset{\circ}{\mathrm{K}_{d}\theta}_{11}$ -K _d (1+T _h	_I S), θ ₁₂ +1	° K _s g ₁₁ -	$-K_t g_{12}$
	$- \dot{q}_{hI} - \dot{l} - T_{hI}K$	$t \circ \hat{l} = 0$		
管からの伝熱	$\hat{q}_{h} = \hat{\alpha}_{h} + K_{h}$ ($\dot{\theta}_{12} - \dot{\theta}_{M}$	I)	
連続の式	$\overset{\circ}{g}_{11} - \overset{\circ}{g}_{12} = \mathrm{T}_{h \mathrm{I}} \mathrm{S}$	ĩ		
熱伝達率	$\overset{\circ}{a}_{h}{}_{\mathrm{I}}=\overset{\circ}{g}_{11}$			

管壁について

エネルギ式
$$\hat{q}_{hl} - \hat{q}_{ll} = T_{Ml}K_h S \hat{\theta}_{Ml} + T_{Ml}K_k K_i S l$$

区間Ⅱ

受熱側流体について

エネルギ式
$$K_b \overset{\circ}{\theta}_2 - K_b (1 + \frac{T_{\ell I}}{K_{\ell}} S) \overset{\circ}{\theta}_3 + K_0 \overset{\circ}{g}_2 - K_P \overset{\circ}{g}_3 + \overset{\circ}{q}_{\ell I} - T_{\ell I} \frac{K_P}{K_{\ell}}$$

- $(K_u - T_{\ell I} \frac{K_v}{K_{\ell}} S - \frac{K_w}{K_{\ell}} S) \overset{\circ}{p} - K_{\ell} \overset{\circ}{l} + (T_{\ell I} K_P - K_w) = 0$
管からの伝熱 $\overset{\circ}{q}_{\ell I} = \overset{\circ}{a}_{\ell I} + K_f (\overset{\circ}{\theta}_{M I} - \overset{\circ}{\theta}_3)$

連続の式
$$\hat{g}_2 - \hat{g}_3 - \frac{T_{II}}{K_l}S\hat{r}_3 + T_{II}S\hat{l} = 0$$

熱伝達率 $\hat{\alpha}_{ll} = \hat{g}_2$

その他
$$v_3 = K_4 \theta_3 + K_5 p$$

給熱側流体について

エネルギ式
$$K_c \overset{\circ}{\theta}_{10} - K_c (1 + \frac{T_{hI}}{K_l}S) \overset{\circ}{\theta}_{11} + K_q \overset{\circ}{g}_{10} - K_r \overset{\circ}{g}_{11}$$

$$(4 - 46)$$

 $- \overset{\circ}{q}_{hII} + K_{\ell} \overset{\circ}{l} - T_{hI} K_{r} S \overset{\circ}{l} = 0$ 管からの伝熱 $\overset{\circ}{q}_{hII} = \overset{\circ}{\alpha}_{hII} + K_{g} (\overset{\circ}{\theta}_{11} - \overset{\circ}{\theta}_{MII})$ 連続の式 $\overset{\circ}{g}_{10} - \overset{\circ}{g}_{11} = -T_{hI} S \overset{\circ}{l}$ 熱伝達率 $\overset{\circ}{a}_{hII} = \overset{\circ}{g}_{10}$

管壁について

エネルギ式
$$\hat{q}_{k\parallel} - \hat{q}_{l\parallel} = T_{M\parallel}K_g S \hat{\theta}_{M\parallel} + T_{M\parallel}T_j T_k S \hat{l}$$

(伝達関数)

$$\hat{\theta}_{2} = K_{6} \hat{P}$$

$$\hat{\theta}_{3} = \frac{-R_{3} \hat{\theta}_{10} + (R_{4}S + R_{5}) \hat{\theta}_{11} + (R_{6}S - R_{8}) \hat{p} - (R_{9}S + R_{10}) \hat{l}}{R_{1}S + R_{2}}$$

$$(4 - 47 a)$$

$$(4 - 47 b)$$

$$\hat{\theta}_{11} = \frac{(U_5 S^2 + U_6 S + U_7) \hat{\theta}_{10} + (R_1 S + R_2)(-\hat{g}_1 + \hat{g}_{10}) + (U_8 S - U_{10}) \hat{p} + (U_{11} S^2 + U_{12} S + U_{13}) \hat{l}}{R_1 R_7 S^8 + U_1 S^2 + U_2 S + U_3}$$

(4 - 47c)

$$\hat{\theta}_{12} = \frac{-C_3\hat{\theta}_1 + \hat{\theta}_{11} + (C_6S + C_7)\hat{p} + (C_8S - C_9)\hat{l}}{C_1S + C_2} \qquad (4 - 47d)$$

$$\hat{l} = \frac{-(A_4S^2 + A_5S + A_6)\hat{\theta}_1 - K_h\hat{\theta}_{11} + (C_1S + C_2)(\hat{g}_1 - \hat{g}_{10}) + (A_{10}S^3 + A_{11}S^2 + A_{12}S + A_{13})\hat{p}_1}{A_7S^2 + A_8S + A_9}$$

(4-47e)

$$\hat{g}_{3} = \frac{T_{\ell I}}{K_{\ell}} K_{4} S \hat{\theta}_{3} + \hat{g}_{1} + \frac{T_{\ell I}}{K_{\ell}} K_{5} S \hat{p} - (T_{\ell I} - T_{\ell I}) S \hat{l}$$

$$(4-47f)$$

ここで

$$\begin{split} g_{2} &= \frac{\triangle G_{2}}{\Theta_{20}}, \quad g_{3} = \frac{\triangle G_{3}}{\Theta_{30}}, \quad g_{11} = \frac{\triangle G_{11}}{G_{110}}, \quad g_{12} = \frac{\triangle G_{12}}{G_{120}} \\ \theta_{2} &= \frac{\triangle \theta_{2}}{\theta_{100} - \theta_{120}}, \quad \theta_{11} = \frac{\triangle \theta_{11}}{\theta_{100} - \theta_{120}}, \quad \theta_{M1} = \frac{\triangle \theta_{M1}}{\theta_{100} - \theta_{120}}, \quad \theta_{M1} = \frac{\triangle \theta_{M1}}{\theta_{100} - \theta_{120}} \\ \alpha_{\ell 1} &= \frac{\triangle \alpha_{\ell 1}}{\alpha_{\ell 1 0}}, \quad \alpha_{\ell 1} = \frac{\triangle \alpha_{\ell 1}}{\alpha_{\ell 1 0}}, \quad \alpha_{h 1} = \frac{\triangle \alpha_{h 1}}{\alpha_{h 1 0}}, \quad \alpha_{h 1} = \frac{\triangle \alpha_{h 1}}{\alpha_{h 1 0}} \\ q_{\ell 1} &= \frac{\triangle Q_{\ell 1}}{Q_{\ell 1 0}}, \quad q_{\ell 1} = \frac{\triangle Q_{\ell 1}}{Q_{\ell 1 0}}, \quad q_{h 1} = \frac{\triangle Q_{h 1}}{Q_{h 1 0}}, \quad q_{h 1} = \frac{\triangle Q_{h 1}}{Q_{h 1 0}} \\ l &= \frac{\triangle l}{l_{0}}, \quad p = \frac{\triangle P}{P_{0}}, \quad r_{3} = \frac{\triangle r_{3}}{r_{30}}, \quad v_{3} = \frac{\triangle v_{3}}{v_{30}} \\ K_{a} &= \frac{\theta_{100} - \theta_{120}}{\theta_{20} - \theta_{10}}, \quad K_{b} = \frac{\theta_{100} - \theta_{120}}{\theta_{30} - \theta_{20}}, \quad K_{c} = \frac{\theta_{100} - \theta_{120}}{\theta_{100} - \theta_{110}}, \quad K_{d} = \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{120}} \\ K_{i} &= \frac{\theta_{100} - \theta_{120}}{\theta_{110} - \theta_{20}}, \quad K_{f} = \frac{\theta_{100} - \theta_{120}}{\theta_{30} - \theta_{20}}, \quad K_{g} = \frac{\theta_{100} - \theta_{120}}{\theta_{100} - \theta_{110}}, \quad K_{A} = \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{M 1 0}} \\ K_{i} &= \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{M 1 0}}, \quad K_{j} = \frac{\theta_{100} - \theta_{120}}{\theta_{110} - \theta_{30}}, \quad K_{g} = \frac{\theta_{100} - \theta_{120}}{\theta_{100} - \theta_{110}}, \quad K_{h} = \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{M 1 0}} \\ K_{i} &= \frac{\theta_{100} - \theta_{120}}{\theta_{120} - \theta_{M 1 0}}, \quad K_{j} = \frac{\theta_{100} - \theta_{10}}{\theta_{110} - \theta_{M 1 0}}, \quad K_{k} = \frac{l_{0}}{L}, \quad K_{\ell} = \frac{l_{0}}{L - l_{0}} \\ K_{m} &= \frac{\theta_{10}}{\theta_{20} - \theta_{10}}, \quad K_{n} = \frac{\theta_{20}}{\theta_{20} - \theta_{10}}, \quad K_{o} = \frac{I_{20}}{I_{30} - I_{20}}, \quad K_{f} = \frac{\theta_{120}}{H_{30} - I_{20}} \\ K_{q} &= \frac{\theta_{100}}{\theta_{100} - \theta_{110}}, \quad K_{r} = \frac{\theta_{110}}{\theta_{100} - \theta_{110}}, \quad K_{s} = \frac{\theta_{110}}{\theta_{110} - \theta_{120}}, \quad K_{\ell} = \frac{\theta_{120}}{\theta_{110} - \theta_{120}} \\ \end{array}$$

$$K_{u} = \frac{F_{4}P_{0}}{F_{2} + F_{4}P_{0}}, \quad K_{v} = \frac{(F_{3} - F_{4}\Theta_{30})P}{I_{30} - I_{20}}, \quad K_{w} = \frac{F_{\ell}AP_{0}l_{0}}{G_{20}(I_{30} - I_{20})}$$
$$K_{4} = \frac{(D_{2}P_{0} + E_{2})(F_{2} + F_{4}P_{0})(\Theta_{100} - \Theta_{120})}{v_{cr} + (D_{2}P_{0} + E_{2})(I_{30} - I_{cr})}$$
$$-176 -$$

$$\begin{split} & K_{5} = \frac{\left\{ (D_{8}P_{0} + E_{5}) (F_{4}\Theta_{5} - F_{5}) + D_{5} (I_{50} - I_{cr}) \right\} P_{0}}{v_{cr} + (D_{3}P_{0} + E_{2}) (I_{50} - I_{cr})} , \quad K_{6} = \frac{\Theta_{30}}{\Theta_{100} - \Theta_{120}} \\ & T_{M1} = \frac{C_{M}}{\alpha_{A_{1}0} \alpha_{A}} , \quad T_{M1} = \frac{C_{M}}{\alpha_{A_{3}0} \alpha_{A}} , \quad T_{\ell 1} = \frac{P_{\ell} I_{0} r_{3}}{G_{20}} , \quad T_{\ell 1} = \frac{P_{\ell} I_{0} r_{30}}{G_{00}} \\ & T_{A_{1}} = \frac{F_{A} I_{0} r_{11}}{G_{110}} \\ & A_{1} = B_{9}C_{1} + B_{10}C_{5} , A_{8} = B_{8}C_{1} + B_{9}C_{5} - K_{A} C_{8} \\ & A_{8} = B_{9}C_{5} - K_{A}C_{9} , A_{4} = B_{2}C_{1} , A_{5} = B_{1}C_{1} + B_{2}C_{2} \\ & A_{6} = B_{1}C_{2} - K_{A}C_{3} , A_{7} = B_{7}C_{1} , A_{8} = B_{6}C_{1} + B_{7}C_{5} + K_{A}C_{8} \\ & A_{9} = B_{9}C_{5} - K_{A}C_{9} , A_{10} = B_{5}C_{1} , A_{11} = B_{4}C_{1} + B_{5} C_{2} \\ & A_{18} = B_{8}C_{1} + B_{4}C_{2} - K_{A}C_{9} , A_{18} = B_{5}C_{2} - K_{A}C_{7} \\ & B_{1} = \frac{K_{a}}{K_{e}} (K_{e} + K_{A}) , B_{3} = \frac{K_{a}}{K_{e}} T_{M1}K_{A} , B_{8} = \frac{K_{e} + K_{A}}{K_{e}} K_{a}K_{6} + K_{A}K_{6} \\ & B_{9} = \frac{K_{a} + K_{A}}{K_{e}} K_{a}T_{\ell}T_{k}K_{e} + \frac{K_{A}T_{M1}}{K_{e}} K_{6}(K_{a} + K_{e}) \\ & B_{5} = \frac{K_{a}K_{A}T_{M1}T_{\ell}T_{4}K_{8}}{K_{e}} + B_{9} = \frac{K_{e} + K_{A}}{K_{e}} , B_{7} = \frac{K_{A}T_{M1}}{K_{e}} (K_{a} + K_{e}) \\ & B_{10} = \frac{K_{A}T_{M1}}{K_{e}} K_{a}T_{\ell}T_{\ell} \\ & C_{1} = T_{A1} , C_{2} = 1 + \frac{K_{A}}{K_{d}} , C_{3} = \frac{K_{a}K_{A}}{K_{d}K_{e}} , C_{7} = \frac{K_{A}K_{5}}{K_{d}K_{e}} (K_{a} + K_{e}) \\ & C_{8} = \frac{K_{A}}{K_{d}} (K_{a} + K_{e}) , C_{9} = \frac{K_{a}K_{A}T_{\ell}T_{4}K_{9}}{K_{d}K_{e}} , C_{7} = \frac{K_{A}K_{9}}{K_{d}K_{e}} \\ & R_{4} = \frac{T_{\ell}T_{4}}{K_{d}} , C_{9} = \frac{1}{K_{d}} (1 + \frac{K_{A}}{K_{e}}) \\ & R_{4} = \frac{T_{\ell}T_{4}}{K_{\ell}} K_{h} , R_{8} - K_{\ell} + K_{\ell} , R_{8} = \frac{K_{0}K_{\ell}}{K_{g}} \\ & R_{4} = \frac{K_{\ell}K_{\ell}}{K_{\ell}} \\ \end{array}$$

- 177-

$$R_{5} = \frac{K_{f}}{K_{g}} (K_{c} + K_{g}), \quad R_{6} = \frac{K_{v}}{K_{\ell}} T_{\ell \parallel} + \frac{K_{w}}{K_{\ell}}, \quad R_{7} = \frac{K_{c} T_{M \parallel} T_{h \parallel}}{K_{\ell}}$$

$$R_{8} = K_{u} - K_{b} K_{6}, \quad R_{9} = T_{\ell \parallel} K_{0} + T_{\ell \parallel} K_{p} + T_{\ell \parallel} + K_{w}$$

$$R_{10} = K_{\ell} (1 + \frac{K_{f}}{K_{g}}), \quad R_{11} = K_{\ell} T_{M \parallel} - T_{M \parallel} K_{j} K_{k} + T_{\ell \parallel}$$

$$R_{12} = K_c T_{MI}, R_{13} = K_c (1 + \frac{K_f}{K_g}), R_{14} = T_{MI} (K_c + K_g) + (1 + \frac{K_f}{K_g}) \frac{K_c}{K_\ell} T_{hI}$$

$$R_{15} = (1 + \frac{K_f}{K_g})K_c + K_f$$

$$U_1 = R_1 R_{14} + R_2 R_7 , U_2 = R_1 R_{15} + R_2 R_{14} - K_f R_4$$

$$U_8 = R_2 R_{15} - K_f R_5 , U_4 = -K_b K_f , U_5 = R_1 R_{12}$$

$$U_6 = R_1 R_{13} + R_2 R_{12} , U_7 = R_2 R_{13} - K_f R_8 , U_8 = K_f R_6$$

$$U_9 = K_f K_u , U_{10} = K_f R_8 , U_{11} = R_1 R_{11} , U_{12} = R_1 R_{10} + R_2 R_{11} - K_f R_9$$

$$U_{13} = R_2 R_{10} - K_f R_{10}$$

4.5.3 差分法による解法

以上の集中定数系とした解の他に受熱側流体について圧縮性を考慮した差分法による非線 形プログラムを作成する(付録5参照)。

まず、その基礎式は次のようである。

受熱側

エネルギ式:
$$Q_{i} = G_{1} \cdot \frac{\partial I_{1}}{\partial L} + \frac{F_{1}}{V_{1}} \cdot \frac{\partial U_{1}}{\partial t}$$
 (4-48a)
連続の式 : $\frac{\partial G_{1}}{\partial L} = \frac{F_{1}}{V_{1}} \cdot \frac{\partial V_{1}}{\partial t}$ (4-48b)

伝熱の式 : $Q_i = \alpha_i \cdot A_i (\theta_M - \theta_1)$ (4-48c) 給熱側

エネルギ式:
$$Q_h = G_h \cdot \frac{\partial I_h}{\partial L} + \frac{F_h}{V_h} \cdot \frac{\partial I_h}{\partial t}$$
 (4-48d)
伝教の式 : Q_h = Q_h · A_h · (Q_h = Q_h)

伝熱の式 :
$$Q_h = \alpha_h \cdot A_h \cdot (\Theta_h - \Theta_M)$$
 (4-48e)
管 壁

熱バランス
$$Q_h - Q_i = C_M \cdot \frac{\partial \Theta_M}{\partial t}$$
 (4-48f)

また、各流体の熱伝達率は次式による。

受熱側 $N_u = 0.0 2 3 \cdot R_e^{0.8} \cdot P_r^{0.8}$ 給熱側 $N_u = 0.0 2 3 \cdot R_e^{0.4} \cdot P_r^{0.8}$

その解き方は向流型再生器において受熱側と給熱側で向じ差分のとり方をすれば,受熱側から計算を進めて行き,給熱側入口温度に収束する様に繰り返し計算を行わねばならず,膨大な計算時間を必要とするので,受熱側では加熱器と同じく距離Lについて前進差分近似,時間tについて後退差分を用いるが,給熱側では距離Lについて後退差分,時間tについて前 進差分近似とする。また,きざみへL/へtは受熱,給熱側のうち速度の最も遅い給熱側入口の流速に合わせた。その計算手順を

図4.14に示す格子点モデルにより説 明する。

(計算手順)

 給熱側の格子点t=0における①,②の流量Gh,エンタルピ
 Ih,比体積Vh,管壁への伝熱 量Qh は、初期条件および境界 条件より既知である。

(4 - 49)

(2) エネルギ式の差分近似式(4 図 4.14 差分法のきざみ
 -50a)より③のエンタルピIA(L, t+△t)が求められ、物性値テータから与えられ

た圧力のもとに温度を算出する。

$$Q_{h}(L, t) = G_{h}(L, t) \cdot \frac{I_{h}(L + \Delta L, t) - I_{h}(L, t)}{\Delta L} + \frac{F_{h}}{V_{h}(L, t)}$$

$$\times \frac{I_{h}(L, t+\Delta t) - I_{h}(L, t)}{\Delta t} \qquad (4-50a)$$

(3) 格子点④における $Q_h \ge Q_l$ は既知であり、管壁の熱バランスの式の(3)の差分近似式 (4-50b)より、④の管壁温度 Θ_M (L, $t+\Delta t$)を算出する。

$$Q_{h}(L, t) = Q_{l}(L, t) + C_{M} \frac{\Theta_{M}(L, t+\Delta t) - \Theta_{M}(L, t)}{\Delta t} \qquad (4-50 \text{ b})$$

(4) ⑥ および⑦の受熱側流体温度 θ は初期条件および境界条件より既知であり、③および⑤の各温度は上記(1)~(3)より算出されているので③→⑤,⑤→⑦のQh,Qiが算出し

-179 -

得る。

(5) 同様に受熱側流体の格子点⑧の流量G₁(L+△t, t+△t)は⑥, ⑦の流量,比体積が 境界条件より既知であるので連続の式の差分近似式(4-50c)より算出する。

$$\frac{G_{1}(L+\Delta t, t+\Delta t)-G_{1}(L, t+\Delta t)}{\Delta t} = F\gamma^{2}(L, t+\Delta t)\frac{1}{\frac{\gamma(L, t+\Delta t)}{\gamma(L, \Delta t)}}{\Delta t}$$

$$(4-50c)$$

(6) 受熱側流体のエネルギ式の差分近似(4-50d)より⑧のエンタルピ I_h (L+ $\triangle t$, t+ $\triangle t$)が求められ,物性値データより温度を求める。

$$Q_{\ell}(L, t+\Delta t) = G_{\ell}(L, t+\Delta t) \cdot \frac{I_{\ell}(L+\Delta L, t+\Delta t) - I_{\ell}(L, t+\Delta t)}{\Delta L} + \frac{F_{1}r(L, t+\Delta t)}{\Delta t}$$
$$\times (I_{\ell}(L, t+\Delta t) - I_{\ell}(L, t)) \qquad (4-50d)$$

- (7) 以上(1)~(6)の計算を受熱側入口より始め、受熱側出口(給熱側入口)へ達すればその時刻における計算は終る。
- (8) 次の時間の計算を行うために上記(2)~(7)を繰り返す。

4.5.4 各モデルの過渡応答比較

表4.4 再生器動特性の計算条件

	受熱側	給熱側
入口流量 kg/h	280.3	280.3
系内圧力 ata	8 9.5	6 0.1
入口温度 ℃	2 1.6	302.7
出口温度 ℃	5 3.8	111.3

以上の各モデル(A), B, C, Dより計算し た過渡応答の計算結果例を示す。計算は1つ のステップ入力を与えた場合について行い, 各入力は給熱側入口温度 Θ_{10} ,給熱側入口流 量 G_{10} ,受熱側入口流量 G_1 の3種類とし, 各突変の初期定常値を表44に示す。また, Dモデルに対する計算突変量は給熱側入口温

度突変に対して、302.7→312.7℃,給熱側入口流量突変に対して280.3 kg/h→316.3 kg/h,受熱側入口流量突変に対して280.3→316.3 kg/hである。但し、各応答は無次元 化した給熱側出口温度 θ_{12} ,受熱側出口温度 θ_8 ,受熱側出口流量 g_8 を無次元化した入力で 除し、さらに各温度応答の場合は最終値と初期値との差で除した形、すなわち最終値を1と した形で示す。

4.5.4.1 給熱側入口温度 Θ_{10} 突変に対する応答

給熱側入口温度突変に対する θ_{12} , θ_{3} , g_{3} の応答を図 415 に示す。 給熱側出口温度 θ_{12} は一次および二次遅れ状に上昇し、いずれも定性的に一致する。①の差分解では他の

-180 -

応答と異なり,むだ時間を伴った応 答を示し,流動時間後に急上昇し, 整定までの時間は,他のモデルと同 じになる。一方,受熱側出口温度 08では①の差分解は最初逆応答を 示す。これは給熱側からの伝熱量が 急増するため,受熱側の出口流量が 一時的に急増し,温度低下をもたら したためと考えられる。そして逆応 答を示した後の整定までの応答は他 の④, ⑧, ②のモデルとほぼ一致す る。

受熱側出口流量 g8 は,いずれも流 体温度上昇による比体積変化により, 突変後一時的を増加を示す。各モデ ルとも定性的に一致しており,定量 的には①の差分解がもっとも大きい ビーク値を示し,その値は0.18で, 気液相の境界移動を考えた②では 0.06, ⑧ では比体積変化を考慮し ているのは受熱側気相だけであり, 境界移動は考えていないので,ピー ク値は小さく約0.01である。つま

図4.15 給熱側入口温度突変に対する応答

り①の差分解のピーク値がもっとも大きい。

4.5.4.2 給熱側入口流量G10 突変に対する応答

給熱側入口流量を突変したときの応答を図 4.16 に示す。給熱側出口温度 012 は各応答と も一次遅れおよび二次遅れ状に増加し、定性的には一致している。また定量的には Bの応答 が遅く、 A、 D モデルとが一致している。そして受熱側出口温度 08 は Dを除くと定性的に 一致するが、 D は前項の給熱側入口温度突変の場合と同様、給熱量が増加し、一時的に流量 が増加するため、最初逆応答を示し、その後急上昇し、他の応答と整定時間は同程度とな

-181 -

っている。出口流量応答 g₈は前項 45.41の時と同様の応答を示し、①のピーク値がもっと も大きい。

45.43 受熱側入口流量突変に対する応答

受熱側入口流量を突変したときの応答を図 4.17 に示す。 θ_8 , θ_{12} の温度応答については いずれの応答も前項 4.5.4.2の給熱側入口流量を突変としたときの応答と正負を逆にすれば, ほぼ一致した応答を示す。そして出口流量応答 g_8 は \mathbb{B} , \mathbb{O} の応答では 0 秒でステップ状に 1まで増加し,その後,流体温度変化による比体積変化のために少し減少するが,再び増加 して整定値 1 となる。この減少割合は前項の給熱側入口流量突変の g_8 応答での増加割合と

図4.16 給熱側入口流量突変に対する応答

図4.17 受熱側入口流量突変に対する応答

ほぼ一致している。また①の応答では約5秒の時定数をもった一次遅れを示す。

4.5.5 ブロック線図

本シミュレーションとしては再生器出口近傍で移相域に入り、かつ前節 4 4 5 より a ÷ 1 ~ 2 < 1 0 であるので、集中定数系非圧縮性モデル④を採用し^{*}、そのブロック線図を図 4 1 8 に示す。但し、将来のタービン入口温度の高温化に伴って再生器内で移相変化を生じ る場合のシミュレーションには他の[®]、[®]モデルの適用が考えられるが、上記のように伝達 関数を求めているので、同様に作成は可能である。

4.6 その他の動特性解析

46.1 ポンプ

ポンプ特性は静特性実験結果から流量 G_1 (kg/sec),回転数 N_P (rps),吐出圧力 P_1 (ata)の間に次の関係が成立する(前章式(3-3))。

 $G_1 = (-0.45 P_1 + 165) \cdot N_p$ (4-51)

そこで上式を定常値からの微小変動を考えて、線形無次元化することにより、

$$g_1 = n_{\rm P} - \frac{0.45 \cdot P_{10}}{165 - 0.45 \cdot P_{10}} \cdot p_1 \qquad (4-52)$$

このブロック線図を前節4.5で示した再生器と併せ図418に示す。

4.6.2 タービンおよびプロワ

タービンおよびブロワの動特性に関する入力としてはタービン入口流量 G_8 ,温度 Θ_8 ,タ ービン出口圧力 P_9 およびブロワ絞り弁開度 δ であり、出力はタービン入口圧力 P_8 、出口温 度 Θ_9 ,さらに消費動力L、タービン出力 W_T (あるいは回転数n)である。

まず,その解析にあたり,前章節 3.42で示したようにタービンのフローティングシール と気体導入軸との間隙からの漏れ量 GL が存在するので,この動特性に及ぼす影響を明らか にしておく。タービンノズルを通過する流量を GT,間隙から直接排気管へ流れる漏れ量を GL とすると、タービン入口流量 G8 は、

 $G_8 = G_T + G_L$ (4-53)

そして G_{Γ} , G_{L} の出入口の圧力,温度条件は同一であるから,

 $G_L / G_T = \phi_L \cdot F_L / \phi_T \cdot F_T$

(4 - 54)

^{*} すなわち,再生器出口で移相域に入るため,再生器には非圧縮性モデルAを採用し,加熱器では圧縮性モデルを採用する。

 $R_1 = A_1 A_2 A_3 T_{1h} T_{1l} T_{m}$

 $R_2 = A_1A_2(A_3 + A_4)T_{11}T_m + A_1A_3(A_2 + A_4)T_{11}T_{11} + A_2A_3(A_1 + A_2)T_{11}T_m$

 $\begin{array}{c} R_{3}=A_{2}T_{m}(A_{1}A_{3}+A_{1}A_{4}+A_{2}A_{4}+A_{2}A_{3})+A_{3}T_{1h}(A_{1}A_{2}+A_{1}A_{4}+A_{2}A_{4})\\ +A_{1}T_{11}(A_{2}A_{3}+A_{2}A_{4}+A_{3}A_{4})\end{array}$

 $R_4 = A_1 A_2 A_3 + A_1 A_3 A_4 + A_1 A_2 A_4 + A_2 A_3 A_4$

 $R_5 = A_2 A_3 A_4$

R6=A2A3Tih

 $R_7 = \frac{A_{3}+A_4}{\Delta_2}$

 $A_{1} = \frac{\Theta_{5} - \Theta_{4}}{\Theta_{3} - \Theta_{1}} , A_{2} = \frac{\Theta_{5} - \Theta_{4}}{\Theta_{m3}\Theta_{3}} , A_{3} = \frac{\Theta_{5} - \Theta_{4}}{\Theta_{10} - \Theta_{12}} , A_{4} = \frac{\Theta_{5} - \Theta_{4}}{\Theta_{12} - \Theta_{m3}}$ $T_{11} = \frac{F_{1} L_{R}}{G_{1} V_{3}} , T_{1h} = \frac{F_{h} L_{R}}{G_{10} V_{12}} , T_{m} = \frac{C_{m}}{H}$

図4.18 再生器およびポンプのプロック線図

ここで、 ϕ_{T} 、 ϕ_{L} はタービンノズルおよびフローティングシールと気体導入軸との間隙における流量係数、 F_{T} 、 F_{L} は各通過断面積。上記両式より、

 $G_8 = (1 + \phi_L \cdot F_L / \phi_T \cdot F_T) \cdot G_T \qquad (4-55)$

ここで、流量係数 $\varphi_{L, T}$ が流量 $G_{L, T}$ の変化に対して一定と考えると、上式(4-53)、 (4-54)、(4-55)と、 $G_8 = G_{80} + \triangle G_8$ 、 $G_T = G_{T0} + \triangle G_T$ より

$$\frac{\Delta G_8}{G_{80}} = \frac{\Delta G_T}{G_{T0}} \left(= \frac{\Delta G_L}{GL_0} \right) \neq z \neq z \neq g_8 = g_T + g_L$$

$$(4-56)$$

よってタービンにおいて漏洩が存在し、 $G_8 \rightleftharpoons G_T$ であっても、そのタービンノズル通過流量 G_T の無次元変化量 g_T はタービン入口流量 G_8 の無次元変化量 g_8 と等しくなる。

一方,タービンノズル通過流量 G_Tは,タービン入口圧力 P₈,入口比体積 V₈,出口圧 力 P₉ との関係から次式で表わされる。

$$G_{\rm T} = \varphi_{\rm T} F_{\rm T} \int \frac{2 g \kappa P_8}{(\kappa - 1) V_8} \left\{ \left(\frac{P_9}{P_8} \right)^2 - \left(\frac{P_9}{P_8} \right)^{\frac{\kappa + 1}{\kappa}} \right\}$$
(4-57)

ここで、 φ_T は流量係数、 F_T はタービンノズル断面積、gは重力加速度、 κ は比熱比上式を線形無次元化することによって、

$$g_{\rm T} = -\frac{\frac{2-\kappa}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa}{\kappa}} - \frac{1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa+1}{\kappa}}}{\frac{2}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa}{\kappa}} - \frac{1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa}{\kappa}} - \frac{\kappa+1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa}{\kappa}} + \frac{2}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa}{\kappa}}$$

$$(4 - 58)$$

そして式(4-6)、(4-8)より $v_8 \geq \theta_8$, p_8 の関係は

$$v_8 = B_{b8} B_{f8} \theta_8 + (B_{bB} B_{g8} - B_{c8}) \cdot p_8$$
 (4-59)

式(4-58),(4-59)より v8を消去することによって、

$$g_{\rm T} = {\rm D}_1 \cdot p_8 - {\rm D}_2 \cdot p_9 - {\rm D}_3 \cdot \theta_8$$
 (4-60)

ここで,

$$D_{1} = -\frac{1}{2} \left\{ \frac{\frac{2-\kappa}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\kappa} - \frac{1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\kappa}}{\left(\frac{P_{90}}{P_{80}}\right)^{\kappa} - \left(\frac{P_{90}}{P_{80}}\right)^{\kappa}} + B_{b8}B_{g8} - B_{c8} \right\}$$
$$D_{2} = \frac{\frac{\kappa+1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\kappa} - \left(\frac{P_{90}}{P_{80}}\right)^{\kappa}}{2\left\{\left(\frac{P_{90}}{P_{80}}\right)^{\kappa} - \left(\frac{P_{90}}{P_{80}}\right)^{\kappa}\right\}}$$

$$D_8 = \frac{1}{2} B_{b8} \cdot B_{f8}$$

次に、タービンの発生動力 W_T は式(3-3)より、

$$W_{\rm T} = \frac{G_{\rm T}}{g} \left(\varphi_c \sqrt{\frac{2 g \kappa}{\kappa - 1}} P_8 V_8 \left\{ 1 - \left(\frac{P_9}{P_8}\right)^{\kappa} \right\} - \frac{\pi D_{\rm T} N}{60} \right) \cdot \frac{\pi D_{\rm T} \cdot N}{60}$$
 (4-61)

同様に上式を線形無次元化することにより, $w_{\rm T} = \frac{-\varphi_c \sqrt{\frac{2 \, g \, \kappa}{\kappa - 1}} P_{80} \, V_{80} \left\{ 1 - \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}} \right\} \cdot \frac{\kappa - 1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}} p_{9}}{2 \left[\varphi_c \sqrt{\frac{2 \, g \, \kappa}{\kappa - 1}} P_{80} \, V_{80} \left\{ 1 - \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}} \right\} - \frac{\pi D_{\rm T}}{60} \, N_0 \, J \left\{ 1 - \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}} \right\}}$

$$+\frac{\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}-\frac{\pi D_{T}N_{0}}{30}}{\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}-\frac{\pi D_{T}N_{0}}{60}}{\frac{\kappa-1}{\kappa}}$$

$$+\frac{\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}\cdot\left\{1-\frac{1}{\kappa}(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}}{2\left[\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}-\frac{\pi D_{T}N_{0}}{60}\right]\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}}$$

$$+\frac{\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}}{2\left[\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}-\frac{\pi D_{T}N_{0}}{60}\right]}{2\left[\varphi_{c}\sqrt{\frac{2}{\kappa-1}}P_{80}V_{80}\left\{1-(\frac{P_{90}}{P_{80}})^{\frac{\kappa-1}{\kappa}}\right\}-\frac{\pi D_{T}N_{0}}{60}\right]}$$

$$(4-6.2)$$

同様に、
$$v_8 を \theta_8$$
, p_8 との関係式(4-59)より,

$$w_{\mathrm{T}} = g_{\mathrm{T}} + \mathrm{D}_{6} \cdot \mathcal{P}_{8} - \mathrm{D}_{7} \cdot \mathcal{P}_{9} + \mathrm{D}_{8} \cdot \boldsymbol{\theta}_{8} + \mathrm{D}_{20} \cdot \boldsymbol{n}$$

(4-63)

ここで,

$$D_{6} = \{ \frac{1 - \frac{1}{\kappa} (\frac{P_{90}}{P_{80}})^{\frac{\kappa - 1}{\kappa}}}{1 - (\frac{P_{90}}{P_{80}})^{\frac{\kappa - 1}{\kappa}}} + B_{b8} B_{g8} - B_{c8} \} \cdot \frac{C_{1} C_{2}}{2 (C_{1} C_{2} - C_{8} N_{0})}$$

$$D_{7} = \frac{C_{1} C_{2} \frac{\kappa - 1}{\kappa} (\frac{P_{90}}{P_{80}})^{\frac{\kappa - 1}{\kappa}}}{2 (C_{1} C_{2} - C_{8} N_{0}) \{1 - (\frac{P_{90}}{P_{80}})^{\frac{\kappa - 1}{\kappa}} \}}$$

$$D_{8} = \frac{C_{1} C_{2}}{2 (C_{1} C_{2} - C_{8} N_{0}) \{1 - (\frac{P_{90}}{P_{80}})^{\frac{\kappa - 1}{\kappa}} \}}$$

$$D_{20} = 1 + \frac{C_{3} N_{0}}{C_{8} N_{0} - C_{1} C_{2}}$$

$$C_{1} = \sqrt{P_{80} \cdot V_{80} \left\{ 1 - \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}} \right\}}$$
$$C_{2} = \varphi_{c} \sqrt{\frac{2 g \kappa}{\kappa - 1}}$$

$$C_3 = \frac{\pi D_T}{6 0}$$

次に、タービンブロワの運動方程式は

$$I \frac{d\omega}{dt} = \frac{W_{\rm T} - L - W_{adB}}{\omega}$$
 (4-64)

$$z \geq \tau, \quad \omega = \frac{2\pi N}{60}$$

上式を線形無次元化することによって,

$$\hat{n} = \frac{1}{T_n S} \left(\hat{w}_T - \frac{L_0}{W_T 0} \hat{l} - \frac{W_{adB0}}{W_T 0} \cdot \hat{w}_{adB} \right)$$
(4-65)

$$\boldsymbol{z} \geq \boldsymbol{\tau}, \ \mathbf{T}_{n} = \mathbf{I} \left(\frac{\boldsymbol{\pi} \mathbf{N}_{0}}{3 \ 0}\right)^{2} \cdot \frac{1}{\mathbf{W}_{\mathrm{T} 0}}$$

また前章節 8.5 で示したタービンプロワの静特性結果より,

$$L = K_{1} \cdot N^{K2}$$

$$W_{adB} = K_{3} \cdot N^{3}$$
(4-66)

ここで, K₁,K₂:定数,K₈はブロワ絞り弁開度によって決まる定数。線形無次元化して,

$$l = K_2 \cdot n$$

$$w_{a d B} = 3 n + \delta$$

$$(4-67)$$

$$\zeta \subset \mathcal{T}, \ \delta = \frac{\bigtriangleup K_3}{K_{30}}$$

よって, 式(4-65), (4-67)より,

$$\overset{\circ}{n} = \frac{1}{(T_n S + \frac{L_0}{W_T_0} K_2)} (\overset{\circ}{w}_T - \frac{W_{a \, d_B \, 0}}{W_T_0} \cdot \overset{\circ}{w}_{a \, d_B})$$

$$\begin{array}{c} & & \\ & &$$

さらに、エネルギ収支の式に対して、本装置の超小型タービン構造においてはタービンケ

ーシングの側容量効果が大きく影響するので,その影響を考慮する必要がある。まず,単容量系としたモデル図 419により次の仮定の下にエネル ギ収支を考える。

1) 流体からタービンケーシング, タービンケ ーシングから外気への熱伝達率 H_T , H_A は

図4.19 タービン系のエネルギバランス

一定。

- 2) タービン内流体温度は出入口温度の平均とする。
- 3) 外気温度は一定

その基礎式は次のように表わされる。

$$g_{8} + \frac{I_{50} - I_{40}}{I_{80} - I_{90}} (i_{8} - i_{9}) = \frac{AW_{T0}}{(I_{80} - I_{90})G_{80}} \cdot w_{T} + \frac{Q_{TL0}}{(I_{80} - I_{90})G_{80}} \cdot q_{TL}$$

$$q_{TL} = \frac{H_{T}F_{T}(\Theta_{50} - \Theta_{40})}{2Q_{TL0}} (\theta_{8} + \theta_{9} - 2 \cdot \theta_{MT})$$

$$q_{TA} = \frac{H_{A}F_{A}(\Theta_{50} - \Theta_{40})}{Q_{TA0}} \theta_{MT}$$

$$\hat{q}_{TL} - \hat{q}_{TA} = \frac{C_{MT}(\Theta_{50} - \Theta_{40})}{Q_{TL0}} \cdot S \theta_{M}$$

(4 - 70)

各 $i \varepsilon$ 式(4 - 8)より θ , p で表わし、上式に代入することによって、 θ_8 , θ_9 , g_8 , p_8 , p_9 , $w_{\rm T}$ の関係が得られる。 $D_{28} \cdot D_{24}$

$$\{ B_{f8}D_{21} - \frac{1}{1 + \frac{2 D_{24}}{D_{25} + D_{26}S}} \} \theta_8 + g_8 - \{ B_{f9}D_{21} + \frac{D_{23} \cdot D_{24}}{1 + \frac{2 \cdot D_{24}}{D_{25} + D_{26}S}} \} \cdot \theta_9$$

+
$$B_{g8} \cdot D_{21} \cdot p_8 - B_{g9} \cdot D_{21} \cdot p_9 = D_{22} \cdot w_T$$
 (4-71)
 $\zeta \subset \mathcal{T}$

$$D_{21} = \frac{I_{50} - I_{40}}{I_{80} - I_{90}}, \quad D_{22} = \frac{A \cdot W_{T0}}{(I_{80} - I_{90}) \cdot G_{80}}, \quad D_{23} = \frac{Q_{TL0}}{(I_{80} - I_{90}) \cdot G_{80}}$$

$$D_{24} = \frac{H_{T} \cdot F_{T}(\theta_{50} - \theta_{40})}{2 \cdot Q_{TL0}} , \quad D_{25} = \frac{H_{A} \cdot F_{A}(\theta_{50} - \theta_{40})}{Q_{TAL0}} , \quad D_{26} = \frac{C_{MT}(\theta_{50} - \theta_{40})}{Q_{TL0}}$$

すなわちタービン・プロワに関する動特性に関する式をまとめると、結局次のようになる。

$$g_{8} = g_{T}$$

$$g_{T} = D_{1} \cdot p_{8} - D_{2} \cdot p_{9} - D_{8} \cdot \theta_{8}$$

$$w_{T} = g_{T} + D_{6} \cdot p_{8} - D_{7} \cdot p_{9} + D_{8} \cdot \theta_{8} + D_{20} \cdot n$$

$$\mathring{n} = \frac{1}{(T_{n}S + \frac{L_{0}}{W_{T_{0}}}K_{2})} (\mathring{w}_{T} - \frac{W_{a \, dB \, 0}}{W_{T_{0}}} \cdot \mathring{w}_{a \, dB})$$

$$(4 - 72)$$

 $w_{adB} = 3 n + \delta$

および式(4-71)となる。 そのブロック線図を図420に示す。

4.6.3 タービン入口蒸気弁

タービン入口蒸気弁においてはほぼ等エンタルピ変化をし、かつ圧力の伝播速度はミリ秒 程度の時間であるので、弁前後における流量は等しいと考えられ、その静特性解析において成り立つ次式(4-73)が過渡時においても十分成立すると仮定できる。よって

 $G_{6} = K \cdot F \cdot \sqrt{(P_{6} - P_{7})/V_{6}}$ (4-73) ここで、K=C_v $\sqrt{2g}$, F:絞り通過面積

よって,上式を線形無次元化することにより,

$$g_{6} = \frac{P_{60}}{2(P_{60} - P_{70})} p_{6} - \frac{P_{70}}{2(P_{60} - P_{70})} p_{7} + f - \frac{1}{2} v_{6}$$
 (4-74)

次式の $v_6 > \theta_6$, p_6 の関係,

$$v_{6} = B_{b 6} i_{6} - B_{c 6} p_{6}$$

$$i_{6} = B_{f 6} \cdot \theta_{6} + B_{g 6} p_{6} \quad \text{i} b$$

$$v_{6} = B_{b 6} \cdot B_{f 6} \cdot \theta_{6} + (B_{b 6} \cdot B_{g 6} - B_{c 6}) \cdot p_{6} \notin \text{i} (4 - 74) \& \text{($\texttt{I}, \texttt{L}, \texttt{I}, \texttt{I})}$$

$$g_{6} = -\frac{P_{70}}{2(P_{60} - P_{70})} p_{7} + f - \frac{1}{2} B_{b 6} B_{f 6} \theta_{6} + \{\frac{P_{60}}{2(P_{60} - P_{70})} - \frac{1}{2} (B_{b 6} B_{g 6} - B_{c 6})\} \cdot p_{6}$$

$$(4 - 75)$$

$D_{6} = \begin{cases} 1 - \frac{1}{k} \left(\frac{P9}{P8} \right)^{\frac{k-1}{k}} + B_{c8} B_{c9} + B_{c8} \\ 1 - \left(\frac{P9}{P8} \right)^{\frac{k-1}{k}} + B_{c8} B_{c9} + B_{c8} \end{cases} \begin{cases} C_{1} C_{2} - C_{3} N \right) \\ C_{1} C_{2} - C_{3} N \right) \end{cases}$ $D_{7} = \frac{C_{1} C_{2} \frac{k-1}{k} \left(\frac{P9}{P8} \right)^{\frac{k-1}{k}} \\ 2(C_{1} C_{2} - C_{3} N) \left\{ 1 - \left(\frac{P9}{P8} \right)^{\frac{k-1}{k}} \right\} \end{cases}$	$\begin{split} D_8 &= \frac{C_1 \ C_2 \ B_{68} B_{18}}{2 \ V_8(C_1 \ C_2 - C_3 \ N)} , D_9 &= \frac{W_{adB}}{W_T} \\ D_{10} &= \frac{B_{19}(\Theta_5 - \Theta_4)(I_5 - I_4)C_{mT}}{Q_{TA}(I_8 - I_9)} + \frac{H_T \ A_T(\Theta_5 - \Theta_4)^2 C_{mT}}{2 \ Q_{TA}(I_8 - I_9)G_8} \\ D_{11} &= \frac{B_{19}(\Theta_5 - \Theta_4)(I_5 - I_4)(H_T \ A_T + H_L \ A_L)}{Q_{TA}(I_8 - I_9)} + (\Theta_5 - \Theta_4)^2 \ H_T \ H_L \ A_T	$D_{12} = \frac{C_{mT}(\Theta_5 - \Theta_4)}{Q_{TA}} \qquad D_{13} = \frac{(\Theta_5 - \Theta_4)(H_TA_T + H_LA_L)}{Q_{TA}}$ $D_{14} = 1 - \frac{A_WT}{(T_8 - T_9)G_8}$	$D_{15} = \frac{(\Theta_5 - \Theta_4)(I_5 - I_4)B_{18}C_{MT}}{Q_{TA}(I_8 - I_9)} + \frac{AWTC_1 C_2(\Theta_5 - \Theta_4)B_{18}B_{18}B_{18}}{2(I_8 - I_9)G_8Q_{TA}(C_1 C_2 - C_3 N)} - \frac{H_TAT H_LAL(\Theta_5 - \Theta_4)^2}{2(I_8 - I_9)G_8Q_{TA}}$	$D_{16} = \left\{ \begin{array}{cc} I_{5} & I_{4} \\ I_{8} & I_{9} \\ - & H_{T} & A_{T} & H_{L} & A_{L} \\ - & H_{T} & A_{T} & H_{L} & A_{L} \\ - & \frac{H_{T} & A_{T} & H_{L} & A_{L} \\ - & 2 & Q_{10}(I_{8} - I_{9})G_{8} \\ \end{array} \right\} $	$D_{17} = \frac{A^2 W_{T} C_2 \frac{k-1}{k} (\frac{P_9}{P_8})^{\frac{k-1}{k}}}{2(18-I_9)G_8(C_1 C_2 - C_3 N) \left\{1 - (\frac{P_9}{P_8})^{\frac{k-1}{k}}\right\}} - \frac{I_5 - I_4}{I_8 - I_9} B_{99}$	$D_{18} = \frac{A Wr(C_1 C_2 - 2C_3 N)}{(18 - 19)(C_1 C_2 - C_3 N)G_8}$ $D_{19} = \frac{15 - 14}{18 - 19} B_{98} - \frac{A Wr}{(18 - 19)G_8}$	$C_{1=\sqrt{P_8V_8\left\{1-\left(\frac{P_9}{P_8}\right)^{K-1}\right\}}}$, $C_{2}=\sqrt{\frac{2gK}{K-1}}$, $C_{3}=\frac{\pi D_1}{60}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{17} = \frac{1}{D_1}, \qquad G_{18} = \frac{D_2}{D_1}, \qquad G_{19} = \frac{1}{D_{4S} + D_5}, \qquad G_{20} = \frac{D_6}{D_{4S} + D_5}$ $G_{21} = \frac{-D_7}{D_{4S} + D_5}, \qquad G_{22} = \frac{-D_9}{D_{4S} + D_5}, \qquad G_{23} = \frac{D_{15}S + D_{16}}{D_{10S} + D_{11}}$	$G_{24} = \frac{-D_{18}(D_{12} + D_{13})}{D_{10} + D_{11}}, G_{25} = \frac{D_{19}(D_{25} + D_{13})}{D_{10} + D_{11}}$ $G_{26} = \frac{D_{14}(D_{12} + D_{13})}{D_{00} + D_{11}}, G_{27} = \frac{D_8}{D_{45} + D_5}, G_{28} = \frac{D_{17}(D_{12} + D_{13})}{D_{10} + D_{11}}$	$G_{29} = \frac{D_3}{D_1}$	$D_{1} = -\frac{1}{2} \left\{ \frac{\frac{2-\kappa}{k} (\frac{P_{9}}{P_{8}}) \frac{\kappa}{k} - \frac{1}{k} (\frac{P_{9}}{P_{8}}) \frac{\kappa+1}{k}}{(\frac{P_{9}}{P_{8}}) \frac{2}{k} - (\frac{P_{9}}{P_{8}}) \frac{\kappa+1}{k}} + B_{b} B_{g} B_{g} + B_{c} B_{g} + B_{c} $	$D_{2} = \frac{\frac{k+1}{k} \left(\frac{P9}{P8}\right) \frac{\kappa}{k} - \frac{2}{k} \left(\frac{P9}{P8}\right) \frac{k}{k}}{2 \left\{\left(\frac{P9}{P8}\right) \frac{2}{k} - \left(\frac{P9}{P8}\right) \frac{k+1}{k}\right\}}, D_{3} = \frac{1}{2} B_{43} B_{48}$ $D_{4} = \frac{1}{W_{1}} \left(\frac{\pi}{30}\right)^{2}, D_{5} = \frac{3(L+W_{cdB})}{W_{1}} + \frac{C_{3N}}{C_{1}C_{2} - C_{3}N} - 1$	医4.20 タービン系のプロック急援

-190-

図421 蒸気弁のブロック線図

そのブロック線図を図421に示す。

4.6.4 配 管 系

各構成機器を連絡する配管の側容量効果を入口温度変動 θ i に対する出口温度応答 θ e の 遅れとして考慮する。この解析は第4章節4で示した加熱器のモデルと同様であり、単容量 系モデルの場合、次の様に表わせる。

$$\overset{\circ}{\theta}_{e} = \frac{T_{P}S + 1}{T_{P}T_{e}S^{2} + (T_{e} + T_{P} + \frac{T_{P}T_{e}}{T_{e}})S + 1} \cdot \overset{\circ}{\theta}_{i}$$

4.6.5 圧力降下

圧力降下は実際には管の長さ方向にわたって分布 するが,前述したようにその圧力変動は区間内で 同時に発生すると考え,各構成機器内の圧力は一 様として流動摩擦による圧力降下は各構成機器端 で集中的に発生するものとする(図422)。

構成機器の入口(添字 i),出口(添字 e)の 摩擦損失は,

$$P_i - P_e = K \cdot V_i \cdot G^2$$
 (4-77)
ここでKを一定と考え、上式を線形無次元化する

(4 - 76)

図 4.2 2 圧力分布の仮定

-1.91-

ことによって,

$$\frac{P_{i0}}{P_{i0} - P_{e0}} \cdot p_i - \frac{P_{e0}}{P_{i0} - P_{e0}} p_e = 2 g + v_i \qquad (4 - 78)$$

今,式(4-5)~(4-8)より $v \geq \theta$, Pの関係を上式に代入することによって各領域に対して次式で表わされる。

i) 超臨界圧(亜臨界圧)過熱領域に対して

$$p_{i} = \frac{\frac{P_{e0}}{P_{i0} - P_{e0}} p_{e} + B_{b(d)} B_{f} \theta_{i} + 2 g}{\frac{P_{i0}}{P_{i0} - P_{e0}} - B_{b(d)} \cdot B_{g} + B_{c(e)}}$$

▮)液相の場合

$$p_{i} = \frac{P_{e0}}{P_{i0}} p_{e} + \frac{2(P_{i0} - P_{e0})}{P_{i0}} \cdot g$$

(4-79b)

(4-79a)

そのプロック線図を図423に示す。

図 4.2.3 圧力降下のブロック線図

図 4.24 系全体のブロック線図

4.7 全体のブロック線図

以上各構成要素について得られた各伝達関数,プロック線図を総合して系全体のブロック 線図を作成し,図424に示す。

4.8 結 言

CO 2動力発生プラントの各構成機器要素の動特性を集中定数系モデルで解析し、次にそれ らを総合して系全体のプロック線図を得た。また、全体動特性の中で特に重要な役割を果す と考えられる加熱器、再生器については、差分法を含む四種のモデルによる解析を示し、本 実験条件において解を求めるとともに、その比較を行った。

その結果を要約すると、次のようである。

(1) タービン入口温度600℃以上の加熱器においては、その出入口の比体積比は1~2と 小さく、その出口温度応答には非圧縮性分布定数系モデル解(式4-18)が充分適用出 来ると考えられる。

- (2) 加熱器の非圧縮性分布定数系モデルにおいて加熱量または入口流量突変に対する出口 温度応答の無次元線図を作成した。
- (3) 加熱器における動特性解析として差分法を含む四種のモデルによる解析を示し、その応答特性を本実験条件に対して示すとともに、その比較をおこなった。その結果
 - (a) 加熱量突変に対する出口温度は一次遅れ状に応答し、出口流量は比体積増加による 膨出現象によりピークをもつ応答を示すが、比体積変化を遂次考慮した差分解の①モ デルが最もピーク値が大きい。
 - (b) 入口流量突変に対する出口温度は加熱量突変の場合と正負を逆にしたほぼ一次遅れ状の応答を示し、差分解による①モデルが最も応答が早い。次に出口流量応答では入口流量増加に対し温度減少に伴う比体積減少のため遅れを伴うが、その遅れは①モデルが最も大きい。
 - (c) 入口温度突変に対する出口温度は一次遅れないし二次遅れ状に応答するが、①、① モデルでは一時的な逆応答特性を示す。これは、流体の圧縮性を分布系で考慮した①、 ①モデルでは入口温度の急上昇により、移相域にある加熱器入口部の大きな比体積変 化の結果、下流側の流体を急激に押し出す膨出現象が生じたためと考えられる。 一方、出口流量はその膨出現象により、突変直後急激に増加し、ビーク値をもつ応答 を示す。
 - (d) 出口圧力突変に対する出口温度応答は殆んど変化なく、小さい。また出口流量に対しては、出口圧力突変直後、急激に減少するが、直ちに回復して、元の値に整定する。
- (4) 再生器における動特性解析として差分解法および移相境界点の移動を時間的に考慮した集中定数系モデルによる解析を示すとともに、他の二つのモデルと併せ、本実験条件に対してその解を求め比較した。その結果、
 - (a) 入口温度突変に対しては、各出口温度は一次遅れ状に応答するが、差分解法①では 給熱側入口温度に逆応答特性が生じる。つまり、受熱側の比体積変化が原因で給熱量 増加に対して受熱側流量が一時的に急増し、温度低下をもたらした結果と考えられる。 受熱側出口流量は膨出現象による一時的ピーク値を示す応答を示す。
 - (b) 給熱側入口流量突変に対しては,受熱側出口温度はいずれも一次遅れ状の応答を示すが,受熱側出口温度応答の①モデルでは上記(a)項と同様の理由で最初逆応答特性を示す。受熱側出口流量は上記(a)項と同様のビーク値をもつ応答を示す。
 - (c) 受熱側入口流量突変に対しては, 谷出口温度は給熱側入口流量突変の場合と正負

-194 -

を逆にすれば、ほぼ一致した応答を示す。

受熱側出口流量は①の差分解では圧縮性の影響により一次遅れ状の応答を示す。 (5) タービンプロワに関してはボイラの応答に比べてその応答時定数は非常に早いので単容

量系とした解析を示し,次に他の各構成機器要素の伝達関数と併せ,系全体のプロック 線図を示した。

第5章 プラント動特性の実験的研究

5.1 緒 言

本章では前記実験装置により四種の操作量突変に対する過渡応答実験を行い、その特性を 明らかにすると共に、一部簡単な近似モデルによる理論式を用いてその現象を説明する。す なわち、実験によってCO2ブラントの過渡的現象および各操作量変化に対する応答の差異を 明確にし、CO2プラントの制御系の最適設計への基礎資料を得る。

一方,この動特性結果はCO2に限らず比較的飽和温度の低い媒体(フレオンなど)を用いた動力用に考えられる貫流型式の蒸発器とタービンから構成される小型モデルの動特性に も何らかの参考に供するものである。

5.2 実験装置および実験方法

実験装置の系統概略図を図 5.1 に示す。

図 5.1 実験装置系統概略図

実験は操作量として, i)加熱量 Q, ii)給水流量 Gp, iii)タービン入口蒸気弁開度 V, IV)ブロワ負荷制御弁開度 BV の四種類で,操作信号としてステップ入力法を用いた。すな わち,制御系の計画にあたって,外乱が線形と考えうる微小変動の場合,種々の操作量に対 する応答は各々のステップ入力に対する応答の和として求められるので,その特性が直感的 に把握し易く,また実験的にも実現し易いためである。各操作方法は, i) 加熱量 Q突変で

-196 -

は加熱管への電力供給用スライダックを急操作, ii) ポンプ流量 GP 突変ではポンプ付無段 変速機の急操作によるブランジャポンプ回転数の変化, ii), iV) 蒸気弁 V およびプロワの 負荷制御弁 BV 突変では各弁開度の急操作である。すなわち,上記の操 作 量を設定し,次 にその操作量のうちの一つを手動急操作して,ステップ状に変化させ,表 5.1 に示す各点 の圧力(差圧)P(△P),温度 θ,流量G,タービン回転数Nの制御量の時間的経過を測定 する。ただし,本実験は自動制御機器の組み込まれていない開ループ制御系に対するもので ある。

項目測定量	測定箇所	各測定機器
旺力(差圧) P (ΔP) (ata)	 (I)加熱管入口 P4 (I) 出口 P5 (II)タービン入口 P8 (N) 出口 P9 (V)プロワ出口 P13 (M) 差圧 ΔP_B 	圧力(差圧)変換器 → 動ひずみ計 {24点式電磁オシログラフ 4点式ペン寶きオシログラフ
温度 1 (°C)	(I)加熱管入口 94 (I) 出口 95 (II)タービン入口 98 (N) 出口 93 (V)プロワ入口 915 (V) 出口 913	C − A 熱電対 多点式ポルトメータ 12点式デ _イ ジタルプリンタ
統	(I) ポンプ出口 G _p (I) タービン入口 G _S (II) ブロワ入口 G _B	圧力の項と同じ
回転数 N(rpm)	タービン ー プロワ	検出電極棒 → 微小変位計 → 直流増幅器 → {カウンタ {シンクロスコープ

表 5.1 動特性の測定箇所と各測定機器

備考)図5.1中に示される上記以外の P, 🖰 は各々ブルドン管式圧力計, C-A蒸電気 — 12打点式温度計にて測定.

実験範囲は流量 230~400kg/h,加熱量(21~28)×10⁴kcal/h, タービン入口圧力, 温度は 76~100ata, 130~350℃である。 各実験条件の一部を第3章で示した静特性 線図の図 5.2 中に示すが,図中の各実験系列番号(Q1,Q2…など)は以下に示す図中の各 番号に対応する。

5.3 過渡応答特性

各操作入力に対する過渡応答の 実験結果の一例を温度,圧力,回 転数,流量などの絶対量の変化と して示し,その物理的現象を順に 説明する。但し,図中の各温度の, 圧力Pなどに対する添字1,2, 3……は図5.1の各点に対応した 箇所を,流量Gに対する添字P, S,Bはそれぞれポンプ,タービ ン入口,プロワの流量を意味する。

5.3.1 加熱量 Qのステップ変 化に対する応答

 $G_P = 348 \text{ kg/h}$ 一定のもとで

Qを2.56×104から2.83×104kcal/h に増加したとき(図5.2中の太線Q1)の応答を図 5.3に示す。

5.3.1.1 温度応答

加熱量Qの増加によって、プラント各部の温度は上昇する。まず、加熱器出口温度 θ5 は 加熱器が電気加熱であるので一般のポイラにみられる燃焼遅れはなく、一次遅れ状の早い応 答を示すが、加熱器から下流にいくほど配管、弁やタービンケーシングの側容量効果によって遅 れが生じてくる。そして再生器の受熱側出口温度 θ4 は、タービン出口温度 θ9 応答の時間 遅れにさらに再生器における遅れが加わり、非常にゆっくりとした応答を示す。

またその変化量は 5 ℃と他の $\Theta_{5,8,9}$ の変化量に比べて小さいが、これは第 3 章で述べた ように再生器交換熱量の増加が約 5 kcal/kg(突変の増加量は約 7.8 kcal/kg)あるのに 対して、CO 2の液相圧縮サイクルの特徴である受熱側流体の定圧比熱が他に比べて大きい ことの理由による。

一方, ブロワ側温度 $heta_{18}, heta_{15}$ はほぼ一様にわずかずつ上昇している。これはタービン, ブ

-198 -

ロワの構造上の理由(第2章で示したように,ター ビン,プロワの構造は一体型で同じケーシング内に 収納されている)と突変実験によって過大なタービ ン推力が軸受にかかるのを防止する意味で圧力バラ ンス用配管によって,タービン出口とプロワ入口と を連絡しているためである。

5.3.1.2 圧力, 蒸気流量応答

水蒸気サイクルの貫流ボイラでは給水流量一定の もとの加熱量変化に対してボイラ出口蒸気流量に一 時的変化(膨出現象)が顕著に生じることが知られ ており⁽²³⁾,本実験においても蒸気流量 G₈の応答 曲線に(((a))のような変化が生じているが、その値は極 めて小さい。つまり、((a))の加熱器はサイ クル配置上過熱域にあり、その比体積変化が小さい ためと考えられる。一方、加熱器入口、出口および タービン入口の各圧力P4、P5、P8は上記 G₈のわ ずかな膨出現象により立上り時に小さな圧力上昇 (図中((a)))を示すが、その後は温度上昇に伴なう 比体積増加の影響で、一次遅れ状に上昇していく。

図 5.3 加熱量突変に対する各応答

またこのP4,P5,P8間の応答早さの差異はほとんど認められない。ただ流量が一定でも比体積変化によって系の圧力分布状況が突変前と異なってくるので,その変化量に差異が生じる。一方,再生器給熱側の圧力損失の絶対値は第2章で示したように小さく,凝縮器圧力も実験中ほぼ一定であるので,タービン出口圧力P9の変化はほとんど認められない。また,プロワ出口圧力P18は他の操作量突変の場合と同様、タービン出口圧力P9 とほぼ同様の応答をする。この理由は 5.3.11の温度応答の項で述べたように,タービン出口管とプロワ入口管とが回路上結合されているためである。

5.3.1.3 出力応答

出力応答としてタービン回転数N, プロワ上昇圧力 $\triangle P_B$, プロワ流量G_Bの三者を示す。 つまり,出力としてタービン出力W_T, プロワ出力W_Bが考えられるが,第3章で述べたよう に本タービン,プロワではW_T $\propto \gamma_g \cdot N^2$, W_{adB} = G_B · $\frac{\triangle P_B}{\gamma_m} \propto \gamma_m N^3$ (ここで添字9, m, adBは各々タービン出口,プロワ出入口平均,断熱を意味する)で表わされるので,出力はいずれもN, Tの関数となる。

つまり、出力(W_T 、 W_{adB})の応答早さは、微小変 化量に対してrが一定なら、いずれもNの応答早さ と同じと考えられる。そして、Nの応答は G_S がほ ぼ一定に対してタービン入口温度 Θ_8 がほぼ一次遅 れ状に上昇するので、同様な一次遅れ状の応答を示 す。しかし、突変直後の G_S の微小増加の影響で、 わずかの上昇(図中 A")を示す。

一方, プロワ上昇圧力 $\triangle P_B$, プロワ流量 G_B は第 3章で述べたように $\gamma_m N^2$, $\gamma_m N$ に比例し, $\gamma_m \doteq -$ 定より回転数 N の変化と良く似た一次遅れ状の応答 を示す。

5.3.2 ポンプ流量 Gp のステップ変化に対する応

答

Q = 2.31×10⁴kcal/h 一定のもとにGpを310 kg/hから344kg/hに増大したとき(図5.2中太 線G1)の応答を図5.4に示す。

5.3.2.1 温度応答

各応答

 G_P の増加により加熱器での単位流量当りの吸熱量が減少するので、加熱器出口温度 Θ_5 はほぼー次遅れ状に減少する。それに伴い、タービン入口、出口各温度 Θ_8 、 Θ_9 も減少する が、下流にいくほどその時間遅れは大きくなっていく。この現象は加熱量突変の場合と同様 である。また加熱器出口温度 Θ_5 は、下流側のタービン入口温度 Θ_8 より一時的に低くなる特 異な現象を生じる。この理由は加熱器出口からタービン入口までの配管の側容量効果による ものであり、この間の流動遅れ(この値は約0.5秒)によるものではない。

一方,加熱器入口温度 θ4 は最初上昇し,次に減少していく逆応答特性を示す。つまり, Gp の増加に対して再生器での単位流量当りの吸熱量減少によって,受熱側出口エンタルピ I4 (図中 I4参照)が減少しているのに関わらず,温度 θ4 は逆に一時的に上昇する。この 理由は次項で説明するように Gp 増加突変によって受熱側出口圧力 P4 が急上昇し, θ, P, I間の物性値の関係からエンタルビの減少に関わらず,逆に温度が上昇するためである。

-200-

つまり、その状態を $\theta - i$ 線図上で示すと、図 5.5 のよう であり、突変前のBの状態から流量増加によりエンタルピ は減少するが、圧力の急上昇を伴ない、Aの状態となり、 温度は逆に上昇するのである。その後は、エンタルピの減 少とともに圧力も回復していくので、温度も減少していく。 プロワ出入口温度 θ_{18} 、 θ_{15} は 5.2.1の項で述べた理由で タービン入口、出口温度 θ_8 、 θ_9 の低下の影響でわずかず つ減少していく。

5.3.2.2 圧力,蒸気流量応答

加熱器入口,出口,タービン入口の各圧力 P_4 , P_5 , P_8 はまず G_P 増加による流量圧入効 果により直ちに急上昇する。そしていずれも40秒程でビークに至り,温度降下に伴をう比 体積減少が原因で徐々に減少し,ほぼ変化前の値に漸近する。これは従来超臨界圧貫流ボイ ラで言われている^{(22),(28)} 給水流量による圧力の制御が困難であることを示すものである。 一方,タービン出口圧力 P_9 はタービン以降の管容量や摩擦損失の時間遅れによってタービ ン上流側の圧力変化よりゆるやかを応答を示し、120秒程でビークを示したのち、タービ ン上流側と同じく徐々に減少していく。そしてプロワ出口圧力 P_{18} は他の操作量突変の場合 と同じく、タービン出口圧力 P_9 と似た応答を示す。一方、蒸気流量 G_8 はポンプ流量 G_P の 遅れに再生器,加熱器をどにおける流体の圧縮性の影響により時定数20秒程の一次遅れ状 に立ち上り、40秒程でポンプ流量と等しくなるが、この40秒はタービン上流側圧力のビ ークに至るまでの時間とほぼ一致している。

5.3.2.3 出力応答

N(またはプロワ上昇圧力ムPB およびGB)はGSの増加によって急上昇し、35~40秒 程でピークに至るが、タービン入口圧力、温度の低下とともに減少し、変化前の値に漸近す る。そしてこの減少の形状はタービン入口温度 88 応答の減少の形状と良く似ている。

5.3.3 蒸気弁開度 Vのステップ変化に対する応答

Q=2.21×10⁴kcal/h, G_P=297kg/h一定のもとに、タービン入口蒸気弁Vを急開 したとき(図5.2中太印V1)の応答を図5.6に示す。

5.3.3.1 温度応答

タービン上流側の各温度 ♥4,05,08 は蒸気弁急開による流量の一時的増加によりわず かな減少が認められるが,流量の回復とともに徐々に元の値に整定している。すなわち,全

-201 -

体に各温度はほぼ一定値を示す。

5.3.3.2 圧力,蒸気流量応答

蒸気弁前の加熱器入口,出口圧力 P_4 , P_5 は弁急開による流量の急放出により約20秒 程で降下し,蒸気弁の圧力損失の減少による 新しい系内圧力分布整定値におちつく。一方, 蒸気弁後のタービン入口圧力 P_8 は弁からタ ービン入口間の容量およびその比体積変化が 小さいので, G_8 の一時的増加によって急上 昇し,約1秒でビークに至り,流量の回復と ともに40秒程で最終整定値におちつく。 G_8 は P_8 と同様弁急開により直ちに一時的増加 を示すが,圧力の回復とともに40秒程で整 定値に至っている。

5.3.3.3 出力応答

Nは温度がほぼ一定なので,主にタービン 図5.6 蒸気弁開度突変に対する各応答 通過流量(または圧力)の影響をうける。つまり,タービン入口圧力P8 の上昇に伴なうタ ービン通過流量の一時的増加により,急激に立ち上り約5秒でビークに至るが,タービン入 口圧力P8 やGs の応答と同様に30~40秒程で回復,整定値に至っている。△PB,GBも同 様である。

5.3.4 プロワ負荷弁開度 BV のステップ変化に対する応答

Q=2.33×10⁴kcal/h, G_P=340kg/h 一定のもとにブ ロワ負荷制御弁を急激に絞ったとき(図5.2中の太印 BV 1) の出力応答を図5.7に示す。負荷弁を急閉することにより、N は時定数5秒程の一次遅れ状に応答する。また $\triangle P_B$, G_Bも同 様である。一方,加熱器、タービン側の各温度,圧力,流量の 変化はほとんど認められず,一定である。

5.4 各応答の比較と検討

以上の操作量が各制御量に及ぼす違いを明確にするため、図

対する各応答

5.2 に示した各実験系列の無次元化応答結果を温度,圧力および回転数別に示す。またその 応答時定数やその影響因子を明らかにするため,一部簡単な理論式を用いて考察する。

5.4.1 動特性に関する諸定数

各応答に影響を及ぼす主要な動特性諸定数として流動時間 T_e , さらに温度応答に対して 単位吸収熱量当りの流体および管壁の熱容量 T_C , T_M , 圧力応答に対するボイラ時定数 T_B , 回転数応答に対する回転エネルギーのタービン入力に対する比があげられる。一方, これら の値は各要素の形状, 寸法などの構造的因子および内部流体の状態など運転条件による因子 によって異なってくる。本装置の各機器,配管を各系統,構成別に分割し,その寸法,そし て各要素を集中定数系として本実験の平均条件に対して求めた T_e , T_C , T_M (算出式は表 5.2下に示す)の値を表 5.2 に示す。

表 5.2 各配管系寸法とT₂, T_C, T_M

简所 項目	ポンプ _ー (再生器 出口 (1)	再生器 (受熱側) (1)~(3)	再生器— {加熱器 出口 } - {入口 (3) ~ (4)	加熱器 (4)~(5)	加熱器)- {タービ 出口 (5) ~ (8)	タービー ン出口 (9) ~ (10)	再生器 (給熱側) (10)~(12)	再生器 出口 (12) ~ (コンデン サー入口 (12) ~ (20)
177 H2 (m)	2.37	7.81	2.13	7.86	3. 36	1.71	7.81	3.81
竹外径 (mm)	21.7	17.3	21.7	13.8	17.3	48.6	48.6	48.6
肉 归(mm)	3.7	3.2	3.7	3.0	3.2	5.1	5.1	5.1
T _e (sec)	4.0	6.6	2.0	1.2	0.5	1.8	7.6	6.0
T _C (sec)	1.3	1.3	2.4	0.2	0.2	3.7	4.9	6.7
T _M (sec)	2.9	2.9	3.0	7.7	8.2	101.5	170.0	104.4

備考: 1) タービンについてケーシングの側容量効果を考慮して算出すると T_e =0.13 , T_C =7.1×10⁻⁴ , T_M =7420 sec 2) ここで T_e: 流動時間 (=F・L/V・G) , T_C: 流体静止状態の時定数 (=F・L・γ_c・C_c/h) , T_W: 管壁の時定数 (=F_M・L・γ_M・C_M/h)

次にそれら動特性に関する諸定数に影響する流体の物性定数に対して従来の作動流体水の 場合と比較する。これらに影響する作業流体間の差異による物性定数による影響因子は比重 量 Γ_c ,比熱 C_c なよび熱伝達率hである。そこで同一圧力(150~250 at a),温度(500 $C \sim 700C$)と仮定して両者を比較すると、管径、流速が同一の場合、hは第1編第3章の 5.3節で示したようにCO₂はH₂Oの0.7~1倍であり、 Γ_c は約2倍、C_cは $t \sim t$ である。 つまり同一管径、同一流速に対するC_c· Γ_c /h比は図5.8に示すようにCO₂はH₂Oとほぼ同 じ値をとり、同一管内容積(すなわち同一FL)であれば同じT_Cの値をとりさらに同 一管径、長さ、材質であればT_Mの値もほぼ等しいことになる。すなわち、動特性に影響する これら諸定数への作業流体H₂OとCO₂間の影響の差異は小さく、設計上の各因子たとえば、 管径、長さ、肉厚、流量の影響が大きく関係してくるものと考えられる。

-203 -

5.4.2 無次元表示による比較と検討

各実験による応答を初期値と最終値または最大(小) 値からの差で徐した無次元量によって図示し(各応答が ほぼ一本の線で表わされる理由の1つとして 5.41で述 べた動特性に関する諸定数(T_e,T_C,……)の値が本 実験範囲に対して大きく変らないことがあげられる), 以下検討する。

5.4.2.1 温度応答

Qまたは Gp の各突変入力に対する加熱器入口,出口そ してタービン入口,出口の各温度応答を図 5.9 (a), (b)に

示す。縦軸の値は各温度変化量を $\Delta \Theta_Q = \Delta Q / G_{P0} C_c$, $\Delta \Theta_G = Q_0 \cdot \Delta G_P / G_{P0}^2 C_c$, (添字 0 は初期値)で除した, また加熱器入口温度は最終値(添字 f)または最大(小)値と初期値との差で除した無次元量である。図(a)(b)両者の応答形状は,加熱器入口を除くと類似しており,いずれも一次遅れないし(むだ時間+一次遅れ)の形で表わされる。しかし,両者の応答時定数をみると,例えば加熱器出口温度に対してQ突変の場合,時定数80秒程のほぼ

1.3 0 Д WHIO (H20/ CO2) Core/h ŧ'n 1.2 1.1 1.0 0.9 0.8 0.7 100 200 300 40Ó 500 600 700 温 废 図 5.8 同一圧力,温度におけ

SD.8 同一止刀,温度におけ る<u>Cc·rc</u>比(CO2と水) 一次遅れ応答に対して、GP突変では等価むだ時間約10秒の二次遅れ状に応答する。

一方,下記の式(5-1)で示す単容量系モデルの解析によると加熱器単体においてQまたはGp入力に対して出口温度は同じ応答を示し、このように応答の立上りにおいて差異がみられるのは、主に次の理由による。

Gp 突変の場合には,(1) Gp の操作時間遅れに,(1) Gp 変化から加熱器入口流量変化まで移 相域にある再生器内の流体の圧縮性によって流量の時間遅れが重なって生じてくる。また, ともにタービン入口,出口では加熱器出口温度よりさらに遅れを伴い,Q突変の場合各々 (等価むだ時間15秒+等価時定数約80秒の一次遅れ),(45秒+約120秒の一次遅れ) で応答している。

加熱器入口温度はQ突変の場合非常に応答の遅いなだらかな温度変化がみられるのに対して、GP突変では最初加熱器入口圧力応答と同様に立ち上り、のち減少していくが、これは前章で説明した様に圧力P4の影響によるものである。

次に,加熱器出口,タービン入口,出口の各温度時定数を単容量系モデルによる理論解と比較する。一般に,加熱量Q,入口流量Gi,入口温度 θi に対する出口温度応答 θe は次式で示される⁽²⁹⁾。

$$\hat{\theta}_{e} = \frac{\{\hat{q} - \hat{g}_{i} + (T_{M}S + 1), \hat{\theta}_{i}\}}{T_{e}T_{M}\{S^{2} + (\frac{1}{T_{e}} + \frac{1}{T_{M}} + \frac{1}{T_{C}}), S + \frac{1}{T_{e}T_{M}}\}}$$
(5-1)

ここで、 $\theta_e = \Delta \theta_e / (\theta_{e0} - \theta_{i0}), = \Delta Q / Q_0, g_i = \Delta G_i / G_{i0}, 式(5-1) を一次$ 遅れで近似して

$$\hat{\theta}_{e} = \frac{\hat{q} - \hat{g}_{i}}{(T_{M} + T_{e} + \frac{T_{e}T_{M}}{T_{C}})S + 1} + \frac{\hat{\theta}_{i}}{T_{e}(1 + \frac{T_{M}}{T_{C}})S + 1}$$
(5-2)

また,実際の装置のように管路系が分布系である場合には上記の集中系モデルが直列接続されたものと考えることにより,次式の多次遅れの伝達関数が得られる。

$$G_{1}(s) = \frac{1}{\{(T_{1} S+1)(T_{2} S+1) \dots (T_{n} S+1)\}}$$
(5-3)

ここで、各 T_1 , T_2 , …… T_n は式(5-2)の右辺の分母のS項の係数に相当する。式(5-3)を等価むだ時間L, 等価時定数Tで近似した式(5-4)は両式を各々級数展開比較し、二次以上の微分項を省略することによりL, Tは式(5-5)のように表わされる。

$$G_{2}(s) = \frac{e^{-LS}}{TS+1} \qquad (5-4)$$

$$L = (T_{1} + T_{2} + \dots + T_{n}) - \sqrt{T_{1}^{2} + T_{2}^{2} + \dots + T_{n}^{2}}$$

$$T = \sqrt{T_{1}^{2} + T_{2}^{2} + \dots + T_{n}^{2}}$$

ここで、各構成要素を集中定数系として算出した表 5.2の T_P , T_0 , T_M の値を用いてQまたは G_1 のステップ変化に対する加熱器出口、タービン入口、出口*の各温度応答 Θ_5 , Θ_8 ,

図 5.10 温度応答(理論と実際の比較)

5.9中の丸印)と良く一致し, 各系統の T_P, T_C, T_Mの値を算出することにより, その温度応答は概略推定できることが確め られる。

5.4.2.2 圧力応答

Q, GP およびV の三種類の各ステップ 入力に対するタービン入口圧力(加熱器出 口圧力***)の無次元化応答を図5.11(a), (b), (c)に示す。

一般に, この種の圧力変化の発生は比体 積の変化に起因し⁽⁸⁰⁾, 集中系効果が支配 的で, 次式の連続の式と状態式から求めら れる。

連続の式は

 * 但し、ことではタービン仕事の変化は小さいとして、ケーシングの側容量効果を配管系として考慮した。
 ** 理論式(5-1)によるQまたはG;変化に対する & 応答の伝達関数は同一(但し符号は逆)となるので、 両者のステップ変化に対する & 計算結果は一致する。
 *** V突変の場合にのみ示す。Q,Gp突変に対するP,およびP5は流動時間に比べて圧力伝播速度が非常に 早いのでP8と全く同様の応答を示す。

$$G_i - G_e = F \cdot L \frac{d}{dt} \left(\frac{1}{V_e} \right)$$
 (5-6)

とこで, 忝字 i, e はある区間の入口, 出口を示す。式(5-6)を線形無次元化した式に V を θ と P で直線近似して線形無次元化した状態式:

$$v_e = a \cdot \theta_e - b \cdot P_e \tag{5-7}$$

(a, bは圧力, 温度によって決まる定数, 完全ガスの場合a = b = 1)より v_e を消去して,

$$\overset{\circ}{P}_{e} = \frac{a}{b} \overset{\circ}{\theta}_{e} - \frac{1}{b \operatorname{T}_{e} \mathrm{S}} \quad (\overset{\circ}{g}_{e} - \overset{\circ}{g}_{i}) \quad (5-8)$$

 $z \geq \tau, \quad P_e = \triangle P_e / P_{e0}, \quad \theta_e = \frac{\triangle \Theta}{(\Theta_{e0} - \Theta_{i0})}, \quad g = \frac{\triangle G}{G_0}$

すなわち,圧力Peは流量変化 g_i または g_e に対して時定数b・Teの積分応答,温度変化 θ_e に対してその $\frac{a}{b}$ 倍に比例した応答をすることが分る。

ここで, プラントの開ループ制御系においては区間出口流量 ge は独立変数でなく, Peお よび下流側の条件によって影響される従属変数となる。そこで,出口に絞りを想定し,その 圧力降下の式は,

$$P_e - P_f = \boldsymbol{\varPhi} \cdot G_e^2 \cdot V_e \tag{5-9}$$

ここで、 ϕ :絞り流量係数,添字fは絞り出口を意味する。 式(5-8)と式(5-9)より g_e を消去して、

$$\overset{\circ}{p}_{e} = \frac{\overset{\circ}{g}_{i} + a (T_{e}S + \frac{1}{2}) \cdot \overset{\circ}{\theta}_{e} + \frac{1}{2} \overset{\circ}{\varphi} + \frac{1}{2} d \overset{\circ}{P}_{f}}{b T_{e}S + \frac{1}{2} (c + b)}$$
(5-10)

$$c \geq \tau, \ \mathcal{P}_{f} = \frac{\triangle P_{f}}{P_{f0}}, \ \varphi = \frac{\triangle \Phi}{\Phi}, \ c = \frac{\triangle P_{e0}}{(P_{e0} - P_{f0})}, \ d = \frac{\triangle P_{f0}}{(P_{e0} - P_{f0})}$$

したがって、 P_e は g_i のステップ変化に対して時定数 $\frac{2bTe}{c+b}$ の一次遅れ状に、 θ_e のステ プ変化に対して、その伝達関数は $\frac{a}{b} - \frac{(\frac{ac}{2b})}{bT_eS + \frac{1}{2}(c+b)}$ となり、一定値 $\frac{a}{b}$ から g_i の場合と 同じ時定数 $\frac{2bTe}{c+b}$ の一次遅れ変化を差し引いた応答となることが分る。例えば、Q、G_P または Vの各突変に対するタービン入口圧力 P₈の応答は蒸気弁からタービン入口までの区 間を考え、G₈の変化を g_i 、絞りをタービンノズルと考えると、本実験条件の場合 $c = \frac{P_{r_0}}{P_{e_0} - P_{f_0}} = \frac{86}{86 - 60} \Rightarrow 3.3, \frac{2 b T_e}{c + b} \Rightarrow 2 \times 1 \times 0.5 / (3.3 + 1) < 0.5 \sec 2 \cos 9, g_i, \theta_e$ (= θ_8)の変化に対して各 $\approx \frac{2}{b + c} \Rightarrow 0.5, \frac{a}{b + c} \Rightarrow 0.2$ 倍のほぼ比例応答をすることにな る。一方、V突変の蒸気弁上流側の圧力は蒸気弁を絞りと考え式(4-10)より φ のステッ ブ変化に対して考えると、時定数 $\frac{2 b T_e}{b + c}$ の一次遅れ変化を示す。そしてこのときの $\frac{2 b T_e}{b + c} = \frac{2 \times (1 - 2) \times 14}{(1 - 2) + 3.3} = (6.5 - 10.6) 秒の - 次遅れ応答となる。$

上記の近似的な理論解析に対して、図 5.1 1 の実験結果においてはまずQ突変に対する P8の応答は立上り時のG8の一時的変化に対して直ちに追随し、その後はタービン入口温度 θ_8 の一次遅れ応答に比例して変化していることが認められる。GP 突変に対しては、G8 お よびそれと逆符号変化の θ_8 の二つの比例応答の相反する作用により、図(b)にみられるよう にG8の整定到達時間とほぼ一致し、約50秒でビークをもつ応答を示す。そしてこの圧力 のビーク以降の回復形状はG8が約50秒後一定となるので、主に θ_8 の応答に比例して影響 をうける。すなわち、流量変化によって生じた圧力発生を保持する(これは次項で述べる GP 変化による回転数(出力)応答の持続効果についても同様である)には、その温度変化 を防ぐように燃料端などへの入力操作を必要とすることを意味する。V突変に対する応答は 温度がほぼ一定であるので、主にV操作による流量変化の影響をうけ、図(c)右図にみられる ようにタービン入口圧力応答 P8はG8に比例した同形状の応答を示す。そしてG8とP8のビ ーク値までの約1~2秒の時間および回復整定時間の約40秒は一致する。一方、弁前の圧 力P5 は流体の圧縮性の影響で時間遅れを生じ、時定数26・T2/(b+c)=7~11 秒程の 一次遅れ状に応答する。

5.4.2.3 回転数応答

各4種の入力に対する回転数の無次元化応答結果を図 5.12(a)~(d)に示す。

ここで回転数の応答は次の回転体の運動方程式から求められる。

$$I \frac{d\omega}{dt} = \frac{W_{\rm T} - L}{\omega}$$
(5-11)

ここで、 I:回転体の慣性モーメント($\Rightarrow 1.066 \times 10^{-4} \text{kg·m/s}^2$), ω :角速度(= $\frac{2\pi N}{60}$), L:消費動力($\Rightarrow K \cdot N^3$, K はプロワ負荷弁の絞りおよび γ_B によって決まる定数)式(5-11)を線形近似して、

$$\overset{\circ}{n} = \frac{1}{T_n S + 3} (\overset{\circ}{W}_T - \overset{\circ}{k}) \qquad (5 - 12)$$

とこで、 $n = \Delta N / N_0$, $k = \Delta K / K_0$, $W_T = \Delta W_T / W_{T0}$, $T_n = I \cdot \left(\frac{\pi N_0}{30}\right)^2$ $\cdot \frac{1}{W_{T0}}$ すなわち, $n ds - \epsilon \times c \circ \delta$ 発生 動力の変化 W_T およびブロワ負荷変化 k $o ステップ変化 に対して時定数 \frac{T_n}{3}$ $O - \phi$ 次遅れ状に応答する。ここで、本タービ $\nu n - \beta d \wedge 型 (1 \pm 1.6 \text{ kg}) \circ T_n = I \cdot \left(\frac{\pi N_0}{30}\right)^2 \cdot \frac{1}{W_{T0}} = 1 \sec^* \sigma \delta \circ \tau$, 非常に小さいので、 $n d W_T$, k の変化 に直ちに追随することになる。 また、 $W_T d \# 3 章 式 (3 - 8, 9) + b$, $W_T = G_S \cdot \frac{\kappa R(\Theta_8 + 273)}{\kappa + 1} \left\{ 1 - \left(\frac{P_9}{P_8}\right)^{\frac{\kappa - 1}{\kappa}} \right\}$

との式を線形近似して、 $\hat{W}_{T} = \hat{g}_{S} - \hat{\overline{\eta}}_{t} + c_{S} \cdot \hat{\theta}_{S} + c_{4} (\hat{p}_{S} - \hat{p}_{a})$ 図 5.12 各操作室の突変入力に対する回転数 の応答

(5-14)

$$z \in \mathcal{T}, \ \overline{\eta}_{t} = \frac{\Delta \eta_{t}}{\eta_{t0}}, \ \theta_{8} = \frac{\Delta \theta_{8}}{\theta_{80}}, \ c_{8} = \frac{\theta_{80}}{\theta_{80} + 273}, \ \mathcal{P}_{8(9)} = \frac{\Delta P_{8(9)}}{P_{80(90)}},$$

$$c_{4} = \frac{\frac{\kappa - 1}{\kappa} \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}}}{1 - \left(\frac{P_{90}}{P_{80}}\right)^{\frac{\kappa - 1}{\kappa}}} \left(= 1.5 \sim 2.5 \right)$$

すなわち,タービン仕事の変化Wr はタービン入口圧力,温度,流量に比例して変化する。 従って,Q突変に対して前記図 5.4のタービン入口圧力,温度の二次遅れ状変化に対して Wr も二次遅れ状に変化し,式(5-11)よりnもほぼ同様の二次遅れ状の応答を示す。な おQの突変直後はGs(P5)のわずかの変化によってnにも同様の小さい変化が認められ

* 最近の大容量蒸気タービン発電機の 3 0 0 0 r pm , 3600 r pm機で 8~1 0秒の値である。
次に、 G_P 突変ではまず P_8 の急変化による W_T の変化に直ちに追随して、れも変化するが、 図 5.4のタービン入口温度減少に伴なう W_T の減少でれも回復整定し、ピーク到達時間は図 5.5の P_8 の約40秒と一致する。

V 突変ではタービン入口温度がほぼ一定なので、一時的なタービン入口流量または P_8 の急変化によって W_T すなわち n も急変化し、入口圧力 P_8 の回復とともに n も直ちに回復整定する。 BV 突変ではプロワの消費動力 L が変化することによって式(5-11)の k も変化し、 n も直ちに応答し、約5秒の一次遅れ応答を示す。ただし、V 突変に比べて応答が遅れるのは、プロワループにおける流体容積がタービン入口側より大きく、圧力が低いので、流体の 圧縮性の影響で L すなわち k の変化が遅れるためである。

以上の各回転数の特性を比較すると,Q突変では時定数130秒程の一次遅れ状応答を示 すのに対して,ポンプ流量,蒸気弁開度突変では最初急激に変化したのち,回復過程があり 整定値に至る。また,後者の二つを比較すると蒸気弁開度突変の方が応答は早いが,その持 続効果はポンプ流量突変の方がある。また,プロワ負荷突変では時定数の小さい一次遅れ状 に応答する。

5.5 結 言

二酸化炭素を作業流体として液相圧縮する超臨界圧動力発生装置により,四種類のステップ操作入力に対する過渡応答実験を行った。そしてプラント各部の温度,圧力,流量,出力の過渡的現象を明らかにするとともに,単容量系モデルによる理論式を用いて説明を加えた。 これにより, CO₂ プラントの過渡応答特性が明確となった。

その結果を要約すると、次のようである。

- (1) 加熱量なよびポンプ流量突変に対する加熱器出口,タービン入口,出口の各温度はいずれも一次遅れないし、二次遅れ状に応答し,簡単な単容量系モデル解と一致する。
- (2) 加熱器入口温度は加熱量突変に対して非常に遅い多次遅れ状の応答を示すが、ポンプ流量突変に対しては逆応答特性を示す。
- (3) 圧力応答では、加熱量増加突変に対して加熱器へ口、タービン入口、出口圧力は突変後の蒸気流量の一時的を増加(膨出現象)と温度上昇の比体積増加による圧力への作用で二段階に上昇し、ポンプ流量増加突変では、蒸気流量増加の圧力上昇作用と温度減少の圧力降下の相互作用でピーク値をもつ応答となる。

る。

また,蒸気弁突変では弁上流側では一次遅れ状に,下流側ではピーク値を持つ応答性を 示す。

- (4) 回転数応答では、加熱量、ポンプ流量および蒸気弁突変に対して、タービン入口圧 力と似た応答を示す。すなわち、加熱量増加突変に対して突変後の蒸気流量の一時 的増加(膨出現象)により増大し、次に温度上昇に伴い一次遅れ状に応答する。ポンプ 流量増加突変では、流量の増加により急激に増大するが、温度低下とともに減少し、ビ ーク値をもつ応答を示す。蒸気弁急開突変ではタービン入口流量の急増加により急増大 し、のち流量の回復とともに減少するビークを持つ応答を示す。そしてポンプ流量突変 と蒸気弁突変の二つを比べると蒸気弁開度の方が応答が早くなるが、その回転数変化の 持続時間は短かい。また、ブロワ負荷弁突変では一次遅れ状の応答を示す。
- (5) 従来の水蒸気プラントの場合と比較すると、次のようである。
 - (a) 物性値間の差異による動特性諸定数への影響の違いは同一圧力,温度の場合殆んど なく,各装置サイズなど設計上の違いによる因子の影響が大きい。
 - (b) サイクル構成上, CO2プラントの場合タービン出口圧力が再生器によって影響をうけるので、タービンは背圧タービン的特性を有する。
 - (c) 再生器給熱側出口温度はポンプ流量増加に対して最初増加し,次に減少する逆応答 特性を示す。
 - (d) 出力特性はいずれも超臨界圧の貫流ポイラプラントと良く似た典型的な形状を示す。

第6章 動特性の理論と実験との比較

6.1 緒

言

本章では第4章で示した動特性の理論解析の数値計算結果と第5章の実験結果との比較を 示す。 つまり,理論解析による結果は,第4章図424に示した総合ブロック線図に基 づいた シミュレーションをディジタル計算機FACOM230-35(言語ADSL,プログラ ム付録6)により計算を行ったものである。

その結果,本理論解析と実験結果とは定性的に良く一致し,定量的にもかをり良い一致が 得られ,今後の実用プラント規模の動特性解析に対して充分参考にし得るものと考えられる。

6.2 理論と実験との比較

系全体のシミュレーションを総合ブロック線図 (第4章節46,図424)に基づき,ディジタ ル計算機FACOM230-35(ADSL言語)(プ ログラム付録6)を使用して計算した。また,計 算および比較の実験例は各々加熱量,ポンプ流量, タービン入口蒸気弁,プロワ負荷弁突変に対して 図5.2に示したQ1,G1,V1,BV1 に対するも のである。

6.2.1 加熱量Qのステップ変化に対する応答 加熱量qをステップ状に変化したときの各部の 温度θ, 圧力P, 流量g. 出力(ただし, タービン回転数n)の各応答の計算結果(図中実線)と 実験結果(図中破線)の比較を図6.1に示す。
縦軸はいずれも無次元化した各応答をステップ操 作量の無次元値で除した値で,各操作量を100
%変化したときの応答に相当する。まず,温度応 答は加熱器出口応答θ, が最も早く応答し,下流

図 6.1 加熱量突変に対する応答

に行く程,配管系などの側容量効果のため,時間遅れが生じる。そして各温度ともいずれも 一次または二次遅れ状応答を示し,定性的には計算値と実験値は一致している。一方,定量 的には加熱器出口温度 θ_5 をみると,計算値,実験値ともに100秒程度でほぼ一致している のに対し,タービン入口 θ_8 ,出口 θ_9 の応答はいずれも計算値の方が立上り時定数が早い。 また,圧力応答においては,計算値は各圧力P4,P5,P8,P9が一次遅れ状となるのに対 し,実験では2段階に上昇している。これはポンプ出口流量 g_1 の解析において式(4-52) で示した様にポンプの静特性曲線からポンプの垂下特性を考え,時間遅れがなく圧力P1, 回転数Nによって決定されるものとしたが、実験では加熱量変化直後,流量にビーク値を示 す行き過ぎ量が生じている。この結果蒸気流量 g_5 に計算のような一時的逆応答(流体の圧 縮性による)が生じず,ほぼ一次遅れ状に減少したものと考えられる。すなわち,この差異

響を及ぼしている。また,タービン出口圧力P9 は タービン出口温度 Ø9 の上昇と流量 Ø5 の減少がバラ ンスするため実験,計算ともほとんど変化していな い。次に,回転数 n の応答はほぼ一次遅れ状に増加 しており,立上りにわずか差異が認められるが,計 算値と実験値とはほぼ一致しているといえる。

が各温度、圧力応答のいずれの立上りにおいても影

6.2.2 ポンプ流量 Gp のステップ変化に対する 応答

ボンブ回転数をステップ状に変化させたときの各 部の無次元化応答を図 6.2 に示す。図中実線は計算値, 破線は実験値である。温度応答は加熱量突変の場合 と同様加熱量出口 θ_5 ,タービン入口 θ_8 ,出口 θ_9 の順に立上り時定数が小さい。また,計算と実験の 立上り時定数に差異が見られ,計算の方が応答の立 上りが早い。これは特にポンプ流量応答 g_1 の応答 差異からわかるように、実験では計算のステップ変 化に対して20~30秒の一次遅れ状に変化し、この 実験上の差異が影響しているものと考えられる。 また,加熱器入口では温度 θ_4 の代りにエンタルビ

-213 -

の無次元応答 i 4/g を示すが, これは加熱器入口の流体が移相域近傍にあり, 圧力の影響に より 温度が大きく変化し, 流量突変の場合エンタルビ変化はなくても, 圧力変化のために温 度が変化し, 簡単な線形理論では表わせないからである。つまり i 4 の計算値と実験値とは ほぼ一致している。次に, 圧力は定性的に各応答とも一致し, 定量的にはボンブ出口流量が ステップ状に変化しないために実験値のビーク値となる時期が計算値のそれより 20~30秒 遅れる。また, タービン出口圧力 P9 はビークとなる時期が計算値では 10秒, 実験値では 100秒となり, 実験の応答の方が遅い。 これはタービン以降の配管系の容量が大きいため に流体の圧縮性による時間遅れが生じているためと考えられる。一方, 回転数 n の応答は実 験値の大きなビークに対して計算では小さなビーク値となっているが, その原因は実験でタ ービン出口圧力の応答が計算よりビークを示す時期がずれていることに起因している。

6.2.3 蒸気弁開度 Vのステップ変化に対する応答

タービン入口蒸気弁の弁開度を急閉したときの各応答を図 6.3 に示す。ここで、温度応答

図 6.3 蒸気弁開度突変に 対する応答

は実験値,計算値ともほとんど変化が認められないので省略 する。 蒸気弁上流側の加熱器入口,出口圧力, P4, P5は いずれも実験値の方が計算値より立上り時定数が大きい。と れはオープンループ制御系によるポンプの動的特性から実験 による g, が大きな変化を示すピーク値をとり,このポン ブの流量変化が圧力に大きく影響を及ぼしているためで、実 際のポンプ流量制御を行う場合には別に問題となるものでは ない。つまり、ポンプの静的特性実験から求めた計算値のポ ンプ出口流量はステップ状に減少した後、ほぼ一定値を示す のに対して実験では、ポンプ流量が大きく減少し、約50秒 の後整定し、その分だけ圧力の応答が遅れることになる。 また,各圧力P4,P5,P8 は計算値のピーク値の方が実験 値のそれに比べ小さく、またピークとなる時期が実験値の方 が遅いが、これも g_1 の影響によるものである。一方、 回転数nの応答は計算値と実験値とは定性的に一致している が定量的にはピーク値に差異がみられる。これも計算値、実 験値のタービン入口圧力,流量に差異があるため生じたもの である。

6.2.4 プロワ負荷弁開度 BV のステップ変化に対する応答

第3章節5で示したように、タービン側入力に対するブロワ出力は小さく、ブロワ負荷弁 を突変させたときのタービン側のループの変化は認められず、ブロワ上昇圧、ブロワ流量お よび回転数に変化が生じる。そして、これら三者の応答の形状はほぼ一致するので、ここで は回転数の応答のみ図 6.4に示す。実験は約5秒の時定数を持つ一次遅れ状の応答となり、

計算値は約3秒程の時定数を持つ一次遅れ状の応答となる。 つまり,計算では弁開度を変化させた瞬時にプロワ負荷が 変化するとしているが,実際はプロワから弁まで約3mの 距離があり,その間の流動時間遅れがあり,このために実 験値の時定数がわずか大きくなっているものと考えられる が,定性的には良く一致している。

6.3 結 言

CO2を作業流体とする動力発生プラントの過渡応答特性の実験と解析結果とを比較検討 した。定性的に良い一致を得,定量的にはオープンループ制御系によるポンプ特性の影響を 考慮するとほぼ良好な結果と考えられる。

今後本研究をステップとしてさらに次の点について解析を進めていく予定である。

1) 実用規模プラントに対する各機器の設計*に対する動特性解析,特にCO2プラントの 動特性に対して再生器が重要な役割を果すと考えられるので,今後移相域を含む線形化 解析の実験との比較,検討

2) 制御系を含めた最適制御系の設計計画である。

ポンプ,加熱器,タービン,プロワ,凝縮器からなるCO2 一段再生液相圧縮超臨界圧プ ラントを製作,運転し,静特性,動特性を調べ,実用化への足がかりを得た。第2章で装置 概要を,第3章では各機器および全体の静特性実験結果を示した。さらに,第4,5章で CO2プラントの過渡応答特性に関する理論および実験結果を,第6章でそれらの比較を示し た。各結論はすでに各章の末尾で示した通りであるが,要点は次のようである。

- (1) 本サイクルでは、熱効率増進上再生器が重要な役割を占めるが、本CO2に対する再生
 器総熱貫流率は900~1500kcal/m²h℃の見通しを得た。
- (2) 将来小容量タービンに適用可能と考えられているピトー型タービンの性能特性を明らかにした。すなわち、その出力は式(3-3)で表わされ、最大効率は $C_N = \frac{C_0}{2}$ の時の50%、最大出力 $W_{T, max} = G_N \cdot \frac{C_0^2}{4a}$ である。
- (3) 連続20時間,延べ1500時間運転の結果、サイクル上および運転上支障となる問題 点は生じず,CO。ブラント実現への確証を得た。
- (4) 動特性に関して、従来の作動流体水の場合と比較すると、同一圧力、温度の場合物性 値間の差異による動特性諸定数への影響の違いは少なく、各装置サイズ、構造など設計 上の相違による因子の影響が大きい。
- (5) サイクル構成上, CO2プラントの場合タービン出口圧力が再生器によって影響を受け るので、タービンは背圧タービン的特性を有する。
- (6) 再生器給熱側出口温度はポンプ流量増加に対して最初増加し,次に減少する逆応答特 性を示す。
- (7) タービンの出力特性はいずれも超臨界圧の貫流ボイラプラントと良く似た典型的な形状と類似している。
- (8) 各機器の単容量系とした理論解析を総合して系全体のブロック線図を作成し、そのシ ミュレーション結果と実験とはほぼ良い一致を得た。

参考文献

- (1) A.Stodola, Steam and Gas Turbines, (1927), 305, Mc Graw-Hill.
- (2) 寺野,運輸技研報告, 7-10, (昭32-11), 207.
- (3) 世古口, 逆井, 機論, 32-240(昭41-8), 1249.
- (4) 竹内, 電力技研所報, 12-1, 2(昭37-6), 33.
- (5) 竹内, 電力技研所報, 13-5, 6(昭38-12), 21.
- (6) 竹内, 福本, 機誌, 69-569(昭41-6), 752.
- (7) 島,小笠原,藤原,機論,34-262(昭43-6),1126.
- (8) 增淵,自動制御,8(昭36),382.
- (9) 増淵,機械学会第54回講演会テキスト(昭48-4),15.
- (10) 高橋, 自動制御, 6(昭34), 2.
- (11) 藤堂, 機論, 33-252(昭42-8), 1215.
- (12) H.M Paynter, Yasundo Takahashi, Trans. ASME, 78(1965-5), 749.
- (13) F.J.Stermole, M.A.Lanson, I&ECFundamentals, 2-1(1963-2)62.
- (14) 青木, 機論, 17-62(昭26), 57.
- (15) 青木, 機論, 18-67(昭26), 92.
- (16) 生井,送風機と圧縮機,(昭35),42.
- (17) 押田,送風機・圧縮機計画設計データ集,(昭42),274.
- (18) 竹內, 福元, 電力技研報告, No. 65042(昭40), 4.
- (19) R.Hoger, Regelverhalten eines Überhitzers Regel, tech, 9-6,
 (1961), 228.
- (20) P.Profos, Die Behandlung von Regelproblemen vermittels des Frequengganges des Regelkreises, (1943)Dies., Zürich.
- (21) L.B.Koppel, I&EC Fundamentals, 1, 2(1962-5), 131.
- (22) 中野, 河竹, 日立評論, 44-9(昭37-9), 7.
- (23) 田村, 細川, 荒川, 日立評論, 45-11(昭38-11), 13.
- (24) 中野,河竹,西村,今野,日立評論,45-11(昭38-11),8.
- (25)伊藤,福田,山野,三菱重工技報,1-1(昭39-1),10.
- (26) 日笠,相楽,三菱重工技報, 2-1(昭49-2),11.

(27) 三浦,日立評論,48-8(昭41-8),16.

(28) S.N.Fiala, Trans ASME, 79-2(1957-2), 389.

(29) 寺野,竹内,ボイラの自動制御,(昭48),42,オーム社.

(30) 石谷, 機論, 27-173(昭36-1), 153.

謝 辞

本研究を遂行するに当って,終始御懇切な御指導と御鞭撻を賜わりました神戸大学の赤川 浩爾先生,本研究をまとめるに当って多大の御援助と御指導を頂きました大阪大学の石谷清 幹先生に心からなる感謝の意を表する次第であります。また,終始御鞭撻を頂きました神戸 大学の坂口忠司先生に感謝の意を表する次第であります。

最後に本研究に協力して頂きました当時,神戸大学学生の小倉啓助(川崎重工),黒田敏 公(川崎重工),滝花清作(日立製作所),有馬秀俊(東京三洋),宮田忠明(神鋼ファウ ドラー),川端康介(ソニー),本岡義啓(大気社),青田光弘(近畿工業),伊藤裕(神 戸大学大学院),多田羅誠(大気社),阿部武生(トヨタ自動車),山口敏明(神戸大学大 学院)の諸氏ならびに図面作成などにおいて協力して頂きました神戸大学技官の村側博康氏 に感謝します。また,この論文の討論に参加され,印刷上の便宜を提供していただいた東京 電力会社の伊藤文夫氏に感謝します。

なお、本研究は文部省昭和46,47年度科学研究費および昭和53~55年特定研究費の 交付を受けたものであり、ここに感謝の意を表する次第であります。

付

録

第1編,第2章

付録表 2.1	各ガスタービンサイクルの特性
付録表 2.2	各流体の物性定数
付録図 2.1	気体および液体のエンタルピ偏奇

第2編,第4章

付録 1	式(4-21)の解に対	するプログラム
付録 2	周波数応答	//
付録3	Floyd の方法	11
付録 4	加熱器の差分法プログラ	۵
付録 5	再生器の差分法プログラ	4

第6章

付録 6	プラント全体のシミューレヨンプ	ログラム

付表 2.1 各ガスタービンサイクルの特性

項目	T-S線図	熱 効 率 の 式	τ, π, κのη _{th} への影響	備考
 (a) 完全単純ガスタービン サイクル (羽_T, 羽_C=1, 非再生) 		η_{th} = $1 - \frac{T_1}{T_2} = 1 - \pi^{-m}$	o τ は η_{th} に関係しない。 o π , κ の大きい程 η_{th} は大 $\left(\frac{\partial \eta_{th}}{\partial \pi} = \frac{m}{\pi^{m+1}}, \frac{\partial \eta_{th}}{\partial m} = \frac{\ln \pi}{\pi^{m}}\right)$	付図 (a)— 1 (b)— 2
(b) 単純ガスタービン サイクル (η _{T,} η _C ≒1,非再生)	⊢ Û / / S	$\eta_{th} = \frac{\eta_{\rm T} \tau (1 - \pi^{-m}) - \frac{\pi^m - 1}{\eta_{\rm C}}}{\tau - 1 - \frac{1}{\eta_{\rm C}} (\pi^m - 1)}$	。 τ の大きい程 η_{th} は大 。 η_{th} を最大にする最適 π , κ 値が存在する。 その値は各々次の式を満足する値である。 $\pi^{m} = \frac{\eta_{T} \tau - \sqrt{\eta_{T} \tau} (\eta_{T} \tau - (\eta_{T} \tau - \tau + 1) \cdot (\eta_{C} \tau - \eta_{C} + 1))}{\eta_{T} \tau - \tau + 1}$	付図 (b)− 1 (b)− 2
(c) 同 上 (η _{T,} η _C ≒ 1, 完全再生)		$\eta_{th} = 1 - \frac{\pi^m}{\eta_T \eta_C \tau} = 1 - \frac{T_1}{\eta_T \cdot \eta_C \cdot T_4}$	o ての大きい程 η_{th} は大 o π , κ の小さい程 η_{th} は大 $\left(\frac{\partial \eta_{th}}{\partial \pi} = -\frac{m}{\eta_{T}\eta_{C}\tau\cdot\pi^{1-m}}, \frac{\partial \eta_{th}}{\partial m} = \frac{-\pi^{m}\ln\pi}{\eta_{T}\eta_{C}\tau}\right)$	付図 (c)-1 (c)-2
(d) 等温圧縮サイクル (η _T =η _C =1, 非再生)		$\eta_{th} = 1 - \frac{\pi^{m}(m\ln\pi - 1) + \tau}{\pi^{m}(\tau - 1)}$	◦ ての大きい程 η_{th} は大 ◦ πには最適値が存在する。 $\pi = \tau^{\frac{1}{m}}$ ◦ $\tau \ge \pi$ の時 κ の大きい程 η_{th} は大 $\tau < \pi$ の時最適 κ 値が存在する。 その値は $\kappa = \frac{ln\pi}{ln\pi - ln\tau}$	付図 (d) — 1 (d) — 2
(e) 同 上 (η _{T,} η _C 运1, 非再生)	EA S	$\eta_{th} = 1 - \frac{\tau \{1 + \eta_T (\pi^{-m} - 1)\} - 1 + \frac{m \ln \pi}{\eta_C}}{\tau - 1}$	○ ての大きい程 η _{th} は大 ○ πには最大値が存在する。 π = (τη _T η _C) ^{1/m} ○ τ ≥ $\frac{\pi}{\eta_T \eta_C}$ の時 κの大きい程 η _{th} は大 τ < $\frac{\pi}{\eta_T \eta_C}$ の時最適 κ値が存在する。 その値は κ = $\frac{ln\pi}{ln\pi - ln(\eta_T \eta_C \tau)}$	付図 (e) — 1 (e) — 2
(d) 同 上 (η _T ,η _C ≒1, 完全再生)	E S	$\eta_{th} = 1 - \frac{m \ln \pi}{\eta_{\rm T} \eta_{\rm C} \tau (1 - \pi^{-m})}$	o ての大きい程 η_{th} は大 o π , κ の小さい程 η_{th} は大 $\left(\frac{\partial \eta_{th}}{\partial \pi} = \frac{-m}{\eta_{T}\eta_{C}\tau\pi^{m+1}}(\pi^{m}-1-m\ln\pi)\right)$ $\frac{\partial \eta_{th}}{\partial m} = \frac{-\ln\pi}{\eta_{T}\eta_{C}\tau\pi^{m}(1-\pi^{-m})}(\pi^{m}-1-m\ln\pi))$	付図 (f)- 1 (f)- 2

 $-221 \sim 222 -$

付図 a-1 π, κのη_{th}への影響

付図 c-2 τ , π , $\kappa \ge \eta_{th}$ の関係

付図 f-2 て, π, κと η_{th}の関係

表 2.2 各 流 体 の 物 性 定 数

物	質	化学	分子量	臨界	臨界	飽和蒸 a	§気圧力 ta	飽 和比容積	蒸 気 m ³ ⁄kg	潜 kca	熱 I∕kg	音 速 飽杯感気	等エントロピー 熱落差120℃の 飽和蒸気から 27℃の飽和	,沸点 at	液比熱		熱 伝 kcal	、 導 率 ∕mh℃	
		記号		°C	ata	2 7°C	120°C	2 7°C	120°C	27°C	120°C	at 27℃ m⁄S	圧力まで k cal/kg	l atm ℃	27°C		液	蒸気	-
;	水	H ₂ O	18	374.2	2 2 5.6	0.036	2.095	39.535	0.863	582.5	525.3	428.8 (490.4 (at 120.1C)	138.9	100	1	1.33(at 26.7C)	0.5208 (20°C)		
水	銀	Hg	201	1537.8		274°C	で 0.19	274°C-	で 1.305	274℃	で 70.2			355.56	0.032	1.666 (1 a tm, 60°C)		,	有毒,安定
F	113	$C_2 Cl_3 F_3$	187	214.1	3 5.1	0.485	7.1.6	0.2 7 5	0.021	36.7	28.3	117.3	9.72	47.78	0.215	1.08 (1 a tm,60℃)	0.0 7 7 5 (20°C)	0.0067 (30°C,0.5atm)	有毒 120℃で 安定(340℃で×)
F	11	CCl ₃ F	137	198.0	4 5. 0	1.146	12.937	0.156	0.015	43.3	32.1	1 3 8.4	1 0. 8 3	23.89	0.21	1.136 (1 a tm ,3 0°C)	0.0789 (20°C)	0.00714 (30°C, 1atm)	有毒 120℃で 安定(340℃で×)
塩化	エチル	C ₂ H ₅ C1	65	187.2	5 3.7	1.723	~ 18.28	0.212		87.2		2 1 0.3		12.22	0.401	1.187 (22.778°C)			有毒 空気と共に爆発
F -	21	CHC12 F	103	178.3	5 2.7	1.969	~ 20.39	0.1 2 0	~0.012	55.6	~ 36.7	161.5	1 2.4	8.8 89	0.2 5 5	1.175 (1 atm, 30°C)	0.0922 (20°C)	0.00848 (30°C, 1 atm)	安定 ^{120℃} で (340℃で×)
亜硫酮	設ガス	SO2	64	157.2	8 0.3	4.198	~ 42.1 9	0.082		80.6	~ 50.6	192.0		10	0.34	1.26 (at 26.7°C)			有毒
ブ (nori	タン nal)	C4H10	58	1520	3 8.7	2.644	~ 22.5	0.1536		86.3				- 0.5 5 6	0.5 2			0.01161 (C, 1atm)	可燃性
F -	114	$C_2 C l_2 F_4$	171	1 4 5.6	3 3.3	2.320	~ 21.8	0.059	0.0057	30.6	17.5	1 1 7.0	7.6 7	3.333	0.2 3 5	1.088 (1atm, 30°C)	0.0565 (20°C)	0.00967 (30°C,1atm)	安定 120℃で (340℃で×)
塩化	メチル	CH ₃ C1	5 0.5	143	6 8.1	6.068	~ 47.8	0.074		89.5				-2 3.89	0.385			$(\begin{array}{c} 0.0\ 1\ 0\ 7\\ 46.1\ 1^{\circ}C\\ 1\ a\ tm\end{array})$	Alで爆発性ガスを形成 空気と共に爆発 有毒
アン:	モニア	NH 3	17	133.0	116.5	10.757	93.5	0.1 2 2	~0.0094	277.1	~106.12	359.7	50.00	-33.33	1.2	1.336	0.4315 (20°C)	$\begin{array}{c} 0.0 \ 3 \ 5 \ 7 \\ (150 \ C, 1 \ a tm) \\ 0.0238 (\begin{smallmatrix} 150 \\ 250 \\ 1 \ a tm) \end{array}$	空気と共に爆発 Cu をおかす
F-	12	$CC1_2F_2$	121	1 1 2.2	4 2.0	6.954		0.0256		32.7		134.4	$(\begin{array}{c} 5.834\\ 26.7 \ \sim 104.4 \ \odot \end{array})$	-29.78	0.233	1.136 (1atm,30°C)	0.0625 (20°C)	0.00878 (30°C,1atm)	安定 120℃で (340℃で×)
F -	22	CHCl F2	86	9 6.1	5 0. 8	11.130	-	0.022		4 3.3	_	158.8		-40.55	0.302	1.184 (latm, 30°C)	0.0774 (20°C)	0.01012 (30C,latm)	有毒 120℃で 安定(340℃で×)
プロ	パン	C3 H8	4,4	94.4	4 6.5	10.040		0.0 48	-	80.1		-		-42.33	0.6	1.13			可燃性
二酸1	と炭素	CO2	44	31	7 5. 3	6 8.1 5 1	_	0.0037		25.0		270.0		-78.5				0.01265 (0°C,1atm)	有毒
F	13	CCl ₈ F	104	28.9	39.4	37.651		0.00256		7.5				-81.67	0.78	1.172 (1atm,−30℃)			安定 120℃で (340℃で×)
空	気	_	29	-140.7	3 8.5	_		_				347 (400℃で) 408		-194.33		1.4			
カリ	ウム	K	39			343℃ 560℃で	C 0.0014 0.1055	560°C	で16.7	560°C 4	493	560℃で 518		760	343°C C 0.185	1.66 (560°C)	560℃で 31.25	560℃で 0.0054	酸化 水中で燃焼

 $-225 \sim 226 -$

₹

付	録	1
1.1	N.K.	T

		. –
ISN	* SOURCE STATEMENT / ERROR MESSAGE	+ID. SEQ.
	C DYNAMIC BEHAVIOR OF SUPER-HEATER S50-4-14 T.FUJII	
I	DOUBLE PRECISION FUNC Y TERU (260) ZY (260) FUJ (260) AA	
2	COMMON AA	
3	EXTERNAL FUNC	
4	9 READ(5-12 AA	
5	1 FORMAT(F10+5)	
6	IF (AA .Eg. 0.0) GO TO 10	
7	FUJ(1)-DEXP(-AA)	
8	DO 2 1=2,250	
9	FUJ(1)=FLOAT(1)/5.0	
10	B=FUJCI)	
11	IF (B +LT - 2+0) GO TO 7	
12	CALL GAS32D(0.0.B.FUNC.Y)	
13	GO TO B	
14	7 CALL GAS4D(0+0+B+FUNC+Y)	
15	8 TERU(1)=DEXP(-AA)+(1+0+Y)	
16	ZY(1)=Y	
17	2 CONTINUE	
18	WRITE(6+3)	
19	3 FORMAT(1H1+10X+62H** CALCULATION OF SULER-HEATER TEMP ENTI 1P+ RESPONSE **)	ER TEM
20	WRITE(6,4)	
21	4 FORMAT(1H +12X+2HT++7X+5HFUNC++9X+6HF1(T+)+15Y-2HT++7Y+5HFUNK	C.:. 10Y
	1,6HF1(T,))	
22	DO 5 (=1,125	
23	WRITE(6,6) FUL(1),7Y(1), TFRU(1),FUL(1+125),7Y(1+125), TFRU(1+1	1051
24	6 FORMAT(1H +10X+F6+2+3X+F10+5+5X+F10+6+10X+E6+12)+(1+1+2)+(E+0)+	
25	5 CONTINUE	10+87
26	WRITE(6:20) AA	
27	20 FORMAT(1H0110X-3HAAm F10-5)	
28	GO TO 9.	
29	10 CONTINUE	
30	STOP	
31	END	
*** 0	PTIONS IN EFFECT +++	
F	ORTRAN2 LIST NOMAP NOASTER NODEBUG NOSE NONERW SYSIN DECK NOSTAC	K+EBCDIC+

		FACOM BOSZ	FORTRAN	-730612- V03 L05		
ISN	i 🔹	I SOURCE	STATEMENT	/ ERROR MESSAGE		+ID. SFQ.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	30 31 2002	DOUBLE PRECIS DOUBLE PRECIS COMMON AA IF(X .LT. 1.01 YOSH1=2.0+DSQI T=AA/X YOSH2=DSQRT(T) CALL BESIID(YC IF(ILL .EQ. 30 E=DEXP(-X) FUNC=E+BI1*YOS GO TO 31 FUNC=0.0 CONTINUE CONTINUE RETURN END	ION FUNCTI ION X.YOSH E-13) GO T RT(AA*X) DSH1,B11.1 D000) GO T SH2	ON FUNC(X) 1.YOSH2.T.BI1.E 0 30 LL) 0 2002		
***	OPTIONS IN	EFFECT ***				
	FORTRAN2	LIST NOMAP	•NOASTER •N	ODEBUG . NOSEQ . NONER	W•SYSIN•DECK•NOSTA E=10	CK+EBCDIC+
-						

FT997 END OF COMPILATION (FUNC)

竹 鲸	2.			·			•			
			FACOM	805 ว ี	FORTRAN	-730612-	V03 L05			
ISN	*		1	SOURCE	STATEMENT	/ ERROR M	ESSAGE		+1	D. SEQ.
12345	c	72	CALCU DIMEN DOUBL COMPL READ(FORMA IF(AA	LATION O SION A(3 F PRFCIS FX W.TF1 5,300) A T(3F10.5 .E0. 0.	F FRFQUENC 05) +B (305) ION G6 (305 ION G6 (305 - TF2 + TG1 + T A + BB + CC) GO TO 70	Y RESPONSE • \$ (305) • 61) • 64 (305) • 62 • TT • TST •	550-2-2 (305) • 62 (30 G10 (305) • 63 T01 • T02 • S	0 T+FUJII 55.67(305).6 (305).65(30)	58 (305) 5)	
7 8 9 10			AZ=AA AY=AA AX=1. CX=(1	*88 *CC 0+(88*CC +0/CC)			• •			
31 12 13 14			DO 31 A(1)= B(1)= BT=B(I=1.31 FLOAT(I= A(I)/100 I)	1)				•	
15 16 17			W=CMP TF1=W TF2=0 107886	LX(0.0.8 +(3.7918 .834988*)	T) 5*(*+0.174) *+(1.33717)	59))/(W+1. *(W+1.8032	97794) 5))/(W+1.97	794)+(2.968(16+W)/(W+0.	- - -
19 20 21 22			TG2=2 TT=(T TST=C TO1=(+6623983 +411252/ F1+TF2)* SORT(TT) -TF1+TF2	(W+1.97794) (W+1.97794) *2-4.0*TG14	•TG2	. *	•		
23 24 25		31	T02=(S(I)= 1XP(T0 CONTI	TF1+TF2 (TG1+(CE) 2))	-TST)/2.0 xp(TQ1)-CE;	(P(TQ2)))/	((TFŽ-TQ2)*	ĊFXP(T01)-(1	F2-T01)+CF	
26 27 28 29 30		.,,,	DO 32 I=J+3 A(I)= B(I)= BT=B(J=1.27 1 FLOAT(J) A(1)/100	0+0.03					
31 32 33			W=CMP TF1=W TF2=0 107886	LX(0.0.81 +(3.7918 .R34988*V	r) 5*(W+0.1740 V+(1.33717+	59))/(w+1.) *(w+1.8032)	97794). 5))/(W+1.97	794)+(2.9680	6+W)/(W+0.	
34 35 36 37 38 39			TG1=0 TG2=2 TT=(T TST=C TQ1=(TQ2=(•6623983 •411252/ F1+TF2)*+ SORT(TT) -TF1+TF24 -TF1+TF24	(W+1.97794) (W+1.97794) +2-4.0*TG1+ +TST)/2.0 -TST)/2.0	+) +TG2				
40 41 42		32	1XP(TQ CONTI DO 33	(G1+(CE) 2)) NUE _K=1+199	(P(101)-CE)	(P(102)))/	((TF2-T02)+)	CFXP(T01)-(T	F2-T01)*CE	
43 44 45 46 47 48			1=58+1 A(1)= B(1)= BT=B(W=CMP1 TF1=W	C FLOAT(K) A(I)/10.C I) LX(0.0.B1 +(3.79185)+0•3	97777W-1-1	177041			
49			TF2=0 107886	• 834988*¥	/+ (1.33717+	(W+1.8032)	>>>/(w+1.97	794)+(2+9680	6#W3/fW+N	

			FACOM	8052	FORTHAN	-730612	- V03 L	65	FTMAIN		30.07
ISN	*		ŧ	SOURCE	STATEMENT	/ ERROR	MESSAG	ε		+1D+	SEQ.
50			TG1=0	.6623983	/ (W+1 +9779	4)					
51			TG2=2	.411252/	'(W+1.97794)	•				
52			TT=(T	F1+TF23#	#2-4.0+TG1	₩TG2	•				
53			TST=C	SORT(TT)							
54			T91=(-TF1+TF2	+TST)/2.0						
55			T@2=(-TF1+TF2	-TST)/2.0	•			•• • • • • •		
56			\$(1)= 1XP(TQ	(TG1*(CE 2))	XP(101)-CE	XP(TQ2)))/((TF2	-102)	+CFXP(T01)-	(TF2-T01)+CE	
57		.33	CONTI	NUE					<i>.</i>		
-58		_	WRITE	(6+208)							
59		208	FORMA	Ţ(1H1+10	X • 53H**1 • 0	/((6.036	5+1+0.0	15175	/(0.026235+	1))*(0.02623	
			15+1))	2							
60			WRITE	(6+209)		VECTOR					
61		209	FURMA	1 (140,10	X+23H## 1)	VECTOR	DIAGRAM	**1			
62			WRITE	<u>(</u> 6+104)	AA+CC+BO		<u>ито / та 2</u>	. E10	8. 50. CHT1 /T	W	
63	•	109	FORMA	1(1H 110	X+2HAA#+F1	0.3.2	n:=/11=	4FIU.	24224011121	W= 4 F 1 Q 6 2 J	
07			FODMA		V 94 W. 5V.		28.7414	ACTNE	100.24 IN. 7	V. ANDEAL .11Y	
67		200	1.7UTM	ACTHDITO		408884641 40881.10	2.7HIMA	GINEN	ATOXASU0#41	ATTICERETEA	
66			DO 3	1=1.05	1213810714			01/10.7			
67			WRITE	(6.4) 80	13.5(1).80	1+853.50	1+85) .8	(1+17)	03.5(1+170)		
68		4	FORMA	T(1H 7X	.3(F6.3.E1	5.8.1H	E15.8.3	x>>			
69		3	CONTI	NUE							
70			DO 10	0 1=1+25	5						
71			G1(1)	=REAL (S	(15)						
72			G2(1)	=AIMAG(S	(1))						
73			G3(1)	=G1(1)*C	1(I)+G2(I)	+G2(1)			•		
74			G4(1)	=DSORT(0	3(1))						
75 .			G10(1)=20.0+0	LOG10(G4(1))					
76			IF (G1	(1) .EQ.	0.0) GO T	0 14					
17			65(1)	=62(1)/6	51(D)						
78			66(1)	=DATAN(C							
79			IF (G1	(1) +L)+		0 12					
80			17(62			0 15					
81				= 60(1)=0	0.2032						
82		1 2	67(1)	-66711-3	1.1.416						
8.5		12			1410						
25		13	67(1)	=66(1)							
86			GO TO	15							
87	1	14	67(1)	-1.5708	1			1.1			
88		15	G8 (1)	=G7(1)+1	80.0/3.141	6					
89		100	CONTI	NUE							
90			WRITE	(6.205)							
91		205	FORMA	T (1HO . 10	X.21H** 2)	BODE D1	AGRAM +	*)			
92			WRITE	(6+201)					•	-	
93		201	FORMA 1X+2HJ	T(1H0+11 W.8X.4H0	LX•2HJW•8X• 5AIN•12X•8H	4HGAIN•1 GAIN(DB)	2X•8HGA •6X•13H	IN(DB) PHASE).5X.13HPHA (DEGREE))	SE (DEGREE) • 3	
94			DO 10	1 1=1+12	8		.				
95			WRITE 1.G8(I	(6+104) +128)	B(1),G4(1)	•G10(I)•	G8(]).B	(1+12)	8) •G4(I+128)•G10(I+128)	
96		104	FORMA	T(1H .8)	(+2(F6+3+F1	5+8+2X+F	15.8.2X	•F15	8.2X))		
97		101	CONTI	NUE							
98		102	CONT I	NŲĒ							
99			GO TO	72							

		FACOM	B052	FORTRAN	-730612- V03 L05	FTMAIN	
ISN	÷	ł .	SOURCE	STATEMENT	/ ERROR MESSAGE		

702 CONTINUE STOP END 100 101 102

FORTRANZ

*** OPTIONS IN EFFECT ***

LIST NOMAP NOASTER NODEBUG NOSEQ NONERW SYSIN DECK NOSTACK EBCDIC. TRAP=DOCE.OPT=0.WORK=20.ARFAY=256.TABLE=10

501

+ID. SEQ.

FT997 END OF COMPILATION (FTMAIN)

	Y								
1.) x exk	U. .	FACOM	BOS2	FORTRAN	-730612-	V03 L05	1. A		
ISN	#	ŧ	SOURCE	STATEMEN	IT / ERROR M	ESSAGE		n de la composition de la comp	+ID. SEQ.
	ç	TRANS	FORM TO	STEP RESP	ONSE FROM F	REQUENCY RESP	POMSE	550-4-27	T+FUJ11
-	С	DOUBL	E PRECIS	IONMET	HOD			•	
1		DOUBL	E PRECIS	ION X+Y+F	UNC+GEUS(30)	D2+B+GAUS			
2		EXTER	NAL FUNC	• • • •					
3		DIMEN	SION KLL	(300) +C (3	00)		·		
4	15	READC	5+50) F						
2	50	PORMA	T(F10.5)						
7		1+(+	• EQ. 0.0	> 60 10 2					
ŕ	•	1=1		• ·					
ě	0		A\$((17/2+ 6	0	• `				
10				A.B.A.A.	A A. 9. 3. FUN				
11		GEUCK	MGAUSU(U	101010.01 40#GAUE	2+0+3+3+FUN	INGAUSTILL)	• •		
12		REDSC	17=0+030	62#GAUS					
13		167111		0000 60	70.10				
14		IF(1	FO. 251	00000 GO					
15		1=1+1							
16		GD TO	8						
17	9	CONTIN	NUE						
18		WRITE	(6,200)	••••••				· •	
19	200	FORMAT	T(1H1+10	X.47H## T	RANSFORM TO	STEP RESPONS	E FROM	EREQUENC	·v **
20		WRITE	(6.201)					- ALGOLINE	
21	201	FORMAT	r(1H +10	X+3(8H T(SEC) 3X.7H	VALUE.10X)			
22		DO 7 1	1=1.83						
23		WRITE	(6+202)	C(I) GEUS	(1)+C(1+83)	GEUS(1+83) +C	(1+166)	GEUSCI+	166)
24	202	FORMAT	ř(1Ĥ +11.	X+3(F6,2+	5X+F10+5+7X)			
25	7.	CONTIN	NUE						
26		GO TO	15						
27	10	WRITE	(6+300)	ILL					
28	300	FORMAT	(1H +10)	X.4HILL=.	1105				
29	5	STOP	· .						
30		FND							

---- OPTIONS IN EFFECT +++

FORTRAN2

LIST • NOMAP • NOASTER • NODEBUG • NOSEQ • NONER • SYSIN • DECK • NOSTACK • EBCDIC • TRAP=00CE • OPT=0 • WORK=20 • ARRAY=256 • TABLE=10

FT997 END OF COMPILATION (FTMAIN)

		FACO)M B	052	FORTRAN	-730612- V03 L05
I SN	*	ţ		SOURCE	STATEMENT	/ ERROR MESSAGE
1		DOL	BLE	PRECIS	ION FUNCTI	DN FUNC(X+Y)
2		DOL	IGLE	PRECIS	ION X+Y	
3		COM	PLEX	W.TF1	TF2.TG1.T	52 . TT . TST . T01 . T02 . S
4		YY.	SNGL	(Y)		
5		XX=	SNGL	CX3		
6		¥=0	MPLX	(0.0.Y	<i>'</i>	
7		TT=	-2.0	*w-(40	0+W)/(2.0	+W+1.0)
8		5=(1.0-	CFXP(T)	r))/(2.0+W	<pre>(2.0#\+21.0))</pre>
9		FEN	C=(R	EAL(S)	+COS(YY+X)	()
10		FUN	C=DB	LE (FENO	Ċ.	
11		RET	URN		-	
12		END				
***	OPTIONS	IN EFF	ECT	***		

LIST • NOMAP • NOASTER • NODEBUG • NOSE@ • NONERW • SYSIN • DECK • NOSTACK • EBCDIC • TRAP=00CE • OPT=0 • WORK=20 • ARRAY=256 • TABLE=10 FORTRAN2

FT997 END OF COMPILATION (FUNC)

+ID. SEQ.

付録4.

73 RE=(GX/GAMX/AH)/(AMUX*9.81/GAMX)*DH RE=ABS(RE) 75 ALF=.023*PR**.333333*RE**.8*RAMX/DH RETURN END

IONS IN EFFECT +++

TRAN2 LIST NOMAP + NDASTER + NDDEBUG + NDSEQ + NONERW + SYSIN + DECK + NOSTACK + EBCDIC + TRAP=00CF + OPT=0 + WORK=20 + ARRAY=256 + TABLE=10

.

COMPILATION (ALFAO)

ISN	+	•	SOURCE	STAFEMENT	r / E880	R MESSAGE	E		+ID.	SF0.
1		FTLE	5 2-MT					• •		
	с	KANE	USAN NO	DOTORI	1551					
2		DIME	ISTON GC2.	551.01/2.	551.4(2	.551.2(2.	561			
		1.1(2	55) TM(2	55).GAM/2	. 551. DD			•		
3		COMM	NA D.PT	DI CNT/64	.201.10	(4.26).00	1201 . TT/64	CR(20, 20)		
		1.000	(30) . CPT (3	39).EAM/17	123.04	9776627FF MT/171.08	N7/108 AV44			
		2 . TMU	18) . PYUCI	2224850(1) 8]	41.33488	**********	HIP (LG) AMU	(10110)		
		3.294	21.33.90	(21).000/	21			· ·		
4		8745	5.9001 (0	7021114880	. 3 1					
5		READ	(5.900) (C							
6		READ	(5.900) (-	(DUV/T. 15	1-1 010					
7	9	AA FORM	1347003 ()	("HX(14J)4	1=14/17	•J=L+3J				
Å	,	DEWIN	10 3 1117-311	•						
ŏ		PEAD/	22 200213			· · ·				
10		DEAD	()) (PP()) ()) (TT())							
11		DEAD	27 (11(1) 27 (7)	1 4 1 4 1 4 5 4 3						
12		READ			28241=1	1041				
13		DEAD			101=100	+)				
14		DEAD	27 (FMULI 27 (TMULI							
15		READ	23 ((ANU)		165.1.1					
16		00.10	1.1.4.00	11010010	10141=1	1101				
17	۰.	BEAD (27							
18		10 CONTI	NHE							
19		READ	2) (DANT	11.1-1.17	、					
20		READ	2) (2445)	1).1-1.12	, ,					
21		READ	2) ((REM(123.1-1.	17)				
22		READ	2) (CPT/1	3-1-1-201	1 22 4 6-10					
23		READ	2) (CPP()	$3 \cdot 1 = 1 \cdot 3 \cdot 3$						
24		READ	2) ((CP))	· 1) · 1=1 · 3	0). 1-1.3	101				
25		D=0.0	078		····	,0,				
26		A=D#D	*0.785A							
27		PAD=5	0.0							
28		PL=0.	38							
29		RT=0.	2			. •				
30		KT0=2	6							
51		110=x	TO-1							
3?		CM=RL	+0.04393							
	с	*****	**TFIJYO	CH1++++	***					
33		EFADO	5.100) PD	.PI.TI.02	•G11					
34	1	DO FORMA	T(5F10.2)							
35		P(1.1)=P1							
36		T(1+1	5=T1		-					
37	_	G(1+1)=G[1							
38	20	DO CALL	BUTUH (P(1	111.T(1.1)) .H(1.1))				
39		CALL	BUTUG(P(1	·15.T(1.1	.GAM(1.	1))				
40		DO 11	I=1.ITO							
41		HC1+1	+1)=H(1+1)+02/611+	RL.					
42		CALL	SAATU(P(1	· D . T (1 . I),G(1,!)	DELP)				
43	1	80 P(1.1	+1)=P(1.1)-DFLP						
14		CALL	BACKT (PC1	·1+1) ·He1	·1+1) • T (1+1+1>>				
45		CALL	BUTUG(P(1	·1+1) .T(1	+1+1) • GA	M(1+1+1)))			
46	,	6(1.1	+1)=6(1.1)						
47		L1 CONTI	NUE							
48		PHAN=	ABSCPCIAK	T03-P03						
49		IF (PH	AN.LT.PAD) 60 TO 20	01					

50	P(1,1) = P(1,1) - (P(1,KTO) - PO)/2.0	
51	60 TO 200	
52	201 WRITE(6.101)	
53	101 EDRMAT(25X-10HTEL)(0-CHT)	
54		
55	102 FORMAT(1) - AY, 161, 6Y, 161, 11Y, 186, 10Y, 38644, 11Y, 164, 11Y, 186	
54		
57		
51		
50	175117=0271ALF#5.1415#07+111417	
57		
6U 41	CALL BACK (P(1)) (H(1)) (1) (1) (1)	
02	105 FORMATCH +3X+12+3X+F4+2+3X+7E12+3	
63		
64	ANJADARUJ	
62	PRITECELUS I LANGASA GUI I JAMMI I I MATINI	
60		
61		
00	APG434=41#441 	
64	WEITCH-IUST IN ANGASA GUITT HAMMINITTI)	
70		
70		
70		
72		
74		
75		
76	$\frac{1}{2}$	
78		
79		
80	CALL BACKT(P(2), 1+1), H(2, 1+1), T(2, 1+1))	
81	CALL = BUTHG(P(2, 1+1), T(2, 1+1), GAM(2, 1+1))	
82	G(2, 1+1) = G(2, 1)	
83	31 CONTINUE	
84	PHAN=ABS(P(2.KTO)=PO)	
85	1F (PHAN+L T-PAD) GO TO 301	
86	P(2,1) = P(2,1) - (P(2,5,10) - P(0)/2,0)	
87	GD TO 300	
88	301 WEITE(6,322)	
89	322 FORMAT (25X+10HSEITEI-CHI)	
90	WPITE(6+102)	
91	DO 32 1=1.KTO	
92	CALL ALFA(P(2+1)+T(2+1)+G(2+1)+ALF)	
93	TM(2+1)=02/(ALF+3,1416+D)+T(2+1)	
94	$61(2 \cdot 1) = 62$	
95	CALL BACKT (P(2+1)+H(2+1)+T(2+1))	
96	32 CONTINUE	
9?	1=1	
98	ANGASA=0.	
99	WRITE(6+103) I+ANGASA+G(2+1)+GAM(2+1)+H(2+1)+	
	1P(2,1)+T(2+1)+TM(2+1)+O1(2+1)	
100	I=rTO	
101		
102		
102	- ALT-30-32-44-1 #2115(6.103) 1.ANCACA.C(2.1).CAM(2.1).H(2.1).	
えびフ	10(2) 1) T(2) 1) T(2) 1) T(2) 1) T(2) 1) T(2) 1)	
104		
505		
504		
107		
hae	READ(5,401) (220(1),1=1,N00)	
100	401 FORMAR(13F6.1)	
110		
511	PPO(1) = PPO(1) + 10000 +	
112	302 CONTINUE	
113	WRITE(6,110)	
114	110 FORMAT(25X+BHKATO-CHI)	

END	OF COMPILAT	LIS: NOTAP NOASIER DEBUGINDSLOINDHERWISYSINHDECKINOSTACKIEBCDIC TRAP=DOCF: OPT=0:WORK=20:ARRAY=256:TABLE=10 TION (FTMAIN)
***	OPTIONS IN	FFFECT +++
176		FND
177		STOP
175	999	CONTINUE REWIND 2
174		CONTINUE
175	50	CONTINUE
172		TTLL+1)=1M(2+1) Q1(1+1)=01(2+1)
170		T(1,1) = T(2,1)
169		P(1,1)=P(2,1)
168		0AM(1)1)=6AM(2)1) H(1,1)=H(2,1)
166		G(1,1) = G(2,1)
165		DO 50 I=1+KTO
164	315	1+2(2+1)+T(2+1)+TM(2+1)+01(2+1)
163		WRITE (6.103) 1. ANGASA. G(2.1). GAM(2.1). H(2.1)
162		
160		
.		1 P(2+1)+T(2+1)+TM(2+1)+01(2+1)
159		ANGASARI: WRITE(6.103) I.ANGASA.((2.1).GAM(2.1).H(2.1)
157		
156	222	FORMAT(5X+6HUIKAN=+F6+3)
155	· •	WRITE(6.222) TUIKAN
153		AK=K T Hiran=Arest
152	314	CONTINUE
151		60 TO 315
149		LK#MOD(K+5) IF(LK+F0+0) 60 TO 314
148	210	CONTINUE
147		GO TO 37
145		CALL BUTUH(P(2+1)+T(2+1)+H(2+1)) CALL BUTUG(P(2+1)+T(2+1)+GAM(2+1))
144		P(2.1)=P(2.1)-(P(2.KTO)-PO)/2.0
143		IF (PHAN.LT.PAD) GO TO 210
142	58	PHAN=A35(P(2+KTO)-PO)/2+0
140	30	CALL BUTUS(P(2+1+1)+T(2+1+1)+GAM(2+1+1))
139		CALL BACKT (P(2+1+1)+H(2+1+1)+T(2+1+1))
138	83	P(2+1+1)=P(2+1)=DFLP
137		1#GAM(2)17 CALL SAATH (P(2)1)+T(2,1)+C(2+1)+DELD)
136	-	H(2,1+1)=H(2,1)+@1(2,1)*RL/G(2,1)-RL/RT/G(2,1)*A*(H(2,1)-H(1,1))
135		G(2 + 1+1) =G(2 + 1) -RI +A/RT + (GAM(2 + 1) -GAM(1 + 1))
134		11177777777777777777777777777777777777
453		$T_{4}(2,1) = (62+CM/AT*TM(1,1)+A!F*3,1416*D*T(2,1))/$
132	16	CALL ALFA(P(2+1)+T(2+1)+G(2+1)+ALF)
130	37	U(2+1)=+05++00375+(1=0KUG) D0 38 l=1+KT0
129		OKIIG=EXP(OKUT)
129		OKUT=AK/(-4.)
127		PO=PPO(KPO+1)+(PPO(KPO+2)-PPO(KPO+1))+TDFI/TPO
125		
124		KPO=TSUM/TPO
123		TSUM=RT*AK
121	305	CONTINUE
120	304	WPITE(6.303)
119		GO TO 305
117		NK=MOD (K 100)
116		DO 99 K=1.KAISU
μīσ	303	FORMATC1H1+4X+1H1+4X+1HL+11X+1HG+10X+3HGAM+11X+1HH+11X+1HP+ 111X+1HT+11X+2HTM+10X-2H015

1		SUBROUTINE SAATU (P1,T1+G1+DELP) COMMON A+D+RT+RL+ENT(64+28)+V(64+28)+PP(28)+TT(64)+CP(39+30) +CPP(30)+CPT(39)+RAM(17+13)+RAMT(17)+RAMP(18)+AMU(18+18)
-		• PRY(21+3) • PRT(21) • PRP(3)
3		CALL BUTUG(P1+T1+GAM1) CALL BUTUM(P1+T1+AMU)
5		GX=ABS(G1)
7		RF=D*U1+GAM1/AMU1/9.81
F Q		RAMDA=RE+#(-0.25)#0,3164
10		FAMDA=RAMDA*(-1.0)
11	10	DFLD=RAMPA+RL+U1+GAM1/(19.62+D)
13		END
***	OPTIONS IN	FFFECT ***
	FORTRAN2	LIST NOMAP + NOASTER + DEBUG + NOSE@ + NONEP# + SYSIN + DECK + NOSTACK + EBCDIC + TRAP=DOCE + OPT=0 + WORK=20 + ARRAY=256 + TABLE=10
E₩D	OF COMPILAT	ION (SAATU)
1 2	-	SUBROUTINE BUTUH(PY+TX+HX) COMMON A+D+RT+RL+ENT(64+28)+V(64+28)+PP(28)+TT(64)+CP(39+30) 1+CPP(30)+CPT(39)+RAM(17+13)+RAMT(17)+RAMP(18)+AMU(18+18) 2+TMU(18)+PMU(18) 2+TMU(18)+PMU(18)
3		PX=PY
· 4	-	Px=Px/10000.0
6	10	J≖J+1
7		
9	-	1F(PX+GT+A2)GO TO 70
10		A3=(PX-A1)/(A2-A1)
12	. 51	1=1+1
.13		B1=TT() B2=TT()+1)
15		1F(TX.GT.B2) GO TO 51
16		B3=(1X-B1)/(B2-B1) C1=(ENT(1+J+1)-ENT(1+J))+A3+ENT(1+J)
18		C2=(FNT(1+1, J+1)-FNT(1+1, J))*A3+ENT(1+1, J)
20		L 3=(C/-CI) #3 3+C1 HX=C3
21		RETURN
21.		
***	CPTIONS IN	FFFECT ***
	EORTRAN2	LIST • NOMAP • NOASTER • DEBUG • NOSE@ • NONERW • SYSIN • DECK • NOSTACK • EBCDIC • TRAP=00CF • OPT=0 • WORK=20 • ARRAY=256 • TABLE=10
END	OF COMPILA	TION CBUTUH)
,1	9	UBROUTINE BUTUG(PY+TX+GX)
2	1	CPP(3) + CPT(39) + RAM(17+13) + RAMT(17) + RAMP(18) + AMU(18+18)
	2	TMU(18) - PMU(18)
3	د ا	□RX(71+3)++RI(21)++RI(3) PX=PY
.4 .	ſ	Px=PX/10000.0
5	52	μ μα_j φ]
7	×- ·	1=P?(J)
8		12≠P7(J+1) 1F(PX,3T,42) 60 TO 52
10		A3=(PX-A1)/(A2-A1)

11 12 13 14 15 16 17 18 19 20 21 22	.53.	I=0 I=1+1 B1=TT(I) B2=TT(I+1) If(TX.GT.B2) GD TD 53 B3=(TX-B1)/(B2-B1) C1=(V(I+1+1)-V(I+1))*A3+V(I+1) C2=(V(I+1+1)-V(I+1+1))*A3+V(I+1+1) C3=(C2-C1)*B3+C1 GX=1000.0/C3 RFTURN END
***	OPTIONS IN	FFFECT +++
	EORTRAN2	LIST NOMAP NOASTER DEBUG NOSEQ NONERW SYSIN DECK NOSTACK BEDIC
END	OF COMPILA	TION (BUTUG)
. 1		SUBROUTINE BACKT (PY.HX.TX)
2		COMMON A.D.RT.RL.FNT(64.28).V(64.28).PP(28).TT(64).CP(39.30) 1.CPP(30).CPT(39).RAM(17.13).RAMT(17).RAMP(18).AMU(18.18) 2.TMU(18).PMU(18)
•		3.PRX(21.3).PRT(21).PRP(3)
3		PX=PY PX=PY / \00∞0_0
5		J=0
6	.54	JmJ+1
1		A1≠PP(J) A2≠PP(1+1)
9		1F(PX+GT+A2) GO TO 54
10		A3=(PX-A1)/(A2-A1)
12	55	;===() 1==1+1
13		B1=(ENT(1, J+1)=ENT(1, J))+A3+ENT(1, J)
.14		B2=(ENT(1+1+J+1)-ENT(1+1+J)*A3+ENT(1+1+J)
16		IE(HX+GT+R2) GO TO 55 B3=(HX+B1)/(B2-B1)
17		$Tx = (TT(I+1) - TT(I)) + B_3 + TT(I)$
18		RFTURN
14		
(###	OPTIONS IN	FFFECT ***
	FORTRAN2	LIST NOMAP + NDASTER + DEBUG + NOSEQ + NONERW + SYSIN + DECK + NOSTACK + EBCDIC + TRAP=DOCE + OPI=D, WORK=20 + ARRAY=256 + TABLE=10
END	OF COMPILA	TION (BACKT)
1		SUBROUTINE BUTUM(PY,TX,A1)
2		COMMON A+D+RT+RL+FNT(64+28)+V(64+28)+PP(28)+TT(64)+CP(39+30) 1+CPP(30)+CPT(39)+PAM(17+13)+RAMT(17)+RAMP(18)+AMU(18+18) 2+TMU(183+EMU(18)
		3.PRX(21.3).PRT(21).PRP(3)
3		
+ 5		$2 \times 2 \times 2 \times 10000000$
6		60 TO 57
7	60	1F(PX.GT.40.) 60 TO 61
9	58	
10	• -	D1=PMU(L)
11		D2=PMJ(L+1)
13		1F(DD+GT+D2) GO TO 58
14		D3=(DD-D1)/(D2-D1)
15	60	M=0
17	74	E1=TMI(M)
18		E2=TMU(M+1)
19 20		IF(TX-5T-F2) GD T() 59 F3=(TX-F3)/(F2-F1)
21		F1=(AMU(M+L+1)-AMU(M+L))+D3+AMU(M+L)

-239-

22		F2=(AMII(M+1+1+1)-AMU(M+1+L))*U3+AMU(M+L+L)	
23		$F_{31} = (F_2 - F_1) + F_3 + F_1$	
24		A1=F31/(9.81F+7)	
25		GO TO 62	
_ 26.	61	CALL BUTUG(PY+TX+GAMX)	
- 27		ROU=GAMX/1000.	
28		ROU=4PS(P)U1	
29	()	Al=(1.41+.049#1X+6.78************************************	
. 20.	02		
•1			
***	OPTIONS IN	FFFFCT ***	
		n na hanna ann an tha a	
	FORTRAN2	LIST • NOMAP • NOASTFR • DEBUG • NOSEQ • NONERW • SYS IN • DECK • NOSTACK • EBC TRAP=COCF • OPT=0 • WORK=20 • ARRAY=256 • TABLE=10	210+
END	OF COMPILA	TION (BUTUM)	
1. 1.		SUBROUTINE ALEA (PY+TX+GX+ALE)	
2		COMMON A.D.RT.RL.FNT(64.28) .V(64.28) .PP(28) .TT(64) .CP(39.30)	
•	1	• CPP (30) • CPT (39) • PAM (17 • 13) • RAMT (17) • RAMP (18) • AMU (18 • 18)	
	2	• TMU(19) • PMU(18)	
з	. 9	0+PRX(21+3)+PRT(21)+PRP(3)	
4		1 = (7, 10, 00, 0)	
5		GO TO 59	
6	64	IF (PX. GT. 40.0) GO TO 65	
7	59	J=0	
. 8	60	<u>[+L=L</u>	
9		A1=RAMP(J)	
10		47=RAMP(J+1)	
:2		A 3 # / D Y + A 1 > / / A 2 - A 1 >	
13			
14	61	I=I+1	
15		B1=RAMT(I)	
16.		B2=RAMT(1+1)	
10		IF(TX+GT+R2) GO TO 61	
19		D 3#(13#01)/(82+01) C1#(50M(1-141)-DAV(1-10)-AD-DAV(1-10	
20		C2*(RAM(1+1, 1+1)=DAM(1+1, 1))*A3+RAM(1+1)	
21		R4MX=(C2=C1) *B3+C1	
22		RAMX=RAMX/3600.	
23	-	GO TO 66	
24	65	CALL BUTUG(PY.TX.GAMX)	
27			
27		RAMY=0.352=7.0F=5=TV+0.20F-2=0(1==1.24	
28		RAMX=RAMX/3600.	
29	66	CALL BUTHM (PY.TX.AMUX)	
30		CALL BUTUG(PY+TX+GAMX)	
31	1	P7=PX+0≠9×0665	
33		JE() JE(TY-1 T, 20, 0), CD, TD, TD	
34		1E(92,GI,R0,0) GO TO 27	
35	67	IF(TX+LT+40+0) GO TO 70	
36	68.	l+l≈l	
37		A1=CPP(J)	
38		A2=CPP(J+1)	
39		1F(P7)GT+A2) GO TO 68	
40		A 3= (-// - A1) / (A2-A1)	
42	69	·	
43	F	B1=CPT(1)	
44	F	32=CPT(1+1)	
45	1	IF(TX+GT+B2) GD TO 69	
46	Ε	B3=(TX-B1)/(B2-B1)	
47	(C1 = (CP(1 + J+1) - CP(1 + J)) + A3 + (P(1 + J))	
40		_/=((1+1+1)+1)+CP((+1+1+J))*A3+CP((+1+J)	
50	r		
51	F	PR=CPX+(AMUX+9+81)/RAMX	
52	ġ	50 TO 73	

H3=(TX-B1)/(R2-B1) C1=(CP(I+J+1)-CP(I+J)*A3+CP(I+J) C2=(CP(I+1+J+1)-CP(I+1+J)*A3+CP(I+1+J) CPX=(C2-C1)*B3+C1 CPX=(C2-C1)*B3+C1 CPX=(C2+C1)*B3+C1 CPX=(C2+C1)*C1 C

- 240-

53	.70	J=0
54	71	1+L=L
55		A1=PRP()
56		42=080(J+1)
57		1F(PX+GT+A2) GD TD 71
5.9		$A_{3}=(P_{X}-A_{1})/(A_{2}-A_{1})$
59.		1=0
60	72	1=[+1
61		B1=PRT(I)
62		B2=PRT(1+1)
5 💈		IF(TX.ST.R2) GO TO 72
64		33=(TX-31)/(=2-B1)
65		C1=(PRX(1,J+1)-PRX(1,J))*A3+PRX(1,J)
66		C2=(PRX(1+1,J+1)-PRX(1+1+J))+A3+PRX(1+1+J)
67_		PR=(C2-C1)+93+C1
68	73	RE=(GX/GAMX/A)/(AMUX+9.81/GAMX)+D
. 69		RF=APS(RF)
70	75	ALF=.073+PR++.333333+RE++.8+RAMX/D
71		PFTURN
72		END

*** OPTIONS IN FFFECT ###

FORTRAN2

LIST NOMAP NOASTER DEBUG NOSE ON NONERWY SYSINY DECK NOSTACK EBCLICY TRAP=00CF OPT=0, WORK=20 ARRAY=256 TABLE=10

END OF COMPILATION CALFA)

付録 5.

	FACOM	8052	FORTRAN	~740601-	V03 L08	,			53.01.12
*	•	SOURCE	STATEMENT	/ ERROR	MESSAGE			+1D.	SE0.
c	SAISEIK FILES	I NO D	OTOKUSEI	(SIMPLE)					
	COMMO	AH.AL.	DLI.DLO.DHI	I.RL.RT.D	Нъ				
	1ENT(6	4+28) •V(64+28) .PP(2	28) .TT(64) + CP (39+3	302 •			
	2CPP (3)	D) + CPT (3	9) • RAM(17•1	3) + RAMT (17) .RAMP((13).AMU()	18•16)•TML)(18)•	
	3PMU(1)	8) • PRX(2	1+3)+PRT(2)	.) • PRP(3)					
	DIMENS	SION TLC	2+55)+GL(2	55) GAML	(2+55)+1	42 (2,55) 1	HE(2+55)+		
	201024	2.551.04	132) 10H(213 (3.66) . THU	2.5500	3374 (3.55).At	EL (2.65)	AL 51172.68	. 1	
	READC	2+352+0H 5+9003 ((2+33)+1MH	3		FL(2133)	ALFH(2433		
	READC	5,900) (PRT(I).I=1	21)					
	READC	5.900) ((PRX(1.J).1	=1.21).J	=1.3)				
	900 FORMA	T(15F5.1).						
	REWIN	2 2							
	READC	2) (PP(1) • [=1 • 28)						
	READ	2) (+(2) (/ENT)+1=1+64) /!		~ `				
	READ	$\frac{27}{2} \cdot \frac{1}{2} \cdot 1$			4)				
	READC	2) (PMU(1) + 1 = 1 + 18	11-11042					
	READC	2) (TMUC	1) • [=1 • 18)						
	READC	2) ((AMU	(1+)+J=1+1	8) • 1 = 1 • 1	8)				
	00 1	1=1.8							
	NEADC	27							
	READC	2) (RAMT	(1).1=1.17)	1					
	READC	2) (RAMP	(1) • 1=1 • 13)	1					
	READC	2) (CRAM	(I+J)+J=1+1	3) + 1=1+1	7)				
	READC	2) (CPT(1) + 1=1+39)						
	READC	2) (CPP(1) • 1=1 • 30)						
	PAD=50		1.03.1=1.39	J • J=1 • 50)				
	TAD=0	• 5							
	CML=0	.1308							
	CMH=0	.6432							
	DL1=0	.0109							
	DH1=0	0173							
	AL=DL	I#DI I#0.	7854						
	AH=DH	[+DH1+0+	7854-DLO+DL	.0+0.7854					
	DH=DH	I-DLO							
	READC	5.100) R	LIRTIMDIMRE	P					
	MDS=M)-1	•217)						
	DO 999	9 KAI=1.	5			•			
	READC	5.101) P	L1+PH1+TL(1	+1)+TH(1	• MD)				
	101 FORMAT	T(4F10.1							
	NEAD(5×102) G	L(1•1)•GH(1 \	•1)					
C*	*********	****TE1J	/ YO CHI####	*******	*****				
-	TL I = TL	(1.1)							
	THI=TH	1(1.MD)							
	TH(1+)	L)×120.6	Ú 1. TI (1. 1.) I						
	CALL E	SUTUH(PH	1 • TH(1 • 1) • F	H(1,1)					
	9 DO 10	I=1.MD							
	GL (1.	D=GL(1.	1)						
	GH(1.	D=GH(1+	1)		,				
	CALL	ALFAICPL	1+TL(1+1)+0	5L(1+1)+A	LFL(1+1))				
	CALL	ALFAOCPH	1.TH(1.1).(5H(1.1) A	LFH(1.1))				
	TML(1		+1L[1+]) +AL	FL(1+D+	ULO#TH(1	DID#ALEHC	r+1))		
		RUTUGCOL	117100#4688	5AML (1-1))				
	CALL	BUTUG(PH	1 • TH(1 • 1) • (AMH(1.1))				
	0L(1.	1)=3.141	6+DLI+ALFL	(1.1)*(TM	L(1,1)-TL	(1+1))			
	0H(1.	[)=QL(1.	D						
	00(1.	1)=+0							

```
HL(1.1+1)=HL(1.1)+@L(1.1)*RL/GL(1.1)
        HH(1,1+1)=HH(1,1)+OH(1,1)+RL/GH(1,1)
        CALL BACKT(PL1+HL(1+I+1)+TL(1+I+1))
        CALL BACKT (PH1+HH(1+1+1)+TH(1+1+1))
        TMH(1+1)=TH(1+1)
     10 CONTINUE
     11 THAN=ABS(TH(1,MD)-THI)
        IF(THAN.LT.TAD) GO TO 12
TH(1,1)=TH(1,1)-(TH(1,MD)-THI)/2.0
        CALL BUTUH(PH1.TH(1.1).HH(1.1))
     GO TO 9
12 WRITE(6+103)
    103 FORMAT(1H1+25X+10HTEIJYG-CHI)
        WRITE(5.104)
    104 FORMATCH +1X+1HI+4X+1HL+10X+2HGL+10X+2HPL+10X+2HTL+9X+3HTML
       1.10X.2H0L.10X.2HGH.10X.2HPH.10X.2HTH.9X.3HTMH.10X.2H0H)
        1=1
        ANGASA=0.0
        WRITE(6+105) [ + ANGASA + GL(1+1) + PL1 + TL(1+1) + TML(1+1) +
       10L(1.1).GH(1.1).PH1.TH(1.1).TMH(1.1).0H(1.1)
    105 FORMAT(1H +12+3X+F4+2+10E12+5)
        I=MD
        A1=1-1
        ANGASA=RL+A1
        WRITE(6,105) I. ANGASA, GL(1+1) +PL1+TL(1+1) +TML(1+1) +
       10L(1.1).GH(1.1).PH1.TH(1.1).THH(1.1).0H(1.1)
 C*******SEITE1
                     CHI+++++++
        READ(5.101) PL2.PH2.TL(2.1).TH(2.MD)
READ(5.102) GL(2.1) .GH(2.1)
        TL1=TL(2,1)
        THI=TH(2,MD)
        GLI=GL(2.1)
        GHI=GH(2.1)
        TH(2+1)=118+55
        CALL BUTUH(PL2+TL(2+1)+HL(2+1))
        CALL BUTCH(PH2+TH(2+1)+HH(2+1))
     19 DC 20 1=1.MD
        GL (2+1)=GL (2+1)
        GH(2.1)=GH(2.1)
        CALL ALFAI (PL2+TL (2+1)+GL (2+1)+ALFL (2+1))
        CALL ALFAO(PH2+TH(2+1)+GH(2+1)+ALFH(2+1))
THL(2+1)=(DL1+TL(2+1)+ALFL(2+1)+DLO+TH(2+1)+ALFH(2+1))
       1/(DL1*ALFL(2.1)+DLO*ALFH(2.1))
CALL BUTUG(PL2.TL(2.1),GAML(2.1))
      CALL BUTUG(PH2+TH(2+1)+GAMH(2+1))
      QL(2.1)=3.1416*DL1*ALFL(2.1)*(TML(2.1)-TL(2.1))
      GH(2.1) = @L(2.1)
      00(2+1)=+0
      HL(2.1+1)=HL(2.1)+@L(2.1)+RL/GL(2.1)
      HH(2.1+1)=HH(2.1)+CH(2.1)*RL/CH(2.1)
      CALL BACKT (PL2+HL(2+1+1)+TL(2+1+1))
      CALL BACKT (PH2+HH(2+1+1)+TH(2+1+1))
      TMH(2+1)=TH(2+1)
   20 CONTINUE
      THAN=ABS(TH(2+MD)-THI)
   21
      IF(THAN.LT.TAD) GO TO 22
TH(2.1)=TH(2.1)-(TH(2.MD)-TH1)/2.0
      CALL BUTUH (PH2.TH(2.1).HH(2.1))
      GO TO 19
   22 WRITE(6+113)
  113 FORMAT(25X+10HSEITEI-CHI)
      WRITE(6+104)
      1=1
      ANGASA=0.0
      WRITE(6.105) I.ANGASA.GL(2.1) .PL2.TL(2.1) .TML(2.1).
     10L(2.1).GH(2.1).PH2.TH(2.1).TMH(2.1).0H(2.1)
      I=MD
      AI=1-1
      ANGASA=RL+A]
      WRITE(6,105) I.ANGASA.GL(2.1).PL2.TL(2.1).TML(2.1).
     10L(2.1).GH(2.1).PH2.TH(2.1).TMH(2.1).0H(2.1)
C ******** KATO CHI *********
```

```
- 243-
```

```
65 WRITE(6.107)
107 FORMAT (25X+8HKATO-CHI)
     TL(1.1)=TL(2.1)
     GL(1.1)=GL(2.1)
     TH(1,MD)=TH(2,MD)
     GH(1.MD)=GH(2.MD)
     CALL BUTUH (PH2+TH(1+MD)+HH(1+MD))
     CALL BUTUG(PH2+TH(1+MD)+GAMH(1+MD))
     CALL BUTUH (PL2.TL(1.1) .HL(1.1))
     CALL BUTUG(PL2.TL(1.1).GAML(1.1))
     GH(1.MD)=ALFH(1.MD)*3.1416*DLO*(TH(1.MD)-TML(1.MD))
     0L(1.1) = ALFL(1.1) +3.1416 + DLI + (TML(1.1) - TL(1.1))
106 FORMAT(14)
     DO 99 K=1.MREP
     DO 50 I=1.MD
IF(I.E0.M2) GO TO 201
200 HH(2.1)=HH(1.1)+RT/(AH*GAMH(1.1))*(-@0(1.1)-@H(1.1)+GH(1.1)/RL
    1*(HH(1.1+1)-HH(1.1)))
     GO TO 202
201 HH(2.1) =HH(1.1)
202 CONTINUE
     CALL BACKT (PH2+HH(2+1)+TH(2+1))
     CALL BUTUG(PH2+TH(2+1)+GAMH(2+1))
     TML(2+1)=TML(1+1)+RT/CML+(QH(1+1)-QL(1+1))
     0H(2+I)=ALFH(2+I)+3+1416+DLO*(TH(2+I)-TML(2+I))
     QL(2+I)=ALFL(2+I)+3+1416*DLI*(TML(2+I)+TL(2+I))
     HL(2, I+1)=HL(2, I)+OL(2, I)+RL/GL(2, I)-RL/RT/GL(2, I)
   1*AL*GAML(2+1)*(HL(2+1)-HL(1+1))
    GL(2+1+1)=GL(2+1)-RL+AL/RT+(GAML(2+1)-GAML(1+1))
    CALL BACKT(PL2+HL(2+1+1)+TL(2+1+1))
    CALL BUTUG(PL2.TL(2.1+1).GAML(2.1+1))
 50 CONTINUE
 32 DO 60 1=1.MD
    GL(1+1)=SL(2+1)
    GH(1.1)=GH(2.1)
    TL(1+1)=TL(2+1)
    TH(1.1)=TH(2.1)
    TML(1.1)=TML(2.1)
    GAMH(1 + I) = GAMH(2 + I)
    GAML(1 . I) = GAML(2 . I)
    HL(1, D=HL(2, D
    нн(1+1)=нн(2+1)
    QH(1.1)=@H(2.1)
    QL(1.1)=QL(2.1)
 60 CONTINUE
    KO=MOD(K+95)
    IF (KO. E0.0) GO TO 300
    GO TO 301
300 WRITE(6+304)
301 CONTINUE
304 FORMAT(1H1+1X+1H1+4X+1HL+10X+2HGL+10X+2HPL+10X+2HTL+9X+3HTML
   1.10x.2H@L.10x.2HGH.10x.2HPH.10x.2HTH.9X.3HTMH.10X.2H@H)
    KA=MOD(K.5)
    IF (KA: NE. 0) GO TO 99
    AK = K
    TJIKAN=AK+RT
    WRITE(6.108) TJIKAN
108 FORMAT (5x+6HJIKAN=+F7.4)
    1=1
    ANGASA=0.0
    WRITE(6+105) I+ANGASA+GL(2+1)+PL2+TL(2+1)+TML(2+1)+
   10L(2.1).GH(2.1).PH2.TH(2.1).TMH(2.1).0H(2.1)
    1 ≃ MD
    A | = MD-1
    ANGASA=RL+AI
    WRITE(6.105) I.ANGASA.GL(2.1).PL2.TL(2.1).TML(2.1).
   10L(2+1)+GH(2+1)+PH2+TH(2+1)+TMH(2+1)+GH(2+1)
 99 CONTINUE
999 CONTINUE
    STOP
    END
```

```
SUBROUTINE BUTUH (PY+TX+HX)
         COMMON AH+AL+DLI+DLO+DHI+RL+RT+DH+
        1ENT(64.28) .V(64.28) .PP(28) .TT(64) .CP(39.30) .
        2CPP(30) + CPT(39) + RAM(17+13) + RAMT(17) + RAMP(13) + AMU(18+18) + TMU(18) +
        3PMU(18) + PRX(21+3) + PRT(21) + PRP(3)
         PX=PY/10000.0
         J≈0
      70 J=J+1
         A1=PP(J)
         A2=PP(J+1)
         1F (PX. ST. A2) GO TO 70
         A3=(PX-A1)/(A2-A1)
         1=0
      51 1=1+1
         B1=TT(I)
         82=TT(1+1)
         IF(TX.GT.82) GO TO 51
         83=(TX-B1)/(82-B1)
         C1=(ENT(1+J+1)-ENT(1+J))+A3+ENT(1+J)
         C2=(ENT(1+1+J+1)-ENT(1+1+J))*A3+ENT(1+1+J)
         C3=(C2-C1)*B3+C1
         HX=C3
         RETURN
         END
IONS IN EFFECT +++
TRAN2
              LIST . NOMAP . NOASTER . NODEBUG . NOSEQ . NONERW . SYSIN . DECK . NOSTACK . EBCDIC .
              TRAP=OOCE . OPT=0 . WORK=20 . ARRAY=256 . TABLE=10
COMPILATION ( BUTUH )
          SUBROUTINE BUTUG (PY+TX+GX)
           COMMON AH+AL+DLI+DLO+DHI+RL+RT+DH+
         1ENT(64.28).V(64.28).PP(28).TT(64).CP(39.30).
         2CPP(30) . CPT(39) . RAM(17,13) . RAMT(17) . RAMP(13) . AMU(18.18) . TMU(18) .
         3PMU(12) . PRX(21.3) . PRT(21) . PRP(3)
          Px=PY/10000.0
           J=0
       52 J=J+1
           A1=PP(J)
          A2=PP(J+1)
           1F (PX+GT+A2) GO TO 52
          A3=(PX-A1)/(A2-A1)
           1 = 0
       53 I=1+1
          B1=TT(I)
          B2=TT(1+1)
           IF(TX.GT.82) GO TO 53
          B3=(TX-B1)/(B2-B1)
           C1 = (V(1, J+1) - V(1, J)) + A3 + V(1, J)
           C2 = (V(1+1, J+1) = V(1+1, J)) * A3 + V(1+1, J)
           C3=(C2-C1)*B3+C1
           GX=1000.0/C3
           RETURN
          END
PTIONS IN EFFECT ***
               LIST.NOMAP.NOASTER.NODEBUG.NOSEQ.NONERW.SYSIN.DECK.NOSTACK.EBCDIC.
DRTRAN2
               TRAP=00CE+OPT=0+WORK=20+ARRAY=256+TABLE=10
 COMPILATION ( BUTUG )
         SUBROUTINE BACKT(PY+HX+TX)
         COMMON AH + AL + DLI + DLO + DHI + RL + RT + DH +
        1ENT(64+28)+V(64+28)+PP(28)+TT(64)+CP(39+30)+
        2CPP(30), CPT(39), RAM(17,13), RAMT(17), RAMP(13), AMU(18,18), TMU(18),
        3PMU(18) . PRX(21.3) . PRT(21) . PRP(3)
         PX=PY/10000.0
         J=0
      54 J=J+1
```

```
A1=PP(J)
```

```
A2=PP(J+1)
           IF (PX.GT.A2) GO TO 54
           A3=(PX-A1)/(A2-A1)
          1×0
       55 I=I+1
          B1=(ENT(1+J+1)-ENT(1+J))*A3+ENT(1+J)
          B2=(ENT(I+1,J+1)-ENT(I+1,J))*A3+ENT(I+1,J)
IF(HX.GT.B2) GO TO 55
          B3=(HX-B1)/(B2-B1)
           TX=(TT(1+1)-TT(1))+B3+TT(1)
          RETURN
          END
JIONS IN EFFECT +++
               LIST NOMAP . NOASTER . NODEBUG . NOSEQ . NONERW . SYSIN . DECK . NOSTACK . ELCDIC .
 <u>ÉTRAN2</u>
               TRAP=00CE+OPT=0+WORK=20+ARRAY=256+TABLE=10
[COMPILATION ( BACKT )
           SUBROUTINE BUTUM(PY+TX+A1)
           COMMON AH+AL+DLI+DLO+DHI+RL+RT+DH+
          1ENT(64+28) +V(64+28) +PP(28) +TT(64) +CP(39+30) +
2CPP(30) +CPT(39) +RAM(17+13) +RAMT(17) +RAMP(13) +AMU(18+18) +TMU(18) +
          3PMU(18) . PRX(21.3) . PRT(21) . PRP(3)
           PX=PY/10000.0
           1F(TX.LT.20.0) GO TO 60
           GO TO 57
        60 IF(PX.GT.40.0) GO TO 61
        57 L=0
        58 L=L+1
           D1=PMU(L)
           D2=PMU(L+1)
           DD=0.980665+PX
           IF (DD.GT.D2) 30 TO 58
           D3=(DD-D1)/(D2-D1)
           M=0
        59 M=1+M
           E1=THU(M)
           E2=TMU(M+1)
           IF (TX+GT+E2) GO TO 59
           E3=(1X-F1)/(F2-E1)
           F_{1}=(AMU(M,L+1)-AMU(M,L))*D_{3}+AMU(M,L)
           F2=(AMU(V+1+L+1)-AMU(M+1+L))*D3+AMU(M+1+L)
           F31=(F2-F1)+E3+F1
           A1=F31/(9.81E+7)
           GO TO 62
        61 CALL BUTUG(PY+TX+GAMX)
           ROU=GAMX/1000.0
           ROU=ABS(ROU)
           A1=(1+41+0+049*TX+6+58*ROU**1+75+3+92*ROU**5+35)*0+0102E-4
        62 RETURN
           END
PTIONS IN EFFECT
                   ***
ORTRAN2
                LIST.NOMAP.NOASTER.NODEBUG.NOSEG.NONERW.SYSIN.DECK.NOSTACK.EBCDIC.
                TRAP=DOCE . OPT=0 . WORK=20 . ARRAY=256 . TABLE=10
F COMPILATION ( BUTUM )
         SUBROUTINE ALFAI(PY+TX+GX+ALF)
         COMMON AH.AL.DLI.DLO.DHI.RL.RT.DH.
        1ENT(64.28) .V(64.28) .PP(28) .TT(64) .CP(39.30) .
        2CPP(30) + CPT(39) + RAM(17,13) + RAMT(17) + RAMP(13) + AMU(18+18) + TMU(18) +
        3PHU(18) . PRX(21.3) . PRT(21) . PPP(3)
         Px=PY/10000.0
         IF(TX.LT.40.0) GD TO 64
         GO TO 59
      64 IF(PX.GT.40.0) GO TO 65
      59 J=0
```

```
60 J=J+1
          A1=RAMP(J)
          A2=RAMP(J+1)
          IF(PX.GT.A2) GO TO 60
          A3=(PX-A1)/(A2-A1)
          1=0
      61 I=I+1
          B1=RAMT(I)
          B2=RAMT(1+1)
          IF(TX.GT.B2) GO TO 61
          B3=(TX-B1)/(B2-B1)
C1=(RAM(I,J+1)-RAM(I,J))*A3+RAM(I,J)
C2=(RAM(I+1,J+1)-RAM(I+1,J))*A3+RAM(I+1,J)
          RAMX=(C2-C1) +B3+C1
          RAMX=RAMX/3600+
      GO TO 66
65 CALL BUTUG(PY+TX+GAMX)
          ROU=GAMX/1000.0
          ROU=ABS(ROU)
          RAMX=0.152*7.0E-5*TX+8.29E-2*ROU**1.26
          RAMX=RAMX/3600+
      66 CALL BUTUM (PY.TX.AMUX)
          CALL BUTUG (PY+TX+GAMX)
          PZ=PX+0+980655
          J=0
      IF(TX.LT.20.0) GO TO 70
IF(PZ.GT.80.0) GO TO 67
67 IF(TX.LT.40.0) GO TO 70
      68 J=J+1
          A1=CPP(J)
          A2=CPP(J+1)
          IF (PZ.GT.A2) GO TO 68
          A3=(P2-A1)/(A2-A1)
          1 = 0
      69 l=l+1
          B1=CPT(1)
          B2=CPT(I+1)
          1F(TX.GT.82) GO TO 69
          B3=(TX-B1)/(32-B1)
          C1=(CP(1,J+1)-CP(1,J))+A3+CP(1,J)
          C2 = (CP(I+1+J+1) - CP(I+1+J)) + A3 + CP(I+1+J)
          CPX=(C2-C1)+B3+C1
          CPX=CPX/4.19
          PR=CPX+(AMUX+9+81)/RAMX
          GO TO 73
        70 J=0
        71 J=J+1
           A1=PRP(J)
            A2=PRP(J+1)
            IF (PX+GT+A2) GO TO 71
            A3=(PX-A1)/(A2-A1)
            1=0
        72 1=1+1
           B1=PRT(I)
           82=PRT(1+1)
            IF(TX.GT.82) GO TO 72
           83=(TX-81)/(82-81)
           C1=(PRX(I+J)-PRX(I+J)+A3+PRX(I+J)
C2=(PRX(I+1+J+1)-PRX(I+1+J))*A3+PRX(I+1+J)
            PR=(C2-C1)+B3+C1
        73 RE=(GX/GAMX/AL)/(AMUX+9.81/GAMX)+DLI
            RE#ABS(RE)
            ALF=.023+PR+*.8+RE**.8+RAMX/DL1
            RETURN
            END
PTIONS IN EFFECT ***
DRTRAN2
```

RTRAN2 LIST NOMAP + NOASTER + NODEBUG + NOSEQ + NONERW + SYSIN + DECK + NOSTACK + EBCDIC + TRAP=00CF + OPT=0 + WORK=20 + ARRAY=256 + TABLE=10

F COMPILATION (ALFAI)

```
SUBROUTINE ALFAO(PY+TX+GX+ALF)
    COMMON AH + AL + DL 1 + DLO + DH 1 + RL + RT + DH +
   1ENT(64.28) .V(64.28) .PP(28) .T1(64) .CP(39.30) .
   2CPP(30) . (PT(39) . RAM(17.13) . RAMT(17) . RAMP(13) . AMU(18.18) . TMU(18) .
   3PMU(18) .PRX(21.3) .PRT(21) .PRP(3)
    DX=DLO
    PX=PY/10000.0
    IF(TX.LT.40.0) GO TO 64
GO TO 59
64 IF(PX+GT+40+0) GO TO 65
59 J=0
60 J=J+1
    A1=RAMP(J)
    A2=RAMP(J+1)
    IF (PX.GT.A2) GD TO 60
    A3=(PX-A1)/(A2-A1)
    1=0
61 I=I+1
    B1=RAMT(1)
    B2=RAMT(1+1)
    IF(TX.GT.B2) GO TO 61
B3=(TX-B1)/(B2-B1)
    C1=(RAM(I+J+1)-RAM(I+J))+A3+RAM(I+J)
    C?=(RAM(I+1+J+1)-RAM(I+1+J))*A3+RAM(I+1+J)
    RAMX=(C2-C1)+B3+C1
    RAMX=RAMX/3600.
    GO TO 66
65 CALL BUTUG (PY.TX.GAMX)
    ROU=GAMX/1000.0
    ROU=ABS (ROU)
    RAMX=0.152*7.0E-5*TX+8.29E-2*ROU*+1.26
    RAMX=RAMX/3600.
66 CALL BUTUM (PY.TX.AMUX)
    CALL BUTUG (PY . TX . GAMX)
   PZ=PX+0.980665
    J=0
IF(TX.LT.20.0) GO TO 70
IF(PZ.GT.80.0) GO TO 67
67 IF(TX.LT.40.0) GO TO 70
68 J=J+1
   A1=CPP(J)
   A2=CPP(J+1)
   1F (PZ+GT+A2) GO TO 68
A3=(PZ-A1)/(A2-A1)
   I = 0
69 I=I+1
   B1=CPT(1)
   B2=CPT(1+1)
   IF(TX.GT.B2) 50 TO 69
   B3=(TX-B1)/(B2-B1)
   C1=(CP(1,J+1)-CP(1,J))+A3+CP(1,J)
   C2=(CP(1+1+J+1)=CP(I+1+J))+A3+CP(1+1+J)
   CPX=(C2-C1)+83+C1
   CPX=CPX/4.19
   PR=CPX+(AMUX+9.81)/RAMX
   GO TO 73
70 J=0
71 J=J+1
    A1 = PRP(J)
   A2=PRP(J+1)
   IF (PX.GT.A2) 60 TO 71
   A3=(PX-A1)/(A2-A1)
   1=0
72 1=1+1
   B1=PRT(1)
   B2=PRT(1+1)
   1F(TX+GT+B2) GD TO 72
   63=(TX-81)/(82-81)
   C1 = (PRX(I+J+1) - PRX(I+J)) + A3 + PRX(I+J)
   C2=(PRX(I+1+J+1)-PRX(I+1+J))#A3+PRX(I+1+J)
   PR=(C2-C1)+83+C1
```
付録6.

FACOM	BOS2 AUSL -7/0202- (V-01.L-08)	52.10.27
so	DURCE STATEMENT / ERROR MESSAGE	
1 2 3 4 5 6 7 8 9 10 11 12 13	<pre>ITTLE DYNAMICS OF CO2 PLANT (G) INCOV G5**0 *TC3=*0*TC4=*0*TC5=*0*TC6=*0*TC9=*0**** TC10=*0*VP1=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=*0*VP3=**0*VP3=***********************************</pre>	•
14 15 16 17 18 19 20 21	E6=161.23.E7=-4.0947.E8=3.3041.D7=1.7355 CONST A1=.93802.A2=.023952.A3=.97089.A4=.84679E=2.A5=.031088 A10=.011047.A11=.033812 CONST TE34=1.3805.TM34=5.8714.TH34=2.6811 TE55=.3364.TM56=8.2277.TH56=2.0501 TE90=1.5496.TM90=115.87.TH90=.36637 CONST FP=.5 CONST G0=.0.F=.0	
22 23 24 25 26 27 28 29	ILP=STEP(+0) MACRO HRPM=RPM(L1+L2+L3) HIPPN1D=(L3-L2+NRPM)/L1 HRPM=INTGRL(+0+NRPM1D) ENDMAC MACRO ZTCP=TPIPE(TE+TM+TH+ZTC) ZT2D=(ZTC-(TM+TE+TM+TH)+ZT1D-ZT)/TM/TE ZT1D=(NTGRL(+0+ZT2D)	
30 31 37 33 34 35 36	ZT=INTGRL((0,2T3)) ZTCP=TM#ZT1D+ZT ENDMAC # PUMP G1==FP*VP1+NP # S41SE1K1 YA3D=(-R2*YA2D-R3*YA1D-R4*YA+R5/R1*TC10)	
37 38 39 40 41 42 43	YA2D=INTGRL(.0.YA3D) YA1D=INTGRL(.0.YA2D) YA=INTGRL(.0.YA1D) YB3D=(-R2*YB2D-R3*YB1D-R4*Y8+G5) YB2D=INTGFL(.0.YB3D) YB1D=INTGFL(.0.YB2D) YB1D=INTGFL(.0.YB1D)	
44 45 46 47 48 49 50	YC3D=-R2*YC2D-R3*YC1D-R4*YC-G1 YC2D=INTGRL(.0.YC3D) YC1D=INTGRL(.0.YC2D) YC=INTGRL(.0.YC1D) TC3=YA+R6/R1*(YB1D+YC1D)+R6/R1*R7*(YB+YC) * REGENERATOR - HEATER.PIPE SYSTEM TEMP. DELAY TC4=TPIPE(TE34.TM34.TH34.TC3) ZZ0019=(TC3=(TM34+TE34+TM34*TH34)*ZZ0020=ZZ0021)/TM34/TE34 ZZ0020=INTGRL(.0.ZZ0019)	GENERATE GENERATE
51 52 534 556 57 58 50 60 61 62 64	<pre>ZZ0021=INTGRL(.0.ZZ0020) TC4=TM34*ZZ0020+ZZ0021 * HEATER YD2D=("C4-HY5*YD10-H1*YD)/HY4 YD1D=INTGRL(.0.YD2D) YD=INTGRL(.0.YD1D) YE2D=(VF5-HY5*YE1D-H1*YE)/HY4 YE1D=INTGRL(.0.YE2D) YE=INTGRL(.0.YE1D) YF2D=(-G1-HY5*YF1D-H1*YF)/HY4 YF1D=INTGRL(.0.YF1D) YF=1NIGRL(.0.YF1D) YF=1NIGRL(.0.YF1D) YG2D=('J0-HY5*YG10-H1*YG)/HY4 YG1D=INTGRL(.0.YG2D) YG=INTGRL(.0.YG1D) TC5=H11*H1*YD1D+H1*YD+HY1*YE2D+HY2*YF1D-HY3*YF+YG+YF</pre>	GENERATE GENERATE

65			
66		WAIDEGE (+0 +WAID)	
67		WARINIOUTCS-WB)/U1	
68		- HID=(-0.404B1D)	
69			
70		ACTORICAL (+0, WC1D)	
71		015-115(6-WD)/U1	
72		The TERT (FO + WD1D)	
73			
74		TELEVICEL (+0,WE1D)	
75		T UNA HX1+WB1D+U2+WC1D+U3+WD1D-U4+WE1D	
76		GJEWACHTER TURBINE (STEAM VALVE) TEMP. DELAY	
77		TCO TO THE (TE56 + TM56 + TH56 + TC5)	
		100-1+ 105-2=(TC5-(TM56+TE56+TH56)*TH56)*ZZ0053-ZZ0054)/TM56/TE56	GENERATE
		120053 #INTGRL (+0+220052)	GENERATE
		220054#INTGRL(+0,220053)	GENERATE
		Z 200 - TM 56 # Z 2005 3 + Z 2005 4	GENERATE
78			
79		THERING	
80	•		
		72005=(G5=E1+NG)/D14	GENERATE
		221055 COS	GENERATE
81			
		220062=(VP8-E1*NP8)/D14	GENERATE
		$L_{DB} = 101 \text{ GR}(1 + 0.4770062)$	GENERATE
82			
		770045=(VF9-F1+NP3)/D14	GENERATE
		L 0 0 1 1 GRI (.0.770065)	GENERATE
83		HTCARPEM(D14.51.1C6)	
		270068=(TC6-F1+NTC8)/D14	GENERATE
		NICH=INTGRL(.0.ZZ0068)	GENERATE
84		21=NG+D11*NP8-D12*NP9+D13*NTC8	
85		YH1D=(65-E6+YH)/25	
86		YH=INTGRL (+0+YH1D)	
87		Y11D=(TC6-E6*Y1)/E5	
88		Y1=INTGRL (+0+Y110)	
89		YJ1D=(VP8-E6*YJ)/E5	
90		Y I-INTGRI (. O.Y LIN)	
91		YEIDE (VP9-Farve)/F5	
92			
93		YI 1D= (N-E6+YI) ZI 5	
94		YI #INIGRI (+0+YI 1D)	
95		TCP = (1 + (1 + (2 + 2 + (1 + (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	
96		$+ f_{R} + (D_{R} + y_{R}) + $	
97	*		
98			
		770081=(TC9-(TM90+TE90+TM90+TH90)=770082=770083)/TM90/TE90	CENEDATE
		ZZ0082=1NT/5RI (+0.+72081)	GENERATE
		ZZ0083=INTGRI (+0+ZZ0082)	GENERATE
		$IC10=IM_{2}(0+7/0.082+7/0.083)$	GENERATE
99		WT=D10+N+G5+D11+VP8-D12+VP9+D13+TC6	110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100		WAD5=3.0*N	
101	#	PRESSURE DROP OF REGENE. HIGH TEMP. SIDE	
102		VP9=A10+TC10+A11+G5	
103		VP8=G5/D7+D8/D7+VP9+D9/D7+TC6	
104	+	VALVE OF STEAM	
105		VP5=(V1+VP8+V2+TC6-F+G5)/V3	
106	•	PRESSURE DROP OF HEATER	
107		VP3=A3*VP5+64*TC5+A5*G5	
108	*	PRESSURE DROP OF REGENERATOR	
109		VP1=A1+VP3+A2+G1	
110	PRINT	TC3+TC5+TC6+TC9+VP3+VP5+VP8+VP9+N+WT+G1+G5	
111	TIMER	DELT=.1.FINTIM=1000.PRDEL=5.	
112	END		
113	STOP		
VARI	ABLE SEQU	ENCE	
130	110002		

TPUT VARIA	BLE SEQU	ENCE							
YA3D	220002	AV5P	720004	YA1D	220006	YA	YB3D	ZZ0008	YR2D
220010	YB10	220012	YB	NP	G1	YC30	220014	YC2D	ZZ0016
VC1D	220015	YC	220019	ZZ 0023	22:0020	220025	220021	YD2D	220027
YD1D	220029	YD	YE2D	220031	YEID	220033	YE	YF2D	27.0035
YF1D	ZZ0037	YF	YG2D	220039	YG1D	ZZ0041	YG	WAID	220043

WE1D Z NG Z YH1D Z ZZ0078 Y TC3 T	Z0051 WE Z0062 ZZ0064 Z0072 YH K YL1D C4 TC5 P9 VP8	220052 NP8 Y11D 220080 G5 VP5	220056 220065 220074 YL TC6 VP3	220053 220067 Y1 220031 0 VP1	220058 NP9 YJ1D Z20085 N	220054 220068 220076 220082 TC9	ZZ0059 ZZ0070 YJ ZZ0087 TC10	220061 NTC8 YK1D ZZ0083 WT
---	--	--	--	--	--------------------------------------	---	--	--

TRANSLATION TABLE CONTENTS

	OUTPUT NAME	INPUT NAME	INTGRL BLOCK	MEMORY BLOCK	PARAM NAME	STORAGE . NAME	LITERAL CONST	MACRO DEFINE	SORT SECTION
USED	116	330	37	• 0	77	0	37	6	1
(MAX)	(400)	(1200)	(200)	(100)	(300)	(25)	(100)	(30)	(15)