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1. Introduction

We consider the large time behavior of the solutions for the following

Cauchy problem :

us = (U™)ze — v"u” in R X (0, 00)

(1.1)

v = (V")ze —u™0" in R x (0,00)

with initial conditions
(1.2) u(-,0) = ug and v(+,0) = vy on R.

Here, m > 1 and n > 1 are real numbers. Throughout this paper, we
assume that m > 1 and n > 1.

By [10], the following properties are shown :

When the reaction arises among some reactions, for each reactant the
equation for reaction-diffusion takes the form

%—f: div D grad C + ¢,

where C' is the concentration, D is the diffusion coefficient and ¢ is the
amount of material formed through chemical reactions per unit volume
per unit time. When a reaction arises among n molecules of a substance
A and n molecules of a substance B and does not reverse, that is to say,

when the reaction is written as

nA+nB ; product
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then ¢’ of both equations for 4 and B are proportional to —C%C%, where
C 4 and Cp are the concentrations of the substances A and B, respectively.

That is to say, the concentrations C4 and Cp satisfy the equation

aC

-ﬁti = div D4 grad C4 — kC%C5h
(1.3) 8Cy

7 = div Dp grad Cp — kCZ 17;’

where k is a positive constant. Here we omit the equation of the con-
centration of the product, since the concentration does not need to study
C4 and Cp in our situation.

In this paper we consider (1.3) in case of Dy = C7 ' and D = C5~ L.
Then equations (1.1) are equivalent to the equations (1.3).

We make the following assumptions (A. I.) on the initial data uo and vy :

(A. L) (1) The functions uy and v, are nonnegative and continuous
on R,
(2) they have compact support and are not identically zero on R.

Moreover, in this paper, we assume that every function is bounded and

nonnegative.

If up = vo on R, the solutions u and v of (1.1) and (1.2) would coinside

in R x [0, 00) and satisfy the following Cauchy problem with p = 2n :
(1.4) ue = (U™)ze — uf in R x (0, 00)

(1.5) u(-,0) = ug on R.

As for the study of the large time behavior of solution for (1.4) and
(1.5), it is important to investigate the large time behavior of supports
and L*-norms of the solutions. Therefore many authors have studied
on supports and L>-norms of the solutions (See [1], [5], [7] - [9], [11] -
[13] etc.).



The support and L*-norm of the solution u of (1.4) and (1.5) have
the following properties :
If 1 < p < m, then U;»o supp u(-,t) is bounded in R.
—inf{supp u(-,t)}, sup{supp u(-,t)} ~logt if 1 <p=m.
~inf{supp u(", 1)}, sup{supp u(-,2)} ~ tE=/C=2)
if max(l,p—2)<m<p.
— inf{supp u(-,1)}, sup{supp u(-, 1)} ~t/"*D f 1< m< p—2.
log(] u(+,t) |[wR)~—t fl=p<m.
| u(+,1) |oo,r~ t~Y®™ D if max(1,p—2)<m and 1< p.
u(,1) |or~ ™MD if 1< m< p—2.
Here a(t) ~ b(t) means that there exist two positive constants c; and c;
satisfying

c1a(t) < b(t) < cpaft) for any sufficiently large ¢.

In this paper, for the initial data up and vy satisfying the following

assumption, we consider the solutions of (1.1) and (1.2).
(A. 11.) up Zvo on R and 0 < up < vy on R.

The purposes of this paper is to investigate whether the large time be-
havior of the solutions for the system (1.1) differences from the behavior
of the solutions for the equation (1.4).

The following is our main theorem.

Theorem 1.1. Let m > 1 and n > 1 and suppose that uy and v, satisfy
(A1) and (A.IL).
The initial problem (1.1) - (1.2) has a unique pair of solutions « and v



which are nonnegative. Then, the support and L*°-norm of u and v have

the following properties :
Ugsosupp u(-,t) is bounded in R,if 2n —1 < m.

—inf{supp u(-,t)},sup{supp u(-,¢)} ~logtif 2n—1=m.

—inf{supp u(-,1)}, sup{supp u(:,)} ~ ¢/DO-(RA-Z7)

f2n—-—2<m<2n-—1.

—inf{supp u(-, 1)}, sup{supp u(:,t)} ~t/"*D if m < 2n— 2.
log | u(+,1) |oo,r~ —t™/(m+D) if n=1.
| u(+,t) |oo, g~ t~I/(=DHI-R/(m+D} §if 29 — 2 < m and 1< n.

| (-, ) oo R~ t~1/(m+D) if m<2n—2,

In all of the above cases, the solution v satisfies

—inf{supp v(-,t)}, sup{supp v(:,t)} ~ /(n+D)

and
| 9(-,2) Joo, R tHCPHD),

Therefore, the behavior of v is independent of the behavior of u.

By Theorem 1.1 we see that the large time behaviors of u and v in
our case are different from the behaviors in case of ug = vg. That is to
say, the behavior of solutions for the system (1.1) is essentially different
from one for the equation (1.3).

And we remark that the solutions v and u is similar to the solutions of
(2.2) in Section 2 and (5.1) in Section 5, respectively (See Lemma 5.2.).

In particular, we have :



Corollary 1.2. Under the assumptions of Theorem 1.1, the supports
of u and v of the system has the following properties :

If 2n — 1 < m, then Upg;supp u(-,t) is bounded in R.

If 1 <m < 2n—1, then Upg, supp u(:,t) = R.

And, for all of the above cases, U<, supp o(-,t) = R.

Acknowledgement. The autor would like to express his gratitude to

his referee and Professor H. Tanabe for their kind advices.



2. Notations and definitions

Throughout this paper, we use the following notations and definitions.
For any measurable subsets £ of R or R x [0,00), the usual norms of
the spaces LY(E) for 1 < ¢ < co are denoted by | - |,z and Co(E) is
the space whose elements are compactly supported continuous functions
in E. As for the other function spaces, we use the notations and the
definitions in [14].

Next we shall define the solutions of (1.4) and (1.5). For p > 1 and
u > 0, the operator B is defined with the domain

D(B¥) = {we LI'R) : (|u|"" u)s € L'(R)}
by
BWy=(|w|" w)y — p|w| w forwe D(BW).

By [2], it is shown that B(*) is m-dissipative in L!(R). Therefore, by
[6], it is shown that a contraction semigroup 7()(¢) on L!(R) is defined

by
TWH)w = lim(1 — AB®W)~[/Ay,
AN\0

for t > 0 and w € D(BW),
where [-] is the Gauss function. Then, for wy € L!(R) we define the
solutions w of (1.4) with w(-,0) = wy by

(2.1) w(-,t) = TO(t)w,.
We also consider the equation :
(2.2) ze=(2™)z 1n R x (0,00),

with initial condition

(2.3) z(-,0) =z, on R.

For zy € L'(R), we define the solution of (2.3) and (2.4) by
(2.4) 2(1) = TO(t)z,.
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For a positive constant M we see

(2.5) Z(z,t; M) = 1~ 1/(m+1) (az _ bmt‘zl(m“)m?):/(m'l)

for (z,t) € R x (0,00)

where a = a, M™=D/(m+1) with a certain constant a,, and b, = (m —
1)/(2m(m+1)). We call the function (2.5) the self-similar solution or the
explicit solution (of (2.2)). We can observe that the self-similar solution
satisfies (2.2) in R x (0,00) and that the corresponding initial condition
is M8y, where 6 is the delta function.

The Banach space X denotes (L*(R))? with the norm

| (w,0) [x=|uhr +|v|,r for (u,v) € X.
We shall define an operator A with the domain
D(A) = {(wv)€X : (4" Uas, (| v["7" v)ae € L'(R)},
by
Al v) = ([ u ™ Waa= o [ u " o (|0 77 0)ea— | w Y] 0 "7 0)

By Lemma 3.3 in [16] it is shown that A is m-dissipative in X and that
a contraction semigroup S(t), t > 0, on X is defined by

SV = lim(1 - AA)LRAY for t >0 and V € X.
Then, we define the solutions u and v of (1.1) - (1.2) by

(2.6) (u(-5),0(,2)) = S()(uo, vo)-



3. The existence and the uniqueness of generalized solution

In this section we shall consider the following Cauchy problem :
(3.1) wy = (W™)zr — Pw? in R x [0, 00)
(3.2) w(,t)=wy on R

where ¢ > 1, P is a function on R x [0, 00) and wy is a continuous function

on R.

Throughout this section, we assume g > 1.

Definition 3.1. We say that w is a generalized solution of (3.1) if w
belongs to C([0,00) ; L}(R)) N L>(R x [0, 00)), and for g, t;, a.e. o
and a.e. z; such that 0 <ty < t;, 2o < z1, the following integral identity
holds :

(33) I(uf,E) = /tt‘ [ W™ faa + wfe = P £} dads

— [L:l wf dm]: - ['/t:l w™ f, dt]:l =0,

0
for f € C%!(E) satisfying
f(zo,t) = f(z1,t) =0 for ¢ € [to,t4],

where we set E = [z0, z1] X [to, t1]-

Definition 3.1 is slightly different from ones in [9] and [11] - [13]. That
is to say, they have assumed that the solutions are continous in R x [0, c0),

while we do not assume such a continuity.

Remark 3.2. Under (A.I), the solutions of (1.1) and (1.2) defined in
Section 2 are generalized solutions. Since this is shown by the following

lemma 3.3 - 3.5 and the standard argument, we omit the proof.
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Lemma 3.3. Let P € C?}(R x [0,00)) N L=(R x [0,00)) and wy €
Co(R). Then there exists a unique generalized solution w of (3.1) - (3.2).

Moreover, w is continous in R x [0, 00) satisfying
0 < w(z,t) < Z(z,t+ 5, M), | wo |or in R X [0,00),
where z(z,t; M) is the self-similar solution such that

wo(+) < 2(-,1; M) on R.

Proof. Let K =| wy |o,R +1. Then we can see that there exists a

sequence of smooth functions wy, satisfying the following properties :
(i) 1/n < wp,(z) < K for z € (—n, n),
(il) won(£n) = K,

(ili) woy is strictly monotonically decreasing with respect to n and

uniformly converges to wp in any finite intervals as n — oo.

We shall consider the following boundary value problem of the form

(3.4) wy = (W™)ze — Pw?  in @, = (—n,n) x (0,n),
(3.5) w(xn,t)=K  on [0,n),
(3.6) w(-,0) = wp,  on [—n,n].

Due to Theorem 4.4 in [14], we see that the problem (3.4)-(3.6) has a

unique classical solution w, € C(Q,) N HZI****(Q,) (0 < a < 1)
satisfying
(3.7) 0 < wy(z,t) < K for (z,t) € Q.

By the comparison theorem and (3.7), it follows that the sequence of the

solutions w, is monotonically decreasing with respect to n. Therefore,
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for (z,t) € R x [0,00), there exists Jim Wy(z,t). Denote w the limit. For
to,t],.’l)o,ﬂ)l with 0 S to < tl, o< Iy and for f € 02’1([1‘0,131] X [to,tl])
with f(zo,t) = f(z1,t) = 0, w, satisfy the integral identity

I(wna f) [ZL‘O,.’IIl] X [to)tl]) = 0’
and hence, w satisfies the integral identity
(38) I(’lU, f’ ['1"0;3:1] X [to’tl]) = 0.

By a similar argument to the proofs of Theorem 6 and Theorem 8 in [12],
we can prove that w belongs to C(R X [0,00)). By a similar argument

to the proof of Theorem 3 in [12], w satisfies moreover,
0 < w(z,t) < Z(z,t+1; M) and 0 < w(z,t) <| wo |o,r for (z,t) € Rx[0, c0)
where Z is the self-similar solution such that

wo(z) < 2(z,1; M) for z € R.

Therefore, w is a required generalized solution.

To prove the uniqueness we let @ be another generalized solution of
(3.1) and (3.2). Set (cf. Theorem 2 in [13])

1
A, = An(z,t) = / m{8w, + (1 — §)@}™1d6
0

2
I

Culert) = [ g P{w, + (1 — 6)}7db.
Let T' € (0,n) and let r € (0, n) be a point where
I(@, f, [-r,r] x[0,T]) =0,
holds for f € C**([~r,r] x [0,T]) with
f(£r,t)=0 for t€[0,T].
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Then w, and & satisfy

(3.9) [ /_ rr{wn(w,t) — &(z, 1)} f(a:,t)d:c]

T

0

= - [/(,T{(wn(x,t))m - (w(x,t))m}fz(x’t)dx]r_

T rr
+ [ [ {4u(@ O fux + o = Cu(a, )/ Hwn ~ @}eodt.
0 J—r
By (3.7), there exist two sequences of smooth positive functions A, (z,t)
and Cpir(z,t) with the following properties :
klim Ankr(2,1) = An(z,t) ace. in [—r,r] x [0, T1,

%611 S Ankr(mat) S I(ln
for k> 1 and ae. in [—-r,7] x [0, T,

klim Crkr(z,t) = Cp(z,t) ae. in [~rr] x[0,T],

and
0 S an'r(x)t) S I(Zn

for k> 1 and a.e. in [—rr] x [0,T],

where

6n= : n ¢ m—1
{(z,rf)"e%,,w (z, )},

. m—1
Ky, = 2m [ma'X{I Wn, |oo,Rx[0,00)s | @ loo,Rx[O,oo)}]
and
~ g-1
I(Zn = 2(] [max{] Wy loo,Rx[O,oo): I w Ioo,Rx[O,oo)}] I P Ioo,RX[O,oo) .

Then the first boundary value problem
ft + Ankrfza: - an'rf =0 in [-—T‘, 7‘] X [O;T])
f(;T) = fO() on [—7', T]J
f(£r,t)=0 on [0, T]
has a unique classical solution f = f**" here f; is an arbitary smooth

function such that
supp fo C(=n,r) and | fo | r< 1.
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Substituting the function f = f™*" into (3.9), we observe that
[ funtz,t) = 06,0} f(m,t)dx]:
- _ [ / (w2, )™ — (@(z, 1))™) fx(x,t)dt] _
b ] (e = A = 0) faa

+ /OT /:,(C"’" — C,)(w, — @) fdrdt.

Taking the limit as £ — 00, n — oo and r — oo in this order we get by

Lemma 3.6 in [12],

J{w(z,T) = @2, D)} o(e)dz = 0,

which simplies w(-,T) = @(-,T) a.e. on R.
Since T is arbitrary, we conclude w = % a.e. in R x [0, 00).

Q.E.D.

Lemma 3.4. Let w;o(t = 1,2) be functions on R with compact
support and let w;(7 = 1, 2) be generalized solutions for

wg = (W™)ze — Pw? in R x [0,00)

with w;(+, 0) = w; o, where P;(i = 1,2) are functions on R x [0, 00). Then,

we have
| w1y t) — wa(,t) 1R < | wio—wap 1R

+/Ot | Pi(-, 8)wi(-,s) — P, s)wd(-,s) |1 ds

for ¢ €0, 00).

The proof is given in a quite similar way as in the proof of uniqueness

part in Lemma 3.3 and omitted.
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Combining Lemma 3.3 with Lemma 3.4 and using approximation proce-

dure we can prove the following.

Lemma 3.5. Let P be a function on R x [0,00) and let wq be a com-
pactly supported function on R. Then, there exists a unique generalized

solution w of (3.1) and (3.2) and w satisfies
0 S 'lU(ZB,t) S Z(‘T’t + 1) M)) | Wo |oo,R.)

fort > 0 and a.e. z € R,

where Z is the self-similar solution such that

0 <wo() <2(-,1; M) ae. onR.

13



4. Comparison theorems

In this section, we shall define the generalized supersolutions and the
generalized subsolutions and give some comparison results.
By the same argument as in the proof of Lemma 4.1, 4.2 in [16], we

can show the next lemma, the proof being omitted.

Lemma 4.1. Let ug, vy, %o and ¥ belong to L!(R) N L*(R) and
satisfy

0 Syp < g £ P9 < 79 a.e. on R.

Let (u,v) and (&, %) be two pairs of solutions of (1.1) with initial data

(0, vo) and (@, ¥p), respectively. Then, the functions satisfy, £ > 0,

0 <u(,t) < a(,t) < 9(,t) < v(-,t) ae. onR.

Definition 4.2. Let G be a connected open subset of R x (0,00). A
function w belonging to C([0,00) ; L*(R)) N L*®(R x [0, 00)) is called a
generalized super (sub) solution of (3.1) in G, if for %y, t;, a.e. zo and a.e.
zy such that 0 <ty < t1, o < 21 and [zg, z1] X [to, 1] C G, the following
integral inequality holds (see (3.3)) :

Iw, f, E) < 0
(= 0)
for f € C%1(G) with f(zo,t) = f(z1,t) =0, to < t < t;, where we recall
F = [.’130,1131] X [to,tl].

Lemma 4.3. Let P and wg be functions in L*(R x [0, 00)) and Cy(R),
respectively. Let w be a generalized solution of (3.1) with w(-,0) = wy

and let @ be a generalized super (sub) solution of (3.1). Then, if

wo < w(,0) ae onR,

14



we have, for ¢t > 0,

w("t)

IV IA

t) ae. onR.
t)

)

’IIJ(-,
’U‘j(',

(

Proof. By a quite similar argument obtaining uniqueness part in

Lemma 3.3 we can prove

(4.1) Aw@wwwmm@@go

for any function fo(z), which yields the desired result. The details are

omitted.
Q.E.D.

For T > 0, let £ be a smooth function in [T, co) such that
T)>0 and £(-)>0 in|[T,o0).
and let
G={(z,t) : t>T and z € (=£(t), £(1))}.

Sy and S_,; denote the subsets {(£(t), t); t € [0,00)} and {(—£(2), t); t €
[T, 00)} of R % [0,00) respectively.

Lemma 4.4. Let w be a generalized solution of (3.1) with w(-,0) =
wo € Co(R) and let @ be a generalized super (sub) solution of (3.1) in G
that belonging to C(G).

P in (3.1) satisfies that

(S¢US_y) N supp P = 4,
Then w is Hoélder continuous in some neighborhood of S,US_,. Moreover,

if
a.e. on [—4(T),£(T)]



and if

w(£(t),t) < w(L(),1) for t > T,
(> @(L(),t))

w(—£@1),t) < w(—L(t),t) fort>T,
(> @(-L(t),1))

then we have

w(z,t) < w(z,t) fort>T and ae. z € [—£(1),4()]
(= u(z,1))

Proof. Let an arbitrary constant 77 > T be fixed. There exists a
constant § = §(T, Ty, P) € (0,T) such that
(Ef;r)(t) U Eg—)(t)) Nsupp P=¢ for ¢ €[T,Ty],

where, for § > 0 and ¢t > T, E{P(t) and E{(t) denote [2(t) — 6, £(t) +
8] x [t =6, t+ 6] and [—£(t) — 6, —L(t) + 6] x [t — &, t+ &] respectively.
Then, there exists a sequence of smooth functions P; € L= (R x[0, c0))

such that
| P; oo, Rx[0,00) < | P loo,Rxo,0) for j > 1,
Jlir{.lo Pj(z,t) = P(z,t) for a.e. (z,t) € R x [0, 00)
and
(Eg)(t) U E(%;)(t)) N supp P = ¢
forj>1 and te€[T,T1]

Let wy, satisfy the properties (i) - (iii) in the proof of Lemma 3.3.

For 7 > 1, let w;, be the classical solutions of
wy = (W")ge — Pjw? in Q,
with (3.5) and (3.6), where Q,, denotes (—n,n) x (0,n).
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Then, since w;, are positive in Q,,, w;, are smooth in Q,.

Now, we shall show the uniformly Hélder continuity of the solutions
Wj, in ng;(t) and E6/2 (?).
We shall omit (+) and (=) from E()() and E(7)(.), respectively.

We fix ¢y € [T, T1] and (21,1) € Eas3(to) arbitrarily.

Let 1y be a smooth function such that

=1 on [—1,1]
Yo(z) ¢ €(0,1) omn (—2,-1)U(1,2)
=0 on (—o0, —2) U (2, 00),

and we set

_t—(to—%‘s) =
Ys(z,t) = t1 — (to — %5)1/)0 ( 6/24 )
in R x R.

We set also
$(y) = Ny(2—y) for y >0,

with N = (4m/(m — 1))(] wo |oo,r +1)™ 2.

Let an arbitrary j > 1 and an arbitrary n satisfying Ess/6(t0) C Qn
be fixed. We shall omit j and n from w;, and P;. Setting (m/(m —
1))w™ ! = ¢(q), we see 0 < ¢ < 1/4 and

l

PgP

(42) = (m—1)dg + [<m—1)¢ +¢]<qx> S8

in (~n, ) x [to ~ 25,.00)

with 8= (m+n—2)/(m—1) and X = m((m — 1)/m)>.
We differentiate (4.2) with respect to z, multiply by ¢,%?2 and consider

a point (z2,1;) of Ey5 where the function z = (g,15)? attains a maximum

17



in [—n,n] x [to — (56/6),00). Since we may assume t, > to — (56/6)

without loss of generality, we observe that
Zt(mg,tg) 2 0, Zl-(illz,tg) =0 and ZII(mz,tz) S 0.

Then, at such a point we have the following inequality :

(4.3) —mg’ — (m—1)¢ (%) ] UACHY
< [Wsvse + 3(m— D5’ — (m— Vst (¢:)°
— [(m + 1)¢' + 2(m — 1)¢%‘] %%z(%)s-
Set

ay =| wét |00,Ei_5(to)) az =| '7[’6.1: |°°’E§-6(t°) and as =| 'lp&:r:r |oo,E2_6(to) .

Note that
0<¢g<1/4 in [—n,n]x[to—gé,oo)
and
3 7 n
(4.4) 0 < N < ¢(g) <2V, ¢(9)=-2N

and £ |< & in [-n,n] x [to — £6,00).
By (4.3) and (4.4), we obtain

1/)§(Qx)4 < Cl(qa:)2 + Caths | dz |3’

with )
C, = 2Nm(a1 + N(m — 1)az + 3N (m — 1)a3),
as
C;, = —-1).
? 3Nm(7m D

Therefore we have

02
z(m,t) < l z |°°’E§o(t°) < 2 (C1 + —2—2-) for (:c,t) € E-g-é(to)’

18



and hence,

(4.5 | ) P < 82 (e )

for (z,t) € E’%é(to).

By (4.5) and Theorem 8 in [13], for j > 1 and n such that U ez, 7,1 Ess/6(to) C

Q., the solutions w;,, satisfy

a af3
(4.6) <wj”>i,1236/2(to) + (wj”>E,E/6/)2(to) < Gy, for 4 €[T,Th),

where & = min(1,1/(m — 1)) and Cjs is a positive constant depending
only on | wg |oo,R, | P |oo,Rx[0,00) and &.
Set B = Uy, ez, Byfa (to) and EC) = Uy, eprr,) Bs7a (fo). By (4.6) and
Ascoli - Arzela theorem, for each 7 > 1, a subsequence of the solutions
w;, uniformly converges to w; on EM U EC) as n — co. Moreover, we
obtain
4.7 N o+ (W)l < ¢ fori=+,—
(4.7) (w; 2, E() Wilepy = L 10T T =,—.
By Lemma 3.3, Lemma 3.5, Lebegue’s convergence theorem and Gron-
wall’s inequality, we have
(4.8) lim sup |w;(-¢t)—w(?)|;r=0.
3% t€[0,T1+4]

By (4.7), (4.8) and Ascoli - Arzeld theorem, there exists a subsequence
of the solutions w; which uniformly converges to w on E(*) U E(-),

Therefore, the generalized solution w is Holder continuous in E(+) U
EC),

Let @ € C(G) be a generalized supersolution in G.

There exists a positive constant 7 which has the following property ;

For any sufficiently large n and j, w;, satisfy that
(4.9) win(z,t) < W(z,t)
fort € [T,T1] and |z | € [4(t) — n, £(2)]
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For any integer H > 1 and h = 0,1,2,---, H — 1, we set tng) =
T+ (T; = T)h/H and G, = [—(t;"), £(t,)] x (67, 6,31)
We fix a large H such that

0< D) AWy < for h=0,1,---, H —1.

Repeating the same argument obtaining uniqueness part in Lemma 3.3

we can prove

(4.10) 5% fute ) - (e, )} fo(e)dz < 0

—1£(to)

where f € C*!(Gy) be an arbitrary function such that f(££(2,), t) =0
for ¢ € [to, 1] and consequently

(4.11) /M) (w(z, ) — @z, 4)), dz < 0.
={(to)
By (4.9) and (4.11) we have

(4.12) w(-,t) < W(-,t1) ae. on [—L€(t1), £(t1)]
From (4.12), the same argument yields

w(+ 1) < @(,t) ae. on[—L(t2), £(t2)]
Repeating this procedure we arrive at

w(-,T1) < @(-,T1) ae. on[—4(Th), LTY)]-
Since T7 > T is arbitrary, we conclude

w(-,t) < w(-,t) fort > T and a.e. on [—£(t), £(¢)].

Q.ED.

Lemma 4.5. Let wy in (3.2) belong to Co(R).
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Let w be a generalized solution of (3.1) and (3.2). And let & be a
generalized supersolution of (3.1) in G and be continuous and positive in

G. Suppose that :
w(,T) < @(,T) ae. on [-&T), &T)]
supp w N (S, U S_,) = ¢.

Then, w and @ satisfy

w(z,t) < (z,t) fort > T and a.e. z € [—£(t),£4(t)]

The proof is given in a quite similar way as in the one of Lemma 4.4

and omitted.
Finally, we state for following.

Lemma 4.6. Let £(t) = 4, on [T, 00).

Let P in (3.1) and wp in (3.2) belong to L=(R x [0, 00)) N C?}(R x
[0,00)) and Cp(R) respectively.

Let w be the generalized solution of (3.1) and (3.2). And let & be a
generalized subsolution of (3.1) in G and be continuous in G.

Suppose that :

w(,T) > (-, T) on [~fo, 4]

The proof is standard and omitted.

21



5. The large time behavior of the solutions for
wy = (wm)zx _ A(t + 1)—n/(m+l)wn

In this section, we consider the large time behavior of solutions for

the following equation :
(5.1) w = (W™)ze — M1 +1)"Y Dy in R x (0, 00)
with initial condition
(5.2) w(-,0) =wp on R,
where A > 0 and wy satisfies (A.I.) in Introduction.
In order to investigate the large time behavior of the generalized so-

lution for (5.1), we shall derive an estimate of | (W™ !),(-,?) |s r- The

following is proved similarly as in the proof of Lemma 3.1 in [8].

Lemma 5.1. Let w be the generalized solution of (5.1) - (5.2). Then,

we have
| (@™ a(8) Joor < € (t7 [0(2/2) [28)" for ¢>0,

where C is a positive constant independent of ¢ and wy.
Our main result in this section is as follows.

Lemma 5.2. Let p, = nm/(m+1—n). Let wq satisfy the assumptions
(A.I.) and w be the generalized solution of (5.1) and (5.2). Then, the
support and L*-norm of w have the following properties :

Uesosuppw(-,t) is bounded in R,if 2n — 1 < m.

— inf{suppw(-,t)}, sup{suppw(:,t)} ~logt if m=2n-1.

— inf{suppw(-,t)}, sup{suppw(,t)} ~ tP+=m)/(2r-=2)

if 2n—-2 < m < 2n-1.

—inf{suppw(-, 1)}, sup{suppw(:,t)} ~ t/™*D if m < 2n -2,
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log(] w(-,1) Joo,r) ~ —t™1 if n=1.
| w(y?) |oo,R™ ¢~/ if2n—2<mand n> 1.

| w(y1) |oor~ t7H0HD i 1< m < 2n—2.

Proof. For simplicity we assume that wq(0) > 0.
(I) Case: n=1.
Let w be a generalized solution of (2.3) with initial condition @(-,0) =

wp. We set fort >0

p(t) = exp (—)\ /Ot(l + s)'m;+17ds)

and
t
u(t)=/ p(s)™ 1ds.
0
Then, we can observe
w(z,t) = p(t)a(z,v(t)) for (z,1) € R x (0,00),
and the result follows from [17].
(I) Case:2n—1<mandn > 1.
Let w* be a generalized solution of (1.4) with p = p. and with
w*(+,0) = wp. In Introduction we describe the estimate of supp w*(-,t)

and | w*(+,t) |, R, Which is the required one also for w(t). Suppose that

A is so large to satisfy :
(5.3)  w(z,t)mi— < AUP(14+1)7 for (z,1) € R x (0,00).

For such a constant ), since w is a generalized subsolution of (3.1)
with P = w*(»~D/(m+1=n) and ¢ = n we obtain by Lemma 3.3, Lemma

4.3 and (5.3) that w* > win Rx[0,00). Let a and b be positive constants
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satisfying a™ 1% = 1 and set @(z,t) = aw(bz,t) for (z,t) € R x (0, 00).

Then @ is a generalized solution of the following equation :
we = (W™)ge — A (14 8)™/+ Dy in R x (0, 00).

Therefore, we obtain the upper estimates of suppw(-,t) and | w(+,t) | R-
Let Ao € (0,1) and let & be the solution of the following Cauchy

problem :
(k™)' = u(h» = k) on (0,00)

71(0) = hy, 7;’(0) =0, where g = AR (__m+1__)FT

(n—-1)(m+1—n)

It is easy to observe that h has a zero point, and let § be the first zero

point of A. Then, there exists an nontrivial and nonnegative solution h

for
N(hn - h) = (h’m)lz on (_6’ 6))
h(6) =h(—6)=0

such that

(5.4) wo>h on (—68).

Let 7 be the solution of the following Cauchy problem :
T'(t) = =2A+t)™m+Dr on (0, 00),
(5.5)
T(O) = Ty,

where 7o = min{1, (m + 1)/(A(n — 1)(m — n + 1)))~Y/-1}

Then, we observe that
(5.6) (Th): < ((Th)™)ze — A1 + )™ D (Th)"in(=6,6) x (0, c0).

By (5.4), (5.6) and Lemma 4.6, we get that A7 < w in (=6, 6) x (0, 00).
Moreover, the decay rate of T in ¢ is equal to the one which we want to

show. Therefore, we have a lower estimate of | w(-,1) | R-
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(ITII) Case: m=2n—1.
Let ¢ > 0 and set A = A(m—1)(m+7=2/(n=1) " We consider the Cauchy
Problem :

(5.7 (@™)" +¢cq' +g—Xg" =0 on [0,7)
' g(0) = X VG-D g < qg< X YD 4" <0 on [0,n),

where 7 is a positive constant. This problem has a solution for some n > 0
and the behavior of it is known (See [1].). Using this we can construct

desired generalized supersolution and subsolutions (See [5].).

(IV) Case: 2n—2<m<2n—1.
Set

(5.8) wa(z,t) = A(l+1)7%(D - 2?1+
for (z,t) € R x (0,00)
where a = 1/(p, — 1), b = (p. — m}/(p. — 1) and A and D are positive

constants.

Then we obtain that
Lw,) = e — (WM)ae + A1+ 2) 7/ Dyp
= —A(m—1)7122(1 + t) ey (=)
x (4(m — 1) mA™ — b1+ t)mtie1)
—A(1+8)7e7 1 D (g — 2(m — 1)TImA™ (1 4 t)melm=D-bH
—2AMY (1 + t)-a(”-l)+1—n/(m+1),/,(n—1)/(m—1))
for (z,t) € R x (0,00).

Since a(m — 1) + b — 1 = 0, we have

(59) L(w*) < —A(m _ 1)—-1:1:2(1 + t)—am—2b¢(—m+2)/(m—1) x
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x (4(m = 1)7'mA™ = b) — A1 + )Tt
x (a—2(m—1)"tmA™"! — A ArTlgn-DItn-D)

for (z,t) € R x (0,00),

where ¥ = ¥(z,t) = (D - z2(1 +t)‘b)+. Since 2a > b, there exists
a positive constant A such that 2a > 4m(m — 1)"1A™"1 > b. Let such
an A be fixed. Moreover, there exists a sufficiently small constant D > 0
such that a — 2(m — 1)7'mA™ ! — YA 1 D-DIm=1) 5 0 and woe(z) >
A(D —22)Y™ Y on R and we shall fix such a constant D. Then we have
L(w,) < 0in R x (0,00). Since wae, (W])zz € LY(R x [0,T]) for T > 0,
w, is a generalized subsolution of (5.1). Therefore, we have by Lemma
3.3 and Lemma 4.3, that w, < w in R x (0, 00). Thus, we obtain the
lower estimates of suppw(:,t) and | w(-,t) |0 R-

Let w* be a solution of (5.5) with the initial condition w*(-,0) =
| wo |oo,R- By Lemma 3.2, there exists a smooth function £ in [0, 00) such

that ,
2(0) >0, £ >0 in [0, 00),

supp w(-,t) C (—£(t),£(t)) fort > 0.
Set G = {(z,t) : ¢t >0 and z € (—4(t),4(t))}. Since w*is a generalized
supersolution of (5.1) in G, we find by Lemma 4.5 an upper estimate of
| w(-,t) |oo, R. On the other hand, we see by Lemma 5.1
(5.10) | (w™ ). (-1) lo R < Ct~(1/2)(A+(m=-1)/(pe~1))

By a similar argument to one which is used for the porous medium equa-
tion, we can show that suppw(-,t) is an interval ((;(t), ((t)) for large ¢
and that

(1) G)= "

By (5.10) and (5.11), we see

m

(w™ 1), (&(2),t) for large t,i=1,2.

(5.12) | ¢ (t) |< Ct=Q/2+m=1)/(p.—1))
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where C is a positive constant. Integrating (5.12) from 0 to ¢, we have

upper the desired estimates of | (1(¢) | and | ((2) |-

(V) Case: m< 2n—2.

We set again
wa(z,1) = A1 +1)7%(D — 21+ t)")Y™™ for (z,t) € R x (0, 00).

We put for € >0
(5.13)

bJ

a=1/(m+1)+e b=2/(m+ 1) —e(m—1), A=( m—1 )ll(m—l)

2m(m+1)
D= (A—lAl—n&.)(m—l)/(n—l) and E = ADV(m-1)
Then, for any sufficiently small ¢ > 0, we get

(5.14) wo(z) > EX[_Dln,Dl/z](z) for z €R,

where x is a characteristic function. We fix such an € > 0. By (5.9),
(5.13) and (5.14), we see that w, is a generalized subsolution of (5.1),
and w > w, in R x [0,00). Set Ty = (eA"1A!"271)""9 _ 1 which
g=(2n—-2-m)/(m+1) > 0. Then we see

n R,

w(z, Ty) > A1+ 1) (D(1) — 22(1 + Tl)_b@))ium-n .

with a(1) = 1/(m+1) +¢/2, b(1) =2/(m+1) —e(m—1)/2 and D(1) =
D(1 4 Ty)~s(m=DI2_ Setting

1/(m-1) |

wen)(®,t) = A(1+1)70 (D(l) —z%(1+ t)"b(l))+ in R x (0, 00).
We see

L(’LU(,..])) < 0 in R x [Tl) OO)
and

W(x1)ts (w(’cl))zx € LI(R X [O,T]) for T > 0.
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Thus, w.1)(z,t) is a generalized subsolution of (5.1) in R x [T3, 00), and
we have by Lemma 4.3 w(,) < w in R x [T}, 00).

For any positive integer j, we put a(j) = 1/(m + 1) + €277, b(j) =
2/(m + 1) — e(m — 1)273,T; = (A"1A*"27)9 _ 1 and D(j + 1) =
D(§)(1 4+ T;)~*(m=1277"" Setting

1Y(m-1)
1
+

wey (2, 1) = AL+ 1) 70 (D(5) — 2*(1 + 1)) n R x (0,00).

We get similarly w > w,;) in R x [T;,00). Therefore, we get for ¢ €
g (*5) 7 g
[Ti’Tj+1]’ .7 2> 1’

(1+8)7H04D |inf{suppw(-,6)} | > D()V2(1+ Tjua) <027,

(1 + )=+ | sup{suppuw(-, )} | > D(j) (1 + Tjuq)~sm 127,

and
(14 )™ D | w( 1) o> ADG)™ (1 4+ Tyyy) 2.

Since lim D(j) = D(o0) > 0 and ,lim(l + TJ-+1)"°2_j = 1, we obtain the
lower :est?mates of suppw(:,t) ané |°;1(,t) oo, R-

Let w* be a generalized solution of (2.1) with initial condition w*(-,0) =
wo. Then we can show that w* is a generalized supersolution of (5.1).
Therefore, we obtain the upper estimates of suppw(,t) and | w(,?) |0 R-

Q.E.D.
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6. Regularity and semiconvexity of the solution for (1.4) and (1.5) in case
of inf,erwo(z) >0

In this section, we let the function wy belong to C(R) N L>(R) and
satisfy
(6.1) ;gff{ wo(z) > 0.

We shall consider the regularity and the semiconvexity of the solution

for (1.4) and (1.5) under this assumption.

By Theorem 0 in [8], we know the following proposition.

Proposition 6.1. Let wy € C(R) N L>(R) satisfy (6.1). Then, there
exists a unique classical solution of (1.4) and (1.5), and the solution is

smooth in R x (0, o).
Now we shall show main results of this section.

Lemma 6.2. Let wy € C(R)N L*®(R) satisfy (6.1) and let w be the
classical solution of (1.4) and (1.5). Then, w satisfies

| @™ )a(,8) loR € DrnDa(t + D2) 517 x
—_m=1 m—
x{Dy ™" — (t+ Dg)_ﬂ’—"_-lT}_l/2 for (z,t) € R x (0, 00),
where D, ,,, is a positive constant depending only on m and n,

2n4m-—2

| wo |oo R 2 { . i _ 12
— ) f n+l __ 2n+1}
b (infxeR wo(z) X 2(;2Rw0(x)) | wo [ R

and

D, = (lglf{ wo(z)) ™2,

2n—1"%
Proof. Set W = (m/(m—1))w™ 1. Then, W satisfies the equation :
Wy = (m—1)WW,, + |W, |* — AW? in R x (0,00),
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with 8 = (2n + m — 2)/(m — 1) and A = mP~1(m — 1)A.

By the comparison theorem, we have
(6.2) p(t+C*) "% > W(z,t) > u(t+C.) = in R x [0, 00),

with g = {A(2n—1)/(m—=1)}~-D/C-1) C, = (2n—1)" (infer wo(z)) 2"
and C* = (2n—1)7" | wo [ 7% .
Set

O(z,t) = (t + 2C.)*(W(z,t) — p(t + 2C.)"7=1) in R x [0, 00),

where o = (2n + m —2)/(2n — 1).

Then, Q is positive in R x [0, 00) and we obtain the following estimates :

= m—1 (2C\"* .
: < _c
(6.3)  Q(z,t) < “2n——1(0*) (2C. - C*) in R x [0, 0)
and
« —1
(6.4) O(z,t) > p%—_—IC, in R x [0, 0).
Setting

r(s) = ((20,,)1_“  C 1)5)_ﬁ on [0, S,)
with S, = (2C.)'"*(a — 1)7!, we find

r'=re on (0,S,)
r(0) = 2C,.

Using r(s) we set
Q(z,s) = Q(z,r(s) — 2C,) in R x (0, S,).
Then,
(6.5) Qs = (m=1)(Q+prQs + | Qs [° + MpPr®
=M1+ p7r7Q) + artTlQ
in R x (0, S,).
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Set N = 8u(m—1)(2n—1)"(2C,/C*)*(2C,— C*) and ¢(y) = Ny(1—7y).

By a quite similar argument obtaining (4.5), since we can prove
N
(6.6) | Q.(z,s) |* < — for (z,s) € R x (0, 5.).
s

Therefore we omit the prove of (6.6).

Since

= oo~ (t+ 20077},

it follows from (6.6) that

C 1/2

| Waz,8)| < Dum [(E)G(za—c*)]

x (t+2C.)™ in R x (0, 00),

{2y —(c. + t)l“"}_% x

for a certain D, ,, > 0.

Q.E.D.

Lemma 6.3. Let m > 2n. Let wy € C(R) N L*°(R) satisfy (6.1) and
let w be the classical solution of (1.4) and (1.5). Then, the solution w

satisfies the following inequality :
(W™ Vaa(z,) > —K(t + Dy) 317" x
x(D; B — (14 D) B}
in R x (0,00),
with K = max((m — 1)/(m(m+ 1)), DpmD?), where D; and D, are the
constants in Lemma 6.2 and ﬁn,m is a positive constant depending only

on n and m.

Proof. We differntiate the equation in (6.5) twice with respect to z
and set P = Q,, to get

6.7 P, = (m=1)(Q+pr)P + 2mQ. P, + (m+1)P?
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—or* Y1+ 1r1Q)P 1 -1} P
—(B=Dap™r* (14 pr71Q)Y~%(Q,)?
in R x (0, S,).
We shall consider the differential operator :
(6-8) L(6) = 6, —(m—1)(Q+ pr)fes — 2mQ.0, — (m + 1)6°
+ar* Y1+ pr'Q)? 1 - 1}4 in R x (0, S.).
Then from (6.4), (6.6) and (6.7) it follows that

_ -1 N
TG (B Dart )1+ p Q)

in R x (0, S.).

L(P) > —(u

Let k > 0 and 0 < < S,. We substitute P = —k/(s — 7) into (6.7) to
get (note that 1 < < 2)

0B k _ (m+ 1)k —(8 — Dar®(y1r1 -1,-10)8-2 k
Up) = (s—n)? (s—mn)° (6-1) (u Q)1+ p Q) s—n

in R x (n, S.).

If the positive constant k£ satisfies

m—1 1N
C,) — <k« 1)k?
(#Qn—l ) m _(m-i— ) ’

we have

(6.9) L(P) > L(P) in R x(n,S.).
By Theorem 5.1 in Chapter 7 of [14] P is bounded in R x [n, (S. +1)/2]

and there exists a positive constant ¢y such that
(6.10) P> P in Rx(nn+e).

Thus, choosing

1 m-—1_\'N
o (e 2
ma.x{m+1, “Qn—lc m}’
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we have

~

P>P=-

P in R x (n,S.).

Since 7 is an arbitrary constant such that 0 < n < S,, we get
k.
Q:z::z: Z —— in R x (0, S*)
s

Therefore it follows that
(™) 2 —(t+2C)7k[(20.)17 — (t+20.)0] 7
in R x (0, 00).

Q.E.D.
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7. The estimates of v in (supp u)°

In this section we shall consider the estimates of v in (supp «)¢, where
u and v are the solutions for (1.1) and (1.2). Throughout this section,
we assume 2n — 2 < m and that wug and vy satisfy (A.I.) and (A.IL).
Set dy = (bm) Y2am(] vo |1 — | w0 |, R)™ V™D where a,, and b,,
are the constants in (2.5).

For d € (0, dy), we set h = h(d) = bL/(m=D(42 — ?)1/(m—1),

Lemma 7.1. Let u and v be the solutions of (1.1) and (1.2).
For d € (0,dy) and € € (0,dy — d) such that h(d + &) > (3/4)h(d),
there exists a positive constant 77 = T(d, €) satisfying the property :

d d
supp u(-,t) C [—-?)—tml_’rl, gt#l} for t > Tj.

Moreover, for t > T, there exist 2, = z1(d, ¢,t) € [dt}/ (™D (d 4 )t/(m+1)]
and z, = z5(d, €,t) € [—(d + e)t/m+D | _ g1/ (m+1)] such that

v(z;,t) > %h(d)t'ml_+l for:=1,2.

Remark 7.2. For n € (0,¢), we put
G={(z,t) : t2 Ty, 2 € [~(d+ 7, (d+n)t7e]).
Applying Lemma 4.4 to the solution v, we see that v is continuous in

{(z,1) : t> T, o €[—(d+ey/mD) _gt/tmtD]y [gel/m+D) (g 4 ¢)/m D]}

Proof of Lemma 7.1. For A > 0 and (fo,go) € X such that fo(z) and
go(z) > 0 ae. z € R, we put (fy,90) = (I — AA)"1(fo,90), where A
and X are the operator and the space in Section 2 respectively. Since

(| /51" fA)zz and (] f» |™ ! 92)2c belong to L*(R), we have that
/R a(z)ds — /R f(z)ds = /R go(z)de — /R folz)dz.
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Therefore, by the definition of the solutions u and v in Section 2, we get

that
(7.1) Fo(,8) iR — |u(t) i, r= M fort >0,

where M =|vo 1R — | %0 |1,R-
Let w be the generalized solution of (1.4) (p = 2n) with w(-,0) = u,.

Then, since 2n—2 < m, the solution w satisfies the following peroperties:
Jim | () =0
and there exists a positive constant 73, such that
d 1 d _1_
(7.2) supp w(-,t) C [~§t mT §t m+T| for ¢t > Th..

Therefore, by Lemma 4.1, the solution u satisfies that

d, 1 d, 1
(7.3) supp u(-,t) C [—gtm_ﬂ, §t'ﬂ7} for t > T\.
and
(1.4 Jim [ (1) [L=0.
By (7.4), there exists Ty, = To.(e, d) > T1.
such that
(7.5) lu() or < %h(d)e for ¢ > To..

Let v* be the generalized solution of (2.2) with v*(-, T2.) = v(-, T2.) in
R x [T5.,00). From Lemma 4.1 it follows that

(7.6) v(z,t) < v*(z,t) for ¢t > To. and a.e. z € R.

By [7] and [15], the solution v* satisfies that

(7.7) sup{supp v*(-,t)}, inf{supp v*(,t)} ~ t7
and
(7.8) Bm {t%97 | 0(,2) = 3(,t) |oor} = O,
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where 9(z,t) = z(z,t ; | v(-,T2.) |1, R) and Z is the self - similar solution

((2.5)).
From (7.7) and (7.8), it follows that

(7.9) lim | v*(,t) — (%) s r=0.

t— 00

Now we shall show the existence of the point z;.
By Remark 7.2 and (7.3), the negation of our conclusion is as follows :
There exist a constant £ € (0,dp — d) and a sequence of the points

tp € [T24, 00) such that
3 .

h(d+¢) > Zh(d)’ Jim ¢, = oo

and
2 L
(7.10) v(z,t,) < gh(d)tn m
1 1

for n > 1and z € [diz, (d+e)tn?].

From (7.6), (7.8) and (7.10), it follows that

| o(ota) b < [ 9 t)de + [ 07(0) = 7 t) L

2
+§h€,

where
I(t) = [dt7+1, (d+ e)tm¥1] for t > 0.

For any positive constant ¢ such that h(d + ) > (3/4)h(d), the function

¥ satisfies that
_ 3 1
(7.12) o(z,t) > Zh(d) xS

fort >0 and z € I(2).
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Since any generalized solutions z of (2.2) conserve the total mass :
, z("t) |1,R = | Z(',O) II,R)
it follows from (7.1) and (7.5) that
(7.13) |0 1) iR +och
. UL, 1L,R 24 &
> | U("T'-?*) II,R = l U*(')t) |1,R for any t Z T2*-
By (7.12) and (7.13) we have
_ 3
o(z,t,)dz + Zhe

(T14)] v, ta) hm >

R\I(tn)
. ~ 1
- ! v (')tn) - U("tn) |1 R —5he forn > 1.
' 24
From (7.11) and (7.14) it follows that
1
(7.15) | v*(-,ta) — 0(-, tn) |1,R > Ehe forn > 1.

The property (7.15) contradicts with (7.9). Thus, for any sufficiently
large ¢, there exists a point z; having the required property.

By the similar argument, we can show the existence of the point z,.
Q.E.D.

In the proof of the following lemma, since we shall use the scheme

employed in the proof of Lemma 3.1 in [8], we omit the proof.

Lemma 7.3. For d € (0,dp), there exist two positive constants T}, =

T>(d) and C, = C,(vo, d) such that
| (0™ 1) (z,t) | < Cot™m4T for t > T

and a.e. z € (—o0, —dtTanx] U [dtml_-H’ ).
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By Lemma 7.1 and Lemma 7.3, we can show the following lemma.

Lemma 7.4. For d € (0,dp), there exists a positive constant T3
T3(d, vo) such that

o(dt= 1) | u(—dtwe 1) > %h(d)tﬂ_n

for t > Ts3.

Proof. Fix d € (0,dp) and choose

oo H(ow)” - ()

where C is the constant in Lemma 7.3. Let T3 = max(Ty,T3).
Then, it follows from Lemma 7.1 and (7.16) that
THAERT ) > v Nz, 1) — Cot (g — dt )

2 m-—1 —
> (gh(d)t'ml_ﬂ) — Chet™ma

1

1 m—1
> <§h(d)t"‘_‘“) for t Z T3,

where z; is the point in Lemma 7.1.

By a similar argument, we obtain
m—1 1 1 ™!
v (—dtwe,t) > (Eh(d)t m+n) for t > Ts.

Q.E.D.
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8. Proof of Theorem 1.1

Part I (Case m < 2n —2.).
Let w* be the generalized solution of (2.2) with w*(-,0) = vo. By [17],

it is shown that the solution w* satisfies

(8.1) | w* (1) |ooR ~ $aT
and
(8.2) sup(supp w*(+,¢)), —inf(supp w*(-,t)) ~ t=.

Let w be the generalized solution of (1.4) (p = 2n) with w(-,0) = v,. By

the result stated in Introduction, the solution w satisfies

(83) | w('Jt) |00,R ~ tm-_lly
and
(8.4) sup(supp w(-,t)), —inf(supp w(-,t)) ~ 7.

On the other hand, by Lemma 4.1 we have
(8.5) w(z,1) < o(z,t) <wis?)
fort >0 and a.e. z € R.
It follows from (8.1) - (8.5) that
(5.6) () o ~ £757

and
sup(supp v(-,t)), —inf(supp v(-,t)) ~ 4T
Therefore we have the estimates of | v(-,t) |, r and suppu(:,?).
By (8.6), there exists a positive constant A such that

(8.7) (v(z,8))" < AA+1)"m
fort >0 and a.e. z € R.
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For such a A, we let u, be the generalized solution of (5.1) with u,(-,0) =
ug. By (8.7), the solution u, is a subsolution of (3.1) with P = v™ and

q = n. Hence, by Lemma 4.1 and Lemma 4.3, we have
(8.8) u.(z,t) < u(z,t) < w(z,t) in R x[0,00).

By Lemma 5.2, the solution u, satisfies

(8.9) | u(t) loa R ~ 75
and
(8.10) sup(supp u.(+,1)), —inf(supp u.(-,t)) ~ t7.

From (8.3), (8.4) and (8.8) - (8.10), we obtain the required estimates of
| u(-,1) |oo,r and supp u(-,1).

Part II (Case of 2n—2 < m.).

The following lemma gives some lower estimates of v in a subset of

( supp u)°.

Lemma 8.1. Let
<_Ot(2n--m)+/2(2n—l) if 2n#m,
(= |
Co(log(t))+ if 2n=m,
k(t) = A(t + K)=F + ((t) fort>0

and let

1

m—1 mel o1 I e
U&l)(m,t) = (m) 1" mF (Az—(x—k(t))zt m+1 )+ mn RX[0,00)

Then, u and v satisfy

supp u(-,t) C [=¢(t), ¢(t)] for t > T}
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and

U(m)t)) ’U(—:I,‘,t) > v&l)(.’t,t)
for t >T; and a.e. z € (—o0, At7+1]
for certain positive constants k,{, and 73.
Proof. Let w be the generalized solution of (1.4) with w(-,0) = u,.

Then, as is noted in Introduction, it holds for sufficiently large ¢, and 7.

that
supp w(-,t) C [=¢(t), {(¢)] for ¢ > Th..

By Lemma 4.1, we have also

(8.11) supp u(,t) C [=((t), ¢(t)] for & > Th..
We set
(8.12) A = Q™14 1),

where dy is the constant in Section 7. By Lemma 7.4, (8.12) and
2n—2 < m, there exists a positive constant T5, = T5.(A) > Ti. such
that

1

(8.13) v(At= 1), v(—At=r,t) > Eh(A)t-#ﬁ for ¢t > Th.

and

1 1
(8.14)  supp u(-,t) C [—§Atm‘—+:, 5Aﬁ’+—1] for ¢ > T,

where h is the function in Section 7.

Here, we take

(8.15) K = ™7,

and set
Gr,, = {(z,1); t > Th, z € [—Atwr, Atwi]}.
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We shall compare the function »{" in this lemma and the solution v in

Gr,,.
By (8.15), the function o1 satisfies

e 1
(8'16) U’(kl)(x) TZ*) =0 for z € [_ATQY:H, AT2':+1].

Since

k(t) > AT fort >0

we have
1
(8.17) V(AR 1) < 5h(A)t‘m‘Tx for t > Th,
(8.18) V(= At7T,¢) = 0 for t > T,
and |
(8.19) vD(z,t) > 0

fort > To. and ae. z € [—Atml_+1, Atm_1+7].
By (8.11), the solution u satisfies
(8.20) (suppu) N (supp v{Y)=¢ in Gg..

Since the function ((m—1)/(2m(m-+1)))/(m=Dg=1/(m+1)( f2_524=2/(m+1))1/(m=1)
satisfies (2.2) a.e. in R x (0, 00), we obtain by (8.19) and (8.20)

(8.21) o0 = D™, + urr
= o{(=F(t)) < 0 ae. inGrp,,

That is, +" is a subsolution of (3.1) with P = v™ and ¢ = nin Gr,,. Thus,
by (8.13), (8.14), (8.16) - (8.18) and Lemma 4.4, we conclude v{" < v in
Gr,,.

Q.E.D.
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Lemma 8.2. There exist a positive constant T, and a positive function

p defined on [T3, 00) such that
v(z,t) > p(t) > 0
for t>T, and ae. z € [—Atﬁl*r—l, AtFlJr—l],

where A is the constant in Lemma 8.1.

Proof. Case: 2n—2 < m < 2n.

Let w be the generalized solution of (1.4) with w(-,0) = uo. Then, by
(8], [9], [12] and [13], there exists a nonnegative constant 77, such that for
each ¢t > T\., {z € R : w(z,t) > 0} is an open interval in R containing
z = 0. By Lemma 8.1, there exists a constant T, > max(7}.,7;) such
that

(8.22) v(z,t) > oz ; 1)
for t >T,, and ae. z € [—Atml_ﬂ, Atm1_+1],

where

1
m — 1 m-1 1 Az 2 1 2 m-—1
)= | ———— 7w | — — (z — = At ™+ )3~ meT
#ole 5 1) (2m(m+l)) ( g~ (2 —5at™T) )

and A and T; are the constants in Lemma 8.1.

For each s > To., let w(-, - ; s) be the generalized solution of (1.4) with
w(-, s; 8) = max{w(-,s), go(-; )} in R x [s,00) and let ¢(-, - ; s) be
the generalized solution of (1.4) with ¢(:, s; s) = @o(-; s) in Rx[s, 00).
Then, by (8.21), Lemma 4.1 and Lemma 4.3, we have

(8.23) oz, t;s) < w(z, t;s) < v(z,1)
for s > T, any ¢t > s and a.e. z € R.

We observe by [9], [12] and [13] that foreacht > s, {z € R : ¢(z, t; ) >

0} is an open interval in R.
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Since m < 2n, the result in Introduction implies that there exists a

constant T3, (> T>.) such that
{zeR : wz,t)>0} N {z€R : oz, t;s)>0}#¢
for t > Tj,.
Let Eo(t) = {z € R : w(z,t) >0}, E,(t) ={z € R : o(z,t; s) >
0} and Eg(t) = {z € R : vf.l)(x,t) > 0}, where v is the function in
Lemma 8.1. Since Fy(t), Fgr(t) and E,(t) extend as ¢ increases we obtain

by [9], [12] and [13] that

(8.24) Eo(t) U Er(t) U ( |J E.(@) D [0, Atw]
$€[T24,t]

for t > Ts,.

Since [0, AtY/(m+D] is compact there exists a finite sequence {s,}/_, C

j=1
[T3.,t] such that

(8.25) Eo(t) U Eg(t) U (LJJ E, (1)) D [0, Atms].

J=1
By Lemma 3.3. w and ¢(-, - ; s) are continuous in R x [0,00) and

R X [s,00) respectively. When we put
p+(t) = min{max(w(xat)7 Ugl)(xat): (,0(22, t; 31)’ R
oz, t; 7)) : z€[0, At} fort > Ty,

Lemma 4.1, (8.23) and (8.25) imply that the function p, is positive in

[T3.,00) and satisfies
(8.26) v(z,t) > p4(t)
fort > T3, and ae. z €0, AtFl%T].

By a similar argument, we find a positive constant Ty, and a positive

function p_ defined on [T4., o) such that
(8.27)  wv(z,t) > p_(t) fort > Ty, and ae. z € [—Atﬁﬁ, 0].

44



Case : m > 2n.
By a result stated in Introduction and Lemma 4.1, there exists a

positive constant b such that
b b
(8.28) supp u(-,t) C [—5, 5] fort > 0.

By (8.28) and Lemma 4.4, v is continuous in (R\(—2b/3, 2b/3)) x [0, c0).
Hence, by Lemma 8.1, there exist two positive constants a and Ts. such

that
(8.29) o(z,t) > at"TAD R
for ¢t > Ts.and |z | > .
For T' > 0, we let w(z,t;T) be the solution of
(8.30) wi = (W™)gz — Aw in R x (T, 00)

with
'LU(-, T; T) = ’U(', T) on R,

where X =| v |2R .

By Remark 3.2, Lemma 3.5 and 4.1, we have

| v ()" (1) leR S X fort >0,
and hence, by the comparison theorem,
(8.31) w(-t;T) < v(t) for t and T with¢ > T > 0.
If we can show

(8.32) U U (supp w(-,T))° D [-b,8],

T>0¢>T
this together with (8.32) will give the desired result. In fact, for zo €
[—b,b] there exist t(zq) > T'(z¢) such that

w(zo,t(z0); T(z0)) > O.
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Then, there exists an open interval I(zo) such that

zo € I(20) C ( supp w(-, ¢(20); T(20)))"-

Since supp w(-,t;T(zo)) is monotonically non-decreasing with respect to
t, we get
I(zo) C ('supp w(:,T(20)))°
for ¢ > t(zo).
Since there exist finite points {z; }JJ=1 C [-b,b] such that U]J=1 I(z;) D
[—b, 5], we obtain
o(z,t) > h(t) > 0
for any z € [—b,b] and any ¢ > t., where t* = maxt(z,) and h(t) =
7
min maxw(z,t; T(z;)).
2 x
In order to show (8.32), we assume
U U (supp w(-,t;T))°* 2 [~b,b].
T>0t>T

Then there exists a point z, € [—b,b] such that
w(z.,t;T) = 0for t and T with ¢ > T > 0.

Therefore, vy and ug satisfy vo(z.) = ug(z.) = 0. Note that

(8:33) [ oy > [~ uolw)dy

or
/_ . vo(y)dy > f_ . uo(y)dy.

We assume (8.33) without loss of generality.

Let
U0 = U0X(—00,2.] + Vo X[2a,00)s

Uep = Ug
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and let v, and u, be the solutions of (1.1) with u.(-,0) = v.o and w.(-,0) =
Uyo. Then, by Lemma 4.1 we have for ¢ > 0

(8.34) v(z,1) 2 v(z,t) 2 w(z,t) 2 u(z,t) 20

forae. z€R.

For T > 0, we let w.(-,-;T) be the solution of (8.30) with w,(-,T;T) =
v.(-, T). Then, since T'> 0 w(,T) > w.(-,;T) in R x (T, 00), we get

Wa(z4,t;T) =0 for t and T with ¢t > T > 0.

For T > 0, we let z.(:,-;T) be the solution of (2.2) in R x (T, 0c0) with
2., T;T) = (-, T).

Then, we have
=T
(8.35) Wiz, t;T) = e’\(T"t)z*(:c,/ e~ (m=DAs gy,
0

By the comparison theorem and (8.35), z. satisfies

(836) Z*(QI,S -+ T, T) = fOl‘ s € (0, ﬁ)
and for t > T,
(8.37) zo(, ;) > vul-,t) a.e. on R.

For each T' > 0, let

vl(') g T) = z*(') " T)X[:L‘.,OO)'

Then, we shall show that v,(-,;T) is the solution of (2.2) in R x (T, T +
1/(A(m — 1)) with v1(-, T;T) = vu(*, T)X[z.,00)- For this we take to,; €
(T, T + 1/(A(m — 1))] with ¢, < ¢; and zo,z; € R with z¢ < z;.

For 6 > 0, we set

{ exp(—(6% — (z — (5. +6))*)™") if |2 — (2. +6) |<§,

ps(z) = ,
if |z2—(zu+8)|>6
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and

hs(z) = /; ps(y)dy.

For f € C?'([to,t1] x [z0, z1]) with f(zo,t) = f(z1,t) = 0, 2, satisfies
I(z., fhs, [to, t1] X [z0,21]) = 0.
Since there exists a constant C = C(%o,;) such that
|z 4 T) |oo,rS C for t € [to, 8],

we have

0 = I(Z*)fhéy[tO)tl] X [1’0,(131])

/th S A=GT)Fuhs + fo5) + 2. fehs}da

1
- . z*héfd:c]g,

and, letting 6 — 0,

(838) I(Z*X[z.,oo)) f) [tO)tl] X [1:07 1?1]) =0.

Therefore v,(:,,; T") is the solution of (2.2) in R x (T, T+ 1/(A(m —1))).
Let w be the solution of (1.4) with w(:, 0) = up and let v2 = wx/(—co,z.]-

By Lemma 4.1, we see
v(z,t) > w(z,t) for t > 0 and a.e. z € R,
and hence, by (8.36) and (8.37),
w(z,.,t) = 0for ¢t > 0.

By a similar argument we can show that v, is the solution of (1.4) (p = 2n)
with v5(:,0) = UoX(—co,z.]-

For T'> 0, let 4(-,;T) = vy (-, -;T) + v, and let & = vy. Then #(-,;T)
and @ are the solutions of (1.1) in R x (T, T + 1/(A(m — 1))). First we
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take T'= 0.
Since

¥(+,0;0) = vuo > tuo > @(:,0) a.e. on R,
we have by Lemma 4.1 that for ¢t € [0, 1/(A(m — 1))]
(8.39) 9(-,t;0) > vu(+,t) > ual+,t) > 4(-,t) a.e. on R.

Since % = 9 if z < z* v, = u, in (—00, z,] X [0, 1/(A(m — 1))].

By induction, we conclude
Vs = Uy = WX(—o00,z,] N (—00, z,] X [0,00).

By a result stated in Introduction, U»osupp w(-,?) is bounded in
R, while U0 5upp (-, t)X(~oo0,z.] is D0t bounded in R by Lemma 7.1.
This contradicts to the above equality, and (8.32) is now proved.

Q.E.D.

For T, N > 0, we shall consider the following boundary value problem:
(8.40) wy = (W™)ge — ™ in QF,
(8.41) w(£N((t),t) = 4777 on [T, 00),

where QY = {(z,t) e R x [0,00) : t > T, z € [-N((t), N{(t)]} and ¢

is the function in Lemma 8.1.

Lemma 8.3. If2n—2 < m < 2n, there exist two positive constants
T3, N and a positive classical solution w; of (8.40) and (8.41) in Q¥ such

that
u(z,t) < wy(z,t) < v(z,t)

fort > T5 and a.e. z € [-N((t), N((P)],

w(£N((t),1) > 55T in [T, 00),
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supp w(-,t) C [—%C(t), %[—C(t) for t > T3,

where w is the generalized solution of (1.4) with w(:,0) = u,.

Proof. By a result in Introduction, there exist two positive constants

N > 2 and T, such that
N N
(8'42) supp w('at) - [_?C(t)) ?C(t)] for ¢ > Th.
Hence, there exists a positive constant 7. > max(71.,71) such that
(8.43) VO(NC(),t) > 5t771 for t > Th.,

where T} and v{"are the constant and the function in Lemma 8.1, respec-
tively.
By (8.42), Lemma 4.1 and Lemma 4.4 v is continuous in

R x [Tz*,oo)\Q%f:/s and we have by (8.43) and Lemma 8.1 that
(8.44) v(NC(t),t) > 5t™3T for t > Th..

Let T3. = max(Tz.,T2), where T3 is the constant in Lemma 8.2. Then,

by Lemma 4.1, Lemma 8.1 and Lemma 8.2, v satisfies

(8.45)  v(z,Ts) > max{v{Y(z,Ts.), vV(~z,Ts.), p(Ts),
w(z,Ts.)} for ae. z € [-N{(Ts.), N{(Ts.)],

where A is the constant in Lemma 8.1 and p is the function in Lemma
8.2. By Theorem 0 in [8] w is smooth in {(z,t) € R x (0,00) : w(z,t) >
0} and by (8.42), (8.44), (8.45) there exists a positive function wg, €
H2**F([—N((Ts.), N{(Ts.)]), 0 < B < 1, such that

(846) w(:c,T3*) S wOb(:c) _<__ ’U(:B,T;;*)
for a.e. z € [-N((T5.), N{(T5s4)]
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and that wo, satisfies the compatibility condition of first order for (8.40)
and (8.41) in QF, .

Since wyy is positive on [~N{(Ts.), N((T3.)], we can show by The-
orem 6.1 of Section 5 in [14] and the change of variables the existence
of the positive solution w, € Hf;ﬂ'lwlz(Q%.) of (8.40) and (8.41) with
wy(+, Ts.) = wop in QY . Since wy, is a generalized solution of (1.4) in

Q7,., we obtain by (8.42), (8.46), Lemma 4.1 and Lemma 4.5 that

(8.47) u(z,t) < w(z,t) < wy(z,t)

for t > T, and a.e. z € [-N((t), N((2)].

Thus, wy is a subsolution of (3.1) with P = v” and ¢ = n in Qf,_ and by
(8.43), (8.46), (8.47) and Lemma 4.4 we have

(8.48) u(z,t) < wp(z,t) < v(z,t)

for t > T3, and a.e. z € [-N((t), N((2)]-

Q.E.D.

Lemma 8.4. If 2n < m, there exists a positive constant b such that
b b
supp u(-,t) C [—-2-, 5] fort > 0.

Moreover, suppose that for such a constant b, there exist three functions
4, v and w* € H,zotﬂ’Hﬂ/z([—b,b] x [Ty,00)), 0 < f < 1, Ty > 0, satisfying
the following properties :

@ is a generalized supersolution for wy = (w™),, — v*w" in [—b,b] x
[Ty, 00), v is a generelized subsolution for wy = (w™),, — @"w™ in [—b, b] x
[Ty, 00) and w* is a generalized solution for w; = (w™),, — w?" in [—b, b] x
[T4, 00),

7T < a(+h,t) < wr(dht) < w(db,t)
< AET < v(xb,t) for ¢t > Ty,
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u(m:T‘i)

IA

'I?L(:Z:,T.;) S w*(m,T4) S Q(.’I),T4)
v(z,Ty) for a.e. z € [—b,b],
u(z,t) < w(z,t)

IN

for t > Ty and a.e. z € [—b,b],
0 < 2 < w* < v in[-bb x [Ty, 0).

Then, those functions satisfy that
u(e,t) < a(o,8) < (et < wz,t) < oz,l)

for t > T, and a.e. z € [}, 5]

Proof. We know already that there exists a positive constant b such
that suppu(-,t) C [—b/2,b/2] for t > 0. Let us fix such a constant b. We

shall consider the following initial boundary value problems :
(8.49) L(w;q) = wy — (W™)ze + ¢"w™ = 0 in [—b, ] x [Ty, 00),
(8.50)  w(b,t) = w(—b,t) = %t'znl_-l on [T, o0),

(8.51) w(z,Ty) = ugy on [—b, 0]

and
(8.52) L(w;q) = 0in [-b,b] x [T}, o0),

(8.53) w(b, t) = w(—b,t) = 2t~ 7T on [Ty, 00),
(8.54) w(z, Ty) = voy on [—b, b]

where ¢ is an arbitrary function belonging to L*([—b,b] x [Ty, 00)), vos =
277 and ug is the convolution of max{u(:,Ty), (1/2)T; /1)
and an appropriate mollifier. Therefore, ug, and vg, satisfy the com-
patibility condition of first order for (8.49) - (8.51) and (8.52) - (8.54),

respectively.
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Let ug = vg = w*. Then there exist two sequences of the positive

functions u; and v; € Hﬁ:ﬂ’uﬂlz([—b, b] x [Ty, 00)) satisfying the following

properties :
For j > 1, v; is the classical solution of L(w;u;_;) = 0 with (8.53) and
(8.54) in [—b, b] x [Ty, 00) and u, is the classical solution of L({w;v;—1) =0
with (8.50) and (8.51).

We can prove that there exist Jliglo v,(z,t) and Jli’r{.lo u;(z,t) in [-b, b] x
[Ty, 00). Setting vy(z,t) = ,]i‘E, v;(z,t) and w(z,t) = jlirg u;(z,t), we

can obtain

(8.55) u(z,t) < wp(z,t) < w'(z,t) < vlz,t) < v(z,t)

for t > T, and a.e z € [, }].

Let o = v and let 4y = @. Then, for any j > 1, 4; is the clas-
sical solution for £L(w;d;-1) = 0 with (8.50) and (8.51), ¥; is the clas-
sical solution for L(w;4;—1) = 0 with (8.53) and (8.54). We can prove
that there exist lim 4;(z,t) and lim 4;(z,t) in [—b, b] % [Ty, 00). Setting

3—o0 g—o0
Up(z,t) = lim 9;(z,t) and dy(z,t) = lim 4;(z,t), we obtain
3—o0 oo

(8.56) ’[Lb S U _<_ v S i)b S |UOb |oo,[—b,b] in [—b, b] X [T4,OO).
Therefore we can observe that
(8.57) Up(z,t) = up(z,t) for t > Ty and a.e. z € [~b,b],
(8.58) Op(z,t) = vp(z,t) for t > Ty and ae. z € [-b,b].
From (8.55) - (8.58) we conclude

u(z,t) < a(z,t) < w*(z,t) < u(z,t) < v(z,t)

for t > T, and a.e. z € [—b,b].
Q.E.D.

Let T > 0 and let

Gr = {(z,t) e R x [T,00) : z € [~At=FT, Atwrr]},
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where A is the constants in Lemma 8.1. Let us consider the following

initial boundary value problem (I.B.) :
( v = (V™) — u™0" in Gr,

us = (U™)ze — v"u” in Gr,

1
1

8 -1 m=T
’U(.‘:hAtm;“,t) = 5 (%’:—Z’n_—l-—i-)—) Aﬁt-;ﬂﬁ- on [T, OO),

(I.B.) ﬁ N S
u( A=+ t) =t" = ¢ on [T, 00),

(-, T) = vgp on [—AT =¥, A=),

u(-,T) = ugy on [—AT=, AT#+1].

\

First, we shall construct some convenient initial functions.

Lemma 8.5. There exist a positive constant 75 and two positive

functions v and @ such that
u(51), a(-;t) € H¥A([— At=or | AtmaT))
for t > T,
v(z,1) > v(z;1) 2 a(z;t) 2 w(z,t) > u(z,1)

fort > Ty and a.e. z € [—At'rTlﬁ,Atml_u],

1

8 — m-1
V(AtFIT; ) = p(— At7T;8) = 5 (m_l_) AmeTiT

2m(m + 1)
for t > T,
1
1 1 1 1 m—1 m-T 2 1
G(At= ;1) = a(—Atmit) =t w2 2 [ ———— T AT
g )= ) <9(2m(m+1)) AT
for t > Ts,
. 1 1 1 m-—1 m-T 2 1
1) ; @ € [—AtRFT, AtFT]}, = | ———— | AmeT¢TwE
min{y(z;t) ; z €] 1} 2(2m(m+1)) T4 mel

> max{u(z;t); z € [—At#ﬁ,Athlﬁ}}

for ¢t > T;

54



and for T' > Ty 4(-;T) and u(-;T) satisfy the compatibility condition of
first order for (I.B.), where A is the constant in Lemma 8.1 and w is the

generalized solution of (1.4) with w(-, 0) = up.

Proof. Case: 2n—2 < m < 2n.
Let & be the solution of the Cauchy problem

{ o = amtl_ g2 in (0,00)
a0) = (1/2)7.

Then, the solution ¢ is monotone decreasing with respect to ¢ and satisfies
(8.59) aft) ~ t7mT,

We set
W (z,t) = a(t) exp(z?a®1(1)).

Then it follows that
(8.60)

L(W,) = e — (G7)zg + 02"
< —exp(z?a®™ H){(2m — 1) - (2n — 1)@ 1g?} ™+l
+a? exp(z?a® 1) {exp((2n — 1)z?a® 1) — 1 — (2n — 1)z?a?1}
in R x (0, 00).

By (8.59) and (8.60), there exists a positive constant T4, such that £(@,) <
0 for ¢t > T1. + T35 and z € [-N((t), N{(t)] and that

(8.61) wy(z,t) > da(z,t + Tha)

for t > T3 and z € [-N{(t), N¢(2)],
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where T3, N and w, are two constants and the function in Lemma 8.3
respectively and ( is the function in Lemma 8.1.

Let us fix the positive constant Ty, satisfying (8.61) and let w.(z,t) =
Wa(z,t + T1.).

By (8.61), Lemma 8.3 and the comparison theorem,

we obtain
(8.62) w.(z,t) < wy(z,t) < v(z,t)
for t > T3 and a.e. z € [-N((t), N((2)].
On the other hand we see by Lemma 4.5 and Lemma 8.3 that
(8.63) w(z,t) < (2n— l)_?"l_-l(t +dy) T
for (z,t) € QIT\;,

with dy = (2 = 1)7(| 0, T5) | R) 41 = T
By (8.63), Lemma 4.1 and Lemma 8.3 we obtain

(8.64) u(z,t) < (2n— 1) T (¢ + dy) =T
for t > T3 and a.e. z € R.

By (8.62) and (8.63), there exists a positive constant 75, > T3 such
that

(8.65) u(z,t) < (2n—1)"FT(t+d) 7T < aft + Th)
< wi(z,t) < wp(z,t) < v(z,t)

for t > Ty, and a.e. z € [-N((t), N((1)].
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Here, let

¢ 1
8(_m=1 \"" it
9 \2m(m+ 1)

v(z;t) = | if |z]€ [Atm —1,00)

v (z,t)if |z | € (N((t), At=r — 1)

| w.(e, )it 2] € [0,N¢(H)]

and let

@*(z;t) = max{w(z,t),t 2 =},

Then, by Lemma 8.1, there exists a positive constant 73, > T, such that
for t > T3. 2,(-;t) and @*(-;t) satisfy the properties of this lemma except
these reqularities.
Let v(+;t) be the convolution of v.(-;t) and an appropriate mollifier and let
@(-;t) be the convolution of @*(:;¢) and an appropriate mollifier. Then,
for t > Ta., v(-;t) and 4(-;t) satisfy the properties of this lemma.

In case of 2n < m.

Let p be the function in Lemma 8.2.
Let T, be the positive constant such that

T4* Z Tl and T2’
1
8(_m=-1 \"" 4w (2n — 1)~ ==T¢~ T
9 \2m(m+1)
for any ¢ > Ty.,

where T; and A are the constants in Lemma 8.1 and 75 is the constant
in Lemma 8.2.

We set
(8.66) wj(x) = max{w(z, Ty), min(p(T4), (2n — 1) =T T.7)}

forz e R.

By Theorem 0 in [8], there exists a unique positive classical solution w*
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of (1.4) with w*(-,Ty) = wg in R x [Ty, 00) satisfying the following

properties :
(8.67) (2n— 1) F=T(t+ d3) T < w(z,t) < (2n— 1) mT¢ 7T
for (z,t) € R x [T}, ),
where
1 -1 __
ds = (2n — 1) {min(p(Te), (2n — 1) 71T, ")} 72+ — T,,.
By Lemma 4.1 and the comparison theorem, the solution w* satisfies
u(z,t) < w(z,t) < w*(z,t) fort > Ty

and a.e. z € R,
and w* is a generalized subsolution of (3.1) with P = «™ and ¢ = n in
Gr,.. Then, by (8.66), (8.67), Lemma 4.4 and the definitions of p and

Ts. we have
(8.68) u(z,t) < w'(z,t) < v(z,i)
for t > Ty, and ace. z € [—At=¥, At=+1].

Now, by a result in Introduction, Lemma 4.1 and Lemma 8.1 there exist

two positive constants b and Ts, > Ty, such that
b b
supp u("t) - [_57 5] for ¢ > Thu,
1
AT > 62> 1,
v(z,t) > 5t~ Tt

for t > Ty, and z € [—At=¥T, —b] U [b, At =],
We set

m-—2n
T+1\53-1 b
E(t)“%(tﬂ) Ty

1) = 56— €))7,
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with P = 2Kb(T 4+ 1)m=2/C»=1 4 9 where T > Ts. K and S are
constants chosen later.

We set further
m

W(m)t) = m(w*(x’t))m—l’

Uat) = —T=(w(z)" (1 -4z - )F)
and

Vie,t) = (e, )" (148 - §F) .

Now, let us consider the differential operator :
M(F;H) = F, = (m=1)FF.y — (F)? + MIZTFT,

with A = m((m —_ 1)/m)(2n+m—2)/(m_1) )

Then we observe that
(8.69) MW ; W) = 0 in R x (Th, o).
We shall find T, K and S such that
(8.70) MU ; V) > 0 in [—b,b] x [T, 00),

(8.71) MV ; U) < 0 in [=b,b] x [T, 0).

First, we shall consider (8.70).
We see

(8.72)

M(U;V) = [W(1- Lz = &)F) — (m = YWWo,(1 - £z — &)}
- (W.)*(1 -z - &)
+ AW (14 £z — D) FT(1— £z — £)F) "]
+[W{-£(@ -0 + PLe(z— 5"} - WPz — P
+(m — 1)P(P = )W*¥(z — £)572(1 - £(z — §)})]
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+ [2mPt(z — O WW,(1 - £(z ~ £)7)]
= I + II + III in[-b,b] x [T,00).

Let S > 1. Then, we see for y € [0,1/5]

nol _n_ 1,_m-2 1 522
(5.13) (1= )1+ 9T 1 > (14 2B - Ly
1 2n —2 1
o b (U e RV )
Let 1 .
el Lyse
Com(S) = (1+§) 1(1—§ T~ x
1 2n — 2 1
it - =5 - o)
and let S be a constant such that
(8.74) Com(S) > —
' "m — 2(m-—1)
By (8.69), (8.73) and (8.74) we have
)\ 2ntm-—2
T 2 11— m-1 - Tx z 2
(8.75) I > {2(m—1)W + (m - 1)WW,, + (W,)*} x

x Lz — 51—z — €)F) in [-b,6] x [T, 00),

and hence, by (8.75) and Lemma 6.3, there exists a positive constant
T > Tx,. such that
(8.76) I>0in [—b,0] x [T, 00).

To treat I] we observe
(8.77) £(t) < 0.

Then, we have
(8.78)

P P
(m _ 1)(P — ]))E(SII - £)+

II > (m—=1)P(P -1z - )W {1 —(1+
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1
T m-1D)P-1)W

—2n

m
2n—1

in [—b,b] x [T, 00).

(z — )+ 25( WT + 1) 5= (¢ + 1)—';,,;_2,"-1}

Here, by choosing T larger, if neccessary, we have

m—1
(8.79) Wi(z,t) > (g) (o0 — 1) RSB
fort > T.
Now, we choose S, K such that
2
.80 S > 3(1 —)

(8.80) - + m—1
and

3 m—1 3 m42n—2
(8.81) K > (5) = (2n - 1) (m ~ 1),

Then, by (8.78) - (8.81) we obtain

(8.82) II > —(m—1)P(P—1)l(z — &)E2W?

[JLR

in [—b,b] x [T, 00).
It follows from (8.80) - (8.82) that

(8.83)

a1 m | W2 |
IT+IIT > (m=1)P(P-1)lz - §);7°W {'3' T m-DK W }

in [—b, b] x [T, 00).
By choosing T larger, if neccessary, it follow from Lemma 6.2, (8.79) and

(8.83) that
(8.84) IT + IIT > 0 in [=b,8] x [T, 00).

Thus, from (8.76) and (8.84) we conclude (8.70).
If we choose S satisfying (8.74), (8.80) and

(8.85) S > (1 ~ (%)m-l)_l, @™t -11,
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then by (8.79) we have that

]. m—l " — m—
(8.86) U(£ht) > —= 1 (5) (2n — 1)~ BB
m —

in [—b,b] x [T, 00).
By the definitions of the functions ¢ and &, we see
(8.87) V(z,T) = U(z,T) = W(z,T) on [-b,}].

By a quite similar argument obtaining (8.70), since we can prove (8.71),
we shall omit the proof of (8.71).
Further, (8.67) and (8.85) we have

™ (on— 1y Fh et
m —

(8.88) V(&b t) < 2m7!

fort > T.

Thus, (8.68), (8.70), (8.71), (8.86) - (8.88) and Lemma 8.4 we obtain

m-—1

(8.89) u(z,t) < ( U(:c,t))ﬁ < w'(z,?)

m
1

< (zn—n;—lV(m,t))m < o(z,?)

for t > T and a.e. z € [-b,b].

Similarly, setting
U(z,t) = W(a,t)(1 — £(—= — £(t))}),
and
V(z,t) = W(z,t)(1+£4(—z - &)E),
these have the same estimates as U and V, respectively, and we obtain

m-—1

(8.90) u(z,t) < ( Ij(ac,t)>m—l-T < w*(z,t)

m-—1ax ey
< —_—
< (B==06n)" < o)

for t > T and a.e. = € [-b,b].
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By the definitions of the functions £ and &, there exists a positive constant

Te« such that

1.5 . ,,b
(8.91) Lt)(z — &(t)+ > §(§b) P(z)P
p
_ %9‘(1%) in [0, 6] X [Ts., 00).
Here, let
( 8 m—l _"Tl:l_ 2 1
_(...—) ASTi T
9 \ 2m(m + 1)

if |z|é€ [Atml_ﬂ-l,oo)
w(#3t) = ) O (a,1)if 2] € (b, AT — 1)

1
w*(z,t (1 l——l—P)m.1 if |z 0,6
e 2l € 0]
t2mm if |z | € [b, 00)
a*(z;t) = 11\
w'(z,0) (1-5()") " it [2] € .b).
Then, by (8.68) and (8.91), there exists a positive constant T7,. > T.
such that for ¢t > T7. wv,(-;¢) and @*(-;t) satisfy the properties of this
lemma except these regularities.

Let »(-;t) be the convolution of v,(-;¢) and an appropriate mollifier
and let @(-;t) be the convolution of @*(-;t) and an appropriate mollifier.
Then, for ¢ > T7., v(-;t) and @(-;t) satisfy the properties of this lemma.
Q.E.D.

Lemma 8.6. Let Tg be the constant such that

mi2=2n ¢ 2n—1 1
Te > max{Ts, 1}, T, ™% (—H) >

2 m+1’
1 1 P
Ty ™ < SH, ——— > 2Ty |y [k
6 97 m+1 6 | vo [

1
AT > N((Te) and b,
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where A, N and b are the constants in Lemma 8.1, Lemma 8.3 and
Lemma 8.4 respectively, ( is the constant in Lemma 8.1 and
H = ((m—1)/(2m(m+1)))/m=D A=

Let the constant T in (I.B.) be Ts and set ug, = @(;T5) and vgp =
v(+;T6) in (I.B.) , where @ and v are the functions in Lemma 8.5.

Then, there exists a unique pair of positive classical solutions u; and
2+48,1+8/2

vp € Hy ] (Gr,) of (I.B.), satisfying the following properties :

u(z,t) < w(z,t) < wl(z,t) < v(z,t)
fort > Tg and a.e. z € [—Atml_'l-l’Atml_H]
and there exists a positive constant h, such that
up(2,8) > hit™wH
fort > Ts and a.e. T € [—Atﬁ,At#ﬂ],

where u and v are the solutions of (1.1) and (1.2).

Proof. Since @(-;Ts) and u(-; T6) are positive functions satisfying the
compatibility condition of first order for (I.B.), then by Theorem 7.1 of
Section 7 in [14] and the change of variables there exists a unique pair of
positive classical solutions u, and v, € Hf;B’HB/z(GTG) of (I.B.).

Let us consider the following initial boundary value problem :

(8.92) we = (W™)ez — W™ in G,
1
(8.93) w(E At 1) = EHt‘ml_ﬂ on [Ts, o),
J S J
(8.94) w(-,Ts) = we on [—~ATF | AT,

There exists a positive function wp, € HZ8([—ATy ™D AT /(m+D))
satisfying the compatibility condition of first order for (8.92) - (8.94) and
the following property :

T
(8.95) a(;Ts) < woy < 2(5T) on [-ATS, AT
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Then, by Theorem 4.1 of Section 4 in [14] and the change of variables,
there exists a unique positive classical solution w;, € H,2+ﬁ’1+5/2(GT6) for

(8.92) - (8.94). By Lemma 8.5 and (8.95) we see )
w(-,Ts) < wep on [—ATG"‘l_“,ATG'”l_“],

and hence, by Lemma 4.5,

(8.96) w < wp in Gy,.

Let L£(p; q) be the differential operator defined in (8.49).
By Theorem 4.1 of Section 4 in [14] and the change of variables there

exists a unique positive classical solution v; € H-tA'*A1%(G)
(8.97) L(w; wp) =0 in Qr,

(8.98) w(LAt=¥7, 1) = gflt‘m’ﬁ on [Ts, o),

(8.99) w(Ts) = u(Ts) on [~ATFF, ATF].

Since v; is a subsolution of £(v;;u) = 0 in G7,, Lemma 4.4, Lemma 8.1,

Lemma 8.6, the comparison theorem and (8.95) give
(8.100) wy(z,t) < wn(z,t) < v(z,t)
fort > T; and ae. z € [—Atm;ﬂ,At#ﬁ].

By a similar argument, there exists a unique positive classical solution
uy € H2+ﬂ,1+ﬁ/2(GTs) of

loc

(8.101) L(w; v1) =0 in Gr,,

(8.102) w(:i:AtFT{F—l,t) = t~=2 on [Ts, 00),
1

(8.103) w(-,Te) = a(-;Ts) on [—ATH, AT ]

65



By (8.100) u; is a supersolution for £(u; ; v) = 0 in Gr,, and Lemma

4.5, Lemma 8.6, the comparison theorem and (8.96) give
(8.104) u(z,t) < wi(z,t) < wy(z,t)
for t > Ts and ae. z € [—Atm-:“T,At?Fl?T].

By a similar argument, there exist two sequences of positive functions u,

2+8,1+8/2
loc

and v; € H (Gg,) satisfying the following property :

For each j > 2, v; is a unique classical solution for £(v; ; u;—;) = 0
with (8.98) and (8.99) in Gy, and u; is a unique classical solution for
L(uj;v;) = 0 with (8.102) and (8.103) in Gr,.

By (8.100), (8.104), Lemma 4.4, Lemma 4.5 and the comparison the-

orem we see
(8.105) wu(z,t) < - < uy(z,t) < w(z,t) < wp(z,t)
< vz, t) < vz,t) <--- < v(z,t)
fort > Ts and a.e. z € [—At#l,AtElTl].

Similarly as in (8.57), (8.58) we can prove
v(z,t) = lim v;(z,t) for (z,t) € Gy,
3—00

up(z,t) = Jlirgo ui(z,t) for (z,t) € Gr,,

and
(8.106) u(z,t) < wu(z,t) < wp(z,t) < wvp(z,t) < v(z,t)
fort > Tg and a.e. z € [—At—n;l-{-—l’ At?1+_l].
Setting
8(y,5) = 7T u(e Ty, €°)
and

'EL(y, S) = e#sub(eml—ﬂsy’ es),
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we see that the functions ¢ and @ € sz’lw/z([-—A, A] x [log Ts, 00)) sat-

loc
isfy
( y 1 m42-2n
A iam A « 422 o on
Uy = (¥ )yy+m+ldy+m+lv—e S 1

in [_A, A] x [lOgTG; OO),
8
o(£A,s) = §H on [logTg,00),
4(£A,s) = e on [log T, 00),

1 1
o(y, logTe) = T v(yTg™t' ; Ts) on [—A, A],

1 1
| Wy, logTs) = Tt a(yTt' ; Ts) on [—A, Al
Let S* be an arbitrary positive constant such that S* > log Ts and let A

be an arbitrary positive constant such that

P )
(8.107) m+1
m-2n42 o« «\ 2n—1
A2ne i S (| 0 Joo, R em TS ) P T

Let S; = Aj +logTs. Then, there exists a finite sequence of positive
classical solutions vy(-, S;) € H**F([-A, A]), j = 1,---,[A7Y(S* —log T§)),
of the problem

. - hy R
(8.108) (5 S5) — AOM)yy(+ ;) — m+1y”*y("sﬂ')
A .

- A,\('>Sj) = @,\(',Sj_l) — e m2+12 Si %

mE1
x 93(, Sj-1)U3(+, Sj-1) on [-A, 4]

with

(8.109) IN(EA, S;) = S—H

where 9,(-,.S0) = 9(-,S5) on [—A, A]. Also, for j =1,---,

[A71(S* — log Tg)], there exists a positive classical solution (-, S;) €
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H?*A([—A, A]) of the problem

. o A
(8.110) Ux(+, Sj) — AAT)yy (5 S;) — myuw(‘,sj)
- A 'I])‘(', SJ) = '&A(') Sj-—l) - Ae%gﬂsj

m+1
x 93(, §j-1)43(+; Sj-1) on [—A, A]
with
(8.111) (x4, S;) = e,
where @,(+, So) = (-, Sp) on [—A, A].
In fact, by (8.109), we see
D3(y, So) — Xe™mA %052 (y, So)ait(y, So) > 0
for y € [ A, A],

n m+42-2n ~n ~n
ax(y, So) — e mH S°vx(y,50)u,\(y,50) >0

for y € [— A4, A]
and

o
0 < ax(y,S0) < 0(y,5) <|vo|oor Tg"t for y € [—A, Al

Hence by Theorem 5.1 of Section 8 in [18] and the comparison theorem
we find a required unique positive classical solution 9,(-, S;), 4x(-,S1) €
H?*B([— A, A)) satisfying
0 < dx(y,S1) < Da(y,51)
1
< gmar) | U0 Joo R Tg™™ for y € [-A4, A].

By induction, there exist two finite sequence of the positive classical so-

lutions 4, (-, S;) and 95(-, S;) € H**#([—A, A)]) with the property

(8.112) 0 < (S < iy, S)

68



< emirV | o [oo,R Ts—'#l-
for j =1,2,--,[A71(S* — log Tg)]
and y € [—A4, A).
Further, we can show
(8.113) |8 oofoany < 5H
for j=0,1,---,[A\7'(S* ~ log T¢)].

Indeed, setting E; = | @x(:, S;) |oo[-a,41 for j = 0,1, [A7!(S*—log Ts)],
we see by (8.109), (8.112), Lemma 8.5 and the definitions of Ty that

EIS Ha

N[ —

and by induction, we have (8.113).

For each j = 0,1,---,[A71(S* —log Tg)], we set d; = min{dx(y, S;) :
y€ [—Aa A]}

We shall show that

(8.114) d; — E; > & for j=0,1,---,[A7}(S* —logTs)],

where 8 = min(dy — Eo, TH/18).
Let y;. and y7 be the points satisfying d; = 9x(y;«, S;) and E; = da(y?, S;),
respectively.

In case of y} and y;. € (—4,A), we observe by (8.109) and (8.112)
that

A

(8.115) (d; — E;) (1 - m—+1)

mi2-2ng¢. m32-2no.
2 (dj—l—)*e mH SJE;-ld;~1) - (E'—l—Ae mit o X

J

X d’?—lEy—l) = dj—l - Ej—l'

J
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In case of y;. = +A, we get by (8.113)
(8.116) d — E; > ~H —-H = —H.

In case of y;» € (—A,A) and y; = £A, we have by (8.112) and the
definitions of A and T,

m+42-2n

e—:wf_lsf ﬁx(w, qu)nfh (ma Sj—l)n-I

—an n—l n—
< 2R ST | gy [1h T x e mar(SimilosTe)
< fory€e|—A A

+7 fory [—A4, A]

and that E]'_l Z e_zsj'l > e_2sj = Ej

Then, since

A m_g. ,
4 (l‘m—H) > djy = ARSI g 2 4y

A
> di¢|1— ——
’ 1( m+1)’
we have

By (8.115) - (8.117) we conclude (8.114).
For j =1,2,---,[A7Y(S* — log T¢)], let

I

/ 7 6y, s) — 4y, S;))ds

Sj-1
m-2n42 o, ~n ~
+Ae =5 {4 (y, S;_1)5"(y, S-1)

- ﬁn(y) SJ)'D"(y, SJ)}

fi(y)

and let s,
6i0) = [ (@(y,9) - (5,5,))ds
Si—1

+/\e m;z':l 2Sj {an(y) Sj—l)an(ya Sj—l)

- 0n(y) Sj)an(ya SJ)} .
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Then we observe that for y € [—A, A]

. o A
(8118) U(y’ SJ) - A(U )yy(y, SJ) - ’rmyvy(y; SJ)
A m=2n+2

m+1i}(y)s‘]) = 0(y,Sj_1) — Ae m+l S X
x 4"(y, $;-1)0"(y, Sj-1) + fi(v)
for j=1,2,--,[\"Y(S* — log Tt)]

and

(8.119) a(y, S;) — Ma™)yy(y, S;) — yiy (y, S;)

m++1
A m—2n4 Cn
- m—_Hﬂ(y,Sj) = d(y, Sj—1) — Ae m%*‘2s’vn(y>5j-1) X
x 4"(y,S;-1) + g;(y).

Let
-1 fory € (—o0, 0],

or(y) ={ ky foryel[-1, il
1 fory€[;, o).
We subtract (8.108) from (8.118) and muliply ¢x(9(y, S;) — (v, S;))-
We shall denote by (8.120) the resulted equdtion. Similarly we subtract
(8.109) from (8.119) and muliply ¢x(d(y, S;) — aa(y,S;)). We shall
denote by (8.121) the resulted equation. Adding (8.120) and (8.121) and
integrating over [—A, A] we have by

[ 66,5) — 0205, SN0, 5) — 92035y

+ /_1(@(%51‘) - ﬁ,\(y,sj))‘Pk(ﬂ(y,Sj) - ﬁx(y,sj))dy

A

< (1- p—— i {I (-, Sj-1) — 0a(+,Sj-1) |1[-4,4]

71



+ | a(, S5-1) — (-, Sj-1) Il,[—A,A]}

+ (1= 297 £ leaa + 195 luan)-

Letting & — oo, we have that
(8.122) | 9(-, ;) = (- S;) lf-a,41 + 18(,S;) — (-, S;) h-a,4

< (1= 2 {196 8-0) = 3 Sjo0) hea

+ | a(-, Sj-1) — (- Si-1) |1,[—A,A]}

A
(- NI fi lifean + 165 -aa)-
Setting
_ 5 [(2+8) Ve
Ly = maX{l u I[-—A,A]x[logTs,S‘]’ |9 |E AAlx{losTs,S‘l}

We obtain by (8.107) that
2L0A 148

(8.123) | fi lui-a,ap | 95 l1f-a,41 < 1+ g)‘ 2

t AnAe TSI < [NI4E

where

B

= 21+ 5) 7 LA + Ane™F S 20 (m + 1)17F A

By (8.107), (8.122) and (8.123) we have

(8.124) | 9(-, S;) — (5, S)) lif-a,41 + (-, S;) — 4x(+, S)) |1[-a,4]

< 25%em S LA for j=1,2-+ [X7(S* —log Ts)].
Letting A — 0 we have by (8.114), (8.124)

min {9(y,s) : y € [-A4,A]} — |4(,s) |wf-a,4]
> 6o > 0 fors>logTs.
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Thus, by changing the variables e¥ = t, ye5/(™+1) = 2 we conclude

min{oy(z,8) : o€ I} = | us(1) oo
> éot_ml_ﬂ for any ¢ > T,
where I(t) = [- At/ (m+D) | ggt/(m+1)]
which proves the lemma.

Q.E.D.

By Lemma 8.1 and Lemma 8.6, there exists two positive constants h,

and h* such that
(8.125) hot™#i < o(z,t) < h*tTwA
for t > Ty and a.e. z € supp u(-,t).
Let u§ and ug. € Co(R) be the functions such that
0 < upu(z) < u(z, Ts) < yy(z) ae. z €R,
up. # 0 in R.
Let u* be the generalized solution of
(8.126) up = (W™)gr — (h*t_ml_ﬂ)"u*" in R x [Tg, o0)

with
u*(-,Ts) =uy in R

and let u, be the generalized solution of

(8.127) Unt = (U)) gz — (h*t_ml_ﬂ)"u" in R x [Tg, 00)

%*

with
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By (8.125) u is a subsolution of (8.127) in R x [T§, 00) and a supersolution
of (8.126) in R x [T5,00), and we obtain by Lemma 4.3

u*(lf,t) < u(m,t) < U*(x’t)
for ¢ > Ts and a.e. z € R.
Therefore, by Lemma 5.2, we arrive at the desired estimates of | u(-,?) |

and supp u(:,?).
By Lemma 8.1, we obtain also the desired estimates of | v(,t) |, and
supp v(-,1).
The proof of Theorem 1.1 is now complete.
Q.E.D. of Theorem 1.1.
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9. Proof of Corollary 1.2.

Tt suffies to prove
Us>o supp u(,t) = R in case of m =2n — 2.
There exists a positive constant h* such that
v(z,t) < h*(t+ 1)_"-;+l fort > 0 and ae. z € R.
Let u, be the generalized solution of
Ut = (UM)ge — R™(t+1) 7+ u” in R x [0, 00)

with
u.(-,0) = min(yg(z),1) in R

Let u,. be the generalized solution of
Uet = (U)ge — (¢ +1)"770” in R x [0,00)

with
Us(-,0) = min(yy(z), 1) in R,

where 7 =n—1/4.

By Lemma 4.3, we obtain
(9.1) Uni(z,t) < uu(z,t) < u(z,t)
fort > 0 and a.e. z € R.

Therefore, by Lemma 5.2 we have U;»osupp w.(-,t) = R, and by (9.1)
we conclude that U;osupp u(-,t) =R.
Q.E.D.
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