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Abstract

All phenomena in the natural world occur as a consequence of intertwining of many factors
in the background. A system can be seen a kind of operator which gives a signal a certain
action in a certain target, and a function to create output from a kind of input. The func-
tion that relates the output to the input obtained by this formulation is called a model.
The theoretical model, which is built based on existing theories and knowledge, has devi-
ation from observed data because it does not consider the generation-mechanism of data.
A common approach to deal with errors is the power-transformation approach. For non-
linear regression models, we can use the Power Transform-Both-sides (PTB) approach.
This approach tries to achieve normality and homoscedasticity of the error by trans-
formation. However, it is difficult to achieve these two aims simultaneously by a power
transformation with one transformation parameter like PTB. In particular, PTB is insuffi-
cient to stabilize the error variance. Then, we suggested the Power Transform-Both-sides
and Weighted Least Squares (PTBWLS) approach that implements a power-weighted
transformation (PWT) to PTB. The most important problem of the above parametric
transformation approaches is that they are too sensitive to data. To tackle this prob-
lem we provided the Nonparametric Transform-Both-sides (NTB) approach, which uses
a cubic spline curve as a transformation function. The spline function in this approach
is identified by maximizing the penalized likelihood. Furthermore, combining PTBWLS
with N'TB together, we proposed the Nonparametric Transform-Both-sides and Weighted
Least Squares (NTBWLS) approach. The NTBWLS is designed to implement both non-
parametric estimation of the transformation function and parametric estimation of the
power-weighted function. We conducted some case studies, a numerical investigation in
which data were generated from a l-compartment model, and a couple of simulation
experiments. From these results, we concluded that NTBWLS is superior to the other
existing approaches in the situation where data have problematic heteroscedasticity and

non-normality.
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Notations

Notations Definitions and examples Remarks

General

Y =f(X;8)+¢ Non-linear model

Y Response

Yn The nth observation of response

X X = (X1, Xpo) ¥

Predictor vector x, The n x 1 vector of the pth predictor vector
(r=1,2,...,p0)

with n observations

J¢; B=(B1,.... 00T I x 1 parameter vector

f(X;B) Non-linear function

€ Error

L(") L(B,0) Likelihood function

I(-) 1(B,0) Log-likelihood function
Distributions

N(-, ) N(0, 0?) Normal distribution

PND(,,-) PND(\, u, 0?) Power normal distribution

E() E(Y) Expectation

Var(+) Var(Y) Variance

P Standard normal probability density function
v Cumulative distribution function of
PTB

Hp(-,-) Hp(Y, \) Power transformation function

A Power transformation parameter

10} Power weighted parameter

EPpP Error on power transforming both-sides
NTB

Hg(") Hg(u) Smooth transformation function

hs(+) hs(u) Log-derived function of Hg(-)

J(°) J(Hg(u)) Roughness penalty

P Smoothing parameter

Lp(+) Lp(B,0,hs(u)) Penalized likelihood

Ip (") lp(B,0,hs(u)) Penalized log-likelihood

Hx(+) Hx(t) Kernel function

g(*) g(u) Probability density function

w Band width
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Abbreviations

OLS Ordinary Least Squares

PTB Power Transformation-Both-sides

NTB Nonparametric Transformation-Both-sides
PWT Power-Weighted Transformation

PTBWLS Power Transformation-Both-sides and Weighted Least Squares
NTBWLS Nonparametric Transformation-Both-sides and Weighted Least Squares
SRC Spearman Rank Correlation
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1. Introduction

1.1 Background

All phenomena in the natural world occur as a consequence of intertwining of many
factors in the background. It is difficult individually to identify and to interpret all these
factors on the process of investigating the mechanism where the phenomena is generated.
Then, it is tried usually to assume or to remove only the main factor and to simplify
the phenomenon. The selection of the factor and the process of compression are included
there. As a result, even if the phenomenon will not be completely described, “Mechanism
(system)” of substitution that approximately simplifies the phenomenon is composed.
That is, in the science field, the system is composed by the representative characteristic
that controls a peculiar theory. A system can be seen a kind of operator which gives a
signal a certain action in a certain target, and a function to create output from a kind
of imput. That is, it is a process of conversion from the input to the output (Howard,
1963; Ohta et al., 1968; Goto et al., 1968a and 1968b). Therefore, it is substituted to
clarify the phenomena or the structure in the background by two signals of the process
of conversion in the system, that is, constructing the relation between the input and
the output. It is called “System identification” (Kume, 1971) and actually the system
is formulated by expressing it in the form of any functions for the relation between two
signals. The function that relates the output to the input obtained by this formulation
is called a model. That is, obtaining the model is intended with a system identification.
However, It is necessary for the output to predict or to control using the model in a
statistical science. It can be thought that the input is an explanation factor (variable)
to complicate the phenomena, and the output is a response (data) obtained by observing

the phenomena based on a statistical perspective. In this context, The model obtained



by identifying the system will work as a tool of the prediction and the control in practice
by moving forward with a phased approach through the process of a statistical inference,
evaluation and diagnosis. However, it is more common that it is difficult to identify the
system. In this situation, it is either whether to obtain a principle experienced to achieve
the result of a priori inference on the theoretical research or repeat the phenomenological
observation by the experiment and the observation. In this paper, we focus on the former,

that is, a statistical inference on the theoretical model.

1.2 Objectives of our studies

Important objectives of regression analysis are ordinarily 1) the prediction of the response
variable with variability of the exploratory factors based on the model, 2) the control of
the response variable by handling the exploratory factors, and 3) the calibration of the
exploratory factors corresponding to controlling the response variable. We deal with the
theoretical model as the model which gives a relationship between the response and the
exploratory variables. The theoretical model is derived by the system based on a char-
acteristic theory in a science field, and has an almost of that complex and non-linear
structure. However, the theoretical model has the unbridgeable gaps between actual phe-
nomenon and the model because the theoretical model only approximates simplification
of the system even if composed exquisitely to adjust to a characteristic phenomenon the
theoretical model. Also, the theoretical model, which is built based on existing theo-
ries and knowledge, has deviation from observed data because it does not consider the
generation-mechanism of data (Goto, 1974; Goto and Daimon, 2000). That is, it is “Er-
ror” that shows the gap between data and the model to perform a big role in the inference
on theoretical model.

The objectives in this paper are to design the error of the theoretical model statisti-
cally, and to provide “Bridge” between the model and data. In other words, it is to satisfy
the symmetry of the error distribution (if possible, normality) and the homoscedasticity of
the error. A common approach to deal with errors is the power-transformation approach.

The power-transformation approach for a response has easiness of the interpretation and



flexibility of application as inclusion type of the log-transformation, so it exists as a typical
approach for an inference on the linear models (Box and Cox, 1964; Atkinson, 1985; Goto
et al., 1991). For non-linear regression models, we can use the Power Transform-Both-sides
(PTB) approach which has been proposed by Carroll and Ruppert (1984). This approach
is to transform both the response and predictive function (non-linear function expressed
by some predictors and parameters) while paying attention to the immutability of the
model before and after transformation. This approach tries to achieve normality and ho-
moscedasticity of the error by transformation. However, it is difficult to achieve these two
aims simultaneously by a power transformation with one transformation parameter like
PTB (Goto, Inoue and Tsuchiya, 1987 : Goto, 1992, 1995 : Goto, Isomura and Hamasaki,
2000). In particular, PTB is insufficient to stabilize the error variance (Carroll and Rup-
pert, 1988). Goto (1992) provides three types of double power-transformation approaches
and clarifies the assumptions and objectives of the transformations (see also Goto (1995)
and Goto et al.(2000)). The Double Power Weighted Transformation (DPWT) involves
two separate transformation parameters, namely, one is the parameter to induce the nor-
mality of the errors and the other is to estimate an appropriate weight which stabilizes
the error variance. Then, we suggest the Power Transform-Both-sides and Weighted Least
Squares (PTBWLS) approach as an analogy of DPWT. PTBWLS implements a power
weighted transformation (PWT) provided by Box and Hill (1974) to PTB.

The most important problem of the above parametric transformation approaches is
that they are too sensitive to data. To tackle this problem we provide the Nonparametric
Transform-Both-sides (NTB) approach, which uses a cubic spline curve as a transforma-
tion function. It has been discussed by Nychka and Ruppert (1995) and Ito and Goto
(2004). In the research of Ito and Goto (2004), we introduced NTB as an alternative
approach of the PTB, in the inference of theoretical models. As for the estimation of
the parameters in the theoretical models, we presented the method which represents the
function of one of the methods of the transformation by the cubic spline curve. From
the investigation of two examples, we suggested that the NTB could be an index for the
validation of the PTB and was more robust than PTB for outliers. Furthermore, we ver-
ified these results by three simulation experiments. In the methodology for fitting of the
empirical model, we introduced Alternating Conditional Expectation (ACE) provided by



Breiman and Friedman (1985) and Additivity VAriance Stabilization (AVAS) provided
by Tibshirani (1988) as two nonparametric transformation approaches that optimize re-
lationship between the response and explanatory variables. We examined the validity
of the theoretical models by fitting the empirical models via ACE and AVAS to the ex-
ample data. As a result, both methods of ACE and AVAS improved the normality and
homoscedasticity of the error.

In NTB, the spline function is identified by maximizing the penalized likelihood.
Furthermore, combining PTBWLS with NTB together, we propose the Nonparametric
Transform-Both-sides and Weighted Least Squares (NTBWLS) approach. The NTBWLS
is designed to implement both nonparametric estimation of the transformation function
and parametric estimation of the power-weighted transformation function. In the research
of Ito and Goto (2006), through the numerical investigation of one example using data
generated from a non-linear model, we conclude that PTB and PTBWLS induce normally
distributed additive errors and stabilize the error variance, and NTBWLS improves the
degrees of normality and homoscedasticity of the error more than PTB and PTBWLS.
However, There were problems for the identification of the optimal nonparametric trans-
formation function in NTBWLS. In the estimation of the spline function, it is need to
choose a appropriate value for the smoothing parameter based on a given data. One
computationally intensive strategy is to estimate the smoothing parameter on the basis
of cross-validation. However, the idea of cross-validation is to optimize on predicting re-
sponses, which does not match to a primary objective of the nonparametric regression
(Sakamoto, 2007). In this paper, we use a maximizing marginal likelihood approach to
select the smoothing parameter. The smoothing parameter, which govern global nonlinear
regression structure, are estimated with the maximum marginal likelihood estimation, or

the empirical Bayes method.

1.3 Outline of datasets

In this section, we show some data of case studies used to investigate in later section.

[Data set No.1: Shortleaf pine data(N = 70): Bruce and Schumacher, 1935]



The girth and to a lesser extent the height, are easily measured, but it is the volume of
usable timber that determines the value of a tree. The aim is therefore to find a formula for
predicting volume from the other two measurements. Table 1.1 contains 70 observations
on the volume in cubic feet of shortleaf pine, from Bruce and Schumacher (1935) together
with x1, the girth of each tree, that is, the diameter at breast height, in inches and -,

the height of the tree in feet. Atkinson and Rinai (2000) suggests a conical model

f(x; Br) = Praiz,. (1.1)

They use PTB approach for fitting the conical model and calculate scoring test statistics
on the null hypothesis Hy : 1 = 0 in order to investigate a sensitivity for the estimates
of the model parameters. Finally, it is selected for power-transformation to handle log-

transforming as giving a good result.

[Data set No.2: Skeena salmon data(N = 70): Bruce and Schumacher, 1935]

Ricker and Smith (1975) give numbers of spawners and recruits from 1940 until 1967 for
the Skeena River sockeye salmon stock. Their data are given in Table 1.2. Let x denote
the number of spawning salmon in a given year and let y be the number of recruited
salmon associated with the same year. Ricker (1954) derived the theoretical deterministic

model

f(;B) = Prx exp(=Pa) (1.2)

Ricker’s model is widely used for salmon stocks and appears to fit them well. This function
is taken to be the parametric regression function for the median of the distribution of
recruited salmon given a particular number of spawning fish. A scatter plot of these data
suggest that, although the Ricker model is a reasonable choice for the median response,
the variance of recruit salmon does not appear to be constant and the response is right

skewed. A second model was derived by Beverton and Holt (1957), namely

1
f(z;8) = Bt B/t p1 =20, B >0. (1.3)

When fit to the same dataset, the Ricker and Beverton-Holt models are often similar over

the range of spawner values in the data, despite qualitatively different behavior as the
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Table 1.1: Shortleaf pine data

number volume (y) girth (z1) height (z2) | number volume (y) girth (x1) height (z2)
1 4.6 33 2.2 36 11.0 71 25.8
2 44 38 2.0 37 11.1 81 32.8
3 5.0 40 3.0 38 11.2 91 35.4
4 5.1 49 4.3 39 11.5 66 26.0
5 5.1 37 3.0 40 11.7 65 29.0
6 5.2 41 29 41 12.0 72 30.2
7 5.2 41 3.5 42 12.2 66 28.2
8 5.5 39 3.4 43 12.2 72 324
9 5.5 50 5.0 44 12.5 90 41.3
10 5.6 69 7.2 45 12.9 88 45.2
11 5.9 58 6.4 46 13.0 63 31.5
12 5.9 50 5.6 47 13.1 69 37.8
13 7.5 45 7.7 48 13.1 65 31.6
14 7.6 51 10.3 49 13.4 73 43.1
15 7.6 49 8.0 50 13.8 69 36.5
16 7.8 59 12.1 51 13.8 77 43.3
17 8.0 56 11.1 52 14.3 64 41.3
18 8.1 86 16.8 53 14.3 77 58.9
19 8.4 59 13.6 54 14.6 91 65.6
20 8.6 78 16.6 59 14.8 90 59.3
21 8.9 93 20.2 56 14.9 68 41.4
22 9.1 65 17.0 57 15.1 96 61.5
23 9.2 67 17.7 58 15.2 91 66.7
24 9.3 76 194 59 15.2 97 68.2
25 9.3 64 17.1 60 15.3 95 73.2
26 9.8 71 23.9 61 154 89 65.9
27 9.9 72 22.0 62 15.7 73 55.5
28 9.9 79 23.1 63 15.9 99 73.6
29 9.9 69 22.6 64 16.0 90 65.9
30 10.1 71 22.0 65 16.8 90 71.4
31 10.2 80 27.0 66 17.8 91 80.2
32 10.2 82 27.0 67 18.3 96 93.8
33 10.3 81 274 68 18.3 100 97.9
34 10.4 75 25.2 69 194 94 107.0
35 10.6 75 25.5 70 23.4 104 163.5




Tablel.2: Skeena salmon data

Year Spawners (z) Recruits (y) | Year Spawners (x) Recruits (y)
1940 963 2215 1954 511 1393
1941 272 1334 1955 87 363
1942 305 800 1956 370 668
1943 272 438 1957 448 2067
1944 824 3071 1958 819 644
1945 940 957 1959 799 1747
1946 486 934 1960 273 744
1947 307 971 1961 936 1087
1948 1066 2257 1962 558 1335
1949 480 1451 1963 997 1981
1950 393 686 1964 848 627
1951 176 127 1965 619 1099
1952 237 700 1966 397 1532
1953 700 1381 1967 616 2086

(Units are thousands of fish)

number of spawners increases to infinity.

[Data set No.3: Acetaminophen data(N = 13): Channer and Roberts, 1985]
Channer and Roberts (1985) studied the effect of delayed esophageal transit on the ab-
sorption of acetaminophen. Patients awaiting cardiac catheterization took a single 500-
milligram tablet containing acetaminophen and barium sulfate. Table 1.4 lists the average
plasma acetaminophen data obtained 6 hr after swallowing the tablet. The blood drug
concentration in the systematic circulation compartment (non-linear predictive function)
is
500K

(K12 — Ky)

f(t;8) = 7 {exp(—K>st) — exp(—K12t)}, (1.4)

where t is the time following administration, 77 is the volume of distribution, K5 is the
first-order absorption rate constant, Ky is the first-order elimination rate constant and
B = (71, K12, Kop)T. We generate random numbers for the parameter estimation of the 1-
compartment model in the example data. The goals are to assess how much each method

can improve non-normality and heteroscedasticity.



Tablel.3: Average plasma acetaminophen data

Time (min) | Concentration (mg/!)
0 0
10 2.1
20 0.6
30 0.8
40 6.3
90 4.7
60 4.1
90 3.5
120 2.8
150 2.2
180 1.7
210 1.8
240 1.5
360 0.75




2. Various Types of Approaches for
Inference on Models

In this chapter, we suggest some approaches for fitting theoretical models. First we in-
troduce the standard approaches. Then, we expand it to some parametric transformation
approaches. Next, as an alternative to the parametric approaches, we provide the two
nonparametric transformation approaches. Finally, we propose the semiparametric trans-
formation approach, which designed to implement both nonparametric estimation of the
transformation function and parametric estimation of the power-weighted transformation

function.

2.1 Inference on theoretical models

In general, a non-linear regression model can be expressed by
Y = f(X:8) + e, (2.1)

where X is the py x 1 predictor vector X, (p = 1,2,...,p), and f(X;3) is the known
function with the parameter 5; (i = 1,2,...,I) (f(X;8) > 0), € is the error to be normally

distributed with zero mean. Y is the positive response (random variable) corresponding

to f(X;8).
2.1.1 Standard approaches

We assume that the observations (z,,y,) (n = 1,2,..., N) are given. The ordinary least
squares (OLS) approach is often used by estimating B regardless of the linearity of the

model. If we have b = (b1, ...,b;) as any estimate of 3, we can set b which satisfied
N
SSE(b) =) {yn— f(@a;b)}* (2:2)
n=1

9



and

dSSE(b)
ob;

=0, i=1,..,1

as BOLS, then this is a least square estimate of 8. The error is distributed as normal
in above assumption, so BOLS consists with the maximum likelihood estimate. It is usu-
ally calculated by Gauss-Newton algorithm based on approximation of Taylor expansion,
because f(X;3) is a non-linear function for B thus it is difficult that we derive BOLS
analytically.

Another standard approach is a maximum likelihood estimation method. In the model
(2.1), if the simultaneous distribution of the error is known, the maximum likelihood esti-
mate of 3 can be obtained by maximizing the likelihood function. As the error is assumed
normality here, the log-likelihood function for the observations (z,,y,) (n = 1,2,...,N)
is

L(/B,O') = _%logoj_ Z{yn_ mm }2

N

= -3 log 0% — 2f‘QSSE(B). (2.3)

The estimates B and 62 of B3 and o? respectively which maximize (2.3) are the maximum
likelihood estimates. Incidentally, under the fixed o2, the 8 maximizing (2.3) consists

with the least square estimate 8. Then, we have the maximum likelihood estimate of

0.2

N

# = GSSEB) =+ S — flan B (2.4)

n=1

In fact, B can be obtained by calculating iterated based on Taylor expansion approxima-

tion. Under 3, is given as initial value (vector) of 3, we have

0 = ﬂ))ﬂ:B

Q

95, * {3505729 0,12 0

by using Taylor expansion in the first order. So we can approximate as

) 2
ﬂ”ﬂo‘{%uﬂ))g:ﬂo} 96" )ﬂ -8,

10



Newton-Raphson method iterates till we finish converging the parameter estimates by
updating with (2.5). In addition, it is easier and more stable as converging to calculate
second term of (2.5)
92
080B"

directly than to calculate an expectation Fisher information

A P R U A

It is well known as Fisher’s scoring algorithm.

1B g,

2.1.2 Power Transform-Both-sides approach

A power-transformation approach aims symmetry (or normality) of the error, homoscedas-
ticity of the error, additivity of the model and obtaining independent observations. In
(2.1), one way to give symmetry or homoscedasticity for the error is to power-transform

the response. The power transformation with parameter A for variable ¢ (¢t > 0) is

A
Hp(t;A) = {](égt 1)/)‘ iig:

and it is usually restricted to the response (Box and Cox, 1964). However, in transforming
only the response, there is a question about the implications of breaking the known
relationship between the response Y and the prediction function f(X;3). The natural
setting for this problem is to give identical power transformation for the response Y and
the prediction function f(X;3), namely, to use PTB approach. Therefore, for the model
(2.1), we have

Hp(Y;A) = He{f(X;B); A} +ep (2.6)

(Carroll and Ruppert, 1984). This handling aims to make the error variance constant and
normality. However, it is difficult to achieve normality and homoscedasticity of the error
after the transformation (Goto et al., 1987; Goto, 1992, 1995, 2000; Jimura and Goto,
1997).Goto (1992) provides three types of double power-transformation approaches and
clarifies the assumptions and objectives of the transformations (see also Goto (1995) and

Goto et al. (2000)). PTB aims to make the error variance constant, but leaves the error

11



distribution unchanged. We assume that the error € and ep are distributed as N(0, o2)
and N(0,0?) respectively. In the framework of transform-both-sides, we can estimate
B,0% and )\, by maximizing the log-likelihood

N

Lp(B,0% ) = Z(—%[Hp(ym \) — Hp{f(zn; 8), A})?/0* + log%Hp(ym A)
n=1
—%log 02) + Cy (2.7)

for the observations {(x,,y,), n =1,2,..., N} (Carroll and Ruppert, 1984, 1988), where

Cp is a constant including the coefficient of the probability density function.

2.1.3 Power Weighted Transformation approach

PWT is presented here for obtaining approximate weights in a weighted least squares
analysis when the variance of the fitted dependent variable is a function of its expected
value. The method is applicable both for linear and non-linear least squares analysis, and
whether or not inhomogeneity of variance exists initially or is induced by transformation
of the data (Box and Hill, 1974). In the model (2.1), we assume that the error ¢ are
distributed as N(0, ¢2). The power weighted transformation function can be expressed as
Hp (yn; ¢) with power weighted parameter ¢ as well as PTB. The variance of Hp(y,; ¢) is

expressed as
V(Hp(yn; ) = 0. (2.8)

An approximate variance expression is now developed for Y using Bartlett’s method for

stabilizing variance. That is,

V(ya) = VIHp(Yn; 0)|[dyn/dHy(Yn; )y, -5y’
= V(yn)[E(yn)]*?*
= 0*[f(ma; B))*%. (2.9)

For the weight w, = [f(x,;3)]> 2%, the variance can be expressed

V(v/@nyn) = 0*.

12



The unknown weighting parameter ¢ will be estimated here by maximizing a likelihood
estimate. The log-likelihood for observations {(n,y,), n=1,2,..., N} is
Y w 1 1
Lw(B,0,¢) = Z(—;"[yn — (@i B)F/0" — S logo® + 7 log wn) +Co (210)

n=1
The maximum likelihood estimates 3,52 and ¢ of 3,02 and ¢ can be obtained by maxi-

mizing the log-likelihood (2.10).

2.2 Inference on theoretical models based on the non-
parametric transformation

2.2.1 Transformation based on the smoothing spline function

NTB intends to adjustment for “roughness” of the nonparametric transformation function
and estimates the transform-both-sides function and then the parameters of the model.
That is, NTB substitutes a nonparametric transformation function for the power transfor-
mation function in PTB. We define a penalized likelihood similar to (2.7) in Section 2.1.2,
which includes a penalty term. The nonparametric transformation function Hg(u), the
parameters 3 and the variance parameter o2 are estimated by maximizing the penalized
likelihood, where Hg(u) is a smooth function satisfying narrowly-defined monotonicity,
and it corresponds to the power transformation function Hp(¢; A) of (2.6) in Section 2.1.2.

The penalized likelihood function can be written as

1

Ln(B,0%, Hs(w) = —3 [Hulon) ~ H(f (@i )] /o? +log S Hly)  (211)

1 2 P
—5logo —izt](Hs(u))» p >0,

where L(8,02, Hs(u)) is the log-likelihood in the case of replacing Hp(t; \) of (2.6) by
Hg(u), and J(Hg(u)) is the roughness penalty defined by

g = [ ()

where uy, and uy are chosen as {y,} € [ur,uy], p is a constant to adjust the effect of the

roughness penalty on the penalized log-likelihood, called “smoothing parameter”, hg(u)

is a log derivative of Hg(u), namely hg(u) = log(dHgs(u)/du), and
Hy(w) = | explhs(wldu,

13



so Hg(u) is strongly limited by the restriction of narrowly-defined monotonicity. We
estimate Hs(u) and the parameters 3 by maximizing Lx(3, 0%, Hs(u)). See Nychka and
Ruppert (1995), Ito and Goto (2004) for more details on the estimation method of NTB.

2.2.2 Transformation based on the kernel function

Another method in the NTB approach is to use a kernel density estimator. The kernel
density estimation approach is a method of using the frequency of the observations of the
neighborhood of the respect to estimate the probability density function in any points.
Here, the kernel density estimation method is applied by using the transform function to

be a probability density function. The transform-both-sides model is
Hy(Y) = Hx[f(X,B)] + 0’ex (2.12)

, where H(t) is a smooth function, ¢? is a error variance and ek is distributed a stan-
dard normal. We assume the following conditions: 1) Hk(t) is strictly increasing and
2) Hx(E(Y)) = 0. Condition 1) is needed because we want Hk(t) to be invertible, so
the correspondence between Y and f(X,3) can be identified. Conditions 2) is needed
to ensure the uniqueness of the solution. It states that Hk(t) passes through a fixed
point, (E(Y),0). We assume that g,,, g, and g., are the probability density functions of
(U,Y),U and ek respectively, where U = f(X,3) and g., is a standard normal density

function. Then, we can have

Juy = gu(u)guy(u7y|u)
= gu(u)g: ().

We can also define ex = Hk(¢), then

9o (0%€) = 9o [{Hc(y) — Hﬂu)}/oﬂ%@/o?

by using the transformation for the variables. Hence we have

dHx (y)

i Jo? = Guy (14, Y) (2.13)

- gu(w)gac{[Hx (y) — H(uw)]/0?}
Where u = 3 because g.,.(0) = (27) /2, then

dHyg(y)
dy

Jo® = (20) " {guy (v, ¥)/ 9. () }- (2.14)

14



dHx (y)
d

So if we set Hy(y) = , we have

Y
[ i = [ aueo/ien ey

(]

= BiHk(y) + Bo (2.15)

for the constant y,, where

E(Y)

By =1/0y, By— / Guy(,0)/4(27) 3 gu(t) .

Yo
This suggests estimating Hk(y) in the following way. The first step is to obtain a pre-
liminary n'/2—consistent estimator 3 of B;. We then just replace U, = f(X,,3) by
V,, = f(X,,B) by setting 8 = B, and giving the observations (x,,y,), n=1,2,...,N.
Wang and Ruppert (1995) use the LAD estimator (denoted by B;,p) as the preliminary
estimator, B Therefore, B ,p is n'/? consistent by a M-estimator argument. Note that
because of the structure of model (2.12), the consistency of the least squares estimator
will depend on the form of the unknown g. In model (2.12), f(X,, ) is the conditional
median of Y,, given X, but is not the conditional mean (except for special g). Therefore
the least squares estimator is not in general consistent, so we prefer using B; p to using

the least squares estimator.

2.3 Inference on theoretical models based on the semi-
parametric transformation

2.3.1 Power Transform-Both-sides and Weighted Least Squares
approach

In PTBWLS, we implement the power weighted transformation parameter for PTB.
In (2.6), we assume that the distribution of the response is non-normal and that by
transforming both sides, the response is distributed normally with inconstant variance
o2 n =1,2,..,N. We attempt to attain homoscedasticity of the response after trans-
forming by implementing the power weighted transformation parameter ¢. For the power

transformation Hp(t; ¢), using Bartlett’s methods (Bartlett, 1947), we have the first order
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approximation of the variance of Hp(y,; A)

N Y dHp (yn; A) 2
V(Hr(yai A) = V[HP(HP(y"’)\)’QS)][de(Hp(yn;A);cb) Hp (yni\)=E[Hp (yu: V)]

= V[Hp(yn; N](E[Hp(yn; N)])>>*
= V[Hp(yn; N)][Hp (f (@n; 8); N>

For the weight w, = [Hp(f(x,;3); \)]>**~2, the variance can be expressed

V[v/wnHp (yn; N)] = 0.
The weighted parameter ¢ is chosen to make the variance constant using this rela-

tionship (Box and Hill, 1974). Therefore, the log-likelihood for observations {(x,,yn),
n=12,..,N}is

=z

Lew(B,0% A, ¢) = Z(—%{Hp(ym A) — Hp[f (z0; 8), \|}?/0”

n=1

d 1., 1
+log %HP(ym A) — 5 log o® + Elog wn) + Cp. (2.16)

The maximum likelihood estimates 3,52, A and ¢ of 3,02, X and ¢ can be obtained by
maximizing the log-likelihood (2.16). In (2.7), if we have Sprp as the term for a sum of

squares in the log-likelihood, it can be written as
N

Sers = Y _[(yn — f2)/A,

n=1

where f,, = f(x,;3).Then, we have

Spr ~ Z{fé\_l(yn - fn) + 1/(2)‘)[](3_1 + )‘()‘ - 1)](2\_2](?/71 - fn)2}2

by Taylor expansion for y) around f, in the second order. If we ignore the fourth order

term about (y, — f»), we have
N N
Sprn & Y f27 (e — £2)? D AT A= D)y — fa).
n=1 n=1

In this expression the first term ij:l W (Yn — fn)?, corresponds to the sum of squares in
the power weighted transformation approach of Box and Hill (1974). Then, the second
term (y, — f,.) stands for the third moment corresponding to the skewness of the error
distribution. So, we can examine how minimizing the sum of squares in PTB can correct

for not only the heteroscedasticity of the error, but the skewness of the error distribution.
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2.3.2 Nonparametric Transform-Both-sides and Weighted Least
Squares approach: brief overview

NTBWLS intends to estimate the transform-both-sides function, the parameters of the
model and the power weighted transformation parameter simultaneously based on a pe-
nalized likelihood. That is, NTBWLS substitutes nonparametric transformation function
for the power transformation function in PTBWLS. We define a penalized likelihood sim-
ilar to (2.16) in Section 2.3.1 with a penalty term. Hg(u), 3, ¢ and o? are estimated by

maximizing the penalized likelihood. It can be written as

Law(8, 6, 0% Hs(w) = L(B, 6, 0%, Hs(w)) = £J(Hs(w), p >0, (2.17)
where Lyw(3, ¢,02%, Hg(u)) is the log-likelihood when we change Hp(t;\) in (2.16) to
Hg(u). The maximum penalized likelihood estimates Hg(u), B, 62 and ¢ of Hs(u), B,
o2 and ¢ can be obtained by maximizing (2.17). Practically, we obtain the estimates by

iterating over the next three steps:

(step 1) Under the fixed 3 and ¢, estimate Hgs(u) maximizing Lp(3, 02, Hs(u)).
(step 2) Under transformation of both sides by ﬁs(u), estimate ¢ maximizing Lp(3, ¢, 02, ﬁs(u))

(step 3) Under transformation of both sides by ﬁs(u) and estimated quS, estimate (3
maximizing Lp (8, ¢, 0%, Hs(u)).

This algorithm is performed under fixed smoothing parameter p. In this paper, we set
some smoothing parameter and examine the relation to homogeneity and normality of the
error variance after transforming. Hg(u) is estimated by using a cubic smoothing spline.
We change (2.16) to a penalized likelihood relating to hs(u) and estimate the parameters
by using non-restrictive optimization. As the distribution of the response before and after
transformation is assumed to be no different, unlike PTBWLS, the penalized likelihood
is

1 N In 2
Law(B, 6, 0% hg(u)) = 3 Z{—(wn/ exp hs(u)du) /02 + 2hs(y,) — log o?

n=1 Yn

_p [ dPhs(u)\?
+logwn} 2/uL ( e )du+C’0, (2.18)

where y,, (n =1,2,..., N) are observations of response, f, = f(x,; ), w, are the weights

determined by ¢: w, = Hs[f(z,; B)]**2
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2.3.3 Estimation of the nonparametric transformation function

In order to optimize (2.18), the estimation of hg(u) is necessary. We estimate hg(u) by
using a weighted cubic smoothing spline. Then, under J > 3, for any j (j = 1,2, ..., J),

given (u;, Z;), we put
Zj = hs(u;) + vj,

where uy, ..., u; are the points in [ug,, uy], which satisfy u;, < u; < -+ < uy < uy,and are
chosen to become {y,} € [u1,u,]. In addition, the error v; is distributed N(0, 1/n;) with
variance 1/n;. Next, we define the two functional spaces: .7 [ur, uy] is the function in
[ur, uy]. It is all of the functional space that is differentiable and absolutely continuous.
Solur,, uy] is the function in [ug, uy]. It is all of the functional space that has a continuous

second derivative. In this case, we define a penalized sum of squares

w)) = i{zj (w0 [ (B0, o0, 29)

where 7; is the weight. In addition, it is assumed that the estimation equation produces

on hg(u) that minimizes .% (hs(u)) in a set of all curves smooth enough, and .%3[uy,, uy]
is hg(u). In this case, hg(u) is the (natural) cubic spline with knots at u; (O’sullivan et
al.,1986).

We extend the maximizing penalized log-likelihood algorithm of Nychka and Ruppert(1995),
and build the algorithm with the power weighted transformation parameter and estimate
hs(u). In practice, on the basis of choosing ui,...,u; as including {y,} and {f.}, we

approximate {Z;} by the integral in the first term of (2.18), namely

fn
wn/ exp hs(u)du,

Yn
and we maximize the penalized log-likelihood. More specifically, we approximate (2.18)
by

N

Lyw(0?, hs(u Z[ {i W, exphs(uj)}2/202 +i<nth(Uj):|

n=1
[ (e
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where, W,,; is the n x j component of the matrix, and

Yn

fn J
wn/ exp hs(u)du) R Z W,; exp(hs(u;)).
j=1

In addition, (,; is chosen so as to

J
hs(yn) Y Guhs (uy)-
j=1
If we set

hs = (hs(ul), ceey hs(UJ))T,

d*h,
T;“) = (d®hs(w1)/du?, ..., d*hs(uy)/du®)?,

the natural cubic spline hg(u) with knots uy, ..., u; can be determined uniquely as hg. So

we rewrite (2.18) as
Law(hs) = —%hgTOhg +¢ThE — PhiKchs, (2.20)
where
hg = (explhs(ur)], ..., explhs(uy)])*, O = Wdiag(V)W,

and W is the matrix with components W,,;, V is the N x N matrix with the diagonal
components V,,, = f(x,;3)> 2 with n = 1,2,..., N and furthermore other components

are 0.

C = (Ci? 7<J)T Then

N
G = Guss
n=1
, . . . . d*hs(u)
and K is the symmetric J X J matrix obtained by composing hg and T2 We
U

differentiate (2.20) partially by {hs(u;)}. Consequently, we obtain

aLpA(hs (u))

Ohs(u) luy, = 8ORS]; 4 G — plKRsl =0, j = 1,20, (221)

Further, {hg(u;)} can be obtained as satisfying (2.21). Thus, we can determine the
estimation equation of ﬁs(u) uniquely. Finally, for the fixed parameter 3, ¢, o2, the

estimation algorithm of hg(u) is as follows:
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(step 1) determine the knots {u;} (j =1,2,...,J).

(step 2) based on the fixed parameter 8 and ¢, compute V and W.

(step 3) compute O and (.

(step 4) set hgg = 0.

(step 5) based on hgo,0,¢, compute Z = (Zy, Zs, ..., Z;)* and the weight . = (91,92, ..., 7).
(step 6) based on hgy and the weight {n;}, {u;, Z;}, estimate the cubic spline hg;.

(step 7) set hgg = hsy.

Step 1, step 2, step 3 and step 4 are initialization. For these values, we iterate step 5,
step 6 and step 7 till we finish converging as hgy = hgi. As well, in step 6, we have the
weight {n;}, the pairs of knots and working response {u;, Z;} by initial value hgy. These

values depend on O;; and D; and the process of calculation is as follows:

(pattern 1) O;; =0: If O;; =0, set Z; = D; + hgo(u;) and n; = 1.

(pattern 2) O;; > 0 and D; = 0: (2.20) can be written by

J
exp(2hs(u;))0j; + exp hs(u;) Y Ojj exp hso(ujy) + p[K hs]; = 0,
J#jo
where 7 = 1,2, ..., J. First, at the second term, we conduct the diagonalization by
updating hgo(uj,) as So — S. Here, the Taylor-expansion can be used about hgo(u;)

in this linearization. Namely, for the first term in above equation, it can be written

by
exp(2hs(u;)) ~ exp(2hso(u;)){1 + 2(hs(u;) — hso(u;))}-

For the second term, we alternate exp hg(u;) by exphgo(u;). Hence we get the

approximate expression

J
exp(2hso(u;)){1 + 2(hs(u;) — hso(u;))}Oj5 + exp hso(u;) Y Oy, exp hso(u;)
J#jo
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If we set h§(u;) = exp hg(u;), we have

* 1 * *
—2hy(u;)?0;; (—m[()h%(uy)]j + hgo(u;) — hs(“j)) + p[Khsl; = 0.

Namely, we have

—2n;(Z; — hs(u;)) + p[Khsg]; = 0.

(pattern 3) O;; > 0 and D; > 0: (2.20) can be written by

exp(2hs(u;)) {Ojj +exp(—hs(u;)) > Ojjo exp hs(u;) — exp(—2hs(u;))D;

J#Jo
+p[Khs]; = 0.

In a similar way to (pattern 2), we conduct the linearization

9 j( —hso(u;)[Ohsol;

2D; +1/2 + hgo(uy) - hS(uj)) — p[Khgl; = 0.

As the above formula, we set n; = D; and the first term in the parenthesis on Z;.

As well, Hg(u) can be expressed by indefinite integral explhs(u)], so in this paper, we

calculate this integral by trapezoid approximation.

2.3.4 Algorithms for identification of the weighted cubic smooth-
ing spline function
In the above section, we suggested the estimation algorithm of hg(u). This optimization

need to identify the weighted cubic smoothing spline function. Here we provide this

algorithm in detail suggested by Green and Silverman (1994). Define

d’hs(u
hs; = hs(u;), 7 = s(u)

du2 U=1u;

By the definition of a NCS (Natural Cubic Spline), 74 = yv = 0. Also we set

hS = (th ey h‘SJ)Tv

Y= (727 "'7PYJ—1)T‘
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The vectors hg and = specify the curve hg completely, and it is possible to give explicit
formulae in terms of hg and ~ for the value and derivatives of hg at any point.

The condition depends on two band matrices Q and R which we now define. Let v; =
w1 —uj for j = 1,...,J — 1. Let Q be the J x (J — 2) matrix with entries ¢;;, for
j=1.,J—land [ =2,...,J — 1, given by

-1 -1 -1 -1
Q-1 =V_1, Qu="Y_1—7U , Q+11 =7

for ! =2,...,7—1, and gj; = 0 for |j — ] > 2. The columns of @ are numbered in the
same non-standard way as the entries of 4, starting at [ = 2, so that the top left element
of @ is gi2. The symmetric matrix R is (J —2) x (J — 2) with elements r;;, for j and !
running from 2 to (j — 1), given by

1 .
Ti; = g('Uj—l —I—’Uj), ] = 2, ceey J—1

i+l = ity = gl 1= 2,..,J—=2

ry =0, l7 =1 > 2.

The matrix R is strictly diagonal dominant. Standard arguments in numerical linear
algebra show that R is strictly positive-definite. Also, we define the matrix Y to be the

diagonal matrix with diagonal elements 7;. We can therefore define a matrix K by
K=Y"Y"'QRrR'Q".
The vectors hg and ~ specify a natural cubic spline hg if and only if the condition
Q"hs = Ry (2.22)
is satisfied. If (2.22) is satisfied then the roughness penalty will satisfy
/ {thS =~"Ry = hgKhs. (2.23)

pth hs is expressed as the roughness penalty. Also, for the observational vectors Z =

(Z1,...,Z5)", the residual sum of squares about hg can be written
> ni{Z — hw;)}* = (Z — hs)"X(Z — hs).

22



Therefore we can rewrite (2.19) as
F(hs) = (Z —hg)"Y(Z — hs) + ph{ Khs. (2.24)
Since pK is non-negative definite, the matrix Y + pK is strictly positive definite. It
therefore follows that (2.24) has a unique minimum, obtained by setting
hs = (Y +pK) 'YZ. (2.25)
To estimate hg efficiently, we use the algorithm proposed by Reinsch (1967). From (2.25),
we have
hs =Z — pY 'QR 'Q"hs, (2.26)
and hence
hs =27 — pYXQ~. (2.27)
As before, substituting QT hg = R~ we obtain, after some manipulation,

(R+pQ™'Q)y = QY. (2.28)
Because Y is a strictly positive definite diagonal matrix, the matrix (R + pQ* Y™ Q) is
a band matrix with j = 2 and has a Cholesky decompositionL EL where, as before, L
is a lower diagonal band matrix with unit diagonal and E is a strictly positive diagonal
matrix. The resulting algorithm, all of whose steps can be performed in O(n) algebraic

operations, can now be set out.

Step 1. For j =2, ..., J — 1, evaluate the vector QT Z. Where we can use
(QThs), = Loty M= i

(% Vj—1

Step 2. Find the non-zero diagonals of R + pQ*™ Y 'Q, and its Cholesky decomposition
factors L and FE.

Step 3. Write (2.28) as LEL"y = Q" Z and solve this equation for v by forward and

back substitution.
Step 4. From (2.26), use
hs = Z — pQ~

to find hs.

23



2.3.5 Selection of the smoothing parameter

Most nonparametric estimates of functions have a free parameter that controls the flexi-
bility of the resulting curve estimate. In this case, it is p, the relative weight given to the
roughness penalty over the log-likelihood. One practical issue is to choose an appropriate
value for this parameter when no a priori information is available about the smoothness
of the transformation. Because this is a non-linear estimate, previous work on smoothing
parameter or bandwidth selection does not apply. One computationally intensive strategy
is to estimate p on the basis of cross-validation. For a fixed value of p each data point is
omitted from the likelihood and hg, 3 and ¢ are estimated on the basis of the remaining
n — 1 data points. The log-likelihood based on these estimates is now evaluated at the
omitted data point. On the other hand, we hope that a good estimate of hg will yield
transformed residuals that are independent with constant variance. Thus any statistic
used to test for departures from these assumptions can be used to judge the suitability of
a particular value for p. However, the idea of cross-validation is to optimize on predicting
responses, which does not match to a primary objective of the nonparametric regression,
that is, to explore nonlinear regression structure. Moreover, a distance between response
variables might be difficult to take information on complicated regression structure into
account (Sakamoto, 2007). Nychka and Ruppert (1995) examined the heteroscedastic-
ity in the transformed residuals based on the Spearman rank correlation of the absolute
residuals with the predicted values. Relatively small values of this correlation may suggest
good choices for the smoothing parameter.

For (2.20), it can be also explained in the Bayesian context. The Bayesian justification

of penalized maximum likelihood is to place a prior density proportional to

wol-5 [, (S e

over the space of all smooth functions. The larger the value of p, the more weight is

put on functions with smaller roughness. With this prior, the posterior log density of
the function hg is then, in the regression context, equal to Lpa as defined in (2.20)
above, and so the spline smoother hg is the posterior mode given the data (Green and
Silverman, 1994). Suppose that the prior density of hg is p(hg; p) exp[—gth hg].
Let the conditional density of Z for given 3 and hg be denoted by p(Z|8, hg, ¢;0?) =
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(2mo?) /2 exp[—"—;(Z— hs)TY (Z — hg)]. By using the Bayes theorem, the joint posterior
density of B, ¢, hg is proportional to the joint density of Z, 3, ¢ and hs:

p(B, hs, ¢|Z, p; %) < p(Z|B, hs; ¢,0°)p(B)p(hs, p). (2.29)

Hence obtaining the mode of the joint posterior density of 3, hg is equivalent to maxi-
mizing the penalized log-likelihood.

Another procedure of selecting the smoothing parameters is to maximize the marginal
likelihood. The smoothing parameters, which govern global nonlinear regression structure,
are estimated with the maximum marginal likelihood estimation, or the empirical Bayes
method (Sakamoto, 2007). In the NTBWLS approach, We calculate hgs, 3, ¢ and p by

maximizing the marginal likelihood. Then the marginal density of Z becomes
p(Z;¢,p,0%) = // p(Z|B, hs; 6,0 )p(B)p(hs; p)dBdhs
D
s [ [ expLuw(8.hs; Z)dBihs, (2:30)
D

where D = RP*! x D;. We can consider (2.30) as a function of (¢, p, 0?), the marginal
likelihood of Z, and maximize it with respect to these parameters. Some approaches of
computing the marginal density of Z approximately have been discussed. In this paper,
we use a Laplace approximation approach which derive approximation forms without
using the integral because of its easy computation (Tierney and Kadane, 1986; Davison,
1986; Sakamoto, 2007).

Let 8 = (BT, hg)T for simplicity of notation. We consider Taylor expansion of the

penalized log-likelihood Lpa(€; Z) around its maximum point, that is, the MPLEs 6.

Then we obtain the Laplace approximation

Loa(6: Z) ~ Loa(0: Z) — %(0 _0)TH(B)(6 - 0), (2.31)

where H(0) is the negative Hessian of the penalized log-likelihood
82LPA )
97

H() = (_ 9090~

By substituting (2.31) into (2.30), an approximated marginal density of Z becomes
A 1 A A A
p(Z;¢,p,0%) = exprA(e;Z)/---/ eXp[E(O—O)TH(O)(O—O) e
D
X |H(é)|;l/2eXPLPA(é;Z)7
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where |H(0)|, is the product of non-zero eigenvalues of H(6). Hence, we obtain an

approximated marginal log-likelihood
A 1 A
Lyi(¢, p, 0% Z) = Lpa(0; Z) — ilog |H(0)|, + const., (2.32)

and we maximize (2.32) with respect to (&, p, 0®) to obtain marginal maximum likelihood

estimates.
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3. Case studies and numerical
investigation

3.1 Case studies
3.1.1 Conical model

The girth and to a lesser extent the height, are easily measured, but it is the volume of
usable timber that determines the value of a tree. The aim is therefore to find a formula for
predicting volume from the other two measurements. Table 1.1 contains 70 observations
on the volume in cubic feet of shortleaf pine, from Bruce and Schumacher (1935) together
with x1, the girth of each tree, that is, the diameter at breast height, in inches and z,,

the height of the tree in feet. Atkinson and Rinani (2000) suggests a conical model

f(z; 81) = Brxiz,. (3.1)

The trees are arranged in the table from small to large, so that one indication of a
systematic failure of a model would be the presence of anomalies relating to the smallest
or the largest observations. Atkinson and Riani (2000) uses a PTB approach with six
kinds of A to investigate transformations for these data. Finally, they conclude that the
log transformation is supported by all the data. Table 1 shows the estimates of 3, A, ¢,
p and L for each approach. Also, to evaluate skewness and heteroscedasticity of residuals
of predicted values, we calculated mean of absolute values of skewness for the error and
mean of absolute values of Spearman rank correlation between residuals and predicted
values in Table 1. The result of the estimates Bl of PTB, PWT, PTBWLS and NTBWLS
were almost the same excluding the estimates of OLS. From the result of the estimates A
of PTB, it was near 0 and hence log transformation model was suggested as a transform-

both-sides model as well as the results of Atkinson and Riani (2000). For the results
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Table 3.1.1.1: Results for the estimates of parameters and the skewness and heteroscedas-
ticity of residuals of predicted values for each approach

Parameters OLS PTB PWT PTBWLS | NTBWLS
4, 0.00298 | 0.00306 | 0.00306 | 0.00307 | 0.00306
SE(f) 0.000014 | 0.000024 | 0.000024 | 0.000024 | 0.000024
A — 0.049 — —0.184 —
SE()) — 0.023 — 0.018 —
b — — 0.145 1.724 1.015
SE(¢) — — 0.021 0.093 0.076
log-likelihood | —105.41 | —64.75 | —66.04 | —64.43 -
p - - - - 41.86
SRC 0.677 0.043 0.017 0.049 0.001
skewness 1.456 0.333 0.648 0.346 0.256

of log-likelihood estimates, the estimate of OLS was smaller than the estimates of other
approaches. SRC shows a Spearman rank correlation between residuals and predicted
values and skewness shows a degree of skew for the error distribution. That is, SRC and
skewness can be considered as the indicator for a heteroscedasticity and a normality of
the error. From the results of SRC, it is considered to have heteroscedasticity for the error
as there is the correlation of 0.677 in the result of OLS. The SRC of PWT, PITBWLS and
NTBWLS were smaller than the results of OLS, especially the results of NTBWLS was

near 0.

3.1.2 Ricker model and Beverton & Holt model

When managing a fishery, one must model the relationship between the size of the an-
nual spawning stock and its production of new catchable-sized fish, called recruits or
returns. There are several theoretical models relating recruits and spawners. These are
derived from simple assumptions about factors influencing the survival of juvenile fish.
All spawner-recruit models known to us are deterministic, i.e., the response Y is nonran-
dom given X, though Y itself can depend on stochastic variables. If the biological and
physical factors affecting fish survival were constant from year to year, then a determin-
istic model would be realistic since abundance of fish makes the law of large numbers

applicable. However, for most fish stocks these factors are far from constant. There has
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been little work on stochastic models for recruitment , probably because the mechanisms
causing survival rates to vary are not well understood. It is common practice to take
a deterministic model relating Y and X and to assume multiplicative lognormal errors.
The transform-both-sides approach allows us to test this assumption, and to model the
errors empirically when the assumption seems unwarranted. Ricker (1954) derived the

theoretical deterministic model

f(;B) = Prx exp(=Fa) (3:2)

In this model f(z;3) tends to 0 as x goes to 0, as would be expected in any realistic
model. Moreover, f(z;3) has a maximum at 3, !, provided (3, is strictly positive, and
f(z; B) tends to 0 as x goes to co. The biological interpretation of this behavior is that as
the number of juveniles increases, increased competition and predation affect the survival
rate so drastically that the absolute number of juveniles reaching maturity decreases.

A second model was derived by Beverton and Holt (1957), namely

f@iB)= 5 A0 B0 (33)
The Beverton-Holt model also has the characteristic that Y tends to 0 as z tend to 0, but
Y increases asymptotically to 1/5; as Y tends to oco. It is natural to think of 1/3; as the
carrying capacity of the environment, the maximum number of recruits that the available
space, food and other resources can support. When fit to the same data set, the Ricker
and Beverton-Holt models are often similar over the range of spawner values in the data,
despite qualitatively different behavior as the number of spawners increases to infinity.
Ricker and Smith (1975) give numbers of spawners and recruits from 1940 until 1967
for the Skeena River sockeye salmon stock. The objectives here are the following two; 1)
to compare the results of OLS, PTB, PWT, PTBWLS and NTBWLS and to estimate
the performance of the model, 2) to confirm NTB corresponds PTB approximately when
the smoothing parameter p is set with large value. Table 3.1.2.1 shows the results of each
parameter. For Bl and Bg, the standard error of PTB, PWT, PTBWLS and NTBWLS
were smaller than that of OLS. The both Bl and Bg of standard error of NTBWLS were
the smallest in all approaches. ¢ in PWT and PTBWLS were estimated near 0. It

can be thought that these models have heteroscedasticity for the error and the variance
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Table 3.1.2.1: Results for the estimates of parameters and the skewness and heteroscedas-
ticity of residuals of predicted values for each approach

Parameters OLS PTB PWT | PTBWLS | NTBWLS
6, 3.79 3.29 3.24 3.19 2.76
SE(6) 1.25 0.80 0.60 0.68 0.52
B, 0.00080 | 0.00070 | 0.00057 | 0.00058 | 0.00047
SE(3,) 0.00041 | 0.00033 | 0.00030 | 0.00033 | 0.00030
A — 0.314 — 0.735 —
SE()) — 0.021 — 0.107 —
o — — —0.041 | 0.019 1.167
SE(¢) — — 0.022 0.028 0.121
log-likelihood | —190.27 | —186.47 | —185.88 | —185.66 -
p — — — — 0.00156
SRC 0.545 | 0.308 | 0.150 0.172 0.102
skewness 0.407 | —0.328 | —0.057 | —0.068 | —0.383

function distributed exponential function. From the results of SRC, it is considered to
have heteroscedasticity for the error as there is the correlation of about 0.5 in the result
of OLS. The SRC of PWT, PTBWLS and NTBWLS were smaller than the results of
OLS and PTB. This results shows that the heteroscedasticity for the error was improved
by weighted transformation with parameter ¢ in PWT, PTBWLS and NTBWLS. On
the other hand, From the results of skewness, the skewness of PWT and PTBWLS were
smaller than the results of OLS, PTB and NTBWLS. In NTBWLS, p was estimated
0.00156, therefore the necessity of the transform-both-sides was suggested because it was
considerably small. Figure 3.1.2.1-3.1.2.3 show the results of estimated nonparametric
transformation function H(u) and the marginal log-likelihood estimates and skewness
for the error distribution when the value of p was gradually moved. The maximum
marginal log-likelihood estimate was 0.00156 and the minimum absolute value of skewness
was about 0.001, therefore it can be considered that to optimize a marginal likelihood
corresponds to optimize a symmetry of the error distribution. Figure 3.1.2.4 shows the
fitting plot of Ricker model by each approach. OLS, PTB and PTBWLS showed the
saturation of Y in case over X = 1,200, but NTBWLS did not show such the saturations.

Carroll and Ruppert (1988) analyzed the skeena data with exception of one data. A

rockslide occurred in 1951 and severely reduced the number of recruits. So, we conduct

32



4.5

4.0

3.5

3.0

2.5

2.0 1

nonparametric transformation function Hiu)

0.5

0.0

0 500 1000 1500 2000 2500 3000 3500
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the outlier analysis by excepting an observation in 1951 as well and investigate the ro-
bustness of each estimator for the model parameters. Table 3.1.2.2 shows the results of
each parameter when we do not use an observation of year 1951. There were the decent
differences between full data and exception data for the parametric transformation ap-
proaches. The difference of NTBWLS was smallest, so we can consider that NTBWLS
gave the most robust estimates for the model parameters. Figure 3.1.2.4-3.1.2.6 show
the results of estimated nonparametric transformation function H(u) and the marginal
log-likelihood estimates and skewness for the error distribution when the value of p was
gradually moved. Figure 3.1.2.7 shows the fitting plot of Ricker model by each approach
with exception of an observation of year 1951. OLS, PTB and PTBWLS showed the
saturation of Y in case over X = 800 to X = 1,000, but NTBWLS did not show such the

saturations.

3.2 Numerical investigation for 1-compartment model

Channer and Roberts (1985) studied the effect of delayed esophageal transit on the ab-

sorption of acetaminophen. Patients awaiting cardiac catheterization took a single 500-
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Table 3.1.2.2: Results for the estimates of parameters and the skewness and heteroscedas-

ticity of residuals of predicted values for each approach (do not use an observation of year
1951)

Parameters OLS PTB PWT | PTBWLS | NTBWLS
By 3.92 3.78 4.16 4.09 2.89
SE(6) 1.33 0.80 0.39 0.45 0.72
By 0.00085 | 0.00095 | 0.00096 | 0.00099 | 0.00062
SE(6,) 0.00042 | 0.00031 | 0.00017 | 0.00021 | 0.00035
A — —0.203 — 0.425 —
SE()) — 0.023 — 0.021 —
b — — —1.023 | —2.015 1.007
SE(¢) — — 0.023 0.045 0.574
log-likelihood | —183.61 | —178.49 | —177.52 | —176.83 -
p - - - - 0.00767
SRC 0.584 | 0.281 0.065 0.070 0.026
skewness 0.429 | —0.467 | 0.202 —0.168 —0.868
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milligram tablet containing acetaminophen and barium sulfate. The blood drug concen-
tration in the systematic circulation compartment (non-linear predictive function) is

500K,
11 (K12 — Ka)

ft;8) = {exp(—Koyot) — exp(—Kiat)}, (3.4)

where t is the time following administration, 7] is the volume of distribution, K, is the
first-order absorption rate constant, Ky is the first-order elimination rate constant and
B = (71, K12, Kop)T. We generate random numbers for the parameter estimation of the 1-
compartment model in the example data. The goals are to assess how much each method
can improve non-normality and heteroscedasticity. For the example data, the estimates
of ordinary least square (OLS) were ¥ = 69.48, K15 = 0.0686, and Ky = 0.0084, then
we set these estimates as the true value in this numerical study. The number of time
points are set to 13 points like the example. In this situation, in order to generate data
with heteroscedasticity, in consideration of large variance of the blood drug concentration
near the time to attain maximum concentration (Tmax), we obtained simulated data as
follows. For t = 10,20, 30,40,50 and 60, we generated 100 sets of random numbers to
distribute independent normally with mean “true value” and variance “0.4 or 0.6” about

each variance. For t = 90, 120, 150, 180, 210, 240 and 360, we generated 100 sets of random
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numbers to distribute independent normally with mean “true value” and variance “0.1”.
Namely, the variance of blood drug concentration for ¢ = 10, 20, 30, 40,50 and 60 is 4
times or 6 times of the variance of t = 90, 120, 150, 180, 210, 240 and 360. Data generated
by the above approach were fitted to the 1-compartment model by use of OLS, PTB,
PWT, PTBWLS and NTBWLS, and the approaches are assessed by the estimates of mean
square error. For the selection of smoothing parameter in NTBWLS, we selected based on
skewness and heteroscedasticity of residuals of predicted values. That is, we set p = 0.001
to p = 10° at decuple intervals and calculated mean of absolute values of skewness for the
error and mean of absolute values of Spearman rank correlation between residuals and
predicted values for each smoothing parameter, and we selected the smoothing parameter
whose skewness and correlation were the smallest. In the result, both of these statistics
were the smallest when the smoothing parameter was 0.01, so we selected it. As well,
the estimates of regression parameters did not converge for p < 0.001. Figure 1 shows
the results of mean square errors by use of each approach for each parameter of the 1-
compartment model in the case of 02 = 0.4 and o> = 0.6. Table 1-3 show the squared
bias and the variance of the estimators for each mean square error, and Table 4 shows the
mean absolute values of skewness for the error and Spearman rank correlation between
residuals and predicted values for each approach.

From the results of 77, the MSE of NTBWLS was the smallest. In the case of 0 = 0.6,
the MSE of PWT, PTBWLS and NTBWLS was particularly smaller than the MSE of
OLS and PTB. This suggested that performance of the power weighted transformation was
high. Next, from results of the first-order absorption rate constant K;,, the results of all
methods were similar all in the case of 02 = 0.4, but the MSE of PTB, PWT, PTBWLS
and NTBWLS were smaller than the MSE of OLS in the case of 0> = 0.6. From the
results of the first-order elimination rate constant Ks, the MSE was decreasing in order
of NTBWLS, PTBWLS, PWT, PTB, OLS. Also, from the results of the squared bias and
variance of the estimators in Table 1-3, the variance of all estimators were decreasing in
order of NTBWLS, PTBWLS, PTB, OLS. Finally, from the results of the skewness for
the error and the Spearman rank correlation between residuals and predicted values in

Table 4, these statistics were improved in order of NTBWLS, PTBWLS, PTB, OLS.
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Table 3.2.1: Results of the squared bias and variance of the estimators for the volume of
distribution (E[71])

approach | o =04 o2 =0.6
bias | variance | bias | variance

OLS 0.001 18.04 0.38 36.09
PTB 0.02 18.72 0.63 35.02
PTBWLS 0.09 15.97 0.94 21.87
NTBWLS(p = o0) 0.04 11.67 0.06 21.16
NTBWLS(p =1) 0.11 13.51 0.42 11.18
NTBWLS(p =0.01) | 0.31 6.44 0.14 8.81

Table 3.2.2: Results of the squared bias and variance of the estimators for the first-order
absorption rate constant (E[K5])

approach os = 0.4 o2 =0.6
bias variance bias variance

OLS 420 x 1077 | 1.13 x 107 | 8.64 x 107° | 3.67 x 1073
PTB 3.79x 1077 | 1.15 x 107* | 7.40 x 107® | 2.59 x 104
PTBWLS 774 x 10721121 x107% [ 9.29 x 107% | 2.13 x 10~*
NTBWLS(p = oc0) | 7.11 X 1078 1 9.98 x 107° | 9.49 x 107 | 3.49 x 10~*
NTBWLS(p = 1) 1.26 x 107% | 1.24 x 107* | 3.36 x 10> | 2.08 x 10~*
NTBWLS(p = 0.01) | 4.50 x 1077 | 8.86 x 107° | 2.54 x 107° | 1.93 x 10~*

Table 3.2.3: Results of the squared bias and variance of the estimators for the first-order
elimination rate constant (E[Ky])

approach o2 =0.4 o5 =0.6
bias variance bias variance

OLS 1.44 x 10719 | 3.58 x 1077 | 1.25 x 10710 | 7.61 x 10~
PTB 231 x 107101 350 x 1077 | 2.93 x 107% | 6.47 x 1077
PTBWLS 2.56 x 107101 392 x 1077 | 9.53 x 1079 | 4.08 x 10~ 7
NTBWLS(p = oo) 218 x 1077 [ 428 x 1077 | 1.60 x 1079 | 4.65 x 10~ "
NTBWLS(p=1) | 1.67x10° | 313 x10 7 | 527 x 10 ® | 2.40 x 10
NTBWLS(p = 0.01) 498 x 1077 | 1.67 x 1077 | 3.69 x 10~® | 1.66 x 10~
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Table 3.2.4: Results of the mean absolute values of skewness for the error and Spearman
rank correlation between residuals and predicted values for each approach

approach o5 =0.4 o5 = 0.6
skewness | rank correlation | skewness | rank correlation

OLS 8.39 x 1072 0.264 2.23 x 1072 0.504
PTB 1.04 x 102 0.053 9.36 x 1072 0.037
PTBWLS 1.41 x 1072 0.019 1.39 x 1072 0.048
NTBWLS(p = c0) | 2.64 x 1072 0.022 2.09 x 1072 0.035
NTBWLS(p = 1) 5.56 x 1073 0.015 1.27 x 1072 0.023
NTBWLS(p = 0.01) | 1.04 x 1072 0.032 1.01 x 1072 0.029

3.3 Discussions

In the investigation result of the conical model, the transformation approaches (PTB,
PWT, PTBWLS and NTBWLS) much improved the heteroscedasticity and the non-
normality of the error in a post-transformation compared with that of OLS. It suggested
that these transformation approaches are effective to fit a simple non-linear model for
heteroscedastic data. The estimate of power-parameter of PTB was near 0. It suggested
that log-transformation was selected as the optimal transformation function and it corre-
sponded with the conclusion of Atkinson & Riani (2000). The result of SRC for NTBWLS
was near 0 and it showed that NTBWLS was best transformation as the variance sta-
bilization. However, the estimates of model parameter were nearly same between these
transformation approaches. It suggested that PTB or PWT were enough to improve
heteroscedasticity of the error in this data.

From the results of Ricker model and Beverton & Holt model, the transformation
approaches (PTB, PWT, PTBWLS and NTBWLS) much improved the heteroscedastic-
ity and the non-normality of the error in a post-transformation compared with that of
OLS. Also, PWT, PTBWLS and NTBWLS improved them more than PTB. It probably
means that the power-weighted transformation was more appropriate than the both-sides
transformation for the Skeena salmon data. The approach in which the absolute value
of SRC was the smallest was NTBWLS, but the absolute values of skewness of the er-
ror distribution in PWT and PTBWLS were smaller than that of NTBWLS. We should

discuss which approaches are superior in the performance of parameter estimation in the
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simulation experiments in Section 4.

In the numerical investigation based on 1-compartment model, the results suggested
that performance of NTBWLS was high. From the results of the variance of all estimators
were decreasing in order of NTBWLS, PTBWLS, PTB, OLS. Therefore, we concluded
that NTBWLS is superior to the other method in the situation of hardy heteroscedasticity
and provides a robust estimator to make the smoothing parameter smaller because it

reduces the effect of the intensity of heteroscedasticity.
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4. Simulation

4.1 Motivations and Objectives

The following hypotheses can be established from the results of case studies:

Hypothesis 1: In the case the error for a true non-linear model is distributed non-normal
with constant variance, the transformation approaches are superior to usual least square

approach in the performance for the model-parameter estimation.

Hypothesis 2: Based on the Hypothesis 1, in the case the error for a true non-linear model
is distributed non-normal with heteroscedasticity, PTBWLS and NTBWLS are superior

to PTB and PWT in the performance for the model-parameter estimation.

Hypothesis 3: Based on the Hypothesis 2, in the case the true transformation is not
included in a power function family and the error is distributed non-normal with het-
eroscedasticity, a optimal smoothing parameter estimate in NTBWLS does not diverge
but give certain value and NTBWLS improves the performance of estimation for model

parameters more than PTB, PWT and PTBWLS.

To confirm Hypothesis 1, we build the model which is distributed normal with con-
stant variance in the case the both sides of model is log-transformed. That is, a log-
transformation is assumed as the true variance stabilization transformation. To confirm
Hypothesis 2, we generate a non-constant variance by using the variance function that
is proportional to the predictor in the model of Hypothesis 1. In the investigation for

Hypothesis 3, we use a complicated function as a true transformation function in place of
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a log-transformation in case of Hypothesis 2.

4.2 Designs
4.2.1 Simulation design for Hypothesis 1

As the simulation model, we set

f(z; B8) = x61 exp(—LFox), (4.1)

and consider about the nonparametric transform-both-sides model

Hx(y) = Hx{f(2;8)} + en. (4.2)

Where, ey is distributed N(0, 0%). For the model (4.2), we give a transformation function
Hi(u) = log(u). (4.3)

The true transformation function in the model (4.2) is a log-transformation and it is
included in a power-transformation family. That is, the true value for a smoothing pa-
rameter is p — oo in NTB. The simulation model obtained from (4.2) and (4.3) is as

follows:

Y = [B1z exp(—fox)] exp(en). (4.4)

We set B, =3, (B2 = 0.0008 as the true values for the model parameters 3, and 5. This
is based on the presumption result of case study for the Ricker model in Section 3.2.2.
The observable range for predictor variable x is 0 < z < 1,000. We provide the sample
size and the error variance as simulation factors with three kinds of levels that influence

the results.

4.2.2 Simulation design for Hypothesis 2

The model (4.1) is assumed to be a potential model as well as Hypothesis 1. However, we
provide the heteroscedastic variance for the error. We set that ey is distributed N(0, ?)
as the error, where o2 is proportional to the predictor variable z. In this situation, there

are not only the heteroscesasticity of the error variance, but the non-normality of the error
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distribution. We set 8; = 3, [ = 0.0008 as the true values for the model parameters (3,
and (3, and the acceptable observation range for predictor variable z is 0 < x < 1,000 as

well as the case of Hypothesis 1.

4.2.3 Simulation design for Hypothesis 3

In setting Hypothesis 3, (4.1) is assumed to be a potential model as well as Hypothesis
2. In order to have the model that the true transformation function is not included in a

power-transformation family, we set the true transformation function as follows:
H,(u) = log(u/VX). (4.5)

Where, ey is distributed N(0,02). In the context of NTBWLS approach, there is a
certain py and Hy(u; pg) = Ho(u). From (4.1) and (4.5), the simulation model is obtained

as follows:

Y = [Biz exp(—Faz)] exp(v/Ten). (4.6)

Other settings are same as the Hypothesis 1 and Hypothesis 2.

4.3 Generating simulation data

For the all combinations of simulation factors that provide in Hypothesis 1, we generated
the N uniform random numbers defined on [0, 1,000] and the N normal random numbers
distributed N(0,0?). In case that Hypothesis 2 and Hypothesis 3, we generated the
N uniform random numbers defined on [0, 1,000] and the N normal random numbers
distributed N(0,0%z). It was replicated 1,000 times. We conducted the Bartlett test for
a homoscedasticity to set the meaningful sample size to target heteroscedasticity of the
error variance. That is, in the situation of Hypothesis 1, we divided into two datasets as
group A (0 < X < 500) and group B (500 < X < 1,000) and for the variance 0% and 0%
of group A and group B, in case that we test the null hypothesis Hy : 04 = 0% against
the alternative hypothesis H; : 0% # 0% with a 0.05 two-sided significance level and the
error variance o2 = 0.02, then the sample size was N = 29 with the power 0.80, N = 41

with the power 0.90 and N = 63 with the power 0.95. Therefore, the sample size was set
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as N = 29,41,63 and the error variance was set as 02 = 0.01,0.02, 0.03 in the simulation
to conduct the significant simulation experiments. The sample size in the investigation
of Hypothesis 2 and Hypothesis 3 were same as Hypothesis 1 in view of a comparability.

The OLS, PTB, PWT, PTBWLS and NTBWLS were applied for the inference on a
simulation model to the data generated based on above setting, and mean square error of
B, [MSE(3,)], B2 [MSE(f,)] and the results of resolving these the variance and the bias
[VAR((:), BIAS((;) and VAR((,), BIAS(3,)] were calculated for each approach. And,
to assess the normality and homoscedasticity of the error after the transformation, the
mean absolute values of skewness for the error (Skewness) and Spearman rank correlation
between residuals and predicted values (SRC) were calculated. For the Hypothesis 1, we

included the true simulation model as the contrast of each approach.

4.4 Results and Interpretations
4.4.1 Result and Interpretation from Simulation of Hypothesis 1

Table 4.4.1.1 to Table 4.4.1.3 show the results of the simulation for Hypothesis 1 in case
that sample size was n = 29 and for 02 = 0.01, o2 = 0.02 and ¢% = 0.03, respectively.
From the results in case that the sample size is small (Table 4.4.1.1 to Table 4.4.1.3), All
transformation approaches were superior to OLS in terms of the mean square errors. In
addition, in the situation of the larger variance, the greater those differences. It may be
shown that the transformation approaches caught the structure of the true model (that
is, log-transformational model) as compare to OLS approach. In a view of the error
distribution, the transformation approaches improved SRC better than that of OLS, but
the improving of the skewness was not showed in any transformation approaches. It seems
the natural result because we did not give the skewness for the error distribution of the
true model but give the heteroscedasticity of that intentionally. In particular, in case of
0? = 0.03, we can find that the MSE of PWT and that of PTBWLS were smaller than OLS
and PTB. It can be thought that the power-weighted transformation approach improves a
hardy heteroscedasticity as compare to the transformation-both-sides approach. For the
situation of the larger sample size n = 41 and n = 63 (Table 4.4.1.4 to Table 4.4.1.9), it

seems that we can give the same interpretations as Table 4.4.1.1 to Table 4.4.1.3.
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Table 4.4.1.1: Simulation results for the Hypothesis 1: n = 29, 02 = 0.01

Approach OLS PTB PWT PTBWLS TRUE
MSE(5) 0.0044 0.0037 0.0036 0.0037 0.0031
BIAS(Bl) 2.62x 107 | 203 x107% | 6.12x107% | 6.92x107° | 1.18 x 107°
VAR(6) 0.0044 0.0037 0.0036 0.0037 0.0030
MSE(BQ) 8.78 x 10710 | 8.98 x 10710 | 8.28 x 1071 | 7.95 x 10710 | 7.39 x 10710
BIAS(G,) | 2.07 x 107 | 556 x 1072 | 1.01 x 1072 | 4.63 x 10712 | 1.85 x 1072
VAR(fB2) | 857 x 10710 | 8.93 x 10719 | 8.27 x 10710 | 7.91 x 1071% | 7.37 x 10710
SRC 0.180 0.192 0.092 0.121 0.373
Skewness 0.288 0.302 0.311 0.369 0.141

Table 4.4.1.2: Simulation results for the Hypothesis 1: n = 29, 02 = 0.02

Approach OLS PTB PWT PTBWLS TRUE
MSE(Bl) 0.0166 0.0109 0.0166 0.0127 0.0099
BIAS(Bl) 3.67x107% | 1.28 x107° | 3.33 x107° | 491 x 1076 | 3.73 x 10°¢
VAR(p 1) 0.0162 0.0109 0.0160 0.0127 0.0099
MSE( 2) 432 x 1072 | 2.68 x 107% | 3.66 x 1072 | 2.75x 107% | 2.70 x 107
BIAS( 2) 1.67 x 107 | 3.19 x 10713 | 5.01 x 1071 | 4.00 x 10713 | 3.74 x 10712
VAR(B:) | 430x 1072 | 2.68 x 107 | 3.66 x 1072 | 2.75 x 107 | 2.70 x 107°
SRC 0.178 0.149 0.110 0.101 0.386
Skewness 0.337 0.359 0.338 0.286 0.159

Table 4.4.1.3: Simulation results for the Hypothesis 1: n = 29, 02 = 0.03

Approach OLS PTB PWT PTBWLS TRUE
MSE(6;) 0.0321 0.0318 0.0263 0.0274 0.0252
BIAS(31) | 6.18 x 107* | 1.05 x 107* | 4.56 x 107* | 2.83 x 10~* | 3.00 x 10~*
VAR(3) 0.0315 0.0317 0.0258 0.0272 0.0249
MSE(B;) | 8.08x 107 | 7.31 x 107 | 6.37 x 107 | 5.34 x 107° | 5.47 x 10~°
BIAS(G,) | 2.01 x 10710 | 2.72 x 107 | 6.02 x 1071 | 1.66 x 107! | 7.37 x 10~
VAR(B,) | 7.88x107° | 728 x 107 | 6.31 x 107 | 5.32 x 107° | 5.39 x 10~°
SRC 0.169 0.155 0.089 0.301
Skewness 0.345 0.421 0.301 0.364 0.130
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Table 4.4.1.4: Simulation results for the Hypothesis 1: n = 41, 02 = 0.01

Approach OLS PTB PWT PTBWLS TRUE
MSE(5) 0.0020 0.0021 0.0016 0.0019 0.0019
BIAS(Bl) 7.39x107% | 6.03x107° | 531 x107° | 7.18 x 107® | 3.87 x 107
VAR(6) 0.0020 0.0021 0.0015 0.0019 0.0018
MSE(BQ) 5.57 x 10710 | 5.64 x 10710 | 4.00 x 10719 | 5.40 x 10719 | 4.70 x 10710
BIAS(G,) | 9.72 x 10712 | 1.77 x 107 | 1.45 x 1071 | 7.84 x 10712 | 7.95 x 1072
VAR(B2) | 5.47 x 10710 | 546 x 10719 | 3.85 x 10710 | 5.32 x 10719 | 4.62 x 10~1°
SRC 0.189 0.156 0.087 0.114 0.298
Skewness 0.261 0.284 0.279 0.289 0.128

Table 4.4.1.5: Simulation results for the Hypothesis 1: n = 41, o2 = 0.02

Approach OLS PTB PWT PTBWLS TRUE
MSE(Bl) 0.0090 0.0076 0.0076 0.0078 0.0076
BIAS(ﬁl) 9.79 x 1075 | 6.64x 1076 | 814 x107° | 411 x107° | 3.29 x 107°
VAR(S 1) 0.0089 0.0076 0.0075 0.0077 0.0075
MSE( 2) 230x 107 | 1.75x 107 | 1.92 x 107% | 1.82x 107% | 1.51 x 107
BIAS( 2) 1.64 x 107 | 1.57 x 107 | 6.04 x 10712 | 1.91 x 107! | 3.83 x 10712
VAR(B:) | 228 x 1072 | 1.74 x 107° | 1.91 x 107® | 1.80 x 107 | 1.50 x 107
SRC 0.155 0.136 0.088 0.098 0.167
Skewness 0.339 0.295 0.297 0.342 0.130

Table 4.4.1.6: Simulation results for the Hypothesis 1: n = 41, 02 = 0.03

Approach OLS PTB PWT PTBWLS TRUE
MSE(4,) 0.0225 0.0216 0.0192 0.0164 0.0112
BIAS(3) | 234 x10™% | 6.96 x 1077 | 1.20 x 107* | 8.31 x 10* | 1.31 x 10~
VAR(6:) 0.0201 0.0216 0.0191 0.0156 0.0111
MSE(,) | 522%x107° | 497 x10° | 5.18 x 10 | 4.01 x 10~° | 3.70 x 10~°
BIAS(3) | 3.62x 10710 | 2.05 x 10733 [ 3.18 x 103 | 1.65 x 10710 | 1.21 x 1013
VAR(Z,) | 4.86x107° | 497 x10° | 5.18 x 10 | 3.84 x 10~° | 3.69 x 10~°
SRC 0.158 0.142 0.079 0.092 0.147
Skewness 0.317 0.304 0.324 0.292 0.123
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Table 4.4.1.7: Simulation results for the Hypothesis 1: n = 63, 02 = 0.01

Approach OLS PTB PWT PTBWLS TRUE
MSE(5) 0.0016 0.0013 0.0009 0.0013 0.0012
BIAS(Bl) 1.96 x 1075 [ 4.69 x 10719 | 1.30 x 107® | 3.72x 107 | 1.14 x 1077
VAR(6) 0.0016 0.0013 0.0009 0.0012 0.0012
MSE(BQ) 3.36 x 10710 | 3.34 x 10710 | 2.57 x 10719 | 3.19 x 10719 | 2.88 x 10710
BIAS(G,) | 7.02 x 1072 | 2.93 x 1073 | 2.95 x 1072 | 1.08 x 107! | 9.00 x 10~
VAR(B2) | 3.29 x 10710 | 3.34 x 10719 | 2.54 x 10710 | 3.08 x 1071% | 2.88 x 1010
SRC 0.146 0.154 0.065 0.100 0.242
Skewness 0.228 0.247 0.243 0.239 0.097

Table 4.4.1.8: Simulation results for the Hypothesis 1: n = 63, 02 = 0.02

Approach OLS PTB PWT PTBWLS TRUE
MSE(f:) 0.0059 0.0046 0.0052 0.0054 0.0053
BIAS(G)) | 8.32 x 10~° | 3.30 x 10° | 1.96 x 10=° | 5.86 x 10~ | 3.35 x 10~
VAR(f) 0.0059 0.0046 0.0052 0.0048 0.0052
MSE(f3,) | 1.88x10™° | 1.15 x 10™° | 1.32x10° | 1.27 x 10 | 1.26 x 109
BIAS(%) | 2.69 x 1071 | 6.28 x 1072 | 7.74 x 10" | 7.69 x 10~ | 1.05 x 10~*2
VAR(G,) | 1.85x10™° | 1.14 x 10™° | 1.31 x 10° | 1.20 x 10 | 1.25 x 109
SRC 0.141 0.136 0.066 0.070 0.227
Skewness 0.256 0.233 0.210 0.227 0.112

Table 4.4.1.9: Simulation results for the Hypothesis 1: n = 63, o2 = 0.03

Approach OLS PTB PWT PTBWLS TRUE
MSE(3,) 0.0208 0.0136 0.0118 0.0178 0.0097
BIAS(f1) | 4.60 x 107* | 541 x10% | 1.05 x 10* | 540 x 10~* | 2.35 x 10~*
VAR(6,) 0.0203 0.0131 0.0118 0.0173 0.0097
MSE(3,) | 346 x10™° | 3.07x 10™° | 3.00 x 10° | 3.08 x 10 | 2.31 x 109
BIAS(f,) | 1.73x 10712 [ 833 x 1071 [ 2.85 x 10~ | 2.32 x 10711 | 6.73 x 107!
VAR(G,) | 346 x107° | 299 x 10™° | 3.00 x 10° | 3.05 x 10 | 2.24 x 109
SRC 0.149 0.127 0.063 0.079 0.230
Skewness 0.249 0.259 0.234 0.242 0.092

49




4000

3800 |

3600

3400 O e

3200 £ o o
> 3000 o

2800 | o o

2600 |

2400 t ©

2200

2000

o} 200 400 600 800 1000

Figure 4.4.2.1: Example of simulation data (¢ = 0.01,n = 63)

4.4.2 Result and Interpretation from Simulation of Hypothesis 2

Table 4.4.2.1 to Table 4.4.2.3 show the results of the simulation for Hypothesis 2 in case
that sample size was n = 29 and for 02 = 0.01, 02 = 0.02 and ¢% = 0.03, respectively.
From the results in case that the sample size is small (Table 4.4.1.1 to Table 4.4.1.3), the
mean square errors were basically improved in order of NTBWLS, PTBWLS, PWT, PTB,
OLS. In particular, the difference between OLS, PTB and PWT, PTBWLS, NTBWLS
were remarkable. SRC improved same as the results of MSE. It can be thought that the
power-weighted transformation approach improved better than the ordinary least squares
approach and the transformation-both-sides approach in the situation of the non-normal
and heteroscedastic error distributions. Also, in the situation of the larger variance (Table
4.4.2.3), the improvement of NTBWLS for the MSE was remarkable. For the situation of
the larger sample size (Table 4.4.2.4 to Table 4.4.2.9), it seems that we can give the same
interpretations as Table 4.4.2.1 to Table 4.4.2.3.
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Figure 4.4.2.2: Example of simulation data (¢ = 0.02,n = 63)
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Table 4.4.2.1: Simulation results for the Hypothesis 2: n = 29, 02 = 0.01

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(Bl) 0.0156 0.0112 0.0086 0.0082 0.0067
BIAS(fy) | 7.52 x 107° | 994 x 1075 | 1.22x107* | 7.77x107® | 3.56 x 107°
VAR(6) 0.0155 0.0111 0.0084 0.0081 0.0067
MSE(S,) | 459 x 107 | 313 x 10~ | 2.99 x10~° | 2.92x 10~ | 218 x 10~°
BIAS( 2) 7.19x 10712 | 1.15 x 107 | 4.70 x 10712 | 3.42 x 10713 | 3.78 x 10714
VAR((y) | 4.59 x 1072 | 3.12x 1072 | 299 x 1072 | 2.92x 1072 | 2.18 x 107
SRC 0.460 0.419 0.087 0.107 —
Skewness 0.393 0.412 0.322 0.326 —

Table 4.4.2.2: Simulation results for the Hypothesis 2: n = 29, o2 = 0.02

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(Bl) 0.0440 0.0631 0.0439 0.0281 0.0345
BIAS(fy) | 5.12 x 107% | 6.13 x 107* | 4.34 x 107* | 2.08 x 1072 | 1.46 x 1073
VAR(Bl) 0.0435 0.0625 0.0437 0.0279 0.0331
MSE(f,) | 2.23x 1078 | 1.89 x 1078 | 1.33x 1078 | 7.61 x 107° | 1.41 x 10°8
BIAS(3,) | 2.28 x 10711 | 4.48 x 1072 | 3.95 x 1011 | 3.39 x 10720 | 4.39 x 10~
VAR(f;) | 1.23 x 107® | 1.89 x107® | 1.33x107® | 727 x107% | 1.37 x 10°8
SRC 0.432 0.392 0.085 0.105 —
Skewness 0.407 0.395 0.290 0.301 —

4.4.3 Result and Interpretation from Simulation of Hypothesis 3

Table 4.4.3.1 to Table 4.4.3.3 show the results of the simulation for Hypothesis 2 in case
that sample size was n = 29 and for 02 = 0.01, o2 = 0.02 and ¢% = 0.03, respectively.
Figure 4.4.3.1 and Figure 4.4.3.4 show the results of MSE(Bl) and MSE(BQ) for the Hy-
In Figure 4.4.3.1 and Figure 4.4.3.4, MSE was clearly
improved in order of NTBWLS, PTBWLS, PWT, OLS in the situation of o2

pothesis 3 in case of n = 29.
= 0.03.
There were no difference between each approach in the situation of 2 = 0.01. In contrast
to above results, in case that the sample size was large (Figure 4.4.3.2, Figure 4.4.3.3,
Figure 4.4.3.5 and Figure 4.4.3.6), PWT, PTBWLS and NTBWLS were clearly improved
better than OLS for MSE, but there were not so much difference between each transfor-
mation approach. Therefore, it can be thought that NTBWLS is superior to the other
approaches for MSE in the situation of small sample size and larger variance with non-

normal and heteroscedastic error. In Table 4.4.3.1 to 4.4.3.9, it seems that we can provide
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Table 4.4.2.3: Simulation results for the Hypothesis 2: n = 29, 62 = 0.03

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(5) 0.165 0.146 0.085 0.103 0.049
BIAS(Bl) 548 x 107* | 4.95 x 107* | 2.08 x 1073 | 4.45x 1073 | 5.60 x 1073
VAR(6) 0.1639 0.1458 0.0831 0.0990 0.0437
MSE(BQ) 432x1078 | 3.89x 1078 | 222 x 1078 | 3.54x107% | 2.14 x 1078
BIAS((,) | 1.53 x 10710 | 1.48 x 107! | 1.36 x 107" | 3.48 x 107! | 9.80 x 1010
VAR(B2) | 430x 1078 | 3.87 x 1078 | 222 x 1078 | 3.54 x 1078 | 2.04 x 1078
SRC 0.402 0.292 0.089 0.100 —
Skewness 0.442 0.395 0.326 0.302 -

Table 4.4.2.4: Simulation results for the Hypothesis

2: n=41, 02 =0.01

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(Bl) 0.0112 0.0097 0.0064 0.0069 0.0068
BIAS(Bl) 3.86x107% | 218 x 1078 | 493 x107% | 3.33x 107" | 2.82 x 1074
VAR(p 1) 0.0109 0.0097 0.0064 0.0069 0.0066
MSE( 2) 3.02x 1072 | 274 x 1072 | 238 x 1072 | 1.89 x 107 | 2.33 x 107°
BIAS( 2) 7.70 x 10711 | 6.08 x 10713 | 1.54 x 107* | 6.50 x 10712 | 8.12 x 10!
VAR(B:) | 294x 107 | 274 x 107 | 238 x 1072 | 1.89 x 107Y | 2.25 x 107
SRC 0.446 0.426 0.081 0.089 —
Skewness 0.341 0.329 0.296 0.268 -

Table 4.4.2.5: Simulation results for the Hypothesis 2: n = 41, o2 = 0.02

Approach OLS PTB PWT PTBWLS | NTBWLS
MSE(6,) 0.0333 0.0297 0.0271 0.0236 0.0230
BIAS(f1) | 1.01x10* | 2.82x107% | 1.44 x 107 | 1.76 x 107° | 3.37 x 10~*
VAR(6,) 0.0332 0.0296 0.0271 0.0235 0.0226
MSE(3,) | 1.04x 1078 | 0.96 x 1078 | 9.27 x 10° | 7.42 x 10 | 7.40 x 109
BIAS(f,) | 117 x 10720 [ 2.56 x 1072 | 1.17 x 1070 | 2.92 x 1071 | 6.40 x 10~
VAR(G,) | 1.03x 1078 [ 0.96 x 10°° | 9.27 x 10° | 7.42x 10° | 7.33 x 109
SRC 0.449 0.428 0.078 0.083 —
Skewness 0.397 0.342 0.303 0.252 —
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Table 4.4.2.6: Simulation results for the Hypothesis 2: n = 41, 62 = 0.03

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(5) 0.0865 0.0797 0.0565 0.0499 0.0522
BIAS(Bl) 6.02 x 107* | 3.98 x 107* | 4.01 x 107* | 7.02x 107* | 4.35 x 1073
VAR(6) 0.0859 0.0797 0.0565 0.0499 0.0478
MSE(BQ) 248 x 1078 | 2.06 x 1078 | 1.99 x 107® | 1.54 x 107® | 1.66 x 1078
BIAS(G,) | 2.24 x 1071 | 2.56 x 107! | 1.17 x 10710 | 2.92 x 107! | 2.93 x 10710
VAR(f2) | 248 x 1078 | 2.06 x 1078 | 1.99 x 1078 | 1.53 x 1078 | 1.63 x 1078
SRC 0.457 0.232 0.076 0.092 —
Skewness 0.329 0.191 0.272 0.316 —

Table 4.4.2.7: Simulation results for the Hypothesis

2: n =163, 02 =0.01

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(Bl) 0.00526 0.00653 0.00348 0.00343 0.00366
BIAS(ﬁl) 462x107° | 1.92x107* | 1.88 x10™® | 421 x 10™® | 2.70 x 107?
VAR(p 1) 0.00522 0.00634 0.00346 0.00339 0.0036
MSE( 2) 1.52x107° | 1.81 x 107 | 1.09 x 107 | 1.20 x 107 | 1.39 x 10~*
BIAS( 2) 4.87 x 10712 | 8.17 x 1071 | 2.86 x 107 | 4.04 x 1072 | 7.10 x 10713
VAR(f;) | 1.51 x 1072 | 1.89 x 1072 | 1.09 x 1072 | 1.20 x 1072 | 1.39 x 107
SRC 0.453 0.385 0.071 0.075 —
Skewness 0.337 0.301 0.215 0.254 —

Table 4.4.2.8: Simulation results for the Hypothesis 2: n = 63, o2 = 0.02

Approach OLS PTB PWT PTBWLS NTBWLS
MSE(Bl) 0.0277 0.0201 0.0161 0.0185 0.0121
BIAS(B;) | 7.15x 107° | 592 x 107 | 7.41 x 107° | 6.21 x 107* | 5.94 x 10~*
VAR(Bl) 0.0276 0.0201 0.0161 0.0179 0.0115
MSE(8,) | 7.77x 107 | 7.78 x 107 | 5.04 x 1072 | 4.83 x 107 | 4.31 x 107
BIAS( Ag) 8.82x 107 | 3.50 x 10 | 833 x 107! | 1.28 x 107! | 3.68 x 10~ !
VAR(B;) | 768 x 1072 | 7.78 x 107 | 4.96 x 1072 | 4.82 x 107Y | 4.27 x 107°
SRC 0.449 0.384 0.071 0.085 —
Skewness 0.364 0.337 0.252 0.269 -
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Table 4.4.2.9: Simulation results for the Hypothesis 2: n = 63, o2 = 0.03

Approach OLS PTB PWT PTBWLS | NTBWLS
MSE(3) 0.0670 0.0648 0.0313 0.0275 0.0318
BIAS(8;) | 519 x 107° | 4.92 x 107° | 3.82x 107% | 3.48 x 107* | 3.34 x 1073
VAR(5:) 0.0669 0.0648 0.0309 0.0271 0.0285
MSE(fs) | 212x107® | 1.78 x 107® | 1.00 x 107® | 6.76 x 10 | 9.67 x 107°
BIAS(G,) | 4.00 x 10711 | 3.44 x 107 | 3.56 x 1071 | 2.43 x 107! | 3.16 x 101
VAR(B,) | 212x 1078 | 1.78 x 107® | 9.99 x 1079 | 6.74 x 107° | 9.36 x 10~°
SRC 0.465 0.444 0.073 0.063 —
Skewness 0.354 0.321 0.257 0.259 —

the similar interpretations as the results of the simulation for Hypothesis 2. However,

we should focus on the results of skewness. There were trend toward that the skewness
were decreased in order of NTBWLS, PTBWLS, PWT, OLS. We can consider that the

simulation model for Hypothesis 3 had the intentional skewness for the error distribution

and NTBWLS improved the skewness of the error as compare to OLS and PWT.
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Table 4.4.3.1: Simulation results for the Hypothesis 3: n = 29, 02 = 0.01

Approach OLS PWT PTBWLS NTBWLS
MSE(Bl) 0.0125 0.0056 0.0050 0.0039
BIAS(G) | 1.11 x 1075 | 2.39 x 10~* | 4.37 x 10~° | 5.56 x 102
VAR(f) 0.0124 0.0054 0.0050 0.0039
MSE(8,) | 3.97x 107 | 217 x 107" | 2.27 x10~° | 1.71 x 10~
BIAS( 2) 1.79 x 1071 | 1.94 x 1071 | 397 x 10712 | 1.84 x 10~ ¢
VAR(f2) | 3.95 x 1072 | 2.17x 107 | 227 x 107 | 1.70 x 10~°
SRC 0.489 0.082 0.081 —
Skewness 0.447 0.293 0.263 -
Table 4.4.3.2: Simulation results for the Hypothesis 3: n = 41, 02 = 0.01
Approach OLS PWT PTBWLS NTBWLS
MSE(Bl) 0.0105 0.0039 0.0042 0.0032
BIAS(f1) | 9.37 x 107° | 1.16 x 107 | 6.69 x 1075 | 2.80 x 1076
VAR(Bl) 0.0104 0.0038 0.0041 0.0032
MSE(f,) | 3.36 x 10~ | 149 x 10~ [ 1.67 x 10~° | 1.51 x 10~
BIAS( 2) 5.60 x 1071 | 2.27 x 107 | 2.91 x 107! | 8.74 x 10712
VAR(f;) | 3.30 x 1072 | 1.49x 1077 | 1.67 x 107 | 1.51 x 107°
SRC 0.510 0.077 0.082 —
Skewness 0.388 0.251 0.282 —

4.5 Discussions

In this section, we discuss the simulation results for three Hypotheses established in Sec-
tion 4.1.

From the results of the simulation for Hypothesis 1, MSE(B) of PTB, PWT and PTB-
WLS were smaller than that of OLS for each situation, therefore it was confirmed that
these parametric transformation approaches improved performance of model parameters
estimation. In particular, it seemed that the smaller the sample size, the larger the im-
provements. In the same way, it seemed that the larger the error variance, the larger the
improvements. From the results of the error distribution at post-transformation, there
were no difference for the skewness between the approaches but SRCs were improved in
PWT and PTBWLS. it could be thought that the power-weighted transformation im-

proved heteroscedasticity of the error. In view of these results, it was showed that the

transformation approaches were superior to usual least square approach in the perfor-
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Table 4.4.3.3: Simulation results for the Hypothesis 3: n = 63, 02 = 0.01

Approach OLS PWT PTBWLS NTBWLS
MSE(5) 0.0065 0.0027 0.0031 0.0026
BIAS(Bl) 470 x 1075 | 1.07x 1076 | 4.32x 107 | 2.70 x 107°
VAR(f) 0.0064 0.0027 0.0030 0.0026
MSE(Bg) 1.80 x 1072 | 1.10 x 1072 | 1.25 x 107 | 1.04 x 107°
BIAS(G,) | 7.27 x 1071 | 4.99 x 10712 | 2.87 x 107 | 1.31 x 1072
VAR(3) | 1.73 x 1072 | 1.10 x 107 | 1.25 x 1072 | 1.04 x 107?
SRC 0.521 0.075 0.064 —
Skewness 0.438 0.190 0.217 -
Table 4.4.3.4: Simulation results for the Hypothesis 3: n = 29, o2 = 0.02
Approach OLS PWT PTBWLS NTBWLS
MSE(Bl) 0.0524 0.0206 0.0159 0.0135
BIAS((3,) | 4.26 x 107* | 273 x 107° | 2.18 x 107* | 6.35 x 1076
VAR( Al) 0.0520 0.0206 0.0158 0.0135
MSE(8;) | 1.50 x 1078 | 9.56 x 1072 | 7.66 x 102 | 7.07 x 10~°
BIAS((3;) | 2.62 x 1072 | 1.81 x 107'* | 1.00 x 107 | 2.93 x 10~
VAR( Ag) 1.50 x 1078 | 9.54 x 107 | 7.65 x 107 | 7.04 x 10~°
SRC 0.474 0.099 0.084 —
Skewness 0.436 0.327 0.299 -
Table 4.4.3.5: Simulation results for the Hypothesis 3: n = 41, 02 = 0.02
Approach OLS PWT PTBWLS NTBWLS
MSE(Bl) 0.0413 0.0179 0.0138 0.0124
BIAS(B;) | 1.27 x 107* | 5.66 x 107% | 2.27 x 1077 | 8.53 x 107°
VAR(Bl) 0.0411 0.0179 0.0138 0.0123
MSE(ﬁg) 1.32x 1078 | 6.40 x 1072 | 5.50 x 107% | 5.38 x 10~
BIAS( 2) 8.61 x 10711 | 1.78 x 10710 | 1.95 x 10711 | 1.51 x 107!
VAR((3) | 1.31 x107% | 6.22x107° | 548 x 1072 | 5.36 x 107°
SRC 0.522 0.081 0.084 —
Skewness 0.449 0.276 0.275 -
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Table 4.4.3.6: Simulation results for the Hypothesis 3: n = 63, 02 = 0.02

Approach OLS PWT PTBWLS NTBWLS
MSE(5) 0.0251 0.0089 0.0118 0.0077
BIAS(Bl) 6.37 x 107* | 3.85 x107® | 2.11 x 107* | 1.53 x 10~*
VAR(f) 0.0244 0.0088 0.0116 0.0076
MSE(BQ) 8.09x107% | 3.52x 1072 | 4.74 x 107° | 3.80 x 107?
BIAS(f;) | 4.68 x 10719 | 2.81 x 10713 | 2.02 x 10713 | 2.48 x 10~
VAR(f2) | 7.63 x 1072 | 352x 1077 | 474 x 1077 | 3.80 x 107°
SRC 0.529 0.068 0.071 —
Skewness 0.417 0.187 0.222 —
Table 4.4.3.7: Simulation results for the Hypothesis 3: n = 29, o2 = 0.03
Approach OLS PWT PTBWLS NTBWLS
MSE(6;) | 0.1281 0.0516 0.0420 0.0225
BIAS(Bl) 283 x107%| 793 x107° | 441 x10™* | 6.35 x 1076
VAR(Bl) 0.1252 0.0515 0.0416 0.0225
MSE(BQ) 474 x107% | 1.98x107® | 1.95x 107® | 1.68 x 1078
BIAS(3,) | 2.10 x 107° | 4.55 x 1010 | 6.43 x 10~* | 6.95 x 10~2
VAR( Ag) 453x107%| 1.93x107% | 1.95x107® | 1.68 x 1078
SRC 0.492 0.095 0.103 —
Skewness 0.416 0.330 0.244 -
Table 4.4.3.8: Simulation results for the Hypothesis 3: n = 41, o2 = 0.03
Approach OLS PWT PTBWLS NTBWLS
MSE(Bl) 0.0802 0.0343 0.0297 0.0236
BIAS(G) | 210x107* | 271 x 10~* | 550 x 10~° | 4.44 x 10~*
VAR(Bl) 0.0800 0.0342 0.0297 0.0232
MSE(ﬁg) 247 %1078 | 1.47x 1078 | 1.43 x107® | 1.20 x 1078
BIAS( 2) 478 x 10719 | 2,59 x 10710 | 3.43 x 10~ | 1.79 x 10710
VAR(fy) | 2.43 x 1078 | 144 x107% | 1.43x107% | 1.19 x 1078
SRC 0.518 0.083 0.083 —
Skewness 0.469 0.310 0.299 -
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Table 4.4.3.9: Simulation results for the Hypothesis 3: n = 63, 02 = 0.03

Approach OLS PWT PTBWLS NTBWLS
MSE(ﬁl) 0.0573 0.0232 0.0230 0.0234
BIAS(ﬁl) 1.44 x107% | 2.04x107% | 1.21 x107% | 7.68 x 10~*
VAR(ﬁl) 0.0572 0.0232 0.0230 0.0226
MSE(BQ) 1.87x107% | 875 x107° | 9.44 x 1072 | 8.75 x 107*
BIAS(ﬁg) 4.02x 10719 1 6.33 x 10719 [ 1.29 x 10719 | 2.41 x 1071
VAR(ﬁg) 1.83x107% | 8.12x107° | 931 x 1072 | 873 x 107*
SRC 0.518 0.072 0.063 —

Skewness 0.489 0.082 0.081 —
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mance for the model-parameter estimation in the case the error for a true non-linear
model was distributed non-normal with constant variance.

A

From the results of the simulation for Hypothesis 2, MSE(3) of PTB, PWT, PTBWLS
and NTBWLS were smaller than that of OLS for each situation. In addition, MSE(3)
of PTBWLS and NTBWLS were almost smaller than that of PTB and PWT. Also, the
results of PWT were superior to that of PTB. From the results of the error distribution at
post-transformation, the skewness and the SRCs were improved in PWT and PTBWLS.
There was a difference from the results of Hypothesis 1, because there were no difference
for the skewness between the approaches in the simulation of Hypothesis 1. it could be
thought that the power transform-both-sides and the power-weighted transformation im-
proved heteroscedasticity and non-normality of the error. For NTBWLS, in particular,

A

MSE(B) of NTBWLS was the smallest in the situation of small sample size and large

A

variance. Interestingly, however, the BIAS(3) of NTBWLS was larger than that of any
other parametric approaches but the VAR(B) of NTBWLS was smaller that of any other
approaches. It could be thought that NTBWLS provided a kind of “Biased Estimator”,
therefore it could provide a good estimation efficiency for the model parameters. In view

of these results, it was showed that PTBWLS and NTBWLS were superior to PTB and
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PWT in the performance for the model-parameter estimation in the case the error for a

true non-linear model was distributed non-normal with heteroscedasticity.

~

From the results of the simulation for Hypothesis 3, MSE(3) of PWT, PTBWLS and
NTBWLS were smaller than that of OLS for each sample size situation. For the setting
of the error variance of the simulation model, the larger the error variance, the larger the
improvements of PW'T, PTBWLS and NTBWLS compared to that of OLS. In compari-
son between the transformation approaches, MSE(B) were smaller in order of NTBWLS,
PTBWLS and PWT, in particular, it was clear in the situation of large variance. From
the results of the error distribution at post-transformation, the skewness and the SRCs
were improved in PWT and PTBWLS. These improvements were markedly larger than
the results of simulation of Hypothesis 1 and Hypothesis 2. In view of these results, NTB-
WLS improved the performance of estimation for model parameters more than PWT and

PTBWLS in the case the true transformation was not included in a power function family

and the error was distributed non-normal with heteroscedasticity.
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5. Conclusions and Further
Developments

In this paper, we attempted to examine some difficult points in the statistical inference
on a theoretical model. Especially we focused the statistical error that shows the gap be-
tween data and the model, we introduced and suggested some transformation approaches
to design the error of the theoretical model statistically. As a conventional paramet-
ric approach, we introduced the power transformation-both-sides approach (PTB) and
power-weighted transformation approach (PWT). PTB has an objective to improve het-
eroscedasticity and normality, and PWT improves heteroscedasticity for the error. We
could examine how minimizing the sum of squares in PTB. We confirmed that this min-
imizing was related to not only the heteroscedasticity of the error, but the skewness of
the error distribution. For the sum of squares in PTB, the first term corresponded to the
sum of squares in the PWT. In accordance with the result of those considerations, we sug-
gested the power transform-both-sides and weighted least square approach (PTBWLS).
PTBWLS was the extension of PTB model and involved two separate transformation pa-
rameters: one was the parameter to induce the normality of the error and the other was
to estimate an appropriate weight for stabilizing the error variance. A Taylor expansion
for the response around the predictive function in the second order gave us the outcome
for the first term corresponds to the sum of squares in the PWT and the second term
stands for the third moment corresponding to the skewness of the error distribution.
Since the choice of transformation was largely empirical it is important to consider
the sensitivity of the model parameters to the power transformation function. One prob-
lem with using parametric transformation was the difficulty in extending the parametric
transformation with only one parameter. Thus, it is not easy to assess the effect of more

flexible transformations on the regression parameters or on prediction intervals in PTB.
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Rather than to create more complicated transformations based on parametric expressions,
we believed that it is more efficient to consider a nonparametric method of determining
the transformation-both-sides function. Therefore, as an alternative to PTB, we proposed
a Nonparametric Transform-Both-sides (NTB) approach to express function transforma-
tion as a cubic spline curve. Further, as an estimation method which combines PTBWLS
with NTB together, we proposed a Nonparametric Transform-Both-sides and Weighted
Least Squares (NTBWLS) approach. NTBWLS was designed to implement both non-
parametric estimation of a transformation function and parametric estimation of a power
weighted transformation function.

In the investigation result of the conical model, the transformation approaches much
improved the heteroscedasticity and the non-normality of the error in a post-transformation
compared with that of OLS. It suggested that these transformation approaches are effec-
tive to fit a simple non-linear model for heteroscedastic data. From the results of Ricker
model and Beverton & Holt model, the transformation approaches much improved the
heteroscedasticity and the non-normality of the error distribution in a post-transformation
compared with that of OLS. Also, PWT, PTBWLS and NTBWLS improved them more
than PTB. The approach in which the absolute value of SRC was the smallest was NTB-
WLS, but the absolute values of skewness of the error distribution in PWT and PTBWLS
were smaller than that of NTBWLS. Furthermore, we conducted the outlier analysis by
excepting an observation and investigate the robustness of each estimator for the model
parameters. As a result, the difference of NTBWLS was smallest, so we were able to
consider that NTBWLS gave the most robust estimates for the model parameters. Next,
based on our case studies and numerical investigation of an example which include data
generated from a 1-compartment model, we concluded that NTBWLS was superior to the
other method in the situation of hardy heteroscedasticity and non-normality. NTBWLS
provided a robust estimator to make the smoothing parameter smaller because it reduced
the effect of the intensity of heteroscedasticity. In addition, we conducted the simulation
experiments to confirm a superiority of NTBWLS to other approaches.

In the result, it was showed that 1) the transformation approaches were superior to
usual least square approach in the performance for the model-parameter estimation in

the case the error for a true non-linear model was distributed non-normal with constant
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variance, 2) PTBWLS and NTBWLS were superior to PTB and PWT in the performance
for the model-parameter estimation in the case the error for a true non-linear model was
distributed non-normal with heteroscedasticity, 3) NTBWLS improved the performance
of estimation for model parameters more than PWT and PTBWLS in the case the true
transformation was not included in a power function family and the error was distributed
non-normal with heteroscedasticity.

The remaining problems for the future are 1) clarification of the roles played by
transform-both-sides and weighted transformation, 2) development of “Double Nonpara-
metric transformation”, which implements nonparametric estimation for the weighted-
transformation function, 3) to apply these transformation approaches to the empirical

models.
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Appendix: Consistency of parameter
estimates for transformation both
sides model

We briefly summarize the consistency of parameter estimates for transformation-both-
sides model using the example of PTB by reference to Hernandez and Johnson (1980). As
we discussed in section 2.1, based on the assumption of the error € and €p are distributed
as N(0,02) and N(0, 0%) respectively, log-likelihood equation is

N

d
Lp(B,0% X)) = ;(_%[HP(?M; A) = He{f(@n; 8), A}]*/o” + log — He (yn; M)
—%logJQ) + Cy (A1)

for the observations {(x,,y.), n = 1,2,..., N}, where Cj is a constant including the
coefficient of the probability density function. (A.1) is derived by supposing that there
exists a value of 6, 8, = (3, 09, \g) for which the distribution of Hp(Y’; o) is normal
with mean Hp[f(X;3,), \o] and standard deviation 0. Except for the log-normal case,
Hp(Y; Ag) cannot be normal for positive random variables. We now show the consequence
of maximizing the wrong log-likelihood function (A.1). Draper and Cox (1969) tried to
derive properties of \, but Hinkley (1975) found errors in their derivations that invalidate
some of their results. Moreover, Hinkley stated, under rather loose conditions, a theorem
giving the asymptotic normal distribution of 6,,. Theorem 1 gives uniformity conditions
under which 6, is strongly consistent and has an asymptotic normal distribution. We
first record some properties of the transformation Hp(Y; \).

Lemma 1: Define v : (0,00) X (—00,00) = (—00,00) as

o @ =1/ A#£0,
v(zA) = {logm A=0.
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Then (a) v(z,A) > 0if z > 1, and v(z,A\) < 0if 0 < = < 1; (b) v(+,-) is increasing
in both variables; (c) v(+,-) is convex in A for x > 1 and concave in A for z < 1; (d)
(0" /ON")u(z, ) is continuous in z and A, r > 1.
Let Lp(0]|X,,) be given by (A.1) and Lp(0|X) = Lp(0|X1).

Theorem 1. Suppose the parameter space ©, the true pdf h(-), and the log-likelihood

function (A.1) satisfy the following conditions:

(i) The parameter space O is a compact set defined as

@:{0:([3,0,)\)’ Bl<M, c<o<d, a<A<b

with oo<a<0<b,d,c,M<oo}. (A.2)

(ii) The true pdf h(-) is concentrated on (0, 00), and the moments E,(X?*) and E;(X??)

are finite.
(iii) En[Lp(@|X)] has a unique global maximum at 6.

Then the maximum likelihood estimator 6, is a strongly consistent estimator of 6, =

(B, 00, Ao)". Furthermore, if

(iv) 6@y is an interior point of O,

(v) Ex[Xlog(X)]? and E,[X"log(X)]? are finite,
(vi) En[VLp(0y|X)] = 0, where the column vector

VLp(6yX)= (w)ezeo)

00;

is the gradient of the log-likelihood function for
0' = (017 027 03) = (/67 g, )‘)7
(vii) E,[V2Lp(00|X)] is nonsingular, where

V2Lp(00|X) = (w)ezeo)

00,00,
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is the Hessian of the log-likelihood function, then
V(6. — 60) 5 N3 (0, VIWV),

where V = {E,[V2Lp(0,|X)]} " and W = E,{VLp(0,|X)[VLp(6y| X)]'}.
We indicate the method of proof and refer the reader to Hernandez and Johnson (1979)
or Hernandez (1978) for details.
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