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                        CHAPTER 1

                       rntroduetion

gl.1 lntroduction

     The term "reactor noise" is now settled to be a
technical one for fluctuations in the output signal from
a neutron or other sensor in a nuclear reactor. The
fluctuations representing an excess or a deficiency from
the average, result from rnany stoehastic or random elemen-
tal processes such as neutron-scattering, absorption,
fission, energy transport and coolant boiling etc. In
other words, a nuclear reactor has fluctuations or "reactor
noise" included in its state variables such as neutron
number and temperature etc., which have rnacroscopically
constant values in a steady state.
     Since the fluctuations are random functions of timer
we can obtain useful information concerning the dynamic
behavior of the system by suitably processing them. We
have a possibility of gaining not only the static but
also the dynamic information of the systern even in a
steady state, by rnaking use of "reactor noise". Such
inforrnation is usually utilized for determining reactor
time constants and dynamic characteristics, for assisting
correct operation and for giving an early warning on
unusual phenomena in the reactor system without perturbing
the system. Therefore, the reactor noise analysis shows
various potentiality of refinement on technicalr economi-
cal and safety aspects, and is closely related to the
diagnosis technique of reactor and the control theory etc.
     Physicists have also been attracted by the problernt
since the reactor noise phenomena include nuclear, thermal
and hydrodynamic processes occurring in a non--equilibrium
state. Consequently, one of the purposes of this thesis

,is to stress that the reactor noise phenomena is a good
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example in the non-linear non-equilibrium statistical

gl.2 Reactor Noise Analysis

     The reactor noise analysis has al.ready a history
extending over a quarter of a century. The early theoret-
ical work in this field was carried out by Courant and
wal!ance (l947)(1). This was followed with various

techniques and theories developed by many authors, e.g.,
orndoff (lgs7)(2), p61 (lgss)(3), Moore (lgsg)(4), cohn
      (5)          and others. Until now, a large number of papers(1960)

have been published. Various kinds of monographs and
review papers have been also pubiished by Thie (l963)(6),
uhrig (!g7o)(7), seifritz and stegernann ag71)(8), Kosaly
                            (10) (ll)      (9)                                     and Williams         , Saito (1970, l974)(l973)
      (12)          . When we anaiyze the nuclear reactor noise,(l974)

it is appropriate toclassify reactor noise phenomena into
two categories; (l) zero power reactor noise (2) power
reactor nozse.

gl.2.1 Survey of Zero Power Reactor Noise Analysis

     Since the therrnal, rnechanica! and hydraulic effects
are absent in a zero power reactor, we can describe it by
stat.e variables only of neutron and precursor. Namely,
the fluctuations arise entirely from nuclear events such
as fission, scattering, decay and absorption.
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     There are many established experimental rnethods for
zero power reactor noise. One is the method in the 'ti-me
domain the Rossi-or experirnent, Feynmann-ct experiment,
waiting time analysis, auto- and cross-correlation
function rneasurements or polarity correlation analysis
etc. The other is the method in the frequency domain
    the auto- and cross-power spectral density methods
or the polarity correlation analysis etc.
     By using these methods, we can estimate rnany reactor
constants (prompt neutron-decay constant, tirne constant
of precuxsort neutron lifetime etc.) and can determine
many reactor kinetic parameters (reactivety, reactor
power, transfer function etc.).
     The theory of zero power reactor noise has almost,
been established through various kinds of approaches or
formulations made in many countries. Here, we will
discuss the Kolmogorov and the Langevin rnethods as
exarnples .

(a) The Kolrnogorov Formalism

        (3)                    (Z3)                         calculated the probability dis-     Pal            and Bell
tribution of neutrons, including delayed neutron effectsr
by rneans of the first collision probability method. This
mehtod is related to the backword equation within the
framework of the Kolrnogorov forrnalism for branching

processes.
     However, we discuss the forward Kolmogorov equation
that was early presented by courant and wauance(1),

since this is a simple description in order to understand
the neutron population dynamics. For simplicity we '
neglect delayed neutrons. !n the point model of zero
power reactor the system is assumed to deveiop as a
Markovian process and is described by a probability
P(N,t) that N neutrons are present in the system at time
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t. Then, we
fo1lows;
  P(N,t+At)

can set up

  P(N-1

a

'

 balance

t> x

equation

    SAt

for P(Nrt) as

Probability that
there are N
neutrons at time
t+At,

Probability that•
there are (N-1)
neut,rons at time
t

  co+z r=o

Probabilit.y
the souree
cne neutron
during At

P (N-n+1

 t, hat,

emits

,t) x p(n)
Probabilit.y t•hat,
t.here are (N"-n+1)
neut•rons at time
t

x -At(N-n+l)
Probability that
neutron eauses a
absorption during
g.iven t,hat there
(N.-n+1) neutrons
the system

one

 At,
9•re

ln

                         Proba.bilit•: t,hat, a neutron
                         loss gives rise to n new
                         neutrons
              + P(N,t) x (1--SAt--At-•-il-- ). (l.1)

                 Probabilit,y that, Probability that no
                 t,here are N neutrons are produced
                 neutrons at timet during At
When At->O, this equation reduces to:

  -Ef\tP (N,t) ={P (N -- 1,t) -p (N,t) }s

          +,"t.,P(N'-n+i,t)N-e+ip(n) - V. p(N,t). a.2)

We may also obtain the moment equations instead of
directly solving the above probability distribution equa-
tion (1.2).

(b) The Langevin Formalism

     This method was suggested by cohn(5) in the field of

neutron physics, and consists of a stochastic differential
equation (the point reactor kinetic equation) with a
random source term. This terrn accounts for a correlated
neutron term resulting from the branching processes. The
magnitude of the random source is det.ermined by the
Schottky formula. This is a rather heuristic formulation
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and, at the same time, has an advantage of being applicable
to power reactor noise. Generally, the Langevin e' qua-
tion is used as one of fundarnental and important equations
in the irreversible process of the statistical physics in
order to descr-ibe not only the Brownian motion of particle
but also many body problems.
     The fluctuations 6x(t) satisfy the following equation

        Ef\t6x(t)=K 6x(t) + R(t), (1.3)
where K is the regression constant and R(t) is a random
terrn. The power spectrurn of R(t) is white [<R(tl)R(t2)>O(
6(tl'"t2)]• The Langevin equation is a phenomenological
stochastie equation to determine the process 6x(t) from
the known process R(t).
     Usually, the behavior of the system is enough speci-
fied by estirnating only the lower moments of 6x(t). In
fact, we need only the mean values and correlation
functions to specify the system, if the random force in
Eq. (1.3) is Gaussian. Although the process of R(t) in a
zero power reactor is not Gaussian, the higher moments of
R(t) is not necessary in evaluating them, since the
Langevin equation is linear. Narnely, the evolution equa-
tion of moments do not have the hierarchical structure.
On the other hand, the Gaussian distribution of neutron
number has been usually observed experirnentally. This
ambiguity will be rftade clear in the later part of
this thesis [cf. Chap. 2].
     Although many varieties of formalism are present in
zero power reactor noise theories, we may conclude that the
main reason of its success comes from the following four
hypotheses.
(l) Markovian process
(2) Linearity
(3) Stationary process
(4) Ergode hypothesis
The assumptions (3) and (4) are necessary for. a practical
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data processing or for an analysis of fluctuations•

gl.2.2 power Reactor Noise Analysis

                                                 ,     While the knowledge of zero power reactor noise
stimulates basic scientific interest, the information
obtained from the analysis of reactor noise should be
applied to practical engineering purpose. In other words,
it must be useful for diagnostics of existing faults of
power reactors. In the case of zero power reactor noise,
we have construeted simple models, since the elemental
processes involved are clearly separable by the differ--
ences of their tirne scales. On the contrary, a power
reactor has very different situations in noise from a zero
power reactor, as it is usually a very complicated system
invoiving a wide variety of phenomena such as nuclear,
thermal, hydrodynamical and mechanical processes etc.
     We will list below rnany processes and the ranges of
frequencies over which they are important.
1) Aging processes . . . . . . . . (<lo-4Hz)
2) xe and sm poisoning . . . . . . ao-4-lo-2Hz)
3) control rod movements . . . . . ao-3--lo-IHz)
4) coolant temperature . . . . . . ao-3--loOHz)
5) Delayed neutron effects . . . . ao-2-loOHz)
6) Fuel temperature . . . . . . . (lo-1-lolHz)
7) Reactivity feedback of pressure (lo-1-lolHz)
8) Reactivity feedback of voids . ao-1-lolHz)
g) prompt neutron decay eonstant . aoi-io4Hz)
lo) prompt neutron life time . . . (lo4-lo7Hz)

Moreover, the patterns of fluctuations depend on not only
the specific type of reactor but also conditions of its
       .operation.
     From these points, the noise analysis of power
reactors is still in its infancy due mainly to a lack both
of general theory and of knowledge about the complicated
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noise meahanisms involved. Of coursef there exist several
formulations to attack such a comp!icated power reaqtor
noise; the LangevSn method, probability distribution
method and input-output rnethod of control theory etc. on
the bas,is of these formulations, it is necessary to estab-
lish a general and transparent theory from the fundamental
standpoint. Thereupon, the theory must be extended with
greater applicability from zero power reactors to
practical power reactors by an appropriate generalization
of the rnentioned frarneworks. The following directions of
generalization are considered as main themes of this thesis:

(1) Non-linearity [Chaps. 2& 3]
(2) Non-stationary process [Chaps. 2 & 3]
(3) Non-Markovian process [Chap. 5].

Sl.3 Physical Basis of Reactor Noise and
Main Subject of This Thesis

     Before generalization of frameworks it is essential
to study reactor noise phenomena frorn the statistical
physics point of view. The number of neutron density in
a reactor is an example of macrovariable defined as an
extensive quantity. Though the magnitude of fluctuations
of macrovariable is usually small in a macroscopic level,
they are composed of a great number of interacting or
noninteracting elemental units. For exampler the fluctua--
tions observed in a neutron detector result frorn the sum
of statistical processes of rnany neutrons in a reactor.
From this, it is one of the fundarnental problems not only

-7-



in the reactor noise theory but also in the statistical
mechanics tofind how rnacroscopic reactions are explained
from a number of microscpic processes.
     It should be noted that a reactor noise is one of
the phenornenaT in open systems$ince it has a neutron source
and accompanies leakage of neutron and energy release etc.
Therefore, it is important to attack the reactor noise
within the framework of open systerns. When a reactor is
at power state, the non-linear effects of temperature
feedback mechanisms becorne important. Then the power
reactor is one of non-linear systems and is at times even
in a non-stationary state. Furthermore, there remain
flow mixing and turbulence in a coolant region as indefi-
nite physical phenomena. Therefore, it is also important
to treat the reactor noise phenomena a$ a non-linear
non-equilibrium systern. The generalization of reactor
noise theory in this direction corresponds to the above-
mentioned poin't (1) and (2) in gl.2.2.
     !n a non-linear system, the non-linearity brings
variety of phenomena. Hence, the unified theory applicable
to it must possess the possibility of sorting the infor-
mation contained in it and of ciassifying its states in
order to describe the various phenomena covering wide
areas in the non-linear systern. In the general framework
of non-linear non-equilibrium systems, it is necessary
to study what universai patterns, if there arer may appear
in reactor noise phenomena by understanding the essential
features without being puzzle,cl its complicated aspects.
The idea of the universal patterns suggests us the neces-
sity of making use of the analogies between the reactor
                             (14)-(16)                                      that are found innoise phenomena and the ones
general non-linear non-equilibrium systems. Especially,
the view of generalized phase transition phenomena will
be useful in this sense.
     Based on these considerations, we will use the systern
size expansion method(l7) recently developed in the
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non-linear non-equilibruirn statistical physics and apply

it to the power reactor noise phenomena. Within this
method, we will provide a new parameter in the reactbr
noise analysis. Hence, we will treat the general theory
so as to be useful not only to the nuclear fission reactor
noise but also to the nuclear fusion reactor noise.
     FinaXly, it is inost important to discu,g.s the stability
of power reactor from the pracbical viewpoint of safety.
For diagnostic techniques based on the reactor noise
analysis, it is an essential problem to discern the infor-
mation particularJy concerning the stability, by processing
data of fluctuations. Before the systern approaches an
unstable region dueto acertain change of its mechanisms,
the fluctuations will show earlier symptom for instabiliza-
tion of system than the mean values. In this case, the
fluctuations rnay be well used as "forerunner phenomena",
and then contain the useful inforrnation for instability.
By catching this unusual phenomena beforehandr the reactor
noise analysis serves to detection of anornalies or stabil--
ity rnonitoring. Then, the method of systern recognition
developed in this line will be applicable not only to the
reactor noise analysis but also to many other fields.
     The guality of information is also transformed. A
typical example is an operation of projecting information
by observation. Namely, the equation describing fluctua-
tions becomes a non-Markovian type as in the contraction
of information in the statistical physics. Therefore,
the generalization of reactor noise theory in this direc-
tion corresponds to the above-mentioned point (3) in
gl.2.2. Furthermore, the stochastic modelr e.g., the
autoregressive model, which has been actively applied to
the reactor noise for the system identificatÅ}on, and that
was recently developed by Akaike(18) in the time series

analysis and control on the base of experimental data,
possesses the non-Markovian property in its equation.
     In the considerations as mentioned above, we wiZl
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study the reactor noise in this thesis. Let us state the
contents of each ehapter.
     Tn Chap. 2, a new approach to the reactor noise theory
is developed on the basis of recent studies on the theory
of non--linear non-equilibrium statistical physics. Within
the approach a basic equation is derived in a quite
general form, which yields a solution of asymptotic char-
acter for large system. In the lowest--order approximation,
that is, in the normal ease, the formalism yields the
conventional equations. This leads to a clear description
of the re!ation between the Langevin and the KolTnogorov
methods, and substantiates the assumption of Gaussian
distribution of the number of neutrons. A rigorous analy--
sis of the newly derived equation is rnade with the aid of
flow patterns representing the Hamilton-Jacobi equation.
     rn Chap. 3, "irreversible circulation of fluctuation",
ctt is introduced as a new variable for the analysis of
reactor noise in the normal case, which further develops
our formulation based on the systern size expansion method
in Chap. 2. It is shown that ct considered in conjunc--
tion with the varince u provides usefui information
about reactor noise, apart from the data we usually obtain
on power spectral density. The relations holding between
ct and the conventionally used variables are given for
the case of steady state. The present formalism is
applied to a non-linear systern with three degrees of
freedom (total neutron number, fuei energy and coolant
energy), to exarnine numerically the behavior of the
fluctuations• It is shown that the so-called soft-- and
hard-mode instabilities can be distinguÅ}shed by observing
ct• rt is also demonstrated that appropriate processing
of such quantities as ct and u will provide advancedinforma-
tion on instabilities in power reactors.
     In Chap. 4, the irreversible circulation ct is proposed
as a new statistical variable for a multi-dimensional time
series analysis. It is a concept indicating the circula--
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tion in a space of random state variables, while the
varia.nce u is the concept corresponding to the spread
of distribution of fluctuations. The pair of quantities
u and ct are minimum necessary intergral indices to
characterize any power spectral density and will be conve-
nient for data retrieval. Itisdiscussed that ct is also
less sensitive to filter effect in the low frequency region
than a.
     In Chap. 5, a non-Markovian Langevin equation for the
fluctuations of known state variables is proposed. The
non-Markovian effect is due to "hidden" state variables.
The random Åíorce does not necessarily meet the requirement
of the causality condition. Then, a new relation between
the fluctuation and the dissipation is also discussed.
     Chapter 6 will be devoted to summarize the results
obtained in each chapter and discuss the future problems
of reactor noise.
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                CHAPTER 2

     System Size Expansion and Reactor Noise

g2.1 Introduction

     The theory of zero-Jpower reactor noise is now well
established, and has provided us with useful methods of
practical application to reactor technology. This success
may be attributed to the physical consistency of the 1Å}near
Langevin equation. It has led to general. acceptance of
the idea that fluctuations in power reactors can be de--
scribed by sirnply adding a Langevin term or a random
force to the rate equation. This phenornenoloq. ical pre-
scription is, however, not well substantiated by physical
evidence. While the linear Langevin equation would appear
intuitively to be plausible, some question remains as to
the validity of extending it to non--linear and/or non--
stationary cases.
     Thus, it has become a problem of general concern in
reactor noise theory to find a suitable formalisrn for non--
linear and/or non-stationary cases. Such a formalism must
be based on the theory of general non-linear non-equilib-
rium statistical physics.
     The purpose of this chapter is to describe the
neutxon density fluctuations by means of the system size
                                                         (2)                                        (l)expansion theory. developed by van Kampen , Kubo et al.
                  (3)and Tomita et al.
     The main point of the theory is an expansion in
powers of the system size su to derive a new rnaster
equation for the probabilty P(X,t) of finding the system
in a state x at time t. (The state x is represented by a
set of macrovariables.) In general it is difficult to
obtain a transparent solution of the master equation when
it embodies non-linearity in a non-equilibrium situation.
UsÅ}ng the space independence of the transitions between
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states in a rnacrosystem, we can obtain an asymptotic
solution of the master equation in the form ,
                    n 9, (x, t)
        P(z, t) o( e
                            .
We shaU show that this solution is quite useful for
discussing non-linear non-stationary reactor noise. It
also gives us a deeper insight into the conventional noise
theory for zero-power reactors.
     In the above system size expansion, it is logical to
distinguish the intensive quantities from the extensive.
For exarnpler it stands to reason to use as variable the
neutron density (the intensive variable) instead of the
total number of neutrons (the extensive variable). In
equilibrium state the magnitude of the density fluctuations
around the mean value is of order gPl/2. This also holds

in the usual non-stationary case, as it has been pointed
out by van Kampen. We cali such a case "normal". In the
conventional reactor noise theory, no attention is paid to
this dependence on systern size, and this leaves an
ambiguity, which is instanced in the theoretical result
that branching processes generate a non-Gaussian distri-
bution of neutrons, whereas a Gaussian distribution is
actuaily observed in zero-power reactors.
     On the basis of the theory of systern size expansion,
we shall derive a fundamental equation for the density
fluctuations without assuming Gaussian random force. In
the norrnal case, our formalism yields what corresponds to
equations derived from the current Ko]mogorov and Lanvegin
formalisms. We shall prove that our equation can be
replaced by an equivalent Hamilton-Jacobi expression in
order to obtain a solution, for zero--power reactors, in
the form of flow pattern. It is easy to extend this
treatment to bring to light the characteristic patterns
of non-linear effects occurring in power reactors. Our
proposed equationisakind of generalization of the
Langevin equation that extends the consideration from a
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stationary to a non-stationary case. And we shall show
that this systern size expansion method leads to a very
useful and appropriate formalism for considering various
reactor noise phenomena.
     In this chapter we intend to develop a theory of power
reactor noise in non-linear and/or non-stationary
     (4)-(6)cases .
     We shall outline in g2.2 the method of system size
expansion on the basis of the Markov assumption. !n g2.3,
we shall exarnine the range of applicability of the normal
case. And the formalism presented in g2..2 will be used
in S2.4 to clarify the ambiguity existing in the relation
between the Langevin and the Kolmogorov methods, and also
to extend the theory to the non-stationary case. :n g2.5r
we shall show flow patterns using the Harnilton-Jacobi
method. This will be followed in g2.6 with the discussion
of a system with randomly fluctuating parameters. The
final g2.7 will give surnrnary conclusions.

g2.2 system size Expansion(2)

     LetX={Xi} (i=l,2,...N) be a set of N extensive
macrovariables of the whole system. We regard thern as
stochastic variables including their fluctuation. The
system is characterized by the Markovian process and is
described by the master equation
                                         'Sp(x, t) =,(dAx W(x-dX, AJ(, t) ?(A(-AJv, O -J(dAX itNl(Ar, A)I,t)P(X, t), (2 .i)

where P(X,t) is the probability distribution function of
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X at time t, and W(X,AX,t) is the transition probability
per unit time from X to X+AX. The integral in Eg. C2.1)
is to be replaced by a sumation if the Xis are discrete.
The right-hand side of this equation is expanded into a
series in the form known as the Kramers--Moyal expansion:

              •?    Slt? ?(x, o =-JfdAxo - e'`X5i ) vv/ (x, AJv, t) ?r>y,t)

            = ,il.;, ilr; (-e-Qt-)h' Cn (X, t) P(X• t), (2.2)

                             'where
     c, (7(, t)=fdAx (Ax)"w",Ax,v (2.3)

is the n-th moment of the transition probabilty.
     Under the usual conditions of a macroscopic system,
each event of a transition is localized. Hence the indi-
vidual event can be described by intensive variables, and
the transition probability W is proportional to its size
This local nature is explicitly described by

     W(X,AX, t)=.g? w(z,AX, t), (2.4)
where sh is the system sizet and X the set of intensive
macrovariables normalized per unit volume corresponding
to X, i.e.,

     p(=i =EX, E=Xll '1 (2.s)
  ,Uszng a corresponding scale change

     C, (X,O =fdAX (Air)"W (.i,AA', t)=E C, (,t', t)

and

     n" P(,y, t) =l? (-(, t), (2.6)
we obtain the basic equation;
  ii?t ?(x, o=-tfdol(t- e-EAXa-e-x) nf (x,AI, t) ?(z, t)

           =,2`.'"i-f;lrl/i(-e-ex)n•c,(x,V?(x,t), (2.7)
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     For sirnplicity, let us limit to one rnacrovariable
case (N=l) in the rernaining part of this chapter. The
fundamental solution of Eq. (2.7) with the initial condi-
tion

     Zthr{ P (x, tl Zo,to) = 8(x " Xo )

     t' to
is given in the form
 ?(x, tt xo. te)= T[e-tSlt:dS H(X' ESI'7'S)) 8(x'- xo), (2.s)

where T is the time ordering operator and
  H(x, E,-O-. ,s) =fdAx " - e- EAX (".)) ur(x,uX, s), (2.g)

!t is convenient to rewrite Eq. (2.8) in x representation;
     8(X-Xe) =f-{YS e{ Ze (X- Xo)

  ?(x,ttx,,t)=<xl T e- 'tJitl.dsH(x) Eo'a.`• s) 1x,> .

                                                  (2.IO)
Using the property of the Markov process, and noting the
                         a.incommutability of X and ax, i•e.,
    <xtl e-({}t JH<x', E,-e'".t ,t) I .ti>

    .,,f..:lsli:S e{- "',-"t (H(xC t' G, t) - i 8 !i.i l-{!" :") " O (" t2)) ,

we express P(x,tlx.,t.) by the path integral,
    P(x, ttxe, te) =Jld,S (x, &) e-tfttodS (H (X' iS' S) ' iG2) . (,.u)

For the asymptotic evolution of the path integral about q,
the method of steepest descent should prove usefui. If
there exists a suitable path of the macrosystem evolution,
we can choose the col at q=p deterrnined by
     •s?; H(x, p, s) .Åí,

and write
    ?(x,tix.,t,).Sde(x) etftt, dSL(X' J9'S) ,, (2.i2)

in terrns of the Lagrangian L defined by
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     L(x, 2, t).-H(x, p, t) +P )E . (2.i3)

Choosing the path that maxirnizes the action integral
     `iEl, (x, t1 )(o,to ) = .ftt, dS L (x, i• 5) ,

we have
     ?(x, t{x,,t,) . c'e g(9o (Xtti xe, to)+ O(S)) . (2.i4)

Thus, if the system has the initial condition
     ID (x, , t, ) = C"e t ipo (Xe, to)

                               '
the probability distribution function of the macrovariable
as determined by Eg. (2.7) has the asymptotic form
     ?(x, t) . cet("o (X, t)+O(E)J (2.is)
                                   )
unless the system changes through a critical point (See
Appendix). Moreover, this solution is not necessarily
unique. !f the probability has the form of expression
(2.15), we say that the system has an "extensive property".
     The solution (2.15) provides us with a covenient method
for dealing with non-linear systems. This approach will
be discussed later in association with the Hamilton--
Jacobi method.
     The basic equation (2.7) contains an expansion in
terms of a small parameter e, and one may terminate the
expansion at a finite order. If the expansion is termi-
nated at the second order, one obtains what is in form a
Fokker-Planck type equation which has generally non-linear
coefficients about x. On the other hand, van Kampen has
pointed out that, in a case where the coefficients cl and
c2 do not explicitly depend on time, the above termination
of expansion leads to inconsistent resplts when one takes
account of the fact that the relative magnitude of fluc-
tuations around the most probable path depends on the
systern size. rn other words, in the normal case the
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                                                     l/2fluctuation is expected to be small quantity of order e
                                          (1) ,compared with the mean value. We hence let
                   i        X= U(t)+ef g, <2.16)*
and introduce a probabiUty distribution function of g,
defined by
                  LL        ?(l;,t)= E2 1P (S(t)+e" g, t). (2.17)

Then the basic equation (2.7) is transformed into the
     ,equation,
                        rt-2S}?(g,t)-- sis'(t)ifll?(g•t) =,2oo]., E,-;"-, (-k)n cM (}(t)+sÅÄg )?(g. t). (2.is)

cornparing the term of eMi/2 on both sides, we find the

phenomenologica! law for y(t):
        d        j:ti7 ti (t) =Ci (U(t))e (2•19)
Inserting this result into Eq. (2.l8), we obtain an equa-
tion for the probability distribution function P(q,t) of
the fluctuations around the macroscopic value y(t):
  -if,} p( g. t) = - e'iSl;- (c, (e + Eig ) •-- c, (x )) ? (g, t)

                Vb"2          +,Zoo., En's-a (- aeg )n c. (g+ sSg) ?(g, O . (2.2o)

Retaining only the lowest order terms on the right-hand
side of Eq. (2.20), we have
  sitT?(g,t)=- ill; agtgg) g p(g, t) + zl- ,?s2. c, (s) ?(g. t) . (2.2o

Equation (2.21)possesses the same form as the linear
Fokker-Planck equation with the time--dependent coefficients
determined by the rnost probable path y(t). The solution
of Eq. (2.21) has a Gaussian distribution for the fluctua-
tion gs
                   l -sz
         P(g. t)=/:i-:-6. e 2cr, • (2.22)

* The applicability of this relation will be discussed
   in g2.3.
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where

       cr .fg2?( g, t)dg, (2.23)
and o satisfies the following equation,

      iftg cr =2c,'(g)d+ c, (s). (2.24)

     The basic equation (2.7), the concept of extensive
property (2.l5) and the scaling relation (2.16) are the
bases of our new approach to the reacbor noise theory.
A sumary of the present formulation is illustrated in
Fig.2.l. In the following sections, we apply this forrnal-
ism to noise problems to demonstrate its effectiveness.

                  Observable variables in reactors

                    /X
        Extensive variables Intensive variables

        (gy$g.e:,g;z;.iiililea,gs;g: ggg2g-f•:.gl.1;g:aM.xla:.,.)

(The method of steepest descent) (e ÅÄO in normal situation)
         path intlegrai ei/2 deNpendence of fiuctuation

                                    around the most probable path         The extensive property
         expression (2.15) expression (2.16)

•
Basicequation(2.7)

(Variational principle)
,

Irreversible

fluctuation

eireulation of
[next chapter]

Hainilton-Jacobi method

Fig. 2.l Conceptual flow chart of
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            , (6)g2.3 Validity of the Norrnal                             Case

     For the investigation of the validity of the normal
case in a steady state system, we examine the two lowest
order terms in the e expansion of the master equation by
using the perturbation theory. [vhe eO and El/2 terms in

Eq. (2.20) give
     llii}t-?(g,t)=(H,+e2-' H,) ?(g,t), (2.2s)

where
     H, =-S c,r(s) s + •ii- :;IliZli. c,(u)

     H, =--ii- sl;- cl'(u)gi+loagZ, c,'(})g- zl- ,ag3, c3cw .

:2g2;i?29Rve.:::I.iRU,ggOi.{U."fiitO?,?ig,'tl:PgBis:•k",,.

Fokker--Planck equation of order e

     slt}?,(g,O = Ho ?, (g.t), [.f. (2.21)](2.26)

                      1/2and of the next order e
      D     7t ?,Cg,t)=H, ?,(g. O+ Ht ?, (g, t). (2.27)

rn the case of a steady state system, the solution of
Eq. (2.26) is
                        g2      Pi(g)= jili#x, e'2-t--o` , (2.2s)

so tha Ht
, ?,s.( -(c,.(ys2 + 3ii,,ss)+ .illt-ttIIil(ctu,,s), ) g e- 2gct.as

           +(cic'(.S,S)+-ifi,llSll•'il,ii+6CJcili)3)g3e--2gor2os. (2.2g)

it is seen that in the order ei/2 the effects on po(g,t)

coning from the terms ci', c5 and c3 are qualitatively
similar. Thus, we will adopt only the non-linear term
ci(yS) as a representative in order to study the non-

linear eÅífect in a steady state.

                         -21-



     Then, we will be able to put the non-linear Langevin
equation

     aStl7 X= Ci <X) +F( t)) (2.3o)
where F(t) is Gaussian random force and

       < F(t)> =o

       <Fct) Fct')>=ED6(t-t') . (2.3i)
Y7:?.g,:PS,?:91iOg. .rgta:,ko"s x=yS'ei/2g (c,(ys)-o) a.d

      iAttg = c,'c2+S)E +E+ C;2'(SS) gi+ •••+ f(t), (2.32)

We represent Eq. (2,32) in the form of Fokker-Planck equa-
tion
IRt. p(g,t)=- b--D--E {crtss) g + e+ Cti'(gS) g2 + • • •}?(g, t)+,-t-4 tega, Dpcs.t).(2 .33)

For a steady state solution of Eq. (2.33), we obtain
      pS(g) .< e fdg/g{c,'ttss) g.+ Et C.rites) g,. + ... }

           . eB {Ct' (eS) g2+ e+ CS'(SS) g3" '''>.

                                                    (2.34)
Frorn Eq. (2.26),

      iill- d,S =2 Ct' (SS) (Si t D = O ; CJIi= -2cDr( es) e
                                                    (2.35)

Thus      ps(g) ., e-,ei !;2' E+ C`i'3?S) g3"''. (2.36)

     The system becomes unstable when the system pararneter
gsggo:ii2ee.:,:fiEgi':ii,2gg2g.`gjsgl&gRl.(s?x.eg:g"g;x',.i?gi

we consider the smallness parameter 'Zf=(y-yc)/yc ([o8]-i-)bO
for 'Er--).O). we must take into consideration the non-
Gaussian terms in Eq. (2.36> when [a8]'-le2 and el/2g3 are

comparable near an instability point. Namely, we cannot
neglect the non-linear effect in this case.
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     Hence we can draw the conclusion that the lowestny-order
approximation formalism in the normal case is accurate
enough so long as the system is in a stable domain. On
the other hand, near a marginal point, the accuracy of our
description should be determined by the relation between
 1/2e and Er values. Namely, we have to treat the effect
of non-linearity of system near unstabie states where the
validity of the normal case does not hold since the per-
turbation treatment is not suitable for this situation.
A further detailed discussion will be given by Kanemoto et
   (7)al.

g2.4 Theory of Zero power Reactor and Gaussian Assumption

     [[Wo methods .--- those of Langevin and Kolrnogorov
have mainly been utilized hitherto in theoretical consider"
                                 (8)-(10)ations of zero-power reactor noise . These two
methods, however, possess some ambiguity in their mutual
relations. We will clarify this ambiguity in what follows,
using our formalism presented in g2.2, and we will further
ascertain the validity of the Gaussian distribution of the
number of neutrons.
     We will begin by outlining these methods to bring the
ambiguity into relief. For sirnplicity, we will limit our
problem to the zero-power reactor model with no delayed
neutrons.
     The rnaster equation of the Kolmogdrov method is
sl} 1?(x, t)=fdAxLV(x-A7r,"X2?(X -A)(,t) -fdA?( tal(X,AX)?(K, O , (2,37)
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and we let
       w'(x, Ax)= Se 8Ax,t +.•ZP.e, 'ili- Pcm) SAx, m-i, (2.3s)

where X is the total number of neutrons in the reactor,
S the rate of ernission from neutron source "in the whole
 e
system", which is proportional to the system size (i.e.r
Se=s9)*, 1 is the mean neutron ],ife time, and p(m) the

probability that m neutrons w"l be reproduced when a
neutron is absorbed. In this case, W(X,AX) is time-
independent and the integrals in Eq. (2.37) are to be
replaced by summations. Namelyr
   Slt7 P(X,O= Se ?(X'l, t) '"" Se P(X, t)

           - li-p(x,t) +,20.0, X'EM"i pcm) ?(K-m+i, t) .[Cf'(ii3'g2))]

[rhe right-hand side of Eq. (2.39) is expanded in the sarne
rnanner as in g2.2.

      D`it) P(Xtt)=,\, 'iir: ("' siltk )" Cr(X) 1?(?(,O, (2.4o)

where
             (m - on
      Cn(X)= 2 Å~'5e,

and
      rn" = Sl 7rtnp(m).

           Mo
Here, ili and m2 correspond respectively to k and k2 in

current nornenclature.
     The Langevin method, on the other hand, is based on
the equation
      zflt" X(t)" 'f- X(t)' Se + F( t), (2,4o

where p=k-1, and F(t) is the random force. The following
assumptions are rnade about this random ,force:

* Here we neglect multiple emission of neutrons from the
   source.
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(1) The process of F(t) is stationary and Gaussian*.
(2) The power spectrum of F(t) is white:

       < F(ft) F( t,)> = csreF 8( ti -- t2 ) .

We represent Eq. (2.41) rigorously in the form of a Fokker-
Planck equation
   8t ?(x,t)=- 8t (ex+ Se)P(X,t)+t ijt;ia deF P(x•O, (2.42)

in order to compare Eq. (2.41) with Eq, (2.40). The com-
parison would indicate that the Gaussian assumption in the
Langevin method seems to correspond to the termination of
the Kramers-Moyal expansion. But if we simply cut off the
terms for n>2 in Eq. (2.40), we have
   -Sl} p<K.v=-- iS,r ct(x) ?( x, t)+:i- iSitl c, <x) ip(x,t), (2.43)

which is different from Eq. (2.42). This ambiguity will
be systematically clarified in the following.
     We wiil here restrict our attention to the subcritical
state which rnay be regarded as the normal case. Thent as
seen from the preceding sections, we can adopt the scaling
relation (2.16) i.e. x=y(t)+el/2g, and Eq. (2.21) yields

a Gaussian distribution of fluctuations q around the most
probable path. This means that our forrnalism is self-
consistent. Thus, in our case we obtain the Fokker-Planck
equation (2.21), with cl(y) and c2(y) determined from
Eq. (2.38). Converting g to x, we obtain
 a-O-"tP(x,O=-zl}t:(-ill'X+S)?(X•t)+8tPt}a('!!'siifl!l!`!1'- !2k'l}tS)?(X,t),(2.44)

and
     ;iti" 21 it )= ÅíR yct) + s .

                                                  (2.45)
        ".-----p-----"----d--------P--------d-P------d---pd---
* For simplicity we use this assumption. The applicabil.
   ity of the Langevin method is not necessarily
   restrieted to the stationary case and it will be shown
   later that the conventional theory can apply only to
   the "norrnal" case.
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Equations (2.42), (2.43) and (2.44) differ from one another
despite their similarity in form. It is important to note
here that Eqs. (2.44) and (2.45) hold in a non-stationary
situation• In fact, multiplying Eq. (2.44) by (x-y(t))2,

summing over all possible values of x, and using the
notation u(t), we have

     <( 7c - Y(t))2> .E< g2> = Ed(t),

                      'which leads to
      -t or (t) .2 i d( t)+ k2 -fk+l u(t)+ s, (2.46)

a relation that can also be derived directly from
Eq. (2.24). Equations (2.45) and (2.46) are none other
than the mean and variance equations given by the conven-
tional Kolrnogorov method. The solution of Eq. (2.44) with
the initial condition

      .Ethn ?(X, tl Xo, to) = 5(X - Xo)
      t- to
is                    t ..!Kt:.E!!1!,-• IZ
      P<X,tiZo,to)= J;2sii Fxi"reEdc) e 2Ea(t) , (2.47)

where
      y(t). x, e S(t`- to)- .ES5L {t -• e`ii` (t- tO)i, (2.4s)

and
      d(v= {c,(e(t)) i2 f,! {,C,t s(%'i'la dt'. (2.4g)

Taking the limit t-> oe, we have the stationary solution
                 1 -. (x -- S. )2
      ? (X, oo) = Jlfit 8:7d. e 2 8 dco , (2.so)

where
            2s      YbO " I- R 7

and
            Es      dpa "2a-- kr (k2 ' 3k +2> .

                   '
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           . i7(Xr, Tj le, te)
                    {L (t-O
           =E O'(t) (E! , (2.sl)
where y(tlxT) is given by the expression (2.48) with
x.')bx T and t-->T, while u(T) is the variance given by Eq.
(2.46). If we let t--p oo, T- ee and t-T=u, we obtain the
same result via the conventional Langevin method.
     To compare our forrnalism with the Langevin methodr
we rewrite the Fokker--Planck type equation (2.42) in terrns
               ,of the intensive variable:
   ;slt; ?(x•o =-e-b,( (-i[L x -,• s) ?(xt t) + i ijlll3, crF p(x, t) ,

                                                  (2.52)

where
       Se                  deF    stA ) dE=A.
The solution of this equation corresponds to the stationary
solution of Eq. (2.44). Hence we have the Schottky
formula
    dF=k2i-k y,-l u,+sJ e,=- SitL• (2.s3)

     We have seen that system 'size expansion using the
relation <2.l6) affords us a systematic rnethod which
includes the conventional Lagevin rnethOd for stationary
states and which can be extended to a non-stationary case.
     In other worksr appropriate truncation of our expan-

The Gaussian distribution has also been observed experi-
        (ll) (1.2)               . This substantiates the validity of.ourmentally
Åíorrnalism within the order e. Hence we obtain for the
correlation function in the range t> T,

  <A XtA X, >= < )(t J( t > - < ;(t ><)(T>

           =.j7dxr g(tlzr) xr ?( xr, u zo, te)

           -- <Zz>fdXrfd xt P(Xt ttlXt•t) P(Xr,ZlXo,to) •nct

            Jd zr g(tlXr){ zr -<Xr>7
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sion covers the conventional theory as the normal case:
Eqs. (2.45)r (2.46) and correlation function derived in
the norrnal case are none other than the equations obtained
with the Kolmogorov and Langevin methods. If we require
a' more accurate approximationr such as for deriving
inEormation on m3, we should truncate Eq. (2.20) at a
higher ordex. Such procedure, however, is tedious, and in
the next section, we will propose another means of deriving
the same results more directly with advantage taken of the
extensive property.

92.5 phase Flow Pattern

     Equations (2.39) and (2.44) yield identical results
for the rnean value and variance in the non-stationary
case. BUt if we take higher-order terrns of e into consid-
eration, some difference must necessarily appear between
the two results, since a branching process is non-Gaussian.
     !n order to examine this difference we utilize the
extensive property mentioned in g2.2 that is applicable
to a subcritical reactor. Inserting the expression
(2.15) into the basic equation (2,7), we obtain
     :iltT `fl, (x,t) =--fdAX zAr(x,Ax,t)(} -- e'4X({I1940)) . (2.s4)

Then, by using the WKB approximation of quantum rnechanics
(where h=(Pianck constant)/2T corresponds to e), we can
find the Harnilton-Jacobi equatÅ}on in the following
mannert If we rewrite the extensive property (2.15) in
the form
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   p(x, t) . cet9, (x,t) . c etJrdt'-SllSlo• . c etfdtiL(x, )e,t•) ,

                                                  (2.55)

and compare this with Eq. (2.l2), we find as the Lagrangian
    L = ltÅëo . eoto + 2 gx9o . . (2.s6)
Then, defining the generalized momentum p= De"xO , we have

the Hamiltonian
                  sPo    H=IP-L=-)t. (2,s7)
This is the Harnilton-Jacobi partial differential equation,•
    gtÅëO +H(x, P,t)=o, fo. . and p, (2,ss)

Instead of solving the partial differential equation
(2.58), we can solve the canonical equations

     dx eH
        =     4t          oP
     dp aH
        = - ----

While, in general, Eq. (2.59) cannot be solved analytically,
we can still visualize the characteristics possessed by
the solution with the aid of flow patterns. This method
suggests itself as a useful approach for the case of a
non-linear system, and it can be considered to be a kind
of pattern recognition.
     In a simple example of subcritical zero-power reactor,
the exact treatment of the Kolrnogorov method gives
    H(x, p) =s(i-e'P)+lli- (i -- a(t)) eR ), (2,6o)

where
     G(p) =Sl p(m) e-hmp
                       .           neo
If s(t). is constant, H(Å~,p) does not depend explicitly on
time, and the flow induced by Eq. (2.59) is determined by
H(x,p)=E. Figure 2.2 shows this flow pattern.
     Nextr we will show the flow pattern of the approximate
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treatrnent derived in g2.2 which corresponds to the Gaussian
approximation of the fluctuation around the most probable
path. Converting C to x in Eq. (2.21),
-t P ( ;c , 't ) = - e-D,( {cl(e(t )) [x - g(t>) + C, (U(t))} ?(X, O+ 'ili' taj.i C2 (S (" ')?(X, V, ( 2 . 61)

and using Eg. (2.22), i.e.
   ?(g.t)=isrela e'i2=jiSrciLke e- (XiESi"))2= e+p(x,v, (2.62)

we obtain the time-dependent Hamiltonian applicable to the
present case:
   H(x, p. t)=ic,'(v(t)7(x- g(t)J+ c, (s(t))JP- C2iStt')P2. (2.63)

Then the characteristic equations of the zero-power reactor
are
     ddtX' = 3a 7, = fL x, ts -- { leV 2ih'i g(t) +s) pt

     dP,- SN P     dt "" axt ='T Pt (2.64)
    !ilk/Ii!"- f- s{t} +s .

We can easily solve these equations under the initial
conditions

     XC te ) = Xte

               l     P(to) = •- -ai; (Xt. - n)

     S(te)=1,

corresponding to an initial Gaussian distribution:
    ? ( x, , t, )= et ipe (Xt" 'te ) ; 9 (lt. , t. ) =-tt, CX t, "- 7 )2.

The flow pattern for this is illustrated in Fig. 2.3. 'rn
this figure the straight lines represent the time propaga-
tion of the Gaussian distribution. Thd slop of the line
is inversely proportional to the variance.
     we can see from Eq. (2.7) that each cn is accompanied
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by a higher-order term of E depending on the index n.
Now, in the above two treatments the Hamiltonian (2.63)
COrnprises only clr ci and c2t while the Harniltonian (2.60)
contains allthe higher-order terms cn• The effect of these
higher-order terms appears in Fig. 2.2 with the slight
bending seen in the line of the stationary distribution
P(x,t=oo), which is absent from the corresponding line in
Fig. 2.3. Thus we rnay conclude that the effect of the
higher-order terms is not significant for zero-power
reactor noise analysis, on account of the large volume of
the reactors in the normal case. As a first approximation',
therefore, we can obtain an arnply accurate result by
aSsuming "normal".
      The foregoing finding provides us with a useful and
convenient method for studying non-linear, non-equilibrium
noise problems. This characteristic permits us to
introduce a new variable ct, that is very suitable for
analyzing non-stationary reactor noise, as it will be shown
in the next chapter. Inacase where an evident non-Gaussian
distribution of fluctuations around the most probable path
is found in contrast to the above normal case, we should
take account this effect by taking up the higher-order
                                    t-terms of cn to clarify the non--Gaussian mechanism.
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g2.6 Application to a Non-linear Reactor System
       with Randorn Parameters

     The non-linear behavior of reactors with randorn
parameters has not so far been treated by taking into
consideration the difference between the extensive and
intensive variables. In the case of a point reactor, the
stochastic differential equation with random parameters
has been expressed by wiui'ams(i3)-(15) in the form

      "iiltt- Å~(f)= It)X(t)+Se (t), (2.6s)

where the delayed neutrons have been ignoredt while X(t)
is the number of neutrons, f the mean lifetime of neutrons,
p(t) the reactivity and Se(t) an independent source term.
Williams assumed that p(t) and S                                 (t) are stationary
                                e
Gaussian random variables representing parameters and
source excitations, respectively. rn what follows, we
assume that their noise are white. In a source-free caset
the inconsistency of Wi].liams' treatment is obvious if we
compare the two equations (a) obtained by integrating
the Fokker--Planck equation (23) of Williams' reference
(13) multiplied by X over all possible states of X, namely
                - Po        d       iRt7 <X(t)>-T<X(t)>, (2.66)
and (b) obtained by differentiating Eq. (3.13) of Williams'
reference (14) for p=l with respect to t, narnely

       -t <x(t)>.({,L. il7t,,)<x(t)>. (2.67)

Here we have also used Eq. (3.6) o,f Willams' reference
(l4), i.e.

    <S: `" jl at'jl.tdt" RA (t '- t") =f, `d t'Jl.'dt" (f `S` (t" t") = C" t' (2' 68)

Where does this difference between Eqs. (2.66) and (2.67)
come from ?* In the latter treatment wi11iarns also derived

" This is also discussed in references (15), (l7) and (l8).

                          -33-



a non-Gaussian distribution function of X by Gaussian
random parametric excitation. While his treatment i9
rnathematically self-consistent, its physical meaning is
not ciear, since he used the Gaussian assumption in a
non-normal situation in which the st--dependence of the rnean
value and that of the fluctuation are of the same order.
Such a non-norma1 situation rnay occur in particular cases.
The Gaussian assumption should be applied more appropriate!-
ly to the normal case. We will further clarify the incon-
sistency in more concrete terms.
     If the macroscopic system has the most probable path
in a stable situation (See Appendix), it stands to reason
that the distribution of the fluctuations around the most
probable path should become Gaussian. Since we assume
that the system lies in the normal case (or, in other
words, the systern is subcritical), the processes of p(t)
and Se(t) aace Gaussian. Hence, in accordance with the
rnethod of van Kampen, they must depend on the system size
st by the relations

                        i          P(t) = J3, + 8'A(t) <`s (t)>=O

         ÅíSe (t)= s.+ Åíts(t) <sct)>=o

        <A(t, )A(t,)>= 6' a(t, -- t,)

        <S(t,)S(t2 )> =6, 6(t`-ti) (2.6g)

         <AS>=<SA>=O .

Under these assurnptions, we can obtain from Eq. (2.65) the
Fokker-Planck equation in terms of intensive variables.
                                                       '    a-at?(x,t)=-e-e-xc,(x)?(x,t)+et/fitllc2(x)?(x,t), (2.7o)

                                       'where
     x--i; s=Ae ; c,(x)=-!{ii'tll-2S-2(X) (t---i,2),
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and
       c,(x)= -.Peo z +s+s IEiir, x

       c2(X)={[i,•X2+ (Ys. (2.71)
     As mentioned earlier, we can let
                  i       x= U(t)+8a 5.

Substituting this into Eg. (2.70) and comparing the terms
of order e"'i/2, we obtain

      -iiltll e(t)= -li2 S(t>+s, (.2.72)

In a source free case, this result coincides with the
first equation of Williams. Frorn the terrns of order eO,

we obtain
  sbl} ?( g, t) =- -fL' a-b-g g ?( g, t) + f(-2,; ti 2{t) + d,) illta, ?(g. t) . (2. 73)

[rhis equation is the Unear Fokker-Planck equation with
time-dependent coefficientsf and leads to a solution of
Gaussian distribution. From these results, we concZude
that in so far as the random pararnetric excitation p(t)
has the st-dependence given by Eq. (2.69), the system has
a Gaussian distribution of fluctuations around the most
probable path.
     When Williarns caiculated the moments of the Fokker-
Planck equation from the Langevin equation, he used the
"discrete" Langevin equation (!to's rnethod) for zero power
reactors, and the "continuous" Langevin equation
(Stratonovich's method) for power reactors that are
affected by such factors as bubble formation and tempera-
ture fluctuations. Now, the difference between Eqs.
(2.66) and <2.67) arises from this discrepant treatmenti

in the two cases of power reactors. It should also be
noted that this difference is present in parametric
random excitation, while the difference is absent in
source randorn excitation on account of the linearity
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of the Langevin equation. We have proved earlier that,
even in a power reactor, continuous treatment should yield
the same equations as those obtained from discrete treat-
ment on account of the dependence on the system size in
the normal case. This is why the discrepancy between the
two treatments disappears in the normal case. Thus the
necessity becornes felt for distinguishing the non-normal
frorn the norraal reactor state. Furtherrnore we see that
the non-Gaussian effect pointed out by Williams plays an
irnportant roie when p(t) has a non--normal st-dependence
caused by non-linear and other effects in a particular or
abnormal situation. Even in such a caser however, we can
estimate these effects by the method developed in this
chapter, unless the transition probabilty of states is of
non-local nature.

g2.7 Conclusion and Discussion

     We have explained the system size expansion method
in g2.2. This was followed in g2.3 with an examination of
the validity of the "normal"assumption in a steady state.
In gg2.4 and 2.5, it was demonstrated that the results
obtained on the basis of conventional reactor noise theory
are equivalent to those of the normal case in our formalism
within an order of E. For the zero-power reactor, we have
presented the flow patterns of its evolution, showing that
for such a reactOr we can adopt the Gaussian assumption
without incurring error beyond the order of E. [Phis
indicates that our approach has a possibility of shedding
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a fresh iight on the estabiished approaches based on the
linear stationary ergodic Markovian processes. Hence,
the reactor noise, particularly in-core noise, can be or
should be treated with the framework of statistical physics
for non-linear non--equilibrium open systems. Finally, in
g2.6t a non-iinear reactor with random pararneters was
discussed as an exarnple of application of our theory.
     Though the point model of reactor has been treated
in this chapter, it is straightforward to extend the
applicability of our formalism to space--dependent phenornena
if the configuration space can be divided into cubic cells'

.

In this case, instead of the systern size expansion, the
cell size expansÅ}on as in chemicai reactions(i9) may be

adopted. The length 1 of a cell is chosen larger than
the micro-characteristic length !min (for examplet rnean
free path), so that the rnean value taken in a cell is
meaningful. The 1 must be also srnaller than the macro-
characteristic length Trnax, so that the variation of mean
value y(t) between neighboring cells should be srnall and
hence the spatial difference has the meaning of derivative
in the spatially continuous approximation. It is
important to take variables describing the spatial
tendency of the system in which ail the transitions axe
limited to occur only in a relevant scale, in order to
make use of i/st--expansion.

     When we treat a power reactor, its state requires to
be classified in more detail than currently practiced, on
account of the significant differences brought by such
effects as non-linearity and feedback. When Williams
anaiyzed a reactor mechanism with Åëonsideration given to
fluctuations, he distinguished the discrete from the
continuous treatment. This is not sufficient, and we riave

additionally distinguished the non--norrpal from normal
fluctuations, based on the statistical physics considera-
tions. As we have pointed out g2.6, it is important to
study whether or not it is valid to assume Gaussian
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distribution of the fluctuations around the most probable
path. In the case of a power reactor where the non--
linearity of the phenomenoiogical law plays an important
roler the dependence of the fluctuations on the system
size presents aspects different from the normal case
dÅ}scussed here. If a power reactor is subject to non-
Gaussian effects, the higher--order terrns cn(x) should
serve as clue to studying their physical mechanism. The
order of system size dependence should also be useful as an
index to aid in classifying the reactor state.
     When we use the Markovian assumption in a power
reactort we should use a state vector instead of one
variable as in g2.2. The stability condition of a power
reactor in reactor dynamics can be classified into domains
corresponding to stable, unstable, semi-stable states and
so on. Within one state space, the state condition of a
power reactor can be specified by means of certain parame-
ters. When the system lies in a stable or unstable domain
or in the case of transition frorn one domain to another,
it is useful to draw flow patterns such as shown in this
chapter for the analysis of the stability with account
taken of fluctuations. It should further be noted that
the power spectrai density is not well-defined in a non-
stationary state. This makes it indispensable in a non-
stationary case to seek variables that can provide
information corresponding to that available from power
spectral density in a stationary case. For example, in
the 'phase' of limit cycle, an eligible variable would be
the irreversible circulation of fluctuation ct to be defined
by further examination of the present formalism. This
will be the subject of the next chapter.
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APPENDTX

     We define the terrninology necessary for representing
the various states of the macrosystem. Zn general, the
phenomenological equation (2.l9) may be assumed to be
expanded in reference to the stationary or equilibrium
state in -a form

     -t Y(t) = C, (S) = 21, S + Y, El•2+ ,l/31 ,Il3+ ••• .

The different kinds of states shall be classified and
defined as follows:

a) Stable state: vl<O
b) Unstable state: vl>O
c) Marginal state: vl=O, V2iO
d) Critical state: vl=O, v2--O, V3SO.
     This classification is based on current practice in
statistical physics. The criticai state does not
necessarily correspond to a critical reactor. The
Trtarginal point, in particular, will play an important role
in the next chapter in relation to change in behavior of
the reactor from stable to limit cycle region in a non-
linear system.
     The subcritical reactor state corresponds to the
condition (a), since cl(y) is linear and vip/t <O. A
supercritical reactor corresponds to the condition (b).
When a reactor becomes just critical, i.e., p/L==Or the
usual point reactor model no longer includes non-linear
terms. This means that we must in this case take account
Of V2, V3,..• which, in comparison with vl, could be
neglected in supercritical and subcritical reactors.
Hence there is need for refinement of the conventional
point reactor rnodel to cover properly the just-critical'
state.
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                     CHAPTER 3

         Irreversible Circulation of Fluctuation
                  in Reactor Nolse

g3.1 Introduction

     A power reactor is usually a complicated system
involving non-linear and/or feedback effects due to nuclear,
thermal, hydrodynamical, mechanical and various other
phenomena(i)(2). power reactors have intrinsically fiuc-'

tuating components. Furthermore, they are also operated
in a non-equilibrium or non-stationary state. When the
system is in a non-stationary state, the power spectral
density is not well-defined. This makes it necessary to
find new variables that include the requisite information
to account for the non-stationary state, through extension
of the stationary power spectral density. It is major
subject of power reactor noise theory how to forrriu!ate
equations for these cornplicated phenomena(3)-(5).

     The first step in this direction was made in the
                (3)previous chapter                   , which took up as basis the system
size expasion rnethod of non-linear non-equilirium statis-
tical physics(6)-(10). !n chap. 2, it was seen that in

the normal case the non-Gaussian effect on a macrovariable
(total neutron number) appears only within the order
e(=st-i), owing to the macroscopic nature of the system

size st, despite the fact that a non-Gaussian process
a branching process exists in zero-power reactors.
     It is the purpose of this chapter to find out to what
extent the non-linear non-equilibriurn power reactor can be
described with use made of the system size expansion
method df Chap. 2, under the assumptio4 that the system
belongs to the "normal" case.
     To describe reactor noise, we shall propose a new
parameter the "irreversible circulation of fluctuation"
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ct , which was first introduced by Tomita(8) to define

a cyclic balance in an off-equilibrium situation. MUch
useful information can be expected to accrue from exami-
nation of ct in conjunction with the currently considered
variance a and the power spectral density, even for steady
states. Examples of such information would include
discerning of forerunner phenomena preceding various
instabilities of power reactors, through appropriate
processing of data from ct and cr. Thus, it will be seen
that ct and g are very useful in extending the theory to
non-stationary cases, when the system is in the normai
case.
     In g3.2, we shall incorporate the irreversible
circulation of fluctuation ct in a time-dependent formalism,
based on the systern size expansion method. This will be
followed in S3.3 by the consideration of a stationary
state, in order to relate the new variable ct to convention--
al variables. g3.4 will serve to demonstrate the effec-
tiveness oE the theory, by treating a specific type of
reactor representing widely current forms of such reactor.
Conclusion and discussion are presented in g3,5.

g3.2 System Size Expansion and Irreversible Circulation
       of Fluctuation

     Treatment of the non-linear Langevin equation(ll)
leaves sorne ambiguity both in the math6matical and physical

aspects, as mentioned in g2.6. This has induced us to base
our approach on the probability distribution function and
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the Markov assumtion. Then the systern under consideration
is described by the rnaster equation (2.1):
 illE?(x,t):Jl{w(x-n,xc,Ax,v?(x-AJr,t)--IAt(x,Ax,t)?<x,t)}dAAr. (3.i)

                       '     .By uszng
 x=:i :=eX (E=A-`), W(x,AX,t>=n w•(x,A,xc,t), p(x,t)=a"2(x,t),

Eq. (3.1) can be rewritten in a power series of E, known
as the Kramers-Moyal expansion (2.7):
    e-Ot p(x,t)=,ÅíO.', -Si"{'`(-:IItlT)n• cn(x,t) ?(x,t), (3.2)

where
     c. (x, v =- jld A,v (A )v )" tu' (x ,A,v, o. (3.3)

     As mentioned in gg2.2, 2.3 and 2.5, it is possible to
disregard detaUed information concerning the far wing
distribution in the normal case, owing to the macroscopic
nature of the systern. This permits us to adopt in this
case the scaling relation

     x=El(t)+E+g, [x={x.} (i=i,2,...N)] (3•4)
                                  z
where Y(t) and g are respectively the sets of mean values
and the fluctuations around them. The normal character of
the system is thus represented by the fluctuations of
order el/2. Then, Eq. (3.2) can be further replaced by an

eguation written in terms of the variables g instead of X:
                        te2 illtp(g,t)-E-s' ei(oePe(l't)=Ii"le;..., ;i'-1`', (- ,-eg )n c, (stt)+EÅÄg,t) ?(g,t) , (3.s)

Within the order E-1/2

      IESti- El (t)=Ct (c!l (t), t), (3.6)

                           o•and within the next order e
  S}t-?(lj ,t)= -• ;Si.IT[K (}{t)• t)'g P( lj, t)] + zlF E;2i2g2 [D (5(O•O P(g ,t)],(3. 7)

where K( llF (t) ,t) =OCi( Y (t) ,t) /O ei (t) is the reg ression

matrix, and D ( (!I (t) ,t) =c2( U (t) ,t) the diffusion matrix.
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Equation (3.7) is the linear Fokker-Planck equation with
the coefficients depending on time, through the time-
dependent most-probable path Y(t) even in the case of time-
independent w. Equation (3,7) may be written as a
conservation relation of probability;

     31t P(E,t)=- ees G(g,t), (3.s)
where
                                le     G(g, t)=K(U, t) g P(g,t) -- s- og D(U, t)?(g, t)

stands for the probability flux. From the Eq. (3.6) we
obtain the evolution equation for a small deviation SS:

       d      •ii:tT 68(t) =K(U, t) 6U (t),                                                   (3 .9)

and from Eq. (3.7) we have
  -ii!E g (t) = K(u(t), t } cr(t ) + i<'?/ ]7T51-l5'(st{lu(t), t) 6-(t) + D (u(t), t ) ,

                                                   (3.!O)

where af is the matrix of variance, defined by

      u(t)=<gcvgct)>=fg lj ?(g,t> ofg, (3.ll)

and the tilde t-- denotes the transposed rnatrix.
     It is easy to show that Eq. (3.7) is satisfied by the
Gaussian distribution
      ?(g,t)=F\,Åí4i"') e-+g'8ct)'g, (3.i2)

where

      d(t) g(t)= e (t) cr(t) = 1 ,

Taking advantage of this property, we can transform
Eq. (3.7) into the more convenient form
      -iftl- ?(g,t)= bDg ( K{t)(r (t) + il' D (t)) sltT ?(g• t)

               =oSgEoDg ?(g•t), ' (3.13)

where K(t) and D(t) are abbreviations of K(Ut(t),t) and
D(U(t),t)e Dividing E into (a) symrnetric and (b) anti-
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symmetric parts, and noting the relation (3.10), we obtain
                                                  .    E = K(t) (Y'(t) +SD(t)

       = -5- {K(t) cr(t> +'iZ-?/Tj'UZ'{t)cr(t) + D(t)} + -il- fK(t) (s'(t) -'i]??/;SnyZfiFt)(r{t)}

       = 2-i- Cir(t) -- c>< (t),

                                                  (3.I4)
where we have introduced a new variable defined by the
relation
     o((t)=.If{i?7/T'S-{ft{'t)u(t)-M(t)O"<t)}. (3.Is)

From the mathematical property of antisymmetric matricest

     Eil; D((t) llfitT P(g,t)=o• (3.16)
This means that De(t) does not cbntribute to the time
evolution of P(g,t). Then, in a system approaching steady
                    ." -state, the symmetric part d disappears;P leaving the anti-
symmetric part d still remaining. The physical meaning
of be(t) is closely related to the cyclic balance in the
non-equilibrium situation of an open system. Further
details of the irreversible circulation of fiuctuation ct(t)
                                   (8)-(10)have been presented by Tomita et a!.
     It should be noted here that of(t) defined by the
expression (3.l5) would not be directly observable quanti--
ty, since while CS(t) is observable, the regression matrix
"(t) is not. We shaU therefore derive another definition
of Qe(t) that involves only observable variables. For this
purpose, hoting the property of ct(t) related to the two-
time gate probability(9) manifested in Eq. (3.l4), we

derive the equation of motion for g. Then the conditional
probability over an arbitrary path from (g,t) to (g',T) can
be written
      1.(g:,lg,t).,. E}•S--(gi- 6e(r,)•S(t)'(g/- 6S(r)), (,> t) (3.17)

with the initial conditions (5"ct)=o and 6!l(t)=g.
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Letting T-t=At and g'-g=AE and using Eqs. (3.9) and
(3.10) for an infinitesimaltirne interval, we can rewrite
the conditional probability in the form of a path integral
covering a finite time interval:
      ?(g,,w g, ,t,) o<r fd,IS>(g) e- ftlaO (g• g) dt, (,.,,)

where
   O(g,g)= ll (g-K(tj g)•R(t)• (ti; -K(t) g) , R(t) =2D(t)-i, (3.i9)

The equation of motion for g can be expressed on the basis
                                                          'of the variational principle by the Euler- Lagrange
equation(9)

      d{(--[l-gOl--)-(g..,.0) . .

       =R(t) 'g' -- {R(oK(t) -- izr/t)R(v --R(t)ig

          e e -N.       - {R(oK(t)+R(t)"(t) + 1,<(t)g(t) t< (t)>g = O e (3.2o)

The equation of motion is decomposed into the independent

       .(a) gt = 0<(t) i!; (forward evolution) (3.21)
       .(b) g- =("(t)+D(t)8(t))i5 (backward evolution). (3.22)

This leads us to another definition of ee(t):

      D( (t) = II- (j??/ ;51fi{t) (r(t ) - K(t> e' (t) )

            = -1 (<g (t) e, (t)> - <g .(t) g( o> ). (,.,,)

This definition of e!(t) shows that cNr(t) is an observable
variable. !n a three•-dimensional case, o('(t) is also
exp. ressed in vector representation by

      of (Å}) .t<[g (v xgct))>. (3. 24)

This expression would attribute to oe(t) the meaning of
rnean angular momentum of fluctuations.
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     Thus far, time-dependence has been considered
th'roughout in the formulations, since our aim is to'study
the non-linear non-stationary behavior of systems; but in
the next section we shall consider a steady state, for
the purpose of examining the relation between O((t) and
the other observable variables, We shall tind a third
expression of oe(t), applicable to steady state, which is
convenient Eor such an examination.

S3.3 Relation of De to the conventional variables(4)(5)

     Since for ordinary power reactors Eq. (3.6) is non-
linear, on account of feedback and/or non-linear phenomena,
it is difficult to exarnine analytically global behavior
of its solution over the whole region. The behavior in
time of fluctuations is complicated even in the normal
case, on account of the regression matrix K and the
diffusion matrix D in Eq. (3.7), which depend on time
through the mean value U(t). To obviate this complication,
we shall consider a steady state, where elt(t) is constant.
All necessary information on fluctuations is then contained
in Ks and Ds , where the subscript s means steady state.
This implies that both O'(t) and o((t) are expressed solely
in terms of Ks and Ds. rn the sarne way, the relation
betiween the conventional variables and ct(t) can be fourid
in this special case, as it will be shown in this section.
     First of allr the conventional vatiables are summa-
rized below. The correlation matrix in a steady state is
defined by
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     c(t)= <g (o) g(t)> .
         =fdg, fdg g,gp(g,tlg,) ?S(g,) , (tzo), (,.,,)

Then, the time derivative of Eq. (3.25) can be transformed
by partial integration aÅíter inserting Eq. (3,7):

      Åí c(o = <g(o) g(o>

             =Sdg,fdg g,g oDt p(s,tig,)pS(g,)

              = <g(o) (K,g(t)) >

                     v             =C(t) M,. (3.26)
rntroducing the Laplace"Fourier transform
      s (w)= jlgedt eiavt c (t) ,

we obtain frorn Eq. (3.26)

      sctv):•-- (ys (tov -t- Rs)-i, (3.27)

where ti. is given by the relation
              tw      Ks 6rs+Ks Cs+Ds=O, (3e28)
     The power spectral density matrix for a norinal case
ls wntten
      P(oo) =Å}[:<(x(o) -- US)(x(t) - eS )> eiWt dt

           = [co. <g(o) gct)> eC"t dt

           =S (W) +St( oo), (3.29)
where Stco)denotes the Hermite conjugate of S(W). In the iast

equality in Eq. (3.29) we have used the obvious relation

       <g (t) g(o)> = <g (o) g c- t)>
                                  2
for steady state. Substitution of Eq. (3.27) into
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.

Eq. (3.29) gives

                  ll     P(co)"-dsiooti?,r'-wt' ds,                                                  (3.30)

which can also be written
     P(w) = CT (c w) D, 'G(:-1"iV]t oo) , G(i co) = ({w- K,)-; (3 .3i)

with use made of the relation (3,28).
     Here, we also shouid pay attention to the definitions
of power spectral density since the system size expansion
method provides different fl-dependent power spectral
densities.

     Px (w) = A2 P)c (ev) "`R P(w)

      p, (w) = LP.O <(x(o) -- ys)(x(t) - ys) > eiwtdt

      Px(co) =f-pa. < (x(o) - US)(x(t) - us) > e`cui dt,

where Px(co) is used in the conventional reactor noise

theory of the point rnodel.
     The above considerations confirm that full information
about the fluctuations of steady systems can be embodied
    wlthin the order e in the self- and cross-power
spectral densities. For example, the variance 6s of the
fluctuations is determined through the power spectral
density by
     6.= i. L."QP`W) doo = 21rc f.:Re P(ca)dca• (3•32)

     We shall now consider the relation of cts to the power
spectral density. From Eq. (3.29)
     igl- <g(o) g(t)> =<gca) g pt )> = setT f-co.<-ico)P(es> e-iutdoo, (3.33)

     <!;(t)g(o)>=tt/o)g(t)>=-21nLrte,.(-iee)Ptua)e-`'Wtdcv,(3.34)

                          Nwhere we have replaced P(co) by P(u)), the complex
conjugate of P(tx)), since the power spectral density is
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Hermitian. Taking the limit t"O in Eq, (3.34),
     ct, -t (<g g>-<e g> )

        = 4'. f-.oo(- ti co)[P{co) - P(co>] dto

         =2i7rL II:i cv rm P(cv> dW, (3.3s)

The probable reason why D( has not been considered in the
past, either in theoretical or experimental studies on
reactor noise is that, in so far as steady states are
concerned, the power spectral density suffices to obtain
all the necessary information. Howeverr it has been shown
that both De and U are useful as concise integral measures
of the inforrnation contained in the power spectral density
in steady state.
     Next, a relation between c)( and correlation matrix
will be shown. The correlation matrix is given by the
evolution equation (3.26):
                  N     C(t)=d,eKst, (t2o). (,3.36)
In a similar way, we obtain the another correlation matrix
      6(t) =<g; (t) g( o)> =eKst or, (t2 o). (3.37)
                                     '
Employing Eqs. (3.36) and (3.37), we easily obtain the
same relation as Eq. (3.23) in a steady state without
using the variational principle:
      o(s s -;h (i?:s'6ids 'Ks 6s)

          = t { C(+o) - 6a/ 6+ o) }

          = S {<g (o) g(+ o)>- <g(to) g(,)> ) . (3•3s)

     We extend, in a steady state, the,time domain of the
correlation matrix to negative region, i.e.,
     N/t} = <g (tJ g(o)> = <g (o) g <-t)> = C (-t) , (tzo) .
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The correlation matrix is
                              N                         6, eKst (t2o)
     C<t) =<g to) g(t)> = eK, ltl (y, (t (. o) , (3•3g)

     In general, the regression matrix K is not necessarily
symmetric in a non-equilibrium situation. This means that
cross--correlation functions are asymmetric with respect to
the time inversion. However, we can see that self-
correlation functions involved in C(t> are always
symmetric. Thenr we shall connect Oe with the cross-
correlation functions. [Po do this, we note that Eq. (3.28)
becomes in a steady state,
               '-""'    Ks = '-L (Ss (Ks + 8s Ds ) 8s

              •-----------•-       =-' (j's (Ks+ Ds 8s) 8s, (3.4o)
which yields
                   ..-•--..-..     K,n ---- (-l)n(s-, (K,+ D, s,)n ,st, ,

where 8s is the inverse of 6s (Us es=8s gs=1).
Then we can obtain
    c(t)= eKs ltl (sf, (t<A o)

         ` 6's + ,2oo..,'il';r (Ks ttl)"6,

         =6r,+;l.l,-ilT;(s,r(-("K"Nb-'-,+D,e,)stt)n

                  v         =6r, e- Ks+D, e, tti (3.")
                              .
Frorn the definition (3.38) and the relation (3.28),

                     ,N--     K,+ D, eF,=- or, K, 8, =-(t<,+2oe, 8,).

Finally we obtain
                   ..-----N...-.....-•-""'     c(t). cr, e Ks+2oes 8s iti , (tKo). (3.42)
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Cornparing Eq. (3.36)with .F.q.(3.42), we can easily understand
that cts repesents the irreversibÅ}lity in tirne in a state
far from equilibrium.
     Hencer the existence of ct shows the asymmetry of
cross-correlation functions with respect to the origin of
time. The asyrnmetry of cross-correlation functions are
familiar in experiments of reactor noise, while auto-
correlation functions are always symmetric.
     Having clarified the relations between ct and conven-
tional variables, we can proceed further to reseach how
ct is related to a joint probability distribution
function for two tirne points. We have a Gaussian type
solution from Eq. (3.7). Since the existence of Oe shows
the rotational freedom of the Gaussian distribution, we
fail to notice the existence of O( without the concept of
time series. So we must treat the two--time gate probabili--
ty in order to investigate this freedorn even in a steady
state. From Eq. (3.7) in a steady state, we obtain the
following conditional probability
 p(g,tt,,lg, T) .< e -- st-(g '- 6e(t+ v) 8tt +r) CE'- 6e(t+ V), (t>,),(3.43)

with the initial conditions 6(T)=O and 8S(T)==g where
      d(t+r) s(t+r)= 1 , ss(t+ r) = eKstg ,

Then, the joint probability in the Markov process is
      w,S (gft+t; g,r)=pcgC t+zig, z) PS(g). (3.44)

From Egs. (3.43) and (3.44) we get the following equation:

      -2 Z, Wi (g;t+z;g, O
                  E}(t+z) ,-(}(t+T)eKst g/

       = (g:g) eftsts(,,v, e"KVts(t+vekt+s, g

                   -t gi
       .(g:g)A g )
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where the 2 by 2 matirix A, whose elements are N by N
matricesi is evaluated by noting that the matrices do not
commute in general, so that
     A. eKStdss,ie('l'{tl,ldt'eKSt'Ds ei?Sti, eK6'.i Osr (, ,,)

From Eq. (3.10) in a steady state with the initial condi-
tion (S(T)=6s, we can obtain the following solution:
 6(t+t).eKst6, ej?rst+f,t'iti eKs(t'T-t') D, ei(s (t+r-t')

       .eKstu,r eKeVst+ f,tdt' eKstb, ei?sl t!. (3.46)

Then, from Eqs. (3.45) and (3.46), we have
         (s-(ttv ,eKst6, 6, ,eKst(sr,
    A= cs,ecrst, (f, = d,eNKst, d, ' (3•47)

since U(t+T)=6(t)=(S, in a steady state. Finally we
obtai sll21,(fgr,O,M, ,l.gg,8 ',4,26stgc g) /i d` (I;'), (3 4s)

          6's ,N/t) <sr, ,6r, e' Ks"2Des 8s ('t)

    A= c(t), d, =(f, eKst, d, '

     In a steady state of the system, the one-gate
probability has a fixed Gaussian shape and the joint
probabilty represents the time evolution which is
detennined by k, and eq. It is concluded that ct is a one
of fundamental observable variables. The examination bf
oe must be important in order to obtain the dynamical
information of this rotational freedom in a reactor system.
     In the next section we shall show that, even in a
steady state, suitable processing of ct and U can serve to
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provide a deeper insight into the various states of power
reactors. We are led to a new viewpoint, based on which
the system is conveniently analyzed through mathernatical
and physical examination of Oe, and we can deal with
information on complicated power reactors by evaluation
of De.

g3,4 Application to a concrete Model of Reactor(4)(5)

     It has already been mentioned in g3.1 that a power
reactor in operation is a very complicated system,
involving a wide variety of phenomena. In the theoretical
analysisr therefore, a number of assumptions and a simple
model would have to be adopted, which must not, however,
obscure the essential features. This section will present
our formalism concerning a simple point (homogeneous) model
of power reactor, assuming a reactor in the "normal" case.
     The reactor of interest is of KUR-type, a water•-
moderated and -cooled reactor, discussed elsewhere in
                   (12)-(14)detail by Morishirna . For simplicity, we neglect
the delayed neutrons and coolant velocity fluctuations
which have been taken into account in his model. Accord-
ingly, the state vector X={x" (i=1,2,3) consists of

             X, N
                    Cvf fi V+
       X= Å~2 = G (I)+ ,. (3.4g)
             Å~, Xx, CvC Rgc Vc e.
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where Xl is the total number of neutrons in the reactor,
X2 the total energy content in the fuel region divided by
the fission energy q, and X3 the corresponding guantity
for the coolant region. The other notationsaresummarized
at end of this chapter. The transition probabilty is
given by
 W(X,AX,t) =S6Ax,,i aAx,,o 6Ax3,o + AcKi 6AK,,-} 6Ax,,o 6Ax3,o

             oo           + ]:.-., A+ Xt it)(v) 8Ax,,y-ii EAx,,s (5TAxs,o

           + {t(X,- r? Å~,) 61Ax,,o 6Ax,,-l 6AK3,l

           di' J>Nr(X3-Y3ta) 61Ax,,o (51Ax,,o 5Ax,,-t , (3•50)

where all the quantities representing the probabilities
of elementary process, and the net changes of state
quantities are identical with those adopted by Morishima
(see Table l).

     Table l Elementary events in transition probabUity (3•50)

Elernenta ry

event
:ts rate per
unit time

Net change
per event

Neutron source
Neutron removal

F=ss-on

Heat transfer

Heat removal

     s
  AcXl

AfXl pf(v)

ht(X2--nX3)

Xr(X3-ySn)

    +1 neutron
    -l neutron

{  (v-l) neutrons
 +1 energy in fuel

{ -1 energy in fuel
 +i energy in cooZant
 -l energy in coolant

     In our formulation, particular attention rnust be
paid to the difference between the extgnsive and intensive
quantities. [rhe reaction rates Af for fission and
Ac for capture are volume-averaged over the
reactor:
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       Af-rtV A?'

       Ac=iE A`','+ ;ili"AC.C'. (3•si)

All the reaction rates contained in the right-hand side
of the expression (3.51) are assumed to be intensive
quantities depending linearly on ternperatures:

       A(;) = Al',' {i - or, (9f - e,O)}

       A`2'= AVg {i- X,(Sl -- SiO)) (3.s2)

       Aci). Att,) {i- x,(e.- s.e)) ,

                                (f)                          (f)                                         (C)where the reaction rates A                               A                                    and A                                             are standard                          fO r                                co                                         cOvaiues and e2 and eg are chosen to be the s,teady-state

values defined later. The numerical values of the pararne-
ters are given in Table 2. Some of these values have been
replaced by corresponding effective quantities, as we have
simplified Morishirna's model.

     Table 2 Model pararneters

The
cally
this

-v
"2
v

q (.MeV)

S (.sec
ls (sec)
sc (cm3

     3vf(cm
     3V (cm
 c
P (kW)

 network of various processes
   represented in Fig. 3.l.
  model is also listed at the

--- 2.473 A(f)
cO

/AS8)
---- 30

--- 7.337 H (cm) ---- 64.7

)- 200 pf (g/cm3)-- IO.O
-1)

p (g/cm3)-- l.O
-4 c

)- 10 e,ln (oC) ----- 30

)--

)"-

1.os3xlo5
3.74xlo4

cf
v

(cal/gOc) O.05

)-- 6.7gxlo4 Cc
v

(cal/gOc) 1.0

--- 1000 Y2 (oC) ------ 2xlO-5

-
 in
The
 end

the.rnodel is symboli-
nomenclature used in
 of this chapter.
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                       ,,titr'll

o-------.@/<,' --.ttt',"l;v@i'--'.rp--:--)>(g)

                  Å~<,-/1,,i/ad@

      The paralneters yl, y2 and y3 are the linear ternperature

      feedback eoefficients of expression (3.52)

  Fig. 3.1 Reaction network of power reactor presented by
           expression (3.50)

     In short, this model is characterized by its being
an open system subject to linear feedback rnechanism and
in a non-equilibrium state.
     The system size expansion method applied to the
right--hand side of the mean evolution equation (3.6) yields
     ,,,,,./ilSk,`f,-.2'1ifg;gsi,Sj','-,92fg#gl'l,Sg], ,

            Xy2[ t( g2- n S, ) - A,(S, - g,in) (3•53)

where
     is= .--iv?.A%) i P= '-y---i-iSis(vfA2','+v.AC,C,')

     S= lii , a,= c,teil,llvf (-2tZiiii;-"i r, -- ;-\ltifiJ(Zs A26f) r,)

     A=ct,gflA+ v+ op asc".6R`.S2kv. (-lrftl2&ZsAc.c,) r3? .
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In
and

the evolution equation (.3,IO)
 D(t) are expressed by
   K t} ( {!f-) = oOsJ Cf` 'c EI- ) ,

for the

D`'`'( U > = fiV,'.-.i'{ t -d-A (S.-sc)} ti` " lt;

D(i2}( ,o). V 2,- f {1-G(th-Si )l S`

D('') (e)= o

D`22) (u)= e,i v ( i - •6 (g, -- gi)} V, +

Do3)(s) = - -i(i, ( ST,-QS,)

Dc33) (s > = {, ( s.- rz Sa ) + Xe ( Y3 4 e

vanancef

{P - a, ( U.--X) --

(t(S. '" nffj)

Jtu  ) .

q, (e,

K(t)

 (3,54)

- g,')} g, +s

(3.55)

     We shall
steady state.
state assures

      ct (es) .

             sfN

      us= }i

             e;

first examine
 The fact that
 satisfaction

o
.

=

the

 we
of

 e,s
'f

'

 stability condition of a
 are eonsiderinq. a steady
the condition

ne,s+

  ,S3to +

2,I
  i
Ar es v-

sV }i

   $
.

(3.5 6)

Hencer the

K, =

expresszon

Åí
ls

i
2s-v'

o

'

'

'

and

   (3.54)

   "ft sP

-tt,$--2,

    {t

and (3.55) become

 , ---{l'L IL,S

 • {,n
              '
 , - {t n -- ptr

(3.5 7)
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             y.s!c,v.;ii) 2fti +2s, ).'i,`lpil 8i

       Ds= f,'-tst 'i?y'- $'--

                  O '-2,iilr 2}'f'

The steady state can be classified
eigenvalues of the regression matrix.
region, for example, is deterrnined by
criterion. Frorn Eq. (3.9) in a
Eilt6y(t)=Ks6y(t), we have the

      z3+ H, z2 + H, Z+ Hs =O,

where
         Ht ='Tr Ks
         H2 = `{Lt Ks ' Th Ks'l

         H3 = - o(`vZf K, ,

from which we have for the condition

       H,>O, H2>O, H3>O and

Figure 3.2 shows the linear stable
space where Y2 is fixed. The values
used in this calculation are also '
     It should be noted that the
coincides with for 6, both depending
of Ks in the normal case.
     When the parameters change under
an instability may be produced by
effects. The three degrees of
system give rise to different types
instance, the system becomes unstable
of any root of Eq. (3.59) approaches
cases may occur. One is that in
approaches zero. This instability is
mode instability". Another case of '
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         A
        the
   steady state
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s (3.58)
i

    to the
 linear stable
 Routh-Hurwitz
    , i.e.,
    equatlon

           (.3,59)

      of stability

      H, H,>Hs. (3.6o)

    region in the parameter
      of the pararneters
   gzven in Table 2.
  stable domain for 8U
      on the eigenvalues

       a certain conditiont
   feedback or non-linear
freedorn possessed by the
     of instability. For
      when the real part
      zero. Two typical
  which'one real root

       called the "soft-
     instability is that
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(II)
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       focus and eol regions, respectively.

       there is a limit cycle region in

       boundaries of the stable region are

       Points A, B, C and G are on a straight
       ?g,#tO'i)r,gg'gh.,y,.3.:s$zsMgl,5-,

  Fig. 3.2 Classification of reactor states
           based on Routh--Hurwitz critemon

in which the real part of a pair of
approaches zero. This is called the
ty". In fact, the steady state becomeS
boundary of the stable region in Fig.
y3 is regarded as a slow-varying quantity.
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parameter y3 changesf the variance (S divergesat the two
points correspondi.ng to A and B on the abscissa of Fig.
3.3. This situation occurs when the coolant temperature
feedback changes on account of any event occurring in the
coolantr such as turbulence and boiling.
     These instabilities are seen in the <1,1) component
of the power spectral density presented in Fig. 3.4.

PIJ(iW}

]OIG

lois

1014

EÅ}-O,OS

Ex-O,1

E=-O,2

Pn(tut)

,oi` t

]o13

lci2

E- t-O,5

c""
s-O,2

         10iS,ou1 o,bl o,1 10elol o,1 1
                su6uLAR FREgU[NCT {flADISEO AnGuLAR FneaUEHCY (MDISEC)

            (a) Near soft mode (b) Near hard mode
                instability (yC3=y:) instability (yC3=yg)

    Fig. 3.4 (l,l) corn.ponent• of power spectral density
                       T -(y,-y;)/Yg

As Y3 approaches the point A, the zero frequency component
of the single mode increases divergently. This is the
case of the soft-mode instability. The hard-mode insta-
bility appears when some finite frequency component of a
pair of modes diverges at point B. These instabilities
are also shown by d and Oe near the transition points A
and B in Fig. 3.5. Thus, the analogy with generalized
phase transitions in far from equilibrium serves to
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describe reactor noise phenomena,
     Information only concerning 6 will not enable 'us to
predict which type of instability will occur. This will
be possible by taking O( into consideration as well as d,
as it is suggested by the fact that d is related to the
synmetric part of the expression (3.14), and ct to the
antisymmetric. This is evident also from an examination
of Fig. 3.3-c orc 3.5, where be ;remains Einite in the case
of soft mode instability, whUe a corresponding instability
of the hard mode makes the same variable diverge. This
can be analytically proved in the following manner: The
guantity oe is related to the imaginary part of the power
spectral density, as seen from Eq. (3.35) This imaginary
part is, by definition, an odd function of co:
      Tan P(w) = tt, (P(w) -P(w))

                       iwt                             -iwx             =[:C (t) e 27. e dt

             .f-O.O c(t) scn wt dt. (3•6i)

Since co has appeared in Eq. (3.31) in combination ico, the
imaginary part rnust be proportional to edt i.e•r

      Im P(co) o< W' fe<W), (3.62)
where fe(to) is a certain given even-function of co. In

the case of soft mode instability, the diverging zero--
frequericy component of P(tu) is canceled out in the
integral co.rm P(oo) of o< defined by Eq. (3.35), and O(
remains finite in contrast to C.
     When the value of the pararneter y3 declines beyond
the boundary point B, instabUity appears in the systern,
which thereupon becomes subject to a limit cycle. As an
exarnple, the lirnit cycle at point C in Fig. 3.2 has been
analyzed numerically, with the resu!t shown in Fig. 3.6.
This may be interpreted as the circulation inherent to
fluctuations making its appearance and taking the forrn of
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  Fig. 3.6 Limit cycle at C point in Fig. 3.2

limit cycle in the rnean evolution. !n this situation, the
quantities ct and 6 provide information on "forerunner
phenornena" of unstable states, while the mean value
rernains constant until y3 reaches A or B. !n addition,
we are able to observet as in Fig. 3.7 the changes brought
up on ct3 and un under stable steady state by variations
in the parameter Yl and Y3•
     The stability diagram of the system being specified
by parameter Y3 (coolant ternperature feedback coefficient)
is also shown in Fig. 3.8 for a change of power of a
reactor according to the linear stability criterion of
Eq. (3•6 0 ) • Ic r-. Fig . 3. 2]

     Next, we shall illustrate how O( is related to the
asymmetry of correlation functions in this model.
::tsa,l g, fit;e,g".s,gg g:gr:iegko2.gM"ee-?n7,?g,?og:g \,ly,:-;,

and shown in Fig. 3.9.
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Figure 3,9.b represents asymmetry of cross-correlation
functions due to the existence of the irreversible circula.-
tion of fluctuation oe as mentioned in g3.3. In each
figure, Cti's or Cij's (i,j=1,2,3;i'Ij) have similar tend-
ency of variation with time. This aliows us to adopt c"
and C12 for the representatives of auto- and cross-
correlation functions. The characteristies of reactor have
significant effects on these patterns of correlation func-
tions. Figure 3.IO shows that these patterns change when
the parameter y3 changes on the line AB in the stable
region of Fig. 3.2 or 3.8.
     Thus, it is important to find the way how to process
information of reactor noise in the cases of where changes
of these patterns occur one after another. It is also
necessary to systematize various observable variables in
complicated reactor noise phenomena and to know mutual
correspondence among them. Then, let us illustrate this
by the above-rnentioned reactor model. Figure 3.ll shows
mutuai correspondence of observable variables.
     Hence, we can estimate a position of operating reactor
state in the stability diagrarn by taking advantage of ct
which is an index for types of instabilty (soft or hard).
We should rnake use of reactor noise not only estimating
reactor dynamics or kinetics pararneters but also treating
reactor stabiiity. Moreover, with the increase of
reliability of reactor noise experÅ}ments, it is useful to
adopt various possible representation of an observable
variable, corresponding experimental situations. In other
words, reactor noise experiments are, in general, rather
difficult and we should not dra•w any conclusion on the
reactor state until we ascertain the agreernent of results
derived from various different measurernents.
     Finally, we sumarize essential equations or relations
in the steady stable $tate of the nQrmal case in Fig. 3.l2.
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     <Normal case> 1(= elS+ E+g

Evolution equations
                          u = gs+ 6s
       Mean value                               (c,csS)=o)

                          iftl' 88 =M, 6S       Small deviation

                                  t Iin g3.4]

                     soft mode instability
                     hard mode instability

       Fiuctuations gl;p(g,t)= -- seiig K,gp(g,t)+i Efil;D, 8g p(g

                               fi [in Chap.4]

                    zf4,E.K,g r'IF (<<FF,>F--",,g.D,s,,.,•,

Relations among statistical variables

,o

Fig.

28.rr.21•a..tiO" c(t)=<gco)gct)>=(gSKfll<6St, ((t'-,Z,O]

                  = sh fP (co} e-Cut dw

gSlllgrt..i P(w)=,(c(t) e`W' dt

densitY  .(iw-Ks )-I Ds Etoo+ji(s)'i

variance Usr =<g g>=C(o) =2Jn fP{co) dco

                          N                   ( Ms (fs + Ks Cs + Ds = O)
                                             .gr,iggfigg,gke o<,--{-"-e-V<,cr,-K,6,)--S-{C{,o)-c'"-,v+o)}

I}{uctuation ='2ire fCu Tm P(co)doV

 3.l2 Essential eguations or relations in the steady

       stable state of the normal case
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g3.5 Conclusion and Discussien

     The irreversible eirculation of fluctuation D( has been
introduced as a new variable for representing the amount
of reactor noise, and the usefulness of ct in reactor
noise theory has been demonstrated for non-iinear and/or
non-stationary cases.
     We have found for steady state the relations of or to
the variables treated in conventional reaetor noise theory.
We have also applied our formalism to a simple model in
order to analyze its behavior numericaliy. The analysis
of the experimental data is under way and we also hope
other authors may find occasion to cornpare these nurnerical
results with actuallv measured reactor noise.
     The section 3.4 gave the condition for power reactor
stability, represented by domains marked out in a diagram
in some parameter space. Transition from a stable region
to one of lirnit cycleshas been shown in Fig. 3.2. This
would suggest that reaetor noise theory might possibly be
forrnulated from the viewpoint of generalized phase
transition phenomena "generalized" meaning the occur-
renee of such phase transition in a non-equilinrium open
system.
     While the mean vaiue of el is constant in a stable
region, its Åíluctuations can be utilized as a "forerunner
phenomenon" to foretell undesirable instability, through
appropriate information processing. From the nurnerical
results obtained with our model, we have found that the
divergence of both De and 6 indicates hard mode instabil-
ity, while soft mode instability is characterized by
infinite 6 and finite De. Thus, we see that O( can
serve effectively as an index for instabilities. Beyond
the threshold of hard mode instability a limit cycie
appears. While in the norma! case the amplitude of this
limit cycle is small in comparison with the rnean value,
and limit cycle is considered to be stable, it should
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nonetheless be carefully exarnined whether the reactor is
safe or not in the limit cycle state. Such a decisibn
will be made by processing the information on ct and U.
     It should be noted in passing that it is important
to check the present results against those from other
independent methods of inforrnation processingr in order to
increase the reliability of the ensuing judgement on
reactor safety. And the values obtained by such parallel
procedures must coincide with the above results, so long
as the conditions do not differ.
     It is to be noted that the definitions of ct and U
given in g3.2 hold also in the case of non-stationary
states. As an example, as the parameter y3 changes frorn
the point G in the stable region of Fig. 3.2 to point C
in the limit cycle region, yl(t)roll(t) and or3(t) varY in
time as shown in Fig. 3.l3.
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The mean value yl(.t) oscillates and slowly approaches the
li!nit cycle. The change of un(t) is faster than that of
yl(t). It is of particular interest to see that the
irreversible circulation of fluctuation ct3(t) changes.most
rapidly, on account of its embodying the effect of the
tirne derivative in the expression (3.23).
     In the usual operation of a power reactor, there are
not only instrinsic fluctuations due to various cases but
aiso extrinsic fluctuations generated by external random
phenomena. :t is thus indispensable to classify power
reaetor states according to the statistical nature of the
fluctuaJtions. A transparent method is also necessary in
the study of reactor noise phenornena. Based on these
considerations, we have treated the power reactor
stochastically, using the system size expansion methodr
with the aim of obtaining cZear and useful results both
in mathematical and physieal aspects. Our particular
intention has been to gain a detailed insight into power
reactor noise phenomena by examining the information
contained in ct (rotational information on fluctuations)
for the "normal" case.
     Further study on the characteristic behavior of power
reactors is called for, to be undertaken frorn the view-
point not oniy of reactor noise but also of reactor safety
and diagnosis, The present study has been based on a
niurnber of assurnptions and sirnpljfications which have result-
ed in neglect of many factors that may be significant in
the very cbmplicated behavior of actual reactors. A
number of corrections to our forrnalism •should become
necessary from these considerations. This will be the
subject of subsequent studies.
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Total number of neutrons

Total energy dontent in fuel region

Total energy contant in coolant region

Fuel temperature (Oc)

Coolant temperature (Oc)
                  -1                    >Neutron source (sec
Average fission reaction rate (sec-i)

                                 -lAverage capture reaction rate (sec                                   )
Fission reaction rate in fuei region (sec-i)

capture reaction rate in fuei region (sec-i)

Capture reaction rate in coolant region
    -- 1(sec      )

Probability of v neutrons to be born in a

fission

Fission energy (MeV)

Average power level (kW)

Ternperature coefficients defined in Eq.
          -1(3.52) (Oc            )

Mean neutron lifetime (sec)

Reactivity
voiume of reactor (cm3)

voiume of fuei req-ion (crn3)

voiume of cooiant region (crn3)

Heat Capacity of coolant at constant volume
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 c
ht=ho/cgpfvf:

ho-ii.7(e2-eg)

e2-eg-p/h, :

Xr= 2v/H :
V=1.I6pQ•2s ,

n.==cgpfvf/cgp.v

ein .
     eq
vn=vE.ovnpf(v)

e2-y:q/e5pfvf

eg-ygq/cgp.v.

Heat capacity of coolant at constant volume

(kcal/gOc)

Mass density of fuel (g/cm3)

Mass density of cooiant (g/cm3)

Heat transfer coefficient(sec-i)

O'33: Heat transfer coefficient (kw/oc)

Ternperature difÅíerence of fuel and coolant

(oC)

Heat removai coefficient of cooiant (sec-i)

Coolant velocity (cm/sec)

Channel height (cm)

c

Inlet temperature of coolant (OC)
IyÅ}n=cgp.v.egn/q]
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                        APPENDIX

     The irreversibZe circulation of fluctuation o( exists
even in a linear system and is nonvanishing also in a
steady state. The oe is characteristic in the system
having more than two degrees of freedom, Thus, the O( is
a usefulconcept even in a simple zero power reactor model
with a single delayed neutron group. The transition
probability is

   W(tV, C, riN,"C) = S8AN,i 6.c,, + )y C 6AN,i 6Ac, --t

                +t,"O., ,,Z`,'Q.,-liiL P( Mo,pc) 6AN, ,v,-i (51A c, vt , (A'i)

with the notation:
N :nurnber of neutrons [=stn]
C : number of precursors [=stc]
S : neutron source [=sts]
X : decay constant of precursor
p(vo,vl) : probabiZity of vo neutrons and vl precursors
           emitted in an absorption
2 : neutron liEetime.
As the equation is linear in this caser
       JCD`#e). K, or c, (U )= M, S.

From e-expansionr we obtain for the mean and the variance
equations

     -,(!)=K,(!)+(g) (A.2)
     ikt• cf'(t)= lt<B cr(t)+ R;,'6ii"(s j(t) + D (A.3)

respectively, where
  K,. " lltli-2ik(`-S)i ..l), , D. -l(<ki,p,'ikkp,1 /-)IA,C+Sj .it :IJ,'Akd:-AC,
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              .with the notatzon;
            '::,`//:,:s,;o'"<vi' :.s:E:e]-C';V' :g3"E:e'l>.

The steady state solutions of rnean and variance equations

are
     ns= i-ik , cS=ciS;>

    g,li-/'tii•ll`,-ill`iii'/I,:k'/11/kl!/ll,:iillc/i',,'ri'iiM,i,,

where c' ==(k2--k)-(k2p--kp) and k2=k2p+2kpd+k2d• After
straightfoyward calculation, we obtain
    O(S" 2 .st (llli?e+AA) ((ka'k)(kd 'AO+(k2p'i?p>)sf)+i?pd 2LS ' (A•4. )

Next, we examine the stabUity of this system, using
Eq. (3.9), namely,
     d-dt(s8cn)"-KB(s8ch),

and the characteristic equation is
     z2+ ( )t + i' i(i"ie))z + A i-ik = o .

When the reactor approaches critical state, k-->1, only
soft ruode instability occurs in this system. This result
also corresponds to the iimiting case of three component
system mentioned in this chapter when the power decreases
to zero as in Fig. 3.8.
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                      CHAP[I]ER 4

         Irreversible Circulation as a New Parameter
                for Time Series Analysis

g4,1 Introduction

     We have treated O( as a new variable in the system
size expansion method in chap. 3(i)<2). However, the

usefulness of O( is not restricted to the normal case of
this formalism. Here, we will propose to adopt the
irreversible circulation of fluctuation ct as a new
variabie in cases of generai fieids(2)(3). Therefore, it

is the purpose of this chapter to find out to what extent
we can discuss general properties of ct directly derived
from noise experimental data as independently of modeling
and assumption about the process as possible.
     When we analyze a stationary noise-time-series along
this iine(4)(5), the correiation rnatrix c,.(t) and/or the
                                         1]
power spectraldensity matrix pij("i) are the usual quanti-
ties invoked for the statistical characterization of the
process. However, in practice, these quantities do not
necessarily lead to a direct understanding or a concise
specification of the physical situation. In this case
lower order moments wtll often be rather convenient
in characterizing the process than the whole
spectrurn• The variance matrix is a typical example. In
this chapter we will propose a new statistical quantity
"circulation" oe as a necessary complement to the
variance 6 in characterizing any multi-dimensional time
series. We will also discuss that the property of ct is
less sensitive to filter effect in the low frequency
region than U. Finally, the property of O( that we have
rnentioned in this thesis wili be surnmarized at the end
of this chapter.
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S4•2 !ntegral Index for "N.oisen(3)

     Suppose the system under consideration is described
by a set of variables )C={xi} (i=1,2,...,N), then the
statistical properties of a stationary process in the
space of X is characterized by the correlation rnatrix
which is defined by
     Sf.l:}. 1(i- jNil., PCi(k) Xi(k+X), (discrete sampiing) (4.i)

or by
     TL.Ct"',i.t= f,Td'tro <xi(to)X}(te "t)> =' Cid' (t), (4,2)

or its Fourier transform, i.e. the power spect.ral density

      Ct} (t)= 2T-liiff.. :aco e-i"t PiJ• (W), (4.3)

or
      pti (w)=L`'.O.dt ei`"t cv (t). (4.4)

     Let us split the correlation function into two parts

      Cv• (t)= Ci•JS•'Ct)+ C:•#')(t), (4.5)

where
 C1';'ct} "-- -S' {<Xi (te) X2` (to"t)> + <Xle (G) Xj ( to- t)>} ( syrmnetric part)

and
 c`ij'(t)=. -l-- {<Xi (ts)X}(toft)> nt <Xi (to)X}'(te-t)>} , (anti-syrnmetric part) •

ln terms of the power spectral density

       Pcj(tu)" Pd' *t (W)" P!atco)ti Pc'a7' CW), (4.6)

where
     P,]{co>`Pc'j (-to)=Lpo.dt eicotCc('JS')(O) (even function of tai)

     Pe;'(w)=-Pt';'('C")=f.`",.dteiWtCS:)(t)) (odd function of "}),

and * indicates the complex conjugate. Conversely,
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       cii'(t)=217t [`',Q. otcv e-iWt Pi:• (w) (4.7.)

       c2•:'(t)= ,l7t f..:: dw e-icot P,'j'tw). (4.s)

To obtain an integral index one may put t=O in these
relations. It is well known that the relation (4.7) yields
the variance 6, i.e.
       dil• = c[• )co)=2iTt jl-i doo PcJf (w) = cfji. (4.g)

The corresponding procedure on the relation (4.8) ieads to
        Cia"• }co) = o ,

however, a non-vanishing index is obtained when we put
t=O after differentiation, i.e.
       o< ij = 6[-a"•'(o) :-i-Si f..lilda) oo Pd'e"(w)` "' o(?d• (4.io)

This is the quantity by which we propose to complement the
inforrnation given by 6 in characterizing the random
process in a concise way. For the mathematical property
of oe, we can also obtain the following short tirne
expansion of correlation matrix

       C (nt) = < )c (o) x (AO>

            . c(s)(At)+ c(a)(At)

            .u -. o((At)i) + o( `it + O((At)t). (4.1[l.)

Hence, the o( is the first differential coefficient of
correlation matrix. It should be pointed out that the
variance is not sufficient to characterize a multi-
dimensional random process. This is because a distribution                   ;
may have any amount of internal circulation even if the '
spread is uniquely characterized by the variance.
     The quantity D< may be written as
        of =t<(x ,X)>=S (<xi> -- <k x>), (,.,,)
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and it stands for the average angular mornentum or the areal
velocity of the distribution. Therefore it is cleat that
the quantity ct is necessary in characterizing a distribu-
tion together with the varince 6. The pair of quantities
(S and 'ct may seirve as rniriirnum necessary topological indices

in the classification of tirne series and will beessentialin
data retrieval. In relation to ct,.                                    a generalized angular         . 1]velocity eij may also be defined, e.g. by
        ,:. Q( ii
        VCe'=J;oi(etlT?ii(sr-, ' (4•i3)
where
       d, -(gj,c gji)•

For the particular case in which the situation may be
                                         .approximated by a two dimensional system,eij acquires a
concrete meamng.
     In view of the relation (4.IO) the quantity d is
expected less sensitive to low frequency modification of
the bare spectrum either by a weak non-stationarity or by
a low frequency cut filter effect. In the next section,
we will discuss this in detail by describing a concrete
examp1e.

g4.3 An Exarnple

     We
example
analysis
is still

study a nuclear reactor noise phenomenon as an
of observabie time series(6)(7). As the direct

 of the experimental data using the new concept
 under way, we here demonstrate the use of Qur

-- 84 --



                                                     (8)-(10)proposal on a theoretical model adopted by Morishima
                                                        (ll)in order to describe the data obtained by Utsuro et 'al.
for the Kyoto Unversity Reactor (KUR). [cf. We have already
rnentioned the simplified Morishirna's model of this reactor
in Chap. 3.] The reactor which has a linear feedback
mechanism is described by five variables (N, Cr F, Mi Q),
i.e. the total number of neutron N, that of precursors Ct
the fuel energy F, the coolant energy M and the coolant
flow rate Q. The network of the reaction is shown in
Fig. 4.l.
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     Sample data obtained fxom a system are usually
filtered prior to data processing. Here we used a
fUter having a l2 db per octave rolloff outsides the
ranges from 4.ss2sxlo-3 to lo2 rad/sec in order to get

the theoretical estimate. The low cut filter has not a
little influence on PNN or uNN. On the other hand, we
can conclude that DC is less sensitive to low cut filter
effects since IrnP(co) is an odd function of co and ct is
composed of ImP(co) multiplied by co in Eq. (4.iO). This
is shown by the broken line of the filtered oo IMPNM(co)
in Fig. 4.3.

g4.4 Discussion

     The power speetral density and/or the correlation
function are the usual statistical quantities observed
when we treat "noise" or time series. rn extracting
information from the power spectral density, the coherenee
f."2.c:/rg: y, I. g. [k'].:' i:ggE:',bi,,l, IP.f>S:, l, ',:??`:lg'.gg,d.:h:.g.ha,i:,..

for a fixed frequency. In contrast, the variance and the
irreversible circuiation of fluctuation are the integral
indices of power spectral density. The iatter may also
be obtained from finite time observation. In this sense,
                                                       'these three kinds of quantity are cornplernentary to one
another in the noise analysis.
     We have discussed the general properties of ct without
referring to a mechanism in g4.2. 0n the other handr if
the system is described by a linear Langevin equationt we
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can find out another eminent property of O( in its frame-
work. Namely, we will discuss that sorne of the inte9ral
indices derived frorn power spectral density in this
system wiil have no meaning since they are divergent
except 6 and O(: Such moments are meaningless in the
Markovian process as wiu be proved below(2).

     Suppose a multi--dimensional stochastic differential
equation with random forces is given in the form(i2)

      iftt-X=t< )C +F,                                                    (4.l4)

where

      <Xo Ft >=O, <Ft F,/>=D8(t-t') and <F,>=o.

This linear approximation is not too restricted to the
applicability of the forrnalism, since the amplitude of
fluctuations is usually srnall as mentioned in Chaps. 2
and 3.
     The power spectral density is given by the Fourier
transform(i3), i.e.,

      p(oo).LO.Odt eiWt<x (o)JM (t)> [cf. (3.31)]

           = G (too) D li;1(-tco) , Gci tu)= (t oo -K )'i (4•is)

where the tilder xv denotes the transposed matrix. In
a stable system, P(co) has no singularity as seen from
Eq. (4.i5). [Dhe possibility of divergence of the indices
occurs in the process of integration. Hence, let us
exarnine the co--dependence of P(oo). In Ege .(4•-15)r

            -t t      (iw-K) =                              Icofactor matrix]                o(el'(iW-'K) '

The element of cofactor matrix is of the following type:
       <iw)N't+ AN-2 ({ va)N-2+ . ' ' , (Ai : constant)

Namely,
              -l (iee)M-l+ e.e
       (ibl-K)v• rv (i.)N. ... ,

                          - 88 -



Then, we obtain
                 cv2N-z f ...
      Re P(`V) !V tv2Nt •••

      T. P(cA-,) t-v A2"'c"o3,CUN2;'il ''' , (4.l6)

and
     crc><Il::R.ptto)dbveqtOriargeto)J"lib,dw=[finite]

     o< o< jlPOtr rm Pico> dbv wrtOr iarge to) siti,dco .[fi.it.] .(4'i7)

The other integral indices are zero or divergent. For
example,
       s-S.ooo2Rep(w)dov .S:tll9!--l2!g90r iarge ecX) Jldou.<[di...g..t]

       f-'.Q"u3Iwt ptou)dtv Sltl91Z--ILOr large G') fdve .< [di...g..ti4.'18)

No integral index except U' and O( exists in a stable
macroscopic system. Consequently, we see that U and C>(
are only useful indices for patterns of power spectral
density in a stable state.
     !f the randorn force F(t) of Eq. (4.l4) is Gaussian
along the spirit of the central limit theorem, the Langevin
equation (4.l4) is reduced to the linear Fokker-Planck
equation (3.7) of a steady state in Chap. 3. Hence, the
new variable b( is applicable to the Langevin technique
in the time series analysis.
     Finally, let us summarize the usefulness of the
irreversible circulation of fluctuation o( which has been
clarified in this thesis.
[i] ct is an indispensable variable, as a kind of general-
ized angular momentumt for analyzing main features of non-
deterministic systems just as the variance is for a
rneasure of the width of probability distribution(3),

[2] D( is usefui as can index for the hard or soft mode

instability, especially in a system having many degrees
of freedom(l). It is aiso related to the cyclic balance
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                                                 (l4)in a non-equilibrium situation of an open system
                                                     -
[3] ct is related to the asymmetry of cross-correlation
functions in a steady state(2).

I4] ct and d are the integral indices of power spectral
density in a stabie system(i)(2). Nameiy, they are

useful for indices of classification of patterns in the
experimental data and serve as reactor state indices in
reactor diagonosis when the information of reactor
stability is needed(3).

[5] ct and O are applicable in a case of non-stationary
states under the Markovian assurnption(i).

[6] Possible ways of representation ofanobservable as
Fig. 3.12 of Chap. 3 are useful for processing experi-
rnentai data with more confidence(2).

     We can conclude that pt serves as an integral index
for classiÅíication of tirne series not only in the reactor
noise analysis but also in the time series analysis in
general.
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                    CHAPTER 5

       Hidden State Variables and a Non--b4arkovian
             Forrnulation of Reactor Noise

g5.1 !ntroduction

     A number of articles have recently been devotect to a
better understanding of complicated fluctuation phenomena
                (l)-(4)                       . A unified and rational theoryin power reactor
can be provided if one finds, and manipulates, a sufficient
number of state variables so thatour system is described
by a set of coupled Markovian Langevin equations. !t is,
however, difficult in some situation to find all the state
variables necessary for the Markovian description; one is
usually confronted with the occurrence of some hidden (or
unknown) variables. This may occur in cases for power
reactors, and makes it necessary to introduce phenomenol-
ogical quantities such as an external noise source to
understand the actually observed experimental results.
Searches for hidden state variables and the physical
interpretation of the phenomenological external noise
source are important tasks in this approach.
     As an alternative approach, one may use non-Markovian
Langevin equations only for the known variables. This is
based on the well-known fact that a contraction of
informationr i.e., a reduction of the number of the state
variables, introduces the non-Markovian character into
the new description(5). Attempts have been made by
                                       (8)     (6) (7) (1)                                          . Zn accordance               and recently by MorishimaSaito
                                  (9) (10)                                        , Saito employedwith the theory of Brownian motion
                                                        'the following equation:
     ii{t' f`t)=- (i. B(t- t') f(t') dt'' Q`t) "R(t) ' (5•1)

for a set of the fluctuations of state variables, f=
COI(fl,..•tfn). Here R(t) denotes randorn stochastic
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forces and Q(t) represents deterministic forces applied
externally. The vector f represents the fluctuations of
the physical guantities, so that <{>=O, where <•.•>
denotes the ensernble average. Since the magnitudes of the
fluctuations are usualiy small, we assume that I obeys a
linear equation like Eq• (5•1). Sai'to examined that Eq.
(5.1) leads to an incorrect result if one assumes the
                    (7) (1)causality condition

       <R(to+t)l(to)>=o , (t>o).

Morishima introduced a course-graining operator P to
                                    (8)                                       . The resultingreduce the number of state variables
equation for Pf(t) is, however, identical with Eq. (S.l).
Contrary to Saito's conclusion, his formulation needs
the causality condition.
     The purpose of this chapter is to formulate the
non-Markovian effect due to some hidden variables 8=
COI(gl,•..,gm), with the hope of resolving the above-
mentioned confusion.
     In gg5.2, 5.3 and 5.4, a non-Markovian Langevin equa-
tion is derived, a formula for the power spectral density
is obtained, and a new fluctuation-dissipation theorem
for R(t) and B(t) is found. In g5.5, a simple example
is treated. Finally, some concluding remarks are
included in g5.6.
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                           , , (11)g5.2 Non--Markovian Langevin                              Equation

     Let u$ begin by assuming that a sufficient number of
physical quantities fc=col(fl,•••,fn!gl,••.rgm) Can be
chosen so that any of the correlation times between the
n+m random forces in Eq. (5.1) is short cornpared with the
tirne resolution of our experimental observation. The
fiuctuation-dissipation theorem(9) then gives

      B(t-tt)= 8(t-V)B, (s.2)
and Å}n the case of no external force Eq. (5.l) leads to

      'aftl" f.ct)=-Bfc(t)+Rc(t)• (s.3)
Such a set of physical quantities is referred to as a
compiete set of state variables(5). in this chapter,

we shall take no account of the non-Markovian effect
described by Eq. (5.1). The non--Markovian effect to be
discussed here is the one due to hidden variables, i.e.t
due to incornpleteness in our knowledge of all the state
variables.
     In the light of Eq. (5.3) we may say that the problem
has been solved already; the non-Markovian formulation is
unnecessary in principle. However, the complete set Ic
consists of many physical guantities in general, and rnay
involve sorne unknown variables, particularly in the case
of power reactors. Xt is therefore desirable the
bCarkovian process of the complete set of state variables
in terms of a less number of known variables only.
     There is no essential difficulty in such a formula-
tion; one has only to eliminate the unknown variables e
from the coupled equations (5.3), which we now write

       d fCt} -- B,,,B,.
      Zl'{t- s(t) '- B,,,B,2

where Bnr B12, B21 and B22
matrices, respectively, and

f(t) x(o
     + , (5.4)gct)        Yct)

are nxn,nxrn, mxn and mxm
X(t) and Y(t) consist of
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     iftlT ICt) =pf,.B(t't') {Ct') dt +Z(t' t,)3 (to) t F(t) ,

where

      B(t} == 8(t) Bit " Z(t) Bai

                   -- t B,,
      z(o = -B,, e

      F<t)= X(t) + f,1 Z(t-ti) Y(t•) dti,

Equation (5.5) is what we were looking for, and
main results of this chapter. It differs from
known equation (5.1) by the additional
Z(t-to) SCto) , which describes the effect on

decays of the hidden physical quantities. The
contains the stochastic quantities S(to), and
regarded as the deterministic term Q(t) in Eq.
Equation (5.5) is, therefore, substantialiy new
of its similarity in forrn to Eq. (5.l)
     The causality condition

       <F(t,' t) f(to)>=O, (t>o)

obviously holds true. Equation (5.5) is identical
with Eg. <5.l), if one puts in Eg. (5.5)

       R ct) =Z(t- t, > e ( t, ) + Ftt) .

The randorn force thus defined, however, violates
causality condition because
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random forces for f and 8, respective!y. we want to
discuss the tirne-correlation rnatrix <{{to+t)I(to)> betwebn the

known variables. At the initiai time t. of the correla-
tion, the unknown physica! quantities 3(t.) cannot be
considered vanishing, because these quantities, if they
are appreciable, rnust have lifetimes greater than the
time resolution of our experimental observation. With
this initial condition, one eliminates 8(t) from Eq. (5.4)
to find the following eguation:

             ti (5.5)

(5.6)

(5.7)

         one
        the
stochastic terrn
     f(t) of the
        new terrns
       cannot be
         (5el)•
         ln splte

(5,8)

 of the
we11

(5

in

.9)

 form

  (5.10)

the



       <gct.) f(t,)>i O

in general". When the variables e(t) does not couple
with f(t), i.e., when Bl2=O, the set f(t) is cornpiete.
[Vhen, Z(t)=O , and Eq. (5.5) reduces to Eq. (5.3) for
the known variables f(t). In this sense, Eq. (5.5) is a
generalization of Eq. (5.3) to the case where there are
some hidden variables. It may also be said that Eq.
(5.5) is equivalent to Eq. (5.3) for the known and hidden
variables fc(t), as is obvious from the derivation of
Eq. (5.5).
     It is well known in statistical rnechanics that hidden
variables give rise to the non-Markovian effect on the
motion of known variables(5). Equation (s.s) exhibits

an example of such a general rule.

         w--------"- -i---------------e-------------ny-- -- --
* In the special case of <S(to)f(to)>=O, the causality
   condition <R(to+t){(to)>=Ois satisfied. xt is therefore

   seen that the usual non-Markovian formalism based on
   Eq. (5.1) does involve the assumption of<eCto)f(to)>`O,
   i. e., the unknown variables S are orthogonal to I.
   Theseunknown variables S can be made orthogonal to )f
   by the transformation 8'= gt-<gf><If>'il. The usual

   non-b4arkovian formalism is then applicable. This method
   is, however, inconvenient for finding hidden physical
   quantities 8•
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g5.3 Tirne Correlations and Their Power Spectra

     By virtue of the causality condition (5.9), one
readily finds from Eq. (5.5) the following kinetic
equation:
     fl. <f(t,+t) f(t,}>=- f,tB(t't') <f(tOtt') ft te>> dt' (s,ll)

                    +zct) <g(toj l( to )> ,

for the tirne-correlation rnatrix <f-(to+t)l(to)>. Hereafter

we assume that our system is in a stationary state. The
Fourier--Laplace transform of Eq. (5.11) leads to the power
spectral density matrix
      liE ( co) = f,ooe -i cot <f(to t t) fcto )> dt + {. C•

           = fiootB(tco))-`{<ff> +Z(t'oo)<E} f>} + K. c. , (5.i2)

where <ff>=<f(to}f(te}>, etc., B(iW) and Ztt'w) are the

Fourier--Laplace transform of B(t) and Z(t), respectively,
and h.c. stands for the Hermitian conjugate of the
preceding matrix. When the hidden variables are discarded,
Z(ive)=O and B(tve)= Btl, 'i"he power spectral density (5.l2)

then reduces to the well-known one in the Markovian
formalism
       i(.)= (iw+B,,)-t {liF (-- twtIEi',,)-) (s.13)

where lin is the transpose of Bn, and

                              N       !IEF' Bn<{b+<f {) B" • (5•i4)
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S5.4 Fluctuation-Dissipation Theorern

     In the Markovian equation (5.3), the friction B and
the random force Rc satisfy a general relation, called
the second fluctuation-dissipation theorem(9). since our

non-Markovian equation (5.5) is equivalent to Eq. (5.3),
one expects that there is also a definite relationship
between B(t) and F(t) involved in Eq. (5.5). For
convenience, we consider instead of F(t) the random force
R(t) defined by Eq. (5.10), and as seen in the Appendix,
the following fluctuation-dissipation theorem is obtained:
      {ER(ico )= f,coe- {Wt<R(te + t) R{ to )> dt

                                             .            =B(iw) <II> + z"w)<eI> (- ica + B'V,)- <f f> .

                                                  (5.15)
Comparing this with the fluctuation-dissipation theorem
for Eq. (5.l)
      f,ooe'itot<R(tott)R(to )> dt =B(ito)<l}> -- <f i> , (s•l6)

or that for Eq. (5.3),
                                          .      f,ooe'ieet<R,(totoR,(to)>dt= B< fe fc> -<fc L> ' (s.i7)

one sees that the second term on the right--hand side of
Eq. (5.15) is characteristic to the present formalism.
The appearence of this term reflects the violation of the
causali ty condi tion , < R (to+ t) f tto)> # O .

     rn the following argument, it is useful to express
the power spectral density (5.12) in terms of the power
spectrum of the random force R(t)r

       liER (w) = {ER (i cv ) + -iEC . c,

            .{B(ioo)<ff>+Z(tw)(9 f> (-tW+B,, )} + -iC. C, (s.Is)

After a little rnanipulation, Eq. (5.12) is rewritten as
       lil} c.)= ({oo+B(iua))-iA{oo) (•- tw+ IB'(- iW)) -" j (s.Ig)
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                             "'v ts-       A(co) =IRcw) +Z(t'w) <E} f> B.,Z(- t'w) + {• Ce

                                                  (5.20)

Equation (5.19) is the rnost general expression of the power
spectral density, and a useful version of the result
       {E.( co ) = [iw t B)"<R, R,> (- iw t liig ) -`

based on Eq. (5.3). rf the hidden variables are neglected,
Eqs. (5.19) and (5.20) reduce to Eqs. (5.l3) and (5.14),
respectively.

g5.5 Application to a Zero Power Reactor with
       Delayed Neutrons

     As a simple illustration of the present forrnaiism,
let us consider the effect of delayed neutrons. The
density fluctuationsoftotalneutrons, 61Vtt)=N{t)--<N(t)>, and
that of the precursors, EC(t)--'C(t)'<CCt)>, are assurned to
constitute a complete set of the state variables [cf.
Appendix of Chap.3]. LGt us treat diC(t) as a hidden
variable. Equations (5.6) and (5.7) are written as

        Btt}= o(rp 6tt)-Skz(t), (s.2v
and
                  -xt        7(t)=>e , (s.22)
where o<,= t{i"-k(t-B)j is the decay constant of the prompt

neutrons, A that of the precursors, 2 the neutron life-
time, k the multiplication factor and 3 the mean fraction
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of the delayed neutrons. Equation (5.5) thus becomes
     -t sN(t) = -- ,(,6N(t) + >tfag k Il,l e-A(t't') 6N(tb dti

            + >N e'XCt- tO) Jc(t,) +F(t). (5.23)

        'The term,XeXp(-A(t'to)) crC(to) describes the decay rate of

the initial precursors. The power spectral density of
the neutrons is given from Eq. (5.l9) by
              Acto)      {lil (W)= tiw +Bt{w) j2 ' (5•24)
where
      Btc ve ) = of? '"" i bf w6 +k A)

                      2 >s2 Bh<6C6N>
      A( {Aj ) = iliiR(co) - 2 (tcv +x) (- tw+ A) '

with
      {IFRtw) = {(o(,- i(Ac .B,h,)} < eN 2> + c,,X, ,A <icaiv> (- ti co t ot p) } + c• c •

This result, of cource, coincides with that(7) of the

Markovian forrnalism with the state variables I=col(6N,6C)

i.e., the (1,l)'th element of

       [iw+B)" D (- tw, B;J -',

where
                           t--v.       D= B<{f>+ <I{>B,

and
              cip , -A
       B= -s,\gk,A '

     The non-Markovian treatment of this problem has been
examined by saito(7), and he pointed out that Eq. (5•1) '

leads to an incorrect result because of the violation of
the causality. The present forTnalism is free from thÅ}s
difficulty, since it correctly takes care of the non-
causality.
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g5.6 Concluding Rernarks

     On the basis of the assumption that there exists a
complete set of the state variables, we have derived the
non-Markovian Langevin equation (5.5) for an incornplete
set of state variables. It has been shown that the
causality condition and the fluctuation.dissipation
theorem do not hold in the usual sense of the non-Markovian
stochastic theory. Equation (5.19) has been given for the
power spectral density.
     If we know all the physical quantities that constitute
a complete set of state variables, the present formalisrn
reduces to the usual approach based on the Markovian equa-
tion (5.3). Our formalism will, therefore, be most useful
when we want to find out unknown state variables from
experimental results.
     It should be mentioned that the present forrnalism is
a specialization of Morishima's atternpt(8). if his

formalism is applied to the present caset his operator P
is given by the projection operator
       p=(gig),

where U is the 'nxA unit matrix so that
       p(5)=(g)•

The terrn ZCt-to) E}tto) in Eq. (5.5), however, is missing

in his forrnalism.
     Although Eq. (5.5) has been derived from the phenom--
enological Markovian equation (5.3), the most rational
basis will be given by applying Mori's formalism(10) to

the case with some hidden variables. This approach wili
clarify the assumption underZying Eq. (5.3), i.e., the
validity of the Markovian description with a full set of
state variables.
     The applicability of the present forrnalism is not
restricted to the analysis of the power reactor noises.
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The fluctuation phenomena are one of the important subjects
in physics and engineering. For example, the time cbrrela--
tion of the atornic density fluctuations plays a fundamental
role in slow neutron scattering theory. On the basis of
Mori's Langevin type equation(10), the density fluctuation
                                                        (l2)of classical liquids has been analyzed by Akcasu et al.
!t seerns quite likely that in liquids there are some hidden
quasi-particles associated with collective motions of the
atoms. Hence, the new term Z(t'to)eCto) in our Langevin
equation (5.5) seems to give an important contribution to
the cross sections of liquids.

                    APPENDIX

            Derivation of Eq. (5.15)
     To find the relation between B(t) and R(t), we
proceed in a way quite similar to that in the proof of the
fluctuation-dissipation theorem (21) of Ref. (9). Equation
(5.5) gives

     R(to,t)=i{t,+t)+B" f(t, +t)+ f,tZ(t-t') B2i f(toft') dt '. (B.i)

With the aid of the causality condition (5.9), one gets
                  te   <R(te+t)Rtto)>=<f(to+t}f(to)>

              + S,tB(t--t') <fct,+t')icto)>dt'+ Z(t> <g(te)lct,)> Br,, . (B.2)

The Fourier--Laplace transform of Eq. (B.2) is carried out
by rnaking use of Eq. (5.l2), the fact that <fCto+t)i(te)>-i'
         .<l(te+t)><fcto)>=O (t-oo) , and the stationary condition
<ICtott)itto}>=-<i(to+t){{te)> . one thus arrives at the

fluctuation-dissipation theorem (5.15).
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                     CHAPTER 6

               Surnmary and Conculsions

     In this thesis, mainly using the systern size expan-
sion method, we have developed the reactor noise theory
from the viewpoint that the reactor noise is an exarnple
of non--linear non-equilibrium statistical physics.
     We have reviewed in Chap. 1 the conventional analyses
of reactor noise and also outlined the physical basis to
study reactor noise phenomena.
     In Chap. 2, we have substantiated the assumption of
Gaussian distribution of the number of neutrons in the
zero power reactor, owing to the macroscopic nature of the
system size. We have also applied our rnethod to the non-
linear Langevin formalism which was obscurely used in the
reactor noise, and pointed out the importance of assumption
of the normal case in order to classify states of system
in detail.
     Tn the normal case of our forrnalism, we have intro-
duced the irreversible circulation of fluctuation ot as a
new variable for the analysis of reactor noise as in
Chaps. 3 and 4. The o( has the information of the rota-
tional freedorn of fluctuations, and also serves to be the
integral index for power sD.ectral density in conjunction
with the variance. We have emphasized that large effects
of D( are expected not only in the reactor noise analysis
but also in the time series analysis. To show the
effectiveness of o(, we have studied the theoretical model
of the KUR type of reactor described by the three
components. In this analysis, we have pointed out that
the C>( is useful as an index to specify the type of
instability (soft-mode or hard-mode). In many physically
interesting examples as well as the reactor noise, there
appears a stable limit cycle beyound the hard rnode insta-
bility. rn this case, the limt cycle may be interpreted
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as a rnacroscopic manifestation of the circulation which is
inherent in the fluctuations around the steady statd below
thresho!d. Namely, we have shown that Sn this Åëase the
fluctuations can be utilized as "forerunner phenomena" to
foretell instability through appropriate infonnation
processing. We have also suggested that the reactor noise
theory should be formulated from the viewpoint of general-
ized phase transition phenomena, in order to make active
use of analogies with theories or methods developed in many
other related fields and to get unified point of view.
     rn Chap. 5, we have made c.lear that the contraction
of Å}nformation by a reduction of hidden variables intro-
duces the non-Markovian character into the description of
fluctuations. This is only the first step of the trial to
study the inforrnation contained in fluctuations and the
quality change of information through a general contraction
of information. Therefore, it is necessary to study the
reactor noise frorn this "'interscience" point of view.
The author hopes that the thesis stands as a bridge
between the reactor noise analysis and the other related
fields, especially statistical physics, time series
analysis and information processing etc.
     The present study in this thesis has been based on a
number of assumptions and simplifications, which have
resulted in neglect of many factors that may be important
in the complicated phenornena of actual power reactors.
Further study on the reactoy noise analysis is called for,
in proportion to sÅëale up of reactor power plant, as
follows; for exarnple,
(l) generalization to space-dependent problems
(2). development of system analysis such as multivariate
     analysis to treat a complex system
(3) advancement of pattern recognition technique for
     diagnosis of anomalies by using actual data.
These are still remained as future problerns of reactor
noise analysis.
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