<table>
<thead>
<tr>
<th>Title</th>
<th>Influence De La Radiation De Rayon γ Sur Les Ultrastructures De Divers Organes : En Particulier Sur Les Cellules Hepatiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>長瀬, 勝也</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 22(12) P.1249–P.1257</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1963-03-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/20738</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
放射線照射による各種臓器の細胞学的変化に関する研究
特に肝細胞について

順天堂大学医学部放射線医学教室
長 亀 勝 也
（昭和37年12月23日受付）

近年、電子顕微鏡による研究の急速なる進展に伴って細胞の微細構造に関する知識も著しく増加している。
従来光学顕微鏡によって述べられた知識の中でも、その観察の正確さを証明されたものもあり、それにも増して、従来知られていなかった新しい知見が日々報告されている。
放射線照射による肝細胞の変化についても、従来より多くの実験が見られる、この種の研究において、肝細胞は放射線に対して比較的耐性が低いとされている。
今回は電子顕微鏡を使用して、放射線照射により肝細胞の微細構造を如何なる変化を示すかを観察した。
実験動物は15gのD.D.系マウスの雌を使用した。
照射はコバルト60を使用し、1回に5000rを照射し、照射後1,3,6,9,24時間の5回にわたって殺し、その組織を観察した。
実験結果として、照射1時間の所見では、高度の変化を示すものでは、核体は二重構造の限界線が不明瞭となり、規則正しく配置している核体側に認められる事は出来ない。基質の電子密度は低下し、粒体の膨化を示す。
又小胞体の一部は密度の間隙の拡大を示す（図1〜4）。照射後3時間の所見では、原形質の一部に透明帯に電子密度の高い強く核鉱の散在している像をみとめる。この像は他の核体の変化と共に考え、粒体の破壊された像であろうと考える（図5〜8）。照射後6時間の所見では、3時間後の所見と同様、核粒体の破壊像と思われる所見が散在するものが見られる（図9〜2）。
照射後9時間の所見では、細胞の原形質を多数の大小異なる電子密度の非常に低い部分が生じて来る。その内部には数多くは1個の電子密度の高い顆粒を有している。この顆粒の大きさも大小不同である。
この変化は光学顕微鏡で脂防変性と云われる所見であろう。
又小胞体はこの変化に直接の関係の拡大を示す（図15〜16）。
照射後24時間の所見では、ある細胞に於いては
米粒体及び小泡体は核の周囲には認められず、細胞膜に近い部分に集まり、核膜体の限界膜の増殖率
は認め増すり、内部にはPalade顆粒としば同様の大きさを示す顆粒がみられている。これ等の所見は肝細胞の死観する一過性を示すものと考える（図17～20）。

以上の観察結果より、従来形態学的核及び放射線により障害されてから米粒体が障害されるとは云う説と、逆に米粒体が核より先に障害されるとは云う説とある。

本実験では、肝細胞では米粒体が障害されるのが先であった。

1. Introduction

Les recherches assez nombreuses sur l'influence de la radiation au point de vue de la lésion cellulaire ont été rapportées à la manière de la microscope optique.

Parmi ces résultats, sur l'effet de la radiation, on préconise que la radio-sensibilité de cellules hépatiques était assez faible.

Nous avons décrit dans le rapport précédent, de l'influence de la radiation de rayon X, 60 r, sur les ultrastructures de l'épiderme au moyen de la microscope électronique. Les résultats nous ont montré la dégénération, de jour à jour, des mitochondries et des microsomes.

Nous avons observé l' action d'une grande quantité de radiation de rayon y en un peu de temps sur les ultrastructures des cellules hépatiques. Nous désirons en rapporter ci-après.

Les souris DD, 20 en totale, classées 5 par groupe reçoivent un aliment présenté sous forme d'un petit biscuit pendant 8 jours avant et de l'essai dans notre laboratoire, pour maintenir leur santé dans un régime équilibré. Elles sont placées dans une cage en résine acryle d'un épaissir de 2 mm, séparées par de cloisons mobiles arrangeant chacune par dimension réduite pour permettre de bien s'exposer dans un champ de radiation d'une fois 500 r, de 8Co comme rayon y.

On sacrifie les animaux à des temps différents, 1,3,6,9 et 24 heures après radiation. Les tissus hépatiques enlevés, 2-3 mm³, sont tout de suite fixés avec un mélange d'une solution d'osmium à 2% et du tampon veronal-acide de pH 7.2-7.4 (1:1) selon la méthode de Palade, puis ils sont déshydratés avec de l'alcool éthylique à 60% jusqu'à absolu, suivis à immerger dans un mélange d'éthanol absolu et n-butylméthacrylate de monométrie contenant d'un catalyseur de peroxyde dichlorobenzoyl. Les tissus sont finalement enfoncés dans les résines de méthacrylate pure. On prépare ces sections à l'aide de ultramicrotome. On observe les ultrastructures de cellules hépatiques au moyen de microscope électronique.

3. Résultats.

1) Observation des cellules hépatiques la 1re heure après radiation de rayon γ.

Dans les cytoplasmes, les mitochondries et les microsomes sont diffusément distribuées sans déformation remarquable.

Les mitochondries aux membranes bien claire sont en forme plutôt ronde qu' ovale,
parce qu’elles sont un peu gonflées et leurs crêtes ne sont guère visibles. Mais dans ces mitochondries, la densité électronique est en forte.

L’autre partie des mitochondries assez déformée n’est plus remarquable de la structure des membranes doubles, et des crêtes. La densité électronique de celle-ci est en peu faible. Les microsomes ne sont pas tel déformées par la radiation de rayon γ.

2) Observation des cellules hépatiques la 3e heure après radiation de rayon γ.

On peut classer deux sortes de mitochondries dans ces échantillons. L’une est déjà en convalescence avec les membranes et les crêtes mitochondriales bien visibles et également la densité électronique presque normale, l’autre continue encore à dégénérer en divers états : Dans une partie, la membrane mitochondriale n’est pas bien visible, et de petits granules remplis déchus, dans les autres, la membrane est observée avec évidence et également de petits granules à l’intérieur, mais non pas de crêtes mitochondriales. Ces faits semblent montrer une série de processus des mitochondries dégénérées par le rayon γ. Une dimension en granule de 1100-1800 m.μ. encadrée avec la membrane en haute densité électronique, contenue de granules épars également en densité électronique assez forte, est envisagée d’être une observation des mitochondries altérées si graves à cause de rayon γ. Par ailleurs, les microsomes dans ces échantillons s’espacent en distance de 160-320 m.μ.

3) Observation des cellules hépatiques la 6e heure après radiation de rayon γ.

L’influence de radiation de rayon γ paraît nettement claire à cet échantillon. Les mitochondries sont en polymorphes et en irréguliers. On peut remarquer le contour de la membrane mitochondriale, pourtant, il est difficile à observer les crêtes mitochondriales.
mal alignées. La substance de soutien en densité électronique bien faible, les granules en densité électronique non pas stable et plus grands que ceux de Palade sont aussi observés. Les mitochondries se montrent presque la même image que celle de 3e heure (espace des microsomes 200-300 mµ). Les noyaux de ces cellules ont des membranes nucléaires si nettes et une densité électronique ordinaire.

A certaine part, les mitochondries dégénérées sont observées, tel qu'on a démontré à la troisième heure après radiation.

Dans ces mitochondries, parait-il des granules en haute densité électronique, une grandeur de 230-460 mµ.

Les noyaux n'ont pas de changement pour les membranes nucléaires et pour les nucléoles.

4) Observation des cellules hépatiques la 9e heure après radiation de rayon γ.

L'aspect du gonflement au maximum des mitochondries commence à diminuer, d'ailleurs, il est bien visible les membranes et les crêtes mitochondriales. Les microsomes s'espacent plus grandes que les autres cas (230-340 mµ). On peut simultanément remarquer tant de petites parties rondes en densité électronique très faible dans le cytoplasme, qui contiennent un granule en densité électronique si élevée. Cette dernière observation est peut-être considérée comme la dégénération graisseuse selon la microscope optique. Cependant, les cellules à cette dégénération est capable d'observer non seulement des membranes nucléaires, mais des structures de l'intérieur du noyau en densité électronique non pas haute.

5) Observation des cellules hépatiques la 24e heure après radiation de rayon γ.

Les mitochondries de cette échantillon possèdent des membranes mitochondriales en contour irrégulier et de la substance de soutien en haute densité électronique.

Toute les microsomes s'espacent un peu. On peut prouver le cytoplasme très claire parce que la cellule ne renferme que peu de constituants cellulaires. Parmi lesquelles, un aspect spécial de cette échantillon est remarqué sur les mitochondries et les microsomes qui se ramassent à l'extérieur du cytoplasme, mais non autour de noyaux. Les mitochondries sont remplis seulement avec des granules aussi grands que celui de Palade, sans avoir les autres structures des membranes et ces crêtes mitochondriales. Ce fait semble une phénomène des mitochondries détruisantes. Cependant, les noyaux et les nucléoles sont nettement observés, la densité électronique des noyaux sont élevés un peu.

De plus, dans les cellules bien détruisantes, on ne trouve rien de structure des mitochondries et des microsomes placées à l'extérieur du cytoplasme, en réunissant l'une la autre. On peut ainsi considérer que ces dernières observations en ce qui concernent de mitochondries, de microsomes et de noyaux présentent en effet un processus des cellules à mourir.

4. Discussion

Dans nos expériences de cette fois, on emploie une fois de radiation 5000 r de rayon γ, 10 fois plus que celle de la précédente (500 r de rayon X) pour le corps entier chez la
souris. Les résultats précédents ont présenté la dégénération des mitochondries, le premier jour après radiation, laquelle continue jusqu’au 3e jour et non plus du 5e. Ce changement est observé seulement une partie des tissus.

En cas de radiation de rayon γ, on peut prouver le résultat similaire même la première heure après radiation dans tout les cellules hépatiques.

L’influence de rayon γ sur les mitochondries est distinguée en deux : l’une qui n’a pas de dégénération grave commence à recouvrer déjà la 3e heure après radiation. L’autre qui à dégénéré assez tôt renferme les mitochondries et les microsomes non plus de ultrastructures ordinaires, placées à l’extérieur du cytoplasme, lesquelles on trouve en générale tout autour des noyaux cellulaires. Elles se réunissent ensemble comme un groupe.

Quoique le cytoplasme soit changé en degré grave, les noyaux ne sont pas trop dégénérés. Alors on peut considérer que la radiation de rayon γ à tout le corps de la souris n’intervient pas dans le métabolisme des noyaux cellulaires.

Les microsomes en cas de radiation de rayon X 500 r, succèdent à s’espacer du premier jour au 3e jour après radiation et commence à recupérer le 7e jour.

Mais la grande quantité de rayon γ provoque d’espacer les microsomes la première heure après radiation. Cet effet progresse jusqu’à la 9e heure et l’observation presque similaire se produit la 24e heure après radiation.

L’aspect général des microsomes sont ainsi influencé moins fort que celui des mitochondries par la radiation.

On discute jusqu’ici si la radiation de rayon γ attaque d’abord les noyaux, puis les mitochondries et les microsome ou, par contre, elle influence les mitochondries plus vite que les noyaux.

Nous voulons enfin proposer que nos résultats susdits prouvent à supporter la dernière hypothèse.

5. Résumé
L’influence de rayon γ, une fois de 5000 r sur les cellules hépatiques est observée à des temps différents après radiation à la manière de microscope électronique.

Nous avons mis en évidence que les cellules hépatiques en particulier les mitochondries dans le cytoplasme sont détruisant en 24 heures après radiation au corps entier chez la souris. Le résultat obtenu indique un intérêt comme une evidence pour connaître la radicacion sigu.

Bibliographie