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     Introduction.

     This thesis is devoted to the study of some problems

concerning invariant states on C'Vc-algebras with group actions.

Though we have various objects to be studied in CB('-dynamical

systems, the most important one among them is presumably

invariant states. The use of CeLalgebras themselves in

physics has been promoted by Segal, Haag and others.

The physical lnterpretation of the C'A'-algebra is that it is

the algebra generated by "the observables". It is quite

common that, in many physical problems, there is a nalturally

defined group acting on the system in question which keeps

invariant the system as a whole. In the corresponding

C,""-version, we shall admit that a group acts as a group

of automorphisms on the C7'Lalgebra. Then, it may be natural

to restrÅ}ct our attention to the states which are invariant

under the group action, i.e., invariant states.

     It is not too much to sav that when we make the research                            J
of invariant states, substantial discussions are centered

around the existence of invariant states such as KMS states,

or ground states, the extensions of invarÅ}ant states on

an invariant Cv'Lsubalgebra to the whole algebra preserving

the specific properties, or the equivalence between classes

of invariant states. We pay our attention mainly on these

subjects in this thesis.
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     This thesis consists of three chapters. We study

the invariant states on Cr}-algebras with one-parameter

automorphism groups in chapters I and II, and those on CeLalgebras

with actions by locally compact groups in chapter III. '

Now we explain briefly the contents of each chapter.

 . In chapter I, we discuss how the ideal structure of

Cce-crossed product is related to the existence of ground
                                             '                                                    'states.

     Let (A, G, or) be a CSe--dynamical system. Recently, the

                                          G has attractedideal structure of the crossed product AX                                         or
considerable attention, particularly in the cases when G

is abelian; for• when G is abelian, spectral theory may be

applied with good effect (cf. [24, or 25]). In the case

when G is R, A is a UHF CÅÄLalgebra, and ct is of product

type, Bratteli[6] proved that AXorG is not sirnple since A

admits a ground state for or; i.e., a state te' such that for

all x in A and y in Aa , the space of entire analytic

elements in A, the function f(t) = CP(xort(y)) extends to
be analytic in the upper half-plane and bounded there by '

li x li Il y ll. Subsequently, Pedersen and Takai[26] extended

this result to the case when A and ot are arbitrary (but

G = R). Our primary objective in this chapter is to prove that

the existence of a ground state is equivalent to the existence
                                           ..                                                        .of a proper ideal of the crossed product which is monotonely

increasing up to the whole algebra under the dual action.

                                       '
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     In the last section, we shall generalize our results to

cover a certaÅ}n Ce:'-dynamical system (A, G, a) where G is
                      'an abelian, connected and compact group.

     In chapter II, we discuss the equivalence between the

notions of passive states and spectrally passive states on

UHF C)'C'-algebras. '•
                                       '
     Let (A, R, or) be a Cx-dynamical system. The notion of

"passive" states had beeR introduced by Pusz and Woronowicz[31].
                  '                'It was derived from the second law of thermodynamics.

A convenient mathematical formulation is that a state {-P of

a unital C?":--algebra A is passive if

                   -i 9(u'"'6(u)) l O

for all unitary elements u which beloRg to both the domain

D(6) of the infinitesimal generator 6 of a and the

principal connected component of the unttary group of A.

KMS states with some positive inverse temperature and ground
states are passive. The conversg is not true in gene' ral.

In fact, though any mixture of passive states is passive,

a non-trivial mixture of KMS states with different temperatures

is neither a KMS state nor a ground state.
                                       '     Recently, De Cannidre[9] defined an or-invariant state <P

of A to be spectrally passive if

                     ,-P(x,!C'x) $ CP(xxi'e)
             'for all x in Aor (-co, O). Here Aor(-oo, O) denotes the

spectral subspace of A corresponding to the open interval
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(-oo, O), which is defined to be the closed linear span of all

the elements of the form af(x) = ff(t)at(x) dt, where x is
                                                           'in A, and f is a function in Li(R) whose inverse Fourier

transform has compact support in (-co, O). Moreover, he showed

that 9 is spectrally passive if and only if

                      -i 9(x6(x)) l O

for any self-adjoÅ}nt element x in D(6). If (p is passive,
taking u = eitX and differentiating twice with respect to t,

it immediately follows that the above inequality holds. Thus

all passive states are spectrally passive. De Cannibre then

asked whether all spectrally passive states were passive.

Later, Batty[3] gave a partial answer that for a group action G

commuting with or, any G--central spectrally passive state is

passive. Here we remark that even in a full matrix algebra

there are spectrally passive states which are not G-central

for any G commuting with ct. However wheR A. is a full

matrix algebra, passivity and spectral passivity are '

equivalent, which is seen from a result of Lenard[21], and

                                sthis was pointed out by De'Canniere.

     Now we have a question whether passivity aRd spectral

passivity are equivalent on UHF Cee-algebras. In this chapter,

as a step toward this problem, we consider the case where

a UHF CX-algebra has a one-parameter automorphi'sm group

generated by the closure of a commutative normal ,""-derivation
                                 'of finite type (see Powers and Sakai[29], Sakai[35, 36, 37] for

                                    '                                                   '                  '
                '  '                                   '                                t. "                        '                                         '
                      '                                        '                          '     '                                                  '                                           '
                   '              '



the details). '
     In section 1, we show that every passive state is spectrally
                 '
passive for any one-parameter automorphism group on finite

dimensional C7'C--algebras.

     In section 2, we show that if 6 is a closed 7X'-derivation

densely defined on a unital C-X-algebra A, then each unitary

eiement in both the domain of 6 and the cennected component

of the identity in the unitary greup of A has the form
             eialela2..........,...eiam

for some self-adjoint elements al, a2,.....e..;..,am in the

domain of 6. This result is used to show the main theorem in

the next section.

     In section 3, we show the main theorem in this chapter.

That is, we show that if a UHF C"(--algebra has a one-parameter

automorphism group generated by the closure of a commutative

normal 'A--derivation of finite type, then passivity and

spectral passivity are equivalent for such a C)'Ldynamical

system. This result ls applicable to all one-dimensional

lattice systems with finite range interaction and one-dimensional

Ising model at arbitrary temparature.
                                                    '                                       '     In chapter III, we discuss the extensions of certain

invariant states, and observe how these extensions

characterize the C",:--dynamical systems.

    Attempts to extend a factor state LP on a C?""-algebra B

to a factor state on a larger C'X'-algebra A were first

-5-



partially accomplished by the use of the notion of weak
                      tt ttexpectations for the GNS representation Tr,p, that is, linear

contractions P of A into 7Tv(B)" .such that PIB = .7v. •

.I)e,9i.:."i:.li:i!.:"jl[".S,:[.lh:..a:ie::,t:.gi2.'.271,w:.re.x::.i:::s

                          ttgroup G on A leaving B invariant, an analogous probleln

is to consider an or-invariant state SP of B which is /' .

centrally ergodic in the seRse that . '
• . 7g(B)"A Tv(B)'A u9G'=Åëol,'  . . ... •
where (T?, u9, Hf) is the associated covariant representation

of . (B, G, or)., and to try to find an extension to a centrally
     'ergodic state of A.'  It was shown in [4] that this can be done

by the method of [1] if B /is (semi)nuclear. The von Neumann

algebra theory developed in [22, 27] is not sufftcient to

provide a general solution.'  A corollary from the positive
                                                      'answer to this problem is that if A is separable and G-central

(and B is nuclear), then B is also G-central.• . .
 .' The purpose of .this chapter is to clarify the covariant
        '                                         '   'situation. In section 1, we consider the problem lifted to

the Cee-crossed products. Let (A, G, or) be a Cec'-dynamical
            'system, and let B be an or-invariant Cee-subalgebra of A. .

For a covariant representation (rr, u, H) of B, the existence
of a weak expectation 6 of AxorG for the'representation .

TXu (with respect to the subalgebra Li(B, G)) is shown to

-6-



be equivalent to the extstence of a (covariant) completely

positive contraction Q of A into (T(B)U uG)" such that
QIB = TT. Such a contraction Q will be called to be
                          'a covariant weak expectation.

     In section 2, we show that, for an ct-invarianp, state KP.
                      '                                                        'on B, there are bijective correpondences between covariant weak
expectations Q of A into (Trv(B)v u9G)", weak expectations
               '6 of AxacG into.(rrg(B) u utS)", certain ct-invariant extensions

of LP to A, and certain ((x X 1)-invariant states of
A Qma.("?(B) V "9G)'e

     In section 3, we show that if there is a covariant weak

e'xpectation of A into Ty,(B)" for a centrally ergodic
          'state 9, LIP can extend to a centrally ergodic state on A.

     In section 4, it is observed that, if A is G-central,
              Athen Q and Q always exist (for each or-invariant state).

     In section 5, we discuss G-abelianness of C"Ldynamical

system (A, G, or) with a compact group G. We show the

equivalence of G-abelianness of A, commutativity of the
                                                       tt
fixed point algebra of A ,. and ergodicity of certain class

of invariant states.

-7-



     Preliminaries and notations.

           '
. We shall summarize definitions and notations about some

   ttobjects in Ce('--dynamical systems to be used in this thesis.

                                                       '          '                                                         'O.1. A Ces-dynamical system is a triple (A, G, or) consisting

of a CSe-algebra A, a locally compact group' G, a continuous

homomorphism ct of G into the automorphism group of A su gh

that GPt+ ort(x) is continuous for each x in A.
                                                   '                         '                                                  '                                                    '                                '    '         tt tO.2.' Let (A, G, ct) be a Ci(--dynamical system. Then
                                                    'a state Y) on A is or-invariant if `tP(ctt(x)) == LP(x) for

all x in A and all t in G.• . '
             '                     '                               '                '
O.3. Let (A, G, ct) be a CeLdynamical system. Then

the C'"-crossed product AxorG for (A, G, or) is defined as

the enveloping Cee-algebra of Li(A, G), the set of all

                            ttBochner integrable A-valued functions on G equipped with

the following Banach 7"c-algebra structure:

                                      '

                  tt t               (xy)(t) = IG x(s)or.(y(s-it)) ds,

                     '                                   '                                      '                       '                                           '                         '                                 '                 x"K'(t) = A(t)-1ort(x(t-1))i(-,

                     '                                  '                               '                 II x lii - J. II x(s)R ds,

                                    '                     '
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where ds is the left Haar measure of G and A(t) is
                                                    '      '                                              'the associated modular function on G. . . '
    '                  '                                             '     We consider the actons of A and G on AxorG given by
     '     • • (ax)(t) =ax(t) (aCA), ''
                                                           '              (X.x)(t) =x(s-it) (seG), • • '
for all x in Li(A, G). We may embed A and G (or XG)
g!ttOioXZf ffiUitiPiier aigebra M(AxorG) of AxctG under these

                                '
     We assume that G is a locally compact abelian group.
The dual action tt of or is defined on Ax G by the formula
                                           ct
       ' ay (x)(t) =< t, y.>x(t), . .
              'where y in G and x in Li(A, G), and where <t,y>
                                               '                                      'denotes the value of y at t. •''
                                                          '                                                         '

                             'O.4. A covariant representation for (A, G, or) is a triple

(7, u, H), where zz is a (non-degenerate) representatioB of
                                          'A on a Hilbert space H, and u'  is a strongly continuous
                      'unitary representation of G on H such that
               rr(ort(X)) = utff(x)u#

            d            in A and all t in G.for all x                                                   '
  '  . Let S? be a state on A. Then there exists the cyclic
          '
representation (rrg, Hy, gg) of A with a cyclic vector gv

such that (Ty(x)gyky) = LP(x) for all x in A. If

LP is or-invariant, a unitary representation u9 is defiRed

   t.
             '

-9-



      . uYt Zg (X)C" : "g(or t(X))gg
                                                '
                                   'for all x in A and all t in G. Then we obtain
                  '
a .cov 2;ia?#,r:?r{;?en;.gtgo2..gl:A.:Y.g;.'.IZ.',g!l..(i,' G' "''

[."'. SI ,ctj' g)er:.lg a.:!,n-1:::nerate represent.atio. .'. .' ..

                                                       '                                                    '               '             '    .1 (TrXU)(X)= IG Tr(X(t))Ut dt ' '
                                              '                                                   '                                                     '            '                                                 '                '             '                                    '                                                       '        '
                                                            'for all x in Li(A, G).'rvloreover, the correspondence '
                          '(iT, u, H) ÅÄ (TXu, H) gives a bijection onto the non-degenerate
     4representations of AxorG. •,
                                                            '                                          '        '                           /t       '
                                                       '                                    'e.5. We denote by Åë, R, and Z the set of complex numbers,
the set of t;eal numbers, and the set of integers respectively.

                                                            '         '                                            tt                                                             '                                           '                                                 tt        ttt tt ttt t tt
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     chapter I...Cee-dynamcal systems wiFh ground.statgs. .

                   tt                                                  '          '                                                           '     Let '(A, G, or).be a C""-dynamical system. Recently, the

ideal structure of the crossed product AX ctG has attracted

considerable attention, particularly in the cases when G '

is abeltan; for, when G is abelian, spectral theory may be

applied with good effect (cf. [24, or.25]). !n the case '  1..
when G is 'R, A is a uHF' ce('-algebra, and or is of pr6duct

type, Brattell[6] proved that AXorG is not simple since A '
                                   '                   'admits a ground state for ct; i.e., a state Le such that for

all x in A and y in Aa, the space of entire analytic
blements in A, the function f(t) = NP(xoet(y)) extends to
                                                          'be analytic in the upper half-plane and bounded there by
il x ll ll y ll. Subsequently, pedersen and Takai[26] extended

this result to the case when A and ct are arbitrary (but

G :•R). Our primary objective in this chapter is to prove that

the existence of a ground state'is equivalent to the existence

of a proper ideal of the crossed product which is monotonely

increasing up to the whole algebra under the dual action.

. In last section, we shall generalize our results to cover

[giiZi:.g"g:I"!Ilili:itSYgS.g:l]. (A' G' or) where G is an abeiian,

-11-



I.1. Ideal structure of Ces-crossed products.

     Let (A, R, cx) be a CxX-dynamical system. If A adrnits

a ground state, the crossed product is not simple. In this

section, we elaborate on this point by showing the existence of

some proper ideal of the crossed product which is monotonely

increasing up to the whole algebra under the dual action.

   ' First of all, we Teview some conditions equivalent to

the condition in the definition of ground states mentioned in

the introduction.
    '

     Proposition 1.1. Let (A, R, or) be a CÅÄLdynamical system,

6 the generator of or, and kP a state of A. Then the
                                          'following conditions are equivalent: '
                                             '
          9 isaground state. '     (i)
  '

    (ii) (? is or-invariant, and if (Tv, u9,.Hg, Cv) is.

          the cyclic covariant representation associated with

          g) , then Sp(u9)c R+, where Sp(u`e) denotes the
                               '     . spectrum of urp. .
   (iii) Y'(x,sx) =O for all x in Aor(-co, O), where

          Aor(-oo, O) denotes the spectral subspace of A

          corresponding to the open interval (-co, O) in R.
                              '          -i LP (x 7"" 6(x)) l O for all x in the domain of 6.    (iv)
                                                           '                       t tt                                                        tt     (v) There is a positive (not necessarily bounded)

          operaror h on Hv with hg? =O such that
                 ith                          -ith          . e Tg(x)e = Trg(ortgx))
                                       '          for all t in R and x i'n A.
                                        '                          '
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We are referred to [8, or 24] for the proof. Note that (ii),

(1Å}i), afid (iv) are used in this section, in the next section,

and ln chapter II respectively.

     Proposition 1.2. Let (A, R, or) be a C"-dyn'amica2 system,

and let & denote the dual action of R on AxorR. If A

has a ground state, then there exists a proper closed ideal
J in AxorR such that if Ai < X2, then 6ix,(I) S 6)x,(l) and

for  any A> O, AxorR = zY).E).x(l), vvhere Z+ denotes the

set of non-negative integers. .
                        '
' Proof. Let Y) be a ground state. Let (TT?, uV, Hv, Cy)

be the cyclic covariant representation associated-with gP .

      mpThen u      t has the spectral decomposition
                  '                   u "t -'- I R e itS d E ( s ) , .

and the support of E (= Sp(uV)-) is contaiRed in R+, where

R+ is the set of all non-negative real numbers (see [24,
                                    ikt 98.12.5]). For each k l O, R Y t ÅÄ e ut is a unitary
                                    ikt vrepresentation on Hp. Put vk(t) =e ut. Then
(gy, vk, Hg) ts a covariant representation. Hence, we can

consider the corresponding representation (ayX vk, Hp) of

the crossed product. We denote the direct sum of

              '{Tp X Vk }k )- o bY ke ) o( TTyx Vk )• Let

                     -
  '' i= ker( 9. 6nvx Vk ))

be the kernel of i? i 8"vx vk ). Now fix a positive number A

                           - 13 -



arbitrarily.  .. Then we have . ..

     or"x(i) - Gx(ker( fll , 8"g X Vk.))) .

                 tt                                    '           =• ker(( sP l 8n`g Å~ vk ))o or"-A )

           '            = ker( [? i 8Tg Å~ "k + x))

                        '                                   '                                t tt tttt                                                         '           = ker( i? l ÅíTg Å~ vk )) D ker( e? ). 8n" Å~ vk )) = I

                             '   ' '                        tt t ttI:i:.1:I ,i..i",.Ll(:la..il.an,::s,y :.:."s2??::ce.:[,pi:::hefei

supp( f" .) is compact for each n' and ll fn - f ULi -e' O, '

where i. denotes the inverse Fourier transform of fn.

since supp(2n) is compact, we can choose a natural number

m(n) such that supp(Ih(• + m(n)X)) is contained in R- .

for each fn, where R- is the set of all negative numbers.
i:.P:iliCii!r6.SU;:[2ng;(i)m:nl>..1.,k,.)i.(i? cz:gained i.p B-

                                                         '                                                        '(xQg)(t)= g(t)x for ahy g in Li(R) and x in A.
                                                         '                  '                      tt tt tt
                                            '                                              '                  tt tg.:"; a?;. : i,•'g?•:(g?x•:,Qi ig:.'ji].",•i/l,?,•t•[1•)ii)••1 / .' /..)•• •''

• 1'  . .. ' ' . " iTg (x) JRg .(t)eiktu Pt dt ..'  ' . 1 1.

                    tt                     '
' '  '' . ' 1 ''' .. .1 = TIp(x)I. I. g.(t?e'i,ktei.tSdy dE(s) . ...

                             tt                  '                                                    '                                                  '                         '        '           '       tttt t ttt t tt                                          '                                      tt                                                       '  'i i• . •-,4i.-• .•

.

'

s



                                                      '                      = Tg(X) f.2n(s + m(n)X + k) dE(s) = o,

since the support of E is contained in R--. Therefore,

          ( O (Tg XVk))(X X g.,) = O
           klO
                                                '
for any n. Since xQ g. belongs to I, we have
          {x X f.} C U or" .x(I)
                      Z+sm

from ('t:-). Since • •                            '          ll xQ fn -x op fU 5 li Å~X fn - x@ f ll Li

                           - Ux II li f. -f II Li -)-' O,

We have' xQfe U 61.x(I)-. Now we easily see that the

ideal I is strictly contained in 6)x(I). Thus, if Xi< A2,

then we have "orx,(I) iC "orx,(I) and Li(A, R) C U 6i.x(I).
                                              Z.+ -n

Therefore, we obtain the desired result. Q.E.D.

    We recall that for any proper ideal, there is a primitive

ideal containing it. Hence, we obtain the following.

     Corollary 1.3. Let (A, R, or) be a C"-dynamical system.

If A has a ground state, then AxorR contains a primitive
ideal c such that for any X> O, AXorR' zY).6tnx(C)'

                              '              '                                                        '
     Assume that a C"t:'-algebra A is unital. Then Powers and
  tt
Sakai[29, 2.3] proved that there exists a ground state if or

is approximately' inner. ' .
                                                '                       t tt           '                                            '
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     Corollary 1.4. Let (A, R, or) be a C"--dynamical system,

vvhere A is unital. IIF or is approximately inner, the

statement of Corollary 1.3 holds. .
                                                   '

     The above corollary is an extension of the result of

Bratteli[6, 3.2], in which he assumed that A is a UHF

C7re-algebra with a product type action of R. Moreover, .

under the same assumptions, he showed the same result for an

abelian, connected and compact group such that the cardÅ}nality

of the dual group does not exceed the power of the continuum,

instead of R. As for this case, we shall discuss in section

                     '           t tt                '

I.2. Existence of ground states.

                                                  '        '                '   '

     In this section, we consider the converse of Proposition

1.2 and show how the ideal structure of the crossed product

is related to the existence of ground states.

                         .1                                                      '                   '                                                     '
    Theorem 2.1. Let '(A, R, ct) be a C"-dynamicaZ system,

where A is a unital C+-algebra. Then the foUowing

conditions are equivalent:

   (i) There is a ground state of A for ,or. '
  (ii)       There is a proper closed ideal I o17 Ax R such that
                                               or
   ' JC ax(I) for any AlO and the union of ax(f)

       with all X in R is dense in,AXorR.

                                       '                         '                              '                                         '                                           '
                  '
                • -16-                                       '

3
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     Proof. (i) => (ii). This follows from Proposition 1.2.

     (ii) => (i). Let B be an or-invarlant hereditary

C{C'-subalgebra of A. Put
                                                   '          JB ={ fe Li(R) ixXfEI for any xeB }.
                                                 '
Then, JB is a closed ideal. Set '
                           A          Z( JB) = { tER l f(t) = O for any f( JB }•

Since Ic 6)x(I) for any Xl O, we have JBC&A(JB)•

Hence, when Z(JB) is not empty, we have Z(jB) ) Z(JB) + X

for any Al O. Thus, if Z(JB) is neither eTnpty nor R,

it is a half-line (i.e., it is of the form [r, co), where

r is a real number). We denote the greatest lower bound
        '(including oo) of Z(JB) by m(B), where we set m(B) = co

(resp. -co) in the case that Z(JB) is empty (resp. R).

Let n be a positive integer and iet H. be the set of

 ee-invariant hereditary C,Vr-subalgebras B of A with
                         '                       'm(B) l -n. When B. denotes the ct--tnvariant hereditary

C';e-subalgebra generated by those in H., we have B.EH..
     tvLet Bn be the linear span of elements of the form axb
wi th ac B'e H., b( B"( H., xE A. Since g. is dense in
                                        '       'Bn, it follows that y X g E I for all ye Bn and ge Li(R)
          A                                   ttwith supp(g) c(-oo, --n)

     We assert that V B. is dense in A. Otherwise,
                     n                                         'denoting the closure of Y B. by B., we have an a-invariant

state Y) of A such that Y7 =O on B.. since B. is
a-invariant. Through the representation "y)xu9 of AxorR,
                                                     'define a state l'i5'  of AxorR by the cyclic vector Cg, where
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(Tg, u9, H?, %) is the cyclic covariant representation of

associated with Y'. By Kishimoto's theorem[14], the ideal

is densely spanned by elements of the form x X f with

Xx Z.A6 f.eul;A(ikst Therefore, there are xop f .in i a.d

   • • • 'g5-(or"A(x Q f)) =o (i.e., g(x) I o). '

Let H(xeeAx) be the ct-invariant hereditary CeLsubalgebra
 ,
gener ated by x":'  Ax. .Then H(x 'W Ax) e H. for some n > O,
which implies Y'(Å~"t`x) ='  O' (i.e., LP(x) = O). Thus, we

:.:"e,g.::;::g a,:o:t:ad;c.;iz:, ]rerii.:[i' ,i B:..i:.d9"Se

hereditary Corr-subalgebra of A for each n, ll x - 1 ll l 1

for any xeBn, which implies 1ÅëB. = Y B.. Hence,
                                           Allg h=a()e f:rQSiMEei.n >. 9' Therefore if Fypp(f) c (-oo, Tn),

        '                                           '                          '
     Now we take a covariant representation (T, u, H) of A

such that ker(TX u) D I. Then, Sp(u) C [-n, oo). Put

(,N) 6= inf(Sp(u)).
                          'we take  a  sequ gng;.(11:}c ig, 2 .siS\]that ,.

and ll gk II =1 for each k. Putting 'ek(x) = (T(x)gkigk)

then we have a weakire limit point Le of {Y)k} in the state

iPeaX? :lthA"spll:.iakce(21i,alebi3Y::g.posltive number e. if

 . '. SP.(T(X)Ck)( SPct(X) + SP.(Ck)
      ' '                         '            '                '                           '                                       '                        '
                                     '
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(see [24, 8.2.41), and so it follows easily from ("i(') that

9k(x'iex) = O for k-i < e. (See[7, or 24] for the spectral

theory.) Hence, we have Y7(x'kx) =O for all xeA with

Sp.(x)C(-oo, O). Q.E.D.
                                                 '
            tt

I.3. Ground states for compact abelian groups.
       '

     Let G be a locally compact abelian group. Suppose that
                                    AP is a semigroup in the dual group G which is closed and

has two additional properties;
                                        A          PA (-P) - {O}, PV (-P) =G
(P Å}s said to be a positive cone). Under these conditions,
P induces an order in a, i.e., y l y' if \ - yt E P

(see [32]).

     Let (A, G, or) be a C"Ldynamical system. Then we call

an or-invarÅ}ant state NP a groun'd state for (G, P) if

Sp(u9)cp.

     Now let G be an abelian, connected and compact group.
Assume that the cardinality of 6 does not exceed the power

                         Aof the continuum. Then, G has a positive cone P which
                                Ainduces an archimedean order in G (see [32, 8.l.2]). Now

we have the following:
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     Proposition. Jf. A has a ground state IFor (G, P)
                                         Awhere P induces an archimedean order in G, then
AxorG contains a proper ideal l such that 6)xi(f) S ax2(l)

for x,< A2. in ' G" and if X> O, then AXorG" zY. (l.x(l)'

                                      '
     We sketch the proof. By [32, 8.1.2], there is an order
                          Apreserving isomorphism of G onto a subgroup of R. Hence,

it is easily seen that there exists T in P such that
A (nT + P) is emp'ty, i.e., V (nT + PC) = 'e, where pC

                                                          'is the compleinent of P in e. If yl y' l O,

y + PC ) y' + PC. Hence, {nT + PC}. is an increasing sequence.

For any f in Li (G), there exists a sequence {fn} in
Li (G) such that supp(f" .) is compact for each n and
                        All fn me f l] Li + O, where fn is the inverse Fourier transform

of fn. Then, for each n, there exists a natural number
m(n) such that supp(f.)C m(n)T + PC. Hence, we have
supp(f" .(.+ m(n)T + y))c pC for any y in p. Thus, we

can obtain the desired result by the same method used in

                              'section l. '                       '

J
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     Chapter ]I. Passive states on UHF C"e-algebras.

     Let (A, R, or) be a Cec'-dynamical system, where R. is

a locally compact group of the real numbers. The notion of

tt' passive" states had been introduced by Pusz and Woronowicz[31].
                                                              'It was derived from the second law of therrnodynamics.
                                           'A convenient mathematical formulation is that a state tP of

a unital C?V"-algebra A is passive if

                    -i Y) (u"it-6(u)) l O

for all unitary elements u which belong to both the domain
                                           'D(6) of the infinitesimal generator 6 of as and the

principal connected component of the unitary group of A.

KtyIS states with some positive inverse temperature and ground

states are passive. The converse is not true in general.

In fact, though any mixture of passive states is passive, .

a non-trivial mixture of KMS states with different temperatures

is neither a KMS state nor a ground state.
                                      '     Recently, D,e Canni6re[9] defined an oc-invariant state 9

of A to be spectrally passive if

                     LP (x -iX x) S (9 (xx -i':-) .
for all x in Aor (-co, O). Here Aor(-oo, O) denotes the
                                                          '
spectral subspace of A corresponding to the open interval
              '(-co, O), whlch is defined to be the closed linear span of all

the elements of the form af(x) = ff(t)ort(x) dt, where x is

in .A, and f is a function in Li(R) whose inverse Fourier
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transform has compact support in (-co, O). Moreover, he showed

that 9 is spectrally passive if and only if

                      -i 9(x6(x)) iO '
        '
for any self-adjoint element x in D(6). If K{) is passive,
             .taking u = eitX and differentiating twice with respect to t,

it immediately follows that the above inequality holds. Thus

all passive states are spectrally passive. De Cannibre then '

asked whether all spectrally passive states were passive. Later,

Batty[3] gave a partial answer that for a group action G
                                                      '
commuting with or, any G-central spectrally passive state is
   'passive. Here we remark that even in a full matrix algebra

there are spectrally passive states which are not G-central

for any G commuting with or. However when A is a full

matrix algebra, passivity and spectral passivity are

i:l.]":gZn;.',:21gh.il ,S;eg.fiZ:.i,liS."it of Lenard[2i], and

    .Now we have a question whether passivity and spectral '
                                                            '
passivity are equivalent on UHF C-Lalgebras. In this chapter,

as a step toward this problem, we consider the case where

a UIIF C"C'-algebra has a one-parameter automorphism group

generated by the closure of a commutative normal. "K'-derivation .

of finÅ}te type (see Powers and Sakai[29], Sakai[35, 36, 37] for

the details). ' .                            '                                                           '                                          tt
     In section 1, we show that every passive state is spectrally

passive for any one-parameter automorphism group on finite
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dimensional C."'-algebras.
                                 '
     In section 2, we show that if 6 is a closed 'K--derivation

densely defined on a unital CiLalgebra A, then each unitary
                                   'element in both the domain of 6 and the connected component

of the identity in the unitary group of A has the form
              eiaieia2..............eiam

for some self-adjoint elements ai, a2,...........,a. in the

domain of 6. This result is used to show the main theorem in

the next section.

     In section 3, we show the main theorem in this chapter.

That is, we show that tf a UHF C?X--algebra has a one-parameter

automorphism group generated by the closure of a commutative

normal ",C'-derivation of finite type, then passivity and

spectral passivity are equivalent for such a C,V"-dynamical

system. This result is applicable to all one-dimeRsional

lattice systems with finite range interaction and one-dimensional

Ising model at arbitrary temparature.
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I.1. Passivity on finite dimensional CiE-algebras.

     In this section, we show that every passive state is

spectrally passive on finite dimensional CiC'-algebras for

any one-parameter automorphism group. First of all, we

prove that passivity and spectral passivity are equivalent

in a full matrix algebra. This fact is already well-known

(cf. [9, 21]), and it is a consequence of the discussions in

[9, 21] based on spectral analysis. But we report here its

more elementary proof.

     Consider a Ct"-dynamical system (A, R, or), where A is

an nxn-matrix algebra. Let T be the tracial state on A.

Any state LP of A is given by a density matrix p with

pl O, T(p) =1, and `P(x)= T(px) for all x in A. Now
                                        ith -ithor can be written as the form ort(x) =e xe with some
                              'self-adjoint matrix h in A. If LP is ct-invariant, p and

                         tt     Sublemma({21]). Under the above notations, we suppose that
                                             '                                                      'p and h commute. Jf the eigenvalues pi of p and
hi of h satisfy (pi - pj) (hj - hY l O for all i and J',
                                                    'then we have T(pu"hu) >-- T(ph) for alZ unitary matrices u
                                                     'in A.

                          '                                '    Proof. Let u= (uij) be a unitary matrix. Then we have
                                                        '                                   '
                                   '
                 T(puec'hu) =,2.pihjluijl2

                           l,]

-24-



and

                T(ph) = 2 pihie
                        i
                                  '                                             'Since the matrix (iuijl2) is doubly stochastic, it is given
                  'by a convex combination of the permutation matrices from
        '                                     'Birkhoff-von' Neumann's theorem. Hen6e we have

                 T(pue(-hu) = g JNo i. piho(o

                                                    'for A6 ZO and 2 Ao =l, where u runs over permutations
                   U

Of l,.2, ee-e.eseeee, ne If (Pi m Pj)(hj th hi) 4 Os

•ther! we have

                   Z p hu a) i Z pi hi

                   l1
(e.g., [l3, Theorem 368]), which implies th-e desired result.

                                                    '                                                      QeEeD ge

     Now suppose that a state &F of a full matrix algebra A

is spectrally passive. Then p and h commute. Therefore

                            '                                                           'we may $uppose that h=Ehieiis where hi                        . (l SiS ft) are
             •l
real numbers, and that p=2 pieii, pi l O, Z pi = l, where
                           i 'i
            'we denote by {eij} the matrix units of A.
                                       '          '     Take a self-adjoint element x = eij + eji. Then we have

          -i `P(x6(x)) = -iT(px6(x)) = T(px[h, x])
                    '
                     = T(pxhx) - T(px2h)
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                     = (pihj + pj hi) - (pi hi + pj hj)

                                            '
                     = (Pi - Pj)(hj L h.i) l O.

                                                       '   '                      '
(Note that -i `p(x6(x)) = Z pi(hj - hi)lxijl2 for x = xi:'
                        t-       . It]                                        '          '=.Z xijeij•) Since -i Y'(u,e6(u)) = T(pu,ehu) - 'i(ph) for .

all unitary matrices u in A, it follows from Sublemma that

(l' is passive. Thus we have the following. '
                                                          '
                                       '                                                           '                                 '
algeb):inllZ lg:givAen.Y  SPeCtraiiy  passi re state of a fuii matrzx

   .Proposition 1.2..Let (A, R, or) be a Cee-dynamical system,

where A is a finite dimensional Cve-algebra. Then any

spectraZly passive state of A is passive. . ,
                     '                                         '
     Proof. SiRce ct is uniformly continuous, or is inner,

                                                      '                                    'i.e., ctt(x) = eithxe-ith for all x in A, with some
                           '                                                  '                                                    '                                      '                 '                                'self-adjoint element h in A. Now let A= Ze Apj
                                            ]be the central decomposition, where {pj} is the famiiy of

orthogonal minimal central projections in A. For each j,

Apj'  is a full matrix algebra. Since ort(pj) -- pj, Apj is

or-invariant. Suppose that a state Y is spectrally passive.

Then, {P is spectrally passive on Apj. By Lemma 1.1,

`9 is passive on Apj.'Take any unitary element u' in A.

Since up] is a unitary element in Ap], . . .

  '                                                '                                               '                                                        '          '                                                      '                                    '                                tt              '                '                                              '                  • -26- ''                                                        '



                   -i Y'((up,)7K-6(up.)) l O .
                           ]]
            Since {p,} is the family of orthogonal central •for all j.
                     ]
projections with 6(p ,) = O, a straightforward computatlon shows
                     ]

           - ig(u,r6(u)) = -i 9( 2 u"'pj6( Z upk))
                                 j k,
           = 2 -i9((upj)'ix'6(upj)) ). O.
              j

This completes the proof. Q.E.D.

]I.2. Lemmas for closed ee-derivatioBs.

                   '            '
     In this section, we prepare soine lemmas to show our main

theorem in the next section.

    Lemma 2.le Let 6 be a cZosed "-derivation denseZy defined

in a unital C"-algebra. Let u be a unitary element in D(6)s
the domain of 6, with Ru -1 il < 1. Then there exists

a self-adjoint elefiient a in D(6) such that u=eia.

    proof. since il u-1ll <1, the spectrum of u is

contained in the domain of the principal logarithm .                                                    Hence,
                                                   '                                               'we have
            '                          oo .                             1               LOg U ' -.2=1 n (1 - U)"'

                                                       '
 Moreover, it is easily seen that

     '
                      '                            '

                         -27-



                          p -1          6( -ir (i "- u)P) = k.Zo -i;-(i - u)k6.(i - u)(i .- u)p'k-i.

            n
PUt an=' p-.2i g (1 -u)P. Then for m ->- n, we have

          ll 6(a.) - 6(a.) ll

           '
                    '             m p-1          = li 2 2 -l;' (1 - u)k6(1 - u)(1 - u) p-k-i

             pt1 k=O
               '                                       '                                            '              n pl                    S(i - u)k6(i - u)(i - u)P-k-i ll           -22
              pt1 k=O
                                               '
             m p'1 .          -`- ,,.il+i ,i, ii ll (.i ' ") IIkil 6(i - u) II ii(i - .)gp-k-i

            m' pt1 •          - 2 2 l; ll (i - u) llP-i ll 6(i - u) li

            p7n+1 k=O
              '             m          - 2 11 (i - u) llP-i Il 6(i -- u) Il .

            p=n+1
                               '

As m, n + oo, we have

                    ll 6(a.) --• 6(a.) ll -+ o•

Since 6 is closed, we conclude that Log u belongs to, D(6).
                                                        '                                          '                                    .Taking a= -iLog u, we obtain u == eia. with a= a,"" i'n D(6).

                                                      Q.E.D.

           '
     Remark 2.2. Since D(6) 'is a Banach algebra with tbe graph
  '                                 'norm, we can obtain the lemma by using the holomorphic functional
                                   'calculas.
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     Lemma 2.3. Let 6 be a closed "-derivation densely det-ined

on a unital C--algebra A. Take any unitary eZement u in

D(6) A Uo , where Uo is the connected component of the identity

in the unitary group of A. Then there exist self-adjoint

elements al, a2,............, a. in D(6) such that

              u . eialeia2.............eiam.

     Proof. Since u belongs to Uo , we can choose self-
                                       'adjoint elemnts hl, h2,............,h.-1 in A such that

              u = eihleÅ}h2.,...........eihm-1 .

Since D(6) is deBse in A, there exist self-adjoint

elernents al, a2,.............., am-1 in D(6) such that
                     '                          '
           ll u - eÅ}aleia2..............eiamNl ll < 1.

since eial, eia2,..............eiamkl belong to D(6) by

[28], Å}t follows from Lemma 2.1 that

          e-iaM-1 ..............e-la2e-ial u ,. eiam
                      'for some self-adjoint element a. Å}n D(6).

This completes the proof. Q.EeDe
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I[.3. Passive states for Cee-dynamical systems associated with

      commutative normal ee-derivations of finite type.

                                  '

     In this section we establish our main theorem. Sakai [35,
                                             '36, 37] introduced the notion of commutative normal 7re-derivations

on UHF CeLalgebras. A commutative normal ",:'-derivation is defined

as follows.
                          '
     Let A be a UHF Cec'-algebra. Then a ec'-derivation 6o is

said to be a commutative normal ce--derivation if there is an

increasing sequence {A.} of finite type I subfactors
                                           co(containing the identity) in A such that V A. is dense in
                                          •••n=1
A and the domain D(6o) of 6o is e A; moreover, there
                                     n=1
is a sequence of mutually commuting self-adjoint elements {h.}

in A such that 6o(a) = i[h., a] for a!1 a in A.
(n = 1, 2, .........). By Sakai[35], 6o has a canonical

extension 6 such that 6 is a generator and

                   et6(a) = .i.igg et6n(a)

                                     '   '
for all a in A, where 6.(•) = [ih., •]. Under thiS setting,
we consider the ct'-dynamical system (A, R, or), where ort = et6

for all t in R.
     A (commutative) normal iLderivation 6o is said to be

of finite type if we can choose h. from the domain of 6o

for all n. This is equivalent to 6o(D(6o)) <L D(6o).

     Now we show the main theorem.
      '                              tt
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     Theorem. Under the above notation, suppose that Avo is

of finite type. Then the following statements (i) and (ii)

are equivalent.

     (i) A state CP of A is spectrally passive for or.

    (ii) A state Y) of A is passive for or.

     Proof. We have only to prove that (i) implies (Å}i).

     Let B. be the C"C--subalgebra of A generated by A.
     .
and h.. Then we have [h., h.] =O and [ih., An]C B.
for all in l n. E{ence B. is invariant under 6.. Since

we have 6m == o"n on Bn, Bn is ct-invariant. Thus, we can

consider the C"K'-dynamical systems (B., R, ct) for n = 1, 2,....
   'Since h.e V A. for all n, B. is a finite dimensional
            m

                                                        '     Now suppose that a state YP of A is spectrally passive

for a. Then we cail consider kP as a spectrally passive state

 over the C"i:--dynamical systems (Bn, R, ct) for al.1 n. Here,

we remark that Bn contains the identity of A. It follows from

Proposition 1.2 that LP is passive over (B., R, ct) for all

     It is well-known that a unitary group of a UHF CSe-algebra

is connected. Let u be a unitary element in D(6). Then

it follows from Lemma 2.3 that u is of the form
              elalela2.....elaj......elam
    '
for some self-adjoint elements al, a2, ........., a. in D(6).

Since .Yl A. isacore for 6, for each j (l s. j$m),' '

we can choose a sequence of self-adjoint elements {aj(.)}
                           '

e

n e
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                         co(n= 1, 2, ......) frOM .V.1 An SUCh that

 '     ' ' ' ll aj(.)- aj il +o
                             '

                   il 6(aj(.)) -- 6(aj) ll -+ o

as nÅÄ eo. For each n, we may suppose that a](.)eAn for

all j (1 Sj `- m). On the other hand, it follows from                                                         [28]

                           '             -- -            eial(n), eia2(n),..........., eiam(n) e D(6)

             6(.iaj(n)) .. iJi eitaj(n)6(aj(.))ei(1-t)aj(n) dt

                                            '                   '
for all n. Hence, we have that
                  '      !..igg 6(e.iaj(n)) = 6(eiaj) = ili eitaj 6(aj). i(1-t)aj dt

          '
putting un = eial(n)eia2(n)..............eiam(n), we see that

un is contained in Bn and

  ' ' ll un -u ll ÅÄo
as n -+ co. Moreover, since '
              rn
     6(u.) = 2 eial(n)e-a2(n)....6(eiaj(n))......eia.(.)
             j=1
                            '

             '
                  m
          6(u) = Z eialei92....6(eiaj)........eiam,

                 j=1 .                                 '                          '                                         '

                                   '             l6(u.) -- 6(u) il -+ o. '

Since the id gntity oi A is contamed im B. for all n,

     '                                           '                 '                                                       '                                                         '
                   '
                                       '



un is a unitary element in Bn. Passivity
                           '(B., R, or) shows that
                                       '
                 -iP(u:'6(u.)) l O.

Since we have tp(u;('6(u.)) -F <P(u+6(u)), we

                 -i9(u'X'6(u)) l O.

This completes the proof.

of P

have

for

Q.E.D.
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     Chapter III. Extensions ef invariant states.

                                          '
     In this chapter, we discuss the extensions of certain

invariant states, and observe how these extensions

characterize the C?'LdyRamical systems.
                                         '
 ' Attempts to extend a factor state ,p on a CBLalgebra B

to a factor state on a larger C't:'-algebra A were first

partially accomplished by the use of the notion of weak
                             'expectations for the GNS representation Tg, that is, linear

contractions P of A lnto zv(B)" such that PIB = Trg•

The eventual solutions of the attempts[22, 27] were variants
                                             'of this method.

     In the case when there is an action or of an amenable
           '
group G on A leaving B invariant, an analogous problem
                                 'is to consider an or-invariant state LP of B which is •

centrally ergodic in the sense that

      . Tv (B)" A gv (B)' A uVG' = Åë•l,

where (ng, u9, Hii).is the associated covariant representation

of (B, G, or),. and to try to find an extension to a centrally

ergodic state oÅí A. It was shown in [4] that this can be done
                                              'by the method of [1] if B is (semi)nuclear. The von Neumann

algebra theory developed in [22, 27] is not sufficient to
                                         'provide a general solution. A corollary from the positive

answer to this problem is that if A is sepafeable and G-central

(and B is nuclear), then B ls also G-central. '
     The purpose of this chapter is to clarify the covariant
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situation. In section 1, we consider the problem lifted to
                                                           'the Csc'-crossed products. Let (A, G, or) be a Ce['-dynamical

system, and let B be an or-invariant Ces,-subalgebra of A.

For a covariant representatioR (ir, u, H) .of B, the existence
                      Aof a weak expectation Q of AXotG for the representation

TXu (with respect to the subalgebra L!(B, G)) is shown to

be equivalent to the existence of a (covariant) completely

positive contraction Q of A into (Tr(B)V uG)" such that
QIB = T. Such a contraction Q will be call'ed to be

a covariant weak expectation.

     In section 2, we show that, for an or-invariant state `-P

o' n B, there are btjective correpondences between covariant weak
expectations Q of A into (TTrp(B)v uVG)", weak expectations

G of AxorG into (Tg(B)v u9G)", certaln ct-invariant extensions

of cp to A, and certain (or Q l)-invariant states of
A X...(Tg(B) V u? G)'.

     In section 3, we show that if there is a covariant weak

expectation of A into TTg(B)" for a centrally ergodic

state LP, LP can extend to a centrally ergodic state on A.

     In section 4, it is observed that, if A is G-central,
then Q and 6 always exlst (for each (x-invariant state).

     In section 5, we discuss G-abelianness of C"ALdynamical

system (A, G, a) with a compact group G. We show the
equivalence of ' G-abelianness of A, commutativity of the

fixed point algebra of A , and ergodicity of certain class

of invariant states.
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M.1. Covariant weak expectations.

     '
                               '                                         '     Let (A, G, or) be a C'""-dynamical system, and B be an

or-invariant CeLsubalgebra of A. Let (TT, u, H) be a

covariant representation of (B, G, ct) and put

                   tO? = (TT(B)V UG)"•

                   '                      '
     Definition l.1. A covariant weak expectation for

(T, u, H) is a completely positive contraction Q : A ÅÄ R?
                                                'such that Ql. = ?T and Q(at(a)) = ut9(a)u!' . (a E.A, tE G)

' In the above definition , if the action a is trivial,
                  'Q is a linear contraction from A into TT(B)" such that

QiB = ?r. Such a linear contraction is called to be a weak
            'expectation for (TT, H) of a Ces-subalgebra B (see [1]).

 tt                                    '                                                      '
                             '                                            '                                                  '
     Definition 1.2. A weak expectation for (Txu, H)

                        A•is a linear contraction Q : AXorG ÅÄ Rl such that
                       A         ' Q(y)=(nxu)(y)             '      'for all y in Li(B, G).

     Note that this definition is not quite covered by the
           'definition of weak expectations in [1], since there is
                  'no reason, a priori, why it is automatically possÅ}ble to
                                   .tembed BxorG in AxaG, or to factor nxu through BG.
Here we denote by BG a Cac-subalgebra of AX orG generated

by Li(B, G). In general, BG is a quotient algebra of
 '                                      'BXorG; the algebras coincide if G'  i's amenable.
                                       '                        '                                      '
                                        '                       '       ' '                                         '
      •• . -36- .
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     Remark 1.3. If Q is a conditional expectation .

from A onto B with Qoat= ortoQ for all t in G,
        'then BXorG is automatically a Crksubalgebra of AxorG. Indeed,

let Åë be a positive definite function on G into Bec'
                                                          '                                            '(cf. [24, 7.6.7]). Then define a positive definit•e function
                                          '

                    Y(t)(a) = Åë(t)(Q(a))

for all a in A. Since we can check the condition (iD

of Theorem 1.l in [18], BXorG'is a Cor"-subalgebra of AXctG.
    '
                                '
     Roughly speaklng, we can say that any covariant weak

dxpectation is a weak expectation commuting with the group

action. In the case where there exists a covariant weak

expectation for some covariant representation (", u, H) of

an or-invariant C'iLsubalgebra B of A, the above remark

might suggest that BXorG should be a C'AC-subalgebra of AxorG.

But we b.ave the following example.

                                                  '
     Example 1.4. Let (rr, u, H) be a covariant representation

of a C,S:'-subalgebra B of A. Let (Ao, G, B) be a C"k-dynamical

system and Bo be a B-invariant C'""-subalgebra such that BoXBG

can not be embedded in AoXBG. TheR we consider a C,Ws-dynamical

system (A e Ao, G, or O B), a C--"'-subalgebra B e Bo, and

a covariant representation (p, u, H) defined by

p(b.O bo) = T(b) for all bO bo in Be Bo.
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     Theorem 1.5. Let (A, G, a) be a C"'-dynamical system,

and let B be an or-invariant C'-subalgebra of A. Suppose

that (T, u, H) is a covariant representation of B, and

put P? = '(T(B) V uG)". Then there is a biJ'ective correspondece

between covariant weak expectations Q:A + R2 for (u, u, H)
                      Aand weak expectations Q: AXaG +M for ("xu, H). The

correspondece is given by
                     6(x) = iGQ(x(t))ut dt

for all x in Li (A, G).

     Proof. Suppose that Q:A" 107 is a covariant weak
expectation for (T, u, H). Define 6: Li(A, G) -b M by

the above formula. Then we have

             a(xce) = J.A(t)-iQ(ct,(x(t-i)-t""))u, dt

                   = fGA(t)-iutQ(x(t-i))-rc" dt

                   = f.UiS'Q(x(t))ee dt

                     A                   = Q(x) ee .

Moreover, for y in Li(B, G), we have
     '

              6(y) = J.Q(y(t))u, dt

                                 '
                   = JGT[(y(t))ut dt

- 38 -



                   == (T Å~ U) (Y) .

Let g be a unit vector in H. Consider the map Y:G -+ A'"'

defined by

                      y(t)(a) = (Q(a)u.cl g)•

For ti in G and ai in A, we have
                   n                   Z zy(tTit.)(ae (a'ia.))
                         -] -1 1]                                t'                  i,j=1                                 l                     n                   = 2 ( u* Q(a{tk a,)u u* u gle )i O
                    i,j=1 ti i] ti ti tj

by [40, WÅ} .3.4]. Thus W is positive definite. Since we have

Y(e)(a) : (Q(a)Ck), W(e) is a state of A. By [24,7.6.8 ],
t' here is a state {Dg of AXorG such that

                       Y(t)(a) = tog(aX,) .

where the same symbols are used to denote the canonical
                                         '                  to the multlplier algebra M(AXorG), A isextension of co               c
embedded in M(AxorG), and X is the unitary representation

of G in M(AxorG). For x= x* in L](A, G), we have
                                        '
                   coE;(X) = f,ooc(X(t))L.) dt

                         - J,(Q(x(t))ut41 g) dt

                                           '                        - ( a(x)ck)•

Thus we obtain that
               '   • . I( 'Q'S(x)ek)ls llxll A..G•
si

Rce e( x)* = e( x*) =6(x), we see that ll "Q (x) Il $ 11 x ll A..G•'

Hence 6 extends by continuity to a bounded self-adjoint

                            A                              , of AxctG into i07 whichlinear map, also denoted by Q
                                                 Ais a contraction on the self-adjoint part. Then Q extends
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an ultraweakly continuous linear map, also denoted by a,

 of (AxctG)*i"L' into i07 whÅ}ch is a contraction between the
                                                A self-adjoint parts. Furthermore, we have TtXu = QoÅë

 where O:' BXorG " BG is the canonical *-homomorphism,
                        ' so this identity remains valid for the ultraweakly continuous

                   •A extensions. Since iTxu is non-degenerate, Q(p) = IH,
 where p is the identity of Bgr*, So p is a projection in

                                                         ' (AXatG)**e Now, if I is the identity of (AxorG)**, then

                        '
                                        '                         A    . • ' II I. Å}Q(I - p)ll
                                                     '                                                   '                   == Il6(p Å} (i - p)ll

                   s lipÅ} (i - p) li = i•

 Hence we obtain that 6(I - p) = o. so we see that 6(I) = IH

 For x in (AXctG)** with OSx -` I, we have
                     A   • ll iH - Q(x) II s lli- xll s i•
                                            ' since G(x) is seif-adjoint, 6(x) i o. Thus 6 is

                  AA                       = IH, Q is a contraction on (AxorG)** positive. Since Q(I)

 and hence on AxaG (see [7, 3.2.6]). ''
     Let {fi} be an approximate identity for Li(G).
  '
 For a in A, put (a Q fi) (t) = f.i (t)a, so aX fie Li (A, G)
                                                       ' and aXfi ÅÄa ultraweakly in (AxorG)**. Then we have
     Q(a) ='iim (J. fi(t)u, dt)Q(a) = iim a(ax fi) =. AQ(a),

 where the limit is taken Å}n the ultraweak topology.
   ' conversely, let 6 : AxorG ÅÄ'n7 be a weak expectation
  ' for (iTxu, H). Then e extends to an ultrawea'kly

 continuous mapping, also denoted by Q, of. (AxctG)'-"* inVo
                                       ' M. Furthermore, the kernel of Åë is contained in the kernel
    '
                                   '           '
                 '                                              '               . • -40- •                                 '
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of TTxu, so there is a representation P of BG such that
                 ATXu = PoÅë and Q is a weak expectation for P in the sense
of [1]. By [1, 2.1], Q is completely positive, and

                                  'satisfies the module property:

                 AA                  Q(yixy2) = P(Yi)Q(X)P(Y2) •
for yl, y2 in BG'"'A' and x in (AXorG)'A'e4,. Identifying A '
with its image in evf(AxorG), put Q= 61A. Then Q is a completely

positive contraction of A into Rl. Moreover,

we have
                     A               Q(b) - Q(b) := P(b) = TT(b)

for b'in B and '
     Q ( ct t ( a ) ) - Q ( A , a A t7' ) = p ( X , ) Q ( a ) p ( A ",""' ) = u , Q ( a ) u tYt •

for a in A. Thus Q is a covariant weak expectation.
For x in Li(A, G), since we have x == IGx(t)Xt dt

where the integral is ultraweakly convergent in (AXctG)'A"eXd,

we have '   , ' 6(x) - J.6(x(t)A,) dt

                   = jr.6(x(t))p()L.) dt

                   = JGQ(x(t))ut dt.

This establishes the bijective correspondence. We complete
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     Remark 1.6. From the proof of Theorem 1.5, we see that

a covariant weak expectation Q satlsfies the module property

       '                   Q(b,ab2) = "(bi)Q(a)Tr(b,) •

for aeA and bl, b2(B. This may also be deduced from
Stinespring's Theorem [23, or 38] for any completely positive

mapping Q:A -)' Pl such that QIB = T.
                                '                                 '

     Remark 1.7. There is a standard argument to show that

any linear contraction Q:AÅÄM , such that QIB = TT, is

positive. Indeed, let p be the identity of B**, so that
            'p is a projection in A**. Now Q extends to an ultraweakly
continuous linear contraction, also denoted by Q, ' of A**'
             '                                                         'into M, whose restriction to B** is the normal extension

of T. Since IT is non-degenerate, we see that Q(p) = IH.
Let oo be any normal state of R7. Then we have llcL)oQll = 1.

Hence, we have (tooQ)(p) = 1= llpli. Thus ' aloQ is positive

by [34, l.5.2]. Hence Q is positive.

     ?Yforeover, Q is completely positive if'it satisfies
             'any one of the following additional properties:
                                      '                                             '                          '     (i) Q is a complete contraction,

    (jL) Q maps A into 7(B)" (see [1, 2.1]),

    (tii) Q is covariant, and for ti in G and ai in A,
                                                    '                                   '                                                       ttt                  n                 2 u "" Q ( a " a .) u l O
                      t, J]                               t'               .i.jF1 L ] .
                          '         (see the proof of Theorem 1.5).
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     Example 1.8. In general, Q may not be completely

positive, even if it is covariant. For example, let

A be the C'5"-algebra rvl2 of 2Å~2 complex matrices, B be

the subalgebra of diagonal matrices in 2Å~2 complex matrices,

G = {O, l}, ori = Ad[9 S], T be the identity repreise'ntation'

of B on Åë2, ui = [? 6], and'Q be the transpose map.

        '

     Example l.9. A covariant weak expectation Q may fail

to map A into T(B)". For example, let A = l"12 oo M2,
       tt
B = M2 Q I2, G" U(2)s ort = Ad (t & 'V), H= Åë2Q Åë2,

T(b & I2) = b Q I2 (b e M2)s ut = t Q t. Theh (T, u, H)

is a covariant representatioR of (B, G, or) with u-invariant
cyclic vector 2-l ((1,o) X (1,O) + (o,1) & (o,1)), and

V(B)" = T(B) = M2 Q I2, iO? = M2 X lvl2. The ideptity

representation Q=p of A is a cevariant weak expectation
                             A, mapping A onto /'1. Here Q is just Pxu.
                                             '                                            '
         '

     Remark 1.IO. Suppose that G is amenable, and let
                            oom be an invariant mean on L (G). Suppose that there is

a completely positive contraction P ; A - r? such that

PIB = Tr. Then there is a covariant weak expectation

Q:A+M given by
          ( Q(a)gl n) - m(t ÅÄ (u#"P(or,(a))u.gi n))
   '
for c and n in H. In particular, if there is an injective
von Neumann algebra IV such that ff(B)" C !V (: R? , then
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there is a weak expectation 6 :'AxorG ÅÄ R2. .If B is nuclear,

one may take IV = or(B)" or IV == R? since BXorG is nucZear
                                              '(see [l2, Proposition 14]).'  If B is seminuclear (cf. [20]),

t-here i's a weak expectation P : A ÅÄ 'T(B)" and hence

a covariant weak expectation Q : A ÅÄ R7.

                              tt                                 '
                       tt
                           '                      '
I[[.2. Applications to iRvariant states.

         '  '
  '     '                     '                                         '     Let (A, G, or) be a C't"-dynamical system, and let B be

an ct-invariant C7vat-subalgebra of A. For an or-invariant state CP,

we denote by (rrp, uV, Hg, gy) the GNS representation of {P.

Put R?y = (TtpÅ~ uY)(BxorG)". In this section, we establish

bijective correspondences between covariant weak expectations

of A into My, weak expectations of AXorG into R?g,

certain or-invariant extensions of (P to A, and certain
   '(or oo 1)-invariant'  states of A Qmax R?v'' •

     Recall that there is an affine homeomorphism between
            'or-invariant states y) of B and states 9S of BxorG with
              '(iY(Xt)=1 for all t in G, given by ' '
                                        '
    ' 9;( y) - I. (l'( y(t)) dt

      '                  'for y in Li(B, G) (see, for example, [2, 4.1]). The GNS
representation of {5' is (Tgx u9, Hg).
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    Theorem 2.1. Let (A, C, ct) be a C"-dynamical system,

and let P be an or-invariant state of an or-invariant

C'-subalgebra B with associated covariant representation
(Tg, u9, Hle,gO of (B, G, or). We denote by Mv the

von Neumann aZgebra generated by Tg(B) V u8. Then

There are biJ'ective correspondences between: .
     (i) (or X 1)-invariant states co of A Q MJ such that
                                         max

            (*-) to(b X d) - (Ty(b)dC?l gv)

         for b in B and d in R?6,
    (ti) covariant weak expectations Q :A + R?ip for (ng,

    (M) or-invariant states th of A such that WIB=9

         E.ÅëTip(A)Ev C n?v, where EÅë is the projection of

         Hth onto Hv7 ,
    (iv) weak expectations Q'N .' AxorG + mp for (uy, Å~ uP,

                 N     (v) states CD of (AXorG) {9.. A7yl such that

            (*-*-) at(x x d) = I(TTv(x(t))dC" kg) dt

                            G

         for x in Li(B, G),

                rv NN    (vi) states th of AXorG such that YOO=9 and
         E{pTqr(AXorG)E{VCR7\,, where Åë is the '-homomorphism

         of BxorG onto BG.

 uV ,

and

 Her),

Hg)
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     Proof. The proof of [1, 2.3] shows that there is a

correspondence between states cD of .A.il?ax/71i satisfying

(*) and completely positive contraction Q : A + R7g such

that QIB = Zg. (The proof in [1] did not use the assumption

that the C*'-subalgebra D is ultraweakly dense in T,p(B)'

except to show that Q(A)C rrp(B)' (=D")•. Now taking D= D"

I R?t.s"cge:riS.:illi PrOOf giVes the present resuit.) Furthermore,

e (Q( or t(a)) iT y, (bi)dcp l Tg (b2)cg) = (utQ(a)ut "' Tr lp (bi)dgg l Tg (b2) Cg )

   . (aeA; b,, b2EB; tGG; de R?e)
ee (Q(b;'ct,(a)bi)dg,plgg) = (Q(or,- i( bi'V)aor,t( bi ))u, *du, C,elgsR)

                              (a e A; bi, b2G B; t eG; de R? fo )

e oo(b ;' or .(a) biQ d) = tu( or.- i( b2*' )aort- i( bi) op d)

           • . • . (a eA; bl, b2eB; te G; de mlp )
<t== ==) Q( ort (a) X d) = tu(a Q d) (a eA; te G; dE m); )

`lt==> co is (ct X1)-invariant.

                            '                                       'This establishes the correspondence between (i) and (ii).
                            '     It was also shown in [1, 2.3] that the restriction map

of the state space of A {?.. R7" into the state space o'f A

gives an affine homeomorphism between states (D satisfying (*)

and states V of A with iPiB = V' and EkvTkp(A)Eip C R?ye•

Clearly, if tu is (orXl)-invariant, then V is or-invariant.
                     'On the other hand, if W is a-invariant, then it follow's,

for example by the uniqueness of tu, that (D is (aQl)-invariant.
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This establishes the correspondence betweeR (i) and (iii).

     The correspondence between (ii) and (iv) is immediate

from Theorem 1.5, while the correspondences between (iv),

<v) and (vi) agaiR follow from [1]. One merely has to observe

that the condition ('k'*) is equivalent to the requirement that
              1li'(x Q d) = ((7fv Å~ uep)(x)dgp ICg),

and that if at exists, then we have . di(y X 1) ='YVP(y)

for y in Li(B, G). Thus 9S factors through B
                                                G'
           9Hence T[ Å~u              induces a representation p                                           of B                                                   and                                                G
the weak expectations 6 for (Tvx u9, Hep) correspond

to the weak expectations for the representation (pv, Hv)

of the C*-subalgebra BG. ' QipEeD•
                                                 '

     Remark 2.2. The correspondences of Theorem 2.1 are all

affine homeomorphisms in the weak* and point-u.ltraweak

topolegies. '
     Remark 2.3. The correspondence between (iii) and

(vi) is the canonÅ}cal correspondence between or-invariant

                             N xvstates W of A and states th of AXorG wlth ")(At) =1

for t in G.
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]l .3. Extensions of centrally ergodic states.

     It is useful to apply the notion of weak expectations

to the extension problem of a state on a C7X--subalgebra. But

for a given C'A'-dynamical system (A, G, ct), the usual weak

expectation is not necessarily useful when we attempt to

extend an or-invariant state on an or-invariant CÅÄ('-subalgebra to

A preserving the oe-invariance. Fortunately this is possible

by applying the covariant weak expectations. In this section,

we discuss an extension of a centrally ergodic state on an

or-invariant CiX--subalgebra assuming the existence of a covariant

weak expectation.

     Here, recall that an or-invariant state NP on A is called

to be centrally ergodic if

                  Ttp (A)" A Tg (A)' A u9G' = Åë'1, .

where (T?, u9, H?, gp) denotes the cyclic covariant

representation associated with 9.

     Let (A, G, or) be a C'",t-dynamical system, and let LP be
                           tta centrally ergodic state. When A is not unital, we denote
by 'IN' the unital C-X'-algebra obtained by the adjunction of 1

                               N tNito A. Moreover, we denote by ct and Y) the canonical
                                          '                             Alextensions of or and Y) to A respectively. Then we remark
                                                     Nthat 9 is centrally ergodic for or if and only if 9 is
                                            '                      Ncentrally ergodic for or. •
                    '    '

                                        '
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     Theorem 3.1. Let (A, G, or) be a Cce-dynamical system.

Let "P be a centrally ergodic state on an or-invariant

C"-subalgebra B of A. ff there exists a covariant vveak

expectation Q from A into TTg(B)", then "P is extended to

a centralZy ergodic state on A.
                '
     Proof. By the above remark, we may assume that A and

have the commoR identity.

     Now put tPg(x) = (Q(x)C.lgg) for x in A.
Ths en LS) g is an ct-l.nvariant state of A and 9g(x) = "e (x)

f•or all x in B. We denote by W the set of all covariant

weak expectations from A into Tsp(B)" and put

S={ 9p IPeW ;F. Then since W is non-empty and compact

convex in the point-ultra weak topology, S is weak"K- compact

convex in A"i('. Let V be an extremal point of S. Then

there exists an elemenSL' Q in W corresponding to V w'ith

:v = SPg. 'wTe show that t?g is centrally ergodic on A. Let
( rrg, uQ, E[g, S.g) be the GNS representation of "Pg. Since

 ?gliB= V, we can conslder Hp as a closed subspace of Hg

and we deitote by E the projection of Hg onto Hv.

For x e A, y, z e B, we have

                    ((ETg(x)E)TTg(y)Cgl Tfg(Z)gg)

                    = (Tg(X)ETg(Y)ggiETrg(Z)Cg)

                   = (Tg(x)Tg(Y)gglng(Z)Cg)

                   = 9 (z,'(-xy)
                      9
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                  . (Q(z,V"xy)gg1Cg)

                  .. (Q(x)Two(y)g?ITg(z)Cg)

                  - (Q(x)Tg(Y)ggiTE'g(Z)gg) •

This means that
                 '(,r) . ET[g(x)E=Q(x)
for all x in A.
     Suppose that p is a projection in Tg(A)"A Tg(A)'A
Then we have EpE e rrv(B)"'  'by (sc'). Now we must show that
         EpE e uv (B)" A Trp (B)' A uPG ' = Åë•1

Since B is a-invariant, u8 leaves Trg(B)gg invariant.

For x and y in B, we have
                        '     '                   ((Eu9,pE)Tg(x)ggiTg(Y)gg)

                  = (pETg(x)gglu8,V"Tg(y)gg)

                  = (pErrrg(x)ggIEu8SeTrg(y)gg)

                  . (Eu2EpETg(x)ggl'iTg(y)Cg)•

                            '
Hence we obtain

(-x- -x-) Eu8pE= Eu !:EpE•
For x in B, since we have
                  u9tTrg(x)gg = Tg(ort(X))eg

                            = Tg(ort(X))Cp
                                '
                            = ugt' T,? ( Å~.)g tp

u9t.
 G
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                            = u9t Tg ( x ) Cg ,

we see that
                              '           '(s:- ,e "t(-) u8E = EuP,E= uP. E.

Thus we have by (.':-SC') and (tC-)K',X')

              (EpE)uP, -- Ep(EuS.'E) - Epu8E = Eu2pE '

                      - Eu8(EpE) = Eu8E(EpE) - (uY,'E)(EpE)

                      st u",(EpE).

Therefore, we see EpEe u9 G'. For x.in B, we have
          (EpE)(ETQ(x)E) = EpTg(x)E = E'n'Q(x)pE

                        = (ETg(X)E)(EPE)e
       '
Since ETg(x)E = Trp(x) for all x in B, we see .that

EpE belongs to Tto(B)"ATg(B)'. Thus we have
              EpE e Trv (B)" A T,? (B) ' A u9G ' .

     Let EpE = Xel for O$XS 1. Define a positive
ltnear i"unctÅ}onal oo en A by

                   (D(x) : (pTg(x)gglCg)•

Since oo(1) = (pCglCg) = (EpECglCg) = A and Lf'g majorizes

(D, X=O or X=1 implies co =O or 'l)g= oo, that is,

p=O or p=1. .
     Suppose that A is neither O nor l. Define

positive linear maps Qv Q2 from A into T,p(B)" by

               ' Qi(x) = l EpTrg(x)E
               'and
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      • Q,(x) = 1lA E(1 - p)iTg(x)E

for x in A. Then,for x in B, we have

                     1             Ql(X) = A EpTg(x)E = EiTg(x)E - Q(x).

Moreover, since uP t leaves ag(B)Cg invariant, we have

         ((Eu8 p7rg(x)u8.Y-E)7Tg(y)gglng(z)gg)

         = (p Trg(x) u2 x"-ETrg (y)gg l u2 7WETrg (z)gg )

         = (ptrrg(x)u8 eeEng (y)gg lEu9.'X'ETg(z)Cg)

         =, ((Eu2 Ep 'rrg(x)u2 -W" E)Tg (y)Cg lTg (Z)Cg )•

T h  U S W e  O b  ll : gl : ng ( . ) . tg .7. E . E u 8 E p ng ( x ) u8 '"" E

for all x in A. Hence, we have by using (,SCt"h",')

         Ql(ort(X)) = -ll- EpTg(ct,(x))E '

  '                                             '                  '= l• Ep u2 vg (x)ut9 hxE .

                                            '
                  == ' l E u2 p Tg ( x ) u8 ,"c E '

                  = l E u t9 E p Tg ( x ) ut9 se E

                  = " uPt Ep Tg (x)Eull ÅÄe

                 '
   ' = u9t' Qi ( x ) u! 're .

Therefore we knoik QleW. Sznce a simple observation

                               tt tt t
                         '      '                                         '
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shows E(l

It is easy

Since X

S shows

we have p

which is a

 - p)E = (1 - X)•1, similarly we see Q2eW.

 to check that 9g = X9gi + (1 - X) 9gi

is neither O or 1, the extremality of "eg in
 Pg == 9gi = 9g2• Since 9gi == {k- al,

 == X.l. Therefore we have A=1 or X= O,

 contradictlon. Thus we obtain p=1 or p O.
                                          QeEeD•

     Coroiiary 3.2. Let

where G is amenable.

A is nuclearg then any

extended to a centrally

  (A, G, or) be a

ff an or-invariant

centra22y ergodic

ergodic state on

C ee -dynamical

C es -subalgebra

state on B
Ae

system,

  B of
is
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I[[.4. G-centrality of C*-dynamical systems.
                                           '

     Let (A, G, or) be a C*-dynamical system, and let B be
      'an or-invariant C*-subalgebra of A. In this section, we

apply Theorem 2.1 to the questÅ}on whether B is G-central,

assuming that A is G-central and G is amenable.

     Recall that an ct-invariant state ") of A is said
to be G-abelian if, for each a, b in .A and uÅë-invariant

vector n in H                w'
      '  . ' inf l("Åë(a'b-ba')nln)l '= O .
where the infimum is taken over all a' in the convex hull

of {ctt(a)l teG}. Moreover, A is said to be G-abelian

if every or-invariant state iV is G-abelian; equivalently,
for each W, Rlth' (= Tw(A)'AuthG') is abelian; equivalently,

the or-invariant states of A form a Choquet simplex (cf.

[7, 4e3•11])•

     Proposition 4.l. Suppose that G is amenable, and

A is G-abelian. For each or-invariant state y7 of B, there
is a covariant weak expectation for (Tg, u9, Hp).

            '
     Proof. [rhe first step is to note that B is G-abelian

This is well known, but for completeness we give the proof.

We have to show that for each or-invariant state Y), and

a, -b in B,
                                  '
          (*') inf l 9(a'b - ba')l = O.
                al
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Since G is amenable, there is an or-invariant state iP of

A extending `p, and then (*) follows from the G-abelianness

of V•
     Now R? V (= T (B)' A uG ') is abelian, so n? ,p is

injective by [26, 10.15]. Hence the existence of a weak

expectation Q: AXorGÅÄ R7p follows, since BG is

isomorphic to BXorG. Q.E.D.
     Recall also that an ct-invariant state kP of A is said
                                      Åëto be G-central if each a, b Å}n A, u -invariant vector n
       'in H"), and x in Tv(A)',
               iRf l(7ikb(a'b - ba')xnl n)I = O
                                                 ttwhere the infmum is taken over all a' in the convex hull

of {ort(a)l teG }. Moreover, A is said to be G-central

if each or-invariant state Åë is G-central; equivalently,
A is G-central if Tv(A)'A uÅëG'c 7Tw(A)" for each or-invariant

state "); equivalently, the or-invariant states form a Choquet

sÅ}mplex whose boundary measures are subcentral (e.g., [7,

4.3.14]).
                                     '     In [4], attention was given to the question whether
                                                        '
B is G-central, assuming that A is G-central and G is

amenable. In separable cases, it is enough to show that

every centrally ergodic state {i) of B is compressible

in A (that is, there is a weak expectation P : A - "yp(B)"

for Ty)). Proposition 4.1 shows that there exist covariant
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weak expectations Q : A ÅÄ t71p , but in general there is

no reason to suppose that 9 is compressible.

     One non-amenable instance when the existence of Q
                                                     'implies the existence of P is described in the following

                           '

     Proposition 4.2. Let G be the unitary group of the
                        '              NC"-subalgebra B spanned by B and the identity o2F A

(adJ'ointed to A if necessary), and let or be the inner action

of G on A. Let 9 be an or-invariant trace state odF B.
                                          'Then any covariant weak expectation Q : A ÅÄ P?yp maps A
                       'into TT,p(B)". Conversely, any weak expectation P : A + Tsp(B)"

zs covarlant.
           '            '                             '     Proof. It is possible to prove the first statement
                                       'directly, but we give an alternative proof using the

correspondences developed above. Let Åë be the or-invariant

state of A corresponding to Q given by Theorem 2.1.
                                                      '
                         'The ct-invariance means that th is B-central (ib(ab) = iP(ba)

for a in A and b in B), and by [1, 3.l], V corresponds
         'to a weak expectation P : A " Ty,(B)". Since the correspondences

are the same and one-to-one, we conclude that P = Q.

     Conversely, the covariance of P follows from the

identity:
                                '     P(a.(a)) = P(vav*) = Tep(v)P(a)ng(v*) = uY.P P(a)u9.*

for a in A and any unitary element v in S'. Q.E.D.
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M.5. G-abelianness of Cee-dynamical systems by compact actions.

     In this section, we characterize G-abelian Cts'-dynamical

systems by compact actions in terms of extensions of certain

class of invariant states.

    Proposition 5.1. Let (A, G, or) be a C+-dynamicaZ system.

Let NP be an cx-invariant state of an or-invariant C--subalgebra

of' A such that
               (Rwo (B) k.> u9G )" A (TT ,e (B) V u9G )' = Åë'I .

Suppose that there is a coyariant weak e){pectation P for

for (gipg uPg Hv). Then thefe exists an ct-invariant state Q

              ('ryv(A)v u* )"•A (zio(A)v ug )s . Åë.1.

and iiJl. = S'.

     Proof. Put
              Eii;(.) . ((..Å~ .P)(x) c,I c.) .

for x in Li(B, G). Then <iS is a factor state of BG. On the
                                         Aother hand, P induces a weak expectatioR P from AX                                                    G into                                                   or
Orp(B)v uG9 )". Therefore, there is a weak expectation 6 from

AxctG into (irFtp(B)v uL GP )" $uch that C[if(x) -- ("Q(x)E;gl E;ig) is

a factor state of AxorG (see [1, or 41]). Then there exists

                                                       9a covariant weak expectation Q from A into (Tg(B)v u                                                       G )"
                 A                     by Theorem 1.5. Putcorresponding to Q
                      kl, (a) = (Q(a) g, I C? )

B
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for a in A. Then Åë is ct-invariant and thIB= •P. rvloreover,

for x in Li(A, G), we have
                   ((7Tv Å~ uÅë)(x)gtpI gv)

                    = f.(TT,p(x(t))u",'gÅël g,p) dt

                                    '
                    = J.("g)(x(t))Cv,l cv,) dt

                                      '                                 '                     '
                    - f.(Q(x(t))g,pl gtp) dt

                    = I.(Q(x(t))u"tcpl cep) dt

                    = (6(x)c,i g.)

                     tv                              '                    = th (X) .
                                              '                                                       '                 v                     is a factor representation of AXctG. ThisTherefore, Tv Å~ u
means (Tv(A)V u: )" A (Tw(A) U u* )' -- Åë•1• .' Q.E.D.

     Theorem 5.2. Let (A, G, od be a C"-dynamical system
                                 ';,rith a compact group G. Suppose that the fixed point algebra
                                                      'of A is non-zero. Then the following statements are equivalent.
                                                            '                                   or. .     (i) The fixed point algebra A is commutative. '
                                               '    (ii) A is G-abelian.
                                    '                      '                       '   (iii) Every or-invariant state (P of' A which yields
          (Tg(A)U u: )" A ("g(A)V u: )' = Åë•1

          is ergodic.

- 58 -



    proof. (i) =i> (ii). This follows from Tg(A-)"A uPG'

= Ty,(AOt)" for any or-invariant state LP on A.

     (ii) => (iii). Since A is G-abelian, (Trg(A)U uPG )' Å}s

commutative. Hence, we have .
     (ifTg(A) V U9G)' C (7rp(A)U uG9 )" A (T,p(A)V u: )' = Åëel,

which implies ergodicity of {{'.

     (iii) =>(i). Let E be a conditinal expectation from A
       oronto A          given by

                   E = IG ctt dte

       '
Take any factor state W of Aor. [rhen by Proposition 5.1,

") extends to an ct-invariant state 9 of A such that
     (Tv(A)V uwa. )" A (Ti',(A)V uZ )' = Åë.1.

By assumption, g) is ergodic, Since E gives a bijective

correspondence between ct-invariant states of A and states
of AOC, k" =tce'IB is pure. In general, aC"'"-algebra is '

commutative if and only i'f every factor state is pure (cf. [42])

     (X. .SO,A IS COMMUtatlVe. QeEeDe
                                        '
     Remark 5.3. In general, we can not replace the statement

(ui) by the statement that every centrally ergodic state is

ergodic.
               '

e
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