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PREFACE

The book by Cox and Lewis (1966) and the volume editated by Lewis
(1972) showed the development of statistical techniques for point processes.
However the possibility of the maximum likelihood estimation procedure was
not systematically developed.

In the last decade the likelihood analysis for point processes was
developed to solve some problems in communication engeneering (see the
recent book by Snyder (1975) for the extensive discussions of the field).

A key to the likelihood theory is the conditional intensity function

MtelF,) = E[N(at)|F 1/at,
where Ft is the history of the process over the interval of observation (0,t).
Once the conditional intensity is known, the likelihood for the realization in

(0,T) can be written down in the form
N T
17 Aty |y )]exp[-jo A(t|F,)at]
i=1 i
= exp{fT log A(t|F,)an, - jT At|F, )at}.
0% 't T Jo t

The importance of the systematic approach to the likelihood procedure for

statistical inference of general point processes was suggested by Vere-Jones

(1975). It is now very important to obtain good parametric models of
conditional intensity function Ae(t|Ft).

The present paper is concerned with the development of the maximum likelihood
inference for point processes and consists of two chapters. Chapter 1 is devoted

to the study of the asymptotic of the maximum likelihood procedure under the



parameterized conditional intensities, and Chapter 2 to the application of an
efficient simulation method to general point processes using their corresponding
conditional intensities. Summaries of each chapter are briefly given at their
biggining.

In 1976 Dr. H. Akaike organized the research project on statistical
inference for point processes at the Institute of Statistical Mathematics, and
invited Prof. D. Vere-Jones to join the project. I would wish to express my
deép thanks to both of them for drawing my interest to the subject of the
present paper. Their encouragements of my study.and many valuable suggestions
are greatly acknowledged. Thanks are also due to Miss N. Takenaka who typed
this paper with great care and diligence. Finally I am most grateful to to
Professors M. Okamoto and N. Inagaki of the Osaka University for their interests
in my work, especially to Prof. Okamoto for his careful review of this paper

and many critical comments.
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Chapter 1

THE ASYMPTOTIC BEHAVIOR OF MAXIMUM LIKELIHOOD ESTIMATORS
FOR STATIONARY POINT PROCESSES

(Published in Annals of the Institute of Statistical Mathematics, Vol.30, A, pp.243-261, 1978)

ABSTRACT

It is known that the likelihood of a point process which is absolutely
continuous with respect to the standard Poisson process on a finite time interval
can be written down in terms of the conditional intensity or generalized hazard
function, which plays a similar role to the time-varying intensity of a non-
homogeneous Poisson process.

The main object of the paper is to give regularity conditions for the
parametrization of the complete intensity functions under which the standard
statistical properties for the maximum likelihood procedure are satisfied.
Furthermore some natural examples of the parametrized stationary point processes

are given to check the regularity conditions for the practical uses.
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I. INTRODUCTION

Let P(-) on the set of points w = {tj; j=0,%1,%2,°* " }eQ be an orderly
stationary point process with no fixed atoms on the real line R. Here we take
o--<t_l<0§§0<tl<'--, and it is assumed that the set w has no limit points.
The counting measure N(A) = N(A,w) is defined for each bounded Borel subset A

of R to be the cardinal of the set wnA.

The complete intensity function and intensity function on the o-algebra

HO % of the point process is defined respectively as follows:
b
(1.1) Alt,0) = 1im %—P[N{[t,t+6)} >0| H - t]
&0 o
A%(t,0) = lim = PIN{[t,t+8)} > 0| H, .1 = E{r(t,w)| H. ,}
60 § 0,t 0,t

where HS & denotes the o-field generated by {N(u,t]; s<u<t}.
We consider a family of parametrized stationary complete intensity
processes {Ae(t,w); 0c0CR®} which are assumed to correspond uniquely with the

stationary point processes {Pe; 6e0}. Thus we have the exact log-likelihood

on the interval [0,T] as follows:

T T
(1.2) L%(e) = - fo Ag(t,m)dt + fo log Ag(t,w)dN(t).

~

The maximum likelihood estimator eT = e(ti; Oé}iéi) is defined by the
estimator of 6 which maximizes the exact likelihood (1.2) under observations

from the stationary point process P Several asymptotic properties of

ChE
likelihood procedures for the point processes are suggested in [10]. 1In this
paper we will give some proofs, and develop the asymptotic properties of the

maximum likelihood estimator. For this purpose we theoretically consider a

conditional log-likelihood under the information from the infinite past

B T T
(1.3) LT(e) = — fo Ae(t,w)dt + fO log Ae(t,w)dN(t),
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and it will be seen later that we can identify L;(e) with LT(G) for sufficiently
large T under the Assumptions C given in section II. In section II assumptions
are collected togéther, and examples which satisfy them are given. In section III
it will be proved that the maximum likelihood estimator is consistent,
asymptotical;y normal, and efficient. In the last section Poisson process

will be characterized by a maximum likelihood estimator of parametrized renewal

processes.

IT. ASSUMPTIONS AND EXAMPLES

Three groups of assumptions are given. Assumptions A are for observations.
Assumptions B are the regularity conditions for the parametric family of
comblete intensity processes. Assumptions C are given for the relations
between Ag and Ae in ordér that some limit theorems for some functional of A¥

6

remain valid.

For chvenience, the following notation will be introduced. Let
dlog Ae(t,w)/aei and Bke(t,w)/aei be dénoted by dlog A/Bei and ax/aei
respectively, Wiﬁh similar notation being employed for second- and third-order

derivatives. In addition, 3dlog A/aeil will be denoted the value of

el
dlog A/aei at the point 6'e® with the same convention used for other functions.

Instead of Ee (<), P
0

us agree to write E(+) and P(-).

6 (+), where 8g is the true value of the parameter, let
0 :

.

Assumptions A.

(A1) The point process is stationary, ergodic and absolutely continuous with

respect to the standard Poisson process on any finite interval.

1

(A2) The point process is orderly; 1lim s

&0

p[N{[0,8)} > 2] = o.

(a3) E[ sup = N([0,8])2] < .
 0<8g 9

" We say the process & = {&(t,w); t>0} is adapted (with respect to the
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underlying point process N(-,w)) if for fixed t > 0 &(t,w) is H_m,t-measurable.
Further, we say the process & is predictable if the mapping £: R, x @ ~>R is
measurable with respect to the P(:)-completed o-algebra which is generated by
left continuous functions from R+ into R (see [T] p.2 for example). It will
be sufficient for our purpose to note that the adapted process £ is predictable
if the sample path £(t,w) is left continuous on (0,») for a.s.w.

In section I we have already used the stochastic Stieltjes integrals

fg E(t,w)dN(t) = &(ti(w),w) which are defined pathwise for the

0<t.<T
=ti=

measurable process & (see [3] p.89). It should be noted that for any finite
predictable process & satisfying fg E{)\e (t,w)| &(t,w)|}dt < « we are allowed
0

to do the following calculation.

(2.1)  Elsg glt,0)an(s)] = E[S7 &(t,0)B{an(e)| B__ )

1 = B[/T £(t,0)r, (t,0)dt].
0 89
Thus for iritegrands finite predictable process we can use the formal

relation E{aN(t)| H

} =, (t,w)dt. Similarly, E{an(t)| H, .} = A*¥ (t,w)dt.
.t 80 : 0,t

90
The proof of (2.1) is directly derived from Theorem of [T], p.23.

Wé next list a variety of regularity conditions which will be needed at
different ﬁlaces in the sequel.

Assumptions B.

(Bl) © is a compact metric space with some metric p, and GCRd.

(B2) A, is predictable for all O. Ae(t,w) is continuous in 6, and A

9 (0,w) >0

)
a.s.w for any 6€0.

(B3) Ael(o,w) = Aez(o,m) a.s. if and only if 67 = 8,.

(B4) 3log A/aei, 321log A/aeiaej and 33log x/aeiaejaek exist and continuous in
8 for all i, j, k = 1, 2,-+-,d, teB; and a.s.wef. sx/aei and azx/aeiaej

have finite second moments for any 6e0.

(B5) For any 60 there exist a neighbourhood U = U(8) of 6 such that for all



6'eU,
lle,(o,w)l §=Ao(w) and Ilogke,(O,w)I é:Al(w),
where AO and Al are random variables with finite 2nd moments.
(B6) TFor every 6e0, the matrix I(6) = {Iij(e)},i,j=l,~~~,d with

1..(9) = {l o EA—J is nonsingular, and each element 19 )

ij X 26, 06 X 20, 06, nas
i J 1 J

finite 2nd moment.

(B7T) For any 6e0, there exists a ﬁeighbourhood U of 6 such that if

a3
max sup Iml = H(t,w),
1<i,j,kzd ©'eU ik
3310g2
max sup ISE—S%ESE—I = G(t,w)
1<i,j,k<d ©'eU i3k

then E{H(O,w)} < « and E{Aeo(o,w)zG(O,w)z} < o,

It is known by [3] that if the intensity function of the point process on
the half-line exists, then a predictable version of the intensity function can
be always chosen. In (B2) we assume that the same is true for the complete
intensity functions of a stationary process. By the continuity conditions (BY4)
all of the derivatives are separable with respect to 6. From this fact it
can be shown that the processes in (BY4) and their supremum with respect to
6eU are also predictable.

A further set‘of assumptions, rather technical in character, are needed
for the stochastic approximations of Ae by Ag. Condition (Cl) is needed for
the proof of consistency. (C2) and (Ck) for the discussion of Hessian, and
(C3) for the proof of asymptotic normality etec. Each assumption (ii) of (Cl),
(c2) and (C4) is for the uniform integrability conditions with respect to the

true probability P, . We will make use of the theorems T20 and T21 in

0o
Meyer [14] Chapter 2.

Assumptions C.
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(C1) For any 6e0 there is a neighbourhood U of 6 such that

(1) sup |2

(t,w) - Ag,(t,w)l + 0 in probability as t =+ «,
6'eU

el

(ii) sup |log Ag;(t,m)| has, for some a > 0, finite (2+q)th moment
6'eU

uniform bounded with respect to t.
(c2) (i) For any 6e6 and i,j = 1,2,--+,d the following tend to zero in
probability as t -+ o

3N A% 32 32)\*
- * - -
Ao A6> 36, ~ 36, 2™ 6,36, ~ 36,96,

i i i) i)

(ii) For any 6e0 the following have, for some a > 0, finite (2+a)th

moments uﬁiformly bounded with respect to t,

T YU Y N L U
A%> ¥ 36, 26, 36,00, Y
6 i J i77j

=1,2,-++,d.

(C3) For any 6e€0 and 1 = 1,2,-++,d, as T + =

1 T 3) aA¥

E{ - I laei - aei| at} » 0 and
1T e |1 9A¥

E{(— Jy Ixe - A% S 3] at} > o.

/T 6 °i
(Ck) For any 6€0 and i,j,k = 1,2,°++,d there is a neighbourhood U of 6 such
that

| 332 33%
96.00.96, ~ 36,096,360
i J k i)

(i) sup | > 0 in probability as t » =,

6'eU k

3y % 3 A¥
(ii) sup saggl—-——-and sup —§—~2954—-have finite (2+0)th moments which
, 36 00 P 36.36.36
6'eU i 'k 8'eU i 7J 'k

are uniformly bounded with respect to t.
We now give some illustrative examples for our resﬁlts.
Example 1. Stationary Poisson process
It follows directly from theorem 2 of [6], for example, that the complete

intensity process is deterministic and positive constant if and only if the
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corresponding point process is stationary Poisson. Put Ae(t,w) = u(6), then
the log-likelihood function on the interval [0,T] is given

(2.2) L%(8) = -u(e)T + N(0,T)log u(6)

and the maximum likelihood estimator of u(8) is given by N(O,T)/T.

Examgle 2. Stationary delayed renewal process

Suppose the parametrized survivor functions 1 - F.(t), t > 0, are given.

0
In this case the complete intensity function coincide with the hazard function
Ae(t,w) = fe(t - t*¥(w))/{1 - Fe(t - t*¥(w))}, where fe(-) is the left continuous
p.d.f. of Fe(-), and t*¥(w) is the last occurrence time such that t*¥(w) < t.
Then it is easily seen that Ae(t,w) is a predictable process (note A(t,w) is

not a predictable process if t*(w) is defined such as t*(w) < t). The stationary

joint distribution of forward and backward recurrence time is given by

P(X

A
A

u, Y = fg tdFe(t) (see [12]).

_ =1 u
v)‘— Mo fo {Fe(v+w) - F(w)}dw, where Mg

Since P(X < v/Y > t) = JT Flv+w) - F(w)}aw// {1 = F(w)}law, ve see that

A (t,w) = E{A(t,m)/Ho t} {1 - F(t)}/f: {1 - F(w)}dw if there are no points in

(0,t], otherwise A¥(t,w) = A(t,w). Thus we have the exact log-likelihood function

for the observation 0 < t < +++ < tn—

o < T on the interval [0,T],

1
n-1
{1 - Fo(e)} +i£llog £o(ty —

o )}.

(2.3) L;(e) = log u ) + log{l—Fe(T -t

-1 -1

Let us briefly check the assumptions for renewal processes. (Cl) - (i)
and (C2) - (i) are automatically satisfied because, for example,

P{ sup lkg,(t,w) - Ae,(t,w)l > ¢} < P{no events in (0,t]}
6'eU

= %’f: {1 - F(s)}ds = J(t) (say) by the facts above. By the similar idea and
using Cauchy-Schwartz inequality we also see that the conditions in (C3) are

1 .
if fg J(t) /2 dt - 0, satisfied which in turn are satisfied if F(t) has a

Dl
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variance. Integrability in assumptions B and C depend on the decreasing rate
of J(t) or 1 - F(t).
Example 3. Wold process (Markov-dependent intervals)
O-memory Wold process is defined formally with a complete intensity function
which is independent of any of the past occurrence times, and m-memory is

defined with a complete intensity function A(t,w) =vl(t—t_ --',t—t_m) which

lS
l,o--,t_m. These processes

are extensions of the renewal process with the hazard function, and exist as

depends only on the m most recent occurrence times t

finite order Markov processes. The relation between the conditional hazard

functions and survivor functions is given in the last chapter of [9]. For

example, if the process is 2-memory and Plo(t—t 1° t—l_t—Z) is the probability
of no points in the interval (t_2, t l) and one point in the interval (t~l’t]
under the condition that we have just two most recent points t_2, t—l* then
- - _ 9 3 (8 _ 3.
At,w) = h(T,q) = - 37 [1og{30 g " BT)Plo(T,G)}]
where T =t - t and ¢ = t - t_ It should be noted that the complete

-1 -1 2° )
intensity function coincide with the conditional hazard function in the case
of the finite memory processes.

Example 4. Hawkes' self-exciting process.

Consider the point process which is formally defined with a complete

intensity function of the form

1]

(2.4) Agltrw) = v + ffmyu(t—u)dN(u), 6 = (v,u)

v+ ) oy (t-t,)
t.<t ¥ *

where v > 0, yu(u) >0, Y, is left continuous for u > O, and fg yu(u)du < 1.
Note that the range of the integral in (2.4) is (-»,t), in other words, the

sum is taken for all integer i such that ti < t; this guarantees the predictability

of Ae(t,m). If we take the integral on the range (-, t], then Ae(t,w) is no
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longer predictable. It is easily seen that this difference between (-=, t)

and (-, t] also appears significantly when we calculate the likelihood under
given data. It was shown in [5] that the stationary self-exciting point process
exists uniquely as a generalized Poisson cluster process, in which the cluster
structure is that of a birth process. For a simple special case y(u) = ae BY
(a<B), Ozaki [8] performed simulations for given parameters 6 = (v,a,B) such
that v>0, u<§, and obtained successfully maximum likelihood estimates from the
simulation data. It is easily seen that Assumption C is always satisfied by

the simple case above.

In general, we see for (C1l) - (i) that E{sup |Ar¥,(t,w) - Ae,(t,m)l} 5_2E{Ae }x
- 0

8'eU
f: sup vy (u)du with the rate of decrease of the left hand-'side depending
(V,M)EU H
on the rate of decrease of sup vy (u). Assumption (C2) - (i) and (C3) are
(v,U)eU H

satisfied similarly. For the integrability conditions it should be noted that
Ae(t,m) and Ag(t,w) in this example are uniformly bounded away from O. Thus

we can see that integrability conditions depend on the rate of decrease of

. 2 3
the tail of vy , 31—3 s A and ———341———, and are certainly satisfied when
i 861 aeiaej_ aeiaejaek

Y, has exponential form. Finally, though Ag(t,m) = E{Ae(t,m)[ Hy t} gives
the best approximation of Ae(t,w), it is difficult to get the exact likelihood

numerically. So, practically, we can use

AE(t,0) = v + 0y (t—u)dN(u) = v + Yy (t-t.)
0 0O 'u 0§$i<t i

This is predictable and satisfies the assumptions similarly.

IIT. ASYMPTOTIC PROPERTIES OF THE LIKELIHOOD PROCEDURE

Lemma, 1. Under the assumptions A we have
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(i) E{N(0,1)2} < =

(ii) lim%P{N(t,tﬂS) >2|H _.}=0,

80 ot
(iii) 1im %~E{N(t,t+a)2| H t} = lim %-E{N(t,t+6)| H t}.
&0 > §->0 —%,

Proof. (i) is obtained directly from (A3). For the proof of (ii) note that

L p{m(t,t+6) >2| H } <= Y i?p{N(t,t+8) = i| H }
§ = —m, T = ¢§ L —o, %
i=1
< T BNt t+8)2| H }.
=3 P —o,t

Then by (A2), (A3) and the dominated convergence theorem

E[lim %-P{N(t,t+6) >2| H _ . }] =1im L p{n(t,t+8) >2} =0

550 't 550 ¢
Therefore with probability one

lin 3 P{N(t,t+6) > 2| H__ ) = 0.

§+0 b

Proof of (iii). By (A3) we have

n-1
+
- ) N(E3 K1) 50 a.s. asn ~» 0,
s n’> n

nel oy k1.,
z N (—1{, )
0 k=0

k= n

k+1

since with probability one each interval [E; —H—J will ultimately have either

zero or one event in it. Also we have

n-1 n-1 n-1

+ + +

N(0,1) =} N(%; Eﬁl and § W, 55302 <{) w&, 555)}2 = N(0,1)2,
k=0 k=0 k=0

since all terms are non-negative. It therefore follows from the dominated

convergence theorem and stationarity that

nE{N (0, %02} 5> E{N(0,1)} as n + =,

that is, for any t > O

lim %—E{N(t, £+8)2} = lim

&0 &0

1

F E{N(t, t+8)} = E{N(0,1)}.
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Thus we have

1

E[1im 5

&0

E{N(t,t+8)2| H__ }]

} - lim %-E{N(t,t+6)| H

>t 50

»t

= lin[E B(N(t,t+8)2} - & E{N(t,t+8)}] = 0,
§ §
&0
and the integrand above is always non-negative since N(t,t+§) is a non-negative

integer-valued. This completes the proof.

Theorem 1. Under the assumptions A, (B2) and (B4)-(B6)

3Ly (8)
(3.1) E{——SEI— }9=90 =0, i=1,2,+-+,d
and
3L (8) oL (8) 3%n,.(9)
T T _ T
(3.2) ATy a8, }e=eo = 35 s, }e=eo
i J J
_ 13x 3
i
Proof. By (ii) of Lemma 1
.1 _ oaa L =
lim 5 E{N[t,t+8) | H__ .} = 1lim ¢ P{N[t,t+8) = 1| H__ .}
60 > 60 ’
= Aeo(t,w).

This means formally that E{dN(t)| H } = Ae (t,w)dt. Thus we have by (B2),
0

—,t
(B4), (B5) and (2.1) that

T T
dlog A 1 3
E{ [ =Bt aw(s)} _ =E[ [ =SS m{an(t)| H ,}] __
o 08 6=8¢ o A 385 —o,t° 1 0=0,
T
3\ 3\
=E{ [ at}, . =T E{z—},_
o 86~ 7e=8g 30, 0=0

for i = 1,2,+++,d. This implies (3.1). Similarly we have for i,j = 1,2,--°,d,



o s

~]12-~

32L,_(0)
E{—2_—}
36,06, 6=0,
9%
T .2 T 2
B 32 1 a2 1 aA 3
=B -] gmer [ Saee @) - [ 57 oo 5o, an(t)¥e_q
0 i 7J 0 i J 0 i J
T1ax ax 3132
= 50 -f %357 307 ®Voma, = T 26 30750 0mty
i %% 3

On the other hand from (BS5) and (B6) each of the following terms exists.

BLT(G) BLT(G)

B 0. Je=0,
i J

A(s) ax(t) dN(s)dt dsdN(t) 9dN(s)an(t)
E[f f 26, {dsat - x(:) - i(t) S !

i | +H g
{0<s<t<T} {0<t<s<T} {0<s=t<T} =50

1l

I, + 1, + I,

From the relation (2.1) and

E{aN(s)an(t) | H__ ,} = aN(s)E{an(t)| H__ ,} = M(t,w)aN(s)dt

for s<t, we have Il = 0., Similarly 12 = 0. For the third term I3 note that

(iii) of Lemma 1 means formally that

E[{dN(t)}2| H_

o) = ElaN(e)| H__ .} = Alt,0)at.

,t

Thus we see from (2.1) that

Qo

= 13X 23X = 13r 3r
I3 = E{fo X 36, 36, Wlog, = T B3 36, 30,7 0=6,

[+5)

This completes the proof.

Remark. We can get the same results as Theorem 1 except the last equality
* ® 4 3 3

for A¥ and LT, if we replace H_w,t with HO,t in (2.1) et al.

In order to carry through the further argument we need the following lemma

which is a version of the ergodic theorem.
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Lemma 2. Suppose (Al) holds. If & = {&(t,w); t>0} is a stationary predictable

process with finite second-order moment. Then
1 T
(3.3) lim & [ &(t,0)at = E{g(0,w)}
Treo 0

with probability one, and

dN(t)

NG E{£(0,w)}

.1 T
(3.%) llmffo £(t,0)

T->c0
with probability one, where A(%t) = A (t,w).
0
Proof. Since for each t,£(t,w) is a measurable functional of the point process

{N(s,t); s<t}, the stationary process { satisfies the ergocdic theorem (3.3).

The proof of (3.4) is not so simple. Consider

T
(T,w) = | &(t,0)
T]. w fo w )\(t)

T
an(t) [ &(t,w)at
0

[T]
=1 Yoo+ {n(T,w) - n([T],w)}
i=1

where Yi = n(i,w) - n(i-1,w), i=1,2,+<+,[T]. Then we see that E{Yil Yl,°",Y 1

i-1
= 0 by the same way as (3.1). This implies the Kolmogorov's inequality (see

[4] p. 235 for example). Since by the same way as (3.2) we see that E{Y%} are

finite and independent of i, we get with probability one that

1 [T]

TET-Z Y, > 0 as T > ». Thus %-n(T,w) + 0 with probability one. This and (3.3)
i=1

implies (3.L4).

The next lemma treat the Kullback-Leibler's information of the stationary
point proéesses.
Lermma 3. For the likelihood ratio on the unit interval [0,1],

A, (t,w)

1, 1 6
. = R - e
A (8938) = Si{rg(t,w) Aeo(t,w)}dt + Slog K;%Etaj—-dN(t), €0,
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E{Al(eo;e)} > 0 always holds, and the equality holds if and only if
Ae(O,w) = Aeo(o,w) a.s.
Proof. From (2.1) we have

Ae(O,m) A, (0,w)

E{Al(eo;e)}= E[Aeo(O,w){Xg;CSJKT -1+ log Xg%a:;y—}].

Thus the lemma is immediately obtained by the following elementary fact;

for positive x, log x - 1 + %—;:0 always holds and equality holds if and onlyA
if x = 1.

Remark. It is easily seen by the preceding proof that similar result is wvalid

for the non-stationary case, i.e. for

Ag (t,w)

Ae(t,w) (t), 0eo0

T T
A%(eo;e) =/, {Ag(t,w) - Ago(t,w)}dt + [jlog

E{A;(eo;e)} > 0, and the equality holds if and only if kg (t,w) = Ag(t,m) for
0
a.s. (t,wn).

Theorem 2. Under the Assumptions (Al), (B1)-(B3), (B5) and (Cl), the maximum

likelihood estimator eT = e(ti; Oépiéﬂ) converge to 0y in probability as T + .

Proof. By (B2) and (B5) we have

E{inf Ae,(O,m)} +~ E{2,(0,0)},
0'eU
and
_ Ae (0,w)
E[Aeo(O,w)log{AeU(O,w)/z?iule.(O,w)}] > E{Aeo(O,w)log —xgpgjgy}

as the neighbourhood U of 6 shrinks to {6}. Let Uy be an open neighbourhood of
6g. Then by Lemma 3 and (B3) there is a positive e such that E{Al(eo;e)} > 3e
for any 6e0\Ugy. Now for any 0e0N\Uj, we can choose U small enough so that

E[inf A

(0,w) = A, (O,w) + A, (0,w)log{r. (0O,w)/sup A
o' el 8y 8o &) :

v 6'eU

6! e,(O,w)}]

> E{A; (80:8)} - e.

Select a finite number of es such that US =U. , 1l<s <N, cover ®\Uy. Since

0
s
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inf Ae,(t,w) and sup Ae,(t,w) are predictable processes, by Lemma 2 there exists,
6'eU 0'eU

for any € > 0, T

0= To(e) depending on sample such that for any T > TO and

s = 1’2,...’1\],

1 1
(3.5) =1.(6g) - sup = L_(6)
T T T"T
0eU
s
;:E'J {inf Ae(t,w) - Aeo(t,w)}dt + T—J log P ) dN(t)
0 6eU 0 0
s eeUS

;=E{Al(90;e)} - 2e > €.

It follows that there exists Tl = Tl(e,UO) > To such that for all T > Tl

(3.6) sup L_(8) > sup L (8) + eT.
9€U0 GGG\UO

From (Cl) we easily see that the inequality (3.5) and (3.6) remain valid for the
case of Ag(t,m) and Lé(e) with probability going to one as T + «. But (3.6)

means 8eUp. This completes the proof.

Theorem 3. Under Assumptions A, (B2,4,6,7) and (C2) the Hessian

{%'32L§(°)/3913°j}i,j=1,2,--.,d is asymptotically negative-definite in some

neighbourhood U of 6.

Proof. Let U be some neighbourhood of 6;. If 8eU, then by (BL4), (BT) and the

mean value theorem we get for i,j = 1,2,-+,d

Ly (6) ;_JT 320 dN(t)
T

T
1 1 (71 ax 8
= { - at}|, - -J = | aw(t)
T 39,936, 0 30330, ) 80~ T Jo A 38 38,60
1 (T 1 (T
- T’J ale - 6p|H(t,w)dt + E'J Ble - 8g|G(t,w)an(t),
0 0

where IO - 60| denotes length in Rd, and a, B are random variables such that

lal, IBI < d. From (B4,6,7) and Lemma 2 we have as T » «
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1 [T a2 |
X 30,36, '0
177

aN(t) - o,
0

=

OdN(t) - Iij(eo),

@

rT

=

H(t,w)dt » E{H(O,w)}

)

and

1 [T

T G(t,w) an(t) -~ E{1(0,w)G(0,w)}
‘0

with probability one. Suppose € > 0 is given. Choose 8§ = &(e) in such a way

that § < e and {8; |6 - 89| < 8} CU. Having chosen §, choose T = To(e)

0

large enough that if T > T. then with probability exceeding 1 - e.

0

T .2 T 2
1 J 322 | 1 J 1 92
- = | =, at += | =—=2—|_ an(t)| < s,
T Jg aeiaej 80 T Jq A aeiaej 8o
(3.7)
1 (T -1 ax aa
ERUBES SIS AN CIEE
0 i J
and
1 (T 1 (T
(3.8) |—-J —oH(t,w)dt + —-J BG(t,w)an(t)| < 2a3m3
T Jg T Jq

for i,j = 1,°**,d. Choose also & so small that {8; |6 - 6,| < §}CU and so
small that if (oij) is aéy.dxd—symmetric matrix with icij - Iijl <.26(1+d3M3)
for i,j = 1,2,-+-,d then (oij) is positive definite. Thus from (3.7) and (3.8),
for any 6 such that |6 - 8g| < 6

aZLT(e)

i __T °
T 36,96,
1773

+ Iij(eo)l < &+ & + 2a3M38

holds with probability going to one as T + =. Therefore from (C2) with
probability going to one, the matrix {32L§(e)/aeiaej} is negative-definite for
every 6 such that |6 - 84| < 6.

Remark.  In the following case the Hessian is always non-positive definite
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a.S. W3
d
)‘*(tsm) = z e.gé.(-(t’w) + ﬂ*(t,w), E’).eg n > 0 Q.S.W,
) .2 i’ i
i=1
d
Ag(t,w) = exp{ } 0.8%(t,0) + n*(t,w)},
i=1 t

where &, n are some predictable processes with respect to the corresponding

point processes respectively. 1In fact,‘we have for any real ui, i=1,2,+--,d

a aZL;(e) T % | )
wu, == -| { u, E¥(t,w) /A% (t,w) }2aN(t)
i,3=1 i’J aeiaej Joj=p 11 0
¢T d ,
= - ’ * 2 *
JO.{izluigi(t,w)} A (t.w)dt,
respectively.
1 LE(e)
Theorem 4. Under Assumptions A, (B2,4,6) and (C3) ;;:—56———— converges in law
T
to N(0,I(8p)) as T + =,
Proof. Since for 0 < S < T and i = 1,2,++-,d
3Lp(89) . 3L (60)
E{—SEE———| By} = "‘56;’"’* E{A(S,T) | Hy

where HS =H g° and using (2.1) and by definition of conditional expectation
s

T
_ 3, AN (t) _
E{A(s,T)IHS} = E[fS FY L dt}leolHS] = 0,

‘We see BLT(GO)/BG is a martingale. If we put

3Ly (8¢) _[T]

v Ak - 1, k) + A([T], T),

k=1

then the sequence {A(k-1, k)}k_l o is a stationary ergodic martingale
=1,2,--

[T]
Y A(k-1, k)
k=1

differences with E{A(0,1)A(0,1)'} = 1(6p) by Lemma 1. Thus [T]’l/2

converges in law to N(0O, I(6;)) as T » « by the central limit theorem for
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—1/2A(

martingale differences (see [2]). On the other hand we see that T [T],T) -0

in probability as T + «, Assumption (C3) completes the proof.

Remark. If (A2) or (A3) do not hold, the covariance matrix is different from

) Py
_lL_____]

I1(6y) as defined in (B6). For example E{A(0,1)A(0,1)'} = E[ﬁl'ae Y
i

Elan(t)2[H__ 1 = u(t,w)dt.

,T

_Theorem 5. Suppose the maximum likelihood estimator 6_ satisfies the equation

T
aL§(e)/ae = 0. Then under the assumptions A, (B2,4,6,7) and (C2,3,4), as
T > o

- -1
(3.9)  /T(6; - 89) + N(0,I(8g) ")
and

%( g _ 1% 2
(3.10) 2{LT(9T) LT(GO)} + X3
in law.
Proof. From (C2) and (Ck) we have the following with probability going to one
as T » oo,

%
1 aLT(eo)

_ 1 A 5
0= KL T

32L%(8g) .
~esgr "T(0 - 90

- T T -
+/EIeT - 8g)'{- %-J H(t,w)dt + %-J G(t,m)dN(t)}(eT - 8p)
0 0

where H, G are given in (BT), and a, B are random matrices with lai , ]Bijl < a?/e.

51
Since IBT - eol + 0 as T > », we get from the last part in the proof of Theorem 3

1 3L§(eo) - -

for some €q such that €p 0 in probability as T + . Hence we have (3.9) by

Theorem 3 and by Theorem 10.1 of [2]. Now we have from (C2) and (Chk) with

probability going to one as T =+ « that
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. 3L¥(8g) . . 32L§(00) .
2{L%(6) - L%(Bo)} =2 ——357"—'(9T - 8p) + (ST - 8g)" —33367——-(6T - 8g)
. T T
+ |6, - 0g]3{ [ oH(t,w)dt + J BG(t,w)aN(t)}
T 0 0

~

for eTeU, where o, B are some random variable such that Ial, lBI §:d3/3. Since
the last term tends to zero in probability, we get (3.10) by Theorem 3 and
Theorem 4 and (3.11).

We now state and prove the Crédmer-Rao inequality for finding a lower bound

of the variance of the estimate. TLet 0 < t(w) < t,(w) < ,ovy <t . (w) <7
be the observation on the interval [0,T] from the point process Pg(-) which has
the Radon-Nikodym derivative p%(w,e) = exp{fg log Ag(t,w)dN(t) + fg (1 - Ag(t,w))dt}

with respect to the standard Poisson process, (see Theorem 13 in [6] for example).

An estimate GT(w) = GT(tO’...’tﬁ—l)’ not necessarily unbiased, is wanted for

the vector parameter OEOCZRd. Consider the following additional conditions.

Conditions D

(p1) Ee{GT(w)z} < ® for all 6e0.
T 1 axg(t,w) axg(t,w)
(D2) EG{J ¥ (t.0) 30 36 dt} < = for all 6e0 and i,j=1,*'",d.
0 i J
IN¥(t,w)
3Tk - 67
(D3) 56 To Mg(towlat = SO —5 dt and
2/t log A¥(t,w)dN(t) = s §—-10g A¥(t,w)aN(t) for all 6e0
96 "0 B’ 0 36 6
fl_ * = 9«
(D4) =5 IGT(w)pT(w,e)H(dw) IGT(w) v pT(w,e)H(dw) for all 60,

where 11 is the probability measure of the standard Poisson process.
Theorem 6. If B {6;(w)} =6 + b,(6), and b;(0) is differentisble, then under

the regularity conditions D
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9 -1 9 . 1
b, (8)}] > {I + SEbT(e)}I§(e) {1 + aeoT(e)} >

Ee[{GT(w) -6 - bT(G)}'{éT(w) -8

where I is dxd - identity matrix, A > B means that the matrix A - B is non-

negative definite, and

T INX(t,w) oA*(t,w)
1#(g) = E { 1 ___ 0 8
T ) O,)@é(t,m) 306 26"

dat}

Proof. By (1.2)
Ee{ST(w)} = IGT(w)Pg(dw) = féT(w)pé(w,e)H(dw).
Thus by (D4) and (1.2)

9 x
20 P

%g‘Ee{GT(m)} 78 (w) (w,0)M(dw)

IGT(w){%E-log p%(,0)} p(w,0)N(dw)

E (6, (u)3z log pk(w,0)}
By (2.1) and (D3)
T 1 vkg(t,w) T 3A*(t,w)

- an(t) - J —— 4t} = 0.
*
0 Ae(t,w) 00 0 a6

Ee{gg-log p;(waﬁ)} = EG{J

Then by Schwartz's inequality we have for any vector s,tst

[£'{I + g—ebT(e)}s]z - [t'Cove{GT(w)g—e log p%(w,0)}s]?

§=Ee[t'{5T(w) -6 - bT(G)}{GT(w) -0 - bT(e)}'t]Ee{s'%Eiogp¥(w,e)%671ogp§(m,e)s}.

Put

s = E {é—-log p%(w,e)a

-1 3
6135 ST 1og p%(w,e)} {I +—=p_(8)}'t.

96T

Then we have for any vector teRd,

£t {I + gg-bT(G)}Ee{gg-log p%(w,e)ggv-log p%(w,e)}'l{l + gng(e)}'t
< t'Eg[{6,(w) - 8 - or(0)}{8,(w) - 68 - bi(6)}" ]t.

Note that by the similar method to the proof of (3.2), we have
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¥(w,0)}

3 9
— ¥ ———
E {== log pT(w,e)ae, log ox

606

T A% (t,w) ¥ (t,w)
= EG{J X 0 0 atl.

AE(t,0) 36 30"
o ©
This completes the proof.

By the Assumption (C2) it is easily seen that

1
T EG{

T IN¥(t,w) 9r*¥(t,w)
J 18 6 at} » 1(8).

* 1
o Ae(t,w) 36 36

Therefore together with Theorem 4 we have the following.

A

Theorem 7. If the maximum likelihood estimator GT satisfies the conditions of

~

Theorem 6, then it is an asymptotically efficient estimator, that is, ST

asymptotically attains the lower bound of the variance of estimates.

IV. CHARACTERIZATION OF POISSON PROCESSES BY A MAXIMUM LIKELIHOOD ESTIMATOR

Suppose a étationary delayed renewal process which has a survivor function
1- Fe(t), 0 <t £ =, where Fe(t) is a probability distribution function with
density function fe(t) such that

(4.1) Jm tdFe(t) = Jw tfe(t)dt = u(e).
0 0

Remember the definition of the maximum likelihood estimator given in Section 1,

~

that is, 0 maximises the likelihood (1.2) under the observation from the

T

stationary delayed renewal process. Assume the following conditions.

Conditions E.

(E1) For any t > O the maximum likelihood estimator 8 ='{5T(w)} is a measurable
function from (t,=)xQ onto ©, that is, for any QeO and for any t > O there are
T(p) > t and w(B6)eQ such that 6 = BT(G)(w(B)) maximises the log-likelihood (2.3).
(E2) 1o0g(1 - FQ(S)) and log fe(s) are differentiable in 6.

Then we have the following.
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Theorem 8. The maximum likelihood estimator depends only on T and n = N(O,T)
) . _ -u(6)t

if and only if Fe(t) =1-e where u(6) > 0 for all 6¢0.

Proof. See Example 1 for the proof of "if" part. Now consider the "only if"

part. Suppose 6% is given. Then by (E1l) there are T(6%), n(6¥%)

Il

N(0,T(6%))
.o * i mi : % = *
and .t ’tn(e*)—l such that 6% maximises (2.3). Now fix n n(6¥%) and

T* = T(6*). Then

(k.2) 0 = gE-L§*(e*)
3 nt-ly 3 .
= 55 log “(e*)(l Fe*(t )) + 21 log fe*( st l) + 56—1og(l—F6*(T*~tn*_l)).
Put
(4.3) Ge(s) = g 108 fe( s), H (s) 5g Lo u(e)(l -F (s))

1]

Ke(s) ae log(l - Fo (T* - s)) and s, —t - ti—l’ i=1,2,-++-,n¥ - 1, s

] 0 tO
Then Ge(°), He(') and Ke(~) are measurable functions such that

n¥-1 n¥-1
(h.k) Hye(sg) + Z Goals;) = Ke*(.Z 5;)

i=0

By (E1) and the assumption of the theorem 555 i=0,1,+++,n¥-1, are arbitrary
positive numbers independent of 6% and T¥. Therefore the equation (4.3) is a
kind of Pexider's function equation (see [11] Chapter 3 for example), and we

have the general solution for s > 0O

a(o*)s + p(6*), H.(s) = a(6*)s + c(6%),

o
¢
W
~—
n

a(6%)s + (n* - 1)b(6%) + c(6%*).

—
D
~
1l

Since 6% is arbitary and by (E2), ai8), b(8) are indefinitely integrable,

solving the first differential equation (4.3) above we have
fe(s) = B(0)e .

Since fe(t) is a probability density function satisfying (4.1) we get
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u(e)t.

£,(t) = u(o)e”

Therefore

1l - e_U(e)t.

1

Fo(t)
This completes the proof.

s

Corollary. If Fe(t) = F(6t), 6 > 0, then N(O,T)/T is a maximum likelihood
estimator of 6 if and only if F(t) = 1 - et

Remark. It is easily seen by the Palm-Khinchine theory that N(0,T)/T is an
unbiased estimator of 6, that is, 6 is equal to the intensity of the stationary
delayed renewal process.

Remark. It is easily seen alsovthat the estimator N(0,T)/T is not always
asymptotically efficient estimator of the intensity 6 of the renewal process.

In fact we see that

lim TE, {n(0,T)/T - 6}2 = 283,
T-3o0 0

where o2 is the variance of the failure-time distribution.
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Chapter 2

ON LEWIS' SIMULATION METHOD FOR POINT PROCESSES

(Published in IEEE Transactions on Information Theory, Vol.IT-27, No.1, Jan., pp.23-31, 1981)

ABSTRACT

A simple and efficient method of simulation is discussed for point processes
which are specified by their conditional intensities. The method is based on
the thinning algorithm which was introduced recently by Lewis and Shedler for
the simulation of non-homogeneous Poisson processes. A proof and algorithms
are given for past dependent point processes containing multivériate case. The
simulatibns are performed for some parametric conditional intensity functions,
and accuracy of the simulated data are discussed and demonstrated by the

likelihood ratio test and the minimum AIC procedure.


kutsuna
タイプライターテキスト
(Published in IEEE Transactions  on Information Theory, Vol.IT-27, No.1, Jan., pp.23-31, 1981)
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I. INTRODUCTION

Any point process (Nt’Ft’P) on a finite interval (0,T] is a submartingale

and therefore by the Doob-Meyer decomposition we get Nt =m, + At’ where m, is

t

£ is the natural increasing process. It is known that

t
(Ft,P)—martingale and A

there is a predictable process (A ) such that A, = fg A ds if and only if P

t’Ft t
is absolutely continuous with respect to the standard Poisson process PO;
furthermore X = {At, 0<t<T} corresponds uniquely to the process P, and the

Radon-Nikodym derivative is given by

P _ T T .
ar, = exp{f0 log Atht + IO (1 At)dt}.

Similar result is obtained for multivariate or marked point processes ([7], [8]).
The main object of this paper is to discuss the applications of Lewis'
thinning simulation algorithm to any point process which is absolutely continuous

with respect to the standard Poisson process. Récently, Ozaki [11] generated
simulation data for Hawkes' self-exciting processes by making use of a recursive
. structure. However his method is not fast enough unless the process has a simple

structure, because given a past history of the process t "',tn and a uniform

1>

random number U . from the interval (0,1) we have to solve the equation

1

= 3(t |t -,tn) by Newton's iteration method to get the next point t

Une1 n+l! 71 n+l’

vhere S is the conditional survivor function S(tltl,--',tn) = exp{—fz A(sltl,--',tn)ds}.
We do not solve the equation to get the next point. The idea of simugating
these point processes by thinning is developed using algorithms due to Lewis and
Shedler [9] for the simulations of non-homogeneous Poisson processes.

In section 2 we will give the simulation method and a proof for past dependent

point processes containing multivariate cases. Also some typical algorithms

will be given. In section 3 we will give some examples of parametric intensity



_28-

functions for the simulations, and obtain their maximum likelihood estimates
from the simulated data. Also accuracy of the simulated data will be discussed
by the likelihood ratio test or the minimum AIC procedure. Numerical results

are listed in Appendix.

ITI. SIMULATION OF POINT PROCESSES

Consider a point process (N,F,P) = {Nt’F ,0<t<T,P} on a fixed interval

t
with its F-predictable intensity process A = {Xt}, where F = {Ft} is a family

of right-continuously increasing o-fields. Suppose we get a positive F-predictable

piece-wise constant process A¥ = {Ai} which is constructed pathwise in such a

way that At < At, a.s., 0<t<T. Then A*¥ can be an intensity process of a locally

homogeneous Poisson process (N¥,F,P) = {Ni,F P} with piecewise constant

t’

intensity changing its rate according to the past history F The main result,

6
which is formally similar to the one given in [9], is described as follows:

Let ti < 1—}5 < et < tﬁ* be the points in- (0,T] of the process (N¥,F,P).
T

Delete the points tg with probability 1 - At /A: for j = l,2,°’°,N§. Then the
J J
remaining points {ti} form a point process (N,F,P) with the conditional intensity

A= {At} in the interval (0,T].
It is readily seen from the predictability of A* that the constructions of
A%, t§ and ti should be performed sequentially in the following manner:
1. Suppose that the last point before time t have just been obtained. Then
construct Af which is T -measurable, pieceWise.COnstant and A% 2 A, for t 2t
2. Simulate~homoge;eous Poisson points t§ (>ti) according to the
intensity Ai.

3. For each of the points {t;}, the probability At*/Ai* is given
Jod

conditionally independent of t¥* under the past history Ft*'
J N

. . i i : i ¥ (>t.).
L t;,, is the first’ accepted point among 3 ( 1)
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Details of algorithms will be given later.

Now by generalizing the result to a multivariate point process, we .have

the following proposition:

Proposition 1. Consider a multivariate point process (Np,F,P), p=1,2,°*,m on
an interval (0,T] with their joint intensity (A,F) = {AE,Ft},p=l."',m. Suppose
we can find a one-dimensional F-predictable process Az which is defined

pathwise satisfying

m

z AEE -<_—_ )‘?E, 0 <t f:_T, P—-a.s.,
p=1

and then define

m
0 _ : P
AL = A% ) R

t t p=1

Let ti, t;,-o-,t§§ e (0,T] be the points of the process (N¥,F,P) with intensity
process Ai. For each of the points, attach a mark p = 0,1,+++,m with probability
Ai%/kiﬁ' Then the points with marks p = 1,2,°°**,m, provide the multivariate
pognt ;rocess which is the same as given above.
Proof. Define a random measure for the finite marked process (using the
notation in [T7].)

M(dt,p) = N¥(at)I(t,p), p=1,""",m,
where I(t,p) is the transition random measure of the marks under the condition
that there is a point at t. As a result of the conditions of the propositicn,
I(t,p) has the following properties:
(1) 1I(t,q) = Gp(q) with probability AE/A? for p,q=0,1,2,--,m, where Gp(q) is a
Dirac's delta function.
(ii) For fixed t, N*(at) and {I(t,p); p=0,1,-";m} are conditionally independent
given F, .

t

Then, for each mark p=1,2,--+,m, the intensity measure of the marked point

pres
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process is given by

v(dt,p) = E[M(dt,p) | F,]

E[n*(at)1(t,p)| F]

E(w#(at)| F IE[I(t,p)| F, 1.

Now by definition

1

* *
E[N*(at) | F 1 = Aat,

and also

E[1(t,p)| F 1 = 1-P{I(t,p)=1| F} + 0-P{I(t,p)=0]| F,}

]

Aﬁ/xt.
Therefore for each p = 1,2,-+-,m, we get
v(dt,p) =.xﬁdt.
Since the predictable random measure correspond uniquely to the multivariate
process (see[T], [8]), this completes the proof.

We can now give some cases of typical algorithms according to the proposition.

Mgorithm 1. Bivariate (doubly) Poisson process with intensity process

{xf(w),Ft}, p=1,2.

1. Get a path function of the process wp(t) = Xz(w), 0<t<T, p=1,2.

2. Take a piecewise constant function w*(t) such that ml(t) + w2(t) < w¥(t).
For efficiency of simulation we should take w*¥(t) as close as possible to
wl(t) + wz(t).

3. Simulate stationary Poisson processes for each interval of constant

intensity. Denote the points by t¥, tX,---, t¥

2’ N%‘
4, Setk=1,1=0and j=0.
5. Independently generate a uniform random number U, on (0,1).
6. If U ;=wl(t§)/w*(t§), set i equal to i + 1 and tgl) = t;,
7. If Uk éz{wl(ti) + w2(t§)}/m*(t§), set j equal to j + 1 and tg?) - t;_

8. Set k equal to k + 1. If N% < k, then stop. Otherwise go to 5.
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Now consider the case of univariate self-exciting processes. Since
Ft = G{NS, O<s<t}, the intensity of the process is given by a function of t

and the points ti before t, i.e. A, = A(tl tl,"',tn). Here we have two types

t
of the intensity process.

Consider the case where the path function of a intensity process is
decreasing if there are no more points occur. We note that the predictability
of At implies left-continuity of path functions. We assume here that the

minimum value of the intensity function is p and the jump size at each point is

not larger than a, and A?'s are value of the piecewise constant function, such

. *
that A(t]| t,,-0+,t ) < A% for ¢ S8, St <SSt s say.
Algorithm 2.
¥ = =
1. Set AO ¢ and put S5 0.
= _ *
2. Generate U, and put U,y log UO/AO.
3. If u, < T then put t, = u,. Otherwise stop.

4, Set i =j=%k=0and n = 1.

* = oo .
5. Set k equal to k + 1 and put A¥ x(tnl tys ,tn_l) +
6. Set j equal to j + 1 and generate Uj'
T. Set i equal to i + 1 and put u; = -log Uj/Ai'

8. Fut s; =s If s, > T then stop.

-1 + ui.
9. Set j equal to j + 1, and generate Uj'
10. If Uj é:k(si| tl,"-,tn_l)/Ai then set n equal to n + 1, put tn = s
and go to 5.
* = e .
11. Set k equal to k + 1, put A¥ A(sil .77 ",t, ;) and go to 6

. If a sample function of the intensity function A(t[ t ~~-,tn) is not always

l)

decreasing, but only has a decreasing tail, then we can define a process

A®% (4| tl,'°',tn) which is always decreasing and satisfies

At tl,"',tn) < AEE(t tl,"’,tn) for t <t (see Example 1). Replace
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A(tnl tl’.."t

) by A¥E(t |t ) by

n-1 107t y) B0 5 and Msy [ byt
A**(sil tl,-o-,tn_l) in 11. Then we can have the point process with intensity A
by using a modified Algorithm 2.

Assume now that the intensity function At(w) = A(t| tl’f'.’tn) is
monotonically increasing unless any more points occur. In the following
algorithm the interval (0,T] is divided equally into subintervals (kr,(k+l)r],
where the length r should be determined suitably in accordance with the
efficiency of the algorithm.

Algorithm 3.

1. Seti=n=1.
2. Put A} = A((i+1)r| ti,--',tn).
3. Generate a homogeneous Poisson process with intensity li on the
interval (kr,(k+1l)r].
4, If the number of the points on the interval, say Ni, is zero, then go
to 11.
5. Denote the ordered points on the interval (ir,(i+l)r] by s¥, s§,° ',s§§.
6. Set j = 1.
T. Generate Uj’ uniformly distributed between O and 1.
8. 1If U > k(s§| 5.t )/X¥, then go to T.
9. Put tn = s? and set n equal to n + 1.
10. Set j equal to j + 1. If j ;:Ni, then go to T.
11. Set i equal to i + 1. If (i+l)r < T, then go to 2.
12. Stop.

Thus t .+« are the data which are required. It is recommended for the

1’722
numerical accuracy in 4 to adopt the method which generates a Poisson random

number Ni and then uniform random numbers from (ir,(i+l1)] according to N;.

If A = At(tl t ---,tn) is only eventually increasing (unless any more

1,
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points occur), a modification similar to that for Algorithm 2 is.possible.

That is to say, construct a function A¥*(t| t ---,tn) which is increasing in

l:
(ir, (i+1)r], and satisfy A(tl tl,---,tn) ézx**(tl t ---,tn) for ir < t é:(i+l)r.
Then change 2. of Algorithm 2 as follows;
* % = \%%((3 oo
2%. % = A ((i+1)r| tytent ).
It is not difficult to construct simulation algorithms for multivariate

mutually-exciting point processes, or mixed doubly Poisson and self-exciting

point processes in terms of the above algorithms.
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III. SOME EXAMPLES AND DISCUSSIONS

Hawkes' Self-Exciting Process

The intensity function is given by

A(t) = A(t] tl,~--,tn) =y o+ fg v(t-s)an(s),

vhere u > 0, v(s) > 0 and f; v(s)ds < 1 for the asymptotic stationarity of the
process. Hawkes and Oakes [5] first gave the author the idea that the simulation
for the process may be constructed through the simulations of non-homogeneous
Poisson processes. Indeed it says that a Hawkes' self-exciting process is
nothing but an immigrant-birth process which is composed of homogeneous Poisson
immigrant with rate p and non-homogeneous Poisson decendants Qith rate v(s).

As a parametrization of v(s) Hawkes [L4] used an exponential, vw(s) = ae B,
In this case we can adopt Algorithm 2 for the simulation. Ozaki and Akaike [12]

_BS

suggested a generalized parametrization v(s) = E a.sJe , where a's and B (>0)
3=0
are suitably restricted to satisfy v(s) > O and fg v(s)ds < 1. This is a

decreasing function for sufficiently large s. Thus we have a function v¥¥(s)

P + s s
vhich is always decreasing and v(s) < v¥¥(s) for s > 0, say v¥¥(s) = Y aj(j/B)Je J
J=0

where aT = max(aj,O). Therefore making use of a predictable intensity

o

vE¥(g) = p + fg v¥¥(s)dN(s). where N(s) is the point process generated by the
intensity function A(t) = p + fg v(t-s)dN(s), the modified Algorithm 2 can be

. . s
applied for the simulation. The jump size for this case is E aj(j/B)Je J,
Jj=0

Suppose t,, t,,**,t in (0,T] are the simulated data. Then the log-

likelihood function is given by

e~

oglu + § a R, (i)} - uT - E § a.8,(T-t. ),
. Jd J7d i

L (0’ sttt ,0 ’B) =
0 P i=1 3=0 i=1 j=0

T
i
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where Rj(i) and Sj(t) are given recursively in the following way:
_ _ _ (4 _ Bt _ Lk -pt
Set ty = 0, Ry(1) =0, 5,(t) = (1 - e "")/gand A (t) = toe .

Then for j = 0,1,2,+++ and 1 = 2,3,++-,

J .
Rj(i) = Aj(ti -t ) +k£0 5k A (e, -6, IR (1-1),

and

81,0 (8) = ((3+1)5,(8) = &, (£)}/8,

where the notation jCk means the combination factorial.

The gradient vector and Hessian matrix of the log-likelihood function
are also written recursively using the function above. It is worthwhile to
note that the simulation can also be much faster if we make use of the recursive

structure of the intensity function A(t| t ~°-,tn). That is,

l)

A(tn+l| tysreent ) = u +j§0 ajRj(n+l).

Linear Wold Process

The intensity function is given by
A~(t) = u + al(t—t(:L)) +kg2 ak(t(k—l)_t(k)),

where u and the a's are non-negative parameters and t( is the k-th last point

k)
before t. The point process with this intensity is always asymptotically

stationary (see[3]). It is easily seen that the simulation of this point process

i
o 1 +1

- where By = M +k§2 ak(tn4k+2 - tn—k+l) and U ., is a uniform random number from
(0,1).

is performed by the simple lati = + - 2 - 1/2
P y ple relation tn+l tn { Bn + (Bn 2a. log Un ) }

b

However we would like to adopt here the modified Algorithm 3 with setting
* % “ee = -
ARE (L]t 6 ) = u o+ max (a,)(t t(k)).

2
: O<i<k
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Suppose t t

10 toaeees tn' are the simulation data on the interval (0,T].

Then setting t., = 0 and tn

o T, the log -likelihood function is given by

0

n P
L e = | -
p(Ms Opseees ) .Zl log{y + kzl o (ty gt 4 )}

i
n+l

P

: 2

=0 - ) fog (-t )72 0 Yo (Bt )y -ty )
i=1 © k=2

One of the nice properties of the model is that Hessian matrix of the

10E;1ikelihood function is negative definite everywhere with respect to the

parameters (see [10] p.255 for example).

Stress—-Release Process

Vere-Jones [14] has suggested models for a series of big earthquakes.

One of these models is defined by the intensity function

a+Rt-yN(t-)

A(t) = e , where N(t-) = N[O,t).

(A similar process is discussed by Isham and Westcott [6]). This is
asymptotically stationary and mean intensity rate is 7Yy/B. Although this

process is obtained by the simple relation

= _:L -a-Bt n+Yn
t o tn + 2 log {1 - Be

we &gpply here Algorithm 3 for the simulation.

“log U_ },

+1

Given simulated data tl, t2,...,

log-likelihood function (setting t_.=0 and tn+l=T)

t on the interval (0,T], we have the

0

. n n+l
LT(a,B,Y) = ) loglo+ Bt,-y(i-1)} + )
. 1 .

i=1 i=1

Q&-Y(i-1) ¢ Bti g Btiy e

Nonlinear Hawkes' Type Point Process

Consider an intensity function of the form

[ s
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Mt) = p+ fg v(t-s)aN(s) + fgjg T(t-s,s-u)aN(s)an(u),
vwhere >0, V(s)>0 and m(s,u)>0. It is necessary for the asymptotic stationarity that

2
vV + 7y <1 and (1 -v - no) > hm(p+ nc),

where V = f: v(s)ds, Ty = fz,ﬂ(s,o)ds, T = fgfz m(s,u)dsdu and Mo =

fzf: m(s,u)C(u)dsdu (C(u) is an auto-covariance of the process). Unfortunately

vy

we cannot evaluate ﬂc nor C(u). We can only hypothesize the domain. For example,

the noise level U of the Poisson must be small enough for the asymptotic stationarity.

A parametric example of V(s) and m(s,u) is

-Bs e—B(s+u).

v(s) = ae and mw(s,u) =y

Algorithm 2 is applied for this case. Now suppose the simulation data tl, t2,...,

t on the interval (0,T] are obtained. Then the log-likelihood function for the
n

case is
n
Lol @, B,Y) = izl log {u+aR) (1)+yRg (1)} - T
n n
- %- b {1-e BTty _ %- y {1-e'B(T“ti)}Rz(i),
i=1 i=1

where Rl(i), R2(i) and R3(i) are given recursively as follows;

Ri(l) =0, R2(l) =1, R3(i) = 0,
Rl(i) = e’B(?i'ti_l){Rl(i-1)+1},
Re(i) = e‘B(ti“ti_l)-R2(i-1) +1
and R3(i) = e'B(ti*ti-l)-{Rg(i_l) + R3(i-1)}.

The gradiant and Hessian are given similarly. It is worthwhile to note that

the simulation is much quicker if we make use of the recursive structure.
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Bivariate Wold Process

The irtensity functions are given by

. () (1) (1)
2 2 p)
Upte) Mp) Uy 8=ty k=R SO (0 )= k)

The coefficients must be non-negative for the asymptotic stationarity under condition tk

thgnd u2 are strictly positive. If W 0 or W, = O then there are explosive
cases even if the other coefficients are non-negative. For example
consider the simplgst case p=1. If ul > 0, u2 o, a = 0, Bl > 0, Yl >0
and 61 = 0, then this provides an explosive process.
Consider an asymptotically stationary case with p = 1. Let {t§l)}, i=1,2,°*"*,n and
{tgz)L J=1,2,°**,m be the data from the model. Then the log-likelihood

function is given by

LT(U M0y B,Y,G) = L(l)(u ,0,B) + L,;z)(uz,Y,G)
and
Lé,l) = lz l;Log {ul+a(t(l) (l))+8(t(l)-t§fg)}
m
_ X (t(l) (l))2/2 B 2 (t(e) t(2))2/2
m l i=1 j=1 J
Léz) = jZ:llog {u +Y(t(2) El;)+6(t( )_ 521)}
voL(2) L (2)2 3 (1)
- uT - 6321 (,77-t,71)7/2 - Z 1)
(2) . . . (2) (1) (1)

where t( ) is the last point on the line t before ti , also t( ) is the

(1) before tge), and t(l) 82)= 0. Notice that the

minimization of L is equivalent to the separate minimizations of L(l) and

L(2)

T > provided the parameters are independent.

last point on the line t

The simulation algorithm is performed in accordance with Algorithm 1 and

modified Algorithm 3.
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Bivariate Hawkes' Mutually Exciting Process [U4]

The intensity function are given by

ﬁ}t)
:@(t)

vhere v, ., (s) > O.
ij =

1]

n o+ jo vy, (b-s)an (s) + [© v (t-s)an (s),

u, o oy (t-s)aN, (s) + j oo (t-s)an, (s),

For the asymptotic stationarity it is necessary that the moduli of a

eiggn—values of the matrix {vij} are less than 1, where Vij = f: vi.(s)ds.

Parametrizing the functions vi,(s) = aije is,‘we can simulate the data in

accordance with Algorithms 1 and 2. For data {t§l)}, i=1,2,+++,n and
2 .

{tg )}3 J=l,23 M

+,m, the log-likelihood of the model is

LUy 5055 By 5By 50 450 55057 5055)

_ (1) (2) .,
= L T(ysB50 0500 5) + L (1,580, 50,,)
and
(l)
() 2By 0,0 122 log fuy + oy R (1) + o) R ,(3))
n (1) a m (2)
- uT - gl Yo Po(TtT )y 7%2- ] (e B (Tt )
1 i=1 1 j=1
(2) -
Ly, (u2,82,a21,a22) = jz2 log {u, + o, R, (3) + o R0 (5)}
o m (1) o m (2)
- u,T - jfi' ) {1-e"B2 (Tt )y _ 7§§v ) {1-e"82(T'tj )},
2 j=1 2 j=1
where Rij's are given recursively as follows;
R, (1) =R ,(1) =R, (1) = R,,(1) =0,
i B (£ (l) (l))
Rll(i) = i-17+{1.0 + R, (1-1)},
(1) (1) - (1) ,(2)
R12(l) = e‘Bl(ti -t )-Rlz(i_l) + {Z‘ (1) l) —Bl(ti —tj )
j: t t }

i-1="j



~Lo-

(2) (2)) e (2) (1))
1(j—l) + E e 2 7] i
{i: (?i_ il) €2)}

B (t
21

and
(2)

. (2)
R (5) = e Pplt 10010 + B, (3-1)).

22
The gradient vector and Hessian matrix are given similarly in a recursive

formula. Also the simulation algorithm should be performed recursively for

the efficiency.

IV. CONCLUDING REMARKS
In this section we discuss whether the simulation data are statistically
accurate enough in each case. 1In [10] a collection of the regularity condit%ons

is given to prove the following:

1. The maximum likelihood estimator is consistent, i.e. 8T+60 a.s. as T,
2. /T(BT—GO) is asymptotically normal according to N(Q_I(e ) ) as Too,
where each component of the Fisher's mean rate information matrix is given

I;;(8p) = E{(l/Ae)(dx/dei)(dx/dej)}ezeo

3. 2{LT(6)—LT(60)} is asymptotically Xi—distributed as Too, where k is the
dimension of the parameter 0.
The examples in the preceding section satisfy the conditions basically,

although the multivariate case is not treated there. So the adoption of the minimum
AIC procedure [1] is justified here. That is to say, we consider two competing models

HO and Hl’ where HO is the model supposed to have the true parameter 60, and

Hl is aﬁy other model with the fixed dimension k of the parameter 6. The value

of the AIC for each model is

AIC, = (-2)(value of log-likelihood at 8,),



41—

since the number of unknown parameters in HO is zero, and

AICl = (-2)(maximized value of log-likelihood) + 2k.
The AIC is an estimator of the expected negative entropy which is a natural
measure of iscrimination between the true distribution for the data and the
estimated probability distributiqn. Therefore if the simulated data are
correctly distributed according to H then we can expect AIC

< .
0’ 0 AIC,

Another useful method is to-adopt the likelihood ratio test of HO against Hl.
Under regular situations such as nested sequence of models, the relationship between

the AIC's and the likelihood ratio statistic A(BO, GT) is given by

A(6 eT) = AIC, - AIcl + 2k,

0’
which is asymptotically xi—distributed. See [13] for an extensive discussion
of the relation between minimum ATC procedure and likelihood ratio test
procedure.

Using physically generated random numbers, we performed the simulation
experiments five times for each case of the examples, and then the maximum
likelihood estimates and minus of the log-likelihood are listed at the tables in
the APPENDIX. We made use of the Davidon-Flecher—Poﬁell method for the non-
linear optimization. From the tables we can see that the maximum likelihood
estimates gef more accurate as the sample size (number of points) or the length
of observed interval increases. Also it is seen that for each sample size or

length of the interval, AICs and log-likelihood ratio tests work well for the

Justification of the accuracy of the simulations.



_Lo_

ACKNOWLEDGEMENT

The idea of the thinning method was communicated by Prof. P. A. W. Lewis,

who kindly corrected the earlier versions of the paper. For these the author

is very grateful. The author also would like to thank G. Kitagawa for providing

a program in [2] and valuable suggestions such as recursive calculation technique,

and to K. Katsura for his generous help in testing the algorithms.

REFERENCES

[1] Akaike, H. (1976). "On entropy maximization principle", Application of

Statistics, Krishnaiah, P.R. ed., North-Holland, Amsterdam, 27-L41.
[2] Akaike, H., Kitagawa, G., Arahata, E. and Tada, F. (1979). "TIMSAC-T8",

Computer Science Monographs, The Institute of Statistical Mathematics, Tokyo.

[3] Athreya, K. B., Tweedie, R. L. and Vere-Jones, D. (1978). "Asymptotic
behaviour of point processes with Markov-dependent intervals', preprint.

[4] Hawkes, A. G. (1971). '"Spectra of some self-exciting and mutually exciting
point processes", Biometrika 58, 83-95

[5] Hawkes, A. G. and Oakes, D. A. (1974). "A cluster process representation

of a self-exciting process", J. Appl. Prob. 11, 493-503.

[6] Isham, V. and Westcott, M. (1979). "A self-correcting point process',

Stoc. Proc. Appl. 8, 335-3u8.
[7] Jacod, J. (1975). "Multivariate point processes: predictable projection,

Radon-Nikodym derivatives, representation of martingales", Z. f. Wahr. Verw.

Geb. 31, 235-253.
[8] Kabanov, Yu. M., Lipcer, R. S. and Shiryaev, A. N. (1976). '"Criteria of
absolute continuity of measures corresponding to multivariate point processes”,

Proc. 3rd U.S.S.R. and Japan Symposium on Probability Theory, Springer, Berlin.




~3-

[9] Lewis, P. A. W. and Shedler, G. S. (1979). '"Simulation of non-homogeneous

Poisson processes by thinning", Naval Research Logistics Quarterly, 26, No. 3, 403-413.

[10] Ogata, Y. (1978). "The asymptotic behavior of maximum likelihood estimators

forbstationary point processes", Ann. Inst. Stat. Math. 30, No. 2, A, 243-261.

[11] Ozaki, T. (1978). "Maximum likelihood estimation of Hawkes' self-exciting

point processes", Ann. Inst. Stat. Math. 30, No. 3, B, 145-155.

[12] Ozaki, T. and Akaike, H. (1979). "On a generalized parametric model for

Hawkes' self-exciting point processes", Research Memo. No. 1k49.

[13] Sakamoto, Y. and Akaike, H. (1978). "Analysis of cross classified data by

AIC", Ann. Inst. Stat. Math. 30, No. 1, B, 185-197.

[14] Vere-Jones, D. (1978). "Earthquake prediction - A statistician's view",

J. Phys. Earth, 26, 129-1L46.




APPENDIX

Table 1. Hawkes' self-exciting process

where

numbers of
data

n = 500

n = 50000

M) = u+ fg{(ao + al(t—s) + 0

-log(likelihood)
at the true
parameter

218.895
214,112
308.358
368.521

292.764

26376.292
2610k4.488
25925.125
25835.985

2557h.279

-log(maximum

2

|

(t—s)z}e_B(t—s)dN(s),

U,
%

B

o, ,0
%0

of likelihood)

216.

213.

30T7.

365.

289.

2637k,

26099.

25922,

25832.

25570.

715

181

341

038

9Tk

593

Lol

638

676

103

)

0.045 -0.300 O.

= [0.700 1.100

maximum likelihood

.816
.136

. 760
.113

.79k
.089

.923
.030

.540
.257

.T21
.032

.T716
.0hs5

.T07
.oko

.72k
.056

L7115
.03k

0.970
-0.161

1.125
-0.k427

1.234
-0.288

1.213
-0.h12

1.095
-0. k434

1.115
-0.305

1.099
-0.378

1.134
-0.3k4kL

1.108
~-0.361

1.107
~-0.2k4}

Lk

500]

estimates

.382

.5T0

031

.L87

Lol

.520

.539

567

.532

483
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Table 2. Linear Wold ﬁrocess

ME) =+ altetgy) + Ble )t ) * Y(E(5)t3))

vhere ‘
(p o, B, v) =( 2.006,,1.hoo, 3.900, 2.700).

number of -log(likelihood -log(maximum maximum likelihood estimates

data at the true of likelihood)
‘ parameter)

n = 500 -158.717 -160.946 1.637 1.505 3.k59 3.273

| -178.251 -179.852 2.550 1.067 2.624 1.81h

-165.3&9 -167.672 | 2.192 0.529 2.87Tk 3.075

-199.151  _203.298 1.418 3.049 3.490 L.6L49

"-190.100 _ -190.53k4 1.750 1.861, h.632 2.726

n = 50000 - -18794.831 -18796.5u46 2.008 1.386 3.792 2.802

-18862.763 -18865.039 1.94k 1.4k 3.932 2.863

-18655.569 -18656.813 ‘ 2.002 1.h58 3.797 2.680

-1866L4.021 -18664.801 2.005 1;b26 3.806 -2.695

-18766.239 ' -18767.236 1.978 1.358_ 3.953 2.785
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Table 3 Stress-release process

A1) = &Bt-YN[O0,t)
where
! (a, B, y) = (3.000 2.000 1.000)
number of -log(likelihood) ~log(maximum maximum likelihood estimates
data at the true of likelihood)
parameter
n = 500 4.318 4.o012 2.957 1.84Lk o0.924
N.u19 2.621 2.662 2.002 0.995
5.513 4.530 . 2.855 1.808 0.906
-3.353 -4.842 3.37hk 2.529 1.262
7.023 5.656 2.678 1.641 0.820
n = 50000 621.435 619.599 2.993 2.017 1.009
623.923 623.372 2.994 2.007 1.00L4
580.052 578.178 3.024 2.046 1.023
583.369 581.362 3.014 2.0k1 1.021

631.726 629.010 3.003 2.007 1.00k4
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Table 4. A Hawkes' type non-linear process

Mt) = p+ fg ae—B(t—s)dN(s) + fgf; Ye—B('t~u)dN(s)dN(u),
where
(u, a, B, v) = ( 0.550, 0.850, 4.750, 0.350)
nﬁﬁber of -log(likelihood —~log(maximum maximum likelihood estimates
data at the true of likelihood)
parameter)
n = 500 591.036 590.325 0.56L4 0.476 5.682 0.677
458.429 452,586 0.677T 0.507 6.166 0.859
543,007 542.315 0.554 1.326 5.106 0.1k9
548.165 5L5.468 0.543 1.225 3.355 -0.083
561.440 557.988 0.600 1.393 6.998 0.226
n = 50000 56876.433 56870.358 0.560 0.778 L.758 0.372
56632.821 56632.009 0.552 0.8L42 L4.669 0.338
56383.413 56382.695 0.554 0.82h L.791 0.372
56524 .242 ' 56521 .422 0.556 0.884 L4.916 0.3h47

56708.6TT 56707.395 0.551 0.804 L4.653 0.360
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Table 5. Bivariate linear Wold process

(1)

- (2)
Al(t) = 2.300 + 10.100(t - t§lg) + L.500(t - L§1§)
_ 1 2
Az(t) = 0.000 + T.800(t - t(l)) + 6.900(t - t(l))
Lengﬁh of -log(likelihood) -log(maximum . maximum likelihood estimates
the interval . at the true of likelihood) ‘
and numbers parameter
of data
T = 100 - 424,386 -L25,352 2.620 10.168 3.306
= 500 ' :
(2). -43k4.336 -L437.251 2.889 10.262 3.377
= 300 _ 0.174  7.485 5.757
-450.781 -4sk 897 2.469 10.851 L4.813
. -0.134% 6.339 8.894
~hok 53 -L27.822 2.151 10.792 5.1k43
-0.621  8.884 17.815
~h21.42) -L22.401 | 2.231 10.475 5.120
. 0.112° 6.383 6.936
T = 2500 -10568.720 -10573.727 2.216 10.618 L.710
(1). . 0.032 8.083 6.917
n'~ ‘s 12500 _
(2). . -10373.LL4 -10378.002 2.130 10.465 L4.875
n ‘= T500 . -0.083 8.156 17.096

-10426.732 -10429.88L 2.223 10.153 L4.736
-0.0k2 8.191 T.080

-10549.615 -10558.059 2.193 10.817 L4.738
. 0.026 T7.866 6.808

-10517.033 ~10523.479 2.084 10.565 5.223
-0.064  T7.993 T.106




_ t
() R !o 22 €
whefe i
P
P
: Length of
- the interval  at the true
- and numbers parameter
-of data o .
T = 100 -1573.376
n(l)% 650 ) 8.
: -1335.130
n(2) 750
| -2331.594
-1159.968
-1380.468
T = 2500 ~3684L.227
“n(l)%16000 ' |
5y ~35538.868
n(z)%19000 . :
-37916.281
-38305.112
-36965.147

Table 6. Bivariate Hawkes' mutually exciting process

t

'Al(t) =¥ +fo a,qe

(t-s) gy (

1

_bz(t—s)dN (s)+

1

L J{i”all’ al2’ bl

A\ e’ %21 %22’ ba‘)

—log(likelihood) —log(maximum
of likelihood)

| _1578.276

-1387.372

-2336.610

-1162.594

-1381.538

-368L4T.240

~35542.371

-37921.286

-38311.857

-36969.812

s)+
0

= (1.300,

t. eiblct‘s)ng(s)

jo #2°

t a e-‘ba(t—s)

2.500,

maximum likelihoéd estimatés

0.899

. 0.530
3.138

0.225

1.949
2.702

0.500
0.167

1.695
2.519

0.661
2.888

0.066

0.513
-0.168

0.580
0.10%

1.150
2.079

1.312
2.483

a.kos
0.029

1.3%0
2.539

0.k79
'0.058

1.433
2.6k
11.1&&
2.628

0.504
-0.011

0.Lk29

1.286 o0.L72
2.508 o0.00h

0.39%

—0.082A

ng(S)’

1.50%

1.364

1.L53
1.251

1.383
1.169

1.37h
1.271

1.186

1.138

1.Ls52
1..81

1.529
1.393

1.530
1.331

1.438
1.4

1.352
1.381

'_h9_

0.500, 1.500, 2.800

0.001, 1.koo, 2.100

2.610
2.588

2.955
2.238

2.538
1.648

2.3k
1-965

2.791
1.725

2.651
2,2&7

2.796

2.209

2.865
2.023
2.531

2.546
2.071

2083





