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Introduction.

This thesis is devoted to the study of some problems
concerning invariant states on C¥-algebras with group actions.
Though we have various objects to be studied in C¥*-dynamical
systems, the most important one among them is presumably
invariant states. The use of C¥-algebras themselves in
physics has been promoted by Segal, Haag and others.

The physical interpretation of the C¥-algebra is that it is
the algebra generated by '"the observables”". It is quite
common that, in many physical problems, there is a néturally
defined group acting on the system in question which keeps
invariant the system as a whole. 1In the correspoﬂding
C¥-version, we shall admit that a group acts as a group

of automorphisms on the C¥*¥-algebra. Then, it may be natural
to restrict our attention to the states which are invariant
under the group action, i.e., invariant states.

It is not too much to say that when we make the research
of invariant states, substantial discussions are centered
around the existence of invariant states such as KMS states,
or ground states, the extensions of invariant states on
an invariant C¥-subalgebra to the whole algebra preserving
the specific properties, or the equivalence between classes
of invariant states. We pay our attention mainly on these

subjects in this thesis.



This thesis consists of three chapters. We study
the invariant states on C¥-algebras with one-parameter
automorphism groups in chapters I and II, and those on C*-algebras
with actions by locally compact groups in chapter IIT.

Now we explain briefly the contents of each chapter.

In chapter I, we discuss how the ideal structure of
C¥-crossed product is related to the existence of ground
states.

Let (A, G, o) be a C¥*-dynamical system. Recently, the
ideal structure of the crossed product AXaG has attracted
considerable attention, particularly in the cases when G
is abelian; for when G dis abelian, spectral theory may be
applied with good effect (cf. [24, or 25]). 1In the case
when G is R, A is a UHF C*-algebra, and o is of product
type, Bratteli[6] proved that AXaG is not simple since A
admits a ground state for o; i.e., a state ¥ such that for
all x in A and y in Aa, the space of entire analytic
elements in A, the function f(t) = @ (xa,.(y)) extends to
be analytic in the upper hélf—plane and bounded there by
| x| | vy ||. Subsequently, Pedersen and Takai[26] extended
this result to the case when A and & are arbitrary (but
G = R). Our primary objective in this chapter is to prove that
the existence of a ground state is equivalent to the existence
of a proper ideal of the crossed product which is monoténely

increasing up to the whole algebra under the dual action.



In the last section, we shall generalize our results to
cover a certain C¥-dynamical system (A, G, a) where G is
an abelian, connected and compact group.

In chapter II, we discuss the equivalence between the
notions of passive states and spectrally passive states on
UHF C*-algebras. |

Let (A, R, o) be a C*¥-dynamical system. The notion of
"passive" states had been introduced by Pusz and Woronowicz[31].
It was derived from the second law of thermodynamics.

A convenient mathematical formulation is that a state ¢ of
a unital C¥-algebra A is passive if

-iP(u*d(u)) 2z O
for all unitary elements wu which belong to both the domain
D(8) of the infinitesimal generator ¢ of o and the
principal connected component of the unitary group of A.
KMS states with some positive inverse temperature and ground
states are passive. The converse is not true in genéral.
In fact, though any mixture of passive states is passive,
a non-trivial mixture of KMS states with different temperatures
is neither a KMS state nor a ground state.

Recently, De Cannieére[9] defined an o-invariant state ¢
of A to be spectrally passive if

@(x%x) = @(xx*)
for all x in Aa(—W, 0). Here Au(—w, 0) denotes the

spectral subspace of A corresponding to the open interval



(-, 0), which is defined to be the closed linear span of all
the elements of the form af(x) = ff(t)at(x) dt, where x is
in A, and f dis a function in Ll(R) whose inverse Fourier
transform has compact support in (=%, 0). Moreover, he showed
that ¢ 1is spectrally passive if and only if

-i¢(x8(x)) 2 0
for any self-adjoint element =x in D(8§). If ¢ 1is passive,
taking u = eitX and differentiating twice with respect to t,
it immediately follows that the above inequality holds. Thus
all passive states are spectrally passive. De Canniére then
asked whether all spectrally passive states were passive.
Later, Batty[3] gave a partial answer that for a group action
commuting with «, any G-central spectrally passive state is
passive. Here we remark that even in a full matrix algebra
there are spectrally passive states which are not G-central
for any G commuting with «a, However when A is a full
matrix algebra, passivity and spectral passivity are
equivalent, which is seen from a result of Lenard[21], and
this was pointed out by De Canniére.

Now we have a question whether passivity and spectral
passivity are equivalent on UHF C¥-algebras. In this chapter,
as a step toward this problem, we consider the case where
a UHF C¥*-algebra has a one-parameter automorphism group

generated by the closure of a commutative normal %*-derivation

of finite type (see Powers and Sakai[29], Sakai[35, 36, 37] for



the details).

In section 1, we show that every passive state is spectrally
passive for any one-parameter automorphism group on finite
dimensional C¥-algebras.

In section 2, we show that if § is a closed *—derivation
densely defined on a unital C¥*-algebra A, then eaéh unitary
element in both the domain of & and the connected component

of the identity in the unitary group of A has the form

ia ia ia
e Tl 2 L ... .. e T
for some self-adjoint elements 81, 895s0seesceas.say 1in the
domain of §. This result is used to show the main theorem in

the next section.

In section 3, we show the main theorem in this chapter.
That is, we show that if a UHF (C¥-algebra has a one-parameter
automorphism group generated by the closure of a commutative
normal *-derivation of finite type, then passivity and
spectral passivity are equivalent for such a C*-dynamical
system. This result is applicable to all one-dimensional
lattice systems with finite range interaction and one-dimensional
Ising model at arbitrary temparature.

In chapter III, we discuss the extensions of certain
invariant states, and observe how these extensions
characterize the C¥-dynamical systems.

Attempts to extend a factor state Y on a C¥-algebra B

to a factor state on a larger C¥-algebra A were first



partially accomplished by the use of the notion of weak
expectations for the GNS representation Ty, that is, linear
contractions P of A ‘into W?(B)" such that PIB = Typ.
The eventual solutions of the attempts[22, 27] were variants
of this method.

In the case when there is an action o of an amenable
group G on A leaving B dinvariant, an analogous problem
is to consider an a-invariant state ¥ of B which is
centrally ergodic in the sense that

Te(B)" N Ty(B)' N uy' = €1,

where (ﬂq, uv, Hp is the associated covariant representation
of (B, G, &), and to try to find an extension to a centrally
ergodic state of A. It was shown in [4] that this can be done
by the method of [1] if B is (semi)nuclear. The von Neumann
algebra theory developed in [22, 27] is not sufficient to
provide a general solution. A corollary from the positive
answer to this problem is that if A 1is separable and G-central
(and B 1is nuclear), then B 1is also G-central.

The purpose of this chapter is to clarify the covariant
situation. In section 1, we consider the problem lifted to
the C¥-crossed products. Let (A, G, 0) be a C*¥-dynamical
system, and let B be an a-invariant C*—subalgegra of A,
For a covariant representation (m, u, H) of B, the existence
of a weak expectgtion 6' of AxaG for thelrepresentation

TXxu (with respect to the subalgebra L'(B, G)) is shown to



be equivalent to the existence of a (covariant) completely
positive contraction Q of A into (m(B) U uG)" such that
Q}B = m. Such a contraction Q will be called to be
a covariant weak expectation.

In section 2, we show that, for an G-invariant state b g

on B, there are bijective correpondences between covariant weak

expectations Q of A dinto (Te(B) U ug)", weak expectations
A
Q of AXy,G 1into (ﬂ?(B) J u:)", certain a-invariant extensions

of ¥ to A, and certain (a ® 1)-invariant states of
A® (my,(B)u u¥)'.
max . ¥ G
In section 3, we show that if there is a covariant weak
expectation of A into ﬂ?(B)" for a centrally ergodic
state P, ¥ can extend to a centrally ergodic state on A.
In section 4, it is observed that, if A is G-central,
A
then Q and Q always exist (for each a-invariant state).
In section 5, we discuss G-abelianness of C¥-dynamical
system (A, G, a) with a compact group G. We show the
equivalence of G-abelianness of A, commutativity of the

fixed point algebra of A , and ergodicity of certain cléss

of invariant states.



Preliminaries and notations.

We shall summarize definitions and notations about some

objects in C¥-dynamical systems to be used in this thesis.

0.1. A C*-dynamical system is a triple (A, G, o) consisting
of a C¥*-algebra A, a locally compact group G, a continuous
homomorphism o of G dinto the automorphism group of A such

that G2t » ut(x) is continuous for each x din A,

0.2. Let (A, G, o) be a C¥-dynamical system. Then
a state Y on A 1is a~-invariant if ?(at(x)) = Y(x) for

all x in A and all t in G.

0.3. Let (A, G, ) be a C¥-dynamical system. Then
the C¥-crossed product AxaG for (A, G, a) 1is defined as
the enveloping C*—algebra of L'(A, G), the set of all
Bochner integrable A-valued functions on G equipped with

the following Banach *—algébra structure:

(xy)(t) = jG x(s)a_(y(s"1t)) ds,
x¥(t) = A(e) Lo (x(t71))*,
Ity = [ %o as,



where ds dis the left Haar measure of G and A(t) is
the associated modular function on G.
We consider the actons of A and G on Ax G given by
(ax)(t)
(Agx) ()

for all x in L!(A, G). We may embed A and G (or Ay)

ax(t) (a€lh),

x(s 1) (s€G),

into the multiplier algebra M(AxaG) of AXQG under these
actions.

We assume that G 1is a locally compact abelian group.
The dual action @ of o is defined on AXaG by the formula

&\Y<x><t> <t, vy >x(t),

where vy in G and x in LA, G), and where < t, Y >

denotes the value of Yy at t.

0.4. A covariant representation for (A, G, a) is a triple
{(m, u, H), where 7T 1is a (non-degenerate) representation of
A on a Hilbert space H, and u is a strongly continuous
unitary representation of G on H such that

ﬂ(ut(x)) = utﬂ(x)ug
for all x din A and all t din G,

Let Y be a state on A. Then there exists the cyclic
representation (mg, He, £€¢) of A with a cyclic vector &
such that (7e(x)Eg|&y) = ¥(x) for all x in A. If
¥ is a-invariant, a unitary representation u¥ is defined

by



ufr, (x)g, = m,(a, (x))E,
for all x in A and all t din G. Then we obtain
a covariant representation (ﬂv, u¥, H?, iw) for (A, G, a).
If (w, u, H) dis a covariant representation of
(A, G, o), there is a non-degenerate representation

(mxu, H) of Aqu such that
(mxu)(x) = J m(x(t))u, dt
G
for all x in L'(A, G). Moreover, the correspondence
(my, u, H) » (mXx u, H) gives a bijection onto the non-degenerate

representations of AXaG.

0.5. We denote by €, R, and Z the set of complex numbers,

the set of real numbers, and the set of integers respectively.



Chapter I. C¥*-dynamical systems with ground states.

Let (A, G, &)  be a C*¥-dynamical system. Recently, the
ideal structure of the crossed product AXaG has attracted
considerable attention, particularly in the cases when G
is abelian; for, when G is abelian, spectral theory may be
applied with good effect (cf. [24, or 25]). 1In the case
when G 1is R, A is a UHF C¥-algebra, and o 1is of product
type, Bratteli[6] proved that AX,G 1is not simple since A
admits a ground state for a; i.e., a state ¥ such that for
all x din A and y in A®, the space of entire analytic
elements in A, the function f£(t) = “P(xa (y)) extends to
be analytic in the upper half-plane and bounded there by
" X " “ y ”. Subsequently, Pedersen and Takai[26] extended
this result to the case when A and a are arbitrary (but
G = R). Our primary objective in this chapter is to prove that
the existence of a ground state is equivalent to the existence
of a proper ideal of the crossed product which is monotonely
increasing up to the whole algebra under the dual action.

In last section, we shall generalize our results to cover
certain C*¥-dynamical system (A, G, &) where G is an abelian,

connected and compact group.



I.1. 1Ideal structure of C¥-crossed products.

Let (A, R, o) be a C*¥-dynamical system. TIf A admits
a ground state, the crossed product is not simple. In this
section, we elaborate on this point by showing the existence of
some proper ideal of the crossed product which is monotonely
increasing up to the whole algebra under the dual action.

First of all, we review some conditions equivalent to
the condition in the definition of ground states mentioned in

the introduction.

Proposition 1.1. Let (A, R, a) be a C¥-dynamical system,
8 the generator of o, and ¥ a state of A. Then the
following conditions are equivalent:

(i) Y is a ground state,.

(ii) ¢ is a-invariant, and if (m,, u?, Hy, Ey) is
the cyclic covariant representation associated with
¢ , then Sp(u®*) ¢ Ry, where Sp(u¥) denotes the
spectrum of u¥,.

(ididi) P (x¥x) = 0 for all x 1in Aa(—m, 0), where
Aa(—m, 0) denotes the spectral subspace of A
corresponding to the open interval (-o», 0) in R,

(iv) =—-i ¥P(x*8§(x)) =z 0 for all x in the domain of §.

(v) There is a positive (not necessafily bounded)
operaror h on He with hg? = 0 such that
eithﬂv(x)e_ith = ﬂ?(at(x))

for all t 4in R and x in A.



We are referred to [8, or 24] for the proof. Note that (ii),
(iii), and (iv) are used in this section, in the next section,

and in chapter IT respectively.

Proposition 1.2, Let (4, R, @) be a C*-dynamical system,

and let & denote the dual action of R on AxaR. If A

has a ground state, then there exists a proper closed ideal

I in AXaR such that if XAy, < Ay, then ang) g ang) and

for any A > o, AXaR = U @nA(I>’ where Z, denotes the
Z+;n

set of non-negative integers.

Proof. Let Y be a ground state. Let (ﬂv, u?, He, €?>
be the cyclic covariant representation associated with Y.

Then ui has the spectral decomposition
uz = J e tts dE(s),
R

and the support of E (= Sp(u®)) 1is contained in R,, where

R, 1is the set of all non-negative real numbers (see [24,

1kt

8.12.5]). For each k 2z 0, R 2t > e u is a unitary

ikt

representation on Hy. Put vk(t) = e u, . Then

¥
t
¥
t
(nw, Vs H?) is a covariant representation. Hence, we can
consider the corresponding representation (ﬂ$<vk,'HP) of

the crossed product. We denote the direct sum of

{ﬂ?x Vi }k > 0 by k@ O(ﬂTX Vi Y. Let

w

I

ker( @D (T[ X V ))
k = 0O ¥ k

be the kernel of ® Ty X Vi ). Now fix a positive number A
k



arbitrarily. Then we have
A A
a, (1) = a, (ker( @ (Mg x vy )))
k z O
= ker(( ® (Mg xv, ))e0_, )
k 20 k -A
= ker( @ (Mg X v ))
k =2 0 k + A
= ker( ® (m, xv, )Y) D ker( ® (Mg x v )) = 1.
kz At K k 2 0 k
Take any f in LI(R). B& an easy consequence of Plancherel's
theorem, there is a sequence {f,} in L!(R) such that
supp(fn) is compact for each n and | fo - f "L1+ 0,
where En denotes ‘the inverse Fourier transform of £,.
Since supp(%n) is compact, we can choose a natural number
m(n) such that supp(%n(- + m{n)A)) is contained in R-
for each fn, where R. dis the set of all negative numbers,
In particular, supp(%n(- + m(n)A + k)) 1is contained in  R-
i A
for any k z 0. Put gn(t) = lm(n)tfn(t) and
(x ® g)(t) = g(t)x for any g in L!(R) and x- in A.
Then we have
. A
(*) Ol'm(n))\(x ® gn)(t) = (X ® fn)(t)-
For any k 2z O,
(e x w)(x® g,) = | Ty(g,(£)x)v, (r) dt
= Ty (x) JRgn(t)eiktut dt
- nw(x)J J g (t)e e %dc dE(s)
R JR

14



= Ty (%) [R%n(s + m(n)A + k) dE(s) = O,

since the support of E idis contained in R-. Therefore,

(@ (Te Xxvik))(x ® 8,) =0
k z O ‘

for any =n. Since x ® g, belongs to I, we have

x®f,} € U & (1)

Z+3m
from (¥). Since

|l x ® f, - x® £ |

A

“X®fn—x®f“L1

= “ X ” “ f1’1 - f “ Ll_> O,
We have x® fe U & A(I)-. Now we easily see that the
. Z+9f1 &
ideal I dis strictly contained in &X(I)' Thus, if A1 < Az,

then we have &, (I) €&, (I) and LY (A, R)C U & .(I).
)\1 % )\2 7.0 na

Therefore, we obtain the desired result. Q.E.D.

We recall that for any proper ideal, there is a primitive

ideal containing it. Hence, we obtain the following.

Corollary 1.3. Let (4, R, a) be a C*-dynamical system.

If A has a ground state, then AxaR contains a primitive

ideal ¢t such that for any X > 0, Axa R = U &nA(C)'
+2n

Assume that a C%-algebra A is unital. Then Powers and
Sakai[29, 2.3] proved that there exists a ground state if «

is approximately inner.



Corollary 1.4. Let (A, R, o) be a C*-dynamical system,
where A is unital. If o 1is approximately inner, the

statement of Corollary 1.3 holds.

The above corollary is an extension of the result of
Bratteli[6, 3.2], in which he assumed that A is a UHF
C*¥-algebra with a product type action of R. Moreover,
under the same assumptions, he showed the same result for an
abelian, connected and compact group such that the cardinality
of the dual group does not exceed the power of the continuum,

instead of R. As for this case, we shall discuss in section

I.2. Existence of ground states.

In this section, we consider the converse of Proposition
1.2 and show how the ideal structure of the crossed product

is related to the existence of ground states.

Theorem 2.1. Let (A, R, @) be a C¥-dynamical system,
where A 1is a unital C*-algebra. Then the following
conditions are equivalent:

(i) There is a ground state of A for .
(ii) There is a proper closed ideal I of AXaR such that

I C aA(I) for any A z 0O and the union of QA(I)

with all A in R 1is dense in Aqu.

3.



Proof. (i) = (ii). This follows from Proposition 1.2.
(ii) = (i). Let B be an o-invariant hereditary
C*¥-subalgebra of A. Put
Jg = { felL'(R) | x ® f €I for any xeB J.
Then, Jg is a closed ideal. Set
Z(Jg) = { teR | f(t) = 0 for any fé€ Jg }.
Since I C QA(I) for any A 2z 0, we have JBC.&A(JB).
Hence, when Z(Jg) 1s not empty, we have Z(Jj) 2 Z(JB) + A
for any A 2 0, Thus, if Z(Jg) 1is neither empty nor R,
it is a half-line (i.e., it is of the form [r, «), where
r 1is a real number), We denote the greatest lower bound
(including =) of Z(Jg) by m(B), where we set m(B) = «
(resp. -*) in the case that Z(Jgz) is empty (resp. R).
Let n be a positive integer and let H, be the set of
0-invariant hereditary C¥*-subalgebras B of A with
m(B) 2 -n. When B, dénotes the o-invariant hereditary
C*-subalgebra generated by those in H,, we have B_ € H .
Let g} be the linear span of elements of the form axb

with aeB'eH,, b€ B"€H,, x€A. Since B, is dense in

n
Bn, it follows that y ® g € I for all yeBy and ge L!(R)
with supp(é) C (-®, -n)
We assert that U B, is dense in A. Otherwise,
n

denoting the closure of U B, by B we have an a-invariant
. n

oo ?
foe} [s.o]

state ¥ of A such that ¥ =0 on B since B is

o-invariant. Through the representation ﬂv><u¢ of AxaR,

define a state ¥ of AXaR by the cyclic vector Ew, where



(ﬂ?, u®, He, & ) is the cyclic covariant representation of
associated with ¥. By Kishimoto's theorem[14], the ideal
is densely spanned by elements of the form x ® £ with
x €A, feL'(R). Therefore, there are x® f in I and
Az 0 such that

P8, (x ® £)) = 0 (i.e., ¥(x) # 0).
Let H(x*Ax) be the u—inQariant hereditary C¥*-subalgebra
génerated by x¥*Ax. Then H(x¥*Ax)€ H, for some n > O,
which implies Y¥(x*x) =0 (i.e., Y(x) = 0). Thus, we
have reached a contradiction. Therefore, '# B, 1is dense
in A,

Suppose B, ¥ A for any n. Since Bp, 1is the
hereditary C¥*-subalgebra of A for each n, | x - 11 21
for any 'x € Bn, which implies 1¢I%3= %) B,. Hence,

Bn = A for some n > 0, Therefore if supp(f) C (-, -n),
we have 1 ® f €1,

Now we take a covariant representation (m, u, H) of
such that ker(mX u) D2 I. Then, Sp(u) € [-n, «). Put
(*) 6§ = inf(Sp(u)).

We take a sequence {&x} in H such that

Spu(£x) C [8, 6 + k']
and || €&x || = 1 for each k. Putting Pru(x) = (M(x)E [Ex),
then we have a weak* limit point ¥ of {¥,} in thé state
space of A. We take an arbitrary positive number €. If
X €A, with Spa(x) C (-~, -g), then

8Py (M(x)Ex) € Sp (%) + Sp,(Ey)



(see [24, 8.2.4]1), and so it follows easily from (%*) that
Wk(x*x) =0 for k1 <e. (Seel[7, or 24] for the spectral
theory.) Hence, we have Y(x¥*¥x) = 0 for all =x€&€A with

Spy(x) C (=, 0). Q.E.D.

I.3. Ground states for compact abelian groups.

Let G be a locally compact abelian group. Suppose that
P 1is a semigroup in the dual group 6 which is closed and
has two additional properties;

PN (-P) = {0}, PU (-P) = G
(P is said to be a positive cone). Under these conditions,
P induces an order in @, i.e., Yz y' 4if vy - y'e€e P
(see [32]).

Let (A, G, o) be a C*—dynamical system. Then we call
an O-invariant state ¥ a ground state for (G, P) if
Sp(u¥) cpP.

Now let G be an abelian, connected and compact group.
Assume that the cardinality of 6 does not exceed the power
of the continuum. Then, @ has a positive cone P which

A
induces an archimedean order in G (see [32, 8.1.2]). Now

we have the following:



Proposition. If A has a ground state for (G, P)

where P 1induces an archimedean order in 6, then
AX G contains a proper ideal I such that &, (I) ) (I)
o A1 *F A2

,\ -
for Xy < X2 in G and if X > 0, then Ax,G = U & (I).
Z3, BnA

We sketch the proof. By [32, 8.1.2], there is an order

Al
preserving isomorphism of G onto a subgroup of R. Hence,

it is easily seen that there exists T in P such that

A
Q (nT + P) dis empty, i.e., (# (ntT + PC) = G, where pc

1

v

is the complement of P in @. If vy =z vy 0,

C c c . . .
Yy + P > y' + P°. Hence, {nt + P}  is an increasing sequence.

For any f in L'(G), there exists a sequence {f_ } in

L' (G) such that supp(f, is compact for each n and

)
| £o - £ ] £

+ 0, where n 1s the inverse Fourier transform

1
of f,. Then, for each n, there exists a natural number
m(n) such that supp(fn) C m{(n)T + PC. Hence, we have

supp(fno(. + m(n)T + v)) C P"  for any Yy in P. Thus, we

can obtain the desired result by the same method used in

section 1,
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Chapter II. Passive states on UHF C¥-algebras.

Let (A, R, o) be a C¥-dynamical system, where R 1is
a locally compact group of the real numbers. The notion of
"passive" states had been introduced by Pusz and quonowicz[Bl].
It was derived from the second law of thermodynamics.
A convenient mathematical formulation is that a state of
a unital C*-algebra A 1is passive if

-i¥ (u*8(u)) 2z O

for all unitary elements u which belong to both the domain
D(S§) of the infinitesimal generator ¢ of o and the
principal connected component of the unitary group of A,
KMS states with some positive inverse temperature and ground
states are passive. The converse is not true in general.
In fact, though any mixture of passive states 1s passive,
a non-trivial mixture of KMS states with different Lemperatures
is neither a KMS state nor a ground state.

Recently, De Canniere[9] defined an a-invariant state ¥
of A to be spectrally passive if

P{x¥x) = YP(xx¥*)

for all x in Aa(—w, 0). Here Au(—W, 0) denotes the
spectral subspace of A <corresponding to the open interval
(-<, 0), which is defined to be the closed linear span of all
the elements of the form af(x) = f f(t)a,(x) dt, where x is

in . A, and f is a function in L*'(R) whose inverse Fourier



transform has compact support in (-«, 0). Moreover, he showed
that $Y is spectrally passive if and only if

-1 P (x8(x)) 2 O
for any self-adjoint element x din D(8). If ¥ is passive,
taking u = eitX and differentiating twice with respect to t,
it immediately follows that the above inequality holds. Thus
all passive states are spectrally passive. De Canniére then
asked whether all spectrally passive states were passive. Later,
Batty[3] gave a partial answer that for a group action G
commuting with «, any G-central spectrally passive state is
passive. Here we remark that even in a full matrix algebra
there are spectrally passive states which are not G-central
for any G commuting with o, However when A is a full
matrix algebra, passivity and spectral passivity are
equivalent, which is seen from a result of Lenard[21], and
this was pointed out by De Canniere.

Now we have a question whether passivity and spectral
passivity are equivalent on UHF C¥-algebras. In this chapter,
as a step toward this problem, we consider the case where
a UHF C¥*-algebra has a one-parameter automorphism group
generated by the closure of a commutative normal *-derivation
of finite type (see Powers and Sakai[29], Sakai[35, 36, 37] for
the details).

In section 1, we show that every passive state is spectrally

passive for any one-parameter automorphism group on finite
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dimensional C¥-algebras.

JA’.

In section 2, we show that if & is a closed *-derivation
densely defined on a unital C¥-algebra A, then each unitary
element in both the domain of 6 and the connected component
of the identity in the unitary group of A has the form
ialeia2 iap,

c e e e s ee s el

e
for some self-adjoint elements Q)5 @y5e0000000000,a in the
domain of 6. This result is used to show the main theorem in
the next section.

In section 3, we show the main theorem in this chapter.
That is, we show that if a UHF C¥*-algebra has a one-parameter
automorphism group generated by the closure of a commutative

o
/\

normal ¥*-derivation of finite type, then passivity and
spectral passivity are equivalent for such a C¥-dynamical
system, This result is applicable to all one-dimensional

lattice systems with finite range interaction and one-dimensional

Ising model at arbitrary temparature.



InI.1. Passivity on finite dimensional C¥-algebras.

In this section, we show that every passive state is

spectrally passive on finite dimensional C¥-algebras for
any one-parameter automorphism group. First of all, we
prove that passivity and spectral passivity are equivalent
in a full matrix algebra. This fact is already well-known
(cf. [9, 21]), and it is a consequence of the discussions in
[9, 21] based on spectral analysis. But we report here its
more elementary proof.

| Consider a C¥*-~dynamical system (A, R, a), where A is
an n x n-matrix algebra. Let 1T Dbe the tracial state on A.
Any state ¥ of A is given by a density matrix 0 with
pz 0, T(p) =1, and P(x) = t(px) for all x in A. Now
0@ can be written as the form ut(x) = eithxe‘ith with some

self-adjoint matrix h din A, If $ 4is a-invariant, p and

h commute.

Sublemma([211]). Under the above notations, we suppose that
Pp and h commute. If the eigenvalues p©; of p and
h; of h satisfy (p; - pj)(hj - h;) z 0O for all i and j,

then we have T(pu*hu) 2z T(ph) for all unitary matrices u
in A.
Proof. Let u = (uij) be a unitary matrix. Then we have
T(pu¥*hu) = ) pihjluij‘2

i,1]
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and
T(ph) = ) p;h;.
i

Since the matrix (|uij]2) is doubly stochastic, it is given
by a convex combination of the permutation matrices from

Birkhoff-von Neumann's theorem. Hence we have

T(pu*hu) = ] Ag L o P
o i

for Ao z 0O and ) XG = 1, where O runs over permutatiocns

0]
of 1, 2, tiiiiiennn. s n. If (p, -p.)(h, = h )z O,

1 J 3 1
then we have
z h
Le by Z 00
1 1

(e.g., [13, Theorem 368]), which implies the desired result.

Q.E.D.

Now suppose that a state ¥ of a full matrix algebra A

is spectrally passive. Then ¢ and h commute. Therefore

we may suppose that h = ) h,e;;, where h; (1 =i £ n) are
i
real numbers, and that p = ) pje;;, p; 2 0, ) p; = 1, where
i i
we denote by {eij} the matrix units of A.
Take a self-adjoint element x = e,, + e.,. Then we have

ij Jji
T(px[h, x])

-i P(x6(x)) -it(pxd(x))

t(pxhx) - T(px2h)



= (plh

5 +pjhi)-(pihj_ +pjhj)

i 2 = x¥%
(Note that -i ¥ (x6(x)) =‘z.pi(hj - hi)lxijl for x = x

1,73

=) Xijeij') Since -i % (u*d(u)) = t(pu*hu) - T(ph) for
i,J

all unitary matrices u din A, it follows from Sublemma that

? is passive. Thus we have the following.

Lemma 1.1. Any spectrally passive state of a full matrix

algebra is passive.

Proposition 1.2, Let (A, R, 0) be a C¥-dynamical system,
where A 1is a finite dimensional C*-algebra. Then ahy

spectrally passive state of A 1is passive.

Proof. Since o is uniformly continuous, o 1is dinner,

i.e., at(x) = etthymith e 411 x in A, with some
y D
3 \
be the central decomposition, where {pj} is the family of

self-adjoint element h in A; Now let A = Apj
orthogonal minimal central projections in A. For each j,

Ap.

; is a full matrix algebra, Since at(pj) = Py Ap. 1is

J
a-invariant. Suppose that a state Y is spectrally passive.
Then, Y 1is spectrally passive on Apj. By Lemma 1.1,

Y -is passive on Apj. Take any unitary element u in A.

Since up is a unitary element in Apj,



for all j. Since {p,} is the family of orthogonal central
J

projections with &(p ) = 0, a straightforward computation shows
J

- £ P(u¥s(u)) = 1P T u¥p 8C T upy))
3 k ‘

=} -i¥?((ups)*3(ups)) 2 O.
3

This completes the proof. Q.E.D.

II.2. Lemmas for closed *-derivations.

In this section, we prepare some lemmas to show our main

theorem in the next section.

Lemma 2.1. Let & be a closed *-derivation densely defined

in a unital C*-algebra. Let u be a unitary element in D($),

the domain of 6, with H u - 1) < 1. Then there exists
a self-adjoint element a in D(8) such that u = eia.
Proof. Since H u - 1 “ < 1, the spectrum of u 1is

contained in the domain of the principal logarithm . Hence,

we have

Log u = - z '%T(l - u)n.

n=1

Moreover, it is easily seen that



p-1

P k=0 P
1
Put a, = - } —5'(1 - u)P. Then for m 2 n, we have
=1

| §Cap) - 8Cay) |

m p1
=TT (- RS - w1 - ) PR
=1 k=0
nopl 1 k p-k-1
- 1 Z—p—<1—u> S(1 = u)(l - u) I
=1 k=0
m 1 1
s I D ha-ofhsa-wlha-wje s
pentl k=0
m p-1
-1 I la-oPlea-wl
pntl k=0
-1 la-w 17 s - w) |l
L

As m, n = °, we have

| sCay) - 8Ca) I » o.
Since § is closed, we conclude that Log u belongs to D(§).
ia "

Taking a = -ilog u, we obtain u = e with a = a*%¥ din D(S8).

Q.E.D.
Remark 2.2. Since D(8) is a Banach algebra with the graph

norm, we can obtain the lemma by using the holomorphic functional

calculas,
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Lemma 2.3. [et 8 be a closed *-derivation densely defined
on a unital C*-algebra A. Take any unitary element u 1in
D(8) N\ Uy s where Ug 1is the connected component of the identity
in the unitary group of A, Then there exist self-adjoint

elements @7s @gsececscsescecs @ in D(8) such that

m

iaq ia ia
= e le 2

s e s cerasssse st .

Proof. ©Since u belongs to Ug , we can choose self-

adjoint elemnts hy;, hy,. e ,h in A such that

m—1

elhlelh2° 1hm__1

s e s c s s e s e s el °

Since D(6) 1is dense in A, there exist self-adjoint

elements a7, @gs5seceereccossas, & in D(8) such that

m-1

| u - el®1eld2, Ty || < 1.

“ s s e s 000600000l

Since e @, e¥2 . . ... .. ......e %m1 belong to D(S8) by

[28]1, it follows from Lemma 2.1 that

-ia

R T S P T
for some self-adjoint element a, in D(S).
This completes the proof. Q.E.D.
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II.3. Passive states for C¥-dynamical systems associated with

commutative normal ¥*-derivations of finite type.

In this section we establish our main theorem. Sakai [35,

3*

36, 37] introduced the notion of commutative normal ¥*-~derivations
on UHF C¥*¥-algebras. A commutative normal *-derivation is defined
as follows.

Let A be a UHF C¥-algebra. Then a *-derivation &, is
said to be a commutative normal *-derivation if there is an

increasing sequence {A,} of finite type I subfactors

[ee]
(containing the identity) in A such that O A, 1is dense in

A and the domain D(S8p) of &y is C} A ; moreover, there
n=1

is a sequence of mutually commuting self-adjoint elements {hn}
in A such that §&4y(a) = i[h,, a] for all a in A,

(n =1, 2, .c.cev...). By Sakai[35], ¢, has a canonical
extension & such that § 1is a generator and

eté(a) = 1im etén(a)
. n-»0o

for all a in A, where 6,(.) = [ih,, .]. Under this setting,

we consider the C¥-dynamical system (A, R, a), where o = et6

for all t din R.

A (commutative) normal *-derivation 60 is said to be

of finite type if we can choose ‘h, from the domain of 60

for all n. This is equivalent to &,(D(6,)) C D(8,).

Now we show the main theorem.



Theorem. Under the above notation, suppose that 60 is
of finite type. Then the following statements (i) and (ii)
are equivalent,

(i) A state $ of A 1is spectrally passive for «.

(ii) A state Y of A 1is passive for «.

Proof. We have only to prove that (i) implies (ii).
Let B, be the C¥*-subalgebra of A generated by A,

and h,. Then we have [hy, hp,] = 0 and [ih,, A,] € B,

for all m z n. Hence B, is invariant under ¢,. Since
we have 8y = 64 on Bp, Bn is o-invariant. Thus, we can
consider the C¥-dynamical systems (B,, R, ) for n =1, 2,.....
Sinée h, € \J A, for all n, B, is a finite dimensional

m

C*¥-algebra.
Now suppose that a state P of A 1is spectrally passive

for a. Then we can consider ¥ as a spectrally passive state

over the C*-dynamical systems (Bn, R, @) for all n. Here,

we remark that Bp contains the identity of A, It follows from

Proposition 1.2 that is passive over (B,, R, a) for all n.
It is well-known that a unitary group of a UHF C¥*-algebra

is connected. Let u be a unitary element in D(§). Then

it follows from Lemma 2.3 that u is of the form

e s s aab

ia ia
e le%2 . ..e

for some self-adjoint elements a3, 82, sesseaeseses, ap 1in D(S).

IA

Since C% A, is a core for &, for each j (1 = j m),
n=

}

we can choose a sequence of self-adjoint elements {ajm)



(n=1, 2, ¢eooe.) from tj A, such that

n=1
Il 5m) T 8y |~ o
and

| 8Cayy) - 8Cad Il >0

as n > «°, For each n, we may suppose that aﬂn)é A for

all j (1 £ j £ m). On the other hand, it follows from [28]

that
e121(n) , e 182(n) st ee et eneas elonin) e D(S)
and
1
§(et®imy - iJ 1t §(a,  )et T m gt
0
for all n. Hence, we have that
. . 1 . .
1im 8(et@i) ) = §(et®i) = if elte §(a.)e 1(:l_t)ajdt
n-»>co ’ 0 J
Putting u, = etB1mer®2m) ... ..., e %), we see that
u, 1is contained in B, and
" up, — u “ + 0
as n > «, Moreover, since
m . . . .
S(up) = T erPimetiam (e, ., ... e ¥ n@)
j=1
and
m
S(u) = § et®et®2 8(e’Pi)........etlm,
3=1
we have

| 6¢u,) - 8(u) || + o.

Since the identity of A is contained in B, for all n,
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u, 1is a unitary element in B,. Passivity of
(B,, R, a) shows that

-1 ¥ (ufd(u,y)) z 0.
Since we have w(uXd(uy,)) » P(u*S(u)), we have

-1i¢® (u*6(u))

This completes the proof.

z 0,
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Chapter III. Extensions of invariant states.

In this chapter, we discuss the extensions of certain
invariant states, and observe how these extensions
characterize the C¥-dynamical systems.

Attempts to extend a factor state ¢ on a C*-algebra B
to a factor state on a larger C¥-algebra A were first
partially accomplished by the use of the notion of weak
expectations for the GNS representation 7y, that is, linear
contractions P of A into ﬂ?(B)" such that PIB = T, .

The eventual solutions of the attempts[22, 27] were variants
of this method.

In the case when there is an action a of an amenable
group G on A 1leaving B dinvariant, an analogous problem
is to consider an o-invariant state ¢ of B which is
centrally ergodic in the sense that

Te(B)' A Ty (B)' N uf' - €1,
where (ﬂ#, u?, H@ is the associated covariant representation
of (B, G, o), and to try to find an extension to a centrally
ergodic state of A. It was shown in [4] that this can be done
by the method of [1] if B 1is (semi)nuclear. The von Neumann
algebra theory developed in [22, 27] is not sufficient to
provide a general solution. A corollary from the positive
answer to this problem is that if A 1is separable and G-ceéntral
(and B is nuclear), then B 1is also G-central.

The purpose of this chapter is to clarify the covariant



situation. In section 1, we consider the problem lifted to

the C¥-~crossed products. Let (A, G, &) be a C¥*-dynamical
system, and let B be an G-invariant C¥*-subalgebra of A,

For a covariant representation (7, u, H) of B, the existence

N\
of a weak expectation Q of AX_ G for the representation

¢4

Txu (with respect to the subalgebra L!'(B, G)) is shown to
be equivalent to the existence of a (covariant) completely
positive contraction Q of A into (m(B)U uG)" such that
Q|B = T, Such a contraction Q will be called to be
a covariant weak expectation.

In section 2, we show that, for an a-invariant state %
on B, there are bijective correpondences between covariant weak
expectations QG of A idinto (WQ(B)(J uz)", weak expectations
6‘ of Ax G into (me(B) U Jg)", certain G-invariant extensions
of ¥ to A, and certain (o ® 1)-invariant states of
A (Te(B)u ub)'.

In section 3, we show that if there is a covariant weak
expectation of A dinto T,(B)" for a centrally ergodic
state Y, Y can extend to a centrally ergodic state on A.

In section 4, it is observed that, if A 1is G-central,
then Q and 6 always exist (for each a-invariant state).

In section 5, we discuss G-abelianness of C%—dynamical
system (A, G, a) with a compact group G. We show the
equivalence of G-abelianness of A, commutativity of the

fixed point algebra of A , and ergodicity of certain class

of invariant states.



.1, Covariant weak expectations.

Let (A, G, a) be a C¥*¥-dynamical system, and B be an
a-invariant C¥*-subalgebra of A. Let (m, u, H) be a
covariant representation of (B, G, a) and put

M= (m(B) VY uG)".

Definition 1.1. A covariant weak expectation for
(m, u, H) 1is a completely positive contraction Q : A > /1

such that Q|g = m and Q(a.(a)) = u Q(a)uf (a€ A, teG).

In the above definition , if the action ¢« dis trivial,
Q is a linear contraction from A idinto 7©(B)" such that
Q|B = 7. Such a linear contraction is called to be a weak

expectation for (m, H) of a C¥-subalgebra B (see [1]).

Definition 1.2, A weak expectation for (mxu, H)
S
is a linear contraction Q : AXuG +~ M such that
A
Q(y) = (mXxu)(y)

for all y din L*(B, G).

Note that this definition is not quite covered by the
definition of weak expectations in [1], since there is
no reason, a priori, why it is automatically possible to
embed BxaG in AXaG, or to factor wxu £hrough BG'
Here we denote by B a C¥*-subalgebra of AXaG generated

G

by L'(B, G). In general, BG is a quotient algebra of

BXuG; the algebras coincide if G is amenable.
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Remark 1.3. If (Q 1is a conditional expectation
from A onto B with Qe.a, = a,-Q for all t in G,
then BXdG is automatically a C¥-subalgebra of AXaG' Indeed,
let @& be a positive definite function on G dinto B¥
(cf. [24, 7.6.7]). Then define a positive definite function
Y on G dinto A% by

Y(t)(a) = 9(t)(Q(a))

for all a in A. Since we can check the condition (ii)

of Theorem 1,1 in [18], BXQG is a C¥*¥-subalgebra of AXQG.

Roughly speaking, we can say that any covariant weak
expectation is a weak expectation commuting with the group
action. In the case where there exists a covariant weak
expectation for some covariant representation (m, u, H) of
an G-invariant C¥*-~-subalgebra B of A, the above remark
might suggest that BX,G should be a C¥*-subalgebra of Ax_ G.

o

But we have the following example.

Example 1.4, Let (7, u, H) be a covariant representation

of a C¥-subalgebra B of A, Let (A G, B) be a C¥-dynamical

O’
system and By be a B-invariant C¥*-subalgebra such that BOXBG
can not be embedded in AOXBG. Then we consider a C¥-dynamical
system (A ® Ay, G, @« & B), a C*-subalgebra B & B,, and

a covariant representation (P, u, H) defined by

p(b @ bg) = m(b) for all b & b, in B @& B,.



Theorem 1.5. Let (A, G, a) be a C*-dynamical system,
and let B be an og-invariant C¥*-subalgebra of A. Suppose
that (m, u, H) 1is a covariant representation of B, and
put /M = (m(B) VU ugy)". Then there is a bijective correspondece
between covariant weak expectations Q : A > M for (m, u, H)
and weak expectations 6 : AXaG +~ M for (mwxu, H). The
correspondece is given by

6(){) = JGQ(X(t))ut dt

for all x in L'(4, G).

Proof. Suppose that Q : A+ l is a covariant weak
A
expectation for (m, u, H). Define Q : L!(A, G) = M by

the above formula, Then we have

A -1 -1,
Qe = [ a6y Mocax(e ™ H)u, de

fGA(t)'lth(x(t”l))* dt

f uf Q(x(t))* de
G

A
Q(x)*.

Moreover, for y in L!*(B, G), we have

Il

PaS
d
Ay) jGQ<y<t>>ut t

j m(y(t))u, dt
G
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= (mxu)(y).
Let & ©be a unit vector in H. Consider the map Y : G » A%

defined by

¥(t)(a) = (Qa)u &] &).

For £y in G and a, in A, we have

" ~1 a9
) ‘P(ti tj)(at7§a1aj))

i, j=1 5

= ) (u* Q(a*a )u u* u E]E€)z O
t . T3 t t. t,

i,3=1 i i i Jj

by (40, IV.3.41. Thus ¥ 4is positive definite. Since we have
Y(e)(a) = (Q(a)i[&), Y(e) is a state of A. By [24,7.6.81],

there is a state of AXaG such that

€
¥(t)(a) = wg(akt)
where the same symbols are used to dencte the canonical
extension of wa to the multiplier algebra M(AXQG), A is

embedded in M(AXaG), and A 1is the unitary representation

of G din M(AX,G). For x = x* 1in L'(A, G), we have

wg(x) Jng(x(t)kt) dt

[ Catxeryuel &) ar

A
( Q(x)el g).
Thus we obtain that
~
[CQoeled] s lixll,, ¢ .
(¢4 )
A . A . A A

Since Q(x)* = Q(x*) =Q(x), we see that "Q(x)” = "x“ Ax G
Hence 6‘ extends by continuity to a bounded self-adjoint

A\
linear map, also denoted by Q, of AXaG into M which

o
is a contraction on the self-adjoint part. Then Q extends



~
an ultraweakly continuous linear map, also denoted by Q,
of (Ax,G)** dinto N which is a contraction between the
o)
self-adjoint parts. Furthermore, we have 7 xu = Qod
where ®: Bx,G > BG is the canonical *-homomorphism,
so this identity remains valid for the ultraweakly continuous
. A
extensions. Since mXu 1is non-degenerate, Q(p) = IH,
where p is the identity of Bé*. So p dis a projection in
(AXyG)**, Now, if I is the identity of (AX,G)**, then
we have
A
A
la(p + (T - p)
"p + (I -p)| = 1.

A A
Hence we obtain that Q(I - p) = 0. So we see that Q(I) = I

il

#A

For x in (AX,G)** with 0 = x = I, we have
11, - ol = 1 - x| = 1.

Since 'ﬁ(x) is self-adjoint, 6(X) z 0. Thus 6 is
positive. Since ‘6(1) = 1., 6‘ is a contraction on (AXaG * %k
and hence on AX,G (see [7, 3.2.61).

Let {f,} be an approximate identity for LY(G).
For a in A, put (a ® f,)(t) = f,(t)a, so a ® f,€ Li(A, G
and a ® f, > a wultraweakly in (Ax,G)**, Then we have

0Ca) = lin ([ £,(t)u, d6)Q(a) = lin Qa @ £,) = Va),
where the limit is taken in the ultraweak topology.

Conversely, let 6 : AXuG +~ M be a weak expectation
for (wxu, H). Then 16 extends to an ultraweakly
continuous mapping, also denoted by 6, of (AXaG)** into

M. Furthermore, the kernel of & is contained in the kernel

- 40 -
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of 7Xu, so there is a representation p of By such that
"
TXuy = pe® and Q is a weak expectation for © in the sense
~
of [1]. By [1, 2.1], Q 4is completely positive, and
satisfies the module property:
A ~
Q(y1xy5) = P(y)Q(x)p(y,)
for yy, yp in B ¥*¥ and x in (AXQG)**. Identifying A
A
with its image in M(AXQG), put Q = Q|A. Then Q dis a completely
positive contraction of A into /. Moreover,
we have
A
Q(b) = Q(b) = p(b) = 7m(b)

for b din B and

Qe (a)) = Q(haxs) = o(A)Q(a)o(AF) = u Q(a)u

t
for a din A. Thus Q@ 1is a covariant weak expectation,
For x in L'(A, G), since we have x = ij(t)At dt

where the integral is ultraweakly convergent in (AXQG)**,

we have

A (’ A
Qx) = | Qx(0)ry) de

r A
| QCx(e)p(Ay) dt

JGQ(X(t))ut dt.

This establishes the bijective correspondence. VWe complete

the proof. Q.E.D.



Remark 1.6. From the proof of Theorem 1.5, we see that
a covariant weak expectation Q satisfies the module property
Q(byab,) = T(b,)Q(a)T(b,)

for aéA and b b, € B. This may also be deduced from

1’ 2

Stinespring's Theorem [23, or 38] for any completely positive

mapping Q : A - A such that QIB = T.

Remark 1.7. There is a standard argument to show that
any linear contraction Q : A > /1 , such that QIB = T, is
positive. Indeed, let p be the identity of B**, so that
p 1is a projection in A**, Now Q extends to an ultraweakly

continuous linear contraction, also denoted by Q, of A**

into M, whose restriction to B** dis the normal extension
of 7. Since T 1is non-degenerate, we see that Q(p) = I,
Let ® be any normal state of /. Then we have [woQ| = 1.
Hence, we have (woeQ)(p) =1 = Hp". Thus wOQ is positive.

by [34, 1.5.2]1. Hence Q is positive.
Moreover, Q 1dis completely positive if it satisfies
any one of the following additional properties:
(i) Q 1is a complete contraction,
(ii) Q maps A into TW(B)" (see [1, 2.11),
(iii) Q is covariant, and for t, in G  and a, in A,

n
) u* Q(a*a )u
£ 10570

i,3=1 % J

v
o

(see the proof of Theorem 1.5).
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Example 1.8. In general, Q may not be completely
positive, even if it is covariant. For example, let
A be the C*-algebra M, of 2X2 complex matrices, B be

the subalgebra of diagonal matrices in 2x2 complex matrices,

01

G = {0, 1}, a =Ad[10

], m be the identity representation

01

2 -
of B on (€%, u, = [1 0

}, and Q be the transpose map.

Example 1.9. A covariant weak expectation Q may fail
to map A dinto 7(B)". For example, let A = M, ® M,,
B=M,®I,, G=0U(2), ¢ =4Ad (t®t), H=C’® C?,
n(b® I,) =b eI, (b€M,), u_ =t®t. Then (y, u, H)
is a covariant representation of (B, G, a) with u-invariant
cyclic vector 2 '((1,0) ® (1,0) + (0,1) ® (0,1)), and
mT(B)" = m(B) = M, ® I,, =M, & M,. The identity
representation Q = p of A 1is a covariant weak expectation

A
, mapping A onto M. Here (Q 1is just ©O xu.

Remark 1.10. Suppose that G 1is amenable, and let

@
m be an invariant mean on L (G). Suppose that there is
a completely positive contraction P ; A > /1 such that
P|B = 1. Then there is a covariant weak expectation

Q : A" given by

( Qa)e] n) = m(t » (u¥P(a,_(a))u g] n))
for g and pn in H. In particular, if there is an injective

von Neumann algebra AN such that m(B)" C#N¥ C 1, then
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there is a weak expectation 8 : AXaG > M, If B is nuclear,
one may take W# = m(B)" or N = /M since BX,G 1is nuclear
(see [12, Proposition 14]). If B is seminuclear (cf. [20]),
there is a weak expectation P : A - T(B)" and hence

a covariant weak expectation Q : A > /1,

IIT. 2, Applications to invariant states.

Let (A, G, o) be a C¥*¥-dynamical system, and let B be
an G-invariant C¥-subalgebra of A. For an ¢-invariant state P,
we denote by (ﬂv, uw, Hy , {v) the GNS representation of .
Put M? = (ﬂwx u?)(BxaG)". In this section, we establish
bijective correspondences between covariant weak expectations
of A into My, weak expectations of AXyG into /My,
certain O-invariant extensions of ¥ to A, and certain

(o @ 1)-invariant states of A ® . M.

X
Recall that there is an affine homeomorphism between

' ' ~
o-invariant states Y of B and states Y of BXaG with

?(At) =1 for all t in G, given by

Yo = | o) a

for y in L' (B, G) (see, for example, [2, 4.1]). The GNS

~
representation of ¥ 1is (ﬂ¢x uV, H¢).



Theorem 2.1. Let (4, G, a) be a C*-dynamical system,
and let Y be an O-invariant state of an o-invariant
C¥-subalgebra B with associated covariant representation

(m, s u?, H?, gw) of (B, G, a). We denote by M the

2 1 4
von Neumann algebra generated by E{B) U u:. Then

There are bijective correspondences between:

(i) (a2 ® 1)-invariant states w of A ® ' such that

max ¢

Az,
ki3

(%) w(b ®d) = (Tb)dE,| Ey)

for b in B and d in m; ,

(1) covariant weak expectations Q : A > /1

P

"]
for <ﬂ¢’ u, H?)

(iii) o-invariant states | of A such that VUl|lg = ¢ and
Ewﬂw(A)EW - Mgs where Ew is the projection of
Hw onto Hyg ,
A
(iv) weak expectations Q : AxaG > Mp for (ﬂV X u , H

la %
(v) states W of (A% ,G) ® M) such that
o mazx ¥

(%) ’(:)I(X ® d) = I(W?(X(t))dgwlgq,) dt
G

for x in Ll(B, G),
~ ~ ~
(vi) states ¥ of AXyG such that Y°9% =¥ and
E&ﬂﬁ(AXuG)Eﬁf:ﬁ?, where & is the *-homomorphism

of BXyG onto Bg.



Proof. The proof of [1l, 2.3] shows that there is a
correspondence between states w of A %axﬂ% satisfying
(*) and completely positive contraction Q : A ~* Nw such
that QIB = ﬂ?. (The proof in [1] did not use the assumption
that the C*-subalgebra D 1is ultraweakly dense in 7,(B)'
except to show that Q(A) C T (B)' (=D"). Now taking D = D"
= N¢ », the same proof gives the present result.) Furthermore,
Q is covariant
== Qe (@)mp(dydde, [m,(by)eg,) = (uwQCa)ug*m,(by)de, |, (by)ey)

(a€A; b b,€B; teG; de/’?;, )

1 3

= (Q(b*a (a)b )dE,]Ey) = (Q(at—l(bz*)aat—l(bl))ut*dutg'?lg‘f)

(a€A; by, b,€B; teG; de /’7,", )
== w(b*a (a)b ® d) = w(a (b*)aa- (b ) @ d)
>t 1 e-1 2 e-1 1
(ae€A; b, beB; teG; de n' )
1 2 ¥

= ug(ozt(a)® d) = w(a ® d) (aeA; t€G; den )

Y

S=—> w is (& ® l1)-invariant.

This establishes the correspondence between (i) and (ii).

It was also shown in [1, 2.3] that the restriction map
of the state space of A %ax N; into the state space of A
gives an affine homeomorphism between states w satisfying (*)
and states ¥ of A with wlB = p and Ewnw(A)E¢<:'M?.
Clearly, if w dis (a® 1l)-invariant, then ¢ is o-invariant.

On the other hand, if ¢ is O-~invariant, then it follows,

for example by the uniqueness of w, that w is (a@l)~invariant.
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This establishes the correspondence between (i) and (iii).
The correspondence between (ii) and (iv) is immediate
from Theorem 1.5, while the correspondences between (iv),

(v) and (vi) again follow from [1]. One merely has to observe
that the condition (**) is equivalent to the requirement that
G(x @ ) = ((m, xu)(x)ag [£,),

and that if 61 exists, then we have ka ® 1) ='¢(y)

for 'y in L'(B, G). Thus ¢ factors through B

G

Hence be u®? induces a representation Py of BG and
Al

the weak expectations Q for (7 x u?, Hy) correspond

¥

to the weak expectations for the representation (gf, HV)

of the C*-subalgebra Bg. Q.E.D.

Remark 2.2. The correspondences of Theorem 2.1 are all
affine homeomorphisms in the weak* and point-ultraweak

topologies.

Remark 2.3. The correspondence between (iii) and
(vi) is the canonical correspondence between G-invariant
~ ~
states ¢ of A and states Y of AXQG with Y(Ag) =1

for t in G.



III.3. Extensions of centrally ergodic states.

It is useful to apply the notion of weak expectations
to the extension problem of a state on a C¥-subalgebra. But
for a given C¥-dynamical system (A, G, a), the usual weak
expectation is not necessarily useful when we attempt to
extend an a-invariant state on an a-invariant C¥-subalgebra to
A preserving the a-invariance. Fortunately this is possible
by applying the covariant weak expectations., In this section,
we discuss an extension of a centrally ergodic state on an
o-invariant C¥-subalgebra assuming the existence of a covariant
weak expectation.

Here, recall that an o-invariant state ¥ on A 1is called
to be centrally ergodic if

Te(M)" N me(A)' N wf' = ¢-1,

where (ﬂw’ u?, He, EP) denotes the cyclic covariant
representation associated with P.

Let (A, G, o) be a C¥-dynamical system, and let ¥ be
a centrally ergodic state., When A is not unital, we denote

N . kY3 . - -
by A the unital C¥-algebra obtained by the adjunction of 1
~ ~7
to A. Moreover, we denote by o and ¥ the canonical
- N .
extensions of o and ¥ to A respectively. Then we remark
~

that ¥ is centrally ergodic for o if and only if ¥ 1is

centrally ergodic for g.



Theorem 3,1. Let (A, G, o) be a C*¥-dynamical system.
Let ¥ be a centrally ergodic state on an a-invariant
C*-subalgebra B of A. If there exists a covariant weak
expectation Q from A into TG(B)", then ‘¥ 1is extended to

a centrally ergodic state on A.

Proof. By the above remark, we may assume that A and B

have the common identity.

Now put ?Q(x) = (Q(x)gw|£v) for x dn A.
Then @Q is an a-invariant state of A and @Q(X) = ¥ (x)
for all x din B. We denote by W the set of all covariant
weak expectations from A into Te(B)" and put
S = { fs | PeW }. Then since W 1is non-empty and compact
convex in the point-ultra weak topology, S 1is weak¥® compact

convex in A%*, Let i be an extremal point of S. Then

there exists an element Q din W corresponding to ¢ with

P o= ?Q. We show that WQ is centrally ergodic on A. Let
{ Moo uQ, HQ, gQ) be the GNS representation of ?Qg Since
?Q%B = ¥, we can consider Hy as a closed subspace of HQ
and we denote by E the projection of H onto Hy.

Q
For x €& A, y, z & B, we have

((Emy()E)m o (y)E,] m(2)Ey)

(WQ(X)EHQ(Y)iQIEﬂQ(Z)ig)

(1 GO (1T (2)E,)

?Q(z*xy)



(Q(Z*Xy)iglig)

QU TG (3)E, [Ty (2)Ey)

QG (¥)Eg T (2)E)
This means that |
(*) Emg(x)E = Q(x)
for all x in A.

Suppose that p is a projection in ﬂQ(A)" N WQ(A)'(W ug'.
Then we have EpE e ﬂ?(B)"' by (*). Now we must show that

EpE € T,(B)" A me(B)' N uf' = ¢-1

Since B is a-invariant, u% leaves WQ(B)£Q invariant.

For x and y in B, we have

((BulpE)mo(x)Eg|mo(3)Eg)

]

(PET_(x)E_[ud*m (y)E )

(PEm,(x)E | Bul*m (y)E )

(BulEpEm,(x)Eq|mo(¥)Eg)

Hence we obtain
%% Q - Q
(%%) EutpE = EutEpE.

For x in B, since we have

u%ﬂQ(x)EQ WQ(at(X))EQ

Trq:(u't(x))gup

]

dzﬂw(x)i?
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we see that

(%) U%E
Thus we have by (¥%) and

(EpE)ut =
Therefore, we see EpE €

(EpE) (ET,(x)E)

Since EﬂQ(x)E = Te(x) for all x in B, we see that
EpE Dbelongs to ﬂv(B)" N Te(B)'. Thus we have
EpE € mo(B)" N 7,(B)' A ug'
Let EpE = A-1 for O 5 A =21, Define a positive
linear functional w on A by
w(x) = (pTo(x)&5]E0).
Since w(l) = (pigjég) = (EpEEQlig) = A and ?Q majorizes
w, A =0 or X =1 dimplies w = 0 or YQ = w, that is,
p=0 or p=1.
Suppose that A 1is neither O nor 1, Define
positive linear maps Q,, Q, from A into ﬂ?(B)" by
Q(x) = == Epmy(E

and

EdiE = uﬁE

(3

Ep(EutE) = BpulE = BulpE

Eu®(EpE) = EufE(EpE) = (ulE)(EpE)
ut(EpE).

ug'. For x 1in B, we have

EpWQ(x)E = EWQ(X)pE

- 51 -



1

Q(x) = == E(1 - p)my(x)E
for x in A. Then , for x in B, we have
1
Q1(x) = = Epmy(x)E = Emg(x)E = Q(x).
Moreover, since ui leaves WQ(B)EQ invariant, we have

((Euf pmy(GOuf*E)m, (1)E, M (2)Ey)

Qu Qx
(po (x)uZ*ET (y)E |ud*Em (2)€ )

(pTg (x)ug ¥Emy (y) €y | Eu*Em (2)€ )

- ((BuREpmy (x)ud *E)m, (y)8g [ (2)Eg)

Thus we obtain
Q Quer _ Q Qu
EutpTTQ(x)ut E = EutEpﬂQ(x)ut E

for all x in A. Hence, we have by using (¥*¥¥%)

Qp (0 (x)) = 5= EpTy(ay (x))E

1 «
= 5 Epu%TrQ (x)uP*E

1 5
= - Eu%pﬂQ(x)u%“E
_ 1 Qp Qx
= 5 Euf pﬂQ(x)ut‘E
1 P
= o uﬁEpr(x)Eut“

\4 L
thl(x)ut*.

Therefore we know Q; €W. Since a simple observation
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shows E(1 - p)E = (1 - XA)-1, similarly we see Q,€W.

It is easy to check that Y. o= x'f + (1 = M) P, .
0 0, 0,

Since A is neither O or 1, the extremality of ?Q in
S shows ¥ = ¢ = ¢ Since ¢ - L w
Q 2, - Q2' Q4 T ’
we have p = A.1. Therefore we have X =1 or XA = 0,
which is a contradiction. Thus we obtain p =1 or p = 0.
Q.E.D.

Corolliary 3.2. Let (A, G, u) be a C¥-dynamical system,
where (G is amenable. If an a-invariant C*-subalgebra B of
A is nuclear, then any centrally ergodic state on B is

extended to a centrally ergodic state on A.



Nr.4. G-centrality of C*-dynamical systems.

Let (A, G, o) be a C*-dynamical system, and let B be
an a—iﬁvariant C*-subalgebra of A. In this section, we
apply Theorem 2.1 to the question whether B is G-central,
assuming that A 1is G-central and G is amenable.

Recall that an o-invariant state ¥ of A is said
to be G-abelian if, for each a, b 1in A and uw—invariant
vector TN in Hw,

inf I(ﬂw(a'b - ba')n|n)| =0
where the infimum is taken over all a' in the convex hull
of {at(a), te G}. Moreover, A 1is said to be G-abelian
if every d-invariant state ¢ 1is G-abelian; equivalently,
for each U, ﬁw' (= ﬂw(A)'{\ug') is abelian; equivalently,
the g-invariant states of A form a Choquet simplex (cf.

(7, 4.3.111).

Proposition 4.1. Suppose that G 1is amenable, and
A 1is G-abelian. For each a-invariant state @ of B, there

is a covariant weak expectation for (ﬂ@, uw, HP)'

Proof., The first step is to note that B is G-abelian.
This is well known, but for completeness we give the proof.
We have to show that for each g-invariant state ¥, and
a; b din B,

(*) dinf | ¥(a'b - ba')| = 0.

a ]
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Since G 1is amenable, there is an G-invariant state Y of
A extending ¢, and then (*) follows from the G-abelianness
of Y.

Now My (=T (B)'n uG') is abelian, so /M, 1is
injective by [26, 10.15]. Hence the existence of a weak
expectation Q : AXuG > MP follows, since B is

G
isomorphic to BX,G. Q.E.D.

Recall also that an ag-invariant state Y of A dis said
to be G-central if each a, b din A, u -invariant vector 0

in H and x in WW(A)”

d)’
inf I(ﬂw(a'b - ba')xn| n)| =0
where the infmum is taken over all a' in the convex hull
of {&t(a)l teG }. Moreover, A 1is said to be G-central

if each a-invariant state ¢ is G-central; equivalently,

v,

A is G-central if ﬂw(A)'t\ u, C.ﬂw(A)" for each g-invariant
state V¥; equivalently, the a—iHQariant states form a Choquet
éimplex whose boundary measures are subcentral (e.g., [7,
4.3.141).

In [4], attention was given to the question whether
B is G-central, assuming that A 1is G-central and G is
amenable. In separable cases, it is enough to show that
every centrally ergodic state ¢ of B 1is compressible

in A (that is, there is a weak expectation P : A - NP(B)"

for W?). Proposition 4.1 shows that there exist covariant



weak expectations Q : A > Mo » but in general there is
no reason to suppose that ¥ 1is compressible,.

One non-amenable instance when the existence of Q
implies the existence of P is described in the following

result.

Proposition 4.2, Let G be the unitary group of the
C*-subalgebra g’ spanned by B and the identity of A
(adjointed to A if necessary), and let o be the inner action
of G on A. Let ¥ be an o-invariant trace state of B.

Then any covariant weak expectation Q : A - MP maps A

into Ty(B)". Conversely, any weak expectation P : A =~ Te(B)"

is covariant.

Proof. It is possible to prove the first statement
directly, but we give an alternative proof using the
correspondences developed above. Let y be the oa-invariant
state of A corresponding to Q given by Theorem 2.1.

The 0-invariance means that U is B-~central (Y(ab) = VY(ba)

for a din A and b in B), and by [1, 3.1], U corresponds

to a weak expectation P : A > ﬂ?(B)". Since the correspondences
are the same and one-to-one, we conclude that P = Q.

Conversely, the covariance of P follows from the
identity:

P(a,(a)) = P(vav*) = Te(v)P(a)m, (v¥) = JiP(a)ﬁi*

for a in A and any unitary element v imn %ﬂ Q.E.D.
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ImM.5., G-abelianness of C¥-dynamical systems by compact actions.

In this section, we characterize G-abelian C¥-dynamical
systems by compact actions in terms of extensions of certain

class of invariant states.

Proposition 5.1. Let (4, G, o) be a C*-dynamical system.
Let ¥ be an o-invariant state of an a-invariant C¥*-subalgebra

of A such that

v

(me(B) U ug

A (re(BY U uf ) = e

Suppose that there is a covariant weak expectation P for

for (W?g u®, Hyp ). Then there exists an O-invariant state

of A such that

(T (4) U a? "o (T, (4) U u? )= ce1.

and Y[, = ¢.

Proocf. Put
o~ ¢
F(x) = ((myx ¥)(x) £,] Eg)
for x in LY(B, G). Then $ is a factor state of B;. On the

A
other hand, P induces a weak expectation P from AXaG into

? )H.

Ay
G Therefore, there is a weak expectation Q from

(me(B)w u
AX G into (myo(B)Y w u? )" such that m(x) = (G(X)E I £y)
a factor state of AX,G (see [1, or 41]). Then there exists
a covariant weak expectation Q from A into (mua(B) U uz "

A
corresponding to Q by Theorem 1.5. Put

Y(a) = (Qa)g, &)



for a in A, Then Y is G-invariant and ¢|B = ?. Moreover,

for x in L%'(A, G), we have

((my x ayoogyl £y

(my(x(eule, | g)) de

G

(my, (x(£))Ey | &) dt

(Q(x(E))E,| Ey) dt

G

(Q(x(t))ug &g &) dt

|
Js
J
|

G

/N
(Qx)E,] &)

7
= U(x).
Therefore, ﬂw X uw is a factor representation of AXaG. This
w 11 w t —_ -
means (Ww(A)tJ u, "N (ﬂw(A) U ug )y = €-1, Q.E.D.

Theorem 5.2, Let (A, G, o) be a C*¥-dynamical system
with a compact group G. Suppoée that the fixed point algebra
of A 1is non-zero. Then the following statements are equivalent.
(i) The fixed point algebra A% is commutative.
(ii) A 1is G-abelian.
(iii) Every o-invariant state Y of A which yields
(T, (A) U uf )" N (me(4) U uf )" = €1

is ergodic.
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Proof. (i) = (ii). This follows from W?(A)”r\ug’

= W,(Aa)" for any a-invariant state ¥ on A.
. . L4 .
(ii) = (4ii). Since A is G-abelian, (m,(A) U u; )' 1is
commutative. Hence, we have
L4 A 4
(Tg(A) U ul)' ©  (me(A) U ul H" N (me(A) U ul )' = C- 1,

which implies ergodicity of f.
(iii) = (i). Let E ©be a conditinal expectation from A

onto A“ given by

Take any factor state ¢ of Au. Then by Proposition 5.1,

U extends to an oa-invariant state Y of A such that

(rg () v uwf )" A (mp(myu ! ) = e,
By assumption, ¥ is ergodic. Since E gives a bijective
correspondence between Oa-invariant states of A and states
of Aa, Y = Y[B is pure. In general, a C¥-algebra is
commutative if and only if every factor state is pure (cf. [421]).

So, A% is commutative. Q.E.D.

Remark 5.3. 1In general, we can not replace the statement
(iii) by the statement that every centrally ergodic state is

ergodic.
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