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ABSTRACT

     The mn properties of a tokamak plasma are investigated by using

time evolutional codes. As fer the ideal MHD modes we have analyzed

the external modes including the positional instability. Linear and

nonlinear ideal MEll) codes have been developed. Effects of the toroi-

dicity and conducting shell on the external kink mode are studied

minutely by the linear code. A new rezoning algorithm is devised and

it is successfully applied to express numerically the axisymetric

plasma perturbation in a cylindrical geometry. As for the resistlve
MHD modes we have developed nonlinear codes on the basis of the re--

duced set of the resistive mn equations. By using the codes we have
studied the major disruption processes and properties of the low n

resistive modes. We have found that the effects of toroidicity and

finite poloidal beta are very important. Considering the above con-

clusion we propose a new scenarie of the initiatÅ}on of the major dis-

    .ruptlon.
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                             Chapter I

                            Introduction
                             '
     The tokamak is considered as the most promising magnetic fusion
                                                      'device for achieving controlled nuclear fusion. If successful, the
                             'present generation large tokamaks are situated very close to the

milestone of attaining the ignition plasma condition. There are,
however,' various kinds of problems to be solved before achieving the

plasma condition for an economical tokamak fusion reactor. Even if

we restrict ourselves only to the theoretical researdhes of a .reactQr

plasma, there are many problems concerning: (1) determination of a

limiting beta value, (2) analyses of disruptive instabUities,
(3) transport processes and scaling laws of the plasma eonfinernent,

(4) methods to reduce impurities, (5) new efficient heating methods,

(6) methods to sustain a plasma current continuously, (7) problems in

a DT burning plasma and so on. Arnong them, the items (1), (2), and
(3) are the problems concernihg the most basie confinement property of

the tokamak plasma. Though these have been studied by many authors
since the biginning of, the nuciear fusion researeh, sufficiently clear

solutions to the problems have not been obtained yet. Especially, the

first and seeond probeims are closely related to the necessary exter-

nal magnetic field strength in the device and determined of techno-

logical safety factor of the fusion reactor, respectively, and the

solutions to them give an important inforrnation directly concerning

the economical feasibility of the tokamak fusion reactor. Therefore,
these problems should be most urgently selved in the field of the

tokamak reseatch.
                                                                 '
     As for the preceding works on the problems, theoretical studies

of the fusion plasma on the basis of the mn model have been intensive-

ly carried out since the initial stage of the nuclear fusion research

in 195Q's. And by the recent successful results of the tokarnak plasma

confinement the signlficance and necessity of the theoretical MHD
                                              'analyses become clearer and many authors are engaged in the solution
of these problems. This is due to the fact that the toka!nak plasma is

confined for sufficiently long duration and the MHD equilibrium is

virtually established in the tokamak• Brief sumary of the preceding
work is given in each corresponding Chapter.
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     Investigations descri'bed in thts paper have been earried out as a
                         1,2)                              which aims at solving, mainly, th.e abovepart of the projedt TRITON

two problems comprehensively from the various viewpoints. These two

probletns are rewritten in more concrete manner a$

 (1) To obtain theoretically a stable equilibrium wÅ}thÅ}n a framework

     of the ideal IY[HD model, and to determine the stability condition,

     controlling methods and limiting beta value.

 (2) To clarify the mechanism of the disruptive instabilities in the

     tokarnak within a framevifork of the resistive MHD model, and to

     obtain informations on the stability conditions and controiling

     metheds.

Here, we assume that the most basic parts of the informations could be

obtained by the analyses based on the MHD model.

     The purpose of the investigations in this paper is to obtain some

of the above informations by solving numerically the time dependent

l{HD equations and simulating phendmena which relate the above prOblems.

Espeeially, the followiRg two points are the main concerns of this

                                               '

 (1) Analyses of the external modes of the ideal DHD instabilities

     including the positional instability. . '
 (2) Studies of theoretical models of the disruptive instabilities of

     the tokamak.

        'The former Å}s dangerous in the current rising-stage of a tokamak

pla$ma, and the latter is considered to limit the plasma current and

is unfavorable to economic operation of a tokamak reactor. Since
                         'enormous computations on a parameter survey are necessary to estabiish

the scaling law of the limiting beta value MHD spectTal codes sueh as
ERATo3'"6)and pEsT7-10)are more favorable for this purpose• The

                                                                  'spectral codes give the stationary eigenvalues and the eigerllnodes, and

usually only the rrtost unstable mode is caÅ}culated. The higher eigen-

modes are sometimes difficult to obtain because of the large size of

matrices. The effect of these higher modes on the plasma confinement
                                       Nis very important when they are less localized than the most unstable

mode. The time evolutional solution, however, inciudes aU components
of the spectra and we can see the behaviour of the higher modes as well

-2-



as most unstable one, ln addition, the time evolutional code based on

the linear ideal MHD theory ts directly extended to the nonli.near

resistive code. rn this paper, we make only brief mention of the

analyses by the spectral code fior the purpose of comparison of the

results between the time evolutignal and spectral methods.

     In Chapter rr, we describe the time evolutional code based on the

linear ideal IY[HD equations where we fuake the check of accuracy of the

code by comparing the results with those by the spectral code and

analytical ones, and we clarify the effects of the toroidicity and

conducting shell. Chapter III is related to the nonlinear ideal MHD

model. rn order to develop a nonlinear positional stabUity code on
the basis of the above model, we devise a new algorithn for the re-

zoning of the two dimensional meshes and we confirm that the code

works well and the new algorithn is useful in this kind of analyses.

Chapter IV and V are devoted to the problems concerning the disruptive

instabilities. In Chapter IV, we develop a nonlinear MHD code based on

the reduced set of resistive MHD equations and simulate an example of
the major disruptionii"i4). we have traced the major disruption

scenario proposed by the ORNL group and successfully reproduced the

disruption. However, we have shown it improbable that the major

disruption ts initiated by the flattening of the eurrent profile due

to the internal disruption. In Chapter V, we mention the significance

of the effect of toroidicity and finite poloidal beta te understand the

resistive instabilities. In relation to it we propQse a new scenario

on the major disruption. Conclusions and discussion of the paper aTe

presented in Chapter VI.

-3-
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                             Chapter II

             Linear Stability Analysis of Toroidal•Plasma :

          In order to study the 1Å}nearized ideal MHD instabilities
     of a toroidal plasma a time evolutional code ZEPHYrus.is
     developed and the code is checked by calculating the insta-
     bility growth rate for model equilibria.
          The effects of toroidicity and conducting shell on the
     free boundary kink mode are investigated by using the code
     ZEPHYrus. The results are as follows. When a conducting
     shell is far away from the plasma surface, -the growth rate
     of the exgernal kink mode can be decreased only in tokamaks
     with small aSpect ratio, A< 10. 0n the other hand,
     when the shell is close to the plasma surface, the unstable
     external modes are stabUtzed by the effects of torotdicity
     and conducting shell.

2.1 Introduction

     For interpretation of experimental data and design of future large

fusion devices it .is very ilnpQrtant to analyze the linear MHD stability

in detail. Because of complexities of the physics processes in actual

fusion devices extensive computational studies are required for the

above purpose. In order to analyze the linear MHD stability two methods
                                                                    'are usually taken, i.e., the matrix method and computer sirnulation.
                                                      1)
The former method is based on the variational' prÅ}nciple . The Lagrangian

of the system is first, represented as a quadratic form of the plasmLa

displacements by using the finite element method and, then, it is extrem-
ized with respect to the displacement2). By the procedure the usual

matrix eigenvalue problem is derived. The latter method is composed of

solutioa of an initÅ}al-value problem of a time-dependent MHD equations.

General MHD spectral codes applicable to an axisymmetric toroidal p!asma
                                                  3)are successfully developed by Lausanne (ERATO code)                                                     and Princeton
(pEsT code)4) groups on the basis of the above variational approach.

Various kinds of linear stability analyses by using the ERATO and
                       5-7)                           • As foT the time dependent solutionPEST codes are reported
of the linearized i(!HD system several works8NIO)are reported in the

initial stage of the computational studies of the fusion plasma, but

recently most efforts concerning solution of the initial value problems

are directed to analyses of nonlinear behavior of a resistive plasma

as will be described in chapters 4 and 5.

-5-



     The above two methods are equivalent in principle but technical

details make them rather different each other. The results of both
the methods should be subject to critical comparis6n' but it has not

been carried out sufficiently. In this Chapter we develop a new

initlal-value code ZEPHYrus and make comparison between the results

by the spectral code and initial value code. After that we investigate
                                    .the effects of the shell and toroidicity on the linear MHD stability.

     In Section 2.2 the equilÅ}brium equatton for an axisymmetric

toroidal plasma is expanded in powers of the inverse aspect ratio and

analytical representation of the equilibrium solution is obtained.

The basic equations for the linear tdeal }4HD stability and boundary

conditions are given in Sections 2.3 and 2.4, respectively. Section

2.5 describes the numerical prodedures adopted for the analyses.

Results of the calculations given in Sections 2.6 to 2.8. Comparisons

of the results with the analytical and numerical ones are presented tn

Section 2.6. Effects of toroidicity and conducting shell are investigat-

ed in Sections 2.7 and 2.8•for the internal and external modes. Section

2.9 is devoted for conclusions and discussion.

2.2 Equilibrium

     In this Section, equilibrium solutions for a tokamak plasma subject

to stability analyses in the following Sections are given.

The MHD equilibrium equattons are

        + ++        V[Po = jo Å~ Be ,
                                                              (2.1)
        + ++        jo =VÅ~ Bo •

First, we define a curvilinear coordinate system (r,e,Åë) as shown in
Fig. 2.i, where surfaces of constant r correspond to magnetic surfacesli'

The transforrnation from the (r,e,Åë) coordinate system to the cylindrical

(X,Åë,Z) system is written formally as

        x= x(r,e) ,

        z=z(r,e) , (2.2)
        Åë=Åë .
The metric tensor of (r,e,Åë) system is defined as follows;

l2)

-- 6-



               3x2 az 2        grr = (l5T.) + (5T.) '

                     bz az              3x ax        gre = -5T. 5-a + l;T. 5-Tt '

               ax 2 az 2
        gee = (-56t") ' (rt) ,

                                    `
                    '            = X2        gÅëÅë ,
                                         '        rg -x (}/ }/ - ge/ g/) , (2.3)
         rr geegÅëÅë

        g= ,                g

         re. sg!e.2slsig

        g-- ,                   g
         ee-zgg!-:ggg

        g- ,                 g

         ÅëÅë - l
        g-iiT, .
In this coordinate system the equilibrium rnagnetic field ls expressed as,

        B'o - RoBo(f(r) eÅë x er + h(r)eth) , (2.4)

where Bo is constant tnagnetic field magnitude introduced to make f(r)

and h(r) dimensionless. The first term of Eq.(2.-') represents the

poloidal magnetic field and the second is the toroidal field.
     Then, the equilibrium equation (2.1) can be written in (r,e,Åë)

system as follows,

       '        P6(r) h(r)h'(r) f(r) f(r) a f(r)
        itfiiil-Bo ' gÅëÅë ' v!r6 {( vg gee)'- 5rt( vxrg gre)}=O, (2•5)

where prime denotes derivative vvith respect to r. For given distribu-
tions of pressure Po(r) and poloidal magnetic field RoBof, an equilibrium

solution (h,X,Z) is obtained by solving Eq. (2.5). In the following
we consider a toroidal plasma with a large aspect ratio A (=Rola >> 1;

Ro and a are the major and minor radii, respectively), and solve the

equilibrium equation by expanding it with respect to the inverse aspect

   .ratlo.

                                 -7-



[Vhe function forms of X(r,e) and Z(r,e) in Eqs.(2.2) are assumed as;

     x(r,e) = Ro - ercose - e2A(r) + e3E(r)cose .

     z(r,e) = ers ine +- e3E (r) sine , (2.6)
where e indicates the order of magnitude of the term is -rlRo and A(r)

is the displacement of the magnetic surface from the magnetic axis, and
                                     `
E(r) represents elliptic defor"mation of magnetic surface from a circle.

Substituting Eq.(2.6) into Eq.(2.S), the folloming equations are

obtained,
              /
 po' + hh' + lll(rf) ' '= PRoO'(2A +3rtx' - 2ili)

                    + 3fsif)' A,2 - f2(A;2 + Åíi- + 2Ri2) ,

                             ,
At•+{2( :)'-i}-A'+fi?g-is-=o , (2•7)

                              '
 E. . {2( i: f) ' - ; }E, - IIil,T E

    - - ;:igl, '+ i. (i ,f)' A,2 '- ,.r,, - &'i- +• Ri P, ,O' A ,' ..

                  '                '
We solve the above equation for a constant current density and parabolic

pressure distribution in the plasma region, that is,

                                        '     f(r) ='rf , ,              a

     Po(r)=f.2 Bp(1'r2) , . (2•8)
where fa=f(a) and Bp is poloidal beta. Frorn Eqs.(2.7), we obtain

        (1+4Bp)r2 .
 A(r) = 8Ro •' '• ''

            '              (3+!6B.2)r(r2-1)
 E(r) = E.rd 64 11o2 '                                                                  (2.9)

                             f 2(4sB 2+1)(B                                            +5)
 h(r)= l-2f.2(1-Bp)(r2-1)-W-6Ro2 P (r4-1) ,

where E is elliptic deformatton at the plasma surface (r=a).
       a

-8-



2.3 Basic Equations

     !n this Section, the basic eguations for the ideal MHD stability

are described and rewritten in the form convenient to the numerical

calcuiation. We adopt the linearized ideal MHD equations of the

followLng form,

                                      .        p, Da 2,i -- ep + 3b Å~6+3x go ,

               '
             ++-             j=VxQ , (2.10)
             ++ ++             Q= vÅ~ (e xBo) ,
                            ++                     ++             p = -ypov•q -- (g •v) po ,

where the quantities with subscript O are the equilibrium ones, \ is the
                         ++specific heat ratio, and j, Q and P are perturbed current density, rnagnetic

field magnitude and plasma pressure, respectively.

     For the sake of convenience of calculation the usual current densi-

ties mu!tÅ}plied by Jacobian are used as new current densities as

       ,!rgj +.j . (2.lo
                                      '     For the same reason, we introduce new variables for components of
                                            'the equilibrium and perturbed vectors and metric tensor as follows,
              e        i•g-ilg,-, i•g-E'l,lith, ge-rBg, Eg-R,Be •

        ge ., .qe, gÅë - R,cÅë, le - El9t- , iÅë - igftll, • ,'

        Qe-rQe, 60iRogÅë• Q,=2t'• 6Åë=il[tl , (2-i2)

                  '
        5•r=,R,lli, 3e-il,gÅÄ, ,/Åë-liÅëL,

             '                                       '
        fg-itlil%• g.,-gr.e• g,,-ggg• gÅëÅë-igie{g,, ,

where the quantities with superscript and subscript, r, e and Åë, mean
                                                                .the contravarient and covarient components of the vectors, respectively,

and Ro is the radius of the magnetic axis.

-9-



     By the transformations shown in Eqs.(2.12), the magnttude of all
metric tensor components of order eO, where e is the inverse aspect

ratio, beeomes order one, and the IYff{D stability calculations in

toroidal geometry by the expansion of the tnverse aspect ratio can

be done consistently. The synbol N for the new variables is dropped

again in the following. Since each perturbed quantity has different
                                   iphase in the Åë direction, they must be divided tnto even and odd parts

with respect to e and are expressed as,

     a(r,e,Åë) -- aO(r,e)cos(nÅë) - ae(r,e)sin(nth) ,
                                                                (2.13)
     b(r,e,Åë) = be(r,e)cos(nÅë) + bO(r,e)sin(nÅë) ,

where a is representation of gr ,Qe,QÅë,Je,JÅë and p and b is that of the

other variables, n is the mode number in the Åë direction and superscripts

e and o denote even and odd functions with respect to e, respectively.
After the transformations shown in Eqs.(2.11) and (2.12), we substitute

Eqs.(2.13) into Eqs.(2.10) and obtain the system of equations for each

vector cornponent in the following form,

        a2go apO     Po ati =- a. + (jeOBÅë -- jÅëOBe) + (jgQipo -jgQeo) .,

        32ge ape
     Po 3ti -- ' D. + (jeeBÅë- jÅëeBe) + (jgQ,ge - jgQee) ,

                        '        D2q8 i 3po     Po rst =-IF ee +jeQre.jreBÅë . ,

     ,, S,2,g8, .-}-. 3ap,e .jgQro-jro,th ,

                                       '     po lt2klji-[li = kz pe + jreBe - jg Qre ' ,

                                      '     po Di[OÅë2 .kz po+jroBe-jgQro ,

     Qre. -Bre sgerO-kzBÅëgre, Qro =. !lie- agge - kzB.Åëgro ,

     QeO = k.(BÅëeeO - BegÅëO) - /1-g gl.T (figBOgrO) ,

-10-



     Qee = k, (B Åëeee - BeqÅëe) -G iP. (fg Becre) , (2.14)

     QOo . -e agge - .ltg {ii\.T(,lg:BÅërgrO) + liits(vlgTBÅë4ee)} ,

     QÅëe .- l\eL agZO - .}{i {-ill.T(JgBÅërgre) - giFt (AgBÅëqeO)} ,

                                    .
     jre -e jtli}IQe + k.Qs, jrO "-l -3tiiilQe ' k.QeO ,

                    oe     jeo - k.Qo. - e:th. , jeg. - k.Q; - aaQ.Åë ,

     5ipo - }'{-E}.T(rQg) -- aaQeer} l jÅëe -- -l {81.T (rQs) + baQe9 } ',

     pO = -grO BDP.O - IP,iTgO {ift.T (v'TgrFrO) + gltT(vTgqee)}- ypok,gÅëO. ,

                                      '
                                                        '     pe -- -cre.eBP.O -IPrgO {Ejl.7 (Jgrgre) --glt7(virggeO)}- ypok.gÅëe ,

                                                              '                           '
where kz denotes nlRe and the covarient components of vectors are related

to contravarient components through the metric tensor shown in Eqs.(2.3).

       '

2.4 Boundary Conditions ,
     In this Section, we consider the boundary conditions to Eqs.(2.14)

for internal and external kink modes. In order to'impose same boundary
conditions at the magnetic axis gr=O) to the m=1 (m is mode number in
the e direction) and other modes, we transform gr and Qr as follows;

            rr          rc -q '
                                     '          rQr -• Qr '.. (2.15)                          tt      '
Then the boundary conditions at r=O become

          gr=o '

          Qr=O , (2.16)
for both the modes.
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     In the case of the internal mode analysis we should solve a fixed

boundary problem and the boundary eondition at the plasrna surface is

represented by the same condition as Eq.(2.16). '
     On the other hand, the analysis of the external kink mode is a

free boundary problem, and in this case we should calculate the perturbed

magnetic field in the vacuum region in order to continue the solution at
                                     ,the plasma surface. For the purpose of the stability analyses in this

Chapter, we obtain the magnetic field analyticaily in the torodial
coordinate system (v,n,Åë) using the toroidal ring function (Fig.2.2).

     The toroidal coordinates (u,n,Åë) are related to the cylindrical

coordinates (X,O,Z) through the following relations,

            1 (x+R)2+z2 ''• '        u=i 2n (x - R)2+z2 '
                                                                   (2.17)
               -l 2RZ •.        n= tan x2+z2.R2 '

The metric coefficients are written as

                        R
        gp = gn " cosh y -cos n ''

                                   '
         '                                                   '                                                  '           '                Rsinhv ' '        gÅë= coshp-- cosn ' . (2•18)
The general solution Ye of the Laplace's equation in the toroidal co-

ordinate system can be written as follows;
   '
                                                '        y. = v'lxE:E5gKcosnk?. [{AkPk".i12(k) +BkQll.-y2(x)}cos(kn)cos(nth)

                 '           + {CkPtt' .i12(X) + DkQllLi12(X)}sin(kn)sin(nÅë)] , (2.lg)

                                  'where x==cosh v, Pil-112(x) and Qnk-112(x.). are the toroidal ring functions

and the terms of cos(kn)sin(nÅë) and sin(kn)cos(nip) are omitted by con-
                                                            ÅÄ+sidering the form of the internal solutions (2•13)• Since Qex= VYe,

the perturbed magnetÅ}c field in the vacuum region can be written as

follows;

     Qv = k?.[(`XA'Ak+XB'Bk)COS(nÅë) + (XC'Ck+XD'Dk)sin(nÅë)] ,

     Qn = ki.[(YA'Ak+YB'Bk)COS(nÅë) + (YC'Ck+YD'Dk)sin(nÅë)] , (2.2o)
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     QÅë = k?.[(ZC'Ck+ZD'Dk)Cos(nÅë) + (ZA•Ak+ZB•Bk)sin(nÅë)] .

Here Ak, Bk, Ck, and Dk are constants to be determined from the boundary

condition and XA, XB, XC, XD, etc. are defined as

     xA = :pin,,hv-y U {PR-i52(X) + ypR:ii2(x)} cos(kn) ,

                   n                         (x) ,          sinh p Q     xB = gufy {k-i{2 .+ yQil-i12(x)} cos(kn) ,

                   n     xc = gui'njy: P {Pkd!!22(X) + ypR:1/2(x)} sin(kn) ,

                   n     xD - Ei' n,,sh7y U {Qk-i52(X) + yQR:i!2(x)} sili(kn) , (2•2i)

     yA ; PE"'nX2(X) {Si" n2COS(kn) - ky sin(kn)} ,'

     yB = Qll-}tf;2(X) {sin n2cos(kn) . ky..i.(kn)} ,

            n
                        '                                     '     yc = Pk"g:>i<2(X) {sin n2SinSkn) + ky .o.(kn)} ,'

     yD . QSn-e<gli2(X) {Sin nsSi"fkn) + ky ..s(kn)} ,

     zf, ., -. Rglig!TY p:l-1ii2(..)...(i,,) , zB = -- Bii?ii[Ii::-i<iz•Ezfy Qnk-i!2(x)cos(kn) ,

     zc . fS?gf lgzJY pkn-'iv2(.).i.(kn) • , zD - \t:zfY Q:.i/2(x)sin(kn) ,

:ehesrpeeci!'Ctbo9,:LP' Y=X-COS n and the prime denotes the derivative with

     Using the perturbed magnetic field obtained above, the boundary

conditions for the free boundary problem are expressed as follows;

     A) The normal component of the magnetic field vanishes at the
perfectly conducting shell (r=b), that is

     -+        .er =o . (2.22)     Q
      ex

     B) The continuity of the normal component of the perturbed magnetic
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field at plasrna surface (r=a),

     6.ilr-QE . ' (2.23)                 m      ex
                                                               13)     c) The pressure balance equation at the plasma surface (r=a) ,
                                 '     -ypoe •g + gm •6m = g..• 6.. ; 5;lgdBd.gx - dBd 21n) , (2. 24)

where

     + +-+ +     Qex=Qu"y+Qn"n+QÅë"Åë ' (2•25)
     ++ •+ •Here uu, un and uÅë are the unit vectors Å}n the toroidal coordinate (v,n,Åë)

                             'respectively. ' '

2.5 .Remarks on the Code ZEPHYrus

     In the code ZEPHYrus all variables are normalized by the following

characteristic quantittes;

              '  1)      minor radius of a plasma ring: a,

  2) toroidal magnetic field at r=a:" Bo,

  3) plasma density averaged over minor cross section: <p> ,
                                                     '  4) Aifven velocity measured by Bo: vf==Bo/rsp '

and other associated norTaalization factors are toroidal Alfven transit
                           2
time; Tta= qlvf, pressure; Bo!2 and growth rate; yta=11Tta•

    .•In order to avoid complexity of the program we adopt a simple

explicit scheme for time--integration of the equations. To accelerate

growth of instabilities at the marginal stability condition we introduce
anh'artifitial shift of the growth rate ct8'9), by wiiich the computation

is carried out withina reasonable CPU time. . •
     As for t'he computational grids in the r direction, we use halJf
integral meshes for gS , cÅë, Qe, QO, Jr and P and integral meshes for the

other variables. On the other hand, only integral meshes are used in the
e direction. Considering the synmetry with respect to the median plahe
we calculate the solution only in upper half plane (Fig.2.3).
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2.6 Check of Accuracy of the Code

     To check aceuracy of the code, we calculate the growth rate of the
free boundary MHD instability (the kink mode) in a cylindrical plasma

with uniform current distribution and fixed boundary b{HD instability
in a toroidal plasma expressed by a solov'ev equuibrium18). The former

growth rate is given analytically and 'the latter is calculated numeri-

cally by using the spectral code ERATO.

The equilibrium of the cylir-drical plasma is gÅ}ven by speeifying 'f(r),

and h(r) as

     f(r) = rf ,
              a

     Po(r)=BpfZ(1-r2) , (2.26)
                          '
     h(r) = il(1 - 2f2(1-B )(r2-•1) ,
                    ap
where fa= f(a) and Bp is poloidal beta. The boundary condition is the

same as toroidal one in the previous Section except that the perturbed

magnetic field in the vacuum region is expressed by the modified Bessel

functions. .

     In Fig.2.4, we show the growth rates of the kink mode in a

cylindrical plasma computed by the eode ZEPHYrus with the one computed
                         14) -by the analytical formula ,
     yZ..i=l.lig[2(m-nq.)-1ilEillii}El<ili:(7.;bqa)):] , (2.27)

                                          'where Ba, qa, and b are the poloidal magnetic fÅ}eld, safety factor at
           'the plasma surface, and the radius of the conducting shell, respectively,

m and n are the poloidal and toroidal mode number, respectively. For
the calculation of Fig.2.4 a uniform current equilibrium with the sheli

position b=2a ts considered. The curves in Fig.2.4 correspond to the

numerical calculations with azimuthal mesh number Jmax=19 (black circles),

Jmax=35 (open circles), and analytical calculation (broken lines).

The computed curves are shifted to the left when the azimuthal mesh

numbers are not large enough. The quantities of the shift A(nq ) at
                                                                a
nqa=3 are O•17 and O•04 for Jmax=19 and 35, respectively, which is in
                                           15)good agreement with the analytical formula of the shift, A(nq ) =
                                                                 a-T2m316(Jmax-3)2. Thus the shift of the marginal point is explained

by the discretization in the azimuthal direction.
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. The Solov'ev equilibrtum is obtained by solving the following equation

wLth respect to the flux function W.

     ex2 -- ff -s-T.+g2;--x2g(/ÅÄ-Å},d,i2 , (2.2s)     a2y 1 ay

where P and I are the function of Y only and we set

     P= Pl(Y.-Y) ' '

     I2= Ig+IIY , (2.29)
where
            a2(1+E2)
     Pl:MtRoEvXi[-:-I6T'

        .thta2R6     Il-qoRoE!1 .-6 ' (2•30)
Then the following solution for the Solov'ev equUibrium is obtained.

     y . yo [-g-ltEiS.ISIL2E6R3) z2+ (X24-Rg)2] • , . (2.31)

where
             Ea2 .     YO=2q Q.Ro2 v!ilT;16' . (2•32)
                         '
!n the above equations (2.29)--(2.32), E represents vertical elongation

of plasma cross section, qo is the value of safety factor on the magnetic

axis, 6 means the diamagnetic effect and Ys is the value of Y at plasma

surface respectively. In this case, instead of expansion with respect to

the inverse aspect ratio we assume the relation between the cylindrical
                                                                      16)coordinate (X,Åë,Z) and the curvilinear coordinate (r,e,ab) as follows,

                                      '                    '     x(r,e)=Ro 1-- ftt cose', (2.33)
                       o ..
                  Er sine     z(r,e) T /1-.6-(2rlRo)cose '

Then the equation '

     y= yoRgr2 , (2.34)
holds and r=const. surfaces correspond to magnetic surfaces.

The functions f and h are in the following form,

   '     f(r) = 2YoRor ,
     h(r)=vili#-;"wt12-Ilo .
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The other equilibrium quatities such as metric tensor are obtained in

the same way as in Section 2.2. Growth rates of fixed boundary modes
are calculated for the above Solov'ev equilibrium by using. the codes

ZEPHYrus and ERATO (Fig.2.5). The growth rate curve by the code

ZEPHYrus shifts a little to left along the qe axis in comparison with

the curve by ERATO and the growth rate by ERATO is a little larger.

The shift of curve is attributable to the finite size of the computa-

tional mesh, which is corrected in the code ERATO, and the difference

of magnitude of growth rates is attributed to the fact that the code
ERATO is written on the basis of the finite hybrid element method3)•

Both the results agree well with each other on the whole.

2.7 Eigefifunction of Internal Mode

     To analyze an internal mode of a toroidal plasrna an equilibrtum

is prepared according to the prescription in',,Sectidn 2.2. 'The current
distribution with the order of eO is assumed to be

  . jÅë(r) :- Ro (P6 + :: ') =.j oO (1 -- r2) 3- , .. <2 '. 36)

where joÅë is the current density at the magnetic axis. In the code

ZEPHYrus jg is determined from the safety factor at the plasma surface,

   ;./ twhich is given as an input parameter. As an initial condition random
numbers are aSsigned to the nodal values of gr, and gÅë"s are set zero.

The values of Ce are determined by using the incouzpressibility condition

                                       '
     The results of the calculation are suTTunarized in Figs.2.6 and 2.7.
                       tt
Figure 2.6- shows time evolutions of the radial structure of Fourier '
decomposed displacement gr(r,e) for the cylindrical and toroidal plasmas

The last figure of. each series of calculations shows almost the finally-

settled eigenfunction of the mode. !n the cylindrical case (Fig.2.6 a)

the internal mode with mode rnumbers of m and n ((m,n) mode) grows at

the corresponding resonant magnetic surface, i.e., the surface with
q= II! (mln resonant surface). In the toroidal cases (Fig•2•6 b,c),
   n
however, the (m,n) mode is localized not only at the m/n resonant

surface but also at the m'ln resonant surface with m'fu, due to the

toroidal coupling. Figure 2.7 shows the flow pattern of the displace-
ment in the toroidal case. The pattern of T=295 is almost that of

                                -17-
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the eigenfunction. It is seen that at inner region of the plasma column
m=1 rnode and at outer region m--2 mode grow, respectively.

2.8 Free Boundary Kink Mode

     The effects of toroidicity and she•11 on the free boundary (extemal)
   tt
kink mode are investigated for a uniform current plasrna with Bp=1.

The computational mesh number in the azirnuthal direction (Jmax) is chosen

to be 19 throughont the series of calculations.

     First, to study the toroidal effect we compute the growth rate and

eigenfunction for pla.srna with various aspect ratio by fixing the shell

radius b=2a, where a is the plasma minor radius. Figure 2.8 shows the

growth rates of the en=O.2 kink mode versus nqa. The growth rates of the
mode' for e'1=15 and 10 cases are almost the same as that for the

cylindrical plasma (e-1=co). It seems reasonable since the toroidal

effect is ins.ignificant in these cases. !n the case of e-1=5 the

maximum growth rate of the mode becomes smaller in comparison with

the cylindrical result. At the marginal stability region near nqa=2,
                             'however, the mode for this ,case becomes more unstable and the narrow '

stability window observed in the analytically obtained cylindrical

resuit disappears. The dest'abilization of the mode near the marginal

stability region is mainly attributable to the toroidal coupling.

The effect of the toroidal coupling is seen in the eigenfunctiens of

the m=2 external kink mode in Figs.2.9-2.11, where the eigenfunction
becomes more distorted as the 'toroidicity becomes larger. '
     Next to study the shell effec'tr on the stabilization of the external

kink mode, we calculate the growth rate by locating the conducting shell

near the plasrna surface (b=1.2a). The results of the calculations are

sumarized in Fig.2.12 with the analytical results for a cylindrical .
plasma (e'1 =eo, broken line). The stabilizing effect of the shell is

clearly seen by comparing the figure with Fig.2.8, where the shell

radius b is twice the plasma minor radius. In the b=1.2a case the
toroidal effect is more remarkable in comparison with the b=2a case,

which is in good agreement with the previous analytical work by Frieman
et all7). Figure 2.12 shows that the toroidieity affects the mode even

in a slender plasma with e'1=IS, and stabilizes it considerably when the

aspect ratio is as small as 7. Moreover, the destabilization of the
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mode near the region of Minimum growth rate is not observed when the

shell is located very close to the plasma surface as b'=1.2a. The

residual instability with small growth rate is observed near the region
of nqa=2.0 for the cases of e-1=10 and 15 (Fig•2•12). This is attributed

to the internal mode instability. In Fig.2.12 the growth rate the m=2
internal mode instability of a cylindrical plasma (e'1=co) is shown by
                                     .a broken line near the region of nqa=2•O. Figure 2.13 shows how the

initial perturbation of the m=3 external kink type evolves to the

eigenfunction of the m=2 internal mode when the safety factor at the

surface is 2.0. The importance of the toroidal coupling is more

clearly seen in the time evolution of Fourier decomposed displacement
cr(r,e) (Fig.2.13). In this calculation the eigenfunction of the m=2

externa! kink mode of a cylindrical plasma is chosen as an initial

perturbation.

2.9 Conclusions and Discussion

     To study a linearized ideal MHD rnode a time evolutional code

ZEPHYrus is developed and the accuracy of the code is checked by

comparing the computed growth rate with analytical one and numerical

one by the spectral code ERATO. The results is almost satisfactory
except that the curve of the growth rate vs.; safety factor shifts a

little due to the finite stze of computational meshes.

     It is shown that when the shell is placed far from the plasma

surface (b=2a), the toroidicity scarcely affects the external kink

modes for a slender tokamak, but it reduces the growth rate for a

fat tokamak. Vlhen the shell is placed close to the plasma surface

(b=1.2a), the toroidal effect is notable in comparison with'the case

of b=2a, and m=2 external kink mode is considerably stabilized in a

fat tokamk. The code ZEPHYrus is accurate for a low m mode, but for

a higher m mode the above mentioned numerical shift prevents accurate

calculation of the growth rate. In order to avoid the numerical error

Fourier expansion of the perturbed variables and equilibrium quantities

seem to be effective.
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                               Chapter III

                     Development of Nonlinear Code

                 for Analysis of Positional Instability

           A free boundary nonlinear MHD code, AEOLUS-P is developed
                                       .      to investigate a positional instability in a tokamak. A new
      rezoning algorithm in combination with the dynamical grid
      method is adopted. The results for a cylindrical plasma model
      are in good agreement with those by a one-dimensional spectral
      code THALIA and it is conc!uded that the new method is useful
      for this kind of the problems.

3.1 Introduction

                               '
     The positional .instability in a tokamak is a very violent one and

the tok4mak should be operated under the condition absolutely without

the instability. This instability is an axisyrnmetric (n=O) ideal }EIID

mode and it imposes severer restriction on the plasma confinement in

a noncircular cross-sectiona! tokamak devÅ}ce which will be more popular

among future devices. '
     The linear positional instabi"ty in a shell-less tokamak has been

investigated by many authors for the case,that al! currents except the
piasma current are constantiN3), or the case that the piasrna current

is kept constant"). By consldering a simple equivalent circuit for
                                   5)                                     obtained the general stabilitythe shell-less tokamak Seki' et al.

conditÅ}on including both the cases mentioned above.. This work is ex-
                                                 6) .tended to include an effect of'a resistive shell .
     There is a dÅ}ffÅ}culty ia the numerical calcuiation of the nonlinear

behavior of the instability as the mode is an essentially external one

and the-evolution of a free boundary plasma should be computed. !n
order to analyze the posÅ}tional instability in the PDX tokamak Jardin

has developed a nonlinear positional code and has made some numerical
anaiyses on this probiem7'8). up to now the series of the works by

Jardin is almost the only works on the nonlinear positional instability

and this problem has not been solved thoroughly.
     Fortunately it is shown by the MHD spectral code9) and'nonlinear

D(HD code8) that a passive coil system has a stab"izing efÅíect on this

-32-



mode and, at least, the ttme scale of the mode can be made long enough

by the passive coil system. It will be, consequently, possible that

the mode could be made harmless by the combination of the passive coil
and feedback stabnizationsiO'ii). Theoreticai investigations, espe-

cta"y, nonlinear analyses of the positional instability are, therefore,

very important to design a future toroidal device so that the positional
                                     ,
instability is not destructive in the devise.

     In this Chapter. we describe the two-dimensional nonlinear MHD

code, AEOI.US-P developed to investigate a nurnerical method for analyses

of the no'nlinear positional instability in a tokamak device, especially,

with an external coil system for a divertor or magnetic limiter such

as equipped in the JT-60 tokamak (Fig. 3.1). In Section 3.2, the basic

equations of ideal mn equatÅ}ons are transformed to an integral form.

The numerical procedure is presented in Section 3.3. In Section 3.4
                        'results for a cylindrical model are shown. We give a surnmary in Sec.tion
3. 5.

3.2• Formu!ation

     The following set of the ideal MHD equations is used as basic equa-
                                                  'tions in the nonlinear MHD code AEOLUS-P,

     gl,7p+e•(pG) .o ,

                  '     -{ll,r (p;)'+K5•(p ;) = --• K>'pk+K}.•(EII})• ', (3.i)

                  '     "81,T pllY.. + if• (pl !Y3) . o ,

             '     ", g+ e• (r.) - if•(rB) -o ,

               1where P* =- P + " ii B2 is the total pressure. Since the airn of the code

is to compute nonlinear free boundary problems, we adopt the dynamical
grid method proposed by Jardin et al., 7) which seems more appropriate

to the problem rather than Eulerian or Lagrangian rnethod. In the dyna-
                                     +mical grid method, the total velocity v is divided into the Euler velocity
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vE and grid velocity vG; v = vE + vG, and the total time derivative

of a quantity f integrated in the region rk can be written in the form

     llll S rk fd. = .S rk[ glti + e,•(f;G) ]d. . •(3. 2)

                                   '                               '
Instead of the finite difference method adopted by Jardin we use the

finite element approach based on the following integral forms of euqa-
                                                                     1 2)tions of the complete conservative form in the Cartesian coordinates ,

     gl,TSrkpd. -- Srkp.+E•dg l

         rr     illt s kp.idT = - S k[pviv+E + p*gi - Bigl•dg ,

                                           . (3. 3)
     lil,7Srk pllyd. =-Srk pllyt.E.dg ,

     g} srk ,,d. .- srK [B ,e, -v,g] •dg • '

      +where ei i.s the unit vector and subscript i represents the i-th component

of a vector. Since the code AEOLUS-P analyzes axisymnetric modes, these

equations in the three dimensional space are reduced to those in the

two dimensional space. At first, we consider a straight system for
simplicity where all variables have no z dependence, Å}.e. elaz = O,

and employ the grid configuration in the x-y plane as shown in Fig.
3.2. The volume integral 5 fdT is transformed to a surface integral

and approximately given as fost (fo is the value of f at the grid point

O in Fig. 3.2 and S? is the area of the hatched region). The surface
integral 5ds in the r.h.s. of the equationi is also transformed to

a line integral and approximately given as ' i[(fi+f2)Si2 + (f2+f3)S23

+ (f3+f4)S34 + (f"+fs)S4s + (fs+f6)Ss6 + (f6+fl)s61] (S12 iS the length

between the grid poiRts 1 and 2). For the case of the axisymmetric
torodial calculation, some terms due to the toroidal curvature should be

added to the r.h.s. of the above set of integrated equations. Details

are described in the Appendix.
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3.3 Numerical Method

     The MHD equations described in the former Section are solved under

the ,fixed boundary condition

     e.l: =o (lt :norrnal vector of the plasma surface), (3•4)

or the free boundary conditÅ}on

     Prklplasrna='lll'B21vacuum '' (3'5).

at the plasma-vacuum boundary. The vacuum field is obtained by intro-

ducing the poloidal flux function ip and the vacuum toroidal field constant

gv,

     i;'-B,(Kl7ÅëxKii'Åë+g.K}'Åë) . ' (3.6)

                              ÅÄ+The normal derivative of V at x = xi = (xi, yi) on the plasma-vacuum

is derived from the set of equations

     f. Y dxSiT G#t gd\ini.i,=""b -'` `Psheu'd:jmGim " (3'7)

            '                                                        '           t ttt                                         '
where xi is the distance from the toroidal axis, Åëb and eshell are con-
                                                       ++                                                              (Fig. 3.3).stant in time, and j                      is the poloidal coil current at x = x
                    m-                                                            m
                     'Green's fiunction Gii, of the equation. '. ,

                                                        '                 ++ •     AftGii,=x6(x -- xit) , . (3.s)
                                                              tt     '

is easily obtained analytiaally when the shell has a circular cross-

section. .The toroidal field constant ' gv is computed by using the condi-
tion of the toroidal flux eonservation in the vacuum region as

     "tS.acu.m K7Åë'ildT=Qonstant• ' (3.g)

     In the dynamical grid method the grid velocities are free parameters

and they are given arbitrarily under the condition that the center grid

is always on the magnetic axis and the boundary grids are always on
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the plasma boundary. The center grid is, therefore, a purely Lagrangian

grid and the grid velocity equals the total plasrna velocity, that is,

     "+

lt is not adequate to choose the boundary grids as pure!y LagrangÅ}an

grids because the two-dimensional Lagrbngian me$hes usually distort

considerably during the simuXation. Some rezoning process should be

included for the time integration. Development of an efficient rezon-
ing algorithm is, therefore one of the most important purposes of this

work. Ia the following we describe the numerical method composed of
the dynarnical grid method and rezoning algorithm. In this Chapter,
"rezoning algorithrn" means not the "smoothing algorithm"12) but how

                               +to determine the grid velocity vG. In our rezoning algorithm, shown

below, the grids never intersect each other and the strong distortion

of grids never occurs.
     The new position of the ,centet grid k and new position of
boundary gri'd gEi] are represented by the grid velocity Z;G as follows,

     ;ln . 1' + 6t 3
      a a• G,a '
               ' (3.11)     ')n + .+     Xb = Xb + Ot VG,b '

                  'l,
Next, we determine the positions of new boundary grids so that the areas
of the.:riangles made of two adjacent boundary grids, (1:,l:+1), and center

grid, x ,       a are the same.each other. This condition can be written as follows,
                                   tt      + + +-+ ++ ++     (VG,j+1'VG,a)Å~(Xj-Xa) .= (VG,j-VG,a)Å~(Xj+1'Xa)

         -                       '                             Ne + +' +' ''
                           -Z vjX(xj+1--xj-1)INe , (3.12)

where subscript j means the grid position at the piasma surface and

Ne is the azimuthal mesh number. The boundary grid velocity also satisfy

the following condition,

     + +++     VG,bM= Vb 'n , (3.l3)
or
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     ÅÄ++ +++     VG,bX(Xj+1-Xj-.1) = VbX(Xj+1'Xj-i) , (3.14)

      +where n is the unit vector normal to the plasma surface. From Eqs.(3.12)
                                                 •and (3.14), we obtain the boundary grid velocity vG,b. The new positions
of the boundary grid are determined by substituting the boundary velocity

thus obtained into Eq.(3.ll). Lastly other grids are moved onto a straight
                                      ,
line between the center grid and a boundary grid so that grids are distri-

buted with the equal interval in a squared length scale from the axis.

     In a new grid system all rneshes have equal area and the grid velo-

city is represented as

                                                                '     3c- (iP -l) 16, (3.ls)
                                               '
                                'The values of physical quantities p, G, p and g at the time t=t+6t -

are computed by using the predictor corrector time integration scheme.

3.4 Results for a Cylindrical Model

                                   '
     In this Section, we show the results for the n=O mode in a cylindri-

cal plasrna model with uniform mass and uniform current distributions.

The equilibrium poloidal magnetic field at the plasma surface Bs is

chosen as BslBo = 1.0 and O.2• As an initial condition of the calcula-

tion we choose the analytically obtained eigenfunction with the poloidal
mode number m and amplitude lglal rv lod2. . '• •

     First, we simulate several n=O modes in a fixed boundary plasma

with a cylindrical model. The. results of calculations are shown in

Figs. 3.5-3.7, rwhere the radial and azimuthal mesh numbers Nr and.Ne

are chosen to be 20 and.40, respectively. Figures 3.5.and 3.6 are the
eases fotut Bs!Bo = 1.0 and Fig. 3.7 is the.case for BslBo = O.2. The

m=e compressional mode is shown in Fig. 3.5 and the m=2 modes are shown

in Figs. 3.6 and 3.7. where subfigures (a) and (b) correspond to the

Alfven and compressional modes, in the respective order. The spectra
of the system are computed by the one-dimensional spectral code THALIAI3)

(Fig. 3.8) and the results of the simulation are compared with them

(TABLE 3.1). Though there are slight differences between the results,

the agreement between them are satisfactory. The above results for
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the m=2 fixed boundary modes are the same as those of the Eulerian

calculation, because the center grid is not moved. On the other hand,

the center grid is moved in the case of the m=1 mode. The m--1 Alfven

mode computed by (1) the Eulerian method and (2) dynamical grid method

are compared in Fig. 3.9, where the velocities of the center grid and

boundary grids are shown by broken and,solid lines, respectively. Two
cases give essentially the same results and the rezoning method adopted

here is appropriate for the fixed boundary problem.
   '     Next, calculations with a free boundary condition are carried out

for m==O and m=1 Alfven modes. In •both the calculations the shell is

located at r=2a. For the m=O ease the initial velocity perturbation
is given and for the m=1 case the initial condition is given as rigid

displasement of a plasma column instead of the velocity perturbation.

Figure 3.10 shows the radial velocity osciHations of the m=O AIfven
mode at r=a and r=a12. The oscillations of the m=1 mode at r=O and
  '              'r=a!2 are shown in Fig. 3.11. Figure 3.12 shows the flow patterns of

the velocity.field at t=2.5 and 5.5. Frequencies of the oscillations

by the fgee boundary calculations are also in good agreetuent wÅ}th those

obtained by the code THALIA. -. .

3.5 Summary

     We have developed the free boundary nonlinear )flID code, AEOLUS-P
for the analysis of the positi6nal instability of a tokamak. Numerical

scheme based on the dynamical grtd method by Jardin is adopted in com-

binatiori. with a new rezoning algorithm which makes the area of each
complitational mesh constant.

     The computed frequencies of oscillations in a cylindrical model
                                                                    'are in good agreement with those obtained by the one-dimensional spectral

code THALIA and it is concluded that the new numerical method works

satÅ}sfactorily for the calculation of the axisymmetric MHD modes.
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                               Chapter rv

           Analysis of Major Disruption Process in Tokamak •.

          The major disruption of a tokamak in a cylindrical model
     is investigated by using a multi-helicity resistive MHD code.
     A possible mechanism of the instability due to the destabiliza-
     tion of the 3!2 mode by the mode coupling with the 211 mode is
     confirmed. The evolution of the magnetic field topology caused
     by the major disruption is studÅ}ed in detail. The effect for
     the internal disruption on the 211 magnetic island width is
     also studied. The 211 magnetic island is not enhanced by the
     flattening of the q-profile due to the internal disruption.

4.i Introddction

                                                      '
     The major disruption of a tokamak is characterized by rapid release
of magnetic and plasma energies within an order of ps followed by reduc-

tion of the plasma current with the decay time of several milliseeonds,

and it is considered to be the.main cause of limitation of the pZasma

current and density. The disruption may bring about a more serious

damage to the device as the device becomes larger. It is, therefore,

urgently required to cl'arify the mechanism of the major disruption and

to devise methods to control or suppress it.

     It is considered that the m=2 tearing mode plays an important role

in the major disruption. Experimentally, the growth of the m=2 magnetic

field perturbation is observed as precursor of the disruption. When the
safety factor at plasma boundary, qa, is less than 2, the major disruption

seems to be suppressed. Waddell et al. proposed that a nonlinear inter-
action between mln=211 and mln=3!2 tearing modes causes the major disrup-
 . 1-4)        . The results of their simulation seem to well recover thetlon

experimental data. They presented the scaling law of the major disrup-

tion time on the basis of the WKB theory. The WKB method, however, is

not always applicable to the nonlinear stage of the mode evolution. It

is important to establish the theoretical model reliable in this stage.

It is also very important to know the mechanism which makes the current
profile unstable against the 211 mode and enlarge the 211 island width.

     In this Chapter, we first recover the results of the ORNL group.

We also investigate the initiation process of the 211 mode assuning that

the current density profile is flattened by the 111 mode. The 211 island
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obtained in the simulation

aode. In the next Section
are described. !n Section
Conclusioh and discussion

 is aompared with those calculated

 the basic equations of the present

 4.3. the results of simulation are

are given in Section 4.4.

by the A'

 analysis

 presented.

4.2 Basic Equations

     The usual resistive MHD equations are

        gl/ + e• (,b - o ,

           +        p[gl'i + (v"•e;)G] - -e, + 3.g ,

        g{tt+v'•ep+ypv+•e=o , (4.o
         +        g-/ - ex (Gxg-,3) ,
                             '
        + ++        J= VxB                                  '

        ++        V•B =O •
     The characteristic time of this system of equations')is deterntned by

the compressional magnetosonic wave artd the characteristic time scale of

MHD phenomena of our interest is determined by the Alfven wave propa-

gating along the magnetic field line. The ratio of these two time scales
ts about qA, where q and A denote the safety factor and aspect ratio,

respectively. For a usual tokamak plasma the ratio is as large as 10,

which rnakes it rather difficult to simulate the nonlinear MHD behavior

on the basis of the above full set equations within a reasonable eom-

putational time. To overcome this difficulty, we reduce the full set
of MHD equations (Eqs. (4.l)) to a set of simplified equatÅ}ons in which

the cornpressional wave is renoved analytically by introducing the in-

compressibility condition and the usual tokamak ordering. The reduced
                                                                     5)set of resistÅ}ve MHD equations was first solved by Rosenbluth et al.

to analyze the nonlinear kink tnstability and, since then, many authors

solved it numerically to analyze the nonlinear phenomena ef internal
kink mode6) and resistive instabiiitiesi-4?

-48-



     The reduced set of resistive )GID equations

in the cylindrical coordinate system (R,Åë,z) is

        gl/ÅÄ + e•<7.v = Bog-2t- + nJ - E.(t) ,

of a low B

derived as

toroidal plasma

following,

        .gi/+ . I}•e.u - 'v>c•epxKl;. (Åí)2,+ (l{tÅÄ) 2ec•v-, igÅ~e.J + B,g:tt ,

        BP* + +            +v.v,prk =o ,        at -
           + +- ++           B=BoVc+VcxViY , (4.2)
           G- (il})2ecxe.o ,

                      +           3- (R2e;.•Vi•Y)e•;c ,

           u- (A)2e3,Åë. ,

           pk= (illJ) 2Y p , ,

                                     + a+ 3+where Ro is the major radius, c=Rotp, Vi! stllVR + E;7tVz. The quantities

U, Y and Åë denote the vorticity, poloidal flux aRd stream function,

respectively. The detailed derivations of thts reduced set of equattons

are given in the Appendix of Ref.7.

     The energy integral of this redueed set of equations is given by

                          '        IIfl,E-SdT[(iSi)2iK)Åël2 + (!llltl{)2ieiyl2 + ylll ]

            = -j'dT [(!iet{)2nJ2] +2TRoE.(t)Ip . (4•3)

The first term in the 1.h.s. represents the kinetic energy, the second

one the magnetic energy, and the third one the internal energy. The

first term in the r.h.s. is the energy dissipation. The electric field
at the wal!, E (t), is obtained from Eq•(4.3) by setting the total plasma
              W
current I constant.         P
     Now we employ the coordinate system (r,e,c), in which the magnetic

lines are straight. The radial coordinate r is defined by

        r= (-t)2 fg , (4.4)
-49-



where vl/g is Jacobian. The variables Y, J, O and P* are Fourier expanded

in e and c directions:

        Y(r,e,g) =.?.Y.1.(r) exp i(me -i{t- 4) , (4•5)

where m and n denote the mode numbers in e and c directions, respectively.

The Fourier expanded equations are written as follows;

        aw                          Bo          m!n         et " [Y'Åë]mln + lii6- nOmln +nJmln - Em!n , (4•6)

        eu         BMt/rL = [u,Åë].1. + [J,y].1. - llgt- nJ./. + [F,P].1. , (4•7)

        BPk          BIIIIn"[P*,Åë]ml. , (4'8)
where [Y,Åë]               is defÅ}ned by           mln
     [Y'Åë]rnln= mlm'-im" !:l'- (Yrn'ln' Åí; Om"!n" - Åëm'ln' Åít7 Ym"ln") ' (4'9)

               n=n f -tlrt
                                                                '
Variables Jmln and Umln take the form; ' '  '
        Jmln = } mlm'-itm" [tilt7 (G:l? Åí; Ym"ln) - M" ÅítT(dl:9 Ym"ln)

                             re d                                                ee                        'M Gmr ditT Ym"!n -MM" Gm, Ym"ln] , (4'10)

        Umln = {; mllm,+mt, [IEilt7(Hi:\ ziltr opm"!n)d m" ÅítT(Hi:9 Om,'ln)

                             re d                                                ee                        - rn Hm' Eilt7 Åëm"ln -MM" Hmtdjm"!nl ' (4Jl)

Quantities Fm, Gllj and Hilj are defined by

        ({tÅÄ)2=a F.(r) exp ime ,                                                                   (4.12)

        r gij =Z Gij(r) exp iMe ,                                                                   (4.13)
                mm
                                              '        r (illi)2 gij = ii H$j(r) exp ime .                                                                   (4.14)

                                -50-



In the following calculation Eq.(4,8) for pressure perturbation is neglected

because the pressure driven mode ts not important in a low B plasma.

Moreover we neglect the toroidal effects. Even by this simplification,

the essential mechanism of the major disruption can be described. We

assume the resistivity is constant in time and set it to be

        n(r) =E(t=O)IJ(r,t=O) . (4.15)                W
The multi-helicity calculation is carried out wtth up to 29 Fourier

components and 201 equal-spacing radial meshes. The equations are solved

by both the full-explÅ}cit and implicit-explicit predictor-corrector time

integration schemes, and a good agreement between both cases is obtained.

The time step for the forTner scheme, however, is restricted to be much

smail in comparison with that for the latter scheme.

4.3 Computational Results

(1) Nonlinear Destabilization of 312 Mode

     We choose the q-profile as in Ref.1, q(r)=1.38[1+(r!o.6)8]114 and

the magnetic Reynolds number S=2Å~10g at q=2 surface. Almost the same

behavior of the plasma as that of the ORNL calculation is recovered,
which is presented in Figs.4.1-4.7. Figure 4.1 (a and b) show the time

evolution of magnetic island width obtained by the single-helicity and

multi-helicity calculations, respectively. The single helicity caleu-
lation shows that the 211 and 312 modes are both unstable and the widths

of the saturated islands are about O.4 and O.1, respectively. In contrast

with the single-helicity caleulation, the multi-helicity calculation
shows the rapid destabilization of 312 mode after the islands of the

2!1 and 312 modes touch each other at t = 300, due to the nonlinear

interaction between modes with different helicities.
The phase of the 5/3 and 7/4 rnodes are inverted several times at final

stage of the disruption. The evolution of the kinetic and magnetic
energies are shown in Fig.4.2 (a and b), respectively. Both the energies
rapidly increase from the island-overlapping time (t cr 300). The time

evolution of the growth rate of the magnetic energy is shown in Fig.4.3.

The growth rate of the 211 mode is slowly decreasing function of time

when the growth rates of the 312 and 513 modes begin to increase, which
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means that 211 mode is in the Rutherford regime even after the tirne of

the island overlapping. Figure 4.4 shows the time evolution of the
one turn voltage, V=[ÅítT (Ek + E'M) -Q]IIp, where Ip is total p!asma

current, Ek and EM are the kinetic and magnetic energies, and Q is the

change in the rate of energy dissipation due to Joule heating. In this
figure, V is normalized by nBt. The negative voltage spike is
                                       `observed is the figure. The order of magnitude of the voltage spike

is in good agreement with experimental value. The helical flux con-

tours for several modes with different helicÅ}ties at the end of the cal-

culation are shown in Fig.4.5. The magnetic islands of the higher
harmonics, such as the 815 or 13!7 modes, have also fairly large ampli-

tude. In Fig.4.6, intersections of a stngle magnetic field line near
the separatrtx of the 2!1 island at the c--O poloidal plane are plotted.

This figure shows that the stochastic region develops during the interval

(t=300N400) and covers almost the plasma ,column at the final stage. The

stochasticity can be investigated quantitatively by calculating the K-S
       8)         , which is shown in Fig.4.7. The evolution of the K--S entropyentropy
confirms the above result. The stochastic magnetic field in the plasma

colurm enhances the heat loss and causes the rapid cooling of the plasma,

which is observed in the soft X ray signals from the plasma center.

(2) Effect of Internal Disruption

     Next, we calculate the nonlinear evolution of the 211 tearÅ}ng mode

in the presence of the lll mode. The purpose of this calculation is to
simulate destabilization of the 2!1 mode by the internal disruption through

the flattening of the q-profUe inside of the q=1 surface. The initial
q-profile in this case is q(r)=O.9[1+(4/O.5)2X]IX, where A=2+2r2, and

S=2Å~104 at the q=! surface (solid line in Fig.4.8). In this profile

the islands of the 211 and 3/2 modes are saturated at relatively narrow

width. The saturation width of the 2!1 and 312 islands (W211 and W312)

estimated by using a A'  eode is W211=O•109 and W3/2=O.O05 for the initial

q-profile, and W211=O•204, W312=O•062 for the flattened q-profile (dashed

line in Fig.4.8), re-spectively. There is no island overlapping between

the 211 and 3/2 modes for the initial q-profile, while the island over-

iapping is expected for the flattened q-profile after the internal

disruption. !n order to investigate this possible enhancement of the
211 island width by the flattening of the current profile due to the
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internal disruptioR, the calculation is started with only the 211 mode,

and the !11 mode is initiated at t=520 after the 211 island is saturated

(Fig.4.g). [rhe saturation width of the 211 is!and at t=520 is W211=O•07

which is a little smaller than the expected value. With the growth of
the 111 mode, the 3!2 mode is produced by the eoupling of the 111 and

211 modes, and the internal disruption occurs at tl700. After the
                                       ,internal disruption the q-profile inside of the q=1 surface is flattened
and that outside of it is unchanged, (dotted line Å}n Fig.4.8). !n spite

of the change of the q-profile, however, the island evolution of the

2!1 and 312 modes seems unchanged, even a long while after the internal
                                 'disruption, i•e•, W211=O•07 and W312=O.O14 at t=970. These values are
about 113-1/4 of those obtained by using the A' code and there is no

indication of island overlapping even if the calculation continues.

There are other possÅ}bilities to initiate the major disruption. In Ref.9,

we have shown that the size of the 211 island is strongly enhanced by

the internal disruption due to the toroidal coupling.' This result sug-

gests that in a toroidal plasma the major disruption is induced indirectly

by the change of the current profile due to the internal disruption. This

problem is discussed in more detail in the next Chapter.

4.4 Conclusion and Discussion

     We have studied the noniinear evolution of tearing modes with differ--

ent helicity in a cylindrical piasma and confirmed the possibility that

the major disruption is caused by the nonlinear destabilization of the

312 mode through the mode coupling with the 211 mode. And the evolution

of the magnetic field topology has been ninutely investigated. All these

results support the mechanism of the major disruption, proposed by Waddell

et al.. The details of our results, however, are different from their
results. Especially, in our simulation, the 211 rnode is deeply in the

Rutherfored regime and its instantaneous growth rate is not affected even

after the 312 mode is nonlinearly destabilized. This behavior of the 2!1

mode contradicts with the WKB theory. Therefore, the mechanism of the

destabilization of the 312 mode remains unsolved.

     As for the effect of the internal mode on the major disruption, the

flattening of the q-profile due to the internal disruption did not cause

the enhancement of the 211 island width, in spite of the prediction of
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the major disruption by the A' calculation. The flattening

inside of the q=1 surface and the q-profile is not affected

and 312 surfaces. Therefore, in order to expect the major

the internal disruption, we have to take into account other

as the toroidicity.

 accurs only
 near the 211

disruption by

 effects, such
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            Chapter V

Numerical Study of Toroidal' Effect
     on Low-m Resistive Modes

     Effects of the toroidicity and finite pressure on low-m
ideal and resistive modes are studied numerically on the
basis of the reduced set of the MHD equations. Both the
linear and nonlinear analyses show that the m==2 mode is
strongly destabilized by the above effects. Especially,
in a highly resistive plasma with large eBp, the amplitude
of the m=2 and m=3 perturbations are comparable with or .
Iarger than that of m=1 perturbation. In spite of this large
modification of the modes in the linear phase, the noniinear
evolution of the m=1 mode is essentially the same as in the
cyltndrical geometry. During the evolution, the toroidicity
enhances magnetic islands of m=2 mode and other resonant
modes and wide stochastic region is formed in a plasma. The
destabilization of the m=2 mode, however, is not directly
related to the major disruptions. !t is conjectured that
the destabilized m=2 mode may change the equilibrium to the
one unstable against the major disruption.

5.1 Introduction

     As described in.the previous Chapter clarification of a mechanism

of disruptive instabilities and establishment of controlling or sup-

pressing means are very important problem to be solved urgently in

the field of the tokamak research. Internal disruptions, i.e., saw-
tooth oscillations observed in soft X ray signals and major disruptions

are extensively analyzed by many authors on the basis of the reduced
set of the resistive )cHD equationsl'X'9). These anaiyses' have been carried

out to investigate behaviours of a rather low beta ohmically heated

tokamak plasma and finite poloidal beta effects have not been taken

into account. In recent tokamak experiments, however, higher poloidal

beta values are realized by an intense additional heating. With increas-

ing polotdal beta value there observed a new phenomenon, i.e., disap-

pearance of the internal disruption and appearance of large amplitude
                       10)                          . The change of the stability property sug-continuous oscillations
gests the importance of the finite poloidal beta effect on the disrup-

tion process and, for clarification of the disruption mechanism, it

seems very important to take into account of the finite poloidal beta

effect.
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     The purpose of this Chapter is to investigate the toroidal coupling
of resistive modes enhanced by the effect of the poloidal beta in a
                                           'tokamak plasma and to get some insights into the driving mechanisms

of the disruptive instabilities. Analyses are carried out on the basis

of the reduced set of the resistive MHD equatiQns described in the

previous Chapter. !n Section 5.2 equilibrium used for the calculatÅ}on

and numerical procedure are explained. In Section 5..3 we study the

linear sttability property minutely with various parameters for the

fixed profile of the safety factor. The results of nonlinear calcula-

tions with the finite poloidarL beta value are given in Section 5.4.

Section 5.5 is devoted for conclusions and discussion.

5.2 Equilibrium

     In this Section we present an equilibrium used for subsequent

stabÅ}lity analyses. A low B tokamak plasma with a circular eross section

and large aspeet ratio is considered. We employ a coordinate system

(r,e,Åë), where magnetic field lines are stEaight and the radial coordi-
nate is defined as r = !gT (RolR)2. Xn the coordinate system the mapping

functions X(r,O) and Z(r,e) for the equilibrium solution are derÅ}ved
up to the order of g2 as

     X(r,e) = Ro - er cose - e2A(r) ,

                                                                (5.1)
     Z(r,e) = er sine ,

 '   tt                                                                      'where A(r) is the shift of the magnetic surface and given by the following
                                                 '     .equatlon,

     A(r) = i'tt ,Ca .,dre. J, r (Be2 - 2r g+/) rdr (s 2)

                                          '
For the above equilibrium we obtain the following expressions of the

reciprocal metric tensor, assuming that the inverse aspect ratio e(==

rlRo) is sufficiently small,

                 dA      rr     g =1+2mF cose ,
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     gre= -(EdllfA+ei {l(A; -- et6-) sine •

     gee= -. {i-2(tA-ilts-) cose} , (s•3)

     gÅëÅë= Rg (1 + 2 fls- cose ) .

In the following stability analyses we Substitute concrete forms of
the profiles of pressure P(r) and safety factor q(r) into the equation

of A(r), and calculate the metrÅ}c tensor.

            '
5.3 Linear Stability Analysis by Reduced Set of Equations

                                             '
     Before studying the nonlinear MHD behaviours in the next Section,

we investigate the linear stability of the current- and pressure-drivepd

modes in detail on the basis of the reduced set of equations described

in Sec.tion 4.2. We linearize the equations with respect to Y and Åë.

Our rnain concern is the analysis of the n=1 mode which .tends to an

mln = 1!1 mode in a cylindrical plasma. Variable parameters iR the
analyses are the inverse aspect ratio E(= alRo), poloidal beta Bp,

and magnetic Reynolds number S(= TrlTpa), where a, Ro, Tr, and Tpa

are the minor and major radii of the plasma, resistive diffusion time,

and poloidal Alfven time, respectÅ}vely. The magnetic Reynolds number

is measured at the m=1 singular surface and the poloidal beta is defined
as Bp = 2<P(r)>IBa2, where < > denotes the average with respect to

r, P(r) and Ba are the pressure function and poloidal rnagnetic field

at the plasma surface, respectively. The safety factor and pressure
profile are given as

     ,q(r) =o.g n+(ois )2X]ilA , (s.4)
     with A=2+ 2r2 ,

     p(r) :p,(i -- r2)2 , (s.s)
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where p is the pressure at the magnetic axis and it is adjusted so
       othat the poloidal beta has the given value. The maximum number of

the Fourier cornponents in the e direction and radial mesh number are

chosen to be 10 and 201, respectively, throughout the linear calcula-

tion except the case of s= O. .
     First, we investigate behaviours of the mode by eliminating the
                                    .
pressure term in the basic equations. Features of the mode obtained

by the simulation are summarized as follows.

(1) The growth rate of the mode scarecely depends on the peloidal
beta and aspect ratio as shown by the broken line in Fig. 5.1(a).

This is consistent with the fact that the mode is current-driven one.
(2) The mode depends on the magnetic Reynolds number as s-i13 (a broken

line in Fig. 5.1(b)), which is in good agreement with the previous
                  11)                      (a thick straight line tn Fig. 5.1(b)).analytical results
     Secondly, we carry out calculations for the equations with the

pressure term. The results of the calculations are summarized as foilows.

(3) As the aspect raeio and poloidal beta are increasing, both the
internal (S=oo) and resistive (S<oo) modes become destabilized (solid

lines in Fig. 5.1(a)). In the ideal case, especially, the growth rate

depends on e and Bp almost quadratÅ}cally. The destabilization effect

is more remarkable for smaller S value (sQlid lines in Fig. 5.1(b)).

(4) For higher values of eBp and S the growth rate depends on S as
s-3/5 (Fig. 5.1(c)). The dependence suggests that the mode sensitive

to e and 3p are affected not by a pressure-driven mode but by the m==2

current-driven instability through the toroidal coupling. This is
supported by the magnetic energy spectrum (Fig. 5.2) which shows that

higher m components are more destabilized with increasing Bp- Infact,
from Fig. 5.2(a) and (b), it is clear that if the value of S is suf-

ficient low, the high m (m > l) modes are easily destabilized with

increasing Bp, and when Bp exceeds 1.5, the magnetic energy of m=2

mode becomes dominant instead of that of m=1 mode. As for the S de-
pendence the magnetic energy of each mode is shown in Figs. 5.2(c)

and (d) for the cases with e=O.1 and Bp=2.0, and with e=O.l and Bp=L.O,

respectively. Figure 5.2(c) shows that strong destabilization is in-

duced in the case with high Bp and low S values. In Fig. 5.3 we show
       and S dependences of the eigenfunction of the e component ofthe B
     P
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the plasma velocity, Åë'. From the figure it is seen that the eigenfunction

of the m=l mode is distorted considerably as the magnetic energy of
                                                   'the m=2 mode increases.
     From the above observations we can conjecture that the destabliza-

tion of the cy!indrical ml'n -- 111 mode and change of it to the rn==2

dominant mode are explained not by the direct consequence of inclusion
                                      .
of the pressure term but by the toroidal coupling of the mode with

the higher m (m>1) modes in a high poloidal beta plasma. In the follow-

ing we confirm the conjecture by deriving a growth rate of the mode

analytically. We consider only the m=1 and m=2 Fourier components

of the mode. The ideal MHD euqations for the m=1 and m=2 components

are wr-tten as

                                        '                    AV     ESF [(y2+Fi)r3 gii ]= -eAi2 g2 . (•s.6)

     ('dS.2 "i Ilil;-#.-7)(i']2.'.F2, g;O J2=-e"f!Fii •,'' (s•'7)

                                  '
where

                                                   N     Ai2 l2 = r2[y2Ahi(rl2) + -Ag, ep2] - r2[ gd{ly g\2 -i Åí.7 (r gltti)g2]

                   '
            + 2r2[ f.It ( gi'g,) + i gt' e, ] , (5.8)

                                  -v     A2i gi = r2F2Ag,(lli - r2[ glti g\i - I Åí;• (r gltt)qi ]

                                                      '              '                  '
                                      '
            -.2[ g. (t' g,) -ik' E,] , (s.g)
                                                       '                                          ./."                                                                        '                  ''V denotes the perturbation quantity, y is growth rate, Fm = rnBelr-n,
       sFgm(= - Åëm!yr) is radial displacement of.?lasma and Agm and Ahm are the

operators including the metric tensor Gij and Hij, respectively. Here,

we assume that the growth rate is much larger than that of the m=l

resistive mode which is not considered in this analysis.

     From Eq.(S.6), the growth rate of ideal m=1 mode is derived as

fo!lows,
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     y= ori e3X, (5.10)              p

with

     x=- e2.lg!. , (s. n)
     ori' ---r:rrBqal(r:) forip'r2dr /f,iprdr , (s.i2)

                                               'v 'vwhere ri is the singular surface of m=1 mode, g = g (r=ri) and the
                                                      m                                                ma
prime denotes the derivative with respect to r. In this derivation
of Eq.(5.10), we assume that g2 =- Ng2ar!ri and q : 1 in the region

O < r < ri. The signs of X and ct! are positÅ}ve and the effect of eB

to the stability is always destabilizing. The expression for A in

Eq.(5.11) is obtained by analyzing the in=2 mode as

     )L=Ct2S(B +pt) , .(5.13)              p

where
                                                        '
     or2=-:L? .,yY.;((ii)) yY'i. [ii,)) p'(r) /Jl,i prdr , (s.i4)

                                               '

     y=AtESflLlLiiil-g];22-,i,(ii)()f,iprdr , (s.is)

            a                                   '

r2 is the singular surface of the m=2 mode, Yi(r) and Yk(r) are general

solution and particular solution of Eq.(5.7) in the region O < r < r2.

Substituting Eq.(5.13) into Eq.(5.10), we get the growth rate of ideal

mode yl for the reduced set of equations of toroidal plasma as follows,

     y] =otiot2 e2Bp(Bp+v) • (s.i6)
The quadratic dependence of the growth rate on e and 3p shown in Fig.

5.1(a) is well reproduced by Eq.(5.16). In the figure the black and

open circles denote the cases for the fixed Bp and fixed e, respectively.

     Next, we consider the mode which is connected to the m=2 tearing

mode in a cylindrical geometry. The growth rate of m=2 tearing mode

in cylindrical geometry is given in Ref. 12 as
                                                    '
                      '
                                           '
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     y=cn3/5(A6)g15 , (s.17)
where

     .. i({tis.L. )215 , . (s.ls)
                   r=r2

           tl          Ye Yi     Ao =pt-iijT- ! (5•19)           ei                   r=r2

Yi and Ye are the general solutions of Eq.(5.7) for O <- r < r2 and

for r2 <. r < a. respectively. For eomparison, this growth rate is

shown as the straight solid line in FÅ}g. 5.1(c). In the toroÅ}dal geo-
metry, the value of A' is changed from A6 due to the toroidal mode

coupling and bec.emes ' '
                 ot2e(B                      +v)
     A' == A6 + x-. ,. (PB +u) Ak '' (5'20)
                       p
                             '

where •'         t tt  •' Al - llli. - ll/l- - •-. ' (s.2i)

                '
ll:ing IPis A', we obtain the growth rate of the mode in toroidal plasma

                   '             '     \--II-[YI.+rmYI(yl 4y.)] .-, (s.22)
          'where

                       tt                          '                       '     y.=cn3/5(A.)415 ) (s.23)
                                                     '
         '                                                           '
and yl is the ideal growth rate given by Eq.(5.16). This growth rate
is approximately reduced to y ! yl + Yk for YI >> Y* and Y ! MYIYk :
eBpn3!iO for yl << yrk. Figure 5.l(c) shoys that for the cases of
EBp = O•22S and O•2 y - yl is proportional to S-3!5 in the region of

sufficiently high S value (yl >> yrk) but for the case of eBp = O.1 the

S dependence of y - yl is different because of the dominant m==1 mode
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(Fig. 5.1(b)). Furthermore. the S dependence of the growth rate in
the low S region (yl << y*) is approximately given as s-3/iO, which

                                                                'seems reasonable frorn the above numerical treatment.

5.4 Nonlinear Calculations of Resistive Modes with tthe Toroidal Effect

                                     ,
     rn this Section we study the nonlinear evolution of the resistive
instabÅ}lities in a toroidal plasma. As the mln = 3/1 mode (according

to the common usage we call a perturbation with mln helicity a "mln

mode") is strongly destabilized by the toroidal coupling incorporated

with the finite poloidal beta effect, emphasis of the investigation

is,p•laced on the po,ssibility of initiation of the disruptive instabUity

by the toroidal coupling. The equilibrium in the previous Section

is used for the simulation.. This equilibrÅ}um is stable against the
disruptive instability in the sense that the mln = 211 and mln = 312

modes do not overlap each other during the nonlinear simulation in

which the toroidal coupling and pressure perturbation are not taken

into account.

     First, we calculate the effect of the toroidal coupling without

considering the pressure perturbation and finite po!oidal beta effect.

Figure 5.4 shows the temporal evolution of the rnagnetic islands with

different helicities for the inverse aspect ratio g=O.l, the poloidal
beta 3 =O.O, and the magnetic Reynolds number S = 2 Å~ 10ij. The phase
      p
of the initial perturbation of mln = 2/1 mode is chosen to be the same

as that of the mln = 111 mode for one case (Fig. 5.4(a)) and to be
opposite for'  the other (Fig. 5.4(b)). For comparison, a cylindrical

case (e=O.O) is shown by a broken line in each figure. Until t N 50

behaviour of the modes in a toroidal plasma is essentially the same

as tn the cylindrical case. After t "v 50, however, the modes evolve

differently for the toroidal cases with different initial phases; which

seems to be attributed to the effect of the toroidicity. For the in-

phase case, the m=2 island shrinks. On the other hand, the island

width for the opposite phase case increases. This can be seen more
clearly in the evolution of the magnetic energies of each mode (Fig. 5.5),

     E. ). - -il• .il,a [( Dlllmi" )2 + ( {L Ny.i.) 2] rdr . . (s. 24)
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The energy of the m=2 mode with the initially opposite phase grows

exponentially with the growth rate of about half of the rn=l mode growth

rate (Fig. 5.5(b)), while the energy of the m=2 mode for the in-phase

case decreases (Fig• 5•5(a)). The different behaviour of the modes

for the different initial phases is explained qualitatively as follows.

The total energy of the reduced set of the resistive MHD equations
                                      .in a toroidal plasma is given by

     E=i.ll,a [( IIIs- )2 lv'Åël2+(l}g'- )2 lv•y[2] dT . (s.2s)

This energy can be divided into two parts; the cylindricE }l energy Ecyl,

and toroidal one Etor. By using the cylindrical part (g'--J) and toroidal
part (gij(e)) of the reciprocal metric gij, we can rewrite the toroÅ}dal

energy Etor, up to the first order of e, as

     E,.. -•.f, a[{gij(e) + gij (-e)}( ISi ].Åëi, + g:i• g;s )

            4r -ii 3Åëi DÅë2          -Iii5'g a.i a.i] dT ' ,(5'26)

where we take into account only the toroidal coupling between the m=1

and m=2 modes. We assume that Oi and Åë2 are approxirnately expressed

         AAas Åëi X Oi rlrslm.i and Åë2 = Åë2{rlrslm.i}2 in the region r S rsim=1•

Then using the relation Ym = - FmÅëmlym, we have

     Et.r :- iltl- S,rSIM=i dr(yiy2 - 3Åëio2) ; {t-s- .iol rslm=idr yiy2, (s.27)

where ym is the growth rate of each mode and Fm=rnBelr-nBzlRo• This

expression shows that the sign of the toroidal coupling energy E
                                                                 tor
depends on the phase between the m=1 and m=2 modes. Because of the

small dissipation, the total energy of the system is almost conserved,
and Ecyl is larger (srnaller) than that in the cylindrical plasma for

YiW2 < O (YiY2 > O). Since the m=1 mode has the larger growth rate

and larger amplitude than those of the m=2 rnode, the effect of the

toroidal coupling on the m=1 mode ean be neglected. Therefore, the

energy of the m=2 mode increases due to the toroidal coupling for
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YiY2 < O and vice versa, which also explain the phase locking observed

in the experiments.
     Next, we investigate the finite polotdal beta effect for an equi-
librium of e=O.1, B =1.0, and S = 2 Å~ 104 with and without considering
                   p
the pressure perturbation• The initial phase of the m=2 mode is chosen

to be opposite to that of the m=l mode. Figure 5.6 shows the evolutions
                                    .of the magnetic islands (Fig. 5.6(a)) and magnetic energy (Fig. 5.6(b)).

It is seen that there is no remarkable finite poloidal beta effect

Å}n the case without the pressure perturbation (broken lines in Fig. 5.6).

On the other hand, for the case with the pressure perturbation the

finite poloidal beta effect brings out a remarkable difference in the

evolutions of the magnetic islands and magnetic energy. In this case
the mln=211 and mln=311 modes are strongly destabilized and they grow

rapidly with the linear growth rate of the mln=111 mode even after

the internal disruption occurs and the mln=lll rnode disappears. With

the strong destabilization of the modes the mln=211 island becones.large

and contacts with the mln=3!2 and mln=311 islands. This island over-

lapping makes the magnetic lines stochastic and finally destroy the

magnetic surface (Fig. 5.7), but it is not followed by the destabliza-

tion of the mln=312 mode and does not !ead to the major disruption,

i.e., the rapid release of the magnetic energy, as shown in the simula-

tions by the ORNL group. A negative voltage spike is observed in the

simulation (Fig. 5.8), but it is caused by the internal disruption

and the amplitude is only about a few percent of the major disruption.

5.5 Discussion and Conclusions

     We have studied the linear and nonlinear MHD phenomena of a tokamak

plasma by using the reduced set of the resistive MHD equations, especially,

to clarify the finite poloidal beta effect and toroidal coupling. From

the linear analysis of the equilibrium accurate up to the order E it

is found that the m=2 tearing mode is strongly destabilized by the

toroidal coupling with the m=1 internal mode if the pressure perturba-

tion is taken into account. The numerically obtained dependence of

the growth rate on the aspect ratio and poloÅ}dal beta is in good agree-

ment with analytical result. In the present tokamak plasmas the magnetic
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Reynolds number is in the range of 105 N 106 and the m=2 mode is

destabilized strongly for iarge values of eB .
                                           P
     Nonlinear calculations are also carried out. Even in the nonlinear
regime it is found that the finite B effect is small for the case
                                   p
without the pressure perturbation• For the case with the pressure
perturbation, however) the cornputatiopal result shows that the mln=211

and mln=311 modes are strongly destabilized by the rnln=111 mode through

the toroidal coupling, leading to destroy the magnetic surfaces by

the island overlapping which does not lead to the rapid release of

the magnetic energy.

     As for the major disruption the finite poloidal beta effect and

toroÅ}dal coupling are not directly responsible to the instability.

However, the above-descrÅ}bed island overlapping leads to the magnetic

field stochastization. And the stochastization leads to the flattening

of the electron temperature profile and high plasma resistivity, by
which the current profile is flattened. Combination of the above effect
and the flattening of electron temperature due to the internal disrup-

tion may change the current profile to the similar one of the major
disruption calculations in Ref. 6 and cause the major disruption.
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!ntersections of the trajectories of
at the poloidal plane, C=O. for (a)
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      (f)

 the magnetic field
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                             Chapter VI

                      Conclusi'ons and Discussion

     The MHD phenomena in a tokamak plasma have been analyzed extensively.
                                    ,These are the external kink and fionlinear positional instabilities,

the major disruption process and related problems concerning the effects

of torotdicity and finite poloidal beta on the low n resistive modes.

The former two problems are analyzed on the basis of the ideal MHD

model and the latter two problems are analyzed on the basis of the

reduced set of the resÅ}stive MHD equations. In the following brief

conclusions and discussion are given in the order of the Chapters of

the text.

     In Chapter II the ideal MHD stabilities of a toroidal plasma with

a free boundary are investigated, and it is shown that, when a conduct-

ing shell is placed far from the plasma surface, toroidicity scarcely

affects the external kink mode for a slender tokamak but it reduces

the growth rate of a fat to.kamak. When the shel! is placed close to

the plasma surface, however, the toroidal effect is notable in compari--

son with the previous case. For these analyses we have developed a

two-dimensional linear evolutional code ZEPHYrus. The results by the

code are compared critically with an analyttcal and numerical results

and the code has been found to be accurate for the low m mode analyses

but for the higher m modes the effect of the finite azÅ}muthal mesh

size prevents accurate calculation of the growth rate.

     In Chapter III we described the numerical method of the nonlinear

ideal MHD code AEOLUS--P developed for analyses of the positional insta-

bilities of a tokamak plasma. The basic equations are given in the

complete conservative form. To solve the equations the dynamical grid

method in combination with a new rezoning algorithm is successfully

applied. For test of the accuracy of the code MHD oscillations in

a cylindrical model are computed and the frequencies of the plasma

velocity oscillations are in good agreement wtth those obtained by

the one-dimensional spectral code THALIA.
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     In Chapter IV we have studied the nonlinear evolution of a multi'

helicity tearing mode in a cylindrical geometry and demenstrated that
a major disruption is caused by nonlinear destabilization of the mln=312

mode through the nonlinear coupling with the m!n=211 rnode. As for

initiation of the major disruption the flattening of the q profile

due to the internal disruption is one of candidates but the numerical
                                    h
result shows that it does not cause the major disruption contrary to

the simple expeetation. The flattening ocaurs only inside of the q=1
magnetic surface and the q profile is not affected near the rn!n=211

and mln=312 surfaces. Therefore, in order to explain the initiation

process of the major disruption we have to take into account another

effect such as the toroidal effect.

     rn Chapter V we have studied the effects of the toroidicity and

finite poloidal beta on the low n resistive modes in relation to the

disruptive instabilities. By the linear calculation it is found that

in a highly resistive plasma with large value of eBp. The m=2 tearing

mode is strongly destabilized by the m==1 internal mode through the

toroidal coupling. Nonlinear calculation shows that linearly destabi-
Zized m!n=2!1 and mln=311 modes have large magnetic islands and lead

to destruction of magnetic surfaces by the island overlapping. In
spite of the island overiapping the major disruption or rapid release

of the magnetic energy does not occur. However, there remains another

possibility of the major disruption. The stochastization of the magnetic

field lines due to the above island overlapping leads to flattening

of the e!ectron temperature profile in this region. Consequently the

plasma resistivity beeornes high and the plasma current profile is made

flattened.. With the effect of the Å}nternal dtsruption this flattening

of the plasrna current profi!e around the q=2 surface may change the

q profile similar to the one used for the disruption calculation by

Waddell et al., and the major disruption occurs.
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Appendix

Basic Equations for AEOLUS-P in Toroidal Geometry

     In this Appendix, we rewrite the,basic equations (Eqs.3.3) so

that the equations include the effect of toroidal curvature. The change
                                                       ++is needed for the terms which contain Åë components of v and B. By

adding the terms we have following equations for the toroidal calcula-

 .tlon,

     gltT(pv.) = -K>•(pv.3) - gl/+ + I5•(B.g) + .(p.-Åë2 . B-Åë2) , (A.l)

     -{il.T(x2pGÅë)=--Kl7•(x2p%iG)+K}i•(x2B"Åëg) , (A.2)
      '

     r:ll.E,(p.y).= -e7•(pvy3) --gyt +e•(Byg) , (A.3)

     DB       X=-K>•(B G)+Ki7•(v iE])., (A•4)     Dt x x.
      'n     g?,stl.-e.(B",,e).i.(GÅëg> , (A.s)

     DB     -E;:E,d>IE=-Kl7•(Byil}) +if•(vyg) , (A.6)

where

     %.. iiLt , ,-Åë .. llLt . (A.7)

By the spatial integration of the above equations

equations for a toroidal plasma corresponding to
equations of Eqs.(3.3) in the text, as

        .r.K rK
     &5 p..dT =-g [p..GE + pk. - B.gl • r.

                     rK
                   +S x[pG$-B"Åë2] dT ,

 we obtain the basic

second and fourth

(A.8)
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 A[B  + A+ -ÅëvE - vÅëB] • ds

  -+[By"E - "yB]   -. ds

    .] •ds

+B]

'

.

  -. ds

'

'

,

(A.9)

(A-10)

(A.11)

(A.I2)

(A.I3)

lt should

additional

be noted the second

 term appearing in

 term in r.h.s

the equations

. of

for

 Eq.(A.8) is

the toroidal

only the

plasma.
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