<table>
<thead>
<tr>
<th>Title</th>
<th>Clinical Evaluation of Field within a Field Technique in Radiotherapy—Preliminary Report—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>大川, 智彦; 喜多, みどり; 後藤, 真喜子; 池田, 道雄</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 47(4) P.602-P.605</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-04-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/20578</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Clinical Evaluation of Field within a Field Technique in Radiotherapy
—Preliminary Report—

Tomohiko Okawa, Midori Kita, Makiko Goto and Michio Ikeda
Division of Clinical Oncology, Department of Radiotherapy, Tokyo Women's Medical College

Research Code No.: 600

Key Words: Field within a field, Shrinking field, Radiotherapy

Field within a Field (F-f) 法の有用性に関する臨床的研究
東京女子医科大学放射線科
大川 智彦 喜多みどり 後藤真喜子 池田 道雄
（昭和61年7月14日受付）
（昭和61年10月7日最終原稿受付）

放射線治療における空間的線量分布は，organ at risk をさけ target volume に充分な線量を出
来るだけ均等に照射するように計画される。われ
われは、治療期間を延長することなく，腫瘍の早
期縮小による症状の早期緩解を目的として，Field
within a field (F-f) 法を各種腫瘍に対し行ってき
た。これは，一定の照射野にて照射した後，照射
野を縮小する Shrinking (S) 法に比べ，照射と同
時に一定の照射野内に小さな照射野を設定するも
のである。
今回，頭頸部腫瘍および食道癌を中心に F-f 法
の有効性を検討した。F-f 法は，治療成績の向上お
よび患者の quality of life を考えるうえで有用で
ある。

Introduction

In the dose distribution, the radiation is planned to deliver as homogenous distribution of the target
volume as possible while avoiding any organs at risk. On occasion the irradiation field is shrunk field
(shrinking field (S-F) method) depending on the response to radiotherapy. If the indications are properly
selected, the field-within-a-field (F-f) method can be employed to obtain early regression of tumor within the
target volume from the beginning of treatment, without changing the overall time. In other words, this
method is intended to relieve symptoms rapidly and improve the local control rate as to give a large dose to
the special target area in short overall time.

While the authors perform this method in a variety of malignancies this report primarily concerns its
clinical effectiveness in cases of cancer of the head and neck and the esophagus.

Materials and Method

The F-f method was performed for curative treatment of 53 cases of head and neck cancer, and 35 cases
of cancer of the esophagus between 1975 and 1983. It was not applied randomly in comparison to the S-F
method and conventional homogenous irradiation.

At first, 180–200cGy was delivered in a single dose to the outer large field (F), followed immediately by
30–50cGy of the inner small field. This means that the inner small field (f) within the outer large field (F)
receives 220–250cGy on the single fraction. Concerning calculation of the inner small field it is necessary to
decide on a small as possible target volume. In general 10MV X or 60Co γ ray were employed. Treatment

(38)
was administered 5 days a week. In some cases of head and neck tumors, outer large field was irradiated with \(^{60}\text{Co}\), followed by treatment of the inner small field (i) by electron beam. The intended total dose was TDF: 99—110.

Evaluation of therapeutic effectiveness was performed according to the standards for evaluating solid tumors and the survival rate was calculated by the method of Kaplan and Meier\(^9\) while statistical significance was calculated by means of the chi-square and log-rank test\(^8\).

Results

1) **Head and Neck Carcinoma**

No difference was recognized between the groups of cases treated by F-f method and S-F method in terms of patient background factors such as age, sex, stage, performance status or histologic type. While there was no statistically significant difference \((p > 0.10)\), the F-f method showed good tumor response (Table 1a). The same tendency was observed in selected squamous cell carcinoma cases (Table 1b). Furthermore no difference was observed in terms of early or delayed side effects.

2) **Esophageal Carcinoma**

The F-f method was compared with the conventional homogeneous irradiation method in terms of male cases of esophageal cancer. While no statistically significant difference \((p > 0.10)\) was recognized in survival rate, a tendency for longer survival was shown by the F-f method. No difference in terms of side effects and complications were recognized (Table 2).

Discussion

There has been much discussion concerning the question of whether the times, dose and fractionation of radiotherapy performed at present are optimal or not, and there have been several reports on the effectiveness of hyperfractionation with 2—3 doses delivered in a day, or accelerated fractionation\(^9\—11\). These all utilize variations in reactivity to radiation in terms of tissue or cell.

The shrinking field (S-F) method has been adopted in order to change the dose distribution and thereby

Table 1 Comparison of Response Rate in Head & Neck Tumor between the Field-within-a-field Technique and the Shrinking Field Technique (1976—1983)

<table>
<thead>
<tr>
<th></th>
<th>F-f ((n=53))</th>
<th>S-F ((n=41))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>33(62%)</td>
<td>20(49%)</td>
</tr>
<tr>
<td>PR</td>
<td>16(30%)</td>
<td>20(49%)</td>
</tr>
<tr>
<td>NC</td>
<td>4(8%)</td>
<td>1(2%)</td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Comparison of Survival Rate in Male Esophageal Cancer between Field-within-a-field Technique and Conventional Homogenous Irradiation (1976—1983)

<table>
<thead>
<tr>
<th></th>
<th>F-f ((n=35))</th>
<th>CHI ((n=31))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Survival(month)*</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>2-year Survival Rate(%)</td>
<td>25.4</td>
<td>22.6</td>
</tr>
<tr>
<td>5-year Survival Rate(%)</td>
<td>10.7</td>
<td>8.1</td>
</tr>
</tbody>
</table>

F-f: Field within a field Technique
CHI: Conventional Homogenous Irradiation
*There was no significant difference in early and late effects.
reduce complications and improve local control. This involves follow-up irradiation of a smaller field after irradiation of a larger field following a certain period of time, which as a result involves extension of the period of irradiation. The F-i-f method involves simultaneous irradiation of both fields. This method makes it possible to increase the dosage of radiation delivered to the small area centered upon the tumor, without increasing the overall time necessary for radiotherapy.

In accelerated fractionation, the early reaction in the mucosa sometimes necessitates cessation. Thomas and Withers consider that when changing the dosage per treatment and delivering 2–3 doses per day, in terms of the late effects (early effects can be ignored) unless hyperfractionation of amounts less than 200 cGy conventional radiation is performed no therapeutic gain will be obtained. In the F-i-f method, while some degree of complications can be envisaged due to the increase in the inner small field per dose, because this can be targeted at the minimum field possible, such complications should not be serious. In other words the F-i-f method is aimed at relieving the patient from the main symptoms troubling him by rapidly improving local control, and it is important to plan the minimum necessary target volume of the inner small field. Also depending on the site of the lesion, it is important to employ electron beams in order to minimize the volume dose.

The authors have employed this method in the treatment of brain tumors, head and neck tumors and tumors of the gastrointestinal tract as well as cases of vena cava superior syndrome and tumors with neurological symptoms which have indication for emergency radiotherapy (Table 3). Further studies will be performed in order to obtain improved local control and minimize delayed reaction by combination of hyperfractionation and accelerated fractionation.

References

9) Fletcher, G.H.: Textbook of radiotherapy, 1980

