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ABSTRACT

The MHD properties of a tokamak plasma are investigated by using
time evolutional codes. As for the ideal MHD modes we have analyzed
the external modes including the positional instability. Linear and
nonlinear ideal MHD codes have been developed. Effects of the toroi-
dicity and conducting shell on the external kink mode are studied
minutely by the linear code. A new rezoning algorithm is devised and
it is successfully applied to express numerically the axisymmetric
plasma perturbation in a cylindrical geometry. As for the resistive
MHD modes we have developed nonlinear codes on the basis of the re-
duced set of the resistive MHD equations. By using the codes we have
studied the major disruption processes and properties of the low n
resistive modes. We have found that the effects of toroidicity and
finite poloidal beta are very important. Considering the above con-
clusion we propose a new scenario of the initiation of the major dis-

ruption.
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Chapter I
Introduction

The tokamak is considered as the most promising magnetic fusion
device for achieving controlled nuclear fusion. If successful, the
present generation large tokamaks are situated very close to the
milestone of attaining the ignition plasma condition. There are,
however,  various kinds of problems to be solved before achieving the
plasma condition for an economical tokamak fusion reactor. Even if
we restrict ourselves only to the theoretical researches of a reactor
plasma, there are many problems concerning: (1) determination of a
limiting beta value, (2) analyses of disruptive instabilities,

(3) transport processes and scaling laws of the plasma confinement,
(4) methods to reduce impurities, (5) new efficient heating methods,
(6) methods to sustain a plasma current continuously, (7) problems in
a DT burning plasma and so on. Among them, the items (1), (2), and
(3) are the problems concernihg the most basic confinement property of
the tokamak plasma. Though these have been studied by many authors
since the biginning oﬁ the nuclear fusion research, sufficiently clear
solutions to the problems have not been obtained yet. Especially, the
first and second probelms are closely related to the necessary exter-
nal magnetic field strength in the device and determined of techno-
logical safety factor of the fusion reactor, respectively, and the
solutions to them give an important information directly concerning
the economical feasibility of the tokamak fusion reactor. Therefore,
these problems should be most urgently solved in the field of the
tokamak research.

As for the preceding works on the problems, theoretical studies
of the fusion plasma on the basis of the MHD model have been intensive-
ly carried out since the initial stage of the nuclear fusion research
in 1950's. And by the recent successful results of the tokamak plasma
confinement the significance and necessity of the theoretical MHD
analyses become clearer and many authors are engaged in the solution
of these problems. This is due to the fact that the tokamak plasma is
confined for sufficiently long duration and the MHD equilibrium is
virtually established in the tokamak. Brief summary of the preceding

work is given in each corresponding Chapter.



Investigations described in this paper have been carried out as a

part of the project TRITONl’z)

which aims at solving, mainly, the above
two problems comprehensively from the various viewpoints. These two

problems are rewritten in more concrete manner as

(1) To obtain theoretically a stable equilibrium within a framework
of the ideal MHD model, and to determine the stability condition,
controlling methods and limiting beta value.

(2) To clarify the mechanism of the disruptive instabilities in the
tokamak within a framework of the resistive MHD model, and to
obtain informations on the stability conditions and controlling

methods.

Here, we assume that the most basic parts of the informations could be
obtained by the analyses based on the MHD model.

The purpose of the investigations in this paper is to obtain some
of the above informations by solving numerically the time dependent
MHD equations and simulating phenomena which relate the above problems.
Especially, the following two points are the main concerns of this

paper,

(1) Analyses of the external modes of the ideal MHD instabilities
including the positional instability.
(2) Studies of theoretical models of the disruptive instabilities of

the tokamak.

The former is dangerous in the current rising stage of a tokamak
plasma, and the latter is considered to limit the plasma current and
is unfavorable to economic operation of a tokamak reactor. Since
enormous computations on a parameter survey are necessary to establish
the scaling law of the limiting beta value MHD spectral codes such as
ERATO3R%S)and PEST‘7~lo)are more favorable for this purpose. The
spectral codes give the stationary eigenvalues and the eigenmodes, and
usually only the most unstable mode is calculated. The higher eigen-
modes are sometimes difficult to obtain because of the large size of
matrices. The effect of these higher modes on the plasma confinement
is very important when they are less locdlized than the most unstable
mode. The time evolutional solution, however, includes all components

of the spectra and we can see the behaviour of the higher modes as well



as most unstable one. In addition, the time evolutional code based on
the linear ideal MHD theory is directly extended to the nonlinear
resistive code. In this paper, we make only brief mention of the
analyses by the spectral code for the purpose of comparison of the
results between the time evolutional and spectral methods.

In Chapter II, we describe éhe time evolutional code based on the
linear ideal MHD equations where we take the check of accuracy of the
code by comparing the results with those by the spectral code and
analytical ones, and we clarify the effects of the toroidicity and
conducting shell. Chapter III is related to the nonlinear ideal MHD
model. In order to develop a nonlinear positional stability code on
the basis of the above model, we devise a new algorithm for the re-
zoning of the two dimensional meshes and we confirm that the code
works well and the new algorithm is useful in this kind of analyses.
Chapter IV and V are devoted to the problems concerning the disruptive
instabilities. In Chapter IV, we develop a nonlinear MHD code based on
the reduced set of resistive MHD equations and simulate an example of

the major disruptionllyl4).

We have traced the major disruption
scenario proposed by the ORNL group and successfully reproduced the
disruption. However, we have shown it improbable that the major
disruption is initiated by the flattening of the current profile due

to the internal disruption. In Chapter V, we mention the significance
of the effect of toroidicity and finite poloidal beta to understand the
resistive instabilities. In relation to it we propose a new scenario

on the major disruption. Conclusions and discussion of the paper are

presented in Chapter VI.
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Chapter II

Linear Stability Analysis of Toroidal Plasma

In order to study the linearized ideal MHD instabilities
of a toroidal plasma a time evolutional code ZEPHYrus. is
developed and the code is checked by calculating the insta-
bility growth rate for model equilibria.

The effects of toroidicity and conducting shell on the
free boundary kink mode are investigated by using the code
ZEPHYrus . The results are as follows. When a conducting
shell is far away from the plasma surface, the growth rate

of the external kink mode can be decreased only in tokamaks
with small aspect ratio, A < 10. On the other hand,
when the shell is close to the plasma surface, the unstable
external modes are stabilized by the effects of toroidicity
and conducting shell.

2.1 Introduction

For interpretation of experimental data and design of future large
fusion devices it is very important to analyze the linear MHD stability
in detail. Because of complexities of the physics processes in actual
fusion devices extensive computational studies are required for the
above purpose. In order to analyze the linear MHD stability two methods
are usually taken, i.e., the matrix method and computer simulation.

The former method is based on the variational principle . The Lagrangian
of the system is first, represented as a quadratic form of the plasma .
displacements by using the finite element method and, then, it is extrem-
ized with respect to the displacementz). By the procedure the usual
matrix eigenvalue problem is derived. The latter method is composed of
solution of an initial-value problem of a time~dependent MHD equations.
General MHD spectral codes applicable to an axisymmetric toroidal plasma

)

are successfully developed by Lausanne (ERATO code)3 and Princeton

(PEST code)4) groups on the basis of the above variational approach.
Various kinds of linear stability analyses by using the ERATO and

)

PEST codes are reported5~7 As for the time dependent solution

of the linearized MHD system several work38~lo)are reported in the
initial stage of the computational studies of the fusion plasma, but
recently most efforts concerning solution of the initial value problems
are directed to analyses of nonlinear behavior of a resistive plasma

as will be described in chapters 4 and 5.



The above two methods are equivalent in principle but technical
details make them rather different each other. The results of both
the methods should be subject to critical comparisom but it has not
been carried out sufficiently. In this Chapter we develop a new
initial-value code ZEPHYrus and make comparison between the results
by the spectral code and initial value code. After that we investigate
the effects of the shell and toroidicity on the linear MHD stability.

In Section 2.2 the equilibrium equation for an axisymmetric
toroidal plasma is expanded in powers of the inverse aspect ratio and
analytical representation of the equilibrium solution is obtained.

The basic equations for the linear ideal MHD stability and boundary
conditions are given in Sections 2.3 and 2.4, respectively. Section

2.5 describes the numerical procedures adopted for the analyses.

Results of the calculations given in Sections 2.6 to 2.8. Comparisons

of the results with the analytical and numerical ones are presented in
Section 2.6. Effects of toroidicity and conducting shell are investigat-
ed in Sectioms 2.7 and 2.8 for the internal and external modes. Section

2.9 is devoted for conclusions and discussion.

2.2 Equilibrium

In this Section, equilibrium solutions for a tokamak plasma subject
to stability analyses in the following Sections are given.

The MHD equilibrium equations are

> > ->
VPg = jg x Bo ,
(2.1)

> >

>
jo =V x By

First, we define a curvilinear coordinate system (r,9,¢) as shown in

i ; 11,12
Fig. 2.1, where surfaces of constant r correspond to magnetic surfaces. ’ )
The transformation from the (r,8,¢) coordinate system to the cylindrical

(X,9,Z) system is written formally as

X = X(r,8) s
= 7Z(r,6) s (2.2)
¢ =9

The metric tensor of (r,8,¢) system is defined as follows;
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In this coordinate system the equilibrium magnetic field is expressed as,

By = RoBo(£(r)V¢ x vr + h(x)Ve) (2.4)

where By is constant magnetic field magnitude introduced to make f(r)
and h(r) dimensionless. The first term of Eq.(2.4) represents the
poloidal magnetic field and the second is the toroidal field.

Then, the equilibrium equation (2.1) can be written in (r,9,¢)

system as follows,

Py (1) h(r)h'(r) £(r) f(r) 3y f(r)
ROB% + 7 {( Ve gee) - 55‘(‘72? gre)} =0, (2.5)

8¢

where prime denotes derivative with respect to r. TFor given distribu-
tions of pressure P,(r) and poloidal magnetic field RyB,f, an equilibrium
solution (h,X,Z) is obtained by solving Eq. (2.5). 1In the following

we consider a toroidal plasma with a large aspect ratio A (=Rg/a>» 1;

Ry and a are the major and minor radii, respectively), and solve the
equilibrium equation by expanding it with respect to the inverse aspect

ratio.



The function forms of X(r,6) and Z(r,8) in Eqgs.(2.2) are assumed as;

X(r,8) = Ry - ercosf - €20(r) + e3E(r)cosb

3.

Z2(r,8) ersin® + ¢3E(r)sind

> (2.6)

where e indicates the order of magnitude of the term is -~r/R; and A(r)
is the displacement of the magnetic surface from the magnetic axis, and
E(r) represents elliptic deformation of magnetic surface from a circle.

Substituting Eq.(2.6) into Eq.(2.53), the following equations are

obtained,
ST F S LIS TOR R
PO hh' + ;-r Y' = RO A rd’ - 7R,
3£(rf)" 4o 2 A'2 A r
+ T A = +R0+2R02) )
1
W 2B 10 2P0 g
A"+ { = - o+ Rof2 R, 0 s (2.7)
T
gr o+ (2EDT Ly i% E
rf i r
2 . 1
2R02f2 2 rf 2R02 RO Ry £2

We solve the above equation for a constant current density and parabolic

pressure distribution in the plasma region, that is,
=r
f(r) fa

Po(r) = £28 (1-1%) (2.8)

where fa:=f(a) and Bp is poloidal beta. From Eqs.(2.7), we obtain

AC (l+48p)r2
r) = —“gﬁg————' )
(3+168 %) r(r2-1)
E(r) = Ear - ” ﬁoz , (2.9)
V//ﬁ £ 2(488_2+1) (B _+5)
h(r) =/1-2£ 20 (r2-1) - = —— e P — (%1

where Ea is elliptic deformation at the plasma surface (r=a).



2.3 Basic Equatiomns

In this Section, the basic equations for the ideal MHD stability
are described and rewritten in the form convenient to the numerical
calculation. We adopt the linearized ideal MHD equations of the

following form,

8 Fn LT B LT3

pOatZ__P+JOXQ+JX 0 )
3>='v*x3 , (2.10)
q=7x (€ x3By ,

> > > >
P = —yP,V-£ - (£ V)P, ,

where the quantities with subscript 0 are the equilibrium ones, y is the
specific heat ratio, and E, 6 and P are perturbed current density, magnetic
field magnitude and plasma pressure, respectively.

For the sake of convenience of calculation the usual current densi-

ties multiplied by Jacobian are used as new current densities as
SR : (2.11)

For the same reason, we introduce new variables for components of

the equilibrium and perturbed vectors and metric tensor as follows,
S

. . b

~6  Jo oI ~9 5 ¢ b

oo _ ~0 .9 _ 9 _ _

JO - RO ’ JO - T ’ BO - rBO, BO - ROBO N

6 g 6 _ ¢ - _59 = &

‘E - I'E > E = Rog y Ee - r 3 €¢ - RO 3

6 8 ¢ s - _ % =% ;
SO, Q@ = RQ. 9yt QTR (2.12)

pL IS I IO KA SO 4

J rRo 3 J RO 2 J r b

~ o~ ~ g ~ 23 ~ g
-’z _ Fre _ 88 _ Co¢

‘/g T-'Ro b gre T > gee rz b g¢¢ R02 P’

where the quantities with superscript and subscript, r, 6 and ¢, mean
the contravarient and covarient components of the vectors, respectively,

and R, is the radius of the magnetic axis.



By the transformations shown in Egs.(2.12), the magnitude of all
metric tensor components of order £, where ¢ is the inverse aspect
ratio, becomes order one, and the MHD stability calculations in
toroidal geometry by the expansion of the inverse aspect ratio can
be done consistently. The symbol ~ for the new variables is dropped
again in the following. Since each perturbed quantity has different
phase in the ¢ direction, they must 5e divided into even and odd parts

with respect to 6 and are expressed as,

a(r,0,9) ao(r,e)cos(n¢) - ae(r,e)sin(n¢) )

(2.13)
b(r,8,¢) = be(r,s)cos(n¢) + bo(r,e)sin(n¢) ,

¢ and p and b is that of the

where a is representation of £r,Qe,Q¢,J8,J
other variables, n is the mode number in the ¢ direction and superscripts
e and o denote even and odd functions with respect to 8§, respectively.
After the transformations shown in Egqs.(2.11) and (2.12), we substitute
Egqs.(2.13) into Eqs.(2.10) and obtain the system of equations for each

vector component in the following form,

8252 2P Bo_¢ $o_0 8 _¢o ¢80
Bo ~e2 == 3t + (37 B"-3"B) + (JoQ - JoQ ),
32¢% 3p°®
r o _ _ .De ¢ .pe. 0 .0 ¢e . Oe
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2,.e
3°Eg _ l_332_+ .¢Qre _ iTegd
Po T3c2 r 236 0 J g
32€8 1 3p° ¢ .ro ro_¢
Po 5e2 T ¢ 38 T3 -3 B s
azge e re_H
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32€O
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where kz denotes n/RO and the covarient components of vectors are related

to contravarient componments through the metric temsor shown in Egs.(2.3).

2.4 Boundary Conditions

In this Section, we consider the boundary conditions to Eqs.(2.14)
for internal and external kink modes. 1In order to impose same boundary
conditions at the magnetic axis (r=0) to the m=1 (m is mode number in

the 8 direction) and other modes, we transform Er and Qr as follows;
rgr gr
Qf — & . (2.15)

Then the boundary conditioms at r=0 become

£ = 0 ,

r

Q

0 ’ (2.16)

for both the modes.

- 11 -



In the case of the internal mode analysis we should solve a fixed
boundary problem and the boundary condition at the plasma surface is
represented by the same condition as Eq.(2.16).

On the other hand, the analysis of the external kink mode is a
free boundary problem, and in this case we should calculate the perturbed
magnetic field in the vacuum region in order to continue the solution at
the plasma surface. For the purpose‘of the stability analyses in this
Chapter, we obtain the magnetic field analytically in the torodial
coordinate system (u,n,¢) using the toroidal ring function (Fig.2.2).

The toroidal coordinates (u,n,¢) are related to the cylindrical

coordinates (X,%,Z) through the following relationmns,

1 (X + R)2 +22
=35 fn 2 L 52
2 (X - R)*+2

(2.17)
= tan—l AZ_._.___
" X2 +12° -R?
The metric coefficients are written as
- —3 R
gu gn cosh y -cos n ’
_ R sinh u
g¢ cosh yu - cos n (2.18)

The general solution ?e of the Laplace's equation in the toroidal co-

ordinate system can be written as follows;

n
We = Vx—cosnk§n [{AkP

k—1/2(x-)~+B

kQE_l/Z(X)}cos(kn)cos(n¢)

n
k-1/2

n

+ {CkP Q=1 /2

(x) +D (x) }sin(kn)sin(né) ] s (2.19)

n , . .
where x=cosh yu, (x) and Q {x) are the toroidal ring functions

ol
k-1/2 k-1/2""
and the terms of cos(kn)sin(n¢) and sin(kn)cos(n¢) are omitted by con-

> >
sidering the form of the internal solutions (2.13). Since Qex= vwe,

the perturbed magnetic field in the vacuum region can be written as

follows;
QU = kZn[(XA-Ak+XB-Bk)cos(n¢) + (XC-Ck+XD’Dk)sin(n¢)] s
Qn = k’Zn[(YA‘Ak-FYB'Bk)cos(nzp) + (YC'Ck+YD-Dk)sin(n¢)] s (2.20)

- 12 -



Q. = = [(zc-c

o 7 K TZD-D Jcos(ng) + (ZA-A +ZB-B )31n(n¢)]

Here Ak’ Bk’ Ck’ and Dk are constants to be determined from the boundary

condition and XA, XB, XC, XD, etc. are defined as

XA = sz;.u { i léz(X) + k'l/z(x)} cos(kn)

XB = Z:[;;l - {Q;_IQZ(X) + kal/z(X)} cos(kn) ,

XC = Zij; s {PE'IQZ(X) + yP;il/z(x)} sin(kn)

XD = Zij;.u {QE_IQZ(X) + E'l/z(x)} sin(kn) (2.21)

o Pg;iég(X) (Sin nzcos(kn) Cky sinCkm)}

% = QE_}}/—,Z(X) {Sin nzcos(kn) kg sin@m )

ve = 1; %z(x) {Sin nzsin(kn) fky coskm)}

o - Qg;iég(X) {sin nzsin(kn) ‘i cos(en)

ZA = - 5?—:3—{—; PE-—i/z(X)COS kn) , ZB = - Eg—:?:/—; Q;_I/Z(X)COS(kn) ,
R2k /Y Rok. Y

2¢ = 3= pp ), Gosiaten) 2D = Oﬁg:f Q) _,,,(sinn)

where x=cosh py, y=x-cos n and the prime denotes the derivative with..
respect to 'X.
Using the perturbed magnetic field obtained above, the boundary

conditions for the free boundary problem are expressed as follows;

A) The normal component of the magnetic field vanishes at the

perfectly conducting shell (r=b), that is

q _.ef = 0 ) (2.22)
ex

B) The continuity of the normal component of the perturbed magnetic
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field at plasma surface (r=a),

> >r o r .
ox® Qin . (2.23)
C) The pressure balance equation at the plasma surface (r=a)l3),
2 2
r dB dB
- —)-7.—> =+ .->- E___@i______lﬂ
“YPVE + By Qin Bex Qex + 2§ dr dr ) (2.24)
where
) QU +Qu +Qu (2.25)
= u u u .
ex uou Qn n ¢ ¢
- > >
Here uu, un and u¢ are the unit vectors in the toroidal coordinate (u,n,d)
respectively.

2.5 Remarks on the Code ZEPHYrus

In the code ZEPHYrus all variables are normalized by the following

characteristic quantities;

1) minor radius of a plasma ring: a,
2) toroidal magnetic field at r=a: " By,
3) plasma density averaged over minor cross section: <p>

b

4) Alfven velocity measured by By: vf=BO/V<p>

and other associated normalization factors are toroidal Alfven transit

2
time; T~ a/vf, pressure; By/2 and growth rate; Y

~In order to avoid complexity of the program we adopt a simple

a=l/Tta'

explicit scheme for time-integration of the equations. To accelerate
growth of instabilities at the marginal stability condition we introduce

ancartifitial shift of the growth rate a8’9)

, by which the computation
is carried out within a reasonable CPU time.
As for the computational grids in the r direction, we use half

E¢, Qe, Q¢, J¥ and P and integral meshes for the

8
integral meshes for &,
other variables. On the other hand, only integral meshes are used in the
8 direction. Considering the symmetry with respect to the median plane

we calculate the solution only in upper half plane (Fig.2.3).
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2.6 Check of Accuracy of the Code

To check accuracy of the code, we calculate the growth rate of the
free boundary MHD instability (the kink mode) in a cylindrical plasma
with uniform current distribution and fixed boundary MHD instability

in a toroidal plasma expressed by a Solov'ev equilibriumlg.

The former
growth rate is given analytically and ‘the latter is calculated numeri-
cally by using the spectral code ERATO.

The equilibrium of the cylindrical plasma is given by specifying f(r),

and h{(r) as
f(r) = rfa ,

=@ £2(1 -2
Po(r) = Bpfa(l <) s (2.26)

h(r) = /1 - 2f§(l-—8p)(r2—l) ,

where fa= f(a) and Bp is poloidal beta. The boundary condition is the
same as toroidal one in the previous Section except that the perturbed
magnetic field in the vacuum region is expressed by the modified Bessel
functions.

In Fig.2.4, we show the growth rates of the kink mode in a

cylindrical plasma computed by the code ZEPHYrus with the one computed

by the analytical formulal4),
B2 2(m-nqa) 2
2 - _a . _ da )
Yanal al [2(m nqa) 1-(a/b)Zm ] ’ (2.27)

where Ba’ 9, and b are the poloidal magnetic field, safety factor at

the plasma surface, and the radius of the conducting shell, respectively,
m and n are the poloidal and toroidal mode number, respectively. For

the calculation of Fig.2.4 a uniform current equilibrium with the shell
position b=2a is considered. The curves in Fig.2.4 correspond to the
numerical calculations with azimuthal mesh number Jmax=l9 (black circles),
Jmax=35 (open circles), and analytical calculation (broken lines).

The computed curves are shifted to the left when the azimuthal mesh
numbers are not large enough. The quantities of the shift A(nqa) at
nqa=3 are 0.17 and 0.04 for Jmax=l9 and 35, respectively, which is in

15)

good agreement with the analytical formula of the shift, A(nqa) =
-ﬂ2m3/6(JmaX—3)2. Thus the shift of the marginal point is explained

by the discretization in the azimuthal direction.
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The Solov'ev equilibrium is obtained by solving the following equation

with respect to the flux function Y.

92¢ 1 v | 3%¥ _  _,dP 1 d1?
3x2 "X x Tz T Ko T 2 aw ’ (2.28)
where P and I are the function of ¥ only and we set
P =P (¥ -¥) ,
s
12= 12 + I,¥ , (2.29)
where
p. = a2 (1+E2)
1 qOR%Evl-S ’
VA
I, = 2a“Ry6 , ) (2.30)
QQRQE/]_—-CS

Then the following solution for the Solov'ev equilibrium is obtained.

2_ 2_p2y2
(X2-8Rg) g2, X 4Ro)

72 ] > (2.31)

Ea? .
‘{‘O = 2(10_R_5————|/r;_6 . (2.32)
In the above equations (2.29)-(2.32), E represents vertical elongation
of plasma cross section, q; is the value of safety factor on the magnetic
axis, § means the diamagnetic effect and WS is the value of ¥ at plasma
surface respectively. In this case, instead of expansion with respect to
the inverse aspect ratio we assume the relation between the cylindrical

coordinate (X,$,Z) and the curvilinear coordinate (r,9,¢) as follows,16)

2 .
X(r,8) =Ry /1~ EE cosH s (2.33)
0 .

Er sin®
Y1-86-(2r/Rp) cosh

z2{(r,0)

Then the equation

holds and r=const. surfaces correspond to magnetic surfaces.

The functions f and h are in the following form,

£(r) = 2¥4R,r ,
h(r) = V1+I1W0r2 .
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The other equilibrium quatities such as metric tensor are obtained in
the same way as in Section 2.2. Growth rates of fixed boundary modes
are calculated for the above Solov'ev equilibrium by using the codes
ZEPHYrus and ERATO (Fig.2.5). The growth rate curve by the code
ZEPHYrus shifts a little to left along the qy axis in comparison with
the curve by ERATO and the growth rate by ERATO is a little larger.
The shift of curve is attributable to.the finite size of the computa-
tional mesh, which is corrected in the code ERATO, and the difference
of magnitude of growth rates is attributed to the fact that the code
ERATO is written on the basis of the finite hybrid element methodB)-

Both the results agree well with each other on the whole.

2.7 Eigenfunction of Internal Mode

To analyze an internal mode of a toroidal plasma an equilibrium
is prepared according to the prescription im.Section 2.2. The current

distribution with the order of 0 is assumed to be

. - v, BBy L9 2y3
37 (r) = Ro(Py + R% ) = -1, (2.36)
where jg is the current density at the magnetdic axis. In the code

¢

ZEPHYrus jO is determined from the safety factor at the plasma surface,
which is given as an input parameter. As an initial condition random
numbers are assigned to the nodal values of gr, and §¢’s are set zero.
The values of Ee are determined by using the incompressibility condition
V€ = 0.

The results of the‘calculation are summarized in Figs.2.6 and 2.7.
Figure 2.6 shows time evolutions of the radial structure of Fourier
decomposed displacement £X(r,0) for the cylindrical and toroidal plasmas.
The last figure df,each series of calculations shows almost the finally
settled eigenfunction of the mode. In the cylindrical case (Fig.2.6 a)
the internal mode with mode mumbers of m and n ({m,n) mode) grows at
the corresponding resonant magnetic surface, i.e., the surface with
q= % (m/n resonant surface). In the toroidal cases (Fig.2.6 b,c),
however, the (m,n) mode is localized not only at the m/n resomnant
surface but also at the m'/n resonant surface with m'#m, due to the
toroidal coupling. Figure 2.7 shows the flow pattern of the displace-

ment in the toroidal case. The pattern of T=295 is almost that of
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the eigenfunction. It is seen that at inner region of the plasma column

m=1 mode and at outer region m=2 mode grow, respectively.

2.8 Free Boundary Kink Mode

The effects of toroidicity and shell on the free boundary (extermal)
kink mode are investigated for a uniform current plasma with Bp=l.

The computational mesh number in the azimuthal direction (Jmax) is chosen
to be 19 throughont the series of calculations.

First, to study the toroidal effect we compute the growth rate and
eigenfunction for plasma with various aspect ratio by fixing the shell
radius b=2a, where a is the plasma minor radius. Figure 2.8 shows the
growth rates of the en=0.2 kink mode versus nq,. The growth rates of the
mode for € !=15 and 10 cases are almost the same as that for the
cylindrical plasma (el =w). It seems reasonable since the toroidal
effect is insignificant in these cases. In the case of £71=5 the
maximum growth rate of the mode becomes smaller in comparison with
the cylindrical result. At the marginal stability region near nqa=2,
however, the mode for this case becomes more unstable and the narrow
stability window observed in the analytically obtained cylindrical
result disappears. The destabilization of the mode near the marginal
stability region is mainly attributable to the toroidal coupling.

The effect of the toroidal coupling is seen in the eigenfunctions of
the m=2 external kink mode in Figs.2.9-2.11, where the eigeunfunction
becomes more distorted as the ‘toroidicity becomes larger.- ’

1 Next to. study the shell effect on the stabilization of the external
kink mode, we calculate the growth rate by locating the conducting shell
near the plasma surface (b=1.2a). The results of the calculations are
summarized in Fig.2.12 with the analytical results for a cylindrical
plasma (e~! ==, broken line). The stabilizing effect of the shell is
clearly seen by comparing the figure with Fig.2.8, where the shell
radius b is twice the plasma minor radius. 1In the b=1.2a case the
toroidal effect is more remarkable in comparison with the b=2a case,
which is in good agreement with the previous analytical work by Frieman
et al}7). Figure 2.12 shows that the toroidicity affects the mode even
in a slender plasma with e_1=15, and stabilizes it considerably when the

aspect ratio is as small as 7. Moreover, the destabilization of the
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mode near the region of mirimum growth rate is not observed when the
shell is located very closs to the plasma surface as b=1.2a. The
residual instability with gmall growth rate is observed near the region
of nqa=2.0 for the cases of ¢~ 1=10 and 15 (Fig.2.12). This is attributed
to the internal mode instability. In Fig.2.12 the growth rate the m=2
internal mode instability of a cylindrical plasma (e~ l==) is shown by

a broken line near the region of nqa=2.0. Figure 2.13 shows how the
initial perturbation of the m=3 external kink type evolves to the
eigenfunction of the m=2 internal mode when the safety factor at the
surface is 2.0. The importance of the toroidal coupling is more
clearly seen in the time evolution of Fourier decomposed displacement
gr(r,e) (Fig.2.13). 1In this calculation the eigenfunction of the m=2
external kink mode of a cylindrical plasma is chosen as an initial

perturbation.

2.9 Conclusions and Discussion

To study a linearized ideal MHD mode a time evolutional code
ZEPHYrus is developed and the accuracy of the code is checked by
comparing the computed growth rate with analytical one and numerical
one by the spectral code ERATO. The results is almost satisfactory
except that the curve of the growth rate vs. safety factor shifts a
little due to the finite size of computational meshes.

It is shown that when the shell is placed far from the plasma
surface (b=2a), the toroidicity scarcely affects the external kink
modes for a slender tokamak, but it reduces the growth rate for a
fat tokamak. When the shell is placed close to the plasma surface
(b=1.2a), the toroidal effect is notable in comparison with the case
of b=2a; and m=2 external kink mode is considerably stabilized in a
fat tokamak. The code ZEPHYrus is accurate for a low m mode, but for
a higher m mode the above mentioned numerical shift prevents accurate
calculation of the growth rate. 1In order to avoid the numerical error
Fourier expansion of the perturbed variables and equilibrium quantities

seem to be effective.
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Fig.2.1l Curvilinear coordinate system (r,8,¢).
The closed curve (r=const.) is the intersection
of a magnetic surface.
TZ
' M =const.
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M= const.
7
T X
Ri b
]
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Fig.2.2 Toroidal coordinate system (u,n,¢) used for the

Fig.2.3 Grid points in the & direction.
of J=2 and J=Jpzx~! represent 6=0 and 6=m,
respectively.

calculation of vacuum magnetic field. Ra is the
radius of the center of circular plasma surface

and_R, the singular point of toroidal coordinate,
R=vR3-a?.

The grid points
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Fig.2.4 Growth rate as a function of safety factor at plasma surface r=a
multiplied by the toroidal mode number n. Black and open circles
denote the computed growth rate with the azimuthal mesh number
Jmax=19 and -Jy,4x=35, respectively. The broken lines are analytical
growth rate obtained by Eq.(2.27).
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Fig.2.5 Comparison of growth rate by two codes vs. safety factor at

magnetic axis. The solid and broken lines show the growth rates
obtained by ZEPHYrus and ERATO codes, respectively. The parameters
in this calculation are: (a) E=1, n=2, (b) E=1, n=3 and (c¢) E=2,
n=2. The aspect ratio e~ !=3 for all cases. The growth rates are
normalized to the poloidal Alfven transit time.
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Time development of the Fourier component of Er(r,e) expanded in

6 direction. q,
axis and plasma surface, respectively.

and q

are the values of safety factor at magnetic
Ordinate denotes time

normalized to toroidal Alfven transite time and, in each subfigure,
abscissa represents a minor radius of a plasma column and r
denotes the position of singular surface of m-mode.
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T=25 T = 2.

Flow pattern of cross-sectional displacement of internal mode
for e~ 1=5, Bp=l, n=1 and (qd,qa)=(0.76,3.l9). Last subfigure
shows displacement of the plasma with respect to the equilibrium
magnetic surfaces (solid curves).
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Fig.2.8 Growth rate vs. nqy, for e€n=0.2. Dotted solid curve is the
growth rate in cylindrical case and other curves are toroidal
cases in which the solid line with the mark x, broken line with
the mark + and solid line with the mark * denote the cases of
e =15, ¢71=10 and ¢~ 1l=5, respectively, for Bp=l, b=2a and
uniform current discribution. :
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Equilibrium magnetic of a uniform current plasma with €—1=10,

8p=l , b=2a.

a)

Fig.2.10

2 at

Eigenfunctions of the m=2 external mode for q0=l.2 and n

three different toroidal locations.

b)
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a) Equilibrium magnetic of a uniform current plasma with g~ !=3,
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b) Eigenfunctions of the m=2 external mode for qp=l1.2 and n=1 at

three different toroidal locations.
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Fig.2.12

nq
Growth rate vs. nq, for en=0.2. Broken lines show cylindrical
growth rate and other lines show toroidal ones, in which solid
line with the mark x, dotted solid line with the mark + and
solid line with the mark » denote the cases of €‘1=15, e~ =10
and e“l=7, respectively, for Bp=l, b=1.2a and uniform current
distribution.
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Fig.2.13 Time development of the Fourier component of Er(r,e) expanded in
8 direction for e~1=15, q,=2.0 and uniform current distribution.
Solid, broken and dotted solid lines denote m=2, m=3 and m=1
modes, respectively. They are normalized to its maximum value in
each subfigure.
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Chapter 11T

Development of Nonlinear Code

for Analysis of Positional Instability

A free boundary nonlinear MHD code, AEQOLUS-P is developed
to investigate a positional instability in a tokamak. A new
rezoning algorithm in combination with the dynamical grid
method is adopted. The results for a cylindrical plasma model
are in good agreement with those by a one-dimensional spectral
code THALIA and it is concluded that the new method is useful
for this kind of the problems.

3.1 Introduction

The positional instability in a tokamak is a very violent one and
the tokamak should be operated under the condition absolutely without
the instability. This instability is an axisymmetric (n=0) ideal MHD
mode and it imposes severer restriction on the plasma confinement in
a noncircular cross-sectional tokamak device which will be more popular
among future devices.

The linear positional instability in a shell-less tokamak has been
investigated by many authors for the case that all currents except the

\3)

1
plasma current are constant , or the case that the plasma current

4)

is kept constant. ’. By considering a simple equivalent circuit for

5)

the shell-less tokamak Seki et al. obtained the general stability

condition including both the cases mentioned above. This work is ex-
tended to include an effect of a resistive shell6).

There is a difficulty in the numerical calculation of the nonlinear
behavior of the instability as the mode is an essentially external one
and the evolution of a. free boundary plasma should be computed. In
order to analyze the positional instability in the PDX tokamak Jardin
has developed a nonlinear positional code and has made some numerical

7,8)

analyses on this problem Up to now the series of the works by

Jardin is almost the only works on the nounlinear positional instability
and this problem has not been solved thoroughly.

9

Fortunately it is shown by the MHD spectral code and nonlinear

MHD code8) that a passive coil system has a stabilizing effect on this
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mode and, at least, the time scale of the mode can be made long enough
by the passive coil system. It will be, consequently, possible that
the mode could be made harmless by the combination of the passive coil

and feedback stabilizationslo’ll).

Theoretical investigations, espe-
cially, nonlinear analyses of the positional instability are, therefore,
very important to design a future toro%dal device so that the positional
instability is not destructive in the devise.

In this Chapter, we describe the two-dimensional nonlinear MHD
code, AEOLUS-P developed to investigate a numerical method for analyses
of the nonlinear positional instability in a tokamak device, especially,
with an external ccil system for a divertor or magnetic limiter such
as equipped in the JT-60 tokamak (Fig. 3.1). 1In Section 3.2, the basic
equations of ideal MHD equations are transformed to an integral form.
The numerical procedure is presented in Sectiom 3.3. In Section 3.4
results for a cylindrical.model are shown. We give a summary in Section
3.5.

3.2 Formulation

The following set of the ideal MHD equations is used as basic equa-

tions in the nonlinear MHD code AEOLUS-P,

aitp+§7-(p3) -0,

5% (V) + Ve(pwv) = ~ VP* + V- (BB) (3.1)
%Pl/yﬁﬁ-(P”Y?) =0 ,

LB+ V@0 -V-GB) =0,

where P* = P +-% B2 is the total pressure. Since the aim of the code
is to compute nonlinear free boundary problems, we adopt the dynamical
grid method proposed by Jardin et al.,7) which seems more appropriate
to the problem rather than Eulerian or Lagrangian method. In the dyma- -

mical grid method, the total velocity v is divided into the Euler velocity
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V. and d vel = v+ v
VE an grl ve OClty VG, V = VE VG,

of a quantity f integrated in the region Fk

r
%% S kfdr

and the total time derivative
can be written in the form

r
ke 3f 2.,
S [ a0 + Ve (Ev)ldT (3.2)

Instead of the finite difference method adopted by Jardin we use the

finite element approach based on the following integral forms of euqa-

12)

tions of the complete conservative form in the Cartesian coordinates s

D _ k g3
Dt pdT B S >
D Fk- d - Fk -> *-> - >
ot S ov, T = - S [pviVE +p e, - BiB]-dS s
(3.3)
D¢ g R U L
Dt P E ’
r ' r
D k k > > >
D—tS B.dt = - S - [BiVE - ViB] ds R
where Zi is the unit vector and subscript i represents the i-th component

of a vector. Since the code AEOLUS-P analyzes axisymmetric modes, these
equations in the three dimensional space are reduced to those in the

two dimensional space. At first, we consider a straight system for
3/3z =0,

and employ the grid configuration in the x-y plane as shown in Fig.

3. 2.

simplicity where all variables have no z dependence, i.e.

The volume integral S fdt is
and approximately given as £48 (£o
0 in Fig. 3.2 and Q is the area of

integral 5ds in the r.h.s. of the

transformed to a surface integral
is the value of f at the grid point
the hatched region). The surface

equations is also transformed to

a line integral and approximately given as-—[(f1+f2)312 + (£24+f3)s53

+ (£3+f4)s3y + (fu+fs)sys + (fstfg)sse + (f6+f1)ss1] (s12 is the length

between the grid points 1 and 2).

torodial calculation,
added to the r.h.s.

are described in the Appendix.

of the above set of integrated equatioms.

For the case of the axisymmetric

some terms due to the toroidal curvature should be

Details
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3.3 Numerical Method

The MHD equations described in the former Section are solved under

the fixed boundary condition
> > >
ven = 0 (n : normal vector of the plasma surface), (3.4)

or the free boundary condition

1
* = = B2
P lplasma 2 B lvacuum ’ (3'5),
at the plasma-vacuum boundary. The vacuum field is obtained by intro-

ducing the poloidal flux function ¢ and the vacuum toroidal field constant

8y

B = Bo (Vo x Vi + gv?z’cb) i (3.6)

- -
The normal derivative of Y at x = Xi = (Xi’ yi) on the plasma-vacuum
is derived from the set of equations
1 ds gy‘

27 xi' ii' dn

=¥ 7 VYsher1 i Inlim (3.7

X1

where Xi is the distance from the toroidal axis, wb and wshell are con-
stant in time, and jm is the poloidal coil current at x = gm (Fig. 3.3).
Green's function Gii' of the equation
- -
A*G . ., = x8(x —- X.,) s (3.8)

1l 1

is easily obtained analytically when the shell has a circular cross-
section. ~~The toroidal field constant“gV is computed by using the condi-

tion of the toroidal flux conservation in the vacuum region as

2—lﬂj Vo-BdT = constant. (3.9)
vacuum

In the dynamical grid method the grid velocities are free parameters
and they are given arbitrarily under the condition that the center grid

is always on the magnetic axis and the boundary grids are always on
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the plasma boundary. The center grid is, therefore, a purely Lagrangian

grid and the grid velocity equals the total plasma velocity, that is,

v =3 3.10
VG,a = Va ) (3.10)

It is not adequate to choose the boundary grids as purely Lagrangian
grids becauseé the two-dimensional Lagrangian meshes usually distort
considerably during the simulation. Some rezoning process should be
included for the time integration. Development of an efficient rezon-
ing algorithm is, therefore one of the most important purposes of this
work. In the following we describe the numerical method composed of
the dynamical grid method and rezoning algorithm. In this Chapter,

”12)

"rezoning algorithm" means not the "smoothing algorithm but how

. . 3 + . 3
to determine the grid velocity v In our rezoning algorithm, shown

G-
below, the grids never intersect each other and the strong distortion
of grids never occurs.
- ., >N A
The new position of the center grid X and new position of

boundary grid §§ are represented by the grid velocity V. as follows,

G

+6t v,
= x t v
a G,a ?

»n >
X
a

(3.11)

’n

Xb

- + 3 -+
xb ot VG,b

Next, we determine the positions of new boundary grids so that the areas
>n “n
(x,,x

of the triangles made of two adjacent boundary grids, j+l), and center

. - n . - .
grid, x_, are the same each other. This condition can be written as follows,

> > x(+' > _ > y > >
(VG,j+1—VG,a) Xj_xa) = (VG,j—VG,a) (xj+l—xa)
~ge N y > e /N
- Vj (Xj+l—xj—l) 8 , (3.12)

where subscript j means the grid position at the plasma surface and

N, is the azimuthal mesh number. The boundary grid velocity also satisfy

8

the following conditiom,
> > > > 3
VG’b 0 = v °n s (3.13)

or
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> X—> > —+><(+ ->
VG’b (Xj+l_xj—l) = v Xj X,

(3.14)

-
where n is the unit vector normal to the plasma surface. From Egs.(3.12)

and (3.14), we obtain the boundary grid velocity v The new positions

G,b’
of the boundary grid are determined by substituting the boundary velocity
thus obtained into Eq.(3.11). Llastly other grids are moved onto a straight
line between the center grid and a boundary grid so that grids are distri-
buted with the equal interval in a squared length scale from the axis.

In a new grid system all meshes have equal area and the grid velo-
city is represented as

> -n ->

Ve = (x - x)/8t (3.15)
The values of physical quantities p, 3, P and B at the time t =4+t

are computed by using the predictor corrector time integration scheme.

3.4 Results for a Cylindrical Model

In this Section, we show the results for the n=0 mode in a cylindri-
cal plasma model with uniform mass and uniform current distributions.

The equilibrium poloidal magnetic field at the plasma surface Bs is
chosen as BS/B0 = 1.0 and 0.2. As an initial condition of the calcula-
tion we choose the analytically obtained eigenfunction with the poloidal
mode number m and amplitude lg/a] v 1072,

First, we simulate several n=0 modes in a fixed boundary plasma
with a cylindrical model. The results of calculations are shown in
Figs. 3.5-3.7, where the radial and azimuthal mesh numbers Nr and.Ne
are chosen to be 20 and 40, respectively. Figures 3.5 and 3.6 are the

cases fo&uBS/B = 1.0 and Fig. 3.7 is the.case for BS/B0 = 0.2.° The

m=0 compressiogal mode is shown in Fig. 3.5 and the m=2 modes are shown
in Figs. 3.6 and 3.7, where subfigures (a) and (b) correspond to the
Alfven and compressional modes, in the respective order. The spectra

of the system are computed by the one-dimensional spectral code THALIA13)
(Fig. 3.8) and the results of the simulation are compared with them
(TABLE 3.1). Though there are slight differences between the results,

the agreement between them are satisfactory. The above results for
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the m=2 fixed boundary modes are the same as those of the Eulerian
calculation, because the center grid is not moved. On the other hand,
the center grid is moved in the case of the m=1 mode. The m=1 Alfven
mode computed by (1) the Eulerian method and (2) dynamical grid method
are compared in Fig. 3.9, where the velocities of the center grid and
boundary grids are shown by broken and solid lines, respectively. Two
cases give essentially the same results and the rezoning method adopted
here is appropriate for the fixed boundary problem.

'~ Next, calculations with a free boundary condition are carried out
for m=0 and m=1 Alfven modes. In both the calculations the shell is
located at r=2a. For the m=0 case the initial velocity perturbation
is given and for the m=1 case the initial condition is given as rigid
displasement of a plasma column instead of the velocity perturbation.
Figure 3.10 shows the radial velocity oscillations of the m=0 Alfven
mode at r=a and r=a/2. The oscillations of the m=1 mode at r=0 and
r=a/2 are shown in Fig. 3.11. Figure 3.12 shows the flow patterns of
the velocity field at t=2.5 and 5.5. Frequencies of the oscillations
by the free boundary calculations are also in good agreement with those

obtained by the code THALIA.

3.5 Summary

We have developed the free boundary nonlinear MHD code, AEOLUS-P
for the analysis of the positiénal instability of a tokamak. Numerical
scheme based on the dynamical grid meth&d by Jardin is adopted in com-—
bination with a new rezoning algorithm which makes the area of each
compﬁtational mesh constant.

The computed frequencies of oscillations in a cylindrical model
are in good égreement with those obtained by the one-dimensional spéctral
code THALIA and it is concluded that the new numerical method works

satisfactorily for the calculation of the axisymmetric MHD modes.
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Fig.

Fig.

N

3.

3.

2

\ separatrix

1 Schematic diagram of a cross section of
the JI-60 plasma. A divertor hoop is
placed at the outer side of the torus
to realize the poloidal magnetic limi-
ter configuration.

Grid configuration in AEOLUS-P code for the
analysis of the n=0 mode in a cylindrical
plasma. All the physical quantities are
integrated in the region [k.
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| /

l
plasma - vacuum boundary

Fig. 3.3 Cross section of an axisymmetric toroidal
system. The plasma-vacuum boundary is
determined by the poloidal coils and the
shell.

@ old grid

Fig. 3.4

O new grid

Motion of grids by the rezoning process.

The total velocity v of each grid is divided
into Ehe grid velocity vg and the Euler velo-
city vg, except the center grid which is moved
as a Lagrangian grid. The new grid configura-
tion is determined so that all cells have the
same area.
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‘m=0 Bg/Bg=1

i

Compressional mode

Fig. 3.5 Oscillation of the radial velocity at r=a/2 for the
m=0 compressional mode in a fixed-boundary plasma
with uniform mass and uniform current distributions

(BS/BO=l.OL

(b) Compressional mode

Fig. 3.6 Oscillations of the radial velocity at r=a/2 for
(a) the m=2 Alfven mode and (b) the m=2 compres-

sional mode.
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(a) Alfven mode

LN
VY

AL
AR

(b) Compressional mode

Fig. 3.7 Oscillations of the radial velocity at r=a/2 for
(a) the m=2 Alfven mode and (b) the m=2 compres-

sional mode.

The poloidal field at the surface

is chosen as BS/BO = 0.2.

By /B, 1.0

Acoustic  Alfven Compressional
—— - A ~
T - LT TN
Bs/Bp=0.2
Acoustic Alf;/en Comprisionol
11 N N
1(’)‘2 1c’)" ; :’o 1é2 u’f :é)“

CUZ

Fig. 3.8 Spectra of the m=2/n=0 fixed boundary modes for the

cases of Bg/Bp=1.0 and Bg/Bp=0.2.

These results are

obtained by the 1D spectral code THALIA.

- 43 -



(b) Dynamical Grid Method

Fig. 3.9 Comparison of the result for the m=1 Alfven
mode obtained by (a) the Eulerian method with

that by (b) the dynamical grid method.

The

solid curve corresponds to the total velocity
at the plasma surface and the broken omne cor-
responds to the velocity of the center grid.

Table 3.1 Computed frequencies w
m B./B d -
s/ B mode AEOLUS-P ... THALIA
0 1.0 Compressional 5.4 5.42 %
1 1.0 Alfven 0.97 1.00
Compressional 4.3 42
2 1.0
Alfven 1.9 2.00
Compressional 3.1 3.09
2 0.2
Alfven 0.37 0.40
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Fig. 3.10 Oscillations of radial velocity of m=0 Alfven mode for Bg/By=1.0.
The shell is located at r=2a. The solid curve corresponds to
the total velocity at the plasma surfzce and the broken one
corresponds to the total velocity at r=a/2.
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Fig. 3.11

Oscillations of radial velocity of w=l Alfven mode for B, /Bgp=1.0.
The shell is located at r=2a. The solid curve corresponds to

the total velocity at r=a/2 and the broken ome corresponds to

the total velocity at r=0.
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Fig. 3.12 Velocity vectors of m=1 Alfven mode in the case of free boundary
at (a) t=2.5 and (b) t=5.5. The outer circles represent the
shell.
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Chapter IV

Analysis of Major Disruption Process in Tokamak

The major disruption of a tokamak in a cylindrical model
is investigated by using a multi-helicity resistive MHD code.
A possible mechanism of the instability due to the destabiliza-
tion of the 3/2 mode by the mode coupling with the 2/1 mode is
confirmed. The evolution of the magnetic field topology caused
by the major disruption is studied in detail. The effect for
the internal disruption on the 2/1 magnetic island width is
also studied. The 2/1 magnetic island is not enhanced by the
flattening of the q-profile due to the internal disruption.

4.1 Introduction

The major disruption of a tokamak is characterized by rapid release
of magnetic and plasma energies within an order of us followed by reduc-
tion of the plasma current with the decay time of several milliseconds,
and it is considered to be the.main cause of limitation of the plasma
current and density. The disruption may bring about a more serious
damage to the device as the device becomes larger. It is, therefore,
urgently required to clarify the mechanism of the major disruption and
to devise methods to control or suppress it. 7

It is considered that the m=2 tearing mode plays an important role
in the major disruption. Experimentally, the growth of the m=2 magnetic
field perturbation is observed as precursor of the disruption. When the
safety factor at plasma boundary, q,, is less than 2, the major disruption
seems to be suppressed. Waddell et al. proposed that a nonlinear inter-
action between m/n=2/1 and m/n=3/2 tearing modes causes the major disrup-

1~4 . R .
). The results of their simulation seem to well recover the

tion
experimental data. They presented the scaling law of the major disrup-
tion time on the basis of the WKB theory. The WKB method, however, is

not always applicable to the nonlinear stage of the mode evolution. It
is important to establish the theoretical model reliable in this stage.
It is also very important to know the mechanism which makes the current
profile unstable against the 2/1 mode and enlarge the 2/1 island width.

In this Chapter, we first recover the results of the ORNL group.

We also investigate the initiation process of the 2/1 mode assuming that

the current density profile is flattened by the 1/1 mode. The 2/1 island
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obtained in the simulation is compared with those calculated by the A’
code. In the next Section the basic equations of the present analysis
are described. In Section 4.3, the results of simulation are presented.

Conclusion and discussion are given in Section 4.4.

4.2 Basic Equations

The usual resistive MHD equations are

> >
04700 =0
t
v >
> > > > >
p[g%‘+ (veV)v] = -Vp + JxB s
.%% + 3-$p + Yp§~3 =0 R (4.1)
5B >
> >
28 - Vx (vxB-nJ
St (V nJ) Y
> >
J = VxB ’
> >
VB =20

The characteristic time of this system of equations”is determined by
the compressional magnetosonic wave and the characteristic time scale of
MHD phenomena of our interest is determined by the Alfven wave propa-
gating along the magnetic field line. The ratio of these two time scales
is about gA, where q and A denote the safety factor and aspect ratio,
respectively. For a usual tokamak plasma the ratio is as large as 10,
which makes it rather difficult to simulate the nonlinear MHD behavior
on the basis of the above full set equations within a reasonable com-
putational time. To overcome this difficulty, we reduce the full set
of MHD equations (Egs. (4.1)) to a set of simplified equations in which
the compressional wave is removed analytically by introducing the in-
compressibility condition and the usual tokamak ordering. The reduced
set of resistive MHD equations was first solved by Rosenbluth et al.s)
to analyze the nonlinear kink instability and, since then, many authors
solved it numerically to analyze the nonlinear phenomena of internal

kink mode® and resistive instabilitiest *)
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The reduced set of resistive MHD equations of a low B toroidal plasma

in the cylindrical coordinate system (R,¢,z) is derived as following,

oY > > ad
rve +v-v,¥ = Boac + nJ - Ew(t) ,
aUu > > > > -> R 2 R - > > aJ
— + Y = Vg - — + (=—/)¢Vg - V! v + -
5t v .U g+ VPxV, (RO) ‘ (Ro) z XV ,J BOBC s
*
B v v-T =0 ,
t -
> > > >
B = BOVc + Vg xV,¥ s (4.2)
> R > >
v = (z9)2Vg xV,0 ,
Ry 1
v.Y »
J = ®R¥W, - )T ,
- R
U= (2% ,
R0 L
*
P = (&)ZY P ,
RO
. > 3 = 3 > ..
where RO is the major radius, z=R;¢, VLE §§VR + EZV z. The quantities

U, ¥ and & denote the vorticity, poloidal flux and stream function,
respectively. The detailed derivations of this reduced set of equations

are given in the Appendix of Ref.7.

The energy integral of this reduced set of equations is given by
.é_JdT[(_B_)zi‘v*cp'z + (R_O_)zi“v*\”z + 2
dt RO R 'Y—l

R
= far [(-ﬁo-)szz] + 2mRoE_(OI, . (4.3)

The first term in the l.h.s. represents the kinetic energy, the second
one the magnetic energy, and the third one the internal energy. The
first term in the r.h.s. is the energy dissipation. The electric field
at the wall, Ew(t), is obtained from Eq.(4.3) by setting the total plasma
current IP constant.

Now we employ the coordinate system (r,0,Z), in which the magnetic

lines are straight. The radial coordinate r is defined by

Roya g, (4.4)

r = (E(
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where /g is Jacobian. The variables ¥, J, ¢ and p* are Fourier expanded

in 6 and ¢ directions:

¥(r,0,2) =% ‘J’m/n(r) exp i(m8 - % ) , (4.5)

m,n

where m and n denote the mode numbers in 6 and g directions, respectively.

The Fourier expanded equations are written as follows;

BWm/n By
at [W’é]m/n +<§; nq)m/n + nJm/n - Em/n ’ (4.6)
BUm/r BO
— M0 + - = +
3t [U’Q]m/n [J’W]m/n Rg nJm/n [F’P]m/n > (4.7)
BP*m/n *
o = el (4.8)
where [W,@]m/n is defined by
]
= n 4 - 4
[\P’le/n m=m'_+m|| r (wm'/nl dr lel/n" (Dm’/nl dr \ym'l/n!') (4'9)
n=nl_+‘[1"
Variables J and U take the form;
/a m/n
-1 4 (v 4 n d .10
Jm/n T or mim'+m" dr (Gm' dr Wm"/n) o dr(Gm' m"/n)
6 d o, .88
m Gm, I Wm"/n mm Gm, Wm”/n] , (4.10)
1 d e d I
Um/n Tor mim'+m" {dr(Hm' dr Qm"/n) n dr(Hm' Qm"/n)
e d 1
m Hm' dc ¢mu/n mm Hm'Qm"/n] (4.11)
Quantities F _, 6™ and 'Y are defined by
m’ m m
(1&02 =% F (r) exp imf (4.12)
RO m D ’ -
r glJ =3 ¢ @ exp imé (4.13)
m m
r (J§92 g1J =3 HlJ(r) exp im6f (4.14)
Ro m m
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In the following calculation Eq.(4.8) for pressure perturbation is neglected
because the pressure driven mode is not important in a low B plasma.
Moreover we neglect the toroidal effects. Even by this simplification,

the essential mechanism of the major disruption can be described. We

assume the resistivity is constant in time and set it to be
n(r) = Ew(t=0)/J(r,t=O) . (4.15)

The multi-helicity calculation is carried out with up to 29 Fourier
components and 201 equal-spacing radial meshes. The equations are solved
by both the full-explicit and implicit-explicit predictor-corrector time
integration schemes, and a good agreement between both cases is obtained.
The time step for the former scheme, however, is restricted to be much

small in comparison with that for the latter scheme.

4.3 Computational Results

(1) Nonlinear Destabilization of 3/2 Mode

We choose the q-profile as in Ref.1l, q(r)=]_.38[1+(r/0.6)8]1/L+ and
the magnetic Reynolds number S=2 x 10% at q=2 surface. Almost the same
behavior of the plasma as that of the ORNL calculation is recovered,
which is presented in Figs.4.1-4,7. Figure 4.1 (a and b) show the time
evolution of magnetic island width obtained by the single-helicity and
multi-helicity calculations, respectively. The single helicity calcu-
lation shows that the 2/1 and 3/2 modes are both unstable and the widths
of the saturated islands are about 0.4 and 0.1, respectively. 1In contrast
with the single-helicity calculation, the multi-helicity calculation
shows the rapid destabilization of 3/2 mode after the islands of the
2/1 and 3/2 modes touch each other at t = 300, due to the nonlinear
interaction between modes with different helicities.

The phase of the 5/3 and 7/4 modes are inverted several times at final
stage of the disruption. The evolution of the kinetic and magnetic
energies are shown in Fig.4.2 (a and b), respectively. Both the energies
rapidly increase from the island-overlapping time (t =~300). The time
evolution of the growth rate of the magnetic energy is shown in Fig.4.3.
The growth rate of the 2/1 mode is slowly decreasing function of time

when the growth rates of the 3/2 and 5/3 modes begin to increase, which
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means that 2/1 mode is in the Rutherford regime even after the time of
the island overlapping. Figure 4.4 shows the time evolution of the

one turn voltage, V=[é%—(Ek + Eﬁ)-—Q]/IP, where Ip is total plasma
current, Ek and EM are the kinetic and magnetic energies, and Q is the
change in the rate of energy dissipation due to Joule heating. In this
figure, V is normalized by nB.. The negative voltage spike is

observed is the figure. The order of ﬁagnitude of the voltage spike

is in good agreement with experimental value. The helical flux con-
tours for several modes with different helicities at the end of the cal-
culation are shown in Fig.4.5. The magnetic islands of the higher
harmonics, such as the 8/5 or 13/7 modes, have also fairly large ampli-
tude. In Fig.4.6, intersections of a single magnetic field line near
the separatrix of the 2/1 island at the =0 poloidal plane are plotted.
This figure shows that the stochastic region develops during the interval
(t=300 ~ 400) and covers almost the plasma .column at the final stage. The
stochasticity can be investigated quantitatively by calculating the K-S
entropy8), which is shown in Fig.4.7. The evolution of the K-S entropy
confirms the above result. The stochastic magnetic field in the plasma
column enhances the heat loss and causes the rapid cooling of the plasma,

which is observed in the soft X ray signals from the plasma center.

(2) Effect of Intermal Disruption

Next, we calculate the nonlinear evolution of the 2/1 tearing mode
in the presence of the 1/1 mode. The purpose of this calculation is to
simulate destabilization of the 2/1 mode by the intermal disruption through
the flattening of the g-profile inside of the q=1 surface. The initial
g-profile in this case is q(r)=0.9[l+(4/0.5)2k]1x, where A=2+2r2, and
S=2x10% at the q=1 surface (solid line in Fig.4.8). 1In this profile
the islands of the 2/1 and 3/2 modes are saturated at relatively narrow

2/1 and W3/2)
=(0.005 for the initial

width. The saturation width of the 2/1 and 3/2 islands (W

estimated by using a A' code is W, ,,=0.109 and W

q-profile, and W2/1=O.204, W3/2=0?é22 for the fljﬁiened g-profile (dashed
line in Fig.4.8), respectively. There is no island overlapping between
the 2/1 and 3/2 modes for the initial q-profile, while the island over-
lapping is expected for the flattened gq-profile after the internal

disruption. In order to investigate this possible enhancement of the

2/1 island width by the flattening of the current profile due to the
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internal disruption, the calculation is started with only the 2/1 mode,
and the 1/1 mode is initiated at t=520 after the 2/1 island is saturated
2/l=0.07
which is a little smaller than the expected value. With the growth of

(Fig.4.9). The saturation width of the 2/1 island at t=520 is W

the 1/1 mode, the 3/2 mode is produced by the coupling of the 1/1 and

2/1 modes, and the internal disruption occurs at t=700. After the
internal disruption the gq-profile inside of the q=1 surface is flattened
and that outside of it is unchanged, (dotted line in Fig.4.8). In spite
of the change of the gq-profile, however, the island evolution of the

2/1 and 3/2 modes seems unchanged, even a long while after the internal
disruption, i.e., W2/1=0.07 and W3/2=O.014 at t=970. These values are
about 1/3-1/4 of those obtained by using the A' code and there is no
indication of island overlapping even if the calculation continues.

There are other possibilities to initiate the major disruption. In Ref.9,
we have shown that the size of the 2/1 island is strongly enhanced by

the internal disruption due to the toroidal coupling. This result sug-
gests that in a toroidal plasma the major disruption is induced indirectly
by the change of the current profile due to the internal disruption. This

problem is discussed in more detail in the next Chapter.

4.4 Conclusion and Discussion

We have studied the nomnlinear evolution of tearing modes with differ-
ent helicity in a cylindrical plasma and confirmed the possibility that
the major disruption is caused by the nonlinear destabilization of the
3/2 mode through the mode coupling with the 2/1 mode. And the evolution
of the magnetic field topology has been minutely investigated. All these
results support the mechanism of the major disruption, proposed by Waddell
et al.. The details of our results, however, are different from their
results. Especially, in our simulation, the 2/1 mode is deeply in the
Rutherfored regime and its instantaneous growth rate is not affected even
after the 3/2 mode is nonlinearly destabilized. This behavior of the 2/1
mode contradicts with the WKB theory. Therefore, the mechanism of the
destabilization of the 3/2 mode remains unsolved.

As for the effect of the internal mode on the major disruption, the
flattening of the gq-profile due to the internal disruption did not cause

the enhancement of the 2/1 island width, in spite of the prediction of
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the major disruption by the A' calculation. The flattening occurs only
inside of the q=1 surface and the q-profile is not affected near the 2/1
and 3/2 surfaces. Therefore, in order to expect the major disruption by

the internal disruption, we have to take into account other effects, such

as the toroidicity.
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Fig.4.1 Time evolution of the m/n mode magnetic island width for the case of
(a) single-~helicity calculation and (b) multi-helicity calculation.

The widths for both cases are the same before the island-overlapping
time (t =300).
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Fig.4.2 (a) Time evolution of the kinetic energy in the case of
multi-helicity calculation. Results for the single-
helicity calculation is shown by the dotted line.
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Fig.4.2 (b) Time evolution of the magnetic emergy in the case of
multi~helicity calculation. Results for the single-
helicity calculation is shown by the dotted line.
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Tm

Fig.4.3 Instantaneous growth rates of the m/n magnetic energy. The growth
rates of the 3/2 and 5/3 modes start to increase at the island-
overlapping time (t =300), while the 2/1 mode remains in the

Rutherford regime.
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the calculation, t=440.
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Trajectory of a magnetic field line, starting from a point on the
separatrix of the 2/1 island. The cross-section at the poloidal
plane =0 is shown. Distinct structure of the 2/1 island is seen
at the island-overlapping time t =300, while the trajectory is
almost stochastic at t =440.
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where n stands for an iteration serial number and Kn is the distance
between two field lines starting from neighbouring positions.
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Fig.4.8 Profile of the safety factor q. The solid line denotes the initial
g-profile ( q,=0.9 and q,=3.6 ). The dotted line is the g-profile
changed by the internal disruption. The model q-profile after the
internal disruption for the A' calculation is shown by the dashed
line.
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Fig.4.9
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Time evolution of the magnetic island width. The result from t =20
to t =520 is obtained by the single-helicity calculation of the 2/1
mode. The 1/1 perturbation is added at t =520, and the evolution
is simulated by the multi-helicity code. The internal disruptiom,
which occurs at t =690, does not influence the 2/1 mode.
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Chapter V

Numerical Study of Toroidal Effect
on Low-m Resistive Modes

Effects of the toroidicity and finite pressure on low-m
ideal and resistive modes are studied numerically on the
basis of the reduced set of the MHD equations. Both the
linear and nonlinear analyses show that the m=2 mode is
strongly destabilized by the above effects. Especially,
in a highly resistive plasma with large €8_, the amplitude
of the m=2 and m=3 perturbations are comparable with or
larger than that of m=1 perturbation. In spite of this large
modification of the modes in the linear phase, the nonlinear
evolution of the m=1 mode is essentially the same as in the
cylindrical geometry. During the evolution, the toroidicity
enhances magnetic islands of m=2 mode and other resonant
modes and wide stochastic region is formed in a plasma. The
destabilization of the m=2 mode, however, is not directly
related to the major disruptioms. It is conjectured that
the destabilized m=2 mode may change the equilibrium to the
one unstable against the major disruption.

5.1 Introduction

As described in the previous Chapter clarification of a mechanism
of disruptive instabilities and establishment of controlling or sup-
pressing means are very important problem to be solved urgently in
the field of the tokamak research. Internal disruptions, i.e., saw-
tooth oscillations observed in soft X ray signals and major disruptions
are extensively analyzed by many authors on the basis of the reduced
set of the resistive MHD equationslmg). These analyses have been carried
out to investigate behaviours of a rather low beta ohmically heated
tokamak plasma and finite poloidal beta effects have not been taken
into account. In recent tokamak experiments, however, higher poloidal
beta values are realized by an intense additional heating. With increas-
ing poloidal beta value there observed a new phenomenon, i.e., disap-
pearance of the internal disruption and appearance of large amplitude
continuous oscillationslo). The change of the stability property sug-
gests the importance of the finite poloidal beta effect on the disrup-
tion process and, for clarification of the disruption mechanism, it

seems .very important to take into account of the finite poloidal beta

effect.
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The purpose of this Chapter is to investigate the toroidal coupling

of resistive modes enhanced by the effect of the poloidal beta in a
tokamak plasma and to get some insights into the driving mechanisms

of the disruptive instabilities. Analyseés are carried out on the basis
of the reduced set of the resistive MHD equations described in the
previous Chapter. In Section 5.2 equilibrium used for the calculation
and numerical procedure are explained. 1In Section 5.3 we study the
linear stability property minutely with various parameters for the

fixed profile of the safety factor. The results of nonlinear calcula-
tions with the finite poloidai beta value are given in Section 5.4.

Section 5.5 is devoted for conclusions and discussion.

5.2 Equilibrium

In this Section we present an equilibrium used for subsequent
stability analyses. A low B tokamak plasma with a circular cross section
and large aspect ratio is considered. We employ a coordinate system
(r,0,0), where magnetic field lines are straight and the radial coordi-
nate is defined as r = /g (Ro/R)2. 1In the coordinate system the mapping
functions X(r,8) and Z(r,0) for the equilibrium solution are derived

up to the order of £? as

X(r,8) Ry - er cosB - €2A(r) ,

(5.1)

Z(r,9) €r sinb s

where A(r) is the shift of the magnetic surface and given by the following
equation,

Y

R a .
Alr) = %_ dr //’ (B; - 2r gED rdr . (5.2)
0 rB2 r
r 8 0

For the above equilibrium we obtain the following expressions of the
reciprocal metric tensor, assuming that the inverse aspect ratio e(=
r/Ro) is sufficiently small,

rY

dA
g =1+ 2 i cosf ,
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=—-(E§+;d—r'—*R'o—)Sine s
66_ 1 B dA
g == {1 2 ( el ) cosf® } s (5.3)

¢d_ 2 r
g R (L + 2 Ry cosb )

In the following stability analyses we Substitute concrete forms of
the profiles of pressure P(r) and safety factor q(r) into the equation

of A(r), and calculate the metric tensor.

5.3 Linear Stability Analysis by Reduced Set of Equations

Before studying the nonlinear MHD behaviours in the next Sectiom,
we investigate the linear stability of the current- and pressure-driven
modes in detail on the basis of the reduced set of equations described
in Section 4.2. We linearize the equations with respect to ¥ and 9.
Our main concern is the analysis of the n=1 mode which tends to an
m/n = 1/1 mode in a cylindrical plasma. Variable parameters in the
analyses are the inverse aspect ratio £(= a/Rg), poloidal beta Bp’
and magnetic Reynolds number S(= Tr/Tpa), where a, Ry, Tr’ and Tpa
are the minor and major radii of the plasma, resistive diffusion time,
and poloidal Alfven time, respectively. The magnetic Reynolds number
is measured at the m=1 singular surface and the poloidal beta is defined
as Bp = 2<P(r)>/B;, where < > denotes the average with respect to
t, P(r) and Ba are the pressure function and poloidal magnetic field
at the plasma surface, respectively. The safety factor and pressure

profile are given as

q(r) = 0.9 [1 + ( 6%3 )ZK]l/A s (5.4)
with A = 2 + 2r? s

and
P(r) = po(l - rz)? s (5.5)
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where p 1is the pressure at the magnetic axis and it is adjusted so
that thg poloidal beta has the given value. The maximum number of
the Fourier components in the 8 direction and radial mesh number are
chosen to be 10 and 201, respectively, throughout the linear calcula-
tion except the case of € = 0.

First, we investigate behaviours.of the mode by eliminating the
pressure term in the basic equations. Features of the mode obtained
by the simulation are summarized as follows.

(1) The growth rate of the mode scarecely depends on the poloidal

beta and aspect ratio as shown by the broken line in Fig. 5.1(a).

This is consistent with the fact that the mode is current-driven one.

(2) The mode depends on the magnetic Reynolds number as 5=1/3 (a broken
line in Fig. 5.1(b)), which is in good agreement with the previous
analytical resultsll) (a thick straight line in Fig. 5.1(b)).

Secondly, we carry out calculations for the equations with the
pressure term. The results of the calculations are summarized as follows.
(3) As the aspect ratio and poloidal beta are increasing, both the
internal (S=w) and resistive (S<®) modes become destabilized (solid
lines in Fig. 5.1(a)). In the ideal case, especially, the growth rate
depends on £ and Bp almost quadratically. The destabilization effect
is more remarkable for smaller S value (solid lines in Fig. 5.1(b)).
(4) For higher values of EBP and S the growth rate depends on S as
5—3/3 (Fig. 5.1(c)). The dependence suggests that the mode sensitive
to € and Bp are affected not by a pressure-driven mode but by the m=2
current-driven instability through the toroidal coupling. This is
supported by the magnetic energy spectrum (Fig. 5.2) which shows that
higher m components are more destabilized with increasing Bp' Infact,
from Fig. 5.2(a) and (b), it is clear that if the value of § is suf-
ficient low, the high m (m > 1) modes are easily destabilized with
increasing Bp, and when Bp exceeds 1.5, the magnetic energy of m=2
mode becomes dominant instead of that of m=1 mode. As for the S de-
pendence the magnetic energy of each mode is shown in Figs. 5.2(c)
and (d) for the cases with £€=0.1 and Bp=2.0, and with £=0.1 and Bp=l.0,
respectively. Figure 5.2(c) shows that strong destabilization is in-
duced in the case with high Bp and low S values. In Fig. 5.3 we show

the Bp and S dependences of the eigenfunction of the § component of

- 69 -



the plasma velocity, ®'. From the figure it is seen that the eigenfunction
of the m=l mode is distorted considerably as the magnetic energy of
the m=2 mode increases. ’

From the above observations we can conjecture that the destabliza-
tion of the cylindrical m/n = 1/1 mode and change of it to the m=2
dominant mode are explained not by thg direct consequence of inclusion
of the pressure term but by the toroidal coupling of the mode with
the higher m (m>l) modes in a high poloidal beta plasma. In the follow-
ing we confirm the conjecture by deriving a growth rate of the mode
analytically. We consider only the m=1 and m=2 Fourier components
of the mode. The ideal MHD euqations for the m=1 and m=2 components

are written as

o [(Y2+Ff)r3 %%L ] = -eh1s s > (5.6)
(Tl gohyy - e g a gy b
where
IS gz = rz[yzAhl(réz) + FlAgl ¥,] - r? %%'9%2 - %~é%—(r 3%9&2]
vt 2 (L 2L, (5.8)
Aoy E1 = rzeAgégl - [ %%‘%%L —'%'é% (r %g)@l ]
e Eey -18e g, (5.9)

b denotes the perturbation quantity, Y is growth rate, Fm = mB /r—n,
g (= - ¢ /Yr) is radial displacement of plasma and Agm and Ah are the
operators including the metric tensor G 1] and H J, respectively. Here,
we assume that the growth rate is much larger than that of the m=1
resistive mode which is not counsidered in this analysis.

From Eq. (5.6), the growth rate of ideal m=1 mode is derived as

follows,
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ey (5.10)
with
A= - E25/814 s (5.11)
) B 2 ri 1
oy = - —2—— ,/' P'r3dr Jﬁ Prdr s (5.12)
r!q'(ry) 7o 0

where ri is the singular surface of m=1 mode, & = &m(r=r1) and the

prime denotes the derivative with respect to r.maIn this derivation
of Eq.(5.10), we assume that 52 £ gzar/rl and q 2 1 in the region

0 <r <ri. The signs of A and a1 are positive and the effect of EBP
to the stability is always destabilizing. The expression for A in

Eq.(5.11) is obtained by analyzing the m=2 mode as

A= azE(Bp + W) ) (5.13)
where
B; ¥, (r2) Wi(rl) 1
= - — ]
o2 4 : Tty P'(r) Jﬁ Prdr , (5.14)
ri¥ (r) 1 0
1 1 1
U= driq’ (r1)A'(r1) .Jﬂ Prdr , (5.15)
B; P'(r1) 0

r, is the singular surface of the m=2 mode, Wi(r) and W*(r) are general
solution and particular solution of Eq.(5.7) in the region 0 < r < r,.
Substituting Eq.(5.13) into Eq.(5.10), we get the growth rate of ideal

mode Y1 for the reduced set of equations of toroidal plasma as follows,

— 2
Yp = 0102 € Bp(Bp +u) . (5.16)

The quadratic dependence of the growth rate on € and Bp shown in Fig.
5.1(a) is well reproduced by Eq.(5.16). In the figure the black and
open circles denote the cases for the fixed Bp and fixed €, respectively.
Next, we consider the mode which is connected tc the m=2 tearing
mode in a cylindrical geometry. The growth rate of m=2 tearing mode

in cylindrical geometry is given in Ref. 12 as
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= en¥/Sag) /s, (5.17)

y =
where
1 2/5
c= 2 () , (5.18)
q
r=t,
Yo oo¥i
Ag = v v . (5.19)
e i
=Y,

Wi and We are the general solutions of Eq.(5.7) for 0 < r < r; and
for ro < r < a, respectively. For comparison, this growth rate is
shown as the straight solid line in Fig. 5.1(c). In the toroidal geo-~
metry, the value of A' is changed from Ag due to the toroidal mode

coupling and becomes

, OLZE(BP‘HJ) .
A" = Ag + i (5.20)
A=a 2 (B_+u)
P
where
1 1
Al = o (5.21

I -2

1

Using this A', we obtain the growth rate of the mode in toroidal plasma

as

=L _
(=5 Lyp+ NG +4v0 1 (5.22)
where

vo = cend/spts (5.23)

and YI is the ideal growth rate given by Eq.(5.16). This growth rate
is approximately reduced to vy = Y1 + v, for Y1 >> vy, and Yy = /YIY* E
eBpn3/10 for YI << v,. Figure 5.1(c) shows that for the cases of

EBp = 0.225 and 0.2 vy - Yi is proportional to s73/5 in the region of
sufficiently high S value (YI >> y,) but for the case of €BP = 0.1 the

S dependence of vy - Y1 is different because of the dominant m=1 mode
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(Fig. 5.1(b)). Furthermore, the S dependence of the growth rate in
the low S region (YI << Y,) is approximately given as 8—3/10, which

seems reasonable from the above numerical treatment.

5.4 Nonlinear Calculations of Resistive Modes with the Toroidal Effect

In this Section we study the nonlinear evolution of the resistive
instabilities in a toroidal plasma. As the m/n = 3/1 mode (according
to the common usage we call a perturbation with m/n helicity a "m/n
mode'") is strongly destabilized by the toroidal coupling incorporated
with the finite poloidal beta effect, emphasis of the investigation
is.placed on the possibility of initiation of the disruptive instability
by the toroidal coupling. The equilibrium in the previous Sectiom
is used for the simulation. This equilibrium is stable against the
disruptive instability in the sense that the m/n = 2/1 and m/n = 3/2
modes do not overlap each other during the nonlinear simulation in
which the toroidal coupling and pressure perturbation are not taken
into account.

First, we calculate the effect of the toroidal coupling without
considering the pressure perturbation and finite poloidal beta effect.
Figure 5.4 shows the temporal evolution of the magnetic islands with
different helicities for the inverse aspect ratio £=0.1, the poloidal
beta BP=O.O, and the magnetic Reynolds number S = 2 X 10*. The phase
of the initial perturbation of m/n = 2/1 mode is chosen to be the same
as that of the m/n = 1/1 mode for one case (Fig. 5.4(a)) and to be
opposite for the other (Fig. 5.4(b)). For comparison, a cylindrical
case (£=0.0) is shown by a broken line in each figure. Until t " 50
behaviour of the modes in a toroidal plasma is essentially the same
as in the cylindrical case. After t v 50, however, the modes evolve
differently for the toroidal cases with different initial phases, which
seems to be attributed to the effect of the toroidicity. For the in-
phase case, the m=2 island shrinks. On the other hand, the island
width for the opposite phase case increases. This can be seen more
clearly in the evolution of the magnetic energies of each mode (Fig. 5.5),

L

a B‘Fm/n 2 o 2
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The energy of the m=2 mode with the initially opposite phase grows
exponentially with the growth rate of about half of the m=1 mode growth
rate (Fig. 5.5(b)), while the energy of the m=2 mode for the in-phase
case decreases (Fig. 5.5(a)). The different behaviour of the modes

for the different initial phases is explained qualitatively as follows.
The total energy of the reduced set of the resistive MHD equations

in a toroidal plasma is given by
1 (@ R (2 242 Ro y2 joul?2
E=35 | [Cg) (702 + (2)? |v¥|?] at . (5.25)
0

This energy can be divided into two parts; the cylindrical energy Ecyl’

and toroidal one Eyyr. By using the cylindrical part (éij) and toroidal

part (élj(e)) of the reciprocal metric glJ, we can rewrite the toroidal

energy Etor’ up to the first order of e, as
a
~1] ~1j 9%, 239 oY, oY
Epopr = V( (g5 @ + g ey 22 222 2 20
0 ax™ 9x7 ax ox’
s = N E I T (5.26)
Ry i i
9x~ 9x

where we take into account only the toroidal coupling between the m=1
and m=2 modes. We assume that ¢; and ¢, are approximately expressed

= & 5 =0 2 i <
as &; T &, r/rslm=l and 93 ®z{r/rslm=l} in the region r < rS]

m=1"
Then using the relation ¥ = - F_% /vy , we have
m mm 'm
r_| r_|
> é_ s'm=1 _ ~ i__ s'm=1
Etor * R, 0 dr(¥V1Y¥Y, 3,9,) = Ro j dr ¥1¥,, (5.27)
0

where Yo is the growth rate of each mode and Fm=mBe/r—nBz/R°. This
expression shows that the sign of the toroidal coupling energy Etor
depends on the phase between the m=1 and m=2 modes. Because of the

small dissipation, the total energy of the system is almost conserved,

and EC is larger (smaller) than that in the cylindrical plasma for

vl
Yi¥, < 0 (Y1¥2 > 0). Since the m=1 mode has the larger growth rate
and larger amplitude than those of the m=2 mode, the effect of the

toroidal coupling on the m=1 mode can be neglected. Therefore, the

energy of the m=2 mode increases due to the toroidal coupling for
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¥.¥, < 0 and vice versa, which also explain the phase locking observed
in the experiments.

Next, we investigate the finite poloidal beta effect for an equi-
librium of £=0.1, Bp=l.0, and § = 2 x 10" with and without considering
the pressure perturbation. The initial phase of the m=2 mode is chosen
to be opposite to that of the m=l modg. Figure 5.6 shows the evolutions
of the magnetic islands (Fig. 5.6(a)) and magnetic energy (Fig. 5.6(b)).
It is seen that there is no remarkable finite poloidal beta effect
in the case without the pressure perturbation (broken lines in Fig. 5.6).
On the other hand, for the case with the pressure perturbation the
finite poloidal beta effect brings out a remarkable difference in the
evolutions of the magnetic islands and magnetic energy. In this case
the m/n=2/1 and m/n=3/1 modes are strongly destabilized and they grow
rapidly with the linear growth rate of the m/n=1/1 mode even after
the internal disruption occurs and the m/n=1/1 mode disappears. With
the strong destabilization of the modes the m/n=2/1 island becomes large
and contacts with the m/n=3/2 and m/n=3/1 islands. This island over-
lapping makes the magnetic lines stochastic and finally destroy the
magnetic surface (Fig. 5.7), but it is not followed by the destabliza-
tion of the m/n=3/2 mode and does not lead to the major disruption,
i.e., the rapid release of the magnetic energy, as shown in the simula-
tions by the ORNL group. A negative voltage spike is observed in the
simulation (Fig. 5.8), but it is caused by the intermal disruption

and the amplitude is only about a few percent of the major disruption.

5.5 Discussion and Conclusions

We have studied the linear and nonlinear MHD phenomena of a tokamak
plasma by using the reduced set of the resistive MHD equations, especially,
to clarify the finite poloidal beta effect and toroidal coupling. From
the linear analysis of the equilibrium accurate up to the order € it
is found that the m=2 tearing mode is strongly destabilized by the
toroidal coupling with the m=l internal mode if the pressure perturba-
tion is taken into account. The numerically obtained dependence of
the growth rate on the aspect ratio and poloidal beta is in good agree-

ment with analytical result. In the present tokamak plasmas the magnetic
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Reynolds number is in the range of 10° v 10° and the m=2 mode is
destabilized strongly for large values of SBP.

Nonlinear calculations are also carried out. Even in the nonlinear
regime it is found that the finite Bp effect is small for the case
without the pressure perturbation. For the case with the pressure
perturbation, however, the computatiogal result shows that the m/n=2/1
and m/n=3/1 modes are strongly destabilized by the m/n=1/1 mode through
the toroidal coupling, leading to destroy the magnetic surfaces by
the island overlapping which does not lead to the rapid release of
the magnetic energy.

As for the major disruption the finite poloidal beta effect and
toroidal coupling are not directly responsible to the instability.
However, the above-described island overlapping leads to the magnetic
field stochastization. And the stochastization leads to the flattening
of the electron temperature profile and high plasma resistivity, by
which the current profile is flattened. Combination of the above effect
and the flattening of electron temperature due to the internal disrup—

tion may change the current profile to the similar one of the major

disruption calculations in Ref. 6 and cause the major disruption.
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Fig. 5.1(a) Linear growth rate of n=1 mode versus €Bp- The open symbols
represent the case with changing Bp for fixed £(=0.1), and
the black symbols represent the case with changing ¢ for
fixed Bp(=l.5). A and A with a broken line is the result
of calculation without pressure perturbation. The values
of S are 2x10* for 4 A O ® and ® for © and ®.
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Fig. 5.1(b)
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Linear growth rate of n=1 mode versus S"l/a. O is for the
case without pressure perturbation (eB,=0). O and =

denote the case of B,=1.0 and B,=2.0 for £=0.1 and ® denotes
the case of Bp=l.5 and €=0.15. The straight solid line is
analytical growth rate of m=1 resistive modell).
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Evolution of the magnetic island with different helicity

m/n for the case that the initial phase of the m=2 mode is
the same as that of m=l mode. The results of the cylindrical
calculation are shown by broken lines. The calculation is
carried out for the case with £=0.1, Bp=0. and $=2x10".
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5.4(b)

Evolution of the magnetic island with different helicity

m/n for the case that the initial phase of the m=2 mode is
opposite to that of m=1 mode. Broken lines show the results
of cylindrical calculation.
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Fig. 5.5(a) Evolution of the magnetic energy 'of each mode for the same
case as Fig. 5.4(a). The results of the cylindrical calcu-
lation are also shown by the broken lines.
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Fig. 5.5(b) Evolution of the magnetic energy of each mode for the same
case as Fig. 5.4(b). Broken lines are the results of
cylindrical calculationm.
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Evolution of the magnetic island with different helicity
m/n. Solid and broken lines show the case with and without
the pressure perturbation, respectively. The calculation
is carried out for the case with €=0.1, Bp=l.0 and S=2x10".
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Fig. 5.6(b) Evolution of the magnetic energy of each mode for the same
case as Fig. 5.6(a). Solid and broken lines show the cases
with and without pressure perturbation, respectively.
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case £=0.1, Bp=l.0 and S=2x10"* with pressure perturbation.
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Chapter VI

Conclusions and Discussion

The MHD phenomena in a tokamak plasma have been analyzed extensively.
These are the external kink and nonliﬁear positional instabilities,
the major disruption process and related problems concerning the effects
of toroidicity and finite poloidal beta on the low n resistive modes.
The former two problems are analyzed on the basis of the ideal MHD
model and the latter two problems are analyzed on the basis of the
reduced set of the resistive MHD equations. In the following brief
conclusions and discussion are given in the order of the Chapters of
the text.

In Chapter II the ideal MHD stabilities of a toroidal plasma with
a free boundary are investigated, and it is shown that, when a conduct-
ing shell is placed far from the plasma surface, toroidicity scarcely
affects the exte;nal kink mode for a slender tokamak but it reduces
the growth rate of a fat tokamak. When the shell is placed close to
the plasma surface, however, the toroidal effect is notable in compari-
son with the previous case. For these analyses we have developed a
two—dimensional linear evolutional code ZEPHYrus. The results by the
code are compared critically with an analytical and numerical results
and the code has been found to be accurate for the low m mode analyses
but for the higher m modes the effect of the finite azimuthal mesh
size prevents accurate calculation of the growth rate.

In Chapter III we described the numerical method of the nonlinear
ideal MHD code AEOLUS-P developed for analyses of the positional insta-
bilities of a tokamak plasma. The basic equations are given in the
complete conservative form. To solve the equations the dynamical grid
method in combination with a new rezoning algorithm is successfully
applied. For test of the accuracy of the code MHD oscillations in
a cylindrical model are computed and the frequencies of the plasma
velocity oscillations are in good agreement with those obtained by

the one—dimensional spectral code THALIA.
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In Chapter IV we have studied the nonlinear evolution of a multi-
helicity tearing mode in a cylindrical geometry and demomstrated that
a major disruption is caused by nonlinear destabilization of the m/n=3/2
mode through the nonlinear coupling with the m/n=2/1 mode. As for
initiation of the major disruption the flattening of the q profile
due to the internal disruption is one of candidates but the numerical
result shows that it does not cause the major disruption contrary to
the simple expectation. The flattening occurs only inside of the g=1
magnetic surface and the q profile is not affected near the m/n=2/1
and m/n=3/2 surfaces. Therefore, in order to explain the initiation
process of the major disruption we have to take into account another
effect such as the toroidal effect.

In Chapter V we have studied the effects of the toroidicity and
finite poloidal beta on the low n resistive modes in relation to the
disruptive instabilities. By the linear calculation it is found that
in a highly resistive plasma with large value of EBP‘ The m=2 tearing
mode is strongly destabilized by the m=1 internal mode through the
toroidal coupling. WNonlinear calculation shows that linearly destabi-
lized m/n=2/1 and m/n=3/1 modes have large magnetic islands and lead
to destruction of mégnetic surfaces by the island overlapping. In
spite of the island overlapping the major disruption or rapid release
of the magnetic energy does not occur. However, there remains another
possibility of the major disruption. The stochastization of the magnetic
field lines due to the above island overlapping leads to flattening
of the electron temperature profile in this region. Consequently the
plasma resistivity becomes high and the plasma current profile is made
flattened. With the effect of the internal disruption this flattening
of the plasma current profile around the q=2 surface may change the
q profile similar to the one used for the disruption calculation by

Waddell et al., and the major disruption occurs.
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Appendix

Basic Equations for AEOLUS-P in Toroidal Geometry

In this Appendix, we rewrite the basic equations (Egqs.3.3) so
that the equations include the effect of toroidal curvature. The change
> >
is needed for the terms which contain ¢ components of v and B. By

adding the terms we have following equations for the toroidal calcula-

tion,
aa—t(pvx) = -%-(pvx%”) - %E + ‘?-(Bxﬁ) + X(QG; - ﬁ; , (A.1)
%(xzp\'}q}) = —§~(x?pe¢3) +'v*,-(x2§¢§) , (A. 2)
Sov) = Vv - T+ T h (a.3)
3B_ L F
Tl < (B,v) + -(vXB) R (A.4)
3_%@ _ ——»' ~ > r >
A CIORE RGO D (A.5)
ESX > > —V* >
i A CHO N AL C SR (A.6)
where
v B
P ] )
V¢ =5 R B(b =< (A.7)

By the spatial integration of the above equations we obtain the basic
equations for a toroidal plasma corresponding to second and fourth

equations of Egs.(3.3) in the text, as

Tk Tk
BE'S OVXdT = —-g [pv Vo +Pe -8B ﬁ] . Eg
g
+S x[092 - ﬁé] dt , (A.8)
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= B dt

r

K > —
—5 (B v, - vB] « ds

r

.K A ~A > —
—5 [Byvy - v,B] - ds

Aa.9

(A.10)

(A.11)

(A.12)

(A.13)

It should be noted the second term in r.h.s. of Eq.(A.8) is only the

additional term appearing in the equations for the toroidal plasma.
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