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CHAPTER 1
Introduction
§1.1 Introduction

The term "reactor noise" is now settled to be a
technical one for fluctuations in the output signal from
a neutron or other sensor in a nuclear reactor. The
fluctuations representing an excess or a deficiency from
the average, result from many stochastic or random elemen-
tal processes such as neutron-scattering, absorption,
fission, energy transport and coolant boiling etc. 1In
other words, a nuclear reactor has fluctuations or "reactor
noise" included in its state variables such as neutron
number and temperature etc., which have macroscopically
constant values in a steady state.

Since the fluctuations are random functions of time,
we can obtain useful information concerning the dynamic
behavior of the system by suitably processing them. We
have a possibility of gaining not only the static but
also the dynamic information of the system even in a
steady state, by making use of "reactor noise". Such
information is usually utilized for determining reactor
time constants and dynamic characteristics, for assisting
correct operation and for giving an early warning on
unusual phenomena in the reactor system without perturbing
the system. Therefore, the reactor noise analysis shows
various potentiality of refinement on technical, economi-
cal and safety aspects, and is closely related to the
diagnosis technique of reactor and the control theory etc.

Physicists have also been attracted by the problem,‘
since the reactor noise phenomena include nuclear, thermal
and hydrodynamic processes occurring in a non-equilibrium
state. Consequently, one of the purposes of this thesis

is to stress that the reactor noise phenomena is a good



example in the non-linear non-equilibrium statistical

physics.

§1.2 Reactor Noise Analysis

The reactor noise analysis has already a history
extending over a quarter of a century. The early theoret-
ical work in this field was carried out by Courant and
Wallance (1947)(1). This was followed with various
techniques and theories developed by many authors, e.g.,
orndoff (1957) (3}, pa1 (1958) (3, Moore (1959) (4, conn
(1960)(5) and others. Until now, a large number of papers

have been published. Various kinds of monographs and

review papers have been also published by Thie (1963)(6),
Uhrig (1970) {7, seifritz and Stegemann (1971) (8), kosaly
(1973) P, saito (1970, 1974) 1O 1) 414 williams
(1974)(12). When we analyze the nuclear reactor noise,

it is appropriate toclassify reactor noise phenomena into
two categories; (1) zero power reactor noise (2) power

reactor noise.

§1.2.1 Survey of Zero Power Reactor Noise Analysis

Since the thermal, mechanical and hydraulic effects
are absent in a zero power reactor, we can describe it by
state variables only of neutron and precursor. Namely,
the fluctuations arise entirely from nuclear events such

as fission, scattering, decay and absorption.



There are many established experimental methods for
zero power reactor noise. One is the method in the time
domain —— the Rossi-o experiment, Feynmann-o experiment,
waiting time analysis, auto- and cross-correlation
function measurements or polarity correlation analysis
etc., The other is the method in the frequency domain
—— the auto- and cross-power spectral density methods
or the polarity correlation analysis etc.

By using these methods, we can estimate many reactor
constants (prompt neutron-decay constant, time constant
of precursor, neutron lifetime etc.) and can determine
many reactor kinetic parameters (reactivety, reactor
power, transfer function etc.).

The theory of zero power reactor noise has almost
been established through various kinds of approaches or
formulations made in many countries. Here, we will
discuss the Kolmogorov and the Langevin methods as

examples.

(a) The Kolmogorov Formalism

(3) (13)

Pal and Bell
tribution of neutrons, including delayed neutron effects,

calculated the probability dis-

by means of the first collision probability method. This
mehtod is related to the backword equation within the
framework of the Kolmogorov formalism for branching
processes.

However, we discuss the forward Kolmogorov equation
that was early presented by Courant and Wallance(l),
since this is a simple description in order to understand
the neutron population dynamics. For simplicity we '
neglect delayed neutrons. In the point model of zero
power reactor the system is assumed to develop as a
Markovian process and is described by a probability
P(N,t) that N neutrons are present in the system at time



t. Then, we can set up a balance equation for P(N,t) as

follows:
P (N, t+At) = P(N-1,t) X SAt
Probability that Probability that Probability that
there are N there are (N-1) the source emits
neutrons at time neutrons at time one neutron
t+40t t during At
oo 1
+ ¥ P(N-n+l,t) x pi(n) x 7T~At(N—n+l)
n=0
Probability that A Probability that one
there are (N-n+l) neutron causes a
neutrons at time absorption during At,
t given that there are
(N~n+1) neutrons in
the system

Probability that a neutron
loss gives rise to n new

neutrons
+  P(N,t) x  (1-SBt-At—) . (1.1)
Probability that Probability that no
there are N neutrons are produced
neutrons at time t| [during Ot

When At->»0, this equation reduces to:

é%P(N,t)={P(N-l,t)-P(N,t)}S

N-n+1
2

+:Z:°P(N—n+l,t) p(n) - —%—P(N,t) ) (1.2)

We may also obtain the moment equations instead of
directly solving the above probability distribution equa-
tion (1.2).

(b) The Langevin Formalism

(5) in the field of

neutron physics, and consists of a stochastic differential

This method was suggested by Cohn

equation (the point reactor kinetic equation) with a
random source term. This term accounts for a correlated
neutron term resulting from the branching processes. The
magnitude of the random source is determined by the

Schottky formula. This is a rather heuristic formulation



and, at the same time, has an advantage of being applicable
to power reactor noise. Generally, the Langevin equa-
tion is used as one of fundamental and important equations
in the irreversible process of the statistical physics in
order to describe not only the Brownian motion of particle
but also many body problems.

The fluctuations §x(t) satisfy the following equation

Sox(t)= K 6x(t) + R(E) (1.3)

where K is the regression constant and R(t) is a random
term. The power spectrum of R(t) is white [<R(tl)R(t2)>°(
a(tl—tz)]. The Langevin equation is a phenomenological
stochastic equation to determine the process §x(t) from
the known process R(t).

Usually, the behavior of the system is enough speci-
fied by estimating only the lower moments of déx(t). 1In
fact, we need only the mean values and correlation
functions to specify the system, if the random force in
Eq. (1.3) is Gaussian. Although the process of R(t) in 4a
zero power reactor is not Gaussian, the higher moments of
R(t) is not necessary in evaluating them, since the
Langevin equation is linear. Namely, the evolution equa-
tion of moments do not have the hierarchical structure.
On the other hand, the Gaussian distribution of neutron
number has been usually observed experimentally. This
ambiguity will be made clear in the later part of
this thesis [cf. Chap. 2].

Although many varieties of formalism are present in
zero power reactor noise theories, we may conclude that the
main reason of its success comes from the following four
hypotheses.

(1) Markovian process
(2) Linearity

(3) Stationary process
(4) Ergode hypothesis

The assumptions (3) and (4) are necessary for a practical



data processing or for an analysis of fluctuations.

§1.2,2 pPower Reactor Noise Analysis

While the knowledge of zero power reactor noise
stimulates basic scientific interest, the information
obtained from the analysis of reactor noise should be
applied to practical engineering purpose. In other words,
it must be useful for diagnostics of existing faults of
power reactors. In the case of zero power reactor noise,
we have constructed simple models, since the elemental
processes involved are clearly separable by the differ-
ences of their time scales. On the contrary, a power
reactor has very different situations in noise from a zero
power reactor, as it is usually a very complicated system
involving a wide variety of phenomena such as nuclear,
thermal, hydrodynamical and mechanical processes etc.

We will list below many processes and the ranges of

frequencies over which they are important.

1) Aging processes . . « . . . . . (<10 "Hz)

2) Xe and Sm poisoning . . . . . . (10™%-10"%uz)
3) Control rod movements . . . . . (10 °-107tHz)
4) Coolant temperature . . . . . . (10—3—100Hz)
5) Delayed neutron effects . . . . (1072-10%z)
6) Fuel temperature . . . . . . . (10" -10%n2)
7) Reactivity feedback of pressure (1o~ t-10%Hz)
8) Reactivity feedback of voids . (107 '-10%Hz)
9) Prompt neutron decay constant . (lOl—lO4Hz)
10) Prompt neutron life time . . . (104-107Hz)

Moreover, the patterns of fluctuations depend on not only
the specific type of reactor but also conditions of its
operation.

From these points, the noise analysis of power
reactors is still in its infancy due mainly to a lack both

of general theory and of knowledge about the complicated



noise mechanisms involved. Of course, there exist several
formulations to attack such a complicated power reactor
noise; the Langevin method, probability distribution
method and input-output method of control theory etc. On
the basis of these formulations, it is necessary to estab-
lish a general and transparent theory from the fundamental
standpoint. Thereupon, the theory must be extended with
greater applicability from zero power reactors to
practical power reactors by an appropriate generalization
of the mentioned frameworks. The following directions of
generalization are considered as main themes of this thesis:
(1) Non-linearity [Chaps. 2 & 3]

(2) Non-stationary process [Chaps. 2 & 3]

(3) Non-Markovian process [Chap. 5].

§1.3 Physical Basis of Reactor Noise and

Main Subject of This Thesis

Before generalization of frameworks it is essential
to study reactor noise phenomena from the statistical
physics point of view. The number of neutron density in
a reactor is an example of macrovariable defined as an
extensive quantity. Though the magnitude of fluctuations
of macrovariable is usually small in a macroscopic level,
they are composed of a great number of interacting or
noninteracting elemental units. For example, the fluctua-
tions observed in a neutron detector result from the sum
of statistical processes of many neutrons in a reactor.

From this, it is one of the fundamental problems not only



in the reactor noise theory but also in the statistical
mechanics to find how macroscopic reactions are explained
from a number of microscpic processes.

It should be noted that a reactor noise is one of
the phenomena in open systems since it has a neutron source
and accompanies leakage of neutron and energy release etc.
Therefore, it is important to attack the reactor noise
within the framework of open systems. When a reactor is
at power state, the non-linear effects of temperature
feedback mechanisms become important. Then the power
reactor is one of non-linear systems and is at times even
in a non-stationary state. Furthermore, there remain
flow mixing and turbulence in a coolant region as indefi-
nite physical phenomena. Therefore, it is also important
to treat the reactor noise phenomena asg a non-linear
non-equilibrium system. The generalization of reactor
noise theory in this direction corresponds to the above-
mentioned point (1) and (2) in §1.2.2.

In a non-linear system, the non-linearity brings
variety of phenomena. Hence, the unified theory applicable
to it must possess the possibility of sorting the infor-
mation contained in it and of classifying its states in
order to describe the various phenomena covering wide
areas in the non-linear system. In the general framework
of non-linear non-equilibrium systems, it is necessary
to study what universal patterns, if there are, may appear
in reactor noise phenomena by understanding the essential
features without being puzzled its complicated aspects.

The idea of the universal patterns suggests us the neces-
sity of making use of the analogies between the reactor

(14)-(18) inat are found in

noise phenomena and the ones
general non-linear non-equilibrium systems. Especially,
the view of generalized phase transition phenomena will
be useful in this sense.

Based on these considerations, we will use the system

size expansion method (17) recently developed in the



non-linear non-equilibruim statistical physics and apply

it to the power reactor noise phenomena. Within this
method, we will provide a new parameter in the reactor
noise analysis. Hence, we will treat the general theory
so as to be useful not only to the nuclear fission reactor
noise but also to the nuclear fusion reactor noise.

Finally, it is most important to discuss the stability
of power reactor from the practical viewpoint of safety.
For diagnostic techniques based on the reactor noise
analysis, it is an essential problem to discern the infor-
mation particularly concerning the stability, by processing
data of fluctuations. Before the system approaches an
unstable region dueto acertain change of its mechanisms,
the fluctuations will show earlier symptom for instabiliza-
tion of system than the mean values. In this case, the
fluctuations may be well used as "forerunner phenomena",
and then contain the useful information for instability.
By catching this unusual phenomena beforehand, the reactor
noise analysis serves to detection of anomalies or stabil-
ity monitoring. Then, the method of system recognition
developed in this line will be applicable not only to the
reactor noise analysis but also to many other fields.

The quality of information is also transformed. A
typical example is an operation of projecting information
by observation. Namely, the equation describing fluctua-
tions becomes a non-Markovian type as in the contraction
of information in the statistical physics. Therefore,
the generalization of reactor noise theory in this direc-
tion corresponds to the above-mentioned point (3) in
§1.2.2. Furthermore, the stochastic model, e.g., the
autoregressive model, which has been actively applied to
the reactor noise for the system identification, and that

(18) in the time series

was recently developed by Akaike
analysis and control on the base of experimental data,
possesses the non-Markovian property in its equation.

In the considerations as mentioned above, we will



study the reactor noise in this thesis. Let us state the
contents of each chapter. .

In Chap. 2, a new approach to the reactor noise theory
is developed on the basis of recent studies on the theory
of non-linear non-equilibrium statistical physics. Within
the approach a basic equation is derived in a guite
general form, which yields a solution of asymptotic char-
acter for large system. In the lowest-order approximation,
that is, in the normal case, the formalism yields the
conventional equations. This leads to a clear description
of the relation between the Langevin and the Kolmogorov
methods, and substantiates the assumption of Gaussian
distribution of the number of neutrons. A rigorous analy-
sis of the newly derived equation is made with the aid of
flow patterns representing the Hamilton-Jacobi equation.

In Chap. 3, "irreversible circulation of fluctuation",
o, 1s introduced as a new variable for the analysis of
reactor noise in the normal case, which further develops
our formulation based on the system size expansion method
in Chap. 2. It is shown that & —— considered in conjunc-
tion with the varince ¢ — provides useful information
about reactor noise, apart from the data we usually obtain
on power spectral density. The relations holding between
o and the conventionally used variables are given for
the case of steady state. The present formalism is
applied to a non-linear system with three degrees of
freedom (total neutron number, fuel energy and coolant
energy), to examine numerically the behavior of the
fluctuations. It is shown that the so-called soft- and
hard-mode instabilities can be distinguished by observing
0. It is also demonstrated that appropriate processing
of such quantities as a and ¢ will provide advanced informa-
tion on instabilities in power reactors.

In Chap. 4, the irreversible circulation o is proposed
as a new statistical variable for a multi-dimensional time

series analysis. It is a concept indicating the circula-

- 10 -



tion in a space of random state yariables, while the
variance 0 is the concept corresponding to the spread

of distribution of fluctuations. The pair of guantities

g and a are minimum necessary intergral indices to
characterize any power spectral density and will be conve-
nient for data retrieval. It is discussed that a is also
less sensitive to filter effect in the low frequency region
than o.

In Chap. 5, a non-Markovian Langevin equation for the
fluctuations of known state variables is proposed. The
non-Markovian effect is due to "hidden” state variables.
The random force does not necessarily meet the requirement
of the causality condition. Then, a new relation between
the fluctuation and the dissipation is also discussed.

Chapter 6 will be devoted to summarize the results
obtained in each chapter and discuss the future problems

of reactor noise.
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CHAPTER 2
System Size Expansion and Reactor Noise
§2.1 Introduction

The theory of zero-power reactor noise is now well
established, and has provided us with useful methods of
practical application to reactor technology. This success
may be attributed to the physical consistency of the linear
Langevin equation. It has led to general acceptance of
the idea that fluctuations in power reactors can be de-
scribed by simply adding a Langevin term or a random
force to the rate equation. This phenomenological pre-
scription is, however, not well substantiated by physical
evidence. While the linear Langevin equation would appear
intuitively to be plausible, some question remains as to
the validity of extending it to non-linear and/or non-
stationary cases.

Thus, it has become a problem of general concern in
reactor noise theory to find a suitable formalism for non-
linear and/or non-stationary cases. Such a formalism must
be based on the theory of general non-linear non-equilib-
rium statistical physics.

The purpose of this chapter is to describe the
neutron density fluctuations by means of the system size

expansion theory developed by van Kampen(l), Kubo et al.

(3)

(2)

and Tomita et al;
The main point of the theory is an expansion in
powers of the system size  to derive a new master
equation for the probabilty P(X,t) of finding the system
in a state x at time t. (The state X is represented by a
set of macrovariables.) In general it is difficult to
obtain a transparent solution of the master equation when
it embodies non-linearity in a non-equilibrium situation.

Using the space independence of the transitions between

- 13 -



states in a macrosystem, we can obtain an asymptotic
solution of the master equation in the form

Px, t) e @_Q‘k“'“
We shall show that this solution is quite useful for
discussing non-linear non-stationary reactor noise. It
also gives us a deeper insight into the conventional noise
theory for zero-power reactors.

In the above system size expansion, it is logical to
distinguish the intensive quantities from the extensive.
For example, it stands to reason to use as variable the
neutron density (the intensive variable).instead of the
total number of neutrons (the extensive variable). 1In
equilibrium state the magnitude of the density fluctuations
around the mean value is of order Q—l/z. This also holds
in the usual non-stationary case, as it has been pointed
out by van Kampen. We call such a case "normal". 1In the
conventional reactor noise theory, no attention is paid to
this dependence on system size, and this leaves an
ambiguity, which is instanced in the theoretical result
that branching processes generate a non-Gaussian distri-
bution of neutrons, whereas a Gaussian distribution is
actually observed in zero-power reactors.

On the basis of the theory of system size expansion,
we shall derive a fundamental equation for the density
fluctuations without assuming Gaussian random force. 1In
the normal case, our formalism yields what corresponds to
equations derived from the current Kolmogorov and Lanvegin
formalisms. We shall prove that our equation can be
replaced by an equivalent Hamilton-Jacobi expression in
order to obtain a solution, for zero-power reactors, in
the form of flow pattern. It is easy to extend this
treatment to bring to light the characteristic patterns
of non-linear effects occurring in power reactors. Our
proposed equationisakind of generalization of the

Langevin equation that extends the consideration from a

- 14 -



stationary to a non-stationary case. And we shall show
that this system size expansion method leads to a very
useful and appropriate formalism for considering various
reactor noise phenomena.

In this chapter we intend to develop a theory of power
reactor noise in non-linear and/or non-stationary
cases (4)7(6)
We shall outline in §2.2 the method of system size
expansion on the basis of the Markov assumption. In §2.3,
we shall examine the range of applicability of the normal
case. And the formalism presented in §2.2 will be used
in §2.4 to clarify the ambiguity existing in the relation
between the Langevin and the Kolmogorov methods, and also
to extend the theory to the non-stationary case. 1In §2.5,
we shall show flow patterns using the Hamilton-Jacobi
method. This will be followed in §2.6 with the discussion
of a system with randomly fluctuating parameters. The

final 8§2.7 will give summary conclusions.

§2.2 System Size Expansion(z)
Let.X={Xi} (i=1,2,...N) be a set of N extensive
macrovariables of the whole system. We regard them as
stochastic variables including their fluctuation. The
system is characterized by the Markovian process and is

described by the master equation _
3P, )= (4 WIK-4K, 4K ) PX-O, ) - dsk WIK LAPU ), 5

where P(X,t) is the probability distribution function of

- 15 =~



X at time t, and W(X,AX,t) is the transition probability
per unit time from X to X+AX. The integral in Eq. (2.1)
is to be replaced by a summation if the X;s are discrete.
The right-hand side of this equation is expanded into a

series in the form known as the Kramers-Moyal expansion:

| 2
2P0t =~ [daX(1- € M) Wiy, ax,¢) PA 1)
=S (R G Py,

(2.2)
where

Ca (X, )= [daX (X)WL 4X, 1) (2.3

is the n-th moment of the transition probabilty.

Under the usual conditions of a macroscopic system,
each event of a transition is localized. Hence the indi-
vidual event can be described by intensive variables, and
the transition probability W is proportional to its size Q.

This local nature is explicitly described by

WX, 4X, 1) =2 w(x, 24X, t), (2.4)

where @ is the system size, and X the set of intensive
macrovariables normalized per unit volume corresponding
to X, i.e.,

x=2 -¢ex £=Q2". (2.5)

£2

Using a corresponding scale change

Cr(X,) =fdAx (2X) w (x, 4X,t) =€ C, (X, T)

and

QA"P(X,t) =Plx,t), (2.6)

we obtain the basic equation;

2
—9% P(x, f)=—£'—fdAl(' - e““’ax)mx,a)/, t) Pcx, t)

=S (-2)" catx, ) Pex,t)
Tl bexs o TR C (2.7)

- 16 -



For simplicity, let us limit to one macrovariable
case (N=1) in the remaining part of this chapter. The

fundamental solution of Eq. (2.7) with the initial condi-

tion
L,M P(x, t| %, t,) = TX-2)
12t
is given in the form
x 5 lS
P(Z,ﬂxo.to)zT[e € t.dSH( ax )]S(x -Zo) , (2.8)
where T is the time ordering operator and
P 4K ()
H(I,ES—I‘.S)=ﬁAX{I~€ x }W’(Z,AX,S). (2.9)
It is convenient to rewrite Eg. (2.8) in x representation;

Sa-u,) "j“ c"i“ %)

- 2
Pex,ti% ) =<x[T e E[SHOLEZ ) 2,5

(2.10)
Using the property of the Markov process, and noting the
2 .
S_Z—' l.e.,
x| e ~EHHW 855 0) | 0>

"4 o8- ) 00

incommutability of X and

Y
we express P(x,t|x,,t,) by the path integral,

t g . [ ]
Pex, tite )= i x.8) o tleds(Hex, 18,918 2]

For the asymptotic evolution of the path integral about g,

(2.11)

the method of steepest descent should prove useful. If
there exists a suitable path of the macrosystem evolution,

we can choose the col at g=p determined by
o e
3P H(x.p,5)=x,
and write
LY 4sLx, X, s)
P t1X, t,) =fahl9(l) Caf*o , (2.12)

in terms of the Lagrangian L defined by
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e [ ]
Lax,x, t)y=-H(x,p,t)+Px (2.13)
Choosing the path that maximizes the action integral

t ’
</’o (x,t]%3,) =L°ds L(x, x, s),

we have

Cfes_'[fo(x,tu.l ta) + 0(8))

P t1X,t) = (2.14)

Thus, if the system has the initial condition
J

” — x t)

P(Xo,to): C eac#o( o, ‘o ,

the probability distribution function of the macrovariable
as determined by Eg. (2.7) has the asymptotic form

Pxt)= C etlftti+ o)

J

(2.15)

unless the system changes through a critical point (See
Appendix). Moreover, this solution is not necessarily
unique. If the probability has the form of expression
(2.15), we say that the system has an "extensive property".

The solution (2.15) provides us with a covenient method
for dealing with non-linear systems. This approach will
be discussed later in association with the Hamilton-
Jacobi method.

The basic equation (2.7) contains an expansion in
terms of a small parameter ¢, and one may terminate the
expansion at a finite order. If the expansion is termi-
nated at the second order, one obtains what is in form a
Fokker-Planck type equation which has generally non-linear
coefficients about x. On the other hand, van Kampen has
pointed out that, in a case where the coefficients ¢y and
<, do not explicitly depend on time, the above termination
of expansion leads to inconsistent results when one takes
account of the fact that the relative magnitude of fluc-
tuations around the most probable path depends on the

system size. In other words, in the normal case the
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1/2

fluctuation is expected to be small quantity of order ¢

(1)

compared with the mean value. We hence let

|
x=§(t)+ &2 § (2.16) *

and introduce a probability distribution function of &,
defined by

1 L
P(E t)= E*P(Yr+EE t) (2.17)

Then the basic equation (2.7) is transformed into the

equation, "
ﬂ~

1o S e, a0 L »
:9%1’(;’()-813(05%1’(5,’() '—'-'n};_}‘-:n—l- (-"5‘5‘) Cn (464 82§)P{§, t). (2.18)

1/2

Comparing the term of e on both sides, we find the

phenomenological law for y(t):

ﬁ“&(f) =C (Y0) (2.19)

Inserting this result into Eq. (2.18), we obtain an equa-
tion for the probability distribution function P(&,t) of

the fluctuations around the macroscopic value y(t):

2 __p59 +
P )=-EF 5 (c(8+€ £)-Ci(4)) P(5,1)

o M2
£3 d L
+2 (<) ca ($+ETE)PIE, L)
asy M ( 9'5') n 5 : (2.20)
Retaining only the lowest order terms on the right-hand

side of Eqg. (2.20), we have

d 3 ¢4 !
5;?(;“:——5539‘# )§P(§t)+zl-5?5——z Cz(a)P(g, t) . (2.21)

Equation (2.21)possesses the same form as the linear

Fokker-Planck equation with the time-dependent coefficients
determined by the most probable path y(t). The solution

of Egq. (2.21) has a Gaussian distribution for the fluctua-
tion &: 2
P )=l 0"
Et)eee—— @ 27 - 2.
ste © 7 (2.22)

* The applicability of this relation will be discussed
in §2.3.
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where
o’=f§21’(§,t)d§, (2.23)

and o satisfies the following equation,
dto’ 2C/(4)0 +Catd), (2.24)

The basic equation (2.7), the concept of extensive
property (2.15) and the scaling relation (2.16) are the
bases of our new approach to the reactor noise theory.

A summary of the present formulation is illustrated in
Fig.2.1. In the following sections, we apply this formal-.

ism to noise problems to demonstrate its effectiveness.

Observable variables in reactors

pd N\

Extensive variables Intensive variables

[System size expansion using Kramers-Moyal J
e

expansion formula for space-independent cas

[4551c equation (2. T)k~\\\\\\\\

(The method of steepest descent) (¢ = 0 in normal situation)
K. 7 .
Path integral € dependence of fluctuation
The extensive property around the most probable path
expression (2.15) expression (2.16)
(Variational principle) Irreversible circulation of
fluctuation [next chapter]

[Hamilton—Jacobi method]

Fig. 2.1 Conceptual flow chart of system size expansion method




6
§2.3 Validity of the Normal Case( )

For the investigation of the validity of the normal
case in a steady state system, we examine the two lowest
order terms in the e expansion of the master equation by

1/2

using the perturbation theory. The eo and € terms in
Eq. (2.20) give
1
%?(%.t)=(Ho+52 H) P(st), (2.25)
where
-_2c 19
Ho— ag (9)%-{-2 3—§—3C2(8)
H, =~>=% cy) 2 o)
] a§ g § +2 agz Cz(y')g 3§3 3

The probability distribution function P(&,t) =P, (E,t)+
l/2P (§,t) is substituted into Eg. (2.25) to obtaln the
Fokker—Planck equation of order 80

a—%R(iU‘—‘Ho L (5,1), [cf. (2.21)](2.26)

and of the next order el/z

ZPst)=Ho (5 1)+ H B(5,t), (2.27)

In the case of 4a steady state system, the solution of
Eg. (2.26) is

gl
' X
P:(g)=me 2657 (2.28)
so that 2
Sec [ CMY 3G(8)  C3(4%) S 5
Hlf()a(*[ I )+ 20'03 + 2(O¢°$)2]§ 201’

[c."t#‘) L) G) ] £ o" 51
268 2(05)  6(0.°) . (2.29)

It is seen that in the order El/2 the effects on PO(E,t)

o
a

coming from the terms cl, c! and c, are qualitatively

2 3
similar. Thus, we will adopt only the non-linear term
cl(ys) as a representative in order to study the non-

linear effect in a steady state.
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Then, we will be able to put the non-linear Langevin

equation
d X = CMX)‘*"F‘” (2.30)
dt
where F(t) is Gaussian random force and
(Fttry=o0
(FH Fa))>=€Ddt-1) | (2.31)
1/2

Using the scaling relations x=ys+e

3 (cl(ys)=0) and
P _1/2 .
(t)=¢ f(t), we obtain

g c,(&)§+£= ‘3)€+ -+ fn, (2.32)

We represent Eq. (2,32) in the form of Fokker-Planck equa-
tion

| " S
%_p(g,t)=-é%{c{(g‘)g+£? ““g +ooeee t’+3'as‘DP‘5 .(2.33)

For a steady state solution of LEq. (2.33), we obtain
col
(55 2 {cliggs ¥ gy ]

Pery<e
Lc/ye
~ep (WIS S8 g2
- ’ (2.34)
From Eq. (2.26),
a%dj =2C(8)052+D=0 , Cff=—3cl?,—‘—3,) . (2.35)
Thus C"(?)
Ez ] §+
Psr=<e 265? . (2.36)

The system becomes unstable when the system parameter

approaches a marginal point (ci(ys)=0) (See Appendix) and
s,-1
9!

we consider the smallness parameter'?9'=(Y—Yc)/Yc ([Og]_ =0

also the variance Og becomes divergent. Instead of [o

for €>0). We must take into consideration the non-
Gaussian terms in Eq. (2.36) when [08]—152 and el/2£3 are
comparable near an instability point. Namely, we cannot

neglect the non-linear effect in this case.
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Hence we can draw the conclusion that the lowest-order
approximation formalism in the normal case is accurate
enough so long as the system is in a stable domain. On
the other hand, near a marginal point, the accuracy of our
description should be determined by the relation between
81/2 and € values. Namely, we have to treat the effect
of non-linearity of system near unstable states where the
validity of the normal case does not hold since the per-
turbation treatment is not suitable for this situation.

A further detailed discussion will be given by Kanemoto et

al.(7)

§2.4 Theory of Zero Power Reactor and Gaussian Assumption

Two methods —— those of Langevin and Xolmogorov ——
have mainly been utilized hitherto in theoretical consider-

ations of zero-power reactor noise(s)—(loz These two

methods, however, possess some ambiguity in their mutual
relations. We will clarify this ambiguity in what follows,
using our formalism presented in §2.2, and we will further
ascertain the validity of the Gaussian distribution of the
number of neutrons.

We will begin by outlining these methods to bring the
ambiguity into relief. For simplicity, we will limit our
problem to the zero-power reactor model with no delayed

neutrons.
The master equation of the Kolmogorov method is

2 20X, )= [daX W (K-0K, aX) (K ~2KO)~[daX WX LN)ERT) (o

- 23 -~



and we let
g X
W (X 4X)=Se dax, | +m2=°*[ P(m)gax, m-1, (2.38)

where X is the total number of neutrons in the reactor,
Se the rate of emission from neutron source "in the whole
system”, which is proportional to the system size (i.e.,
Se=sQ)*, I is the mean neutron life time, and p{m) the
probability that m neutrons will be reproduced when a
neutron is absorbed. 1In this case, W(X,AX) is time-
independent and the integrals in Eq. (2.37) are to be

replaced by summations. Namely,
2 Pt t) =S P(X-1,t) = Se P(X, )

- [ef. (1.2)]
KR pimy Pik-me, 1) |

L (2,39)
The right-hand side of Eg. (2.39) is expanded in the same

X pxty+ S
{ mn=0

manner as in §2.2.

S L&) Cax) BT, (2.40)

n=zt

d -
a—t_ P(X1t) =

where

_
Cn(x)-_—_{l__l_)_ X'+ Se)

!

and
o LS n
m* =3 m"p(m),
m=0

Here, m and m2 correspond respectively to k and k2 in
current nomenclature.
The Langevin method, on the other hand, is based on

the equation
ditx(t)=§X(t)+5e+F<f), (2.41)

where p=k-1, and F(t) is the'random force. The following

assumptions are made about this random force:

* Here we neglect multiple emission of neutrons from the

source.
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(1) The process of F(t) is stationary and Gaussian¥*.
(2) The power spectrum of F(t) is white:

{FtDF(t))> = Gep §(t-1,) .

We represent Eqg. (2.41l) rigorously in the form of a Fokker-
Planck equation

2
2Pty =- 2 (£ X+ S)PU )43 50 G P, (2.42)

in order to compare Egq. (2.41l) with Eq. (2.40). The com-
parison would indicate that the Gaussian assumption in the
Langevin method seems to correspond to the termination of -
the Kramers-Moyal expansion. But if we simply cut off the
terms for np» 2 in Egqg. (2.40), we have

2
2 PX == 3 G PAD +33 GO P, (2.43)
which is different from Eg. (2.42). This ambiguity will

be systematically clarified in the following.

We will here restrict our attention to the subcritical
state which may be regarded as the normal case. Then, as
seen from the preceding sections, we can adopt the scaling
relation (2.16) i.e. x=y(t)+€l/2€, and Eq. (2.21) yields
a Gaussian distribution of fluctuations ¢ around the most
probable path. This means that our formalism is self-
consistent. Thus, in our case we obtain the Fokker-Planck
equation (2.21), with cl(y) and c2(y) determined from
Eq. (2.38). Converting & to x, we obtain

) € 3 [ kim2kt!
S%P(".f)=‘§;(]£'x+S)P(K‘t“'z‘;—f(&jﬁ#’fs)f""t),(2.44)

and

ad £
ty=Lyty+s,
=14 (2.45)

o —— —— —— v — — "  ——— - — s P S o — . —

* For simplicity we use this assumption. The applicabil-
ity of the Langevin method is not necessarily
restricted to the stationary case and it will be shown
later that the conventional theory can apply only to

the "normal" case.
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Equations (2.42), (2.43) and (2.44) differ from one another
despite their similarity in form. It is important to note
here that Egs. (2.44) and (2.45) hold in a non-stationary
situation. 1In fact, multiplying Eq. (2.44) by (x—y(t))2
summing over all possible values of x, and using the

notation o(t), we have
(x-Yt))*>=g<E*) = €q(t),

which leads to

7Tt =2pdt)+ 2=— ¢+ 3, (2.46)
a relation that can also be derived directly from
Eqg. (2.24). Equations (2.45) and (2.46) are none other
than the mean and variance equations given by the conven-
tional Kolmogorov method. The solution of Eq. (2.44) with

the initial condition

Lim P X te) = §(X~Xo)

1ot
is _ =gy

Pirtizo )= mmms @ 28000 (2.47)
where

o p
t-t,) A4S (t-1,)

Yitl=x, e T ’—?—{I—GT 1, (2.48)

and
G (3tt)

Taking the limit t—>o0, we have the stationary solution

! _(X‘gm)z
PiX, @) zjmmm= 2600 | (2.50)
where
£s
bo= T
and

dﬁ"zu—)*{h -3k+2f,
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The Gaussian distribution has also been observed experi-
mentally(ll)(12{ This substantiates the validity of .our
formalism within the order €. Hence we obtain for the

correlation function in the range t) 7,

<AXtAXt>= {A¢ X)) —(Xt)<X1)

-_—jdxt Y(t1Xe) Xg PXe, TIXo, to)
~ <xt>fdxz[dzt POt Xe, T) P(Xe, T %0 1,) X

:sz.tg('HXz){zt —<Xr>} ]?(Xt,tjxo, ta)

£ (t-1)
= Egrt) e (2.51)

2

where y(tle) is given by the expression (2.48) with
xo—>xrand t—>71, while o(t) is the variance given by Eqg.
(2.46). If we let t—>»o0, T—>co° and t-1=u, we obtain the
same result via the conventional Langevin method.

To compare our formalism with the Langevin method,
we rewrite the Fokker-Planck type equation (2.42) in terms
of the intensive variable:

—‘%f(x.t)z— (—x+S)P<x f)+2 axz (TFPUC 1), (2.52)
where

S= Se , G- = GEF

O oo
The solution of this equation corresponds to the stationary
solution of Egqg. (2.44). Hence we have the Schottky
formula
k.- k P . £s
Cp=—F—4s-T¥4+S; 4=-F . (2.53)

We have seen that system size expansion using the
relation (2.16) affords us a systematic method which
includes the conventional Lagevin method for stationary
states and which can be extended to a non-stationary case.

In other works, appropriate truncation of our expan-
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sion covers the conventional theory as the normal case:
Egs. (2.45), (2.46) and correlation function derived in

the normal case are none other than the equations obtained
with the Kolmogorov and Langevin methods. If we require

& more accurate approximation, such as for deriving
information on';§, we should truncate Eq. (2.20) at a
higher ordex. Such procedure, however, is tedious, and in
the next section, we will propose another means of deriving
the same results more directly with advantage taken of the

extensive property.

§2.5 Phase Flow Pattern

Equations (2.39) and (2.44) yield identical results
for the mean value and variance in the non-stationary
case. But if we take higher-order terms of € into consid-
eration, some difference must necessarily appear between
the two results, since a branching process is non-Gaussian.
In order to examine this difference we utilize the
extensive property mentioned in 82.2 that is applicable
to a subcritical reactor. Inserting the expression
(2.15) into the basic equation (2.7), we obtain
*AX(';—%)]

2% t)=—[daX wex,ax,)(1- € : (2.54)

Then, by using the WKB approximation of quantum mechanics
(where h=(Planck constant)/2m corresponds to €), we can
find the Hamilton-Jacobi equation in the following
manner: If we rewrite the extensive property (2.15) in

the form
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/d¢ /’ ® ’
P, = Cethat) Ceefdt i Ce%fdt L 1) e
.55

and compare this with Eq. (2.12), we find as the Lagrangian

_d% _ o9 F3A
L—dt BEY +x X

Then, defining the generalized momentum p=

(2.56)

—5iL, we have

the Hamiltonian

xp-L=- ¢. (2,57)

This is the Hamilton-Jacobi partial differential equation,

a%
+Hx,p,t)=0 for x and p. (2,58)

Instead of solving the partial differential equation
(2.58), we can solve the canonical equations

dx _aH

t~ 9p

i oA

dt 7 sex - (2,59)
While, in general, Eg. (2.59) cannot be solved analytically,
we can still visualize the characteristics possessed by
the solution with the aid of flow patterns. This method
suggests itself as a useful approach for the case of a
non-linear system, and it can be considered to be a kind
of pattern recognition.

In a simple example of subcritical zero-power reactor,

the exact treatment of the Kolmogorov method gives

Hep)=s(i-ef)et-apre?) (2.60)
where
Gy =3 Pime P
mn=so

If s(t) is constant, H(x,p) does not depend explicitly on
time, and the flow induced by Eq. (2.59) is determined by
H(x,p)=E. Figure 2.2 shows this flow pattern.

Next, we will show the flow pattern of the approximate
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treatment derived in §2.2 which corresponds to the Gaussian
approximation of the fluctuation around the most probable
path. Converting £ to x in Eq. (2.21),

£
T PO 1) == {C1900) (K- J0) + CHOF P )+ 3 RGPt 0 g1

and using Eq. (2.22), i.e.
2 [ 2
o _ & g7 _(X=4W)
P@f“‘m@ ¥ = firee © 2E°

we obtain the time-~dependent Hamiltonian applicable to the

n
= TPV, (2.62)

present case:

Hix. P, t)={c/(4)[x-4tr]+ G, (5(#))}/3 - G‘;m}/’z. (2.63)

Then the characteristic equations of the zero-power reactor

are

it 7 ap

i’i:—éﬂ:-_.f)

dt Xy L (2.64)

dym_ P

——— X - t

. 13(}4—5
We can easily solve these equationé under the initial
conditions

x.(to)=xto

|
P(to)=“E(Xfo_q)
¥t = 1

H

corresponding to an initial Gaussian distribution:
X
R (g, 1T 2
P(IOIto)z ea ¢ to’ 0) i ?(th‘to)z-l——g: (xto_rl)-
? 0

The flow pattern for this is illustrated in Fig. 2.3. 'In
this figure the straight lines represent the time propaga-
tion of the Gaussian distribution. The slop of the line
is inversely proportional to the variance.

We can see from Eq. (2.7) that each ch is accompanied
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by a higher-order term of €& depending on the index n.
Now, in the above two treatments the Hamiltonian (2.63)

comprises only c c! and Cyr while the Hamiltonian (2.60)

’
contains all the iighér—order terms C,e The effect of these
higher—-order terms appears in Fig. 2.2 with the slight
bending seen in the line of the stationary distribution
P(x,t=»), which is absent from the corresponding line in
Fig. 2.3. Thus we may conclude that the effect of the
higher~order terms is not significant for zero-power
reactor noise analysis, on account of the large volume of
the reactors in the normal case. As a first approximation,
therefore, we can obtain an amply accurate result by
assuming "normal".

The foregoing finding provides us with a useful and
convenient method for studying non-linear, non-eqguilibrium
noise problems. This characteristic permits us to
introduce a new variable o, that is very suitable for
analyzing non-stationary reactor noise, as it will be shown
in the next chapter. 1In a case where an evident non-Gaussian
distribution of fluctuations around the most probable path
is found in contrast to the above normal case, we should
take account this effect by taking up the higher-order

terms of ch to clarify the non-Gaussian mechanism.
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§2.6 Application to a Non-linear Reactor System

with Random Parameters

The non-linear behavior of reactors with random
parameters has not so far been treated by taking into
consideration the difference between the extensive and
intensive variables. In the case of a point reactor, the
stochastic differential equation with random parameters

(13)-(15)

has been expressed by Williams in the form

4oyt = £ %) + Set), (2.65)

d 4
where the delayed neutrons have been ignored, while X(t)
is the number of neutrons, { the mean lifetime of neutrons,
p(t) the reactivity and Se(t) an independent source term.
Williams assumed that p(t) and Se(t) are stationary
Gaussian random variables representing parameters and
source excitations, respectively. In what follows, we
assume that their noise are white. In a source-free case,
the inconsistency of Williams’ treatment is obvious if we
compare the two equations —— (a) obtained by integrating
the Fokker-~Planck equation (23) of Williams’ reference
(13) multiplied by X over all possible states of X, namely
d—f<xm>:-1f32<xm>, (2.66)
and (b) obtained by differentiating Eq. (3.13) of Williams’

reference (14) for p=1 with respect to t, namely

-

%(X(ﬂ)=(—%— 2—£z)<x(ﬂ> . (2.67)
Here we have also used Eq. (3.6) of Willams'’ reference
(14), i.e.

G =j:at'fdt” Ra(t-t") =fdt’fdt”6 Jit-t)=at,  (2.68)

Where does this difference between Egs. (2.66) and (2.67)

come from ?* In the latter treatment Williams also derived

* This is also discussed in references (135), (17) and (18).
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a non-Gaussian distribution function of X by Gaussian
random parametric excitation. While his treatment is
mathematically self-consistent, its physical meaning is
not clear, since he used the Gaussian assumption in a
non-normal situation in which the (-dependence of the mean
value and that of the fluctuation are of the same order.
Such a non-normal situation may occur in particular cases.
The Gaussian assumption should be applied more appropriate-
ly to the normal case. We will further clarify the incon-
sistency in more concrete terms.

If the macroscopic system has the most probable path
in a stable situation (See Appendix), it stands to reason
that the distribution of the fluctuations around the most
probable path should become Gaussian. Since we assume
that the system lies in the normal case (or, in other
words, the system is subcritical), the processes of p(t)
and Se(t) are Gaussian. Hence, in accordance with the
method of van Kampen, they must depend on the system size
2 by the relations

FOP) = P, + ET A (at)>=0
£S.()= So+ £F S(t) (SH)>=0
<A(tn)A(tz)>:65(tu't2)

{s(t)S(t)) =G5 8 (ti-1a) (2.69)

\ (4S>=(S4a)=0 .

Under these assumptions, we can obtain from Eq. (2.65) the

Fokker-Planck equation in terms of intensive variables.

%P(x,t):-—a% C,cx)?cx,tH—zg—é% Ca(x)Pex, b)), (2.70)
where (X)
i Ce .
x:%(z- , 3:%3— , Ci(X)= n (L-‘-‘-),Z),
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and

C2(1)=%;7C2+ s .
(2.71)

As mentioned earlier, we can let
+
= g(f)+ g2 §

Substituting this into Eg. (2.70) and comparing the terms
-1/2

of order ¢ , we obtain

té‘“———-%(*HS (2.72)

In a source free case, this result coincides with the
first equation of Williams. From the terms of order eo,

we obtain

FPED=- P 2EPED+ 3 (F ) LPE . (2.7

This equation is the linear Fokker-Planck equation with
time-dependent coefficients, and leads to a solution of
Gaussian distribution. From these results, we conclude
that in so far as the random parametric excitation p(t)
has the {(~dependence given by Eq. (2.69), the system has
a Gaussian distribution of fluctuations around the most
probable path.

When Williams calculated the moments of the Fokker-
Planck equation from the Langevin equation, he used the
"discrete" Langevin equation (Ito’s method) for zero power
reactors, and the "continuous" Langevin equation
(Stratonovich’s method) for power reactors that are
affected by such factors as bubble formation and tempera-
ture fluctuations. Now, the difference between Egs.
(2.66) and (2.67) arises from this discrepant treatment
in the two cases of power reactors. It should also be
noted that this difference is present in parametric
random excitation, while the difference is absent in

source random excitation on account of the linearity
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of the Langevin equation. We have proved earlier that,
even in a power reactor, continuous treatment should yield
the same equations as those obtained from discrete treat-
ment on account of the dependence on the system size in
the normal case. This is why the discrepancy between the
two treatments disappears in the normal case. Thus the
necessity becomes felt for distinguishing the non-normal
from the normal reactor state. Furthermore we see that
the non-Gaussian effect pointed out by Williams plays an
important role when p(t) has a non-normal Q-dependence
caused by non-linear and other effects in a particular or
abnormal situation. Even in such a case, however, we can
estimate these effects by the method developed in this
chapter, unless the transition probabilty of states is of

non-local nature.

§2.7 Conclusion and Discussion

We have explained the system size expansion method
in §2.2. This was followed in §2.3 with an examination of
the validity of the "normal" assumption in a steady state.
In §§2.4 and 2.5, it was demonstrated that the results
obtained on the basis of conventional reactor noise theory
are equivalent to those of the normal case in our formalism
within an order of . For the zero-power reactor, we have
presented the flow patterns of its evolution, showing that
for such a reactor we can adopt the Gaussian assumption
without incurring error beyond the order of e. This

indicates that our approach has a possibility of shedding
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a fresh light on the established approaches based on the
linear stationary ergodic Markovian processes. Hence,
the reactor noise, particularly in-core noise, can be or
should be treated with the framework of statistical physics
for non-linear non-equilibrium open systems. Finally, in
§2.6, a non-linear reactor with random parameters was
discussed as an example of application of our theory.
Though the point model of reactor has been treated
in this chapter, it is straightforward to extend the
applicability of our formalism to space-dependent phenomena
if the configuration space can be divided into cubic cells.
In this case, instead of the system size expansion, the

(19)

cell size expansion as in chemical reactions may be
adopted. The length { of a cell is chosen larger than
the micro-characteristic length Imin (for example, mean
free path), so that the mean value taken in a cell is
meaningful. The A must be also smaller than the macro-
characteristic length jmax’ so that the variation of mean
value y(t) between neighboring cells should be small and
hence the spatial difference has the meaning of derivative
in the spatially continuous approximation. It is
important to take variables describing the spatial
tendency of the system in which all the transitions are
limited to occur only in a relevant scale, in order to
make use of 1/Q~expansion.

When we treat a power reactor, its state requires to
be classified in more detail than currently practiced, on
account of the significant differences brought by such
effects as non-linearity and feedback. When Williams
analyzed a reactor mechanism with consideration given to
fluctuations, he distinguished the discrete from the
continuous treatment. This is not sufficient, and we have
additionally distinguished the non-normal from normal
fluctuations, based on the statistical physics considera-
tions. As we have pointed out §2.6, it is important to
study whether or not it is valid to assume Gaussian
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distribution of the fluctuations around the most probable
path. 1In the case of a power reactor where the non-
linearity of the phenomenological law plays an important
role, the dependence of the fluctuations on the system
size presents aspects different from the normal case
discussed here. If a power reactor is subject to non-
Gaussian effects, the higher-order terms cn(x) should
serve as clue to studying their physical mechanism. The
order of system size dependence should also be useful as an
index to aid in classifying the reactor state.

When we use the Markovian assumption in a power
reactor, we should use a state vector instead of one
variable as in §2.2. The stability condition of a power
reactor in reactor dynamics can be classified into domains
corresponding to stable, unstable, semi-stable states and
so on. Within one state space, the state condition of a
power reactor can be specified by means of certain parame-
ters. When the system lies in a stable or unstable domain
or in the case of transition from one domain to another,
it is useful to draw flow patterns such as shown in this
chapter for the analysis of the stability with account
taken of fluctuations. It should further be noted that
the power spectral density is not well-defined in a non-
stationary state. This makes it indispensable in a non-
stationary case to seek variables that can provide
information corresponding to that available from power
spectral density in a stationary case. For example, in
the 'phase' of limit cycle, an eligible variable would be
the irreversible circulation of fluctuation a to be defined
by further examination of the present formalism. This

will be the subject of the next chapter.
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APPENDIX

We define the terminology necessary for representing
the various states of the macrosystem. In general, the
phenomenological equation (2.19) may be assumed to be
expanded in reference to the stationary or equilibrium

state in @ form

d%gm:c.m =V Y+ $r e P

The different kinds of states shall be classified and

defined as follows:

a) Stable state: vl< 0

b) Unstable state: vy >0

c) Marginal state: vl=0, vz#O

d) Critical state: vl=0, v2=0, v3#0.

This classification is based on current practice in
statistical physics. The critical state does not
necessarily correspond to a critical reactor. The
marginal point, in particular, will play an important role
in the next chapter in relation to change in behavior of
the reactor from stable to limit cycle region in a non-
linear system.

The subcritical reactor state corresponds to the
condition (a), since cl(y) is linear and vl=p/1 £0. A
supercritical reactor corresponds to the condition (b).
When a reactor becomes just critical, i.e., p/L=0, the
usual point reactor model no longer includes non-linear
terms. This means that we must in this case take account
1 could be

neglected in supercritical and subcritical reactors.

of Vor Vare.. which, in comparison with v

Hence there is need for refinement of the conventional
point reactor model to cover properly the just-critical

state.
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CHAPTER 3

Irreversible Circulation of Fluctuation
in Reactor Noise

§3.1 Introduction

A power reactor is usually a complicated system
involving non-linear and/or feedback effects due to nuclear,
thermal, hydrodynamical, mechanical and various other

(1) (2)°

phenomena Power reactors have intrinsically fluc-
tuating components. Furthermore, they are also operated
in a non-equilibrium or non-stationary state. When the
system is in a non-stationary state, the power spectral
density is not well-defined. This makes it necessary to
find new variables that include the requisite information
to account for the non-stationary state, through extension
of the stationary power spectral density. It is major
subject of power reactor noise theory how to formulate
equations for these complicated phenomena(3)_(5).

The first step in this direction was made in the

(3)

previous chapter , which took up as basis the system

size expasion method of non-linear non-equilirium statis-

(6)_(10). In Chap. 2, it was seen that in

tical physics
the normal case the non-Gaussian effect on a macrovariable
(total neutron number) appears only within the order
€(=Q_l), owing to the macroscopic nature of the system
size ), despite the fact that a non-Gaussian process —

a branching process —— exists in zero-power reactors.

It is the purpose of this chapter to find out to what
extent the non-linear non-equilibrium power reactor can be
described with use made of the system size expansion ‘
method of Chap. 2, under the assumption that the system
belongs to the "normal" case. |

To describe reactor noise, we shall propose a new

parameter —— the "irreversible circulation of fluctuation"
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(8)

o —, which was first introduced by Tomita to define
a cyclic balance in an off-equilibrium situation. Much
useful information can be expected to accrue from exami-
nation of o in conjunction with the currently considered
variance ¢ and the power spectral density, even for steady
states. Examples of such information would include
discerning of forerunner phenomena preceding various
instabilities of power reactors, through appropriate
processing of data from « and ¢. Thus, it will be seen
that @ and ¢ are very useful in extending the theory to
non-stationary cases, when the system is in the normal
case.

In §3.2, we shall incorporate the irreversible
circulation of fluctuation ¢ in a time-dependent formalism,
based on the system size expansion method. This will be
followed in 83.3 by the consideration of a stationary
state, in order to relate the new variable & to convention-
al variables. §83.4 will serve to demonstrate the effec-
tiveness of the theory, by treating a specific type of
reactor representing widely current forms of such reactor.

Conclusion and discussion are presented in §3.5.

§3.2 System Size Expansion and Irreversible Circulation
of Fluctuation

Treatment of the non-linear Langevin equation(ll)

leaves some ambiguity both in the mathematical and physical

aspects, as mentioned in §2.6. This has induced us to base

our approach on the probability distribution function and
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the Markov assumtion. Then the system under consideration

is described by the master equation (2.1):

22X, 0)= {WlX-2%, AXYPX-2K.0 - WK, oL D2t daX . (3.1)

By using

"‘%(Fex (e=01""), WIX.4X. )= w(x,aX, 1), Pocty=dPX t)

Eg. (3.1) can be rewritten in a power series of g, known

as the Kramers—Moyal expansion (2.7):

to

_?(1 1)—2 5 ) Ca (X, 1) POX, 1), (3.2)

where

Cn(x,t)E[dAX X ) w(x, sk, t). 3.3)

As mentioned in §82.2, 2.3 and 2.5, it is possible to
disregard detailed information concerning the far wing
distribution in the normal case, owing to the macroscopic
nature of the system. This permits us to adopt in this

case the scaling relation

L
xX=%t) +ETE [A={x;} (i=1,2,...m)] (3.4)

where Y (t) and § are respectively the sets of mean values
and the fluctuations around them. The normal character of
the system is thus represented by the fluctuations of

order 81/2. Then, Eg. (3.2) can be further replaced by an
equation written in terms of the variables ¥ instead of X:

n-2
|
2P, 0-e 40l B0 F O A G et 02E,D. s
Within the order ¢ -1/2
ffym =C, ($), 1), (3.6)

and within the next order eo

27(5,0=- 2[KWO, U505, 0]+ 1+ L[DEOOPED] (5 )

where K(Y(t),t)=0C( ¥ (t),t) O Y¥ (t) is the regression
matrix, and D ( $(t) ,t)=c2( 4 (t),t) the diffusion matrix.
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Equation (3.7) is the linear Fokker-Planck equation with
the coefficients depending on time, through the time-
dependent most-probable path #(t) even in the case of time-
independent w. Equation (3.7) may be written as a

conservation relation of probability:

5 P, 1) Er(§ t), (3.8)

where
GE t)=K($1)EPE, 1) -+ 2 DH1)P5,1)

stands for the probability flux. From the Eg. (3.6) we

obtain the evolution equation for a small deviation §¥:

FI$O=K(3, 1) 34 ), (3.9)

and from Eq. (3.7) we have

d WA e
7O M=K, t)atr+ KED, o) + D (4t), 1), (3.10)
where ¢ is the matrix of variance, defined by
c=<EWEMY=[EEP(5 1)45, (3.11)

and the tilde ~ denotes the transposed matrix.
It is easy to show that Eg. (3.7) is satisfied by the

Gaussian distribution

1(Fn) -Le. g
P(E t)= i (G) e—2€8m g

(3.12)
(27C)~ J
where
ctgt)=F)oty= 1,
Taking advantage of this property, we can transform
Eg. (3.7) into the more convenient form
t P& t)__(;(mduw Dm) P(g t)
t :
3§E ST, s (3.13)
where K(t) and D(t) are abbreviations of K ( §(t),t) and
D(Y(t),t). Dividing E into (a) symmetric and (b) anti-
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symmetric parts, and noting the relation (3.10), we obtain
E = K(t)G (%) +3':D(t)

——— e ‘ T — e
= %{KW ) + KOO + D)} +;{K(ﬂmt> Koo}

il

Qio‘vu — (1),

(3.14)
where we have introduced a new variable defined by the
relation

l t
oL =L{KOHTW - KH oo (3.15)
From the mathematical property of antisymmetric matrices,
O o 3
- oA(t) — ty=o.
32 58 (5. 1) (3.16)

This means that ¢f/(t) does not contribute to the time
evolution of P(§,t). Then, in a system approaching steady
state, the symmetric bart.(i disappears, leaving the anti-
symmetric part €&k still remaining. The physical meaning
of &(t) is closely related to the cyclic balance in the
non-equilibrium situation of an open system. Further
details of the irreversible circulation of fluctuation o (t)
have been presented by Tomita et a1. (8)-(10)
It should be noted here that of(t) defined by the
expression (3.15) would not be directly observable quanti-
ty, since while O(t) is observable, the regression matrix
K(t) is not. We shall therefore derive another definition
of ol(t) that involves only observable variables. For this
purpose, hoting the property of ®(t) related to the two-

time gate probability(g)

manifested in Eq. (3.14), we
derive the equation of motion for . Then the conditional
probability over an arbitrary path from (B,t) to (E,T) can

be written

-L(5% 3#m)- ) (8- d¢)
P(5 I8 t)xQ | , (121) (3.17)

with the initial conditions @ (t)=0 and J§¥(t)=35,
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Letting T-t=At and E-£=A% and using Egs. (3.9) and
(3.10) for an infinitesimal time interval, we can rewrite
the conditional probability in the form of a path integral
covering a finite time interval:

t [ ]
_[tl‘O(g,g) dt

?

P(E, LIS, 1) x[w@) e (3.18)

where

0(5.8)=(5-KE)-R-(B-KWE) Riv=2Dm" (3.19)

The equation of motion for § can be expressed on the basis

of the variational principle by the Euler- Lagrange

(9)

equation
d 10 30
F( FY3 )_(Ta_é_)

=R E — {ROKH -KORG) =RV} 5

—_ {é(f)K(f)-i-R(f) k(f) + R(t)R(t) K(t)} €E=0 )

(3.20)
The equation of motion is decomposed into the independent
modes of
(a) g.r =Kit)§ (forward evolution) (3.21)

(b) §._ = (K(f)'i'D(f)&(f))g (backward evolution). (3.22)

This leads us to another definition of od(t):
Lit) =+ (KO TH) = K o't
—' [ ] _ .
=1 ((BOE, ) - nsitd)

This definition of o/(t) shows that ol(t) is an observable
variable, In a three~dimensional case, of/(t) is also

expressed in vector representation by

o((ﬂ—_—sl—(f‘;:-(f)xé(t)]X (3.24)

This expression would attribute to ol(t) the meaning of

mean angular momentum of fluctuations.
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Thus far, time-dependence has been considered
throughout in the formulations, since our aim is to study
the non-linear non-stationary behavior of systems; but in
the next section we shall consider a steady state, for
the purpose of examining the relation between &(t) and
the other observable variables. We shall find a third
expression of &(t), applicable to steady state, which is

convenient for such an examination.

§3.3 Relation of of to the Conventional Variables(4)(5)

Since for ordinary power reactors Eq. (3.6) is non-
linear, on account of feedback and/or non-linear phenomena,
it is difficult to examine analytically global behavior
of its solution over the whole region. The behavior in
time of fluctuations is complicated even in the normal
case, on account of the regression matrix K and the
diffusion matrix D in Eq. (3.7), which depend on time
through the mean value #(t). To obviate this complication,
we shall consider a steady state, where $(t) is constant.
All necessary information on fluctuations is then contained
in Ky and D , where the subscript s means steady state.
This implies that both €(t) and d(t) are expressed solely
in terms of Ks and PDgs. In the same way, the relation
between the conventional variables and f(t) can be found
in this special case, as it will be shown in this section.

First of all, the conventional vafiables are summa-
rized below. The correlation matrix in a steady state is
defined by
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City=<5((0§F H)
=Jd§afd§ gog P(g'tlgo) P (§°) ’ (t20), (3.25)

Then, the time derivative of Eg. (3.25) can be transformed

by partial integration after inserting Eg. (3.7):
d _ .
RC(\‘) =<5 5 (1))

= (18,45 5,8 3P, t15,) Pis,)

= <E(0) (KsE(1)>

= Ct) K ,

Introducing the Laplace-Fourier transform

sw=[ate™ c,

we obtain from Eg. (3.26)

Sw)=~ 0 [{W+K]“’ (3.27)

where @, is given by the relation

KO, t Ko + D=0, (3.28)

The power spectral density matrix for a normal case

(3.26)

is written

P =" Cxo- g 0xw-4¢°)> e it
= ro (E() F (D) ewt dt

=S (W) +5+(W)) (3.29)

+ .
where S(w) denotes the Hermite conjugate of S(W. In the last

equality in Eq. (3.29) we have used the obvious relation

(BB =<E©)5(-t)) ,

for steady state. Substitution of Eg. (3.27) into
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Eq. (3.29) gives
| I

P =-g, WtR, -~ WHK;

which can also be written

Pw = G@D, GFw) ,  Guw=[iw-KJ™" (.31

with use made of the relation (3.28).

Cs, (3.30)

Here, we also should pay attention to the definitions
of power spectral density since the system size expansion
method provides different Q-dependent power spectral
densities.

R(w):ﬂsz(w)=Q P w)
Bow =[ " <(X@ =Y (X -Y%) > et
Pew =[" <0xo - ¢*) (xt) - 4°) > e gt

where F}(w) is used in the conventional reactor noise
theory of the point model.

The above considerations confirm that full information
about the fluctuations of steady systems can be embodied
—— within the order ¢ —— in the self- and cross-power
spectfal densities. For example, the variance ©@; of the
fluctuations is determined through the power spectral
density by

o< 00
. e [TPw s TR P,

We shall now consider the relation of ¢to the power
spectral density. From Egq. (3.29)

o & (Wt
d_{i- <§(0)§(T)>=<§(0)§(“t))= ﬁ{_é-tw)ﬁw)e( dwl(3.33)

and

*

. /_\;-—/ . - . - t

where we have replaced P(w) by P (w), the complex
conjugate of P (w), since the power spectral density is
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Hermitian. Taking the limit t—0 in Eq. (3.34),

(<§E>-<E B>)
= o] i) [P - P dw
|

(/o)
=_ (w) dw
2TEL¢,"U ImFP ’ (3.35)

The probable reason why o/ has not been considered in the

o« =

past, either in theoretical or experimental studies on
reactor noise is that, in so far as steady states are
concerned, the power spectral density suffices to obtain
all the necessary information. However, it has been shown
that both © and O are useful as concise integral measures
of the information contained in the power spectral density
in steady state.

Next, a relation between o and correlation matrix
will be shown. The correlation matrix is given by the
evolution equation (3.26):

C(f):o’sekst’ (tz0) (3.36)

In a similar way, we obtain the another correlation matrix

E(t):(’gct)g(o)):@mto’s , (t20), (3.37)

Employing Egs. (3.36) and (3.37), we easily obtain the
same relation as Eq. (3.23) in a steady state without

using the variational principle:

o =

O e

(KOs ~K, G5 )

NI— NI._

{ é(+o) - (:‘(+0)}

(3.38)

=4 {<B0Er9) - (Bt B |

We extend, in a steady state, the time domain of the

correlation matrix to negative region, i.e.,

Cti=<BMEO=(E@E))=C(-t) (tz0),
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The correlation matrix is
s ngt (t20)

Ct)y=<{B8&(t) = QKsl”

In general, the regression matrix { is not necessarily

0 (3.39)
g, (t£o),

symmetric in a non-equilibrium situation. This means that
cross—-correlation functions are asymmetric with respect to
the time inversion. However, we can see that self-
correlation functions involved in C(t) are always
symmetric. Then, we shall connect & with the cross-
correlation functions. To do this, we note that Eg. (3.28)

becomes in a steady state,

Ks z_qs(Rs +8} DS) 95
=-0,(K.+D. 4,) &

which yields
n n U 1IN an
Ks = (-1)" O (K5+Ds &) gs;
where 85 is the inverse of (¢, (( gsz 930’5: 1)

Then we can obtain

cw) = efsltlg, (1<0)
2, | .
= (53 +'£§'[T('<s’t‘) C;

= Cs +§,n'—,<§ -(KtD; &) 1t1]"
= G, @-K5+D5 g, 1t (3.41)

(3.40)

From the definition (3.38) and the relation (3.28),

K5+DSQ§=“0;K& :_(Ks'*),dsgs)-

Finally we obtain

C(f)=USGK3+‘?°(585m (<o) (3.42)

P
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Comparing Eq, (3.36)withEg.(3.42), we can easily understand
that ©{; repesents the irreversibility in time in a state
far from equilibrium.

Hence, the existence of O shows the asymmetry of
cross—-correlation functions with respect to the origin of
time. The asymmetry of cross-correlation functions are
familiar in experiments of reactor noise, while auto-
correlation functions are always symmetric.

Having clarified the relations between of and conven—
tional variables, we can proceed further to reseach how
o 1is related to a joint probability distribution
function for two time points. We have @a Gaussian type
solution from Eq. (3.7). Since the existence of O shows
the rotational freedom of the Gaussian distribution, we
fail to notice the existence of Of without the concept of
time series. So we must treat the two-time gate probabili-
ty in order to investigate this freedom even in a steady
state. From Eqg. (3.7) in a steady state, we obtain the
following conditional probability

P(E:f”lg,f)“e—’i[gl—wwm8(“”[&/— 63“”){‘{’0)1(3.43)
with the initial conditions @G (1)=0 and §#(1)=& where

o+t Gurty=1 0 G+ ) = eKstg,

Then, the joint probability in the Markov process‘is
S s
W, (5/t+T;8,T)=P(&/t+2|5,0) P (5). (3.44)

From Egs. (3.43) and (3.44) we get the following equation:

=2 An WS (Bt+T ;8 1)
Ft+v) - Fure

—ekstg(ttt)’ eK‘tgun) 6K5f+ 85 3

Kt £

~ (8§ E)

=(5/8) A7\ ¢ |,
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where the 2 by 2 matirix A, whose elements are N by N
matrices, is evaluated by noting that the matrices do not

commute in general, so that
st Kttt Kt Kt Kt
o el awein et Kt g
0 7
t . (3.45)
dseKS )] 6.3

From Eg. (3.10) in a steady state with the initial condi-

A=

tion €(1)=Cs, we can obtain the following solution:
t+T

a(t+ t)=eKst65 eK5t+ t At GK“M_“DS eks (trt-1)
Kst R;‘t t ) s-t/ 17 Y,
= G € +fod’c el D, ehet
Then, from Egs. (3.45) and (3.46), we have
Ks.t Kst
A Gt G O Lot , e @,
) R't ) Kst ° (3.47)
s ’ 65 dse * ) 65

(3.46)

C;s C

since O(t+1)=0 (t)=¢; in a steady state. Finally we
obtain, from Eqg. (3.42)

/ -1 g
Wj(g,’f*fig, T) = @"}{‘E"g)'q (E_.)) (3.48)

where

- ol -t
S, ,af/) G, ’O,SEKSH s & (-1)

co, g, ) \ge g

In a steady state of the system, the one-gate

-
-

probability has a fixed Gaussian shape and the joint

probabilty represents the time evolution which is

determined by K, and 0. It is concluded that ol is a one

of fundamental observable variables. The examination of

of must be important in order to obtain the dynamical

information of this rotational freedom in a reactor system.
In the next section we shall show that, even in a

steady state, suitable processing of O and U can serve to
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provide a deeper insight into the various states of power
reactors. We are led to a new viewpoint, based on which

the system is conveniently analyzed through mathematical

and physical examination of of, and we can deal with

information on complicated power reactors by evaluation

of .

(4) (5)

§3.4 Application to a Concrete Model of Reactor

It has already been mentioned in §3.1 that a power
reactor in operation is a very complicated system,
involving a wide variety of phenomena. In the theoretical
analysis, therefore, a number of assumptions and a simple
model would have to be adopted, which must not, however,
obscure the essential features. This section will present
our formalism concerning a simple point (homogeneous) model
of power reactor, assuming a reactor in the "normal" case.

The reactor of interest is of KUR-type, a water-
moderated and -cooled reactor, discussed elsewhere in
detail by Morishima(12)~(l4). For simplicity, we neglect
the delayed neutrons and coolant velocity fluctuations
which have been taken into account in his model. Accord-

ingly, the state vector X=={Xi} (i=1,2,3) consists of

X, N

] |
X=| X, |= C—"%@-—Vi& | (3.49)

Xg Cvgo Vc 9‘;



where Xy is the total number of neutrons in the reactor,
X, the total energy content in the fuel region divided by
the fission energy ¢, and X, the corresponding quantity
for the coolant region. The other notations are summarized
at end of this chapter. The transition probabilty is

given by

W(X,Ax»t) =S§AX.,| gdxz.o 54)(3,0 + /\c X| 6A)(..'| 54Xz,0 8AX3,0
Tt :Z:o /\4 X F;U/) 3k, -1 &xu 0axs, 0

+ Ky (Xa=MX3) Sax,0 daxs -l daxs, |

+ A (X3 ‘Y;“) JAX.,O gsz,o 5Ax,,—l ) (3.50)

where all the quantities representing the probabilities
of elementary process, and the net changes of state
quantities are identical with those adopted by Morishima
(see Table 1).

Table 1 Elementary events in transition probability (3.50)

Elementary Its rate per Net change
event unit time per event
Neutron source S +1 neutron
Neutron removal Ach -1 neutron
(v-1) neutrons
Fission Ale pf(v) {+l energy in fuel
-1 energy in fuel
Heat transfer h, (X,-nXj) {-+1 energy in coolant
Heat removal kr(X3—Y§n) -1 energy in coolant

In our formulation, particular attention must be

paid to the difference between the extensive and intensive

quantities. The reaction rates — Af for fission and
Ac for capture —— are volume-averaged over the
reactor:
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A= L/t /\m

__L . Ve , <0 (3.51)
A=+ N

All the reactlon rates contained in the right-~hand side
of the expression (3.51) are assumed to be intensive

quantities depending linearly on temperatures:
A = N {1 = 108,- 67}
(c”=/\m{'"”91 6;) } (3.52)
EWIWETES TR

where the reaction rates Aég), Aég) and Aég) are standard
values and 62 and 92 are chosen to be the steady-state

values defined later. The numerical values of the parame-
ters are given in Table 2. Some of these values have been
replaced by corresponding effective quantities, as we have

simplified Morishima’s model.

Table 2 Model parameters

T em-- 2.473 A B afSl - 30

j;é -———  7.337 H (cm) ~---- 64.7

g (Mev) - 200 pe (g/cm®) -= 10.0

S (;Sec_l) 109 Pe (g/cm3) -- 1.0
2,(se§) - 1074 i 6, (°C) ----- 30

Q (cm3) - l.053x12 ¢t (cal/gic)  0.05
v, (cm ) - 3.74x10 v

v (cm3) - 6.79x10% y (cal/gec) 1.0

P (kW) -- 1000 Yz (°C) ————— 2x107°

The network of various processes in the model is symboli-
cally represented in Fig. 3.l1l. The nomenclature used in
this model is also listed at the end of this chapter.
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(CAPTURE)

(FISSION)

The parameters Y5 Yo and y3 are the linear temperature
feedback coefficients of expression (3.52)
Fig. 3.1 Reaction network of power reactor presented by

expression (3.50)

In short, this model is characterized by its being
an open system subject to linear feedback mechanism and
in a non-equilibrium state.

The system size expansion method applied to the

right-hand side of the mean evolution equation (3.6) yields
TP~ 048~ 0 (48D} 4+ S
C8) = | {1-4Ch-t)) 4~ £ (.- 18)
vt(éfz-'lé;)—h(&g-g,”) (3.53)

where
2 V-1 ds ¢
L=y 0 P25 R hAe+ Vehe)
Y _ &2 1y~ Vi Ly b
S Q ’ C%" C3'6\4 ( v n" JI 2 co ‘;)
R 20 3L My Ly peo
4 agv v WTEREV ( e 5) .
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K(t)

In the evolution equation (3.10) for the variance,

and D (t) are expressed by

Kij(#)=55 ¢t
I (3.54)

/ D{II)(&)zlg{;‘U{ | _Mgl_gj)}g‘-—L‘—S{P—a.(&'gf}— Q;lé}.a‘&:)u.ﬁ-s

D(u)‘a'):g {l_'g(&a‘gas)} g’s
D('s)(é’-): 0
D"”(&):T,?{l—«(r(gz"g:)}g,‘*' ft(#;—qgi)
D“”(a‘): _{t(g.z—(zga)
k D(33)(3)= ‘£t(%’_rlg3)+)\‘ (”3‘&3&“) . (3.55)

We shall first examine the stability condition of a

steady state. The fact that we are considering a steady

state assures satisfaction of the condition

¢, (§)=0,
by fss
gl\ B f

S s I LY
3- = 3’23 = 7&3 t v g'l
) ‘ ’Q*IISV (3.56)
n s
3‘3 %3 + Arl‘g gl
Hence, the expression (3.54) and (3.55) become
__E_ _ﬁ ) 0,. s
G TLé o Ll
'( = -i— ’ —-£L3§-{ ’ £tq
s D AL t , (3.57)
O ' {f ) —'{trl _Ar

and
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[y
—_ ——H s Y] 2 S ’ -__l.__ s
DS 13_17 g" Jlsg g‘ 4LV g.' *
| S 2 4 (3.58)
O / 1517 t ﬁsv &.

The steady state can be classified according to the
eigenvalues of the regression matrix. A linear stable
region, for example, is determined by the Routh-Hurwitz
criterion. From Eg. (3.9) in a steady state, i.e.,

é%dy(t)=Kséy(t), we have the characteristic equation

Z3+H,Z2*+H,Z+Hs=0, (3.59)
where

Hl =‘—|;' Ks
=1
H2 MKS‘T.‘KS
H3=—MKS y
from which we have for the condition of stability

H >0, H,20, H; >0 and HiHa D Hs. (3.60)

Figure 3.2 shows the linear stable region in the parameter

"

space where Y, is fixed. The values of the parameters
used in this calculation are also given in Table 2.

It should be noted that the stable domain for &4
coincides with for ¢, both depending on the eigenvalues
of Ks in the normal case.

When the parameters change under a certain condition,
an instability may be produced by feedback or non-linear
effects. The three degrees of freedom possessed by the
system give rise to different types of instability. For
instance, the system becomes unstable when the real part
of any root of Eq. (3.59) approaches zero. Two typical
cases may occur. One is that in which one real root
approaches zero. This instability is called the "soft-

mode instability”. Another case of instability is that
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A
61073
0.5t
(11D
0 '
1
/s
//
/S
0,5t (In

The domains (I), (II) and (II) are stable, unstable
focus and col regions, respectively. In particular,
there is a 1limit cycle region in a part of (II). The
boundaries of the stable region are marginal states.
Points A, B, C and G are on a straight line (yl=2xlO—5,
y2=2x10"5), with \(3=5.22598x1o’5 (=y§), -2.0h815x10_h
(=y§), -2.0686x10_h and —l.OxlO—h, respectively.

Fig. 3.2 Classification of reactor states in parameter space

based on Routh-Hurwitz criterion

in which the real part of a pair of conjugate roots
approaches zero. This is called the "hard-mode instabili-
ty". In fact, the steady state becomes unstable at the
boundary of the stable region in Fig. 3.2. The parameter

Y3 is regarded as a slow-varying quantity. If the
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Fig. 3.3 Steady state values of
O and o on the line AB in

stable region of Fig. 3.2



parameter Y3 changes, the variance @ diverges at the two
points corresponding to A and B on the abscissa of Fig.
3.3. This situation occurs when the coolant temperature
feedback changes on account of any event occurring in the
coolant, such as turbulence and boiling.

These instabilities are seen in the (1,1) component

of the power spectral density presented in Fig. 3.4.

pyyee)

Py W)

10t 10t

131

109 10

104 18t

. . . 1
0.001 0.01 0.1 0.0 0.1 1

1013

101!

AXGULAR FREQUENCY (RAD/SEC) ANGULAR FREQUENCY (RAD/SEC)

(a) Hear soft mode (v) Near hard mode
. A . e o h
instability (Y§=Y§) instability (Y§=y3)

Fig. 3.4  (1,1) component of power spectral density
T =(y,=v2) /YS
3 '3°777'3

As Y3 approaches the point A, the zero frequency component
of the single mode increases divergently. This is the
case of the soft-mode instability. The hard-mode insta--
bility appears when some finite frequency component of a
pair of modes diverges at point B. These instabilities
are also shown by d and o near the transition points A
and B in Fig. 3.5. Thus, the analogy with generalized

phase transitions in far from equilibrium serves to
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where (i, j, k) is a cyclic permutation of 1, 2, 3.



describe reactor noise phenomena.

Information only concerning ¢ will not enable us to
predict which type of instability will occur. This will
be possible by taking © into consideration as well as (@,
as it is suggested by the fact that (¢ is related to the
symmetric part of the expression (3.14), and © to the
antisymmetric. This is evident also from an examination
of Fig. 3.3-c or 3.5, where ¢ remains finite in the case
of soft mode instability, while a corresponding instability
of the hard mode makes the same variable diverge. This
can be analytically proved in the following manner: The
quantity of is related to the imaginary part of the power
spectral density, as seen from Eg. (3.35) This imaginary

part is, by definition, an odd function of w:
Im Pw) = - ( prw) ~ plw))
0o iwt_ -twh
=[Tem & 4t
- 60
oo
:I‘ Ct)sinwt dt,

24
Since w has appeared in Eg. (3.31) in combination tw, the

(3.61)

imaginary part must be proportional to w, i.e.,

Inm Pw) e w- fe(w) ) (3.62)

where f;hn) is a certain given even-function of w. In
the case of soft mode instability, the diverging zero-
frequenicy component of P(w) is canceled out in the
integral w.Im P(w) of ¢ defined by Eq. (3.35), and &
remains finite in contrast to @ .

When the value of the parameter Y3 declines beyond
the boundary point B, instability appears in the system,
which thereupon becomes subject to a limit cycle. As an
example, the limit cycle at point C in Fig. 3.2 has been
analyzed numerically, with the result shown in Fig. 3.6.
This may be interpreted as the circulation inherent to
fluctuations making its appearance and taking the form of
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3-5 _100_ 0 -

TIME (SEC)

Fig. 3.6 Limit cycle at C point in Fig. 3.2

limit cycle in the mean evolution. In this situation, the
gquantities o and ¢ provide information on "forerunner
phenomena" of unstable states, while the mean value
remains constant until Y3 reaches A or B. In addition,
we are able to observe, as in Fig. 3.7 the changes brought
up on aj and 943 under stable steady state by variations
in the parameter Yq and Y3

The stability diagram of the system being specified
by parameter Y3 (coolant temperature feedback coefficient)
is also shown in Fig. 3.8 for a change of power of a
reactor according to the linear stability criterion of
Eg. (3.60). [cf. Fig. 3.2]

Next, we shall illustrate how O is related to the
asymmetry of correlation functions in this model.
Typical patterns of correlation functions at point H (y3=
lxlO—S) in Fig. 3.8 are given from Egs. (3.36) and (3.42),
and shown in Fig. 3.9.
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Points A, B, D, E, F, G and H are on a straight
line (power=1000kW), with Y3=5.22598x10_5 (=Y§),
_2.0b815x10™ (=y131), 4.0x107°, 2.0x10™°, -5.0%10"°,
--lO.OxlO-5 and l.OxlO_S, respectively.

Fig. 3.8 Diagramatical classification of stability of system
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Fig. 3.9 Correlation functions at point H in Fig. 3.8



Figure 3.9-b represents asymmetry of cross-correlation
functions due to the existence of the irreversible circula-
tion of fluctuation of as mentioned in §3.3. 1In each
figure, Cii's or Cij’s (i,3=1,2,3;iX]j) have similar tend-
ency of variation with time. This allows us to adopt Ci1
and C12
correlation functions. The characteristics of reactor have

for the representatives of auto- and cross-

significant effects on these patterns of correlation func-
tions. Figure 3.10 shows that these patterns change when
the parameter Y3 changes on the line AB in the stable
region of Fig. 3.2 or 3.8.

Thus, it is important to find the way how to process
information of reactor noise in the cases of where changes
of these patterns occur one after another. It is also
necessary to systematize various observable variables in
complicated reactor noise phenomena and to know mutual
correspondence among them. Then, let us illustrate this
by the above-mentioned reactor model. Figure 3.11 shows
mutual correspondence of observable variables.

Hence, we can estimate a position of operating reactor
state in the stability diagram by taking advantage of o
which is an index for types of instabilty (soft or hard).
We should make use of reactor noise not only estimating
reactor dynamics or kinetics parameters but also treating
reactor stability. Moreover, with the increase of
reliability of reactor noise experiments, it is useful to
adopt various possible representation of an observable
variable, corresponding experimental situations. In other
words, reactor noise experiments are, in general, rather
difficult ahd we should not draw any conclusion on the
reactor state until we ascertain the agreement of results
derived from various different measurements.

Finally, we summarize essential equations or relations

in the steady stable state of the normal case in Fig. 3.12.
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{ Normal case > X = H—s+ Eé g

Evolution equations

Y = é’s +-c§éf
Mean value (c.(éjs)=0)
Small deviation d _
d_tgg--KS 5&
l [in §3.4]

soft mode instability
hard mode instability

Fluctuations S%P(g,t)"—,'( EPE.) ;1 aagDsagP(g t)

{in Chap.4]
KF>=0

dg -
dtg ng"'F {(FtFt'>=Dsa(t_t/)

Relations among statistical variables

dseKSt (tzo)

eKst(SS (tgo)
= %,IIP w e 9ty

Power P(wjzjc(t) eiwtdt

spectral
= [tw-K; )7 D Fw+ K, )™

density
Variance 0, =(EE>=C(0) =3t [P du
('4s(y ﬁ"( g+ [) = O)

Correlation

function C(t) =<(§(0)8&(t))= {

I ersibl -
circulation L (K6, - Ks6, ) =+ (€~ CF0))
of

\ fluctuation :ﬁfw Tm le)dw

Fig. 3.12 Essential equations or relations in the steady

stable state of the normal case
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§3.5 Conclusion and Discussion

The irreversible circulation of fluctuation © has been
introduced as a new variable for representing the amount
of reactor noise, and the usefulness of © in reactor
noise theory has been demonstrated for non-linear and/or
non-stationary cases.

We have found for steady state the relations of & to
the variables treated in conventional reactor noise theory.
We have also applied our formalism to a simple model in
order to analyze its behavior numerically. The analysis
of the experimental data is undeér way and we also hope
other authors may find occasion to compare these numerical
results with actually measured reactor noise.

The section 3.4 gave the condition for power reactor
stability, represented by domains marked out in a diagram
in some parameter space. Transition from a stable region
to one of limit cycles has been shown in Fig. 3.2. This
would suggest that reactor noise theory might possibly be
formulated from the viewpoint of generalized phase
transition phenomena —— "generalized" meaning the occur-
rence of such phase transition in a non-equilinrium open
system.

While the mean value of ¥ is constant in a stable
region, its fluctuations can be utilized as a "forerunner
phenomenon" to foretell undesirable instability, through
appropriate information processing. From the numerical
results obtained with our model, we have found that the
divergence of both o and O indicates hard mode instabil-
ity, while soft mode instability is characterized by
infinite ¢ and finite ©. Thus, we see that & can
serve effectively as an index for instabilities. Beyond
the threshold of hard mode instability a limit cycle
appears. While in the normal case the amplitude of this
limit cycle is small in comparison with the mean value,

and limit cycle is considered to be stable, it should
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nonetheless be carefully examined whether the reactor is
safe or not in the limit cycle state. Such a decisiodn
will be made by processing the information on ® and (.

It should be noted in passing that it is important
to check the present results against those from other
independent methods of information processing, in order to
increase the reliability of the ensuing judgement on
reactor safety. And the values obtained by such parallel
procedures must coincide with the above results, so long
as the conditions do not differ.

It is to be noted that the definitions of X and O
given in § 3.2 hold also in the case of non-stationary
states. As an example, as the parameter Y3 changes from
the point G in the stable region of Fig. 3.2 to point C
in the limit cycle region, yl(t)’(ﬁl(t) and a3(t) vary in
time as shown in Fig. 3.13.

4
T3ix10%)

-10 I3
o3 6&1-m[

(x10') Y1

10 (x20%)
0rF 21 10T

o ok oL | 1 1 . |
: 0 50 100 150 200

TIME (SEC)

v

Fig. 3.13 Temporal behavior of yl(t), o..(t) and a3(t). Y3

11
changes from G point to C point in Fig. 3.2
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The mean value yl(t) oscillates and slowly approaches the
limit cycle. The change of Oll(t) is faster than that of
Yl(t)" It is of particular interest to see that the
irreversible circulation of fluctuation a3(t) changes most
rapidly, on account of its embodying the effect of the
time derivative in the expression (3.23).

In the usual operation of a power reactor, there are
not only instrinsic fluctuations due to various cases but
also extrinsic fluctuations generated by external random
phenomena. It is thus indispensable to classify power
reactor states according to the statistical nature of the
fluctuations. A transparent method is also necessary in
the study of reactor noise phenomena. Based on these
considerations, we have treated the power reactor
stochastically, using the system size expansion method,
with the aim of obtaining clear and useful results both
in mathematical and physical aspects. Our particular
intention has been to gain a detailed insight into power
reactor noise phenomena by examining the information
contained in ©f (rotational information on fluctuations)
for the "normal" case.

Further study on the characteristic behavior of power
reactors is called for, to be undertaken from the view-
point not only of reactor noise but also of reactor safety
and diagnosis. The present study has been based on a
number of assumptions and simplifications which have result-
ed in neglect of many factors that may be significant in
the very complicated behavior of actual reactors. A
number of corrections to our formalism should become
necessary from these considerations. This will be the
subject of subseguent studies.
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Nomenclature

Total number of neutrons

Total energy content in fuel region
Total energy contant in coolant region
Fuel temperature (°C)

Coolant temperature (°C)

Neutron source (sec 1)

Average fission reaction rate (sec_l)

Average capture reaction rate (sec—l)

Fission reaction rate in fuel region (sec

1

)

Capture reaction rate in fuel region (sec—l)

Capture reaction rate in coolant region
(sec™ 1)

Probability of v neutrons to be born in a
fission

Fission energy (MeV)

Average power level (kW)

Temperature coefficients defined in Eq.
(3.52) (°c™1)

Mean neutron lifetime (sec)
Reactivity

Volume of reactor (cm3)

Volume of fuel region (cm3)

Volume of coolant region (cm3)

Heat Capacity of coolant at constant volume

(kcal/g®°C)
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Cv : Heat capacity of coolant at constant volume
(kcal/g°cC)

Pe : Mass density of fuel (g/cm3)

P : Mass density of coolant.(g/cm3)

ht=hO/C£prf: Heat transfer coefficient (sec 1)

h0=11.7(6g—62)0'33: Heat transfer coefficient (kW/°C)

62—62=P/h0 : Temperature difference of fuel and coolant
(°C)

Xr=2v/H : Heat removal coefficient of coolant (sec_l)

V=l.l6PO'25 : Coolant velocity (cm/sec)

H : Channel height (cm)

n:Ciprf/Cspch

e%n : Inlet temperature of coolant (°C)

?;;=0§%vnpf(v)

62=Y§q/cgpcvc



APPENDIX

The irreversible circulation of fluctuation ¢f exists
even in a linear system and is nonvanishing also in a
steady state. The o is characteristic in the system
having more than two degrees of freedom. Thus, the o is
a useful concept even in a simple zero power reactor model
with a single delayed neutron group. The transition

probability is

W(N, C, 4N, 4C) = SEAM Sac.o * N C daw,1 dac, -1

+2 n P(Vo:V)gANP. 1 04c, v, (A.1)
u=ouo
with the notation:
N : number of neutrons [=0n]
C : number of precursors [=Qc]
S : neutron source [=Qs]
A : decay constant of precursor
p(vo,vl) : probability of Vo neutrons and V, precursors
emitted in an absorption
2 : neutron lifetime.

As the equation is linear in this case,

act&) “K, or  cr=Ke¥.

From c-expansion, we obtain for the mean and the variance

equations
d S
WRWE
d—%ﬁ(t):KBthKBG(tHD (A.3)

respectively, where

K=| SRR, D Bkyp=2kpt 1)+AC+S, 7 (kpi= ki) A
B~ ’ ) 7
(%Th ' A %(kpd“kd)"kc R +AC
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with the notation;

k=<v>=;v0>+<vl> kd=<vl>=8<v> kp <v0;
k2p=Vo> kpa=Vo¥2” kaa=<vy>.
The steady state solutions of mean and variance equations
are
nS= sl CS = sBk
-k (I=k) >

|
(1-R+M )R- k)= (1=R) C g
du:f” 2(1=R)(I=ky +>J) ]7'
_ ka(ky— k)+(l~;q)c
6'2 62*' 201-k)(1-kp+t L) n’
[lgmk.« ki (ka- k)+<¢—k)k.;c] hs
20K (I~ ket D) J XL

! — — — — =
where c¢ —(k2 k) (k2p kp)and k, k2p+2kpd+k2d‘ After
straightforward calculation, we obtain
3

S_ n
=TI k,mn)[k ~RI(ky=2 L)+ (kzp=Fp) M]“’k’pd (A.4)
Next, we examine the stability of this system, using
Eg. (3.9), namely,

d [N In
dt\ge/” B\8c¢/’
and the characteristic equation is

'-l}“-{e))Z"' %B;ZO‘

When the reactor approaches critical state, k—>1, only

23+ (a4

soft mode instability occurs in this system. This result
also corresponds to the limiting case of three component
system mentioned in this chapter when the power decreases

to zero as in Fig. 3.8.
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CHAPTER 4

Irreversible Circulation as a New Parameter

for Time Series Analysis
§4.1 Introduction

We have treated & as a new variable in the systenm

3(1)(2). However, the

size expansion method in Chap.
usefulness of & is not restricted to the normal case of
this formalism. Here, we will propose to adopt the
irreversible circulation of fluctuation ® as a new
variable in cases of general fields(z)(3). Therefore, it
is the purpose of this chapter to find out to what extent
we can discuss general properties of & directly derived
from noise experimental data as independently of modeling
and assumption about the process as possible.

When we analyze a stationary noise-time-series along

this line(4)(5)

, the correlation matrix Cij(t) and/or the
power spectraldensity matrix Pij(m) are the usual gquanti-
ties invoked for the statistical characterization of the
process. However, in practice, these guantities do not
necessarily lead to a direct understanding or a concise
specification of the physical situation. 1In this case
lower order moments will often be rather convenient

in characterizing the process than the whole

spectrum. The variance matrix is a typical example. 1In
this chapter we will propose a new statistical quantity
"circulation" o as a necessary complement to the
variance ¢ in characterizing any multi-dimensional time
series. We will also discuss that the property of & is
less sensitive to filter effect in the low frequency
region than ¢@. Finally, the property of &4 that we have
mentioned in this thesis will be summarized at the end

of this chapter.



(3)

§4.2 Integral Index for "Noise"

Suppose the system under consideration is described
by a set of variables :£={xi} {i=1,2,...,N), then the
statistical properties of a stationary process in the
space of X is characterized by the correlation matrix

which is defined by

N

£Mn N 2: XL(k)X (k+n), (discrete sampling) (4.1)
or by

Lmn o < Xi t) X; (1o +t) Ci (t)

T—)ooT[df( ( ) }( > td. (4!2)

or its Fourier transform, i.e. the power spectral density

()= 4["" -iwt
c,t}m_l—f_molwe Pijw), (4.3)
or
- dtete, it
P«‘;‘“’)‘Lf C Cept), (4.4)
Let us split the correlation function into two parts
Nt) (a)
CeJ(t)= cl-)- (t) + Ci}(t)) (4.5)
where

(S)
Cij m—zzl{d,;(t.)x)%tﬁt)) +<x¢-(t.)x)-(to-t)>} (symmetric part)
and

|
Cg“’— #}(Q)X(QFU> (XJ%)X(R “>}. (anti-symmetric part).

In terms of the power spectral density

Pc)‘“”)—P (w)—-P tw)nP s (4.6)

where

! ’ . twt ()
P().M):P“J (_w):f:mdt = CC} (4, (even function of )

" cwt
Pq“"):'P ~w)= f at e* C (t), (odd function of w),

and ¥ indlcates the complex conjugate. Conversely,
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oo P

m) Wt _,,
S O=or f dw e Py ). (4.8)

To obtain an integral index one may put t=0 in these
relations. It is well known that the relation (4.7) yields
the variance (¢, i.e.
(s) | ’
L= (0) = f WwprE-(w) = ca,
Iy = Ciyg o) = n_nd R o (4.9)
The corresponding procedure on the relation (4.8) leads to
@)

Ct; (0)=0

however, a non-vanishing index is obtained when we put

t=0 after differentiation, i.e.
00
] ) ({4 _ .
o(i}‘ —C:}(O) ;t[_mdwa[J(w)_—dJ°' (4.10)

This is the guantity by which we propose to complement the
information given by (¢ in characterizing the random
process in a concise way. For the mathematical property
of ©of, we can also obtain the following short time

expansion of correlation matrix
C(at) = (7((0) X (at))
= C*®(at) + C®(at)

=0 + o((at)?) + tat + o(w@t)), (4.11)

Hence, the ¢ is the first differential coefficient of
correlation matrix. It should be pointed out that the
variance is not sufficient to characterize a multi-
dimensional random process. This is because a distribution
may have any amount of internal circulation even if the
spread is uniquely characterized by the variance.

The quantity (>4 may be written as

<[Jc x])- (<II> <>(I>); (4.12)
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and it stands for the average angular momentum or the areal
velocity of the distribution. Therefore it is clear that
the quantity © is necessary in characterizing a distribu-
tion together with the varince (. The pair of quantities
J and o may serve as minimum necessary topological indices
in the classification of time series and will be essentialin
data retr%eval. In relation to 0 5 a generalized angular
velocity eij may also be defined, e.g. by
éc} =/3§_%’ (4.13)
2

where
S - Si¢ Oy
2 = e
e G
For the particular case in which the situation may be
approximated by a two dimensional system,éij acquires a

concrete meaning.

In view of the relation (4.10) the quantity o is
expected less sensitive to low frequency modification of
the bare spectrum either by a weak non-stationarity or by
a low frequency cut filter effect. In the next section,
we will discuss this in detail by describing a concrete

example.

§4.3 An Example

We study a nuclear reactor noise phenomenon as an
example of observable time series(s)(7). As the direct
analysis of the experimental data using the new concept

is still under way, we here demonstrate the use of our
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(8)~-(10)
(11)

proposal on a theoretical model adopted by Morishima
in order to describe the data obtained by Utsuro et al.
for the Kyoto Unversity Reactor (KUR). [cf. We have already
mentioned the simplified Morishima’s model of this reactor
in Chap. 3.] The reactor which has a linear feedback
mechanism is described by five variables (N, C, F, M, Q),
i.e. the total number of neutron N, that of precursors C,
the fuel energy F, the coolant energy M and the coolant
flow rate Q. The network of the reaction is shown in

Fig. 4.1.

(CAPTURE)

N\

Fig. 4.1 Reactor network with five components

N, C, F, M and Q

When the reactor approaches a critical state, PNN(w) in

the low frequencyregion rises up in proportion to its power
as seen in Fig. 4.2. This event results from energy or
temperature fluctuations in fuel and coolant regions. A
reactor also has the property of the integral action or

the reset action. We calculate the imaginary part of
PNM(m) in Fig. 4.3 since N and M are easily measured among

five components.
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Sample data obtained from a system are usually
filtered prior to data processing. Here we used a
filter having a 12 db per octave rolloff outsides the
ranges from 4.8828x107° to 10° rad/sec in order to get
the theoretical estimate. The low cut filter has not a
little influence on PNN or oun* On the other hand, we
can conclude that o is less sensitive to low cut filter
effects since ImP(w) is an odd function of w and € is
composed of ImP(w) multiplied by w in Eg. (4.10). This
is shown by the broken line of the filtered w thNM(w)

in Fig. 4.3.

§4.4 Discussion

The power spectral density and/or the correlation
function are the usual statistical quantities observed
when we treat "noise" or time series. In extracting
information from the power spectral density, the coherence
function y?.(w)=|P..(w)lz/[P..(w),P..(w)], and the phase

. ij ij_4 ii 33 o
function eij(w)= tan [Pia(w)/Pij(w)] are useful quantities
for a fixed frequency. In contrast, the variance and the
irreversible circulation of fluctuation are the integral
indices of power spectral density. The latter may also
be obtained from finite time observation. In this sense,
these three kinds of quantity are complementary to one
another in the noise analysis.

We have discussed the general properties of & without
referring to a mechanism in §4.2. On the other hand, if

the system is described by a linear Langevin equation, we
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can find out another eminent property of & in its frame-
work. Namely, we will discuss that some of the integral
indices derived from power spectral density in this
system will have no meaning since they are divergent
except 0 and Ol: Such moments are meaningless in the
Markovian process as will be proved below(z).

Suppose a multi-dimensional stochastic differential

. . . . . 2
equation with random forces is given in the form(1 )

ditx-_—p(x +F, (4.14)

where

(X, Fe)=0, {F, F,>=D3§(t-t) and (F.)=0.

This linear approximation is not too restricted to the
applicability of the formalism, since the amplitude of
fluctuations is usually small as mentioned in Chaps. 2
and 3.

The power spectral density is given by the Fourier

(13)

trans form , 1.e.,

oe (wt
Pwy=[ dte ™" (axw)) [cf. (3.31)]
-00

G D Griw,  Glim=(in-K)T (419

where the tilder ~ denotes the transposed matrix. In
a stable system, P(w) has no singularity as seen from
Eg. (4.15). The possibility of divergence of the indices

occurs in the process of integration. Hence, let us

examine the w-dependence of P(w). 1In Eg. (4-15),
: - ]
(w-K) = ———- . [cofactor matrix]
) det (iW-K)
The element of cofactor matrix is of the following type:
. N-t . A N=2
(tw) +'AN.z(‘w) oo, (Ai:constant)
Namely,
(iw)y oo

(iw-K ];}.‘ ~

(lw)'\’.f e
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Then, we obtain

2"'2-+- RS
RC P(w) ~ sz _,., PR
A2~-3 wJN-3+ e
ImP(w) ~ wiN 5 ... ! (4.16)

and

(for large

oo )
o N[mRe P dw “i;ﬁ?dw =[finite]

w (for large w) (4.17)
O(O<I WIMP‘w) dw - (L_zdw=[flnlte] .
s

The other integral indices are zero or divergent. For

example,
b (for large w)
[ w*Re Pw) dw —> |dwx[divergent]
o (for large w) (4.18)
3 g
f W Im P(w) dw —> | dw < [divergent] ,

-0
No integral index except ¢ and € exists in a stable
macroscopic system. Consequently, we see that ( and ¢«
are only useful indices for patterns of power spectral
density in a stable state.

If the random force [ (t) of Eq. (4.14) is Gaussian
along the spirit of the central limit theorem, the Langevin
equation (4.14) is reduced to the linear Fokker-Planck
equation (3.7) of a steady state in Chap. 3. Hence, the
new variable © is applicable to the Langevin technique
in the time series analysis.

Finally, let us summarize the usefulness of the
irreversible circulation of fluctuation ©{ which has been
clarified in this thesis.

[1] o is an indispensable variable, as a kind of general-
ized angular momentum, for analyzing main features of non-
deterministic systems just as the variance is for a
measure of the width of probability distribution(3).

[2] © is useful as an index for the hard or soft mode
instability, especially in a system having many degrees

(1)

of freedom It is also related to the cyclic balance
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in a non-equilibrium situation of an open system(l4)_

[3] A is related to the asymmetry of cross-correlation
functions in a steady state(z).
[4] & and  are the integral indices of power spectral
density in a stable system(l)(z). Namely, they are
useful for indices of classification of patterns in the
experimental data and serve as reactor state indices in
reactor diagonosis when the information of reactor
stability is needed(3).
[5] o and O are applicable in a case of non-stationary
states under the Markovian assumption(l).
[6] Possible ways of representation of an observable as
Fig. 3.12 of Chap. 3 are useful for processing experi-
mental data with more confidence(z).

We can conclude that @ serves as an integral index
for classification of time series not only in the reactor
noise analysis but also in the time series analysis in

general.
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CHAPTER 5

Hidden State Variables and a Non-Markovian

Formulation of Reactor Noise
§5.1 Introduction

A number of articles have recently been devoted to a
better understanding of complicated fluctuation phenomena
in power reactor(l)_(4). A unified and rational theory
can be provided if one finds, and manipulates, a sufficient
number of state variables so that our system is described
by a set of coupled Markovian Langevin equations. It is,
however, difficult in some situation to find all the state
variables necessary for the Markovian description; one is
usually confronted with the occurrence of some hidden (or
unknown) variables. This may occur in cases for power
reactors, and makes it necessary to introduce phenomenol-
ogical guantities such as an external noise source to
understand the actually observed experimental results.
Searches for hidden state variables and the physical
interpretation of the phenomenological external noise
source are important tasks in this approach.

As an alternative approach, one may use non-Markovian
Langevin equations only for the known variables. This is
based on the well-known fact that a contraction of
information, i.e., a reduction of the number of the state
variables, introduces the non-Markovian character into

(3)

the new description

(6) (7) (1)

Attempts have been made by

and recently by Morishima(s).
(9) (10)

Saito In accordance

with the theory of Brownian motion , Saito employed

the following equation:

t /7
adem:-LcBu—t')fu'ut + Qo +R(1), (5.1)

for a set of the fluctuations of state variables, f==

col(fl,...,fn). Here R (t) denotes random stochastic
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forces and @ (t) represents deterministic forces applied
externally. The vector § represents the fluctuations of
the physical gquantities, so that (§)>= 0, where (')
denotes the ensemble average. Since the magnitudes of the
fluctuations are usually small, we assume that f obeys a
linear equation like Eq. (5.1). Saito examined that Eq.
(5.1) leads to an i?g?f§?0t result if one assumes the

causality condition
<R“—o+t)"‘(to)>=0 , (t>0).

Morishima introduced a course-graining operator P to

reduce the number of state variables(s).

The resulting
equation for [>f(t) is, however, identical with Eq. (5.1).
Contrary to Saito’s conclusion, his formulation needs

the causality condition.

The purpose of this chapter is to formulate the
non-Markovian effect due to some hidden variables =
col(gl,...,gm), with the hope of resolving the above-
mentioned confusion.

In §§5.2, 5.3 and 5.4, a non-Markovian Langevin equa-
tion is derived, a formula for the power spectral density
is obtained, and a new fluctuation-dissipation theorem
for R(t) and RB(t) is found. 1In §5.5, a simple example
is treated. Finally, some concluding remarks are

included in §5.6.
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§5.2 Non-Markoyian Langevin Equation

Let us begin by assuming that a sufficient number of
physical quantities £:=COl(fl""’fn’gl""’gm) can be
chosen so that any of the correlation times between the
n+m random forces in Eg. (5.1) is short compared with the

time resolution of our experimental observation. The

fluctuation-dissipation theorem(g) then gives
B(t-t)= §(t-t1B, (5.2)
and in the case of no external force Eg. (5.1l) leads to
a{—fc(t):—BL(t)’ch(“- (5.3)
Such a set of physical quantities is referred to as a

complete set of state variables(s).

In thig chapter,
we shall take no account of the non-Markovian effect
described by Eg. (5.1). The non-Markovian effect to be
discussed here is the one due to hidden variables, i.e.,
due to incompleteness in our knowledge of all the state
variables.

In the light of Eg. (5.3) we may say that the problem
has been solved already; the non-Markovian formulation is
unnecessary in principle. However, the complete set {b
consists of many physical quantities in general, and may
involve some unknown variables, particularly in the case
of power reactors. It is therefore desirable the
Markovian process of the complete set of state variables
in terms of a less number of known variables only.

There is no essential difficulty in such a formula-
tion; one has only to eliminate the unknown variables &

from the coupled equations (5.3), which we now write

d AL B, . B.\/ft) X (1)

——

= = +
dt\ g B,,. B,,/\8® Y (t)

where Bll’ B12, 821 and B

(5.4)

29 are n¥xn,nxm, mxn and mxm

matrices, respectively, and X (t) and Y (t) consist of
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random forces for # and &, respectively. We want to
discuss the time-correlation matrix <{flte1)f(t)> between the
known variables. At the initial time t, of the correla-
tion, the unknown physical quantities $(t,) cannot be
considered vanishing, because these gquantities, if they
are appreciable, must have lifetimes greater than the
time resolution of our experimental observation. With
this initial condition, one eliminates &(t) from Eg. (5.4)

to find the following equation:
t ’
a_%_’_(t)z-( B(t-t’)"(t')df +Z(t-f0)9 (to) + F (1), (5.5)
to

where

Bt = 3B, +Zt) By, (5.6)

-tB
Zt=-B,e % (5.7)

1
Fy= Xt +ft 7 (t-1) Yty dt’, (5.8)

Equation (5.5) is what we were looking for, and one of the
main results of this chapter. It differs from the well
known equation (5.1) by the additional stochastic term

Z (t-%) & (te) , which describes the effect on f (t) of the
decays of the hidden physical quantities. The new terms
contains the stochastic quantities 84t°), and cannot be
regarded as the deterministic term Q(t) in Eg. (5.1).
Equation (5.5) is, therefore, substantially new in spite
of its similarity in form to Eg. (5.1)

The causality condition
Fi+rt)y f(t)p=0,  (t>0) (5.9)

obviously holds true. Equation (5.5) is identical in form
with Eg. (5.1), if one puts in Eg. (5.5)

Rtt)y=Zt-t) to) +F(t), (5.10)

The random force thus defined, however, violates the

causality condition because
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<F () F(t)D>F O

in general*. When the variables & (t) does not couple
with f£(t), i.e., when B,,=0, the set f§(t) is complete.
Then, Z{t)=0 , and Eg. (5.5) reduces to Eg. (5.3) for
the known variables f(t). In this sense, Eg. (5.5) is a
generalization of Eg. (5.3) to the case where there are
some hidden variables. It may also be said that Eqg.
(5.5) is equivalent to Eg. (5.3) for the known and hidden
variables fé(t), as 1is obvious from the derivation of
Eq. (5.5).

It is well known in statistical mechanics that hidden
variables give rise to th?5?on—Markovian effect on the

motion of known variables Equation (5.5) exhibits

an example of such a general rule.

- — " ————— e —— —— — ————" — — " T T —— . — e

* In the special case of (8{h)fﬁd>=0, the causality
condition {R(tott)f(ta))=0is satisfied. It is therefore
seen that the usual non-Markovian formalism based on
Eg. (5.1) does involve the assumption of {(§(t)f(t)) =0,
i. e., the unknown variables & are orthogonal to §.
These unknown variables & can be made orthogonal to f
by the transformation 8'=8-—(8f) (fff“} . The usual

non-Markovian formalism is then applicable. This method

is, however, inconvenient for finding hidden physical
quantities &.
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§5.3 Time Correlations and Their Power Spectra

By virtue of the causality condition (5.9), one
readily finds from Eg. (5.5) the following kinetic

equation:
d CFitorty Flt )=~ ftB(r-t’) <f(tett) Fita)y dt”
at ¢ ° )
+ 7)) <G fotad

for the time-correlation matrix (f(%*t)f(%)7. Hereafter

(5.11)

we assume that our system is in a stationary state. The
Fourier-Laplace transform of Eqg. (5.11) leads to the power

spectral density matrix
Pw) = J;kc'im <f(t°+t)fcto)>dt + R, C.
= [+ B} {<Hy +Zewg gy} + h 0, (5:12)
where <F§>=(Fit)§(t)) , etc., B(iw) and Z(iw) are the

Fourier-Laplace transform of B (t) and Z (t), respectively,
and h.c. stands for the Hermitian conjugate of the
preceding matrix. When the hidden variables are discarded,
Z(W)=0 and B(w)= By. The power spectral density (5.12)
then reduces to the well-known one in the Markovian

formalism
N - . =3 —'
T =[iw+B,)" P [-w+B,]), (5.13)

where B, is the transpose of By and

§F=B.,<H7+<f £ g.. . (5.14)
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§5.4 Fluctuation-Dissipation Theorem

In the Markovian equation (5.3), the friction B and
the random force R, satisfy a general relation, called
the second fluctuation-dissipation theorem(g), Since our
non-Markovian equation (5.5) is equivalent to Eg. (5.3),
one expects that there is also a definite relationship
between B (t) and [ (t) involved in Eq. (5.5). For
convenience, we consider instead of FI(t) the random force
R (t) defined by Eg. (5.10), and as seen in the Appendix,

the following fluctuation-dissipation theorem is obtained:
) o _{wt
Feiw=[ e IR DR (1) dt
0
=Bl + 2w CwB,I-<F §)

(5.15)
Comparing this with the fluctuation-dissipation theorem
for Eg. (5.1)

[T W Rt tiR M dt =B Hf > = < F>, (5.16)

or that for Eq. (5.3),

f:oéi‘im<Rc(to+t)Rc(to)>dt= Bt fy-<ft0o (5.17)

one sees that the second term on the right-hand side of
Eg. (5.15) is characteristic to the present formalism.
The appearence of this term reflects the violation of the
causality condition, <{ R{tett) Fit)d % 0.

In the following argument, it is useful to express
the power spectral density (5.12) in terms of the power
spectrum of the random force R (t),

Fow) = P (iw) + 4. C.
= {5(1'w)<ff)+2(iw)(9 Fw+By)} . € (5.18)

After a little manipulation, Eq. (5.12) is rewritten as

§(w)=[iw+B(iw)]_'A‘W’f‘fw+g(‘fw)]_‘ ; (5.19)
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Aw =P w)+Zw) <G §>B, Z-w) + L. C.
(5.20)
Equation (5.19) is the most general expression of the power

spectral density, and a useful version of the result

P ) =[iwrB) (RRO[-WtB]™

based on Eg. (5.3). If the hidden variables are neglected,
Egs. (5.19) and (5.20) reduce to Egs. (5.13) and (5.14),

respectively.

§5.5 Application to a Zero Power Reactor with

Delayed Neutrons

As a simple illustration of the present formalism,
let us consider the effect of delayed neutrons. The
density fluctuations of total neutrons, JN(t)=NI)—<NI(t)>, and
that of the precursors, (C{t)xC(t)—<C()), are assumed to
constitute a complete set of the state variables |[cf.
Appendix of Chap.3]. Let us treat {§C(t) as a hidden

variable. Equations (5.6) and (5.7) are written as

Bit) = o Slt)—é—‘gZH), (5.21)

£

and

Z(t)=>\6')‘t, (5.22)

where df:%.{r—h(hﬁ)} is the decay constant of the prompt
neutrons, A that of the precursors, 2 the neutron life-

time, k the multiplication factor and B the mean fraction
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of the delayed neutrons. Equation (5.5) thus becomes
B t — -1 7 4
‘dt—SN(t)=‘O(P6NH)+>\Tk£ e MY SN dt
0
e MR g R, (5.23)

The term . )\eXP[-Mf-fo)] §C(t;) describes the decay rate of
the initial precursors. The power spectral density of

the neutrons is given from Eg. (5.19) by

3 W) Atw)
|uw+13uw)| (5.24)
where
. ABR
BUWI= & Fweay
2
- ARBRACH
L (GW+X) (- W)
with
8R
§RM={(°LF I()L‘wm)(‘m)'* Twex CICIN? (_‘w*d’)} ¢ ¢
This result, of cource, coincides with that(7) of the

Markovian formalism with the state variables ;f=col(6N,6C),
i.e., the (1,1)'th element of

((W+R )" D [-iw+ B)

-1

where
D=pB<fi>+dHB,
and
B[ 5 ).
-8k,

The non-Markovian treatment of this problem has been
examined by Saito(7), and he pointed out that Eg. (5.1)
leads to an incorrect result because of the violation of
the causality. The present formalism is free from this
difficulty, since it correctly takes care of the non-

causality.
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§5.6 Concluding Remarks

On the basis of the assumption that there exists a
complete set of the state variables, we have derived the
non-Markovian Langevin equation (5.5) for an incomplete
set of state variables. It has been shown that the
causality condition and the fluctuation-dissipation
theorem do not hold in the usual sense of the non-Markovian
stochastic theory. Equation (5.19) has been given for the
power spectral density.

If we know all the physical quantities that constitute
a complete set of state variables, the present formalism
reduces to the usual approach based on the Markovian equa-
tion (5.3). Our formalism will, therefore, be most useful
when we want to find out unknown state variables from
experimental results.

It should be mentioned that the present formalism is
(8). If his
formalism is applied to the present case, his operator P

a specialization of Morishima’s attempt

is given by the projection operator
(V.0
0,0/’

where U is the nxn unit matrix so that

7(a)=(o)

The term Z(t-to) Fito) in Eq. (5.5), however, is missing
in his formalism.

Although Eq. (5.5) has been derived from the phenom-
enological Markovian equation (5.3), the most ra%ig?al

to

the case with some hidden variables. This approach will

basis will be given by applying Mori’s formalism

clarify the assumption underlying Egqg. (5.3), i.e., the
validity of the Markovian description with a full set of
state variables.

The applicability of the present formalism is not
restricted to the analysis of the power reactor noises.
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The fluctuation phenomena are one of the important subjects
in physics and engineering. For example, the time correla-
tion of the atomic density fluctuations plays a fundamental
role in slow neutron scattering theory. On the basis of

(10)

Mori’s Langevin type equation , the density fluctuation

of classical liquids has been analyzed by Akcasu et al.(l2)
It seems quite likely that in liquids there are some hidden
quasi-particles associated with collective motions of the
atoms. Hence, the new term Z(t-t) & (1) in our Langevin
equation (5.5) seems to give an important contribution to

the cross sections of liquids.

APPENDIX

Derivation of Eqg. (5.15)
To find the relation between R (t) and R (t), we

proceed in a way quite similar to that in the proof of the
fluctuation-dissipation theorem (21) of Ref. (9). Equation
(5.5) gives

. £ N b
R(t°+t\=f(to+t)+B“f(t,+t)+LZl‘(-f)Bz|f‘t”t) t, (B.1)

With the aid of the causality condition (5.9), one gets
(Rito+)Rita)) = (Fltott) fita))
+ftB(t—t')Gtmt’){(to)>dt'+ it <glfta) By, (B.2)
(¢}

The Fourier-Laplace transform of Eq. (B.2) is carried out
by making use of Eq. (5.12), the fact that <fito+t) fita)—
<f(n+h><i(n))==0. (t»>w) , and the stationary condition
<f(nff)iln)>=-—<ffn+t)fﬁﬂ> . One thus arrives at the
fluctuation-dissipation theorem (5.15).
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CHAPTER 6
Summary and Conculsions

In this thesis, mainly using the system size expan-
sion method, we have developed the reactor noise theory
from the viewpoint that the reactor noise is an example
of non-linear non-equilibrium statistical physics.

We have reviewed in Chap. 1 the conventional analyses
of reactor noise and also outlined the physical basis to
study reactor noise phenomena.

In Chap. 2, we have substantiated the assumption of
Gaussian distribution of the number of neutrons in the
zero power reactor, owing to the macroscopic nature of the
system size. We have also applied our method to the non-
linear Langevin formalism which was obscurely used in the
reactor noise, and pointed out the importance of assumption
of the normal case in order to classify states of system
in detail.

In the normal case of our formalism, we have intro-
duced the irreversible circulation of fluctuation & as a
new variable for the analysis of reactor noise as in
Chaps. 3 and 4. The o/ has the information of the rota-
tional freedom of fluctuations, and also serves to be the
integral index for power spectral density in conjunction
with the variance. We have emphasized that large effects
of ({ are expected not only in the reactor noise analysis
but also in the time series analysis. To show the
effectiveness of ©{, we have studied the theoretical model
of the KUR type of reactor described by the three
components. In this analysis, we have pointed out that
the & is useful as an index to specify the type of
instability (soft-mode or hard-mode). In many physically
interesting examples as well as the reactor noise, there
appears a stable limit cycle beyound the hard mode insta-

bility. 1In this case, the limt cycle may be interpreted
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as a macroscopic manifestation of the circulation which is
inherent in the fluctuations around the steady state below
threshold. Namely, we have shown that in this case the
fluctuations can be utilized as "forerunner phenomena" to
foretell instability through appropriate information
processing. We have also suggested that the reactor noise
theory should be formulated from the viewpoint of general-
ized phase transition phenomena, in order to make active
use of analogies with theories or methods developed in many
other related fields and to get unified point of view.

In Chap. 5, we have made clear that the contraction
of information by a reduction of hidden variables intro-
duces the non-Markovian character into the description of
fluctuations. This is only the first step of the trial to
study the information contained in fluctuations and the
guality change of information through a general contraction
of information. Therefore, it is necessary to study the
reactor noise from this "interscience" point of view.

The author hopes that the thesis stands as a bridge
between the reactor noise analysis and the other related
fields, especially statistical physics, time series
analysis and information processing etc.

The present study in this thesis has been based on a
number of assumptions and simplifications, which have
resulted in neglect of many factors that may be important
in the complicated phenomena of actual power reactors.
Further study on the reactor noise analysis is called for,
in proportion to scale up of reactor power plant, as
follows; for example,

(1) generalization to space-dependent problems

(2). development of system analysis such as multivariate
analysis to treat a complex system

(3) advancement of pattern recognition technique for
diagnosis of anomalies by using actual data.

These are still remained as future problems of reactor

noise analysis.
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