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Abstract

All phenomena in the natural world occur as a consequence of intertwining of many factors

in the background. A system can be seen a kind of operator which gives a signal a certain

action in a certain target, and a function to create output from a kind of input. The func-

tion that relates the output to the input obtained by this formulation is called a model.

The theoretical model, which is built based on existing theories and knowledge, has devi-

ation from observed data because it does not consider the generation-mechanism of data.

A common approach to deal with errors is the power-transformation approach. For non-

linear regression models, we can use the Power Transform-Both-sides (PTB) approach.

This approach tries to achieve normality and homoscedasticity of the error by trans-

formation. However, it is difficult to achieve these two aims simultaneously by a power

transformation with one transformation parameter like PTB. In particular, PTB is insuffi-

cient to stabilize the error variance. Then, we suggested the Power Transform-Both-sides

and Weighted Least Squares (PTBWLS) approach that implements a power-weighted

transformation (PWT) to PTB. The most important problem of the above parametric

transformation approaches is that they are too sensitive to data. To tackle this prob-

lem we provided the Nonparametric Transform-Both-sides (NTB) approach, which uses

a cubic spline curve as a transformation function. The spline function in this approach

is identified by maximizing the penalized likelihood. Furthermore, combining PTBWLS

with NTB together, we proposed the Nonparametric Transform-Both-sides and Weighted

Least Squares (NTBWLS) approach. The NTBWLS is designed to implement both non-

parametric estimation of the transformation function and parametric estimation of the

power-weighted function. We conducted some case studies, a numerical investigation in

which data were generated from a 1-compartment model, and a couple of simulation

experiments. From these results, we concluded that NTBWLS is superior to the other

existing approaches in the situation where data have problematic heteroscedasticity and

non-normality.
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Notations

Notations Definitions and examples Remarks

General
Y = f(X;β) + ε Non-linear model
Y Response
yn The nth observation of response

X X = (X1, ..., Xp0)
T

Predictor vector xp The n× 1 vector of the pth predictor vector
(p = 1, 2, ..., p0)
with n observations

β β = (β1, ..., βI)
T I × 1 parameter vector

f(X;β) Non-linear function

ε Error
L(·) L(β,σ) Likelihood function

l(·) l(β,σ) Log-likelihood function

Distributions
N(·, ·) N(0, σ2) Normal distribution
PND(·, ·, ·) PND(λ,μ,σ2) Power normal distribution

E(·) E(Y ) Expectation
Var(·) Var(Y ) Variance

ψ Standard normal probability density function
Ψ Cumulative distribution function of ψ

PTB
HP(·, ·) HP(Y, λ) Power transformation function
λ Power transformation parameter

φ Power weighted parameter
εP Error on power transforming both-sides

NTB
HS(·) HS(u) Smooth transformation function

hS(·) hS(u) Log-derived function of HS(·)
J(·) J(HS(u)) Roughness penalty

ρ Smoothing parameter
LP(·) LP(β,σ, hS(u)) Penalized likelihood
lP(·) lP(β,σ, hS(u)) Penalized log-likelihood

HK(·) HK(t) Kernel function
g(·) g(u) Probability density function

w Band width
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Abbreviations

OLS Ordinary Least Squares

PTB Power Transformation-Both-sides

NTB Nonparametric Transformation-Both-sides

PWT Power-Weighted Transformation

PTBWLS Power Transformation-Both-sides and Weighted Least Squares

NTBWLS Nonparametric Transformation-Both-sides and Weighted Least Squares

SRC Spearman Rank Correlation
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1. Introduction

1.1 Background

All phenomena in the natural world occur as a consequence of intertwining of many

factors in the background. It is difficult individually to identify and to interpret all these

factors on the process of investigating the mechanism where the phenomena is generated.

Then, it is tried usually to assume or to remove only the main factor and to simplify

the phenomenon. The selection of the factor and the process of compression are included

there. As a result, even if the phenomenon will not be completely described, “Mechanism

(system)” of substitution that approximately simplifies the phenomenon is composed.

That is, in the science field, the system is composed by the representative characteristic

that controls a peculiar theory. A system can be seen a kind of operator which gives a

signal a certain action in a certain target, and a function to create output from a kind

of imput. That is, it is a process of conversion from the input to the output (Howard,

1963; Ohta et al., 1968; Goto et al., 1968a and 1968b). Therefore, it is substituted to

clarify the phenomena or the structure in the background by two signals of the process

of conversion in the system, that is, constructing the relation between the input and

the output. It is called “System identification” (Kume, 1971) and actually the system

is formulated by expressing it in the form of any functions for the relation between two

signals. The function that relates the output to the input obtained by this formulation

is called a model. That is, obtaining the model is intended with a system identification.

However, It is necessary for the output to predict or to control using the model in a

statistical science. It can be thought that the input is an explanation factor (variable)

to complicate the phenomena, and the output is a response (data) obtained by observing

the phenomena based on a statistical perspective. In this context, The model obtained
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by identifying the system will work as a tool of the prediction and the control in practice

by moving forward with a phased approach through the process of a statistical inference,

evaluation and diagnosis. However, it is more common that it is difficult to identify the

system. In this situation, it is either whether to obtain a principle experienced to achieve

the result of a priori inference on the theoretical research or repeat the phenomenological

observation by the experiment and the observation. In this paper, we focus on the former,

that is, a statistical inference on the theoretical model.

1.2 Objectives of our studies

Important objectives of regression analysis are ordinarily 1) the prediction of the response

variable with variability of the exploratory factors based on the model, 2) the control of

the response variable by handling the exploratory factors, and 3) the calibration of the

exploratory factors corresponding to controlling the response variable. We deal with the

theoretical model as the model which gives a relationship between the response and the

exploratory variables. The theoretical model is derived by the system based on a char-

acteristic theory in a science field, and has an almost of that complex and non-linear

structure. However, the theoretical model has the unbridgeable gaps between actual phe-

nomenon and the model because the theoretical model only approximates simplification

of the system even if composed exquisitely to adjust to a characteristic phenomenon the

theoretical model. Also, the theoretical model, which is built based on existing theo-

ries and knowledge, has deviation from observed data because it does not consider the

generation-mechanism of data (Goto, 1974; Goto and Daimon, 2000). That is, it is “Er-

ror” that shows the gap between data and the model to perform a big role in the inference

on theoretical model.

The objectives in this paper are to design the error of the theoretical model statisti-

cally, and to provide “Bridge” between the model and data. In other words, it is to satisfy

the symmetry of the error distribution (if possible, normality) and the homoscedasticity of

the error. A common approach to deal with errors is the power-transformation approach.

The power-transformation approach for a response has easiness of the interpretation and

2



flexibility of application as inclusion type of the log-transformation, so it exists as a typical

approach for an inference on the linear models (Box and Cox, 1964; Atkinson, 1985; Goto

et al., 1991). For non-linear regression models, we can use the Power Transform-Both-sides

(PTB) approach which has been proposed by Carroll and Ruppert (1984). This approach

is to transform both the response and predictive function (non-linear function expressed

by some predictors and parameters) while paying attention to the immutability of the

model before and after transformation. This approach tries to achieve normality and ho-

moscedasticity of the error by transformation. However, it is difficult to achieve these two

aims simultaneously by a power transformation with one transformation parameter like

PTB (Goto, Inoue and Tsuchiya, 1987：Goto, 1992, 1995：Goto, Isomura and Hamasaki,

2000). In particular, PTB is insufficient to stabilize the error variance (Carroll and Rup-

pert, 1988). Goto (1992) provides three types of double power-transformation approaches

and clarifies the assumptions and objectives of the transformations (see also Goto (1995)

and Goto et al.(2000)). The Double Power Weighted Transformation (DPWT) involves

two separate transformation parameters, namely, one is the parameter to induce the nor-

mality of the errors and the other is to estimate an appropriate weight which stabilizes

the error variance. Then, we suggest the Power Transform-Both-sides and Weighted Least

Squares (PTBWLS) approach as an analogy of DPWT. PTBWLS implements a power

weighted transformation (PWT) provided by Box and Hill (1974) to PTB.

The most important problem of the above parametric transformation approaches is

that they are too sensitive to data. To tackle this problem we provide the Nonparametric

Transform-Both-sides (NTB) approach, which uses a cubic spline curve as a transforma-

tion function. It has been discussed by Nychka and Ruppert (1995) and Ito and Goto

(2004). In the research of Ito and Goto (2004), we introduced NTB as an alternative

approach of the PTB, in the inference of theoretical models. As for the estimation of

the parameters in the theoretical models, we presented the method which represents the

function of one of the methods of the transformation by the cubic spline curve. From

the investigation of two examples, we suggested that the NTB could be an index for the

validation of the PTB and was more robust than PTB for outliers. Furthermore, we ver-

ified these results by three simulation experiments. In the methodology for fitting of the

empirical model, we introduced Alternating Conditional Expectation (ACE) provided by
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Breiman and Friedman (1985) and Additivity VAriance Stabilization (AVAS) provided

by Tibshirani (1988) as two nonparametric transformation approaches that optimize re-

lationship between the response and explanatory variables. We examined the validity

of the theoretical models by fitting the empirical models via ACE and AVAS to the ex-

ample data. As a result, both methods of ACE and AVAS improved the normality and

homoscedasticity of the error.

In NTB, the spline function is identified by maximizing the penalized likelihood.

Furthermore, combining PTBWLS with NTB together, we propose the Nonparametric

Transform-Both-sides and Weighted Least Squares (NTBWLS) approach. The NTBWLS

is designed to implement both nonparametric estimation of the transformation function

and parametric estimation of the power-weighted transformation function. In the research

of Ito and Goto (2006), through the numerical investigation of one example using data

generated from a non-linear model, we conclude that PTB and PTBWLS induce normally

distributed additive errors and stabilize the error variance, and NTBWLS improves the

degrees of normality and homoscedasticity of the error more than PTB and PTBWLS.

However, There were problems for the identification of the optimal nonparametric trans-

formation function in NTBWLS. In the estimation of the spline function, it is need to

choose a appropriate value for the smoothing parameter based on a given data. One

computationally intensive strategy is to estimate the smoothing parameter on the basis

of cross-validation. However, the idea of cross-validation is to optimize on predicting re-

sponses, which does not match to a primary objective of the nonparametric regression

(Sakamoto, 2007). In this paper, we use a maximizing marginal likelihood approach to

select the smoothing parameter. The smoothing parameter, which govern global nonlinear

regression structure, are estimated with the maximum marginal likelihood estimation, or

the empirical Bayes method.

1.3 Outline of datasets

In this section, we show some data of case studies used to investigate in later section.

[Data set No.1: Shortleaf pine data(N = 70): Bruce and Schumacher, 1935]
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The girth and to a lesser extent the height, are easily measured, but it is the volume of

usable timber that determines the value of a tree. The aim is therefore to find a formula for

predicting volume from the other two measurements. Table 1.1 contains 70 observations

on the volume in cubic feet of shortleaf pine, from Bruce and Schumacher (1935) together

with x1, the girth of each tree, that is, the diameter at breast height, in inches and x2,

the height of the tree in feet. Atkinson and Rinai (2000) suggests a conical model

f(x; β1) = β1x
2
1x2. (1.1)

They use PTB approach for fitting the conical model and calculate scoring test statistics

on the null hypothesis H0 : β1 = 0 in order to investigate a sensitivity for the estimates

of the model parameters. Finally, it is selected for power-transformation to handle log-

transforming as giving a good result.

[Data set No.2: Skeena salmon data(N = 70): Bruce and Schumacher, 1935]

Ricker and Smith (1975) give numbers of spawners and recruits from 1940 until 1967 for

the Skeena River sockeye salmon stock. Their data are given in Table 1.2. Let x denote

the number of spawning salmon in a given year and let y be the number of recruited

salmon associated with the same year. Ricker (1954) derived the theoretical deterministic

model

f(x;β) = β1x exp(−β2x) (1.2)

Ricker’s model is widely used for salmon stocks and appears to fit them well. This function

is taken to be the parametric regression function for the median of the distribution of

recruited salmon given a particular number of spawning fish. A scatter plot of these data

suggest that, although the Ricker model is a reasonable choice for the median response,

the variance of recruit salmon does not appear to be constant and the response is right

skewed. A second model was derived by Beverton and Holt (1957), namely

f (x;β) =
1

β1 + β2/x
, β1 ≥ 0, β2 ≥ 0. (1.3)

When fit to the same dataset, the Ricker and Beverton-Holt models are often similar over

the range of spawner values in the data, despite qualitatively different behavior as the
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Table 1.1: Shortleaf pine data
number volume (y) girth (x1) height (x2) number volume (y) girth (x1) height (x2)

1 4.6 33 2.2 36 11.0 71 25.8
2 4.4 38 2.0 37 11.1 81 32.8

3 5.0 40 3.0 38 11.2 91 35.4
4 5.1 49 4.3 39 11.5 66 26.0

5 5.1 37 3.0 40 11.7 65 29.0
6 5.2 41 2.9 41 12.0 72 30.2
7 5.2 41 3.5 42 12.2 66 28.2

8 5.5 39 3.4 43 12.2 72 32.4
9 5.5 50 5.0 44 12.5 90 41.3

10 5.6 69 7.2 45 12.9 88 45.2
11 5.9 58 6.4 46 13.0 63 31.5

12 5.9 50 5.6 47 13.1 69 37.8
13 7.5 45 7.7 48 13.1 65 31.6

14 7.6 51 10.3 49 13.4 73 43.1
15 7.6 49 8.0 50 13.8 69 36.5
16 7.8 59 12.1 51 13.8 77 43.3

17 8.0 56 11.1 52 14.3 64 41.3
18 8.1 86 16.8 53 14.3 77 58.9

19 8.4 59 13.6 54 14.6 91 65.6
20 8.6 78 16.6 55 14.8 90 59.3

21 8.9 93 20.2 56 14.9 68 41.4
22 9.1 65 17.0 57 15.1 96 61.5

23 9.2 67 17.7 58 15.2 91 66.7
24 9.3 76 19.4 59 15.2 97 68.2

25 9.3 64 17.1 60 15.3 95 73.2
26 9.8 71 23.9 61 15.4 89 65.9
27 9.9 72 22.0 62 15.7 73 55.5

28 9.9 79 23.1 63 15.9 99 73.6
29 9.9 69 22.6 64 16.0 90 65.9

30 10.1 71 22.0 65 16.8 90 71.4
31 10.2 80 27.0 66 17.8 91 80.2

32 10.2 82 27.0 67 18.3 96 93.8
33 10.3 81 27.4 68 18.3 100 97.9

34 10.4 75 25.2 69 19.4 94 107.0
35 10.6 75 25.5 70 23.4 104 163.5
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Table1.2: Skeena salmon data
Year Spawners (x) Recruits (y) Year Spawners (x) Recruits (y)
1940 963 2215 1954 511 1393
1941 572 1334 1955 87 363
1942 305 800 1956 370 668
1943 272 438 1957 448 2067
1944 824 3071 1958 819 644
1945 940 957 1959 799 1747
1946 486 934 1960 273 744
1947 307 971 1961 936 1087
1948 1066 2257 1962 558 1335
1949 480 1451 1963 597 1981
1950 393 686 1964 848 627
1951 176 127 1965 619 1099
1952 237 700 1966 397 1532
1953 700 1381 1967 616 2086

(Units are thousands of fish)

number of spawners increases to infinity.

[Data set No.3: Acetaminophen data(N = 13): Channer and Roberts, 1985]

Channer and Roberts (1985) studied the effect of delayed esophageal transit on the ab-

sorption of acetaminophen. Patients awaiting cardiac catheterization took a single 500-

milligram tablet containing acetaminophen and barium sulfate. Table 1.4 lists the average

plasma acetaminophen data obtained 6 hr after swallowing the tablet. The blood drug

concentration in the systematic circulation compartment (non-linear predictive function)

is

f (t;β) =
500K12

1(K12 −K20)
{exp(−K20t)− exp(−K12t)} , (1.4)

where t is the time following administration, 1 is the volume of distribution, K12 is the

first-order absorption rate constant, K20 is the first-order elimination rate constant and

β = ( 1, K12,K20)T. We generate random numbers for the parameter estimation of the 1-

compartment model in the example data. The goals are to assess how much each method

can improve non-normality and heteroscedasticity.
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Table1.3: Average plasma acetaminophen data
Time (min) Concentration (mg/l)

0 0
10 2.1
20 5.6
30 5.8
40 6.3
50 4.7
60 4.1
90 3.5
120 2.8
150 2.2
180 1.7
210 1.8
240 1.5
360 0.75
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2. Various Types of Approaches for
Inference on Models

In this chapter, we suggest some approaches for fitting theoretical models. First we in-

troduce the standard approaches. Then, we expand it to some parametric transformation

approaches. Next, as an alternative to the parametric approaches, we provide the two

nonparametric transformation approaches. Finally, we propose the semiparametric trans-

formation approach, which designed to implement both nonparametric estimation of the

transformation function and parametric estimation of the power-weighted transformation

function.

2.1 Inference on theoretical models

In general, a non-linear regression model can be expressed by

Y = f(X ;β) + ε, (2.1)

where X is the p0 × 1 predictor vector Xp (p = 1, 2, ..., p0), and f(X;β) is the known

function with the parameter βi (i = 1, 2, ..., I) (f(X;β) > 0), ε is the error to be normally

distributed with zero mean. Y is the positive response (random variable) corresponding

to f(X;β).

2.1.1 Standard approaches

We assume that the observations (xn, yn) (n = 1, 2, ..., N) are given. The ordinary least

squares (OLS) approach is often used by estimating β̂ regardless of the linearity of the

model. If we have b = (b1, ..., bI) as any estimate of β, we can set b which satisfied

SSE(b) =

NX
n=1

{yn − f(xn;b)}2 (2.2)
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and

∂SSE(b)

∂bi
= 0, i = 1, ..., I

as β̂OLS, then this is a least square estimate of β. The error is distributed as normal

in above assumption, so β̂OLS consists with the maximum likelihood estimate. It is usu-

ally calculated by Gauss-Newton algorithm based on approximation of Taylor expansion,

because f (X;β) is a non-linear function for β thus it is difficult that we derive β̂OLS

analytically.

Another standard approach is a maximum likelihood estimation method. In the model

(2.1), if the simultaneous distribution of the error is known, the maximum likelihood esti-

mate of β can be obtained by maximizing the likelihood function. As the error is assumed

normality here, the log-likelihood function for the observations (xn, yn) (n = 1, 2, ...,N )

is

L(β, σ) = −N
2
log σ2 − 1

2σ2

NX
n=1

{yn − f (xn;β)}2

= −N
2
log σ2 − 1

2σ2
SSE(β). (2.3)

The estimates β̂ and σ̂2 of β and σ2 respectively which maximize (2.3) are the maximum

likelihood estimates. Incidentally, under the fixed σ2, the β maximizing (2.3) consists

with the least square estimate β̂OLS. Then, we have the maximum likelihood estimate of

σ2

σ̂2 =
1

N
SSE(β̂) =

1

N

NX
n=1

{yn − f(xn; β̂)}2. (2.4)

In fact, β̂ can be obtained by calculating iterated based on Taylor expansion approxima-

tion. Under β0 is given as initial value (vector) of β, we have

0 =
∂

∂β
L(β)

¯̄̄
β=β̂

≈ ∂

∂β
L(β)

¯̄̄
β=β0

+
n ∂2

∂β∂βT
L(β)

¯̄̄
β=β0

o
(β̂ − β0)

by using Taylor expansion in the first order. So we can approximate as

β̂ ≈ β0 −
n ∂2

∂β∂βT
L(β)

¯̄̄
β=β0

o−1 ∂
∂β
L(β)

¯̄̄
β=β0

. (2.5)
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Newton-Raphson method iterates till we finish converging the parameter estimates by

updating with (2.5). In addition, it is easier and more stable as converging to calculate

second term of (2.5)

∂2

∂β∂βT
L(β)

¯̄̄
β=β0

directly than to calculate an expectation Fisher information

E
n ∂2

∂β∂βT
L(β)

¯̄̄
β=β0

o
=
n ∂

∂β
L(β)

¯̄̄
β=β0

o2
.

It is well known as Fisher’s scoring algorithm.

2.1.2 Power Transform-Both-sides approach

A power-transformation approach aims symmetry (or normality) of the error, homoscedas-

ticity of the error, additivity of the model and obtaining independent observations. In

(2.1), one way to give symmetry or homoscedasticity for the error is to power-transform

the response. The power transformation with parameter λ for variable t (t > 0) is

HP(t;λ) =

½
(tλ − 1)/λ λ 6= 0 ,
log t λ = 0 ,

and it is usually restricted to the response (Box and Cox, 1964). However, in transforming

only the response, there is a question about the implications of breaking the known

relationship between the response Y and the prediction function f (X;β). The natural

setting for this problem is to give identical power transformation for the response Y and

the prediction function f(X;β), namely, to use PTB approach. Therefore, for the model

(2.1), we have

HP(Y ;λ) = HP{f (X;β);λ}+ εP (2.6)

(Carroll and Ruppert, 1984). This handling aims to make the error variance constant and

normality. However, it is difficult to achieve normality and homoscedasticity of the error

after the transformation (Goto et al., 1987; Goto, 1992, 1995, 2000; Jimura and Goto,

1997).Goto (1992) provides three types of double power-transformation approaches and

clarifies the assumptions and objectives of the transformations (see also Goto (1995) and

Goto et al. (2000)). PTB aims to make the error variance constant, but leaves the error
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distribution unchanged. We assume that the error ε and εP are distributed as N(0, σ
2
n)

and N(0, σ2) respectively. In the framework of transform-both-sides, we can estimate

β,σ2 and λ, by maximizing the log-likelihood

LP(β, σ
2,λ) =

NX
n=1

³
−1
2
[HP(yn;λ)−HP{f(xn;β),λ}]2/σ2 + log

d

dt
HP(yn;λ)

−1
2
log σ2

´
+ C0 (2.7)

for the observations {(xn, yn), n = 1, 2, ..., N} (Carroll and Ruppert, 1984, 1988), where
C0 is a constant including the coefficient of the probability density function.

2.1.3 Power Weighted Transformation approach

PWT is presented here for obtaining approximate weights in a weighted least squares

analysis when the variance of the fitted dependent variable is a function of its expected

value. The method is applicable both for linear and non-linear least squares analysis, and

whether or not inhomogeneity of variance exists initially or is induced by transformation

of the data (Box and Hill, 1974). In the model (2.1), we assume that the error ε are

distributed as N(0, σ2n). The power weighted transformation function can be expressed as

HP(yn;φ) with power weighted parameter φ as well as PTB. The variance of HP(yn;φ) is

expressed as

V (HP(yn;φ)) = σ2. (2.8)

An approximate variance expression is now developed for Y using Bartlett’s method for

stabilizing variance. That is,

V (yn) ≈ V [Hp(yn;φ)][dyn/dHp(yn;φ)|yn=E(yn)]2

= V (yn)[E(yn)]
2−2φ

= σ2[f(xn;β)]
2−2φ. (2.9)

For the weight ωn = [f(xn;β)]
2−2φ, the variance can be expressed

V (
√
ωnyn) ≈ σ2.
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The unknown weighting parameter φ will be estimated here by maximizing a likelihood

estimate. The log-likelihood for observations {(xn, yn), n = 1, 2, ..., N} is

LW(β,σ
2,φ) =

NX
n=1

³
−ωn
2
[yn − f(xn;β)]2/σ2 −

1

2
log σ2 +

1

2
log ωn

´
+ C0. (2.10)

The maximum likelihood estimates β̂, σ̂2 and φ̂ of β, σ2 and φ can be obtained by maxi-

mizing the log-likelihood (2.10).

2.2 Inference on theoretical models based on the non-

parametric transformation

2.2.1 Transformation based on the smoothing spline function

NTB intends to adjustment for “roughness” of the nonparametric transformation function

and estimates the transform-both-sides function and then the parameters of the model.

That is, NTB substitutes a nonparametric transformation function for the power transfor-

mation function in PTB. We define a penalized likelihood similar to (2.7) in Section 2.1.2,

which includes a penalty term. The nonparametric transformation function HS(u), the

parameters β and the variance parameter σ2 are estimated by maximizing the penalized

likelihood, where HS(u) is a smooth function satisfying narrowly-defined monotonicity,

and it corresponds to the power transformation function HP(t;λ) of (2.6) in Section 2.1.2.

The penalized likelihood function can be written as

LN(β, σ
2, HS(u)) = −

1

2

h
Hs(yn)−Hs(f(xn;β))

i2
/σ2 + log

d

dt
Hs(yn) (2.11)

−1
2
log σ2 − ρ

2

X
J(HS(u)), ρ > 0,

where L(β,σ2, HS(u)) is the log-likelihood in the case of replacing HP(t;λ) of (2.6) by

HS(u), and J(HS(u)) is the roughness penalty defined by

J(HS) =

Z uU

uL

³d2hS(u)
du2

´2
du,

where uL and uU are chosen as {yn} ∈ [uL, uU], ρ is a constant to adjust the effect of the
roughness penalty on the penalized log-likelihood, called “smoothing parameter”, hS(u)

is a log derivative of HS(u), namely hS(u) = log(dHS(u)/du), and

HS(u) =

Z
exp[hS(u)]du,
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so HS(u) is strongly limited by the restriction of narrowly-defined monotonicity. We

estimate HS(u) and the parameters β by maximizing LN(β, σ2, HS(u)). See Nychka and

Ruppert (1995), Ito and Goto (2004) for more details on the estimation method of NTB.

2.2.2 Transformation based on the kernel function

Another method in the NTB approach is to use a kernel density estimator. The kernel

density estimation approach is a method of using the frequency of the observations of the

neighborhood of the respect to estimate the probability density function in any points.

Here, the kernel density estimation method is applied by using the transform function to

be a probability density function. The transform-both-sides model is

HK(Y ) = HK[f (X,β)] + σ2εK (2.12)

, where HK(t) is a smooth function, σ
2 is a error variance and εK is distributed a stan-

dard normal. We assume the following conditions: 1) HK(t) is strictly increasing and

2) HK(E(Y )) = 0. Condition 1) is needed because we want HK(t) to be invertible, so

the correspondence between Y and f (X,β) can be identified. Conditions 2) is needed

to ensure the uniqueness of the solution. It states that HK(t) passes through a fixed

point, (E(Y ), 0). We assume that guy, gu and gεK are the probability density functions of

(U, Y ), U and εK respectively, where U = f(X,β) and gεK is a standard normal density

function. Then, we can have

guy = gu(u)guy(u, y|u)

= gu(u)gε(ε).

We can also define εK = HK(ε), then

gεK(σ
2ε) = gεK [{HK(y)−HK(u)}/σ2]

dHK(y)

dy
/σ2

by using the transformation for the variables. Hence we have

dHK(y)

dy
/σ2 =

guy(u, y)

gu(u)gεK{[HK(y) −HK(u)]/σ2}
. (2.13)

Where u = y because gεK(0) = (2π)
−1/2, then

dHK(y)

dy
/σ2 = (2π)−1/2{guy(y, y)/gu(y)}. (2.14)
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So if we set H̃K(y) =
dHK(y)

dy
, we have

Z y

y0

H̃K(t)dt =

Z y

y0

guy(t, t)/{(2π)−
1
2gu(t)}dt

= B1HK(y) +B0 (2.15)

for the constant y0, where

B1 = 1/σ0, B0 =

Z E(Y )

y0

guy(t, t)/{(2π)−
1
2gu(t)}dt.

This suggests estimating HK(y) in the following way. The first step is to obtain a pre-

liminary n1/2−consistent estimator β̂ of β∗0. We then just replace Un = f (Xn,β) by

Vn = f(Xn, β̂) by setting β = β∗0 and giving the observations (xn, yn), n = 1, 2, ..., N .

Wang and Ruppert (1995) use the LAD estimator (denoted by βLAD) as the preliminary

estimator, β̂. Therefore, βLAD is n
1/2 consistent by a M-estimator argument. Note that

because of the structure of model (2.12), the consistency of the least squares estimator

will depend on the form of the unknown g. In model (2.12), f(Xn,β) is the conditional

median of Yn given Xn but is not the conditional mean (except for special g). Therefore

the least squares estimator is not in general consistent, so we prefer using βLAD to using

the least squares estimator.

2.3 Inference on theoretical models based on the semi-

parametric transformation

2.3.1 Power Transform-Both-sides and Weighted Least Squares
approach

In PTBWLS, we implement the power weighted transformation parameter for PTB.

In (2.6), we assume that the distribution of the response is non-normal and that by

transforming both sides, the response is distributed normally with inconstant variance

σ2n, n = 1, 2, ..., N . We attempt to attain homoscedasticity of the response after trans-

forming by implementing the power weighted transformation parameter φ. For the power

transformation HP(t;φ), using Bartlett’s methods (Bartlett, 1947), we have the first order
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approximation of the variance of HP(yn;λ)

V (HP(yn;λ)) ≈ V [HP(HP(yn;λ);φ)]
h dHP(yn;λ)

dHP(HP(yn;λ);φ)

¯̄̄
HP(yn;λ)=E[HP(yn;λ)]

i2
= V [HP(yn;λ)](E[HP(yn;λ)])

2−2φ

= V [HP(yn;λ)][HP(f(xn;β);λ)]
2−2φ.

For the weight ωn = [HP(f (xn;β);λ)]
2φ−2, the variance can be expressed

V [
√
ωnHP(yn;λ)] ≈ σ2.

The weighted parameter φ is chosen to make the variance constant using this rela-

tionship (Box and Hill, 1974). Therefore, the log-likelihood for observations {(xn, yn),
n = 1, 2, ..., N} is

LPW(β, σ
2,λ,φ) =

NX
n=1

³
−ωn
2
{HP(yn;λ)−HP[f (xn;β),λ]}2/σ2

+ log
d

dt
HP(yn;λ)−

1

2
log σ2 +

1

2
log ωn

´
+ C0. (2.16)

The maximum likelihood estimates β̂, σ̂2, λ̂ and φ̂ of β, σ2,λ and φ can be obtained by

maximizing the log-likelihood (2.16). In (2.7), if we have SPTB as the term for a sum of

squares in the log-likelihood, it can be written as

SPTB =

NX
n=1

[(yλn − fλn )/λ]2,

where fn = f(xn;β).Then, we have

SPTB ≈
NX
n=1

{fλ−1n (yn − fn) + 1/(2λ)[fλ−1n + λ(λ− 1)fλ−2n ](yn − fn)2}2

by Taylor expansion for yλn around fn in the second order. If we ignore the fourth order

term about (yn − fn), we have

SPTB ≈
NX
n=1

f2λ−2n (yn − fn)2 +
NX
n=1

f2λ−3n (fnλ
−1 + λ− 1)(yn − fn)3.

In this expression the first term
PN

n=1 ωn(yn − fn)2, corresponds to the sum of squares in
the power weighted transformation approach of Box and Hill (1974). Then, the second

term (yn − fn)3 stands for the third moment corresponding to the skewness of the error
distribution. So, we can examine how minimizing the sum of squares in PTB can correct

for not only the heteroscedasticity of the error, but the skewness of the error distribution.
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2.3.2 Nonparametric Transform-Both-sides and Weighted Least
Squares approach: brief overview

NTBWLS intends to estimate the transform-both-sides function, the parameters of the

model and the power weighted transformation parameter simultaneously based on a pe-

nalized likelihood. That is, NTBWLS substitutes nonparametric transformation function

for the power transformation function in PTBWLS. We define a penalized likelihood sim-

ilar to (2.16) in Section 2.3.1 with a penalty term. HS(u), β, φ and σ
2 are estimated by

maximizing the penalized likelihood. It can be written as

LNW(β,φ, σ
2,HS(u)) = L(β,φ, σ

2, HS(u))−
ρ

2
J(HS(u)), ρ > 0, (2.17)

where LNW(β,φ,σ
2, HS(u)) is the log-likelihood when we change HP(t;λ) in (2.16) to

HS(u). The maximum penalized likelihood estimates ĤS(u), β̂, σ̂2 and φ̂ of HS(u), β,

σ2 and φ can be obtained by maximizing (2.17). Practically, we obtain the estimates by

iterating over the next three steps:

(step 1) Under the fixed β and φ, estimate HS(u) maximizing LP(β, σ2, HS(u)).

(step 2) Under transformation of both sides by ĤS(u), estimate φmaximizing LP(β,φ,σ2, ĤS(u)).

(step 3) Under transformation of both sides by ĤS(u) and estimated φ̂, estimate β

maximizing LP(β, φ̂, σ
2, ĤS(u)).

This algorithm is performed under fixed smoothing parameter ρ. In this paper, we set

some smoothing parameter and examine the relation to homogeneity and normality of the

error variance after transforming. HS(u) is estimated by using a cubic smoothing spline.

We change (2.16) to a penalized likelihood relating to hS(u) and estimate the parameters

by using non-restrictive optimization. As the distribution of the response before and after

transformation is assumed to be no different, unlike PTBWLS, the penalized likelihood

is

LNW(β,φ, σ
2, hS(u)) =

1

2

NX
n=1

n
−
³
ωn

Z fn

yn

exphS(u)du
´2.

σ2 + 2hS(yn)− log σ2

+ log ωn

o
− ρ

2

Z uU

uL

³d2hS(u)
du2

´2
du+ C0, (2.18)

where yn (n = 1, 2, ..., N ) are observations of response, fn = f(xn;β), ωn are the weights

determined by φ: ωn = HS[f(xn;β)]
2φ−2.
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2.3.3 Estimation of the nonparametric transformation function

In order to optimize (2.18), the estimation of hS(u) is necessary. We estimate hS(u) by

using a weighted cubic smoothing spline. Then, under J ≥ 3, for any j (j = 1, 2, ..., J),
given (uj, Zj), we put

Zj = hS(uj) + νj,

where u1, ..., uJ are the points in [uL, uU], which satisfy uL < u1 < · · · < uJ < uU,and are
chosen to become {yn} ∈ [u1, uJ ]. In addition, the error νj is distributed N(0, 1/ηj) with
variance 1/ηj. Next, we define the two functional spaces: 1[uL, uU] is the function in

[uL, uU]. It is all of the functional space that is differentiable and absolutely continuous.

2[uL, uU] is the function in [uL, uU]. It is all of the functional space that has a continuous

second derivative. In this case, we define a penalized sum of squares

(hS(u)) =

JX
j=1

{Zj − hS(uj)}2ηj + ρ

Z uU

uL

³d2hS(u)
du2

´2
du, ρ > 0, (2.19)

where ηj is the weight. In addition, it is assumed that the estimation equation produces

on hS(u) that minimizes (hS(u)) in a set of all curves smooth enough, and 2[uL, uU]

is ĥS(u). In this case, ĥS(u) is the (natural) cubic spline with knots at uj (O’sullivan et

al.,1986).

We extend the maximizing penalized log-likelihood algorithm of Nychka and Ruppert(1995),

and build the algorithm with the power weighted transformation parameter and estimate

hS(u). In practice, on the basis of choosing u1, ..., uJ as including {yn} and {fn}, we
approximate {Zj} by the integral in the first term of (2.18), namely

ωn

Z fn

yn

exphS(u)du,

and we maximize the penalized log-likelihood. More specifically, we approximate (2.18)

by

LNW(σ
2, hS(u)) =

NX
n=1

h
−
n JX
j=1

Wnj exphS(uj)
o2.

2σ2 +
JX
j=1

ζnjhS(uj)
i

−ρ
2

Z uU

uL

³d2hS(u)
du2

´2
du,
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where, Wnj is the n × j component of the matrix, and¯̄̄
ωn

Z fn

yn

exp hS(u)du
¯̄̄
≈

JX
j=1

Wnj exp(hS(uj)).

In addition, ζnj is chosen so as to

hS(yn) ≈
JX
j=1

ζnjhS(uj).

If we set

hS = (hS(u1), ..., hS(uJ))
T,

d2hs(u)

du2
= (d2hS(u1)/du

2, ..., d2hS(uJ )/du
2)T,

the natural cubic spline hS(u) with knots u1, ..., uJ can be determined uniquely as hS. So

we rewrite (2.18) as

LNW(hS) = −
1

2
h∗TS Oh

∗
S + ζ

ThTS −
ρ

2
hTSKhS, (2.20)

where

h∗S = (exp[hS(u1)], ..., exp[hS(uJ )])
T, O =WTdiag(V )W ,

and W is the matrix with components Wnj, V is the N × N matrix with the diagonal

components Vnn = f(xn;β)
2−2φ with n = 1, 2, ..., N and furthermore other components

are 0.

ζ = (ζ1̇, ..., ζJ̇)
T. Then

ζj̇ =
NX
n=1

ζnj,

and K is the symmetric J × J matrix obtained by composing hS and
d2hs(u)

du2
. We

differentiate (2.20) partially by {hS(uj)}. Consequently, we obtain
∂LPA(hS(u))

∂hS(u)

¯̄̄
u=uj

= −hS(uj)[Oh∗S]j + ζj̇ − ρ[KhS]j = 0, j = 1, 2, ..., J. (2.21)

Further, {hS(uj)} can be obtained as satisfying (2.21). Thus, we can determine the

estimation equation of ĥS(u) uniquely. Finally, for the fixed parameter β, φ, σ
2, the

estimation algorithm of hS(u) is as follows:
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(step 1) determine the knots {uj} (j = 1, 2, ..., J).

(step 2) based on the fixed parameter β and φ, compute V andW .

(step 3) compute O and ζ.

(step 4) set hS0 = 0.

(step 5) based on hS0,O,ζ, computeZ = (Z1, Z2, ..., ZJ )T and the weight η = (η1, η2, ..., ηJ )T.

(step 6) based on hS0 and the weight {ηj}, {uj , Zj}, estimate the cubic spline hS1.

(step 7) set hS0 = ĥS1.

Step 1, step 2, step 3 and step 4 are initialization. For these values, we iterate step 5,

step 6 and step 7 till we finish converging as hS0 = ĥS1. As well, in step 6, we have the

weight {ηj}, the pairs of knots and working response {uj, Zj} by initial value hS0. These
values depend on Ojj and Dj and the process of calculation is as follows:

(pattern 1) Ojj = 0: If Ojj = 0, set Zj = Dj + hS0(uj) and ηj = 1.

(pattern 2) Ojj > 0 and Dj = 0: (2.20) can be written by

exp(2hS(uj))Ojj + exphS(uj)
JX

j 6=j0
Ojj0 exphS0(uj0) + ρ[KhS]j = 0,

where j = 1, 2, ..., J . First, at the second term, we conduct the diagonalization by

updating hS0(uj0) as S0 → S. Here, the Taylor-expansion can be used about hS0(uj)

in this linearization. Namely, for the first term in above equation, it can be written

by

exp(2hS(uj)) ≈ exp(2hS0(uj)){1 + 2(hS(uj)− hS0(uj))}.

For the second term, we alternate exphS(uj) by exphS0(uj). Hence we get the

approximate expression

exp(2hS0(uj)){1 + 2(hS(uj)− hS0(uj))}Ojj + exp hS0(uj)
JX

j 6=j0
Ojj0 exphS0(uj)

+ρ[KhS]j = 0.
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If we set h∗S(uj) ≡ exp hS(uj), we have

−2h∗S0(uj)2Ojj
³
− 1

2h∗S0(uj)Ojj
[OhS0(uj)]j + h

∗
S0(uj)− h∗S(uj)

´
+ ρ[KhS]j = 0.

Namely, we have

−2ηj(Zj − hS(uj)) + ρ[KhS]j = 0.

(pattern 3) Ojj > 0 and Dj > 0: (2.20) can be written by

exp(2hS(uj))
n
Ojj + exp(−hS(uj))

NX
j 6=j0

Ojj0 exp hS(uj)− exp(−2hS(uj))Dj
o

+ρ[KhS]j = 0.

In a similar way to (pattern 2), we conduct the linearization

−2Dj
³ −hS0(uj)[OhS0]j
2Dj + 1/2 + hS0(uj)

− hS(uj)
´
− ρ[KhS]j = 0.

As the above formula, we set ηj = Dj and the first term in the parenthesis on Zj .

As well, HS(u) can be expressed by indefinite integral exp[hS(u)], so in this paper, we

calculate this integral by trapezoid approximation.

2.3.4 Algorithms for identification of the weighted cubic smooth-
ing spline function

In the above section, we suggested the estimation algorithm of hS(u). This optimization

need to identify the weighted cubic smoothing spline function. Here we provide this

algorithm in detail suggested by Green and Silverman (1994). Define

hSj = hS(uj), γj =
d2hS(u)

du2

¯̄̄
u=uj

, j = 1, ..., J.

By the definition of a NCS (Natural Cubic Spline), γ1 = γN = 0. Also we set

hS = (hS1, ..., hSJ )
T,

γ = (γ2, ...,γJ−1)
T.
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The vectors hS and γ specify the curve hS completely, and it is possible to give explicit

formulae in terms of hS and γ for the value and derivatives of hS at any point.

The condition depends on two band matrices Q and R which we now define. Let vj =

uj+1 − uj for j = 1, ..., J − 1. Let Q be the J × (J − 2) matrix with entries qlj, for
j = 1, ..., J − 1 and l = 2, ..., J − 1, given by

ql−1,l = v
−1
l−1, qll = −v−1l−1 − v−1l , ql+1,l = v−1l

for l = 2, ..., j − 1, and qjl = 0 for |j − l| ≥ 2. The columns of Q are numbered in the

same non-standard way as the entries of γ, starting at l = 2, so that the top left element

of Q is q12. The symmetric matrix R is (J − 2) × (J − 2) with elements rjl, for j and l
running from 2 to (j − 1), given by

rjj =
1

3
(vj−1 + vj), j = 2, ..., J − 1

rj,j+1 = rj+1,j =
1

6
vj, j = 2, ..., J − 2

rjl = 0, |j − l| ≥ 2.

The matrix R is strictly diagonal dominant. Standard arguments in numerical linear

algebra show that R is strictly positive-definite. Also, we define the matrix Υ to be the

diagonal matrix with diagonal elements ηj . We can therefore define a matrix K by

K =Υ−1QR−1QT.

The vectors hS and γ specify a natural cubic spline hS if and only if the condition

QThS = Rγ (2.22)

is satisfied. If (2.22) is satisfied then the roughness penalty will satisfyZ b

a

{d
2hS(u)

du2
}2du = γTRγ = hTSKhS. (2.23)

ρhTSKhS is expressed as the roughness penalty. Also, for the observational vectors Z =

(Z1, ..., ZJ)
T, the residual sum of squares about hS can be writtenX

ηj{Zj − h(uj)}2 = (Z − hS)TΥ(Z − hS).
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Therefore we can rewrite (2.19) as

(hS) = (Z − hS)TΥ(Z − hS) + ρhTSKhS. (2.24)

Since ρK is non-negative definite, the matrix Υ + ρK is strictly positive definite. It

therefore follows that (2.24) has a unique minimum, obtained by setting

hS = (Υ+ ρK)−1ΥZ. (2.25)

To estimate hS efficiently, we use the algorithm proposed by Reinsch (1967). From (2.25),

we have

hS = Z − ρΥ−1QR−1QThS, (2.26)

and hence

hS = Z − ρΥQγ. (2.27)

As before, substituting QThS = Rγ we obtain, after some manipulation,

(R+ ρQTΥ−1Q)γ = QY . (2.28)

Because Υ is a strictly positive definite diagonal matrix, the matrix (R+ ρQTΥ−1Q) is

a band matrix with j = 2 and has a Cholesky decompositionLELTwhere, as before, L

is a lower diagonal band matrix with unit diagonal and E is a strictly positive diagonal

matrix. The resulting algorithm, all of whose steps can be performed in O(n) algebraic

operations, can now be set out.

Step 1. For j = 2, ..., J − 1, evaluate the vector QTZ. Where we can use

(QThS)k =
hj+1 − hj

vj
− hj − hj−1

vj−1
.

Step 2. Find the non-zero diagonals of R+ ρQTΥ−1Q, and its Cholesky decomposition

factors L and E.

Step 3. Write (2.28) as LELTγ = QTZ and solve this equation for γ by forward and

back substitution.

Step 4. From (2.26), use

hS = Z − ρQγ

to find hS.
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2.3.5 Selection of the smoothing parameter

Most nonparametric estimates of functions have a free parameter that controls the flexi-

bility of the resulting curve estimate. In this case, it is ρ, the relative weight given to the

roughness penalty over the log-likelihood. One practical issue is to choose an appropriate

value for this parameter when no a priori information is available about the smoothness

of the transformation. Because this is a non-linear estimate, previous work on smoothing

parameter or bandwidth selection does not apply. One computationally intensive strategy

is to estimate ρ on the basis of cross-validation. For a fixed value of ρ each data point is

omitted from the likelihood and hS,β and φ are estimated on the basis of the remaining

n − 1 data points. The log-likelihood based on these estimates is now evaluated at the
omitted data point. On the other hand, we hope that a good estimate of hS will yield

transformed residuals that are independent with constant variance. Thus any statistic

used to test for departures from these assumptions can be used to judge the suitability of

a particular value for ρ. However, the idea of cross-validation is to optimize on predicting

responses, which does not match to a primary objective of the nonparametric regression,

that is, to explore nonlinear regression structure. Moreover, a distance between response

variables might be difficult to take information on complicated regression structure into

account (Sakamoto, 2007). Nychka and Ruppert (1995) examined the heteroscedastic-

ity in the transformed residuals based on the Spearman rank correlation of the absolute

residuals with the predicted values. Relatively small values of this correlation may suggest

good choices for the smoothing parameter.

For (2.20), it can be also explained in the Bayesian context. The Bayesian justification

of penalized maximum likelihood is to place a prior density proportional to

exp
h
−ρ
2

Z uU

uL

³d2hS(u)
du2

´2
du
i

over the space of all smooth functions. The larger the value of ρ, the more weight is

put on functions with smaller roughness. With this prior, the posterior log density of

the function hS is then, in the regression context, equal to LPA as defined in (2.20)

above, and so the spline smoother ĥS is the posterior mode given the data (Green and

Silverman, 1994). Suppose that the prior density of hS is p(hS; ρ) ∝ exp[−ρ
2
hTSKhS].

Let the conditional density of Z for given β and hS be denoted by p(Z|β,hS,φ; σ2) =
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(2πσ2)−n/2 exp[−σ2

2
(Z−hS)TΥ(Z−hS)]. By using the Bayes theorem, the joint posterior

density of β,φ,hS is proportional to the joint density of Z, β,φ and hS:

p(β,hS,φ|Z, ρ; σ2) ∝ p(Z|β,hS;φ, σ2)p(β)p(hS, ρ). (2.29)

Hence obtaining the mode of the joint posterior density of β,hS is equivalent to maxi-

mizing the penalized log-likelihood.

Another procedure of selecting the smoothing parameters is to maximize the marginal

likelihood. The smoothing parameters, which govern global nonlinear regression structure,

are estimated with the maximum marginal likelihood estimation, or the empirical Bayes

method (Sakamoto, 2007). In the NTBWLS approach, We calculate hS, β, φ and ρ by

maximizing the marginal likelihood. Then the marginal density of Z becomes

p(Z;φ, ρ, σ2) =

Z
· · ·
Z
D

p(Z|β,hS;φ, σ2)p(β)p(hS; ρ)dβdhS

∝
Z
· · ·
Z
D

expLNW(β,hS;Z)dβdhS, (2.30)

where D = Rp+1 ×D1. We can consider (2.30) as a function of (φ, ρ, σ2), the marginal
likelihood of Z, and maximize it with respect to these parameters. Some approaches of

computing the marginal density of Z approximately have been discussed. In this paper,

we use a Laplace approximation approach which derive approximation forms without

using the integral because of its easy computation (Tierney and Kadane, 1986; Davison,

1986; Sakamoto, 2007).

Let θ = (βT,hTS )
T for simplicity of notation. We consider Taylor expansion of the

penalized log-likelihood LPA(θ;Z) around its maximum point, that is, the MPLEs θ̂.

Then we obtain the Laplace approximation

LPA(θ;Z) ≈ LPA(θ̂;Z)−
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂), (2.31)

where H(θ̂) is the negative Hessian of the penalized log-likelihood

H(θ̂) =
³
− ∂2LPA

∂θ∂θT

´
ˆθ
,

By substituting (2.31) into (2.30), an approximated marginal density of Z becomes

p(Z;φ,ρ,σ2) ≈ expLPA(θ̂;Z)

Z
· · ·
Z
D

exp
h1
2
(θ − θ̂)TH(θ̂)(θ − θ̂)

i
dθ

∝ |H(θ̂)|−1/2+ expLPA(θ̂;Z),
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where |H(θ̂)|+ is the product of non-zero eigenvalues of H(θ̂). Hence, we obtain an
approximated marginal log-likelihood

LM(φ, ρ, σ
2;Z) = LPA(θ̂;Z)−

1

2
log |H(θ̂)|+ + const., (2.32)

and we maximize (2.32) with respect to (φ, ρ, σ2) to obtain marginal maximum likelihood

estimates.
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3. Case studies and numerical
investigation

3.1 Case studies

3.1.1 Conical model

The girth and to a lesser extent the height, are easily measured, but it is the volume of

usable timber that determines the value of a tree. The aim is therefore to find a formula for

predicting volume from the other two measurements. Table 1.1 contains 70 observations

on the volume in cubic feet of shortleaf pine, from Bruce and Schumacher (1935) together

with x1, the girth of each tree, that is, the diameter at breast height, in inches and x2,

the height of the tree in feet. Atkinson and Rinani (2000) suggests a conical model

f(x; β1) = β1x
2
1x2. (3.1)

The trees are arranged in the table from small to large, so that one indication of a

systematic failure of a model would be the presence of anomalies relating to the smallest

or the largest observations. Atkinson and Riani (2000) uses a PTB approach with six

kinds of λ to investigate transformations for these data. Finally, they conclude that the

log transformation is supported by all the data. Table 1 shows the estimates of β, λ, φ,

ρ and L for each approach. Also, to evaluate skewness and heteroscedasticity of residuals

of predicted values, we calculated mean of absolute values of skewness for the error and

mean of absolute values of Spearman rank correlation between residuals and predicted

values in Table 1. The result of the estimates β̂1 of PTB, PWT, PTBWLS and NTBWLS

were almost the same excluding the estimates of OLS. From the result of the estimates λ̂

of PTB, it was near 0 and hence log transformation model was suggested as a transform-

both-sides model as well as the results of Atkinson and Riani (2000). For the results
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Table 3.1.1.1: Results for the estimates of parameters and the skewness and heteroscedas-
ticity of residuals of predicted values for each approach

Parameters OLS PTB PWT PTBWLS NTBWLS

β̂1 0.00298 0.00306 0.00306 0.00307 0.00306cSE(β̂1) 0.000014 0.000024 0.000024 0.000024 0.000024

λ̂ − 0.049 − −0.184 −cSE(λ̂) − 0.023 − 0.018 −
φ̂ − − 0.145 1.724 1.015cSE(φ̂) − − 0.021 0.093 0.076

log-likelihood −105.41 −64.75 −66.04 −64.43 −
ρ̂ − − − − 41.86
SRC 0.677 0.043 0.017 0.049 0.001

skewness 1.456 0.333 0.648 0.346 0.256

of log-likelihood estimates, the estimate of OLS was smaller than the estimates of other

approaches. SRC shows a Spearman rank correlation between residuals and predicted

values and skewness shows a degree of skew for the error distribution. That is, SRC and

skewness can be considered as the indicator for a heteroscedasticity and a normality of

the error. From the results of SRC, it is considered to have heteroscedasticity for the error

as there is the correlation of 0.677 in the result of OLS. The SRC of PWT, PTBWLS and

NTBWLS were smaller than the results of OLS, especially the results of NTBWLS was

near 0.

3.1.2 Ricker model and Beverton & Holt model

When managing a fishery, one must model the relationship between the size of the an-

nual spawning stock and its production of new catchable-sized fish, called recruits or

returns. There are several theoretical models relating recruits and spawners. These are

derived from simple assumptions about factors influencing the survival of juvenile fish.

All spawner-recruit models known to us are deterministic, i.e., the response Y is nonran-

dom given X, though Y itself can depend on stochastic variables. If the biological and

physical factors affecting fish survival were constant from year to year, then a determin-

istic model would be realistic since abundance of fish makes the law of large numbers

applicable. However, for most fish stocks these factors are far from constant. There has
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Figure 3.1.1.1: Estimated nonparametric transformation function in NTBWLS

Figure 3.1.1.2: Marginal log-likelihood estimates for each ρ value in NTBWLS
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Figure 3.1.1.3: Skewness for the error distribution of each ρ value in NTBWLS

Figure 3.1.1.4: Spearman rank correlation of each ρ value in NTBWLS
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been little work on stochastic models for recruitment , probably because the mechanisms

causing survival rates to vary are not well understood. It is common practice to take

a deterministic model relating Y and X and to assume multiplicative lognormal errors.

The transform-both-sides approach allows us to test this assumption, and to model the

errors empirically when the assumption seems unwarranted. Ricker (1954) derived the

theoretical deterministic model

f(x;β) = β1x exp(−β2x) (3.2)

In this model f(x;β) tends to 0 as x goes to 0, as would be expected in any realistic

model. Moreover, f(x;β) has a maximum at β−12 , provided β2 is strictly positive, and

f(x;β) tends to 0 as x goes to∞. The biological interpretation of this behavior is that as
the number of juveniles increases, increased competition and predation affect the survival

rate so drastically that the absolute number of juveniles reaching maturity decreases.

A second model was derived by Beverton and Holt (1957), namely

f (x;β) =
1

β1 + β2/x
, β1 ≥ 0, β2 ≥ 0. (3.3)

The Beverton-Holt model also has the characteristic that Y tends to 0 as x tend to 0, but

Y increases asymptotically to 1/β1 as Y tends to ∞. It is natural to think of 1/β1 as the
carrying capacity of the environment, the maximum number of recruits that the available

space, food and other resources can support. When fit to the same data set, the Ricker

and Beverton-Holt models are often similar over the range of spawner values in the data,

despite qualitatively different behavior as the number of spawners increases to infinity.

Ricker and Smith (1975) give numbers of spawners and recruits from 1940 until 1967

for the Skeena River sockeye salmon stock. The objectives here are the following two; 1)

to compare the results of OLS, PTB, PWT, PTBWLS and NTBWLS and to estimate

the performance of the model, 2) to confirm NTB corresponds PTB approximately when

the smoothing parameter ρ is set with large value. Table 3.1.2.1 shows the results of each

parameter. For β̂1 and β̂2, the standard error of PTB, PWT, PTBWLS and NTBWLS

were smaller than that of OLS. The both β̂1 and β̂2 of standard error of NTBWLS were

the smallest in all approaches. φ̂ in PWT and PTBWLS were estimated near 0. It

can be thought that these models have heteroscedasticity for the error and the variance
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Table 3.1.2.1: Results for the estimates of parameters and the skewness and heteroscedas-
ticity of residuals of predicted values for each approach

Parameters OLS PTB PWT PTBWLS NTBWLS

β̂1 3.79 3.29 3.24 3.19 2.76cSE(β̂1) 1.25 0.80 0.60 0.68 0.52

β̂2 0.00080 0.00070 0.00057 0.00058 0.00047cSE(β̂2) 0.00041 0.00033 0.00030 0.00033 0.00030

λ̂ − 0.314 − 0.735 −cSE(λ̂) − 0.021 − 0.107 −
φ̂ − − −0.041 0.019 1.167cSE(φ̂) − − 0.022 0.028 0.121

log-likelihood −190.27 −186.47 −185.88 −185.66 −
ρ̂ − − − − 0.00156
SRC 0.545 0.308 0.150 0.172 0.102

skewness 0.407 −0.328 −0.057 −0.068 −0.383

function distributed exponential function. From the results of SRC, it is considered to

have heteroscedasticity for the error as there is the correlation of about 0.5 in the result

of OLS. The SRC of PWT, PTBWLS and NTBWLS were smaller than the results of

OLS and PTB. This results shows that the heteroscedasticity for the error was improved

by weighted transformation with parameter φ in PWT, PTBWLS and NTBWLS. On

the other hand, From the results of skewness, the skewness of PWT and PTBWLS were

smaller than the results of OLS, PTB and NTBWLS. In NTBWLS, ρ̂ was estimated

0.00156, therefore the necessity of the transform-both-sides was suggested because it was

considerably small. Figure 3.1.2.1-3.1.2.3 show the results of estimated nonparametric

transformation function Ĥ(u) and the marginal log-likelihood estimates and skewness

for the error distribution when the value of ρ was gradually moved. The maximum

marginal log-likelihood estimate was 0.00156 and the minimum absolute value of skewness

was about 0.001, therefore it can be considered that to optimize a marginal likelihood

corresponds to optimize a symmetry of the error distribution. Figure 3.1.2.4 shows the

fitting plot of Ricker model by each approach. OLS, PTB and PTBWLS showed the

saturation of Y in case over X = 1, 200, but NTBWLS did not show such the saturations.

Carroll and Ruppert (1988) analyzed the skeena data with exception of one data. A

rockslide occurred in 1951 and severely reduced the number of recruits. So, we conduct
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Figure 3.1.2.1: Estimated nonparametric transformation function in NTBWLS

the outlier analysis by excepting an observation in 1951 as well and investigate the ro-

bustness of each estimator for the model parameters. Table 3.1.2.2 shows the results of

each parameter when we do not use an observation of year 1951. There were the decent

differences between full data and exception data for the parametric transformation ap-

proaches. The difference of NTBWLS was smallest, so we can consider that NTBWLS

gave the most robust estimates for the model parameters. Figure 3.1.2.4-3.1.2.6 show

the results of estimated nonparametric transformation function Ĥ(u) and the marginal

log-likelihood estimates and skewness for the error distribution when the value of ρ was

gradually moved. Figure 3.1.2.7 shows the fitting plot of Ricker model by each approach

with exception of an observation of year 1951. OLS, PTB and PTBWLS showed the

saturation of Y in case over X = 800 to X = 1, 000, but NTBWLS did not show such the

saturations.

3.2 Numerical investigation for 1-compartment model

Channer and Roberts (1985) studied the effect of delayed esophageal transit on the ab-

sorption of acetaminophen. Patients awaiting cardiac catheterization took a single 500-
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Figure 3.1.2.2: Marginal log-likelihood estimates for each ρ value in NTBWLS

Figure 3.1.2.3: Skewness for the error distribution for each ρ value in NTBWLS
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Figure 3.1.2.4: Fitting plot of Ricker model for each approach

Table 3.1.2.2: Results for the estimates of parameters and the skewness and heteroscedas-
ticity of residuals of predicted values for each approach (do not use an observation of year
1951)

Parameters OLS PTB PWT PTBWLS NTBWLS

β̂1 3.92 3.78 4.16 4.09 2.89cSE(β̂1) 1.33 0.80 0.39 0.45 0.72

β̂2 0.00085 0.00095 0.00096 0.00099 0.00062cSE(β̂2) 0.00042 0.00031 0.00017 0.00021 0.00035

λ̂ − −0.203 − 0.425 −cSE(λ̂) − 0.023 − 0.021 −
φ̂ − − −1.023 −2.015 1.007cSE(φ̂) − − 0.023 0.045 0.574

log-likelihood −183.61 −178.49 −177.52 −176.83 −
ρ̂ − − − − 0.00767
SRC 0.584 0.281 0.065 0.070 0.026

skewness 0.429 −0.467 0.202 −0.168 −0.868

35



Figure 3.1.2.5: Marginal log-likelihood estimates for each ρ value in NTBWLS (do not
use an observation of year 1951)

Figure 3.1.2.6: Skewness for the error distribution for each ρ value in NTBWLS (do not
use an observation of year 1951)
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Figure 3.1.2.7: Fitting plot of Ricker model for each approach (do not use an observation
of year 1951)

milligram tablet containing acetaminophen and barium sulfate. The blood drug concen-

tration in the systematic circulation compartment (non-linear predictive function) is

f (t;β) =
500K12

1(K12 −K20)
{exp(−K20t)− exp(−K12t)} , (3.4)

where t is the time following administration, 1 is the volume of distribution, K12 is the

first-order absorption rate constant, K20 is the first-order elimination rate constant and

β = ( 1, K12,K20)
T. We generate random numbers for the parameter estimation of the 1-

compartment model in the example data. The goals are to assess how much each method

can improve non-normality and heteroscedasticity. For the example data, the estimates

of ordinary least square (OLS) were 1 = 69.48, K12 = 0.0686, and K20 = 0.0084, then

we set these estimates as the true value in this numerical study. The number of time

points are set to 13 points like the example. In this situation, in order to generate data

with heteroscedasticity, in consideration of large variance of the blood drug concentration

near the time to attain maximum concentration (Tmax), we obtained simulated data as

follows. For t = 10, 20, 30, 40, 50 and 60, we generated 100 sets of random numbers to

distribute independent normally with mean “true value” and variance “0.4 or 0.6” about

each variance. For t = 90, 120, 150, 180, 210, 240 and 360, we generated 100 sets of random
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numbers to distribute independent normally with mean “true value” and variance “0.1”.

Namely, the variance of blood drug concentration for t = 10, 20, 30, 40, 50 and 60 is 4

times or 6 times of the variance of t = 90, 120, 150, 180, 210, 240 and 360. Data generated

by the above approach were fitted to the 1-compartment model by use of OLS, PTB,

PWT, PTBWLS and NTBWLS, and the approaches are assessed by the estimates of mean

square error. For the selection of smoothing parameter in NTBWLS, we selected based on

skewness and heteroscedasticity of residuals of predicted values. That is, we set ρ = 0.001

to ρ = 105 at decuple intervals and calculated mean of absolute values of skewness for the

error and mean of absolute values of Spearman rank correlation between residuals and

predicted values for each smoothing parameter, and we selected the smoothing parameter

whose skewness and correlation were the smallest. In the result, both of these statistics

were the smallest when the smoothing parameter was 0.01, so we selected it. As well,

the estimates of regression parameters did not converge for ρ < 0.001. Figure 1 shows

the results of mean square errors by use of each approach for each parameter of the 1-

compartment model in the case of σ2o = 0.4 and σ
2
o = 0.6. Table 1-3 show the squared

bias and the variance of the estimators for each mean square error, and Table 4 shows the

mean absolute values of skewness for the error and Spearman rank correlation between

residuals and predicted values for each approach.

From the results of 1, the MSE of NTBWLS was the smallest. In the case of σ2o = 0.6,

the MSE of PWT, PTBWLS and NTBWLS was particularly smaller than the MSE of

OLS and PTB. This suggested that performance of the power weighted transformation was

high. Next, from results of the first-order absorption rate constant K12, the results of all

methods were similar all in the case of σ2o = 0.4, but the MSE of PTB, PWT, PTBWLS

and NTBWLS were smaller than the MSE of OLS in the case of σ2o = 0.6. From the

results of the first-order elimination rate constant K20, the MSE was decreasing in order

of NTBWLS, PTBWLS, PWT, PTB, OLS. Also, from the results of the squared bias and

variance of the estimators in Table 1-3, the variance of all estimators were decreasing in

order of NTBWLS, PTBWLS, PTB, OLS. Finally, from the results of the skewness for

the error and the Spearman rank correlation between residuals and predicted values in

Table 4, these statistics were improved in order of NTBWLS, PTBWLS, PTB, OLS.
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Figure 3.2.1: Results of MSE for each parameter of 1-compartment model based on 100
times of simulation study
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Table 3.2.1: Results of the squared bias and variance of the estimators for the volume of
distribution (E[ 1])

approach σ20 = 0.4 σ20 = 0.6
bias variance bias variance

OLS 0.001 18.04 0.38 36.09
PTB 0.02 18.72 0.63 35.02

PTBWLS 0.09 15.97 0.94 21.87
NTBWLS(ρ =∞) 0.04 11.67 0.06 21.16
NTBWLS(ρ = 1) 0.11 13.51 0.42 11.18
NTBWLS(ρ = 0.01) 0.31 6.44 0.14 8.81

Table 3.2.2: Results of the squared bias and variance of the estimators for the first-order
absorption rate constant (E[K12])

approach σ20 = 0.4 σ20 = 0.6
bias variance bias variance

OLS 4.20× 10−7 1.13× 10−4 8.64× 10−5 3.67× 10−3
PTB 3.79× 10−7 1.15× 10−4 7.40× 10−8 2.59× 10−4

PTBWLS 7.74× 10−9 1.21× 10−4 9.29× 10−6 2.13× 10−4
NTBWLS(ρ =∞) 7.11× 10−8 9.98× 10−5 9.49× 10−6 3.49× 10−4
NTBWLS(ρ = 1) 1.26× 10−6 1.24× 10−4 3.36× 10−5 2.08× 10−4
NTBWLS(ρ = 0.01) 4.50× 10−7 8.86× 10−5 2.54× 10−5 1.93× 10−4

Table 3.2.3: Results of the squared bias and variance of the estimators for the first-order
elimination rate constant (E[K20])

approach σ20 = 0.4 σ20 = 0.6
bias variance bias variance

OLS 1.44× 10−10 3.58× 10−7 1.25× 10−10 7.61× 10−7
PTB 2.31× 10−10 3.50× 10−7 2.93× 10−8 6.47× 10−7

PTBWLS 2.56× 10−10 3.92× 10−7 9.53× 10−9 4.08× 10−7
NTBWLS(ρ =∞) 2.18× 10−9 4.28× 10−7 1.60× 10−9 4.65× 10−7
NTBWLS(ρ = 1) 1.67× 10−8 3.13× 10−7 5.27× 10−8 2.40× 10−7
NTBWLS(ρ = 0.01) 4.98× 10−9 1.67× 10−7 3.69× 10−8 1.66× 10−7
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Table 3.2.4: Results of the mean absolute values of skewness for the error and Spearman
rank correlation between residuals and predicted values for each approach

approach σ20 = 0.4 σ20 = 0.6
skewness rank correlation skewness rank correlation

OLS 8.39× 10−2 0.264 2.23× 10−2 0.504
PTB 1.04× 10−2 0.053 9.36× 10−2 0.037

PTBWLS 1.41× 10−2 0.019 1.39× 10−2 0.048
NTBWLS(ρ =∞) 2.64× 10−2 0.022 2.09× 10−2 0.035
NTBWLS(ρ = 1) 5.56× 10−3 0.015 1.27× 10−2 0.023
NTBWLS(ρ = 0.01) 1.04× 10−2 0.032 1.01× 10−2 0.029

3.3 Discussions

In the investigation result of the conical model, the transformation approaches (PTB,

PWT, PTBWLS and NTBWLS) much improved the heteroscedasticity and the non-

normality of the error in a post-transformation compared with that of OLS. It suggested

that these transformation approaches are effective to fit a simple non-linear model for

heteroscedastic data. The estimate of power-parameter of PTB was near 0. It suggested

that log-transformation was selected as the optimal transformation function and it corre-

sponded with the conclusion of Atkinson & Riani (2000). The result of SRC for NTBWLS

was near 0 and it showed that NTBWLS was best transformation as the variance sta-

bilization. However, the estimates of model parameter were nearly same between these

transformation approaches. It suggested that PTB or PWT were enough to improve

heteroscedasticity of the error in this data.

From the results of Ricker model and Beverton & Holt model, the transformation

approaches (PTB, PWT, PTBWLS and NTBWLS) much improved the heteroscedastic-

ity and the non-normality of the error in a post-transformation compared with that of

OLS. Also, PWT, PTBWLS and NTBWLS improved them more than PTB. It probably

means that the power-weighted transformation was more appropriate than the both-sides

transformation for the Skeena salmon data. The approach in which the absolute value

of SRC was the smallest was NTBWLS, but the absolute values of skewness of the er-

ror distribution in PWT and PTBWLS were smaller than that of NTBWLS. We should

discuss which approaches are superior in the performance of parameter estimation in the
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simulation experiments in Section 4.

In the numerical investigation based on 1-compartment model, the results suggested

that performance of NTBWLS was high. From the results of the variance of all estimators

were decreasing in order of NTBWLS, PTBWLS, PTB, OLS. Therefore, we concluded

that NTBWLS is superior to the other method in the situation of hardy heteroscedasticity

and provides a robust estimator to make the smoothing parameter smaller because it

reduces the effect of the intensity of heteroscedasticity. 　
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4. Simulation

4.1 Motivations and Objectives

The following hypotheses can be established from the results of case studies:

Hypothesis 1: In the case the error for a true non-linear model is distributed non-normal

with constant variance, the transformation approaches are superior to usual least square

approach in the performance for the model-parameter estimation.

Hypothesis 2: Based on the Hypothesis 1, in the case the error for a true non-linear model

is distributed non-normal with heteroscedasticity, PTBWLS and NTBWLS are superior

to PTB and PWT in the performance for the model-parameter estimation.

Hypothesis 3: Based on the Hypothesis 2, in the case the true transformation is not

included in a power function family and the error is distributed non-normal with het-

eroscedasticity, a optimal smoothing parameter estimate in NTBWLS does not diverge

but give certain value and NTBWLS improves the performance of estimation for model

parameters more than PTB, PWT and PTBWLS.

To confirm Hypothesis 1, we build the model which is distributed normal with con-

stant variance in the case the both sides of model is log-transformed. That is, a log-

transformation is assumed as the true variance stabilization transformation. To confirm

Hypothesis 2, we generate a non-constant variance by using the variance function that

is proportional to the predictor in the model of Hypothesis 1. In the investigation for

Hypothesis 3, we use a complicated function as a true transformation function in place of
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a log-transformation in case of Hypothesis 2.

4.2 Designs

4.2.1 Simulation design for Hypothesis 1

As the simulation model, we set

f (x;β) = xβ1 exp(−β2x), (4.1)

and consider about the nonparametric transform-both-sides model

HN(y) = HN{f(x;β)}+ εN. (4.2)

Where, εN is distributed N(0, σ2). For the model (4.2), we give a transformation function

H1(u) = log(u). (4.3)

The true transformation function in the model (4.2) is a log-transformation and it is

included in a power-transformation family. That is, the true value for a smoothing pa-

rameter is ρ → ∞ in NTB. The simulation model obtained from (4.2) and (4.3) is as

follows:

Y = [β1x exp(−β2x)] exp(εN). (4.4)

We set β1 = 3，β2 = 0.0008 as the true values for the model parameters β1 and β2. This

is based on the presumption result of case study for the Ricker model in Section 3.2.2.

The observable range for predictor variable x is 0 < x < 1, 000. We provide the sample

size and the error variance as simulation factors with three kinds of levels that influence

the results.

4.2.2 Simulation design for Hypothesis 2

The model (4.1) is assumed to be a potential model as well as Hypothesis 1．However, we

provide the heteroscedastic variance for the error. We set that εN is distributed N(0, σ2n)

as the error, where σ2n is proportional to the predictor variable x. In this situation, there

are not only the heteroscesasticity of the error variance, but the non-normality of the error
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distribution. We set β1 = 3，β2 = 0.0008 as the true values for the model parameters β1

and β2 and the acceptable observation range for predictor variable x is 0 < x < 1, 000 as

well as the case of Hypothesis 1.

4.2.3 Simulation design for Hypothesis 3

In setting Hypothesis 3, (4.1) is assumed to be a potential model as well as Hypothesis

2．In order to have the model that the true transformation function is not included in a

power-transformation family, we set the true transformation function as follows:

H2(u) = log(u/
√
X). (4.5)

Where, εN is distributed N(0, σ2n). In the context of NTBWLS approach, there is a

certain ρ0 and HN(u; ρ0) = H2(u). From (4.1) and (4.5), the simulation model is obtained

as follows:

Y = [β1x exp(−β2x)] exp(
√
xεN). (4.6)

Other settings are same as the Hypothesis 1 and Hypothesis 2.

4.3 Generating simulation data

For the all combinations of simulation factors that provide in Hypothesis 1, we generated

the N uniform random numbers defined on [0, 1, 000] and the N normal random numbers

distributed N(0, σ2). In case that Hypothesis 2 and Hypothesis 3, we generated the

N uniform random numbers defined on [0, 1, 000] and the N normal random numbers

distributed N(0,σ2x). It was replicated 1,000 times. We conducted the Bartlett test for

a homoscedasticity to set the meaningful sample size to target heteroscedasticity of the

error variance. That is, in the situation of Hypothesis 1, we divided into two datasets as

group A (0 < X < 500) and group B (500 < X < 1, 000) and for the variance σ2A and σ
2
B

of group A and group B, in case that we test the null hypothesis H0 : σ
2
A = σ2B against

the alternative hypothesis H1 : σ
2
A 6= σ2B with a 0.05 two-sided significance level and the

error variance σ2 = 0.02, then the sample size was N = 29 with the power 0.80, N = 41

with the power 0.90 and N = 63 with the power 0.95. Therefore, the sample size was set
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as N = 29, 41, 63 and the error variance was set as σ2 = 0.01, 0.02, 0.03 in the simulation

to conduct the significant simulation experiments. The sample size in the investigation

of Hypothesis 2 and Hypothesis 3 were same as Hypothesis 1 in view of a comparability.

The OLS, PTB, PWT, PTBWLS and NTBWLS were applied for the inference on a

simulation model to the data generated based on above setting, and mean square error of

β̂1 [MSE(β̂1)], β̂2 [MSE(β̂2)] and the results of resolving these the variance and the bias

[VAR(β̂1),BIAS(β̂1) and VAR(β̂2),BIAS(β̂2)] were calculated for each approach. And,

to assess the normality and homoscedasticity of the error after the transformation, the

mean absolute values of skewness for the error (Skewness) and Spearman rank correlation

between residuals and predicted values (SRC) were calculated. For the Hypothesis 1, we

included the true simulation model as the contrast of each approach.

4.4 Results and Interpretations

4.4.1 Result and Interpretation from Simulation of Hypothesis 1

Table 4.4.1.1 to Table 4.4.1.3 show the results of the simulation for Hypothesis 1 in case

that sample size was n = 29 and for σ2 = 0.01, σ2 = 0.02 and σ2 = 0.03, respectively.

From the results in case that the sample size is small (Table 4.4.1.1 to Table 4.4.1.3), All

transformation approaches were superior to OLS in terms of the mean square errors. In

addition, in the situation of the larger variance, the greater those differences. It may be

shown that the transformation approaches caught the structure of the true model (that

is, log-transformational model) as compare to OLS approach. In a view of the error

distribution, the transformation approaches improved SRC better than that of OLS, but

the improving of the skewness was not showed in any transformation approaches. It seems

the natural result because we did not give the skewness for the error distribution of the

true model but give the heteroscedasticity of that intentionally. In particular, in case of

σ2 = 0.03, we can find that the MSE of PWT and that of PTBWLS were smaller than OLS

and PTB. It can be thought that the power-weighted transformation approach improves a

hardy heteroscedasticity as compare to the transformation-both-sides approach. For the

situation of the larger sample size n = 41 and n = 63 (Table 4.4.1.4 to Table 4.4.1.9), it

seems that we can give the same interpretations as Table 4.4.1.1 to Table 4.4.1.3.
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Table 4.4.1.1: Simulation results for the Hypothesis 1: n = 29, σ2 = 0.01
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0044 0.0037 0.0036 0.0037 0.0031

BIAS(β̂1) 2.62× 10−8 2.03× 10−6 6.12× 10−6 6.92× 10−5 1.18× 10−5
VAR(β̂1) 0.0044 0.0037 0.0036 0.0037 0.0030

MSE(β̂2) 8.78× 10−10 8.98× 10−10 8.28× 10−10 7.95× 10−10 7.39× 10−10
BIAS(β̂2) 2.07× 10−11 5.56× 10−12 1.01× 10−12 4.63× 10−12 1.85× 10−12
VAR(β̂2) 8.57× 10−10 8.93× 10−10 8.27× 10−10 7.91× 10−10 7.37× 10−10
SRC 0.180 0.192 0.092 0.121 0.373

Skewness 0.288 0.302 0.311 0.369 0.141

Table 4.4.1.2: Simulation results for the Hypothesis 1: n = 29, σ2 = 0.02
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0166 0.0109 0.0166 0.0127 0.0099

BIAS(β̂1) 3.67× 10−4 1.28× 10−5 3.33× 10−5 4.91× 10−6 3.73× 10−6
VAR(β̂1) 0.0162 0.0109 0.0160 0.0127 0.0099

MSE(β̂2) 4.32× 10−9 2.68× 10−9 3.66× 10−9 2.75× 10−9 2.70× 10−9
BIAS(β̂2) 1.67× 10−11 3.19× 10−13 5.01× 10−11 4.00× 10−13 3.74× 10−12
VAR(β̂2) 4.30× 10−9 2.68× 10−9 3.66× 10−9 2.75× 10−9 2.70× 10−9
SRC 0.178 0.149 0.110 0.101 0.386

Skewness 0.337 0.359 0.338 0.286 0.159

Table 4.4.1.3: Simulation results for the Hypothesis 1: n = 29, σ2 = 0.03
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0321 0.0318 0.0263 0.0274 0.0252

BIAS(β̂1) 6.18× 10−4 1.05× 10−4 4.56× 10−4 2.83× 10−4 3.00× 10−4
VAR(β̂1) 0.0315 0.0317 0.0258 0.0272 0.0249

MSE(β̂2) 8.08× 10−9 7.31× 10−9 6.37× 10−9 5.34× 10−9 5.47× 10−9
BIAS(β̂2) 2.01× 10−10 2.72× 10−11 6.02× 10−11 1.66× 10−11 7.37× 10−11
VAR(β̂2) 7.88× 10−9 7.28× 10−9 6.31× 10−9 5.32× 10−9 5.39× 10−9
SRC 0.169 0.155 0.089 0.301

Skewness 0.345 0.421 0.301 0.364 0.130
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Table 4.4.1.4: Simulation results for the Hypothesis 1: n = 41, σ2 = 0.01
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0020 0.0021 0.0016 0.0019 0.0019

BIAS(β̂1) 7.39× 10−6 6.03× 10−5 5.31× 10−5 7.18× 10−5 3.87× 10−5
VAR(β̂1) 0.0020 0.0021 0.0015 0.0019 0.0018

MSE(β̂2) 5.57× 10−10 5.64× 10−10 4.00× 10−10 5.40× 10−10 4.70× 10−10
BIAS(β̂2) 9.72× 10−12 1.77× 10−11 1.45× 10−11 7.84× 10−12 7.95× 10−12
VAR(β̂2) 5.47× 10−10 5.46× 10−10 3.85× 10−10 5.32× 10−10 4.62× 10−10
SRC 0.189 0.156 0.087 0.114 0.298

Skewness 0.261 0.284 0.279 0.289 0.128

Table 4.4.1.5: Simulation results for the Hypothesis 1: n = 41, σ2 = 0.02
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0090 0.0076 0.0076 0.0078 0.0076

BIAS(β̂1) 9.79× 10−5 6.64× 10−6 8.14× 10−5 4.11× 10−5 3.29× 10−5
VAR(β̂1) 0.0089 0.0076 0.0075 0.0077 0.0075

MSE(β̂2) 2.30× 10−9 1.75× 10−9 1.92× 10−9 1.82× 10−9 1.51× 10−9
BIAS(β̂2) 1.64× 10−11 1.57× 10−11 6.04× 10−12 1.91× 10−11 3.83× 10−12
VAR(β̂2) 2.28× 10−9 1.74× 10−9 1.91× 10−9 1.80× 10−9 1.50× 10−9
SRC 0.155 0.136 0.088 0.098 0.167

Skewness 0.339 0.295 0.297 0.342 0.130

Table 4.4.1.6: Simulation results for the Hypothesis 1: n = 41, σ2 = 0.03
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0225 0.0216 0.0192 0.0164 0.0112

BIAS(β̂1) 2.34× 10−3 6.96× 10−7 1.20× 10−4 8.31× 10−4 1.31× 10−4
VAR(β̂1) 0.0201 0.0216 0.0191 0.0156 0.0111

MSE(β̂2) 5.22× 10−9 4.97× 10−9 5.18× 10−9 4.01× 10−9 3.70× 10−9
BIAS(β̂2) 3.62× 10−10 2.05× 10−13 3.18× 10−13 1.65× 10−10 1.21× 10−13
VAR(β̂2) 4.86× 10−9 4.97× 10−9 5.18× 10−9 3.84× 10−9 3.69× 10−9
SRC 0.158 0.142 0.079 0.092 0.147

Skewness 0.317 0.304 0.324 0.292 0.123
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Table 4.4.1.7: Simulation results for the Hypothesis 1: n = 63, σ2 = 0.01
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0016 0.0013 0.0009 0.0013 0.0012

BIAS(β̂1) 1.96× 10−5 4.69× 10−10 1.30× 10−5 3.72× 10−5 1.14× 10−7
VAR(β̂1) 0.0016 0.0013 0.0009 0.0012 0.0012

MSE(β̂2) 3.36× 10−10 3.34× 10−10 2.57× 10−10 3.19× 10−10 2.88× 10−10
BIAS(β̂2) 7.02× 10−12 2.93× 10−13 2.95× 10−12 1.08× 10−11 9.00× 10−14
VAR(β̂2) 3.29× 10−10 3.34× 10−10 2.54× 10−10 3.08× 10−10 2.88× 10−10
SRC 0.146 0.154 0.065 0.100 0.242

Skewness 0.228 0.247 0.243 0.239 0.097

Table 4.4.1.8: Simulation results for the Hypothesis 1: n = 63, σ2 = 0.02
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0059 0.0046 0.0052 0.0054 0.0053

BIAS(β̂1) 8.32× 10−6 3.30× 10−6 1.96× 10−5 5.86× 10−4 3.35× 10−5
VAR(β̂1) 0.0059 0.0046 0.0052 0.0048 0.0052

MSE(β̂2) 1.88× 10−9 1.15× 10−9 1.32× 10−9 1.27× 10−9 1.26× 10−9
BIAS(β̂2) 2.69× 10−11 6.28× 10−12 7.74× 10−12 7.69× 10−11 1.05× 10−12
VAR(β̂2) 1.85× 10−9 1.14× 10−9 1.31× 10−9 1.20× 10−9 1.25× 10−9
SRC 0.141 0.136 0.066 0.070 0.227

Skewness 0.256 0.233 0.210 0.227 0.112

Table 4.4.1.9: Simulation results for the Hypothesis 1: n = 63, σ2 = 0.03
Approach OLS PTB PWT PTBWLS TRUE

MSE(β̂1) 0.0208 0.0136 0.0118 0.0178 0.0097

BIAS(β̂1) 4.60× 10−4 5.41× 10−4 1.05× 10−4 5.40× 10−4 2.35× 10−4
VAR(β̂1) 0.0203 0.0131 0.0118 0.0173 0.0097

MSE(β̂2) 3.46× 10−9 3.07× 10−9 3.00× 10−9 3.08× 10−9 2.31× 10−9
BIAS(β̂2) 1.73× 10−12 8.33× 10−11 2.85× 10−14 2.32× 10−11 6.73× 10−11
VAR(β̂2) 3.46× 10−9 2.99× 10−9 3.00× 10−9 3.05× 10−9 2.24× 10−9
SRC 0.149 0.127 0.063 0.079 0.230

Skewness 0.249 0.259 0.234 0.242 0.092
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Figure 4.4.2.1: Example of simulation data (σ2 = 0.01, n = 63)

4.4.2 Result and Interpretation from Simulation of Hypothesis 2

Table 4.4.2.1 to Table 4.4.2.3 show the results of the simulation for Hypothesis 2 in case

that sample size was n = 29 and for σ2 = 0.01, σ2 = 0.02 and σ2 = 0.03, respectively.

From the results in case that the sample size is small (Table 4.4.1.1 to Table 4.4.1.3), the

mean square errors were basically improved in order of NTBWLS, PTBWLS, PWT, PTB,

OLS. In particular, the difference between OLS, PTB and PWT, PTBWLS, NTBWLS

were remarkable. SRC improved same as the results of MSE. It can be thought that the

power-weighted transformation approach improved better than the ordinary least squares

approach and the transformation-both-sides approach in the situation of the non-normal

and heteroscedastic error distributions. Also, in the situation of the larger variance (Table

4.4.2.3), the improvement of NTBWLS for the MSE was remarkable. For the situation of

the larger sample size (Table 4.4.2.4 to Table 4.4.2.9), it seems that we can give the same

interpretations as Table 4.4.2.1 to Table 4.4.2.3.
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Figure 4.4.2.2: Example of simulation data (σ2 = 0.02, n = 63)

Figure 4.4.2.3: Example of simulation data (σ2 = 0.03, n = 63)
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Table 4.4.2.1: Simulation results for the Hypothesis 2: n = 29, σ2 = 0.01
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0156 0.0112 0.0086 0.0082 0.0067

BIAS(β̂1) 7.52× 10−5 9.94× 10−5 1.22× 10−4 7.77× 10−5 3.56× 10−5
VAR(β̂1) 0.0155 0.0111 0.0084 0.0081 0.0067

MSE(β̂2) 4.59× 10−9 3.13× 10−9 2.99× 10−9 2.92× 10−9 2.18× 10−9
BIAS(β̂2) 7.19× 10−12 1.15× 10−11 4.70× 10−12 3.42× 10−13 3.78× 10−14
VAR(β̂2) 4.59× 10−9 3.12× 10−9 2.99× 10−9 2.92× 10−9 2.18× 10−9
SRC 0.460 0.419 0.087 0.107 −

Skewness 0.393 0.412 0.322 0.326 −

Table 4.4.2.2: Simulation results for the Hypothesis 2: n = 29, σ2 = 0.02
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0440 0.0631 0.0439 0.0281 0.0345

BIAS(β̂1) 5.12× 10−4 6.13× 10−4 4.34× 10−4 2.08× 10−3 1.46× 10−3
VAR(β̂1) 0.0435 0.0625 0.0437 0.0279 0.0331

MSE(β̂2) 2.23× 10−8 1.89× 10−8 1.33× 10−8 7.61× 10−9 1.41× 10−8
BIAS(β̂2) 2.28× 10−11 4.48× 10−12 3.95× 10−11 3.39× 10−10 4.39× 10−10
VAR(β̂2) 1.23× 10−8 1.89× 10−8 1.33× 10−8 7.27× 10−9 1.37× 10−8
SRC 0.432 0.392 0.085 0.105 −

Skewness 0.407 0.395 0.290 0.301 −

4.4.3 Result and Interpretation from Simulation of Hypothesis 3

Table 4.4.3.1 to Table 4.4.3.3 show the results of the simulation for Hypothesis 2 in case

that sample size was n = 29 and for σ2 = 0.01, σ2 = 0.02 and σ2 = 0.03, respectively.

Figure 4.4.3.1 and Figure 4.4.3.4 show the results of MSE(β̂1) and MSE(β̂2) for the Hy-

pothesis 3 in case of n = 29. In Figure 4.4.3.1 and Figure 4.4.3.4, MSE was clearly

improved in order of NTBWLS, PTBWLS, PWT, OLS in the situation of σ2 = 0.03.

There were no difference between each approach in the situation of σ2 = 0.01. In contrast

to above results, in case that the sample size was large (Figure 4.4.3.2, Figure 4.4.3.3,

Figure 4.4.3.5 and Figure 4.4.3.6), PWT, PTBWLS and NTBWLS were clearly improved

better than OLS for MSE, but there were not so much difference between each transfor-

mation approach. Therefore, it can be thought that NTBWLS is superior to the other

approaches for MSE in the situation of small sample size and larger variance with non-

normal and heteroscedastic error. In Table 4.4.3.1 to 4.4.3.9, it seems that we can provide
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Table 4.4.2.3: Simulation results for the Hypothesis 2: n = 29, σ2 = 0.03
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.165 0.146 0.085 0.103 0.049

BIAS(β̂1) 5.48× 10−4 4.95× 10−4 2.08× 10−3 4.45× 10−3 5.60× 10−3
VAR(β̂1) 0.1639 0.1458 0.0831 0.0990 0.0437

MSE(β̂2) 4.32× 10−8 3.89× 10−8 2.22× 10−8 3.54× 10−8 2.14× 10−8
BIAS(β̂2) 1.53× 10−10 1.48× 10−11 1.36× 10−11 3.48× 10−11 9.80× 10−10
VAR(β̂2) 4.30× 10−8 3.87× 10−8 2.22× 10−8 3.54× 10−8 2.04× 10−8
SRC 0.402 0.292 0.089 0.100 −

Skewness 0.442 0.395 0.326 0.302 −

Table 4.4.2.4: Simulation results for the Hypothesis 2: n = 41, σ2 = 0.01
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0112 0.0097 0.0064 0.0069 0.0068

BIAS(β̂1) 3.86× 10−4 2.18× 10−8 4.93× 10−6 3.33× 10−7 2.82× 10−4
VAR(β̂1) 0.0109 0.0097 0.0064 0.0069 0.0066

MSE(β̂2) 3.02× 10−9 2.74× 10−9 2.38× 10−9 1.89× 10−9 2.33× 10−9
BIAS(β̂2) 7.70× 10−11 6.08× 10−13 1.54× 10−14 6.50× 10−12 8.12× 10−11
VAR(β̂2) 2.94× 10−9 2.74× 10−9 2.38× 10−9 1.89× 10−9 2.25× 10−9
SRC 0.446 0.426 0.081 0.089 −

Skewness 0.341 0.329 0.296 0.268 −

Table 4.4.2.5: Simulation results for the Hypothesis 2: n = 41, σ2 = 0.02
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0333 0.0297 0.0271 0.0236 0.0230

BIAS(β̂1) 1.01× 10−4 2.82× 10−4 1.44× 10−5 1.76× 10−5 3.37× 10−4
VAR(β̂1) 0.0332 0.0296 0.0271 0.0235 0.0226

MSE(β̂2) 1.04× 10−8 0.96× 10−8 9.27× 10−9 7.42× 10−9 7.40× 10−9
BIAS(β̂2) 1.17× 10−10 2.56× 10−11 1.17× 10−10 2.92× 10−11 6.40× 10−11
VAR(β̂2) 1.03× 10−8 0.96× 10−8 9.27× 10−9 7.42× 10−9 7.33× 10−9
SRC 0.449 0.428 0.078 0.083 −

Skewness 0.397 0.342 0.303 0.252 −
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Table 4.4.2.6: Simulation results for the Hypothesis 2: n = 41, σ2 = 0.03
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0865 0.0797 0.0565 0.0499 0.0522

BIAS(β̂1) 6.02× 10−4 3.98× 10−4 4.01× 10−4 7.02× 10−4 4.35× 10−3
VAR(β̂1) 0.0859 0.0797 0.0565 0.0499 0.0478

MSE(β̂2) 2.48× 10−8 2.06× 10−8 1.99× 10−8 1.54× 10−8 1.66× 10−8
BIAS(β̂2) 2.24× 10−11 2.56× 10−11 1.17× 10−10 2.92× 10−11 2.93× 10−10
VAR(β̂2) 2.48× 10−8 2.06× 10−8 1.99× 10−8 1.53× 10−8 1.63× 10−8
SRC 0.457 0.232 0.076 0.092 −

Skewness 0.329 0.191 0.272 0.316 −

Table 4.4.2.7: Simulation results for the Hypothesis 2: n = 63, σ2 = 0.01
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.00526 0.00653 0.00348 0.00343 0.00366

BIAS(β̂1) 4.62× 10−5 1.92× 10−4 1.88× 10−5 4.21× 10−5 2.70× 10−5
VAR(β̂1) 0.00522 0.00634 0.00346 0.00339 0.0036

MSE(β̂2) 1.52× 10−9 1.81× 10−9 1.09× 10−9 1.20× 10−9 1.39× 10−9
BIAS(β̂2) 4.87× 10−12 8.17× 10−11 2.86× 10−14 4.04× 10−12 7.10× 10−13
VAR(β̂2) 1.51× 10−9 1.89× 10−9 1.09× 10−9 1.20× 10−9 1.39× 10−9
SRC 0.453 0.385 0.071 0.075 −

Skewness 0.337 0.301 0.215 0.254 −

Table 4.4.2.8: Simulation results for the Hypothesis 2: n = 63, σ2 = 0.02
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0277 0.0201 0.0161 0.0185 0.0121

BIAS(β̂1) 7.15× 10−5 5.92× 10−5 7.41× 10−5 6.21× 10−4 5.94× 10−4
VAR(β̂1) 0.0276 0.0201 0.0161 0.0179 0.0115

MSE(β̂2) 7.77× 10−9 7.78× 10−9 5.04× 10−9 4.83× 10−9 4.31× 10−9
BIAS(β̂2) 8.82× 10−11 3.50× 10−11 8.33× 10−11 1.28× 10−11 3.68× 10−11
VAR(β̂2) 7.68× 10−9 7.78× 10−9 4.96× 10−9 4.82× 10−9 4.27× 10−9
SRC 0.449 0.384 0.071 0.085 −

Skewness 0.364 0.337 0.252 0.269 −
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Table 4.4.2.9: Simulation results for the Hypothesis 2: n = 63, σ2 = 0.03
Approach OLS PTB PWT PTBWLS NTBWLS

MSE(β̂1) 0.0670 0.0648 0.0313 0.0275 0.0318

BIAS(β̂1) 5.19× 10−5 4.92× 10−5 3.82× 10−4 3.48× 10−4 3.34× 10−3
VAR(β̂1) 0.0669 0.0648 0.0309 0.0271 0.0285

MSE(β̂2) 2.12× 10−8 1.78× 10−8 1.00× 10−8 6.76× 10−9 9.67× 10−9
BIAS(β̂2) 4.00× 10−11 3.44× 10−11 3.56× 10−11 2.43× 10−11 3.16× 10−10
VAR(β̂2) 2.12× 10−8 1.78× 10−8 9.99× 10−9 6.74× 10−9 9.36× 10−9
SRC 0.465 0.444 0.073 0.063 −

Skewness 0.354 0.321 0.257 0.259 −

the similar interpretations as the results of the simulation for Hypothesis 2. However,

we should focus on the results of skewness. There were trend toward that the skewness

were decreased in order of NTBWLS, PTBWLS, PWT, OLS. We can consider that the

simulation model for Hypothesis 3 had the intentional skewness for the error distribution

and NTBWLS improved the skewness of the error as compare to OLS and PWT.
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Table 4.4.3.1: Simulation results for the Hypothesis 3: n = 29, σ2 = 0.01
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0125 0.0056 0.0050 0.0039

BIAS(β̂1) 1.11× 10−5 2.39× 10−4 4.37× 10−5 5.56× 10−5
VAR(β̂1) 0.0124 0.0054 0.0050 0.0039

MSE(β̂2) 3.97× 10−9 2.17× 10−9 2.27× 10−9 1.71× 10−9
BIAS(β̂2) 1.79× 10−11 1.94× 10−11 3.97× 10−12 1.84× 10−11
VAR(β̂2) 3.95× 10−9 2.17× 10−9 2.27× 10−9 1.70× 10−9
SRC 0.489 0.082 0.081 −

Skewness 0.447 0.293 0.263 −

Table 4.4.3.2: Simulation results for the Hypothesis 3: n = 41, σ2 = 0.01
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0105 0.0039 0.0042 0.0032

BIAS(β̂1) 9.37× 10−5 1.16× 10−4 6.69× 10−5 2.80× 10−6
VAR(β̂1) 0.0104 0.0038 0.0041 0.0032

MSE(β̂2) 3.36× 10−9 1.49× 10−9 1.67× 10−9 1.51× 10−9
BIAS(β̂2) 5.60× 10−11 2.27× 10−14 2.91× 10−11 8.74× 10−12
VAR(β̂2) 3.30× 10−9 1.49× 10−9 1.67× 10−9 1.51× 10−9
SRC 0.510 0.077 0.082 −

Skewness 0.388 0.251 0.282 −

4.5 Discussions

In this section, we discuss the simulation results for three Hypotheses established in Sec-

tion 4.1.

From the results of the simulation for Hypothesis 1, MSE(β̂) of PTB, PWT and PTB-

WLS were smaller than that of OLS for each situation, therefore it was confirmed that

these parametric transformation approaches improved performance of model parameters

estimation. In particular, it seemed that the smaller the sample size, the larger the im-

provements. In the same way, it seemed that the larger the error variance, the larger the

improvements. From the results of the error distribution at post-transformation, there

were no difference for the skewness between the approaches but SRCs were improved in

PWT and PTBWLS. it could be thought that the power-weighted transformation im-

proved heteroscedasticity of the error. In view of these results, it was showed that the

transformation approaches were superior to usual least square approach in the perfor-
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Table 4.4.3.3: Simulation results for the Hypothesis 3: n = 63, σ2 = 0.01
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0065 0.0027 0.0031 0.0026

BIAS(β̂1) 4.70× 10−5 1.07× 10−6 4.32× 10−5 2.70× 10−5
VAR(β̂1) 0.0064 0.0027 0.0030 0.0026

MSE(β̂2) 1.80× 10−9 1.10× 10−9 1.25× 10−9 1.04× 10−9
BIAS(β̂2) 7.27× 10−11 4.99× 10−12 2.87× 10−11 1.31× 10−12
VAR(β̂2) 1.73× 10−9 1.10× 10−9 1.25× 10−9 1.04× 10−9
SRC 0.521 0.075 0.064 −

Skewness 0.438 0.190 0.217 −

Table 4.4.3.4: Simulation results for the Hypothesis 3: n = 29, σ2 = 0.02
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0524 0.0206 0.0159 0.0135

BIAS(β̂1) 4.26× 10−4 2.73× 10−5 2.18× 10−4 6.35× 10−6
VAR(β̂1) 0.0520 0.0206 0.0158 0.0135

MSE(β̂2) 1.50× 10−8 9.56× 10−9 7.66× 10−9 7.07× 10−9
BIAS(β̂2) 2.62× 10−12 1.81× 10−11 1.00× 10−11 2.93× 10−11
VAR(β̂2) 1.50× 10−8 9.54× 10−9 7.65× 10−9 7.04× 10−9
SRC 0.474 0.099 0.084 −

Skewness 0.436 0.327 0.299 −

Table 4.4.3.5: Simulation results for the Hypothesis 3: n = 41, σ2 = 0.02
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0413 0.0179 0.0138 0.0124

BIAS(β̂1) 1.27× 10−4 5.66× 10−6 2.27× 10−7 8.53× 10−5
VAR(β̂1) 0.0411 0.0179 0.0138 0.0123

MSE(β̂2) 1.32× 10−8 6.40× 10−9 5.50× 10−9 5.38× 10−9
BIAS(β̂2) 8.61× 10−11 1.78× 10−10 1.95× 10−11 1.51× 10−11
VAR(β̂2) 1.31× 10−8 6.22× 10−9 5.48× 10−9 5.36× 10−9
SRC 0.522 0.081 0.084 −

Skewness 0.449 0.276 0.275 −
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Table 4.4.3.6: Simulation results for the Hypothesis 3: n = 63, σ2 = 0.02
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0251 0.0089 0.0118 0.0077

BIAS(β̂1) 6.37× 10−4 3.85× 10−5 2.11× 10−4 1.53× 10−4
VAR(β̂1) 0.0244 0.0088 0.0116 0.0076

MSE(β̂2) 8.09× 10−9 3.52× 10−9 4.74× 10−9 3.80× 10−9
BIAS(β̂2) 4.68× 10−10 2.81× 10−13 2.02× 10−13 2.48× 10−14
VAR(β̂2) 7.63× 10−9 3.52× 10−9 4.74× 10−9 3.80× 10−9
SRC 0.529 0.068 0.071 −

Skewness 0.417 0.187 0.222 −

Table 4.4.3.7: Simulation results for the Hypothesis 3: n = 29, σ2 = 0.03
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.1281 0.0516 0.0420 0.0225

BIAS(β̂1) 2.83× 10−3 7.93× 10−5 4.41× 10−4 6.35× 10−6
VAR(β̂1) 0.1252 0.0515 0.0416 0.0225

MSE(β̂2) 4.74× 10−8 1.98× 10−8 1.95× 10−8 1.68× 10−8
BIAS(β̂2) 2.10× 10−9 4.55× 10−10 6.43× 10−14 6.95× 10−12
VAR(β̂2) 4.53× 10−8 1.93× 10−8 1.95× 10−8 1.68× 10−8
SRC 0.492 0.095 0.103 −

Skewness 0.416 0.330 0.244 −

Table 4.4.3.8: Simulation results for the Hypothesis 3: n = 41, σ2 = 0.03
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0802 0.0343 0.0297 0.0236

BIAS(β̂1) 2.10× 10−4 2.71× 10−4 5.50× 10−5 4.44× 10−4
VAR(β̂1) 0.0800 0.0342 0.0297 0.0232

MSE(β̂2) 2.47× 10−8 1.47× 10−8 1.43× 10−8 1.20× 10−8
BIAS(β̂2) 4.78× 10−10 2.59× 10−10 3.43× 10−11 1.79× 10−10
VAR(β̂2) 2.43× 10−8 1.44× 10−8 1.43× 10−8 1.19× 10−8
SRC 0.518 0.083 0.083 −

Skewness 0.469 0.310 0.299 −
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Table 4.4.3.9: Simulation results for the Hypothesis 3: n = 63, σ2 = 0.03
Approach OLS PWT PTBWLS NTBWLS

MSE(β̂1) 0.0573 0.0232 0.0230 0.0234

BIAS(β̂1) 1.44× 10−4 2.04× 10−6 1.21× 10−6 7.68× 10−4
VAR(β̂1) 0.0572 0.0232 0.0230 0.0226

MSE(β̂2) 1.87× 10−8 8.75× 10−9 9.44× 10−9 8.75× 10−9
BIAS(β̂2) 4.02× 10−10 6.33× 10−10 1.29× 10−10 2.41× 10−11
VAR(β̂2) 1.83× 10−8 8.12× 10−9 9.31× 10−9 8.73× 10−9
SRC 0.518 0.072 0.063 −

Skewness 0.489 0.082 0.081 −

Figure 4.4.3.1: Results of MSE(β̂1) for the Hypothesis 3 (n = 29)
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Figure 4.4.3.2: Results of MSE(β̂1) for the Hypothesis 3 (n = 41)

Figure 4.4.3.3: Results of MSE(β̂1) for the Hypothesis 3 (n = 63)
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Figure 4.4.3.4: Results of MSE(β̂2) for the Hypothesis 3 (n = 29)

Figure 4.4.3.5: Results of MSE(β̂2) for the Hypothesis 3 (n = 41)
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Figure 4.4.3.6: Results of MSE(β̂2) for the Hypothesis 3 (n = 63)

mance for the model-parameter estimation in the case the error for a true non-linear

model was distributed non-normal with constant variance.

From the results of the simulation for Hypothesis 2, MSE(β̂) of PTB, PWT, PTBWLS

and NTBWLS were smaller than that of OLS for each situation. In addition, MSE(β̂)

of PTBWLS and NTBWLS were almost smaller than that of PTB and PWT. Also, the

results of PWT were superior to that of PTB. From the results of the error distribution at

post-transformation, the skewness and the SRCs were improved in PWT and PTBWLS.

There was a difference from the results of Hypothesis 1, because there were no difference

for the skewness between the approaches in the simulation of Hypothesis 1. it could be

thought that the power transform-both-sides and the power-weighted transformation im-

proved heteroscedasticity and non-normality of the error. For NTBWLS, in particular,

MSE(β̂) of NTBWLS was the smallest in the situation of small sample size and large

variance. Interestingly, however, the BIAS(β̂) of NTBWLS was larger than that of any

other parametric approaches but the VAR(β̂) of NTBWLS was smaller that of any other

approaches. It could be thought that NTBWLS provided a kind of “Biased Estimator”,

therefore it could provide a good estimation efficiency for the model parameters. In view

of these results, it was showed that PTBWLS and NTBWLS were superior to PTB and
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PWT in the performance for the model-parameter estimation in the case the error for a

true non-linear model was distributed non-normal with heteroscedasticity.

From the results of the simulation for Hypothesis 3, MSE(β̂) of PWT, PTBWLS and

NTBWLS were smaller than that of OLS for each sample size situation. For the setting

of the error variance of the simulation model, the larger the error variance, the larger the

improvements of PWT, PTBWLS and NTBWLS compared to that of OLS. In compari-

son between the transformation approaches, MSE(β̂) were smaller in order of NTBWLS,

PTBWLS and PWT, in particular, it was clear in the situation of large variance. From

the results of the error distribution at post-transformation, the skewness and the SRCs

were improved in PWT and PTBWLS. These improvements were markedly larger than

the results of simulation of Hypothesis 1 and Hypothesis 2. In view of these results, NTB-

WLS improved the performance of estimation for model parameters more than PWT and

PTBWLS in the case the true transformation was not included in a power function family

and the error was distributed non-normal with heteroscedasticity.
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5. Conclusions and Further
Developments

In this paper, we attempted to examine some difficult points in the statistical inference

on a theoretical model. Especially we focused the statistical error that shows the gap be-

tween data and the model, we introduced and suggested some transformation approaches

to design the error of the theoretical model statistically. As a conventional paramet-

ric approach, we introduced the power transformation-both-sides approach (PTB) and

power-weighted transformation approach (PWT). PTB has an objective to improve het-

eroscedasticity and normality, and PWT improves heteroscedasticity for the error. We

could examine how minimizing the sum of squares in PTB. We confirmed that this min-

imizing was related to not only the heteroscedasticity of the error, but the skewness of

the error distribution. For the sum of squares in PTB, the first term corresponded to the

sum of squares in the PWT. In accordance with the result of those considerations, we sug-

gested the power transform-both-sides and weighted least square approach (PTBWLS).

PTBWLS was the extension of PTB model and involved two separate transformation pa-

rameters: one was the parameter to induce the normality of the error and the other was

to estimate an appropriate weight for stabilizing the error variance. A Taylor expansion

for the response around the predictive function in the second order gave us the outcome

for the first term corresponds to the sum of squares in the PWT and the second term

stands for the third moment corresponding to the skewness of the error distribution.

Since the choice of transformation was largely empirical it is important to consider

the sensitivity of the model parameters to the power transformation function. One prob-

lem with using parametric transformation was the difficulty in extending the parametric

transformation with only one parameter. Thus, it is not easy to assess the effect of more

flexible transformations on the regression parameters or on prediction intervals in PTB.
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Rather than to create more complicated transformations based on parametric expressions,

we believed that it is more efficient to consider a nonparametric method of determining

the transformation-both-sides function. Therefore, as an alternative to PTB, we proposed

a Nonparametric Transform-Both-sides (NTB) approach to express function transforma-

tion as a cubic spline curve. Further, as an estimation method which combines PTBWLS

with NTB together, we proposed a Nonparametric Transform-Both-sides and Weighted

Least Squares (NTBWLS) approach. NTBWLS was designed to implement both non-

parametric estimation of a transformation function and parametric estimation of a power

weighted transformation function.

In the investigation result of the conical model, the transformation approaches much

improved the heteroscedasticity and the non-normality of the error in a post-transformation

compared with that of OLS. It suggested that these transformation approaches are effec-

tive to fit a simple non-linear model for heteroscedastic data. From the results of Ricker

model and Beverton & Holt model, the transformation approaches much improved the

heteroscedasticity and the non-normality of the error distribution in a post-transformation

compared with that of OLS. Also, PWT, PTBWLS and NTBWLS improved them more

than PTB. The approach in which the absolute value of SRC was the smallest was NTB-

WLS, but the absolute values of skewness of the error distribution in PWT and PTBWLS

were smaller than that of NTBWLS. Furthermore, we conducted the outlier analysis by

excepting an observation and investigate the robustness of each estimator for the model

parameters. As a result, the difference of NTBWLS was smallest, so we were able to

consider that NTBWLS gave the most robust estimates for the model parameters. Next,

based on our case studies and numerical investigation of an example which include data

generated from a 1-compartment model, we concluded that NTBWLS was superior to the

other method in the situation of hardy heteroscedasticity and non-normality. NTBWLS

provided a robust estimator to make the smoothing parameter smaller because it reduced

the effect of the intensity of heteroscedasticity. In addition, we conducted the simulation

experiments to confirm a superiority of NTBWLS to other approaches.

In the result, it was showed that 1) the transformation approaches were superior to

usual least square approach in the performance for the model-parameter estimation in

the case the error for a true non-linear model was distributed non-normal with constant
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variance, 2) PTBWLS and NTBWLS were superior to PTB and PWT in the performance

for the model-parameter estimation in the case the error for a true non-linear model was

distributed non-normal with heteroscedasticity, 3) NTBWLS improved the performance

of estimation for model parameters more than PWT and PTBWLS in the case the true

transformation was not included in a power function family and the error was distributed

non-normal with heteroscedasticity.

The remaining problems for the future are 1) clarification of the roles played by

transform-both-sides and weighted transformation, 2) development of “Double Nonpara-

metric transformation”, which implements nonparametric estimation for the weighted-

transformation function, 3) to apply these transformation approaches to the empirical

models.
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Appendix: Consistency of parameter
estimates for transformation both
sides model

We briefly summarize the consistency of parameter estimates for transformation-both-

sides model using the example of PTB by reference to Hernandez and Johnson (1980). As

we discussed in section 2.1, based on the assumption of the error ε and εP are distributed

as N(0, σ2n) and N(0, σ
2) respectively, log-likelihood equation is

LP(β, σ
2,λ) =

NX
n=1

³
−1
2
[HP(yn;λ)−HP{f(xn;β),λ}]2/σ2 + log

d

dt
HP(yn;λ)

−1
2
log σ2

´
+ C0 (A.1)

for the observations {(xn, yn), n = 1, 2, ..., N}, where C0 is a constant including the
coefficient of the probability density function. (A.1) is derived by supposing that there

exists a value of θ, θ00 = (β0, σ0,λ0) for which the distribution of HP (Y ;λ0) is normal

with mean HP [f(X;β0),λ0] and standard deviation σ0. Except for the log-normal case,

HP (Y ;λ0) cannot be normal for positive random variables. We now show the consequence

of maximizing the wrong log-likelihood function (A.1). Draper and Cox (1969) tried to

derive properties of λ̂, but Hinkley (1975) found errors in their derivations that invalidate

some of their results. Moreover, Hinkley stated, under rather loose conditions, a theorem

giving the asymptotic normal distribution of θ̂n. Theorem 1 gives uniformity conditions

under which θ̂n is strongly consistent and has an asymptotic normal distribution. We

first record some properties of the transformation HP (Y ;λ).

Lemma 1: Define υ : (0,∞)× (−∞,∞)→ (−∞,∞) as

υ(x;λ) =

½
(xλ − 1)/λ λ 6= 0 ,
log x λ = 0 .
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Then (a) υ(x,λ) > 0 if x > 1, and υ(x,λ) ≤ 0 if 0 < x ≤ 1; (b) υ(·, ·) is increasing
in both variables; (c) υ(·, ·) is convex in λ for x ≥ 1 and concave in λ for x ≤ 1; (d)

(∂r/∂λr)υ(x,λ) is continuous in x and λ, r ≥ 1.
Let LP(θ|Xn) be given by (A.1) and LP(θ|X) = LP(θ|X1).

Theorem 1: Suppose the parameter space Θ, the true pdf h(·), and the log-likelihood
function (A.1) satisfy the following conditions:

(i) The parameter space Θ is a compact set defined as

Θ =
n
θ = (β, σ,λ)0

¯̄̄
|β| ≤M, c ≤ σ ≤ d, a ≤ λ ≤ b

with ∞ < a < 0 < b, d, c,M <∞
o
. (A.2)

(ii) The true pdf h(·) is concentrated on (0,∞), and the moments Eh(X2a) and Eh(X
2b)

are finite.

(iii) Eh[LP(θ|X)] has a unique global maximum at θ0.

Then the maximum likelihood estimator θ̂n is a strongly consistent estimator of θ0 =

(β0, σ0,λ0)
0. Furthermore, if

(iv) θ0 is an interior point of Θ,

(v) Eh[Xa log(X)]2 and Eh[Xb log(X)]2 are finite,

(vi) Eh[∇LP(θ0|X)] = 0, where the column vector

∇LP(θ0|X) =
³∂LP(θ|X)

∂θi

¯̄̄
θ=θ0

´
is the gradient of the log-likelihood function for

θ0 = (θ1, θ2, θ3) = (β, σ,λ),

(vii) Eh[∇2LP(θ0|X)] is nonsingular, where

∇2LP(θ0|X) =
³∂2LP(θ|X)

∂θi∂θj

¯̄̄
θ=θ0

´
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is the Hessian of the log-likelihood function, then

√
n(θ̂n − θ0) d−→N3(0, V WV 0),

where V = {Eh[∇2LP(θ0|X)]}−1 and W = Eh{∇LP(θ0|X)[∇LP(θ0|X)]0}.
We indicate the method of proof and refer the reader to Hernandez and Johnson (1979)

or Hernandez (1978) for details.
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