
Title Execution of Distributed Systems described in
LOTOS and its Visualization

Author(s) 安本, 慶一

Citation 大阪大学, 1996, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3110262

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Execution of Distributed Systems described in
LOTOS and its Visualization

Keiichi Yasumoto

January 1996

Execution of Distributed Systems described in
LOTOS and its Visualization

by

Keiichi Yasumoto

January 1996

Dissertation submitted to the Faculty of the Engineering Science
of Osaka University in partial fulfillment of the requirements for

the degree of a Doctor of Philosophy in Engineering

Abstract
This thesis summarizes the work of the author as a master/doctor student

of Osaka University and a research associate of Shiga University on the execution
of distributed systems described in LOTOS and its visualization.

The behavior of a distributed system can be specified formally by defining
input/output interactions (called events) and their temporal ordering offered to
the external environment. LOTOS is a formal description language, and it has
been standardized within ISO. To design and develop such a distributed system
efficiently using formal languages like LOTOS, it is desirable to describe the
system specification as a program executed at one node (called service specifi-
cation) in the abstract level, and to derive a tuple of programs (called protocol
entity specifications) for those nodes automatically, at the next stage.

Generally, in designing phases, the system specifications are frequently
modified for debugging and/or improving the systems as the results of the be-
havior analysis. For the efficient behavior analysis of distributed systems, it is
desirable to execute the tuple of protocol entity specifications in a distributed
environment and to display the dynamic behavior of the specifications visually.

Final specifications of the system should be converted into efficient ob-
ject codes for a given target machine. LOTOS specifications contains many
operators such as choice, parallel, disabling and synchronization to specify the
temporal ordering of events among processes. So, it is complicated to implement
such LOTOS specifications in the procedural languages such as C manually.

This thesis provides the following three research topics for these purposes.
First, for a given service specification with data parameters and all basic

operators in LOTOS, and an assignment of each gate to a node, an algorithm to
derive correct protocol entity specifications is proposed. Although the proposed
derivation algorithm still imposes some restrictions such that the alternative
events must belong to the same node as well as the existing algorithms, there
were no algorithms dealing with such a wide class. The algorithm assumes that
each communication message is exchanged asynchronously through a reliable
communication channel like a FIFO queue between any two nodes. In order
to derive protocol entity specifications, communication events may have to be
calculated from the temporal ordering of events and data dependency among
distributed nodes. A trivial solution is that each node broadcasts the informa-
tion about each event execution and input data to all the other nodes. However,
this technique requires so many message exchanges and much time to execute
such communications. It is desirable to reduce the number of the communica-
tion events, especially in the real-time systems. In the proposed algorithm, to
derive only the necessary communication events, several functions are defined
for the syntax tree of the given service specification. The functions calculate the
sets of nodes which can execute first and last executable events, respectively,
and the set of the pairs of the data name and node using the data. To calculate
such sets easily, the derivation algorithm is described in an attribute grammar.

i

For example, the derivation algorithm has been applied to the ISPW6 prob-
lem, an open problem for modeling concurrent software processes consisting of
several engineers. From the service specification of this problem, the protocol
entity specifications have been derived in the practical time.

Secondly, a simulator which executes each protocol entity specification and
displays its dynamic behavior visually, is proposed. For analysis of the dis-
tributed systems, the simulator executes the communication events in a proto-
col entity specification and communicates with other nodes via the network. N
simulators execute n protocol entity specifications at the nodes so that the whole
behavior of the service specification is implemented in parallel. For facilitating
the dynamic behavior of LOTOS specifications with its structural information,
it is useful to display the syntax tree of the current behavior expression visu-
ally and to update the syntax tree step by step at every event execution. The
proposed simulator uses a fast layout algorithm to depict such tree structures
rapidly. The simulator can also trace what event is executed in the service
specification while the tuple of the protocol entity specifications are executed.

Thirdly, an efficient implementation method of protocol entity specifica-
tions using a multi-thread mechanism on a given target machine is proposed.
There are several existing implementation methods to generate efficient object
codes by restricting the target class such that the tuple of synchronizing pro-
cesses is statically decided. In the proposed implementation method, we deal
with a wider class which includes that the tuple of synchronizing processes is
dynamically decided, by using a shared data area to exchange the dynamic
information among the threads. In the method, each sequentially executable
sub-expression is mapped to a thread in the object code, and all threads in the
object code are created concurrently. All these autonomous threads access the
same shared data area (called the control area) so that they execute events in
the order specified in the specification. To implement the hierarchically spec-
ified operators of LOTOS behavior expressions, a control area consists of the
structured data areas where each area is used to implement the corresponding
operator. The temporal ordering of events between two threads specified by
choice, disabling, synchronization and so on, is implemented by accessing the
corresponding area in the control area. To avoid the control area enlarging, the
obsolete parts of the area are dynamically removed and a new area is added.

To monitor the dynamic behavior of the real-time systems, a visualiza-
tion technique for the derived object codes is proposed. To visualize a system
specification without modifying it, we combine a system specification and its
visualization scenario with synchronization operators for the events to be visu-
alized. A tuple of the original specification and its scenario is converted into
the multi-threaded object code by the compiler.

Some experimental results have shown that the compiler can generate more
efficient object codes than other LOTOS compilers with respect to the parallel
and choice execution of events. By visualizing an example “five dining philoso-
phers”, it is shown that the dynamic behavior of the concurrent processes can
be animated enough fast.

ii

List of Major Publications

(1) Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K. : PROSPEX:
A Graphical LOTOS Simulator for Protocol Specifications with N Nodes,
IEICE Trans. Commun., Vol.E75-B, No.10, pp. 1015 – 1023, Oct. 1992.

(2) Yasumoto, K., Higashino, T. and Taniguchi, K. : Software Process De-
scription Using LOTOS and Its Enaction, Proc. of 16th IEEE Int. Conf.
on Software Engineering (ICSE-16), pp. 169 – 178, May 1994.

(3) Yasumoto, K., Higashino, T. and Taniguchi, K.: Software Process De-
scription in LOTOS And Its Execution, Journal of Japan Society for Soft-
ware Science and Technology, Vol.12, No.1, pp. 16 – 30, Jan. 1995 (in
Japanese).

(4) Yasumoto, K., Higashino, T., Abe, K., Matsuura, T. and Taniguchi, K.
: A LOTOS Compiler Generating Multi-threaded Object Codes, Proc.
of 8th IFIP Int. Conf. on Formal Description Techniques (FORTE’95),
Chapman & Hall, pp. 271 – 286, Oct. 1995.

(5) Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K. : Protocol
Visualization using LOTOS Multi-Rendezvous Mechanism, Proc. of 1995
IEEE Int. Conf. on Network Protocols (ICNP-95), pp. 118 – 125, Nov.
1995.

(6) Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K. : Visual-
izing Dynamic Behavior of LOTOS specifications using Multi-rendezvous
Mechanism (in Japanese) (submitted for publications as a journal paper
of IPSJ: current status: conditionally accepted).

iii

Acknowledgments
This work could be achieved owing to a great deal of helps of many indi-

viduals.
First, I would like to thank my supervisor Professor Kenichi Taniguchi of

Osaka University, for his continuous support, encouragement and guidance of
the work.

I’m very grateful to Professor Mamoru Fujii and Professor Kenichi Hagihara
for their invaluable comments and helpful suggestions concerning this thesis.
I’m also very grateful to Professor Nobuki Tokura, Professor Seishi Nishikawa,
Professor Hideo Miyahara, Professor Toru Kikuno, and Professor Katsuro Inoue
for their valuable comments on this thesis.

I would like to express my sincere gratitude to Associate Professor Teruo
Higashino of Osaka University for his adequate guidance, valuable suggestions
and discussions throughout this work. This work could not be achieved without
his continuous support, encouragement and guidance.

I also wish to thank to Professor Toshio Matsuura of Osaka City University
for his technical supports, valuable comments and discussions about the work.
The tools which has been designed and developed by his research group, such
as a visual tree editor, a portable thread mechanism, and an animation server
are used to develop the LOTOS simulator, the compiler and the visualization
tool described in Chapter 4 and Chapter 5 in this thesis.

I’d like to express my thanks to Professor Koji Torii, Associate Professor
Hajimu Iida of Nara Institute of Science and Technology, and Assistant Pro-
fessor Masahiro Higuchi of Osaka University for their helpful comments and
suggestions.

I’m grateful to Professor Masaaki Mori, Professor Yoshiki Katsuyama and
Associate Professor Shinichi Taniguchi of Shiga University for their helpful sug-
gestions.

Many of the courses that I have taken during my graduate career have
been helpful to prepare this thesis. I would like to acknowledge the guidance of
Professors Toshinobu Kashiwabara, Masaru Sudo, and Akihiro Hashimoto.

I also wish to thank research associates of Osaka University, Mr. Junji
Kitamichi and Dr. Kozo Okano for their helpful suggestions.

I wish to express my special gratitude to Mr. Toru Nakamura, Mr. Kota
Abe, Mr. Noriaki Yamashita, Mr. Hiroaki Yoshio, Mr. Takahiro Shiroshima,
Ms. Yoshimi Enya, Mr. Kazuhiro Goto and Mr. Motohiro Miyamoto for their
works on developing the parts of the systems described in Chapter 4 and Chapter
5.

I’m thankful to Mr. Sumio Morioka, a Ph.D. student of Osaka University
for his valuable comments.

Finally, I would like to thank the all members of Taniguchi Laboratory of
Osaka University for their helpful advice.

iv

Contents

1 Introduction 1

2 How to Describe Distributed Systems in LOTOS 8
2.1 A formal specification language LOTOS 8

2.1.1 Behavior expressions . 8
2.1.2 Abstract data types . 8

2.2 Service specification and its correct protocol specification 9
2.2.1 Service specification . 9
2.2.2 Protocol specification . 10
2.2.3 Correctness of protocol specification 13

3 Derivation of Protocol Specifications from Service Specifica-
tions in LOTOS with Data Parameters 14
3.1 Introduction . 14
3.2 Developing distributed systems using LOTOS 15

3.2.1 Definition . 15
3.2.2 Describing service specification 16
3.2.3 Outline for deriving protocol specifications 17

3.3 Deriving protocol specifications 20
3.3.1 Derivation algorithm . 20
3.3.2 Derivation system . 27

3.4 Evaluation . 27
3.4.1 Evaluation . 27

3.5 Conclusion . 28

4 Interactive Execution and Visualization of Protocol Specifica-
tions in LOTOS in a Distributed Environment 30
4.1 Introduction . 30
4.2 Facilities for executing protocol specifications 30

4.2.1 Interactive execution of protocol specifications 31
4.2.2 Observation of correctness of protocol specification for its

service specification . 33
4.3 Design and implementation of the simulator 33

4.3.1 Class of LOTOS specifications to be executed 33
4.3.2 Pre-processes before executing LOTOS specifications . . 34
4.3.3 Technique to execute LOTOS Specifications 35

v

4.3.4 Visual display of current behavior expression 36
4.3.5 Performance of the simulator 37

4.4 Application . 38
4.5 Conclusion . 40

5 Implementation of LOTOS Specifications using Multi-thread
Mechanism and Real-time Visualization of their Execution 42
5.1 Introduction . 42
5.2 Implementation of LOTOS specifications using multi-thread mech-

anism . 43
5.2.1 Outline of implementation method 43
5.2.2 How to compose object codes for behavior expressions . 45
5.2.3 Implementation of LOTOS operators 49
5.2.4 Implementation of abstract data types 53
5.2.5 Optimization . 54

5.3 Real-time visualization of dynamic behavior of LOTOS specifi-
cations . 56
5.3.1 Visualization method . 56
5.3.2 Execution of visualized specifications 59
5.3.3 Example of visualization 61
5.3.4 Related work . 64

5.4 Evaluation . 66
5.4.1 Evaluation of implementation method 66
5.4.2 Evaluation of visualization method 69

5.5 Conclusion . 70

6 Conclusion 71

vi

Chapter 1

Introduction

In recent years, distributed systems consisting of several distributed processors
have been popular as the growth of the computer networks. However, the
bugs in such systems may cause incredible disasters in human society. So,
many techniques to design and develop reliable distributed systems efficiently
have been studied. In this thesis, a technique to design and develop reliable
distributed systems described in concurrent languages is proposed.

In general, we use the formal models based on the finite state machines
(FSM) or process algebras such as CCS [42] to specify distributed systems
and/or communication protocols. LOTOS is a formal description language
based on CCS, and it has been standardized within ISO since 1989. In this
work, LOTOS is chosen as the target language for describing distributed sys-
tems.

In LOTOS, a system specification is described by defining input or output
interactions (called events) and their temporal ordering offered to the exter-
nal environment of the system. In LOTOS, such events and their temporal
ordering are described as the behavior expression. LOTOS has useful oper-
ators to specify the temporal ordering of events in the behavior expression,
such as the alternative, parallel composition between any event sequences, and
disabling operator which disables a specified part of the behavior expression
by a particular event execution. In LOTOS, whole the behavior expression of
the system can be separated into sub modules called processes. Processes can
be described in the behavior expressions of their parent processes as well as
events. Consequently, LOTOS specifications are described as a process consist-
ing of several sub-processes. One of important characteristics of LOTOS is the
multi-rendezvous mechanism [31] which enables multiple concurrent processes
to execute specified events simultaneously and to exchange data values. Using
the above mechanisms, we can describe the specifications of complex distributed
systems, simply and clearly.

In order that several processors (nodes) cooperate to execute some meaning
event sequences as a service in a distributed environment, each node must ex-
change communication messages with other nodes as well as execute its events.
In designing and developing a high reliable distributed system using LOTOS, it
is a useful technique to describe the system specification as a program executed

1

at one node (called service specification) in the abstract level, and to derive a
tuple (called protocol specification) of programs for those nodes automatically,
at the next stage. In a program of each node (called protocol entity specifi-
cation), there must be specified the contents and the temporal ordering of the
sending and receiving interactions (called communication events) to other nodes
for preserving the temporal ordering of events and the distribution of the data
parameters between those nodes. Since a number of communication events are
needed if choice and parallel operators are specified in the service specification,
it is complicated for the designers to specify such communication events in each
protocol entity specification manually without mistakes. Automatic derivation
of such protocol entity specifications will bring efficient design and development
of the high reliable distributed systems.

For such purposes, several researches to derive correct protocol specifica-
tions for the various classes of LOTOS have been studied [19, 24, 36, 37]. The
techniques proposed in Ref. [36, 37] can treat LOTOS specifications including
only action prefix and choice operators without data parameters. Ref. [19] has
provided a derivation technique to deal with LOTOS specifications with data
parameters and all the operators except the disabling and synchronization op-
erators. For describing general distributed systems, it is needed to use both the
data parameters and all basic operators containing the disabling and synchro-
nization operators. However, there were no techniques for such a class.

Generally, in designing phases, the system specifications are frequently
modified for debugging and/or improving the systems as the result of the anal-
ysis of system behavior. For the efficient behavior analysis, the simulation to
execute the specification interactively is useful. For this purpose, several LO-
TOS simulators have been proposed [16, 20, 48, 52]. Most of these simulators
displays the system behavior only by text information. However, since most
LOTOS specifications includes a lot of operators such as choice, parallel, syn-
chronization and so on, there are several executable events at each point of
time. LOTOS specifications are also structured by packing some meaning set
of events as a process, so only the textual information is inadequate to display
the behavior of such specifications. It may be useful to display the structure
of LOTOS specification visually and to represent the dynamic behavior of the
specification by changing the visual figure corresponding to the structure step
by step as each event execution. For analysis and improvement of distributed
systems, it is needed to get the information about how and when communica-
tion events are executed at each node, by executing the tuple of protocol entity
specifications in a distributed environment. It is also desirable to display such
information visually. There were no simulators for these purposes.

Final specifications of the system should be converted into efficient object
codes for a given target machine. As mentioned above, LOTOS specifications
contain a number of hierarchical operators such as choice, parallel, disabling and
synchronization to specify the temporal ordering of events. The implementation
of the multi-rendezvous mechanism of LOTOS which enables the dynamic syn-
chronization and the data exchange among the concurrent processes, requires

2

a number of communications to select a set of the appropriate processes of all
running processes dynamically. So, it is complicated to implement such LO-
TOS specifications in the procedural languages such as C manually. For this
purpose, a lot of automatic implementation techniques for LOTOS specifica-
tions have been studied [8, 13, 17, 18, 40, 41, 47]. In Ref. [17], a technique to
generate sequentially executable object codes by eliminating parallelism in LO-
TOS specifications is presented. Ref. [13] has proposed a technique to convert a
LOTOS specification into a set of parallel automata and to map each automa-
ton to a thread in the multi-thread mechanism1, by restricting the structure
of LOTOS specifications and the available operators. However, there are no
techniques to deal with an enough class to describe general distributed systems
and to generate efficient object codes.

In this thesis, the following three research topics are studied as a solution
for the above purposes.

(1) For a given service specification with data parameters and all basic oper-
ators in LOTOS, and an assignment of each gate2 to a node, a technique
to derive correct protocol entity specifications is proposed.

(2) A graphical LOTOS simulator which can execute a tuple of protocol entity
specifications and display the dynamic behavior visually, is proposed.

(3) An implementation method for a wide class of LOTOS specifications using
a multi-thread mechanism and a compiler based on the method are pro-
posed. A real-time visualization method for LOTOS specifications using
the compiler is also provided.

Above research topics are important to design and develop reliable dis-
tributed systems efficiently.

In chapter 3, a derivation algorithm for LOTOS specifications with data
parameters and all basic operators such as choice, parallel, synchronization and
disabling is provided. Although the proposed derivation algorithm still imposes
some restrictions such that the alternative events must belong to the same node
as well as the existing algorithms, there were no algorithms dealing with such a
wide class. Let us suppose that each input/output event is executed at a gate,
and that an assignment of each gate to a node is given by the designer. Here, we
assume that each communication message is exchanged asynchronously through
a reliable communication channel such as a FIFO queue between any two nodes
(synchronous communication among the nodes using the synchronization oper-
ator is not considered). The derivation algorithm inputs a service specification
and an assignment between gates and nodes, and outputs a tuple of protocol
entity specifications. The basic steps for deriving the correct protocol entity
specifications are (i) to extract the events executed in each node, and (ii) to

1The mechanism which can handle concurrent light weight processes efficiently in a user
process of the target operating system.

2Here, a gate represents an interaction point to the external environment.

3

insert appropriate communication events between the extracted events. In or-
der to preserve the temporal ordering of events among distributed nodes, some
communication messages must be exchanged between the node executing an
event and the other nodes executing the next events. When a new data is input
in a node, the data may have to be transferred to other nodes which use the
data. As a trivial solution, there is a way that each node broadcasts the infor-
mation about each event execution with the input data, to all the other nodes.
However, since the number of exchanged messages becomes large and it takes
much time to execute such communication events, it is desirable to reduce the
number of the communication events, especially in the real-time systems. In the
derivation algorithm, the source and destination of the communication events
are calculated from the relationships about the temporal ordering of events and
the data dependency only when those communication events are necessary. Sev-
eral functions are defined for the syntax tree of the behavior expression in the
given service specification to calculate the sets of nodes which can execute first
and last executable events, respectively, and the set of the pairs of the data
name and node using the data. To describe the derivation algorithm easily, the
derivation algorithm containing the calculation of such sets is described in an
attribute grammar. The automatic derivation system is developed as a system
which only evaluates the attributes.

For example, the derivation algorithm is applied to a software process con-
sisting of several engineers. Such a software process can be considered as a
distributed system and it can be described as a service specification in LOTOS.
Then, each derived protocol entity specification correspond to each engineer’s
process description. From the service specification of the ISPW6 problem [35],
an open problem for modeling software processes, the protocol entity specifica-
tions were derived in about 80 seconds using the derivation system.

Chapter 4 presents a graphical simulator which executes each protocol en-
tity specification and displays its dynamic behavior visually. In order to rep-
resent the dynamic behavior of LOTOS specifications with its structural infor-
mation such as execution dependency between several processes, it is useful to
execute the specification and to display the syntax tree of the behavior expres-
sion visually. The visual representation of the syntax tree facilitates to observe
both the currently executable events and the temporal ordering of events in the
future from the current behavior expression. The proposed LOTOS simulator
displays such a syntax tree visually, and updates the tree step by step at every
event execution. In order to display the dynamic behavior of the specifications
effectively, the mechanism for displaying the tree structures appropriately and
rapidly. So, a fast layout algorithm provided in Ref. [39] is used to depict such
tree structures. In order to facilitate to understand the structure of a large
specification, the simulator can also enlarge a part of the syntax tree.

For analysis of the distributed systems, we would like to observe how and
when the communication messages are exchanged among the nodes. The simu-
lator executes the communication events contained in a protocol entity specifi-
cation and actually communicates with other nodes via the network. N simu-

4

lators execute n protocol entity specifications by one-to-one correspondence in
a distributed environment so that the whole behavior of the distributed system
specified in the service specification is implemented. In order to analyze how
each protocol entity specification cooperates with others in executing the events,
it is desirable to understand what event is executed in the service specification
while the tuple of the protocol entity specifications are executed. So, the sim-
ulator can display the current behavior expressions of both the protocol entity
specification and the service specification on two graphical windows. We can
also observe the behavior of n protocol entity specifications and the correspond-
ing behavior of the service specification on n+1 windows on the same computer
display. This facility enables the designers to develop the correct protocol en-
tity specifications by trial and error from a service specification described in the
class which the derivation algorithm cannot treat.

The simulator is also applied to enact a software process. Using the deriva-
tion algorithm, the protocol entity specifications corresponding to engineer’s
process descriptions can be derived from the service specification of a software
process. By executing each engineer’s process description at his/her workstation
using the simulator, the whole software process can be enacted and the commu-
nication between engineers can be automatically exchanged. In addition, the
simulator is extended to support each engineer’s work. The main appended fa-
cilities are to display the currently executable events (activities of each engineer)
on a menu window, and to invoke the required tools for the activity selected on
the menu.

At the final stage in developing the distributed systems, the final system
specifications must be implemented as efficient object codes for target machines.
There have been proposed efficient implementation methods by restricting the
class of the LOTOS specifications [13, 17]. For an efficient implementation using
a multi-thread mechanism, Ref. [13] restricts each alternatively executed pro-
cess be an action-prefix sequence (neither alternative, parallel, synchronization
nor disabling composition of several subprocesses) so that the tuple of synchro-
nizing processes is statically decided. However, we would not like to give such
restrictions to LOTOS specifications. General LOTOS specifications contains
the choices, interruptions and synchronizations between processes where each
process also consists of several parallel and/or alternative subprocesses. In such
a class, a tuple of synchronizing processes are dynamically decided depending
on the selected processes. In general, if we implement such a class, a number
of the communications may have to be exchanged dynamically among the pro-
cesses for preserving the temporal ordering of events. So, it is important how
efficiently we can implement such dynamic communications.

Chapter 5 introduces an implementation method for such a class of LOTOS
specifications (including all basic operators such as choice, parallel, synchro-
nization and disabling, and data parameters defined in abstract data types, and
puts no structural restrictions in behavior expressions) within a node (proces-
sor). The proposed method uses an efficient dynamic message exchange mech-
anism among processes to implement LOTOS specifications where the num-

5

ber and the combination of synchronizing processes can be only dynamically
decided. To handle concurrent processes efficiently, the method also uses a
multi-thread mechanism. In the proposed method, each sequentially executable
sub-expression (called run-time unit) is mapped to a thread in the object code
with a multi-thread mechanism, and all threads are created and executed con-
currently as autonomous processes in the object codes. The threads access the
same shared data area (called the control area) so that they execute events in
the order specified in the specification. A compiler which generates such multi-
threaded object codes is also developed.

In the proposed method, to implement the hierarchically specified operators
of LOTOS behavior expressions, a control area consists of the structured data
areas where each area is used to implement the corresponding operator. The
temporal ordering of events between two threads specified with choice, disabling,
synchronization and so on, is implemented by accessing the corresponding area
in the control area. In the object code, when each autonomous thread accesses
the control area hierarchically and knows the thread can execute its events, the
thread writes its intention to the corresponding areas and executes the events.
The list of areas in the control area which each thread accesses step by step
is called analysis path. The mutual exclusion mechanism in the multi-thread
mechanism is used for the concurrent threads to avoid accessing the same area
inadequately. To shorten the time to access the control area may contribute the
efficiency in executing the derived object codes. For this purpose, several efforts
are made to reduce each analysis path in the control area. The asynchronous
parallel operator and choice operator among action-prefixed sequences are im-
plemented with no areas so that the size of the control area is statically reduced
in compilation. To keep the size of control area appropriately, the unnecessary
parts of the area are removed and a new area is added dynamically depending
on each process invocation, process termination and so on.

LOTOS specifications include the abstract data type definitions (ADTs)
described in an algebraic specification language ACT ONE [14]. The execution
of such ADTs in the complete class of ACT ONE requires conditional term
rewriting systems, which are difficult to implement unless the class is restricted.
Although there are requirements for automatic implementation of the ADTs
in LOTOS specifications, most existing implementation techniques force us to
implement the data type definitions manually in other compilable languages
such as C.

In the proposed implementation technique, for a subset of ACT ONE, the
ADTs can be converted into efficient object codes using the existing compiler
for a functional language ASL/F [22, 30].

Using the above implementation method, the wider class of LOTOS spec-
ifications can be converted into the object codes which run with the multi-
thread mechanism on one processor. Some experimental results have shown the
compiler can generate more efficient object codes than other existing LOTOS
compilers with respect to the parallel and choice execution of events.

In order to evaluate the efficiency of the generated object codes, the fa-

6

cility to deal with animations is added to the compiler. In general, in order
to understand and monitor the dynamic behavior of the real-time systems like
communication protocols, it is desirable to display the dynamic behavior of
the systems visually using animations. In such visualization, we would like
to describe the scenarios which contain contents of the visualization, indepen-
dently and without modifying the original specifications. For this purpose, a
visualization technique is proposed. In the visualization technique, using the
multi-rendezvous mechanism of LOTOS, we combine a system specification and
its visualization scenario with synchronization operators concerning with the
events to be visualized. A tuple of the original specification and its visualiza-
tion scenario is converted into the multi-threaded object code by the compiler.
To describe animations, some animation primitives are introduced to be de-
scribed in LOTOS. The generated object codes display the animations using
the animation server mechanism proposed in Ref. [50].

When we tried to visualize Dijkstra’s “five dining philosophers” based on
the visualization technique, the overhead time taken to synchronize events be-
tween the original specification and its visualization scenario was about 20% of
the whole execution time of the original specification. The experimental results
have shown that the generated object codes can display animations in real-time.

In this thesis, for a wide class of LOTOS, the techniques deriving protocol
entity specifications from a service specification, executing and visualizing a
tuple of protocol entity specifications with a simulator, and implementing each
protocol entity specification as an efficient object code are presented. The results
of the above researches may contribute the efficient design and development of
the reliable distributed systems.

Hereafter, in Chapter 2, the brief explanation of the formal specification
language LOTOS is described, and the service specification in LOTOS and
the corresponding protocol entity specifications are explained. In Chapter 3, a
derivation technique of protocol entity specifications from a service specification
is introduced. In Chapter 4, a graphical LOTOS simulator which executes each
derived protocol entity specification and display its dynamic behavior visually
is provided. And the application of the simulator is also presented. In Chap-
ter 5, a technique to implement LOTOS specifications using the multi-thread
mechanism is explained, and the compiler based on the technique is provided.
A visualization technique of LOTOS specifications which displays the dynamic
behavior of the specifications using the compiler, is also proposed.

7

Chapter 2

How to Describe Distributed
Systems in LOTOS

2.1. A formal specification language LOTOS
2.1.1 Behavior expressions

In LOTOS, we describe a specification as a process which consists of several
sub-processes. In each process, we specify the events observed from the exter-
nal environment and their temporal ordering as a behaviour expression. The
operators shown in Table 2.1 can be used to specify the sequential execution
of events, alternative, synchronized and parallel execution, interruption and so
on. In Table 2.1, α represents an event, and B,B1 and B2 represent expressions
consisting of some events, some process invocations and the above operators.
In (4), g1, ..., gk are gate names whose events must be synchronized between B1

and B2 (‘||’ also means that all events of B1 and B2 must be synchronized each
other). In (7), an invocation of a sub-process P is specified.

2.1.2 Abstract data types

In LOTOS, the algebraic specification language ACT/ONE [14] is used for defin-
ing the data types and their operations which are used to describe guard ex-
pressions and/or I/O values in each event [31].

Table 2.1: LOTOS operators
(1) action-prefix α; B
(2) choice B1[]B2

(3) parallel B1|||B2

(4) synchronous parallel B1|[g1, · · · , gk]|B2, B1||B2

(5) disabling B1[〉B2

(6) enabling B1 À B2

(7) process instantiation P [g1, · · · , gn](v1, · · · , vm)

8

Node 1 Node 2 Node 3

communication medium

j a b

Board J Player A Player B

Figure 2.1: Janken game in a distributed system

2.2. Service specification and its correct protocol spec-
ification

In this section, we explain the difference between a service specification and
the corresponding protocol specification definitely. Then, we give the formal
definition of the correctness of the protocol specification.

2.2.1 Service specification

Even if several nodes cooperate to provide a service, we do not describe the
exchange of the synchronization messages and data values in a service specifi-
cation.

For explanation, we will use Janken Game. Janken Game is a finger-
flashing game of paper-scissors-stone. Paper wins against stone. Stone wins
against scissors. Scissors wins against paper. Each player chooses one of them.
For instance, if the players A and B choose stone and scissors, respectively,
then the player A wins the game. If they choose the same one, then they try
the game again. Suppose that we play Janken Game in a distributed system
(Fig. 2.1).

There are a Board J and two players A and B. In Fig. 2.1, we assume
that there are three nodes 1, 2 and 3. These nodes correspond to the Board J
and two players A and B, respectively. They have the gates “j”, “a” and “b”,
respectively.

First, the node 1 shows the “start” of the game to the Board J(gate “j”).
Then two players give their choices at the gates “a” and “b”, respectively. The
system decides the winner and shows it to the Board J. If the game is a tie, then

9

Table 2.2: Service specification of Janken Game

specification Janken[j,a,b]:exit

(* the description of the data types used in this program *)

behavior Game[j,a,b]

where

process Game[j,a,b]:=

j!"start" ; (a?x:finger ; exit ||| b?y:finger ; exit)

>> (([result(x,y)="A"] -> j!result(x,y) ;

(a!"win" ; exit ||| b!"loss"; exit))

[] ([result(x,y)="B"] -> j!result(x,y) ;

(a!"loss"; exit ||| b!"win" ; exit))

[] ([result(x,y)="tie"] -> j!result(x,y); Game[j,a,b])

)

endproc

endspec

the string “tie” is shown to the Board J and the game is carried out again. If
either two players A or B wins the game, then the strings “win” and “loss” are
shown to the gates of the winner and loser, respectively. In Table 2.2, a service
specification of this game is described in LOTOS.

In Table 2.2, “result(x,y)” is a function which calculates the winner of
this game. It returns the string ”A” (or ”B”) if “x” wins (loses) against “y”.
Otherwise, it returns the string ”tie”.

2.2.2 Protocol specification

On the level of the protocol specification, the communication medium is con-
sidered explicitly. If some nodes must cooperate to provide a service, they must
synchronize each other in order to keep the temporal ordering of the execution
of the events.

LOTOS has rendezvous communication mechanisms among more than two
nodes. However, we treat only asynchronous communication between two nodes.
For this restricted class, some techniques synthesizing protocol specifications
have been proposed [19, 24, 34, 36]. Also many practical protocols can be
described in this class [34]. Therefore, we think the class is still useful. We have
easily implemented the communication mechanisms of this class using inter pro-
cess communication(IPC) of UNIX system. Hereafter, we assume asynchronous
communication.

For example, in order to execute an event “a” at a node “i” and then to
execute an event “b” at another node “j”, the node “i” must send a synchroniza-
tion message to the node “j” after “a” is executed. The node “j” must execute
“b” after the node “j” receives the synchronization message. If a node uses the
data values which it does not know, the node must receive the values from the

10

Node 2

Node 1

Player B

Node 3

j!"start"

r12(1)

r13(1)

s13(1)

s12(1)

a?x:finger

b?y:finger

s31(y)

s21(x)

j!result(x,y)

r12(2) a!"win"

b!"loss"r13(2)

s13(2)

s12(2)

r31(y)

r21(x)

synchronization message

data value

time

time

time

Player A Player A

Player B

Board J Board J

Figure 2.2: An execution process of protocol specification

nodes which know them. For example, if a value of a variable “x” is inputted at
a node “i” and another node “j” needs the value, then the value must be trans-
mitted from the node “i” to the node “j”. So, we must determine what kinds of
the synchronization messages and data values should be sent and/or received in
each node. We must also determine the timing of the sending/receiving actions
and the destinations of the sending/receiving messages and data.

We assume that there is a reliable asynchronous communication channel
from each node “i” to any other node “j”. That is, we assume that each message
sent from the node “i” is eventually received by the node “j”. Each channel
does not lose, duplicate, nor insert messages. At each node “i”, the sending
action of a synchronization message “m” to a node“j” is described as the spe-
cial event “sij(m)”. And the receiving action of a message “m” from a node
“j” is described as “rji(m)”. There are two types of messages : synchronization
messages and data values. We use the integers as the varieties of the synchro-
nization messages. Let “k” be an integer and let “x” be an variable. The events
sij(k) and sij(x) represent the transmission of the synchronization message “k”
and the data value of the variable “x”, respectively.

In Table 2.3, we will give a protocol specification which provides the service
described in Table 2.2. An execution process of the protocol specification in
Table 2.3 is illustrated in Fig. 2.2.

First, the node 1 executes the event j!”start” and sends the synchronization
messages “1” to the nodes 2 and 3. If the nodes 2 and 3 receive the messages,
then they read the choices of the players A and B and inform them to the node
1. Then, the node 1 decides the winner and shows it to the Board. If the winner

11

Table 2.3: Protocol specification of Janken Game
(1) Node 1

specification Janken_1[j,s12,s13,r21,r31]:exit
... (the description of the data types used in this program)
behavior Game_1[j,s12,s13,r21,r31]
where
process Game_1[j,s12,s13,r21,r31] :=

j!"start" ; (s12(1) ; exit ||| s13(1) ; exit)
>> (r21(x);exit ||| r31(y);exit)
>> (([result(x,y)="A"] -> j!result(x,y) ;

(s12(2);exit ||| s13(2);exit))
[] ([result(x,y)="B"] -> j!result(x,y) ;

(s12(3);exit ||| s13(3);exit))
[] ([result(x,y)="tie"] -> j!result(x,y) ;

(s12(4);exit ||| s13(4);exit)
>> Game_1[j,s12,s13,r21,r31])
)

endproc
endspec

(2) Node 2

specification Janken_2[a,r12,s21]:exit
... (the description of the data types used in this program)
behavior Game_2[a,r12,s21]
where
process Game_2[a,r12,s21]:=
r12(1) ; a?x:finger ; s21(x) ;

((r12(2) ; a!"win" ; exit)
[] (r12(3) ; a!"loss"; exit)
[] (r12(4) ; Game_2[a,r12,s21])
)

endproc
endspec

(3) Node 3

specification Janken_3[b,r13,s31]:exit
... (the description of the data types used in this program)
behavior Game_3[b,r13,s31]
where
process Game_3[b,r13,s31]:=
r13(1) ; a?y:finger ; s31(y) ;

((r13(2) ; b!"loss"; exit)
[] (r13(3) ; b!"win" ; exit)
[] (r13(4) ; Game_3[b,r13,s31])
)

endproc
endspec

12

is A (or B), then it sends the synchronization messages “2” (or “3”) to the nodes
2 and 3. The nodes 2 and 3 know the winner by receiving these messages. If
they receive the synchronization message “4”, then the processes Game 2 and
Game 3 are invoked again.

2.2.3 Correctness of protocol specification

In this section, we will define the correctness of protocol specifications formally.
Let P and Q be processes written in LOTOS. If the processes P and Q are
observational equivalent [31], then we describe “P≈Q”. Let Pk be a specification
of the node “k”. For a service specification PS and a protocol specification
<P1,.· · ·.,PN > with N nodes , we say that the protocol specification is correct
with respect to the service specification PS if the following relation holds.

PS ≈ hide G in (P1 ||| P2 ||| · · · ||| PN) |[G]| Comm
Here,
G = { sij, rij | 1 ≤ i, j ≤ N, i 6= j }
Comm = Comm12 ||| · · · ||| Commij ||| · · · ||| CommN−1 N

(1 ≤ i, j ≤ N, i 6= j)
Commij = sij ; rij ; Commij

“Hide H in Q” represents that the events of the process Q belonging to
H are treated as internal events. Internal events are not observed from the
external environments. And “P |[F]| Q” denotes that two processes P and Q
are executable in parallel, and that the events of P and Q belonging to F must
be executed simultaneously. The expression “(P1||| · · · ||| PN) |[G]| Comm”
requires that a receiving action should not occur prior to a sending action in
each communication channel, and that if a sending action is executed, then the
corresponding receiving action must be executed eventually. And “hide G”
represents that the sending/receiving actions are treated as internal events.

For example, since the service specification “Janken” in Table 2.2 and the
protocol specification <Janken 1, Janken 2, Janken 3> in Table 2.3 satisfy the
following relation, the protocol specification is correct.

Janken[j,a,b] ≈ hide G in (Janken 1[j,s12,s13,r21,r31]
||| Janken 2[a,r12,s21]
||| Janken 3[b,r13,s31]) |[G]| Comm

Here, G = {s12,s13,r21,r31,s21,r12,s31,r13}
Comm = Comm12||| Comm13||| Comm21||| Comm31

Commij = sij ; rij ; Commij

We can show that the above protocol specification is correct by using the tech-
nique in Ref. [49].

13

Chapter 3

Derivation of Protocol
Specifications from Service
Specifications in LOTOS with
Data Parameters

3.1. Introduction
In this chapter, a derivation algorithm for LOTOS specifications with data
parameters and all basic operators such as choice, parallel, synchronization and
disabling is provided.

The derivation algorithm inputs a service specification and an assignment
between gates and nodes, and outputs a tuple of protocol entity specifications.
The basic steps for deriving the correct protocol entity specifications are (i) to
extract the events executed in each node, and (ii) to insert appropriate commu-
nication events between the extracted events. In order to preserve the tempo-
ral ordering of events among distributed nodes, some communication messages
must be exchanged between the node executing an event and the other nodes
executing the next events. When a new data is input in a node, the data may
have to be transferred to other nodes which use the data.

In the derivation algorithm, the source and destination of the communica-
tion events are calculated from the relationships about the temporal ordering
of events and the data dependency only when those communication events are
necessary. Several functions are defined for the syntax tree of the behavior ex-
pression in the given service specification to calculate the sets of nodes which
can execute first and last executable events, respectively, and the set of the
pairs of the data name and node using the data. To describe the derivation
algorithm easily, the derivation algorithm containing the calculation of such
sets is described in an attribute grammar. The automatic derivation system is
developed as a system which only evaluates the attributes.

In this chapter, the derivation algorithm is explained using a software pro-
cess consisting several engineers as an example of a service specification. The
derivation system is also developed to evaluate the usefulness of the proposed

14

algorithm.

3.2. Developing distributed systems using LOTOS
In this chapter, as an effective example of distributed systems, we give a service
specification of a software process consisting of several engineers in LOTOS.

3.2.1 Definition

First, we give notations to describe software processes in LOTOS. We assume
that each engineer’s activity in a software process is either an input action,
an output action or an input/output action (where several data are input and
output). In LOTOS, an activity is described as an event as follows:

Person!x?y : type · · · [x = tool1(x), y = tool2(z), · · ·]

Here, we call Person as an engineer’s ID, or simply an engineer, which cor-
responds to a member in a process. we call the expression !x?y : type · · · as
an input/output part, in which an input action(?y : type), an output action(!x)
or an input/output action(!x?y : type. . .) is described. We also call the part
nipped in [] as a work content. In a work content, we describe some tool names
activated when an activity is executed. An output action to an engineer such
as preview of a file is described as !x[x = tool1(x)], where x is a variable(data)
representing a file name, and x = tool1(x) represents a data x is output us-
ing a tool tool1. Similarly, an input action to a computer such as editing of
a file is described as ?y : type[y = tool2(z)], where y is a data of type type,
and y = tool2(z) represents that a data y is input to a computer using a tool
tool2 with an existing data z. An input/output action is the combination of the
above two. A new data is generated only in an input or input/output action. In
LOTOS, conditional expressions can be also described in a work content [31].
For example, the activity “SE?w : int[w > 0]” cannot be executed until the
integer value more than 0 is input to the variable w.

We can omit both an input/output part and a work content in an activity.
If neither part is described, we call the activity as a dummy activity (which per-
forms nothing). If only an input/output part is described, data is input(output)
to(from) a computer via standard input(output).

For example, an activity such that a system engineer SE modifies a system
specification(fully, he edits an old file of the specification oldspec, and makes a
new file spec) is described as follows in LOTOS:

SE?spec : file[spec = edit(oldspec)]

Here, we suppose that edit means a tool for editing files(such as emacs or vi).
A file generated by above activity is assigned to a variable spec.

15

3.2.2 Describing service specification

We describe a service specification by specifying activities of all engineers in a
process and their temporal order. The operators of LOTOS in Table 2.1 are
used to specify the order. For example, a sequence of successive activities such
that 1. a system engineer(SE) gives a specification of a system(spec), and then
2. a programmer(PG) makes a program (code) based on the specification(spec),
is described as follows:

SE?spec:file[spec=edit()];
PG!spec?code:file[spec=view(spec),

code=makeprog()]; exit

(Here, we suppose that edit, view and makeprog are tools for editing files,
displaying files and making programs, respectively.) The operator “;” connects
two activities, and offers successive execution of them. Any number of activ-
ities can be connected using “;” for successive execution. An operator exit is
placed at the end of the sequence of successive activities. A process identi-
fier may be also placed at the end of the sequence instead of exit(this means
process invocation). We call such a sequence simply as a successive sequence.
In LOTOS, selective execution, asynchronized parallel execution, synchronized
parallel execution, successive execution and interruption between any two suc-
cessive sequences can be described using the operators in Table 2.1.

Now, we try to describe the following simple software development process
MakeCode in LOTOS as an example.

All activities and their temporal order in the process MakeCode

1. SE edits an old specification of the system oldsp, and makes a new speci-
fication spec.

2. P1, P2 and QE edit old versions of two source programs and a test data,
olds1, olds2 and oldtd, and make new versions src1, src2 and tstdt, re-
spectively, in parallel.

3. QE makes an executable module of the system code by compiling the
source programs src1 and src2 and linking their objects.

4. QE tests the executable module code with the test data tstdt and decides
whether the process should be repeated or terminated(he puts “NO” for
repetition and “OK” for termination into a variable res).

5. SE selects process repetition or process termination from the QE’s testing
result res.

6. Whenever the process is running, SE can interrupt the process.

We give the service specification of MakeCode in Table 3.1.

16

process MakeCode[SE,P1,P2,QE]
(oldsp:file, olds1:file, olds2:file, oldtd:file):exit :=

((SE?spec:file[spec=makedocument(oldsp)];
(P1!spec?src1:file[spec=view(spec)

,src1=edit(olds1)]; exit
||| P2!spec?src2:file[spec=view(spec)

,src2=edit(olds2)]; exit
||| QE!spec?tstdt:file[spec=view(spec)

,tstdt=edit(oldtd)]; exit))
À
(QE?code:file[code=compile(src1,src2)];
QE?res:string[res=testcode(code,tstdt)];

(SE!”Try again”[res=”NO”];
MakeCode[SE,P1,P2,QE](spec,src1,src2,tstdt)
[] SE!”OK”[res=”OK”]; exit))

)
[〉 SE!”Interruption”; exit

endproc

Table 3.1: Service specification of “MakeCode”

3.2.3 Outline for deriving protocol specifications

Outline for deriving protocol specifications

In order to derive protocol entity specifications from a service specification, it
is necessary to be able to deal with communications among engineers (nodes)
in LOTOS. We describe the communication actions in LOTOS as follows:

• the action sending message m to the engineer n . . . sn(m)

• the action receiving message m from the engineer n . . . rn(m)

We also describe sending actions from one to several as s{P1,P2,QE}(m1), for ex-
ample, and receiving actions from several to one as r{SE,P1}(m2). Here, above
communication actions are treated as the activities. First, we explain how to
derive protocol entity specifications from a service specification using the ex-
ample in Table 3.1. For simplicity of discussion, let’s consider the case that
the interruption in MakeCode does not occur. Deriving steps are (1) extract-
ing all activities of an engineer, and (2) deriving necessary communications by
searching who performs the activities located before and after each extracted
activity.

We focus on the programmer P1. The activity of P1 is (1) “P1!spec?src1:file
[. . .]”, and the process invocation in this process is (2) “MakeCode[SE,P1,P2,QE]
(. . .)”. In order to execute the activity (1), P1 needs the data spec in the previ-
ous activity “SE?spec . . . ”. The engineer’s IDs of the activities located before
and after the activity (1) are SE and QE, respectively. The data src1 made in
the activity (1) is used in the succeeding QE’s activity. Consequently, in order
that the process runs cooperatively, P1 must execute the activity (1) after re-
ceiving the data spec, and then he must send the source code src1 to QE. In
the process invocation (2), since the engineer’s ID of the activity located before

17

it is SE, P1 must receive the synchronization message for the process invoca-
tion from SE and invoke the process after that. P1 may also receive another
message when SE decides the process termination because either the process
invocation (2) or process termination is performed selectively. It is obvious that
the temporal order of P1’s activities should be as follows:

rSE(spec); P1!spec?src1:file[. . .];
sQE(src1);
(rSE (message for process invocation);

MakeCode. . .
[] rSE(message for process termination);

exit)

Communications to be derived depend on the types of the LOTOS opera-
tors in a service specification. The details are described in Section 3.3.

Execution of protocol specifications

A process can be enacted by executing all protocol entity specifications in par-
allel. We have developed a support system for process enaction (the system
is introduced in Section 4.4). Here we outline the facilities which the system
offers. The main facilities are (1) automatic exchange of communication mes-
sages among engineers, and (2) effective guidance of executable activities for
each engineer. The facility (1) enables the engineers not to make mistakes
about communications and to concentrate on their actual works since commu-
nication messages among engineers are exchanged automatically and reliably.
The facility (2) lists the contents of all executable activities at each point of
time on a menu in X-window system. It guides each engineer what to do at
each point of time. Since the data and development tools required in an activ-
ity are automatically selected and activated by the system, no mistakes about
them will occur. The above facilities (1) and (2) enables the engineers only to
perform the contents displayed on the menu successively so that the process
proceeds in order of specifying in a service specification. The system can also
display the current expressions of the service specification and each engineer’s
protocol entity specification at each point of time graphically on his display.
This informs the engineer the current status of the process.

Fig.3.1 shows a snapshot of our system. Here, the protocol entity specifi-
cation of P1 derived from the service specification in Table 3.1 is executed by
the system. The protocol entity specifications of others are similarly executed
elsewhere. Executing steps in our system are as follows:

step1 The system displays the syntax trees of the current protocol entity spec-
ification and service specification on graphic windows(MakeCode(P1) and
MakeCode(Whole Process) in Fig.3.1). The dotted rectangles in the win-
dows show executable activities(here, P1 can execute the activity P1!spec
?src1:file [spec = view(spec), src1=edit(olds1)]).

18

Figure 3.1: Snapshot of support system

19

step2 It calculates the executable activities in the current protocol entity spec-
ification and displays the contents of them as a menu(Menu in Fig.3.1).

step3 If the engineer selects one on the menu, then the system activates the
tools required in the activity. He can terminate the work in the activity
by clicking the termination button on the menu.

step4 It rewrites the current protocol entity specification and service specifi-
cation into the new ones where the performed activity in the above step
3 is removed.

step5 The steps 1 to 4 are repeated for the new protocol entity specification
and service specification.

In Fig.3.1, two items are shown on a menu, one is “spec = view(system.spec)”
for displaying the file system.spec and the other is “src1 = edit(module1.c)”
for editing of the file module1.c. Each engineer may want to use his favorite
editor for editing the file. We call such selection the customization of tools.
Our system offers the facility for the customization. Here, actual programs xdvi
and emacs are activated as tools view and edit, respectively. The details are
explained in Section 4.4.

3.3. Deriving protocol specifications
For deriving protocol entity specifications from a service specification, some
algorithms for Basic LOTOS and its subclasses have been proposed [4, 34, 37]
where they do not handle the abstract data types. We have extended the
algorithm in Ref.[34] to a class which can handle the abstract data types. We
introduce this extended algorithm in this section.

In this section, a derivation algorithm for LOTOS specifications with data
parameters and all basic operators such as choice, parallel, synchronization and
disabling is provided. Although the proposed derivation algorithm still imposes
some restrictions such that the alternative events must belong to the same node
as well as the existing algorithms, there were no algorithms dealing with such
a wide class.

Let us suppose that each input/output event is executed at a gate, and
that an assignment of each gate to a node is given by the designer. Here, we
assume that each communication message is exchanged asynchronously through
a reliable communication channel such as a FIFO queue between any two nodes
(synchronous communication among the nodes using the synchronization oper-
ator is not considered).

3.3.1 Derivation algorithm

Basic steps deriving protocol entity specifications from a service specification
are (1) to extract events of a node p from the service specification e and (2) to

20

insert appropriate communications of the node p before and after the extracted
events.

Attribute grammar

For derivation of protocol entity specifications, first we parse the expression(event
sequence) of a service specification and get its syntax tree(hereafter, we call
it an evaluation tree). Secondly, we give the following six attributes to each
node of the evaluation tree. Here, e and p represent any subtree of the eval-
uation tree and any distributed node (processor), respectively. For each event
“Person?x!y · · ·”, we call the pairs 〈Person, x〉 and 〈Person, y〉 as data IDs.
Using data IDs, we can decide who use each data.

SP(e) a set of nodes performing the initial events in a subtree e

EP(e) a set of nodes performing the last events in e

AP(e) a set of nodes performing the events in e

VA(e) a set of data IDs in e

VN(e) a set of data IDs contained in all the evaluation tree

PS(e, p) p’s protocol entity specification for a subtree e

SP, EP, AP, VA and PS are synthesized attributes [2], whose values are calculated
from the leaf nodes to the root node of an evaluation tree. VN is an inherited
attribute [2] where the attribute value of VA at the root node is passed to its
all descendants as the attribute values of VN.

Calculating above attributes to the evaluation tree in the following order,
protocol entity specifications can be derived.

1. Calculating the attribute values of SP, EP, AP and VA for all nodes in
the evaluation tree

2. Calculating the attribute values of VN for all nodes

3. For each node p, calculating the attribute values of PS for all nodes

After above steps, the attribute value of PS at the root node r for a node p,
PS(r, p) is a node p’s protocol entity specification. Attributes SP, EP and AP
are used to know whose events are located before and after each event of p.
Attributes VA and VN are used to know what data are used in events and who
use them.

21

SE!"OK"

[>

[]

MakeCode...

QE?res[res=
testcode(code,tstdt]

QE?code[code=
compile(src1,src2)]

|||

>>

SE?spec[spec=
makedocument(oldsp)]

exit

;

QE!spec?tstdt
[spec=view(spec),
tstdt=edit(oldtd)]

;

res="NO"

res="OK"

A

B

C

SE!"Interruption"

EP={P1,P2,QE}

SP={SE}EP={SE}

P1!spec?src1
[spec=view(spec),
src1=edit(olds1)]

P2!spec?src2
[spec=view(spec),
src2=edit(olds2)]

<SE,spec>

<P1,spec>,<P1,src1>

<P2,spec>,<P2,src2> <QE,spec>,<QE,tstdt>

<QE,code>,<QE,src1>,
<QE,src2>

<QE,res>, <QE,code>,
<QE,tstdt>

SE!"Try again"

D

E

G

F

H

exit exit

exit

exit

;

;

;

;

;

;

;

|||

SP={SE}

SP={SE}

AP={SE,P1,P2,QE}

Figure 3.2: Syntax tree of the service specification of ‘MakeCode’

Derivation technique for each operator

The evaluation tree(syntax tree) for the service specification in Table 3.1
is shown in Fig.3.2. The values of attributes SP, EP and AP at node A in the
tree are {SE}, {P1, P2, QE}, {SE, P1, P2, QE}, respectively. Attribute values
of PS are calculated using the attribute values of SP, EP, AP and VN. PS’s
attribute values depend on the operator of each node. In the below discussion,
the term “node” represents an engineer in the software processes.

• Successive sequence a; β

a; β means that the event sequence β gets executable after the event a is exe-
cuted.
(i) In the case that a makes no new data

In this case, the node of the event a sends synchronization messages to the
node of SP(β) after the event a is executed. The node of SP(β) receive the
messages and then execute the events in β.
(ii) In the case that a makes a new data x

If a new data x is generated in the event a, communication messages are
added to the protocol entity specifications in following order.

1. The node of the event a executes it.

2. He sends the data x to the nodes V = {n|〈n, x〉 ∈ VN(a)} using the data
x in their events and the nodes V receive x respectively.

22

3. The nodes V send synchronization messages to the nodes of SP(β) and
the nodes of SP(β) receive the messages.

4. The nodes of SP(β) execute events in β.

(iii) In the case that β is the process ID(a; P)
In the case that β is the process identifier P , since the process P is invoked

after a has been executed, the synchronization messages should be sent from
the node of a to AP(P) after a is executed.

As an example, we calculate the values of PS at node A in Fig.3.2. Since
the initial event “SE?spec” makes a new data spec, sending actions of data spec
from SE to {n|〈n, spec〉 ∈ VN(SE?spec), n 6= SE} = {P1, P2, QE} are added
to the protocol entity specification of SE and corresponding receiving actions
are also added to the protocol entity specifications of other nodes. Let a right
subtree under the node A be β(whose root node is |||). P1, P2 and QE send
synchronization messages for the data receptions to the nodes of SP(β)={P1,
P2, QE}(here, messages from the node to itself are omitted). Above steps
produce the following partial protocol entity specifications. Here, the node
label A is used as a synchronization message.

service specification
SE?spec:file[. . .];

(P1!spec?src1:file[. . .]; exit
||| P2!spec?src2:file[. . .]; exit
||| QE!spec?tstdt:file[. . .]; exit) . . .

protocol entity specifications
SE: (SE?spec:file[. . .]; s{P1,P2,QE}(spec); exit)

À . . .
P1: (r{SE}(spec) ; exit)

À (s{P2,QE}(A); exit)
À (r{P2,QE}(A); exit)
À (P1!spec?src1:file[. . .]; . . .

(protocol entity specifications of P2 and QE are similar to P1’s)

• Selective execution α[]β

From a simple service specification “SE?x; P1!x; exit [] SE?y; exit”, if we ap-
ply the algorithm for successive sequences to both sides of the operator [] in
the expression independently, the following protocol entity specifications are
derived.

SE: SE?x; sP1(x); exit [] SE?y; exit
P1: rSE(x); P1!x; exit [] exit

In this case, if SE selects the left side expression of [], and P1 selects the right
side expression exit before receiving data x from SE, consistency of the service

23

specification is not guaranteed in the protocol entity specifications. Therefore
synchronization messages must be exchanged between the nodes executing ini-
tial events in each side of [] and the nodes belonging not to one sequence but
to another sequence.

For simplicity of the algorithm, we assume that SP(α)=SP(β)={p′}. This
means that each node executing initial events in α or β is merely a node p′(the
derivation technique in the case that SP(α) 6= SP(β) is introduced in Ref.[37]).
We also assume that VA(α)=VA(β) for preserving consistency of data. In these
assumptions, the protocol entity specification of p′, PS(α[]β, p′) is derived as
follows:

(PS (α, p′) À
sAP (β)−AP (α)(synchronization message))

[] (PS(β, p′) À
sAP (α)−AP (β)(synchronization message))

Similarly, the protocol entity specification of other node p, PS(α[]β, p) is derived
as follows:

(PS(α, p) À γ(α, β)) [] (PS(β, p) À γ(β, α))

Here,

γ(α, β) = if p ∈ AP(β) − AP(α)
then rp′(synchronization message)
else exit

At node D in Fig.3.2, for example, the protocol entity specifications are derived
as follows using the node labels E and F of two subtrees under [].

SE: (((SE!”Try again”[res=”NO”]; exit)
À (s{P1,P2,QE}(E); exit)
À MakeCode . . .)

[] ((SE!”OK”[res=”OK”]; exit)
À (s{P1,P2,QE}(F); exit)))

P1: (((rSE(E); exit) À MakeCode . . .)
[] (rSE(F); exit))

(protocol entity specifications of P2 and QE are similar to P1’s)

• Successive execution α À β

In this case, after execution of events in α the nodes of EP(α) send synchro-
nization messages to the nodes of SP(β).

• Interruption α[〉β
Here, we assume that EP(α)=SP(β)={p′}. If all events in α are executed with-
out interruption, the node of the last event in α sends messages informing no
interruption to all nodes in α and β except himself and the nodes receiving the

24

messages recognize no interruption. If interruption by the initial event in β
occurs during the execution of the events in α, the node of the initial event in
β sends messages informing interruption to all nodes in α and β except himself.
The nodes receiving the messages recognize the occurrence of interruption.

Interruption may occur without an instruction of the node p′ if sending
actions are executed automatically by the system. We cope with this problem
inserting dummy event of the node p′ of initial event in β. In order to interrupt
α by β, we assume that the node p′ executes the dummy event p′. For the node
p′, PS(α[〉β, p′) is derived as follows:

(PS (α, p′) À sAP (α[〉β)−{p′}(synchronization message 1)
[〉(p′; sAP (α[〉β)−{p′}(synchronization message 2) À PS(β, p′))

Similarly, the protocol entity specification of other node except p′, PS(α[〉β, p)
is derived as follows:

(PS(α, p) À γ(1)) [〉 (γ(2) À PS(β, p))

Here,

γ(i) = if p ∈ AP(α[〉β) − {p} then rp′(synchronization message i)
else exit

At node C in Fig. 3.2, since EP(α) = SP(β) = { SE } in α[〉β, above synchro-
nization messages are send from SE to P1, P2 and QE. Using the node labels
B and H in Fig. 3.2, protocol entity specifications of this part are described as
follows:

SE: (PS(α, SE) À (s{P1,P2,QE}(B); exit))
[〉 ((SE; (s{P1,P2,QE}(H); exit)) À PS(β, SE))

P1: (PS(α, P1) À (rSE(B); exit))
[〉 ((rSE(H);exit) À PS(β, P1))

(protocol entity specifications of P2 and QE are similar to P1’s.)

• Parallel composition α|||β and α|[Q]|β
PS(α|||β, p) = PS(α, p)|||PS(β, p)
PS(α|[Q]|β, p) = PS(α, p)|[Q]|PS(β, p)

Here, we restrict that neither of events in α and β assign the value to the same
variable x.

In combination of above techniques for all operators, we can get the full
protocol entity specifications. We show the protocol entity specifications of SE,
P1, P2 and QE in Table3.2.

In our algorithm, we suppose that communication messages are exchanged
through reliable FIFO channels in which messages are never lost. The algorithm
requires the initial events in the both sequence of selective execution to belong
to the same node. We can cope with this restriction by inserting appropriate
dummy events into the service specification.

25

Table 3.2: Protocol specification of ‘MakeCode’

Protocol entity specification of SE

process MakeCode[SE](oldsp: file):exit :=
((SE?spec:file[spec=makedocument(oldsp)];exit)
À (s{P1,P2,QE}(spec);exit))

À ((rQE(res);exit)
À (((SE!”Try Again”[res=”NO”]; exit)

À (s{P1,P2,QE}(E); exit)
À MakeCode[SE](spec))

[] ((SE!”OK”[res=”OK”]; exit)
À (s{P1,P2,QE}(F); exit))))

À (s{P1,P2,QE}(B); exit))
[〉 ((SE; s{P1,P2,QE}(H); exit)

À (SE!”Interruption”; exit))
endproc

Protocol entity specification of QE

process MakeCode[QE](oldtd: file):exit :=
(((rSE(spec); exit)
À (s{P1,P2}(A); exit) À (r{P1,P2}(A); exit)
À (rP1(src1); exit ||| rP2(src2); exit

||| QE!spec?tstdt:file[spec=view(spec)
,tstdt=edit(oldtd)];exit))

À ((QE?code:file[code=compile(src1,src2)];
QE?res:string[res=testcode(code,tstdt)];
(sSE(res);exit))

À (((rSE(E);exit) À MakeCode[QE](tstdt))
[] (rSE(F);exit)))

À (rSE(B);exit))
[〉 (rSE(H);exit)

endproc

Protocol entity specification of P1

process MakeCode[P1](src1: file):exit :=
(((rSE(spec); exit)
À (s{P2,QE}(A); exit)
À (r{P2,QE}(A); exit)
À ((P1!spec?src1[spec=view(spec),

src1=edit(olds1)]; exit)
À (sQE(src1);exit))

À (((rSE(E);exit) À MakeCode[P1](src1))
[] (rSE(F);exit)))

À (rSE(B);exit))
[〉 (rSE(H);exit)

endproc

Protocol entity specification of P2

process MakeCode[P2](src2: file):exit :=
(((rSE(spec); exit)
À (s{P1,QE}(A); exit)
À (r{P1,QE}(A); exit)
À ((P2!spec?src2[spec=view(spec),

src2=edit(olds2)]; exit)
À (sQE(src2);exit))

À (((rSE(E);exit) À MakeCode[P2](src2))
[] (rSE(F);exit)))

À (rSE(B);exit))
[〉 (rSE(H);exit)

endproc

26

3.3.2 Derivation system

We have developed the system deriving protocol entity specifications from a
service specification automatically. When a service specification in LOTOS,
syntax rules of LOTOS (specified in CFG form) and attribute grammars are
input to the system, the corresponding protocol entity specifications are output.
As described in Section 3.3.1, our derivation algorithm is described in attribute
grammars. The system only evaluates these attributes. Since we can modify
syntax rules of description language, the class of the language is changeable.
Attribute grammars makes us easy to modify the derivation algorithm. Above
two facilities are the main characteristics of our system. If the varieties of
the operators used in LOTOS are reduced, there are more efficient derivation
algorithms which have been proposed(for example, in Ref.[4]). Our system is
applicable to those algorithms.

3.4. Evaluation
In the 6th ISPW conference, in order to compare and evaluate the various
software process modeling approaches, Kellner et al. have proposed “Software
Process Modeling Example Problem” [35] which specifies a process modifying
one module of a system. Some solutions about this problem have been re-
ported(see Ref. [11]). We have also tried to describe the service specification
of the problem [46]. We have derived the protocol entity specifications from it,
and investigated the usefulness of our approach in the following steps.

step1 We have measured the CPU time for deriving the protocol entity specifi-
cations from the service specification of ISPW-6 problem with our deriving
system and evaluated the result.

step2 We have examined the percentage of the redundant communications in
the derived protocol entity specifications.

step3 We have examined the rough ratio between the communications in the
protocol entity specifications and the activities in the service specification.

We have used a SUN SPARCstation ELC to measure the derivation time
in step1.

3.4.1 Evaluation

We have got the result in Table 3.3 and Table 3.4. We have used the simple
process description MakeCode in Section 3.2.2 to know the deriving efficiency
for a small description.

In step1, it has taken 79.7 seconds to derive the protocol entity specifica-
tions from the service specification of the ISPW-6 problem whose syntax tree has
3967 nodes(in Table 3.3). This shows that it does not take much time to derive
protocol entity specifications with our system for most practical examples.

27

Number of nodes Derivation time
of service specification

MakeCode 502 6.2s
ISPW6 3967 79.7s

Table 3.3: Time of deriving protocol entity specifications

Number of events Number of communications
of service specification in protocol entity specifications

MakeCode 10 47
ISPW6 83 232

Table 3.4: The number of derived communications

In step2, we have detected some redundant communication messages in the
protocol entity specifications. In the current version of our derivation algorithm,
for the service specification such as SE?spec; exit >> P1!spec · · ·, the derived
protocol entity specifications include two communication messages exchanged
between SE and P1. One is a communication for exchanging data spec and
the other for the synchronization message by the operator >>(in this case the
latter communication is needless). The percentage of this kind of redundant
communication messages in the protocol entity specifications is less than 10% of
all communication messages in the descriptions. Since it seems to be difficult for
the process designers to derive the protocol entity specifications from the service
specification manually, our derivation algorithm is still useful. Our deriving
system which can modify the derivation algorithm easily(in Section 3.3) enables
us to improve the algorithm to optimize the communication messages. The
details of the optimization are given in Ref. [34].

In step3, we have got the result in Table 3.4 where the number of the
communication actions in the protocol entity specifications is about 3 to 5 times
as many as that of the activities in the service specification. This shows that
the communications are troublesome to describe and that they disturb human
understanding of the description. So, we are sure that our approach describing
no communications in a service specification and deriving its protocol entity
specifications automatically is useful to describe and enact software processes.

3.5. Conclusion
In this chapter, we have proposed a LOTOS based technique for deriving proto-
col entity specifications from a service specification automatically. We have de-
veloped the support system which derives the protocol entity specifications and
executes each protocol entity specification. We have also applied our approach

28

to the ISPW-6 problem [35], where we have described its service specification
and derived the protocol entity specifications corresponding to the engineers’
process descriptions automatically. The derivation time was about 80 seconds
with SUN SPARCstation ELC.

29

Chapter 4

Interactive Execution and
Visualization of Protocol
Specifications in LOTOS in a
Distributed Environment

4.1. Introduction
Generally, in designing phases, the system specifications are frequently modified
for debugging and/or improving the systems as the result of the analysis of
system behavior. For the efficient behavior analysis, the simulation to execute
the specification interactively is useful.

This chapter presents a graphical simulator named PROSPEX(PROtocol
SPecification EXecutor) which executes each protocol entity specification and
displays its dynamic behavior visually. In order to represent the dynamic behav-
ior of LOTOS specifications with its structural information such as execution
dependency between several processes, it is useful to execute the specification
and to display the syntax tree of the behavior expression visually. The visual
representation of the syntax tree facilitates to observe both the currently exe-
cutable events and the temporal ordering of events in the future from the current
behavior expression. PROSPEX displays such a syntax tree visually, and up-
dates the tree step by step at every event execution. In order to display the
dynamic behavior of the specifications effectively, the mechanism for displaying
the tree structures appropriately and rapidly. So, a fast layout algorithm pro-
vided in Ref. [39] is used to depict such tree structures. In order to facilitate to
understand the structure of a large specification, PROSPEX can also enlarge a
part of the syntax tree. In this chapter, the design and usefulness of PROSPEX
are described.

4.2. Facilities for executing protocol specifications
In this section, we explain the main facilities of our PROSPEX.

30

4.2.1 Interactive execution of protocol specifications

In PROSPEX, if a service definition PS and a protocol specification <P1,P2,
· · ·,PN > with N nodes are given, then PROSPEX generates N simulators
S1, · · ·, SN−1 and SN and a monitor S0. We use each simulator interactively.
Each simulator Sk gets the specification Pk of the k-th node as the current
behavior expression B0 when it starts the simulation. Here, the current behavior
expression represents the event sequences which the node can execute in the
future. The simulator Sk shows which events are executable for the current
behavior expression Bi. The user chooses one executable event e from the
candidates which the simulator shows. Then, the simulator executes the event
e and then computes a new behavior expression Bi+1 after e is executed. After
that, it shows which events are executable for Bi+1. The simulation is carried
out by repeating these steps.

For example, suppose that the service definition in Appendix B and the
protocol specification in Appendix C are given. PROSPEX generates three
simulators S1, S2 and S3 and one monitor S0. The monitor draws the syntax tree
of the behavior expression of the service definition “Janken”. Each simulator Sk

draws the syntax tree of the behavior expression of the specification “Janken k”
on a display (see Fig. 4.1(a)).

Each leaf corresponds to either an event, a sending/receiving action or a
process name. In Fig. 4.1, the sending/receiving actions “sij(m)” and “rji(m)”
at each node “i” are abbreviated as “sj(m)” and “rj(m)”, respectively. All
executable events are shown by the dotted rectangles. In Fig. 4.1(a), only the
event j!”start” at the node 1 is executable. If the user clicks j!”start” at the node
1, then the simulator S1 executes the event. After j!”start” is executed, a new
behavior expression, say B′, at the node 1 is obtained. For the new expression
B′, the sending actions “s12(1)” and “s13(1)” are executable. The simulator S1

executes these sending actions automatically without interactions from the user.
Then, the receiving actions “r12(1)” at the node 2 and “r13(1)” at the node 3
become executable. The simulators S2 and S3 execute these receiving actions
automatically (see Fig. 4.1(b)). In Fig. 4.1(b), the events “a?x:finger” at the
node 2 and “b?y:finger” at the node 3 are executable. From Fig. 4.1(b), we can
know that both “a?x:finger” and “b?y:finger” are also executable in the service
definition. Fig. 4.1(c) denotes that the player A chooses paper and inputs it
(the input data is assigned on a small window). By executing sending/receiving
actions s21(x) and r21(x), the node 1 knows that the player A chooses paper
and waits for the data from the node 3 (the player B). If the node 3 sends the
choice of player B to the the node 1, then the node 1 calculates the winner and
shows it on a small window (see Fig. 4.1(d)). The simulation is continued by
repeating the similar interactions.

Here, our PROSPEX doesn’t draw the labeled transition system(LTS) [31]
but the syntax tree of a given behavior expression. By drawing the syntax tree,
it is easy to understand the structure of the behavior expression such as the
nesting information of parallel and choice operators. We can easily know what
kinds of synchronization messages must be received to execute an event. But,

31

(a) The event j!”start” is executable (b) The events a?x:finger and
b?y:finger are executable

(c) The player A inputs his choice (d) The Board displays the winner

Figure 4.1: Simulation of protocol specification

32

if we want to prove the equivalence of two specifications, to draw their LTSs is
more suitable. We have developed a test system for LOTOS expressions [38].
In the test system, we have implemented the facility to draw the LTS of a given
behavior expression. Now, we are planning to add the facility to PROSPEX.

4.2.2 Observation of correctness of protocol specification for its ser-
vice specification

PROSPEX has the facility for monitoring a service definition. The monitor S0

checks a status of the simulation of the protocol specifications against the ser-
vice definition. If an event on a node is executed and it is not executable for the
service definition, PROSPEX indicates to the users that the event cannot be
executed. In this case, the protocol specification is not observational equivalent
to the service definition. If the events on the service definition are executable,
then they are executed automatically according to the information from the cor-
responding simulator. If the service definition contains nondeterminism, then
there may be some problems when an event on a protocol specification is exe-
cuted. For instance, suppose that the current behavior expression on a service
definition is “a;b [] a;c”. When the event “a” is executed on a node, the mon-
itor cannot determine to execute which side of event “a” is executed. In such
a case, PROSPEX indicates the candidates of the corresponding events, and
make the users choose one of them. For each execution step, the users can
check whether all executable events in the protocol specification are also exe-
cutable in the service definition. This facility helps the users to develop correct
protocol specifications.

4.3. Design and implementation of the simulator
In this section, we pick up some problems which occurs when we design and
implement the support tools such as PROSPEX, and describe how we have
solved such problems when we have developed PROSPEX.

4.3.1 Class of LOTOS specifications to be executed

In a LOTOS specification, the temporal ordering of the execution of the events
is described as a behavior expression, and the abstract data types used in the
specification are described in an algebraic specification language ACT ONE
[14]. Hereafter, we call the above two parts “the behavior expression part”
and “the data type part”, respectively. Our PROSPEX supports Full LOTOS
functionally although some special operators in Full LOTOS are not supported
for simplicity [56].

In the behavior expression part, we can use the following operators: “;”,
“[]”, “||”, “|||”, “[>”, “>>” and “hide”. But, we do not support the “let”,
“choice”, “par”, “accept” and “any” operators. In the data type part, we can
use the “type”, “library”, “sorts”, “opns” and “eqns” operators. We do not

33

support the “formalsorts”, “formalopns”, “formaleqns”, “sortnames” and “opn-
names” operators. The axioms in the data type part are treated as a term
rewriting system. Therefore , the variables in the right side of each axiom must
be appeared in the left side of the axiom. We do not support conditional axioms.
In LOTOS, all the abstract data types used in a specification must be described
by the users as an algebraic specification even if the abstract data types are
primitive. Although some library texts are prepared, some LOTOS simulators
cannot use the normal mathematical notations such as decimal arithmetic. This
makes LOTOS specifications unreadable. For solving this problem, PROSPEX
supports the normal mathematical notations.

If the text “primitives” is described in the library statement, then primitive
data types such as integer, character, string, list, array and tuple can be treated
as the pre-defined data types. The primitive functions such as if-functions, “+”,
“−”, “∗”, “/”, “=”, “>”, “and”, “or”, “not”,“car” and “cdr” are also treated
as the pre-defined functions. The users do not have to describe the axioms for
these primitive functions when they use PROSPEX.

4.3.2 Pre-processes before executing LOTOS specifications

Since, in LOTOS, the function names used in the data type part and their
syntax are defined by the users, parsing of LOTOS specifications is not simple.
Therefore, some LOTOS simulators do not check the syntax strictly. Here, we
give a method to parse LOTOS specifications strictly.

We have defined an algebraic specification language ASL, and developed a
support system, ASL system, to design and develop programs in ASL [21, 22]. A
specification in ASL can be denoted by a pair t = (G,AX) where G is a context
free grammar and AX is a set of axioms. A set of terminal symbols Term(t)
generated by G is treated as the terms used in this text. The congruence
relation on Term(t) is defined by the axioms AX. ASL system reads a text
t = (G,AX) and generates a parser P(G) for G. The parser P(G) examines
whether a given term can be generated by G. By using this facility, ASL system
examines whether each axiom in AX can be generated by G. If all axioms in
AX are generated by G, ASL system generates an interpreter R(AX) which
regards each axiom in AX as a rewrite rule, and calculates a normal form of a
given term. The normal form corresponds to the value of the given term. Our
interpreter R(AX) treats the axioms AX as a term rewriting system. In order
to parse a LOTOS specification tL, PROSPEX divides the LOTOS specification
tL into two parts, the data type part tD and the behavior expression part tB.
Then, PROSPEX parses each of them.
(1) Parsing Data Type Part

The data type part tD consists of two sub-parts, the function definition
part tDF and axiom part tDA. The function definition part tDF declares the
function names used in the axioms and defines their syntax. The axiom part tDA

describes some axioms whose functions are all defined in the function definition
part. The syntax of the function definition part tDF is defined based on the
grammar GACT of ACT ONE [14, 31]. Therefore, PROSPEX checks the syntax

34

of the function definition part tDF by using the parser P(GACT). If the syntax
of tDF is correct, then PROSPEX constructs a grammar GtDF

for generating the
terms consisting of the functions which are defined in tDF . By using P(GtDF

),
the syntax of the axiom part tDA is checked. If the syntax of both the function
definition part tDF and axiom part tDA is correct, then an interpreter R(tDA) is
derived.
(2) Parsing Behavior Expression Part

Let GB be a grammar generating behavior expressions in LOTOS [31].
PROSPEX examines whether the syntax of a given behavior expression is cor-
rect by using P(GB). The syntax of each guard in the behavior expressions is
parsed by P(GtDF

).
The parser is developed based on Earley method, it takes O(n3) times to

parse a LOTOS specification whose length is n.

4.3.3 Technique to execute LOTOS Specifications

In this section, we describe the facilities for the execution of LOTOS specifica-
tions and their implementation.
(1) Finding Executable Events from Current Behavior Expression

In order to find executable events, PROSPEX searches the syntax tree of
the current behavior expression from the root node to the leaf nodes. The
way to search a given tree depends upon the operators on the internal nodes.
For instance, if the operator “>>” is found while searching a tree, then the
next search is continued to its left descendant node. On the other hand, if the
operator “[]” is found, the search is continued to the both descendant nodes.
Some guard expressions may be described in a behavior expression. While
searching tree, if a guard expression is found, PROSPEX calculates the value of
the guard by using the interpreter R(tDA) which was explained in Section 4.2.
If the value is true, the search is continued. Otherwise, that is, if the value is
false, then we do not search the guard expression. Since the value of each guard
is stored when the value is calculated, it is not calculated twice.
(2) Execution of Executable Event

The three types of events are supported in PROSPEX: (i) Input events and
output events, (ii) Internal events, and (iii) Sending and receiving actions.

The input events and output events are executed by clicking the executable
events on the display. When an input event such as “a?x:finger” is clicked,
PROSPEX opens a small window. The user can give an input value on the
small window (see Fig. 4.1 (c)). When an output event such as “j!result(x,y)”
is clicked, PROSPEX calculates the value of “result(x,y)” and display it on the
small window (see Fig. 4.1(d)). If a guarded event such as “a?x:int[x>2]” is
executed, PROSPEX examines whether the input value satisfies the guard. If
the input value does not satisfy the guard, then the execution of the event is
canceled. The values of the outputs and guards are calculated by using the
interpreter R(tDA).

Internal events are the events which are not seen from the external environ-
ments. Usually each internal event is described as “i”. The “exit” event and

35

the events hidden by the “hide” operator are also treated as the internal events.
PROSPEX executes these internal events as soon as they become executable.

When a sending (receiving) action is executable, PROSPEX sends (re-
ceives) a synchronization message or a data value to (from) the designated node.
In order to help the designer to find some redundant synchronization messages,
the sending/receiving actions can be also executed in manual. If manual mode
is selected, then the sending/receiving actions are executed according to the
guide from the user. By this facility, the designer can easily recognize how the
nodes synchronize each other.
(3) Transformation of Current Behavior Expression

In LOTOS, when an event e is executed for the current behavior expression
B, it must be transformed into a new behavior expression B′ after e is executed.
PROSPEX has the facility for the transformation which was explained in Section
3.
(4) Invocation of A Process

In the syntax tree of a behavior expression which PROSPEX draws, each
process is drawn as a node. When some events in the process become exe-
cutable, the process is invoked. When a process is invoked, it is allowed to re-
place the gate names and parameter names. Therefore, PROSPEX can replace
them. For instance, suppose that “P[a,b](x):= a?y:int;b!x;stop”. If P[f,g](2) is
invoked, PROSPEX replaces the process P[f,g](2) by the behavior expression
“f?y:int;g!2;stop”.

4.3.4 Visual display of current behavior expression

Since nondeterminism and parallelism may be described in LOTOS specifica-
tions, it is difficult to understand the structure of the current behavior expres-
sion if it is displayed as a character string. Therefore, we show the syntax tree
of the current behavior expression graphically on a display so that the users can
understand its structure at a glance. Since the size of each LOTOS specification
may become large, the simulator must be able to handle large trees. Then, we
have developed a graph editor VTM which can handle large trees with thou-
sands of nodes [39]. VTM makes users easy to observe a whole tree and some
specified parts of the tree simultaneously, and makes it easy to input commands
for the tree by allowing direct manipulation on the display. VTM is a library
program which can be used easily from any application program without the
knowledge about X Window System. In order to monitor both the outline of a
whole tree and the details of the specified part of the tree simultaneously on a
display, VTM prepares two windows, GlobalView and Canvas(Fig. 4.2).

On GlobalView a whole tree is illustrated where each node is represented
by a dot without the label and a rectangle called AreaMark are displayed. On
Canvas the area specified by AreaMark are zoomed up. Each node on Canvas is
displayed by a rectangle in which its label is written. In order to observe several
parts simultaneously, it is possible to open more than one canvases. Users can
move and resize AreaMark arbitrarily by pushing the center and left mouse

36

Figure 4.2: Canvas and GlobalView

buttons, respectively, and dragging it to the appropriate directions. It takes
less than 0.2 seconds for VTM to calculate the layout and display the whole
tree which has 1000 nodes (on a DECstation 3100 with 12MB memory).

4.3.5 Performance of the simulator

In this section, we explain the capacity and the speed of PROSPEX. Generally
speaking, the size of the specification PROSPEX can deal with depends on the
memory size of the machine where it works. On a DECstation 3100 with 12MB
memory, PROSPEX can draw a syntax tree which has thousands of nodes.
The number of LOTOS specifications which can be simulated simultaneously
depends on the number of file descriptors in UNIX system. About 30 LOTOS
specifications can be simulated simultaneously on the DECstation 3100.

We have measured the running time of PROSPEX. In order to execute an
input/output event, PROSPEX must (1) check the syntax of the input/output
data, (2) calculate a new behavior expression after the event is executed, (3)
find executable events for the new behavior expression and (4) draw the syntax
tree of the new behavior expression, and so on. For a behavior expression whose
syntax tree has about 200 nodes, it takes about 0.5 - 2 seconds to execute the
above four tasks. If we must calculate the values of the guard expressions, it
takes much time. For Janken Game in Chapter 2, it takes about 6 - 10 seconds
for each simulator to execute the LOTOS specification, communicate each other
and finish one match.

For the current version of our PROSPEX, there are some limitations. For
example, since LOTOSPHERE [16] supports conditional axioms, the inference

37

Communication Medium

n

Support
system

2

Support
system

(LOTOS simulator)

Executable
 activities

Products
 (data)

Process control
 manager

User interface

Actual
works

Supports
(Guidance,
 communication,
 tool invocation,
 etc,...)

Engineer Engineer Engineer
2 n1

Figure 4.3: Support system

using “narrowing” can be handled. But, our PROSPEX does not support it.
Also, our PROSPEX assumes asynchronous communication and cannot handle
rendezvous communication among more than two nodes.

4.4. Application
We have developed the support system for enacting the engineers’ activities.

The composition of the system is shown in Fig.4.3. The description in LOTOS
is interpreted and executed with the LOTOS simulator PROSPEX. The process
is enacted by executing all individual descriptions in parallel. For each engineer,
one system is running with his individual description. All systems cooperate
each other to act in order of the whole description, and offer the three main
supporting facilities to each engineer. The facilities are (1) Management of the
process progress with automatic exchange of communications, (2) Display of
the process status, and (3) Guidance of executable activities with automatic
activation of tools. We explain them one by one.

• Management of the process progress with automatic exchange of
communications

Each support system has the facility for communicating to other systems. Due
to this facility, communication massages in the individual descriptions are ex-
changed among computers automatically and without failures. Therefore, the
engineers can focus on their own works.

38

Figure 4.4: Guidance on menu

• Display of the process status

The current expressions of the whole description and individual descriptions in
LOTOS make successive transformations. Once an executable activity in the
current expression is executed, it is transformed into a new expression in which
the executed activity is removed. The syntax trees of the current descriptions
which our system displays on a screen (Fig.3.1) enable each engineer to know
the current status of the process dynamically. This display of dynamic trans-
formation makes it possible to detect which activities are delayed. The syntax
tree of each individual description also informs each engineer in what order the
activities are successively getting executable. In general, the size of the syntax
tree may become large. For displaying large trees, we have developed a graph
editor VTM [39]. VTM makes it easy to observe a whole tree and some specified
sub-parts simultaneously. Our system uses VTM for displaying the syntax tree.
The users can enlarge and reduce the size of the graph arbitrarily on the display.
It takes less than 0.2 seconds for VTM to display a tree which has 1000 nodes
(SUN SPARCstation ELC).

• Guidance of executable activities with automatic activation of tools

The support system calculates the executable activities from the current in-
dividual description, and shows the contents of them on a menu such as Fig.4.4.
When an engineer selects one of them with a mouse, the tools required for the
activity are activated. The data required for the activity have been prepared
automatically by exchanging messages to the other engineers. Since the fail-
ures concerning with data exchange do not exist, the working efficiency of each
engineer becomes high.

In general there can be some executable activities at each point of time.
These executable activities are hierarchically classified. We call a collection
of contents of parallel executable activities a parallel work set. We also call a
collection composed of some parallel work sets which are selectively executed
among them as a selective work set. In Fig.4.4, there is a selective work set com-
posed of three parallel work sets 1, 2 and 3. An engineer can select one of them.
Suppose he selected 1, then two items view(system.spec) and edit(program.c)
in the parallel work set 1 get executable, and the items in other parallel work

39

sets 2 and 3, get unexecutable. After that, when he selects view(system.spec)
with a mouse, a tool view is activated with a parameter system.spec and finally
the content of system.spec is displayed on the display.

Most software development processes include some repetitive processes. In
a repetitive process, modification may be applied to the same files again and
again. Our support system manages to update files. An engineer can acquire
histories of modification about files and information of any version of the files
such as modifier, their modification times and so on.

Customization of the system

In our system, the actual programs activated in executing an activity can be
changed easily without modifying the formal tool names described in the whole
description. Using the table file, we can make each formal tool name correspond
to one or several actual programs. For example, an activity, “SE?spec:file[spec=
edit(. . .)]”, activates a program emacs if a tool edit is assigned to a program
emacs in the table file(if the content of the table file is modified to vi instead
of emacs, vi will be activated in executing the activity). In order to use a new
tool, we only add one line specifying the correspondence between the formal
tool name and the actual program to the table file. For flexibility in execut-
ing activities, the system also allows us to assign a tool to several programs in
the table file. This enables each engineer to use the several tools in executing
an activity. For example, if a tool name makedocument is assigned to several
programs emacs, latex, dvi2ps, xdvi and lpr in the table file, when an activ-
ity “SE?spec:file[spec=makedocument(. . .)]” is executed, all of these programs
are shown on a submenu and each of them can be activated. The engineer
can use them repeatedly and in parallel. After his work is finished, he selects
“termination” of the activity on the menu. Then a final product of the above
process is assigned to a system variable spec. The above says the system can
be customized as the users want.

4.5. Conclusion
In this chapter, we explained the facilities and implementation of a LOTOS
tool PROSPEX which has been developed to observe the execution processes
of a tuple of protocol entity specifications and to check whether the the tuple
executes the event sequences which satisfy the required service given in the
service specification. PROSPEX supports to prove the correctness of a tuple of
protocol entity specifications. But, in general, it becomes difficult to prove the
correctness if the size of the specification becomes large.

The simulator has been also applied to enact a software process. By ex-
ecuting each protocol entity specification corresponding to engineer’s process
descriptions at his/her workstation using the simulator, the whole software pro-
cess has been enacted and the communication between engineers has become
automatically exchanged. The simulator was also extended to support each en-

40

gineer’s work by adding the facilities displaying the currently executable events
(activities of each engineer) on a menu window, and invoking the required tools
for the activity selected on the menu.

41

Chapter 5

Implementation of LOTOS
Specifications using
Multi-thread Mechanism and
Real-time Visualization of their
Execution

5.1. Introduction
At the final stage in developing the distributed systems, the final system speci-
fications must be implemented as efficient object codes for target machines.

This chapter introduces an implementation method for a wide class of LO-
TOS specifications using a multi-thread mechanism, and a compiler based on
the method is provided. The proposed method uses an efficient dynamic mes-
sage exchange mechanism among processes to implement LOTOS specifications
where the number and the combination of synchronizing processes can be only
dynamically decided. Abstract data types written in a subset of ACT ONE can
be also converted into efficient object codes using the existing compiler for a
functional language ASL/F [22, 30].

In general, in order to understand and monitor the dynamic behavior of
the real-time systems like communication protocols, it is desirable to display the
dynamic behavior of the systems visually using animations. For this purpose,
a visualization method for LOTOS specifications is proposed. In the proposed
visualization technique, using the multi-rendezvous mechanism of LOTOS, we
combine a system specification and its visualization scenario in an extension
of LOTOS with synchronization operators concerning with the events to be
visualized. A tuple of the original specification and its visualization scenario is
converted into the multi-threaded object code by the compiler.

42

Table 5.1: Target class of behaviour expressions
B0 = hide G in B1 | let EQS in B1 | B1
B1 = B1 >> B2 | B2
B2 = B2[> B3 | B3
B3 = B3|||B4 | B3||B4 | B3|[G]|B4 | B4
B4 = B4[]B5 | B5
B5 = [EXP]− > B6 | B6
B6 = α; B6 | stop | exit | (B0) | P [G](V)

process P[a,b,c,q]:= process Q[a,b]:=

[] |||

a;b;exit b;a;exit a;exitb;exit

|||

[] [>

>>

a;(b;exit
 |||c;exit)

b;a;exit Q[a,b]
q!1;P[a,b,c,q]

[>

q!2;Q[a,b]

c;Q[b,a]

[]

Figure 5.1: Tree representation of a behaviour expression

5.2. Implementation of LOTOS specifications using multi-
thread mechanism

5.2.1 Outline of implementation method

In Table 5.1, we show a class of behaviour expressions which we deal with in
this paper.

Basic idea to implement LOTOS behaviour expressions

Here, we will explain the basic idea for implementing LOTOS behaviour
expressions using our portable thread library PTL [1].

In executing a LOTOS behaviour expression using a multi-thread mecha-
nism, it is desirable to execute each sequentially executable sub-expression of
the behaviour expression as a thread independently of other sub-expressions.
A behaviour expression can be represented as a tree (Fig. 5.1) where each leaf
node is an action-prefixed sequence α; B (here, B is any behaviour expression)
or a process instantiation P , and each intermediate node is an operator shown in
Table 2.1. In such a tree, when each process instantiation has invoked, its node
is replaced by a tree representing the behaviour expression of the process. After
process invocations, all leaf nodes will be action-prefixed sequences if there is
no infinite invocations specified in the processes. So, we assume each leaf node
is an action-prefixed sequence α; B in the below discussion.

In this paper, we implement the behaviour expression by

43

• mapping each action-prefixed sequence α; B (corresponding to leaf node
in Fig. 5.1) to a thread, and

• creating a shared data area whose structure is the same as the part of the
syntax tree (corresponding to a sub-tree where each node is an operator
in Fig. 5.1).

In order to keep the temporal ordering of events among those action-
prefixed sequences, we derive the following object code:

• All currently executable action-prefixed sequences in the behaviour ex-
pression are created as threads even if the sequences are alternatively
executed.

• Each thread analyzes the shared data area before executing each event and
decides whether the event is executable or not. If executable, it executes
the event. Otherwise it waits for the event being executable or kills itself
(when it need not execute the event).

Let Code(B) be the object code which implements the behaviour expression
B. If the behaviour expression B includes enabling operator, say, B = B1 >>
B2 >> ... >> Bn, we derive each object code Code(Bk)(1 ≤ k ≤ n) in advance,
and compose the object code Code(B) so that each Code(Bk) is executed after
Code(Bk−1).

Let BP be the behaviour expression of process P . If the main process P in
the LOTOS specification includes a process instantiation Q and some events in
Q are currently executable, we invoke the process Q by connecting the shared
data area for BQ to the corresponding node in the shared data of BP and
executing Code(BQ).

The structure of the shared data area is dynamically modified since the
current behaviour expression changes dynamically when events are executed or
the processes are invoked. So, each thread implementing an action-prefixed
sequence must be created dynamically and it must analyze the area at every
event execution. We call the shared data area used in Code(B) as the control
area of B, and each currently executable sub-expression as a thread in the
current behaviour expression as a run-time unit.

Implementation of portable thread library (PTL)

A LOTOS specification includes a number of concurrent processes. In order
to derive efficient codes from them, we use a multi-thread library, which can
handle concurrent threads (light-weight processes) efficiently within a process.
There are several implementations such as LWP within Sun OS [51], the thread
library developed in Florida State University [43] and C Threads of Carnegie
Mellon University [10] for Mach OS. However each thread library depends on
a particular architecture such as Sun OS. For example, since COLOS [13] uses
LWP to implement LOTOS specifications, the derived object codes run only on
Sun OS.

44

For deriving efficient and portable codes from LOTOS specifications, we
have used Portable Thread Library (PTL) which our research group has pro-
posed in Ref.[1]. The characteristics of PTL are as follows:

(1) All library codes are described only in C language for portability.

(2) Architecture dependent codes are also prepared and used instead of the
portable codes if they improve the performance.

(3) Standard application interfaces are provided for general purposes (POSIX
1003.4a [29]).

5.2.2 How to compose object codes for behavior expressions

Here, we will explain how to derive the object code from the behaviour ex-
pression B. The derivation consists of three phases: (1) decomposition B into
run-time units {R1, ..., Rn}, (2) creation of a control area which implements the
temporal ordering among run-time units {R1, ..., Rn}, and (3) the generation of
each object code for Rk.

Decomposition of the behaviour expression into run-time units

Let B be a behaviour expression of a LOTOS specification, and B1, B2 be
sub-expressions of B, respectively. If B is either B1[]B2, B1|||B2, B1||B2, B1

|[g1, ..., gn]| B2 or B1[> B2, we decompose B into B1 and B2. The reason why
we decompose B even if it is B1[]B2 is that either B1 or B2 may include par-
allel operators. To the decomposed sub-expressions B1 and B2, we similarly
decompose them recursively until no more decomposition can apply. Here, if
an intermediate sub-expression B′ is a process instantiation, we do not de-
compose it. We define the finally decomposed ones as run-time units. Each
run-time unit is one of an action-prefixed sequence ‘α; B’, a process invocation
‘P [g1, ..., gn](v1, ..., vm)’ and an enabling sequence ‘B1 >> B2 >> ... >> Bl’.

For example, in the behaviour expression of process P [a, b, c, q] in Fig. 5.1,
the whole behaviour expression is a run-time unit since it is B1 >> B2 (in
Fig. 5.1, let B1, B2 be the sub-expressions connected to the left and right side of
‘>>’, respectively). In the sub-expression of B1, there are three run-time units:
(1) a;(b;exit ||| c;exit), (2) b;a;exit and (3) Q[a,b]. The sub-expression B2 also
includes three run-time units: (4) c;Q[b,a], (5) q!1;P[a,b,c,q] (6) q!2;Q[a,b].

Derivation of the control area

Suppose that an alternative execution between two run-time units ‘R1 [] R2’
is given. Then, two threads Code(R1) and Code(R2) are created when the
object code is executed. What should we do so that either R1 or R2 is executed
alternatively in the above environment? One of solutions is as follows (see Fig.
5.2).

• The first executed run-time unit (for example, R1) stores the information
that it (R1) has been already executed to a node corresponding to the
operator ‘[]’.

45

R2R1

1

R2R1

2

R1

first executed

store

terminate

refer

[]

continue

Figure 5.2: alternative execution between two run-time units

R2R1 R2R1

R2

executed

disable

terminate executed

1 2 refer

[>

Figure 5.3: interruption by a run-time unit

• When another run-time unit (R2) is activated, it knows that the above
run-time unit (R1) has been already executed by referring the node and
kills itself.

Similarly, R1[> R2 (where R2 can disable R1) can be implemented as follows
(see also Fig. 5.3):

• When R2 is executed, R2 stores the information about the occurrence of
an interruption for R1.

• R1 refers the information at every stage of its event execution, and it
terminates itself if the occurrence of an interruption is detected. Otherwise
it continues its execution.

For the above implementation, we need a node in the control area to keep
the following information.

• the information to denote which side of each operator is executed (it de-
notes which choice is selected for each choice operator ([]) or whether an
interruption occurs for each disabling operator ([>) or not)

• the information to denote which side of the operator each run-time unit
has connected to.

As mentioned above, the implementation of a behaviour expression com-
posed of two run-time units is quite simple. In general LOTOS behaviour
expressions, however, the operators are used hierarchically. For example, the
behaviour expression

((R1|||R2)[](R3|||R4))[> R5

46

means that if R1 or R2 (R3 or R4) is executed, then R3 and R4(R1 and R2) must
not be executed, and that if R5 is executed, all run-time units except R5 must
kill themselves (here, we assume R1, R2, R3, R4 and R5 are run-time units).

In order to implement general behaviour expressions where the multiple
operators are specified hierarchically, (1) the nodes corresponding to the oper-
ators should be referred hierarchically from each run-time unit in the control
area, and (2) each run-time unit should have the ordered information how it
connects to each operator (hereafter, we call the information as a connection
identifier).

Since the operators ‘;’, ‘[]’, ‘|||’, ‘|[g1, ..., gn]|’ and ‘[>’ are binary operators,
we compose a control area as a binary tree.

In a LOTOS specification S, let B0 be the behaviour expression of the main
process, and B1, ..., Bh be its sub-processes (1 ≤ h), respectively (here, the
‘process’ means a process which is specified semantically as a LOTOS process).
Suppose that each Bk includes multiple run-time units (let Rk1 , ..., Rkm be such
run-time units). For each Bk(0 ≤ k ≤ h),

(1) parsing Bk to create its binary tree Tree(Bk).

(2) creating the control area Area(Bk) for Bk by removing all Tree(Rki
)(1 ≤

i ≤ m) from Tree(Bk).

(3) for each run-time unit R, if R is an enabling sequence BR1 >> BR2 >>
... >> BRn, creating each control area Area(BRk).

(4) for each run-time unit R such as ‘a;(b;exit ||| c;exit)’, if the sub-expression
R′ of R includes multiple run-time units, creating a control area Area(R′)
(Fig. 5.4).

By the above steps, all the control areas required to execute the behaviour
expression in S can be created statically when we compile each LOTOS speci-
fication.

From the behaviour expression in Fig. 5.1, four control areas are generated:
Area(BP1), Area(BP2) and Area(b; exit|||c; exit) for process P , Area(BQ) for
process Q (Fig. 5.4).

In each node of the control area, we initially put the information about
the corresponding operator and the connection identifier, that is, which side the
operator is connected to its upper operator.

Generation of the object code for each run-time unit

Each run-time unit R is one of the following three types: (i) a process instanti-
ation (P [g1, ..., gn](v1, ..., vm)), (ii) an enabling sequence (B1 >> B2 >> ... >>
Bl) (where each Bk is any behaviour expression) and (iii) an action-prefixed
sequence (α; B) (where α,B are any event and any behaviour expression, re-
spectively).

47

process P[a,b,c,q]:= B >> B

|||

[] [>

a;(b;exit
 |||c;exit)

b;a;exit Q[a,b] q!1;P[a,b,c,q]

[>

q!2;Q[a,b]

c;Q[b,a]

Area(B) Area(B)

c;exitb;exit

|||

Area(b;exit
 ||| c;exit)

left right
finish

disable

disable
finish

(1)

P1 P2

P1 P2

(R)P1

process Q[a,b]:=B

[] |||

a;b;exit b;a;exit a;exitb;exit

Area(B)

left right

[]

left right

Q

Q

(R)Q4(R)Q3(R)Q2(R)Q1(R)P2 (R)P3

(R)P4

(R)P6(R)P5

(2)

(3)

Figure 5.4: Control area

(i) Object code for a process instantiation
When R is a process invocation ‘P [g1, ..., gn](...)’, all run-time units in the

LOTOS process P must be invoked immediately. So Code(R) is as follows:

• connecting the root node of Area(BP) to the node of the current control
area where R has connected.

• invoking Code(BP).

(ii) Object code for an enabling sequence
If R is B1 >> B2 >> ... >> Bl, the following object code Code(R) is

generated:

(1) connecting Area(B1) to the current control area in the same way explained
above.

(2) invoking Code(B1)

(3) waiting until all run-time units in B1 finish their execution.

(4) for each B2, ..., Bl, the steps from (1) to (3) are applied.

(iii) Object code for an action-prefixed sequence
If R is an action-prefixed sequence α; B, then we generate the following

object code Code(R):

(1) Code(R) decides whether it can execute the event α or not by analyzing
the current control area.

(2) If Code(R) need not execute the event, it kills itself. Otherwise it waits for
the event being executable.

(3) If the event is executable, Code(R) executes the event α after modifying
the control area.

48

(4) If B is also an action-prefixed sequence such as α′; B′, then the same
operations from (1) to (3) are applied for α′; B′ until B is stop or exit.

(5) If B is not an action-prefixed sequence, Code(R) invokes Code(B) after
connecting Area(B) to the corresponding node of the current control area.

The analysis procedure of the current control area in (1) depends on the
operators specified in the behaviour expression.

5.2.3 Implementation of LOTOS operators

Here, how all the run-time units are executed by analyzing the current control
area so that the temporal ordering of events among them is implemented ac-
cording to the operators specified in the specification. The analysis procedure
of the control area depends on whether synchronization operators are specified
or not.

Analysis if choice, parallel and disabling operators are specified

In order to keep which run-time unit has been executed at each choice oper-
ator([]), the selected run-time unit stores the marks left or right to the node
corresponding to ‘[]’ in the control area. In order to inform the occurrence of
an interruption, the run-time unit which connects to right side of ‘[>’ stores
the mark disable to the node corresponding to ‘[>’. The run-time units which
connect to the left side of ‘[>’ inform that all the run-time units have finished
by storing finish to the node of ‘[>’. We assume that all the nodes in the control
area are initially blank.

The run-time unit R can execute its event when one of the following con-
ditions holds at each node from the leaf node (where R connects) to the root
node in the control area:

• at each node ‘[]’, the mark left/right is stored if R connects to the left/right
side of the node (or no mark is stored).

• at each node ‘[>’, the mark disable is stored if R connects to the right
side of the node (or no mark is stored).

Suppose that the object code for the behaviour expression of the process
P in Fig. 5.1 is executed. Since BP := BP1 >> BP2, first Code(BP1) is in-
voked and it creates three threads for RP1 = Code(a; (b; exit|||c; exit)), RP2 =
Code(b; a; exit) and RP3 = Code(Q[a, b]) with the control area Area(BP1) (see
Fig. 5.4). Since RP3 is a process instantiation Q[a, b], the process is invoked
as explained in Sec. 5.2.2 and four threads RQ1 = Code(a; b; exit), RQ2 =
Code(b; a; exit), RQ3 = Code(b; exit) and RQ4 = Code(a; exit) are created.

Suppose that RP1 analyzes the control area first. Since all nodes are blank,
it knows it can execute its first event a after it modifies the control area (storing
the mark left to the node (1) in Fig. 5.4). Then, other run-time units refer the
control area and know they cannot execute their events and kill themselves

49

because another side expression is selected at the node (1). Since RP1 executes
‘b; exit|||c; exit’ after execution of a, it connects Area(b; exit|||c; exit) to the left
side of the node (1) and creates two threads Code(b; exit) and Code(c; exit).

When all threads in Code(BP1) have finished, Code(BP2) is executed and
three threads RP4 = Code(c; Q[b, a]), RP5 = Code(q!1; P [a, b, c, q]) and RP6 =
Code(q!2; Q[a, b]) are created to be executed concurrently with the control area
Area(BP2) as shown in Fig. 5.4. If RP4 analyzes the control area first, it executes
its event c and invokes the process Q[b, a] since the node (2) in the control area
is blank. When an interruption by RP5 occurs, the mark disable is stored to the
node (2). The run-time units RQ1, ..., RQ4 invoked by RP4 refer the node (2)
before they execute their events and know the occurrence of interruption, then
kill themselves. Finally, when RP6 disables RP5, the mark disable is stored to
the node (3). RP5 detects the occurrence of interruption by referring the node
(3) and it kills itself.

The above shows that the original specification in Fig. 5.1 is properly im-
plemented.

Analysis if synchronization operators are specified

LOTOS has highly complicated synchronization mechanism among multiple
concurrent run-time units. There are two main reasons for its complexity. The
first reason is that the number and/or the combination of the synchronizing run-
time units may change dynamically. In Fig. 5.5, for example, R4 and R5 may
synchronize in executing the event ‘b’. However, R1, R3 and R6 may synchronize
in executing the event ‘a’. The combination cannot be decided statically in
advance. The second reason is that I/O parameters must be unified each other.
That is, for synchronization, all output values and their sorts of an event must
be equal to those of another event, and some proper values must be assigned
to all input variables of the synchronizing events. For example, in order that
R2 (its synchronizing event is ‘a!4?s:bool’) and R3 (its event is ‘a?x:int!true’) in
Fig. 5.5 synchronize, the proper data ‘4:int’ and ‘true:bool’ must be assigned to
the variables x : int and s : bool, respectively.

In general, if a synchronization operator is specified in the behaviour ex-
pression (B1 |[g1, ..., gn]| B2), the following steps are needed for each run-time
unit included in B1 and B2:

(1) Before executing each event, each run-time unit examines whether the event
must synchronize or not.

(2) If the event must synchronize, the run-time unit keeps the gate name of
the event and its output values (and/or input variables) at the operator
‘|[...]|’ and it waits for a synchronization peer. Hereafter, we call the
output values and/or input variables as I/O parameters.

(3) When another run-time unit executes an event whose gate name is the same
as that of the waiting run-time unit, it unifies its I/O parameters and the

50

[]

a!5!true;exit

b!1; exit

a?w:int?u:bool; exit

|[a,b]|

[]

[]

|[a]|

a!4?s:bool;exit

|[a]|

a!4?t:bool; exit

a?z:int!true; exit

b!1; a?y:int!true; exit

[]

a?x:int!true; exit

(R)1

(R)8

(R)7

(R)6

(R)5

(R)4(R)3

(R)2

(2)

(1)

(3)
1

2
3

4

5

6

7

8

Figure 5.5: A LOTOS specification with synchronization operators

Table 5.2: A synchronization table
gate name side state value1 value2 ...

a right – z int true bool
b right OK 1 int – –
a left NG 4 int s bool
...

parameters of the waiting run-time unit by referring the information kept
at ‘|[...]|’.

(4) If it cannot unify its I/O parameters, it also keeps its gate name and I/O
parameters at the operator and waits for the peer. When the unification
succeeds, the synchronization also succeeds.

(5) If there is no run-time unit which can be the peer, the synchronization
fails.

(6) If some synchronization operators are specified hierarchically, the above
steps (1)–(5) must be applied to the upper operators in the behaviour
expression with the unified I/O parameters.

In order to implement the above, we need a table at a synchronization
operator ‘|[...]|’ to keep the following information:

• I/O parameters for the synchronizing run-time units (for unification)

• which sides the run-time units have connected to (for examining whether
each waiting run-time unit is a synchronization peer)

For this implementation, we prepare a synchronization table (in Table 5.2)
at each node corresponding to ‘|[...]|’ in the control area. There are four items

51

in the synchronization table : 1. gate name, 2. side, 3. state and 4. values. In
the item 1, the gate name of each synchronizing event is assigned. In the item 2,
the side (left or right) where the waiting run-time unit has connected is stored.
The item 3 denotes the current state of the run-time unit (blank, READY, OK,
NG, RETRY and EXEC are used). In the item 4, I/O parameters and their
sorts of the synchronizing event are stored.

We compose the analysis procedure for each run-time unit R (which is
α; B) of the following three phases: 1. request for synchronization, 2. check of
consistency, and 3. propagation of result.

phase 1: request for synchronization

(1) R finds ‘|[G]|’ where α’s gate name belongs to G by referring the control
area from the leaf node. If other alternative run-time units have been
executed at an intermediate node ‘[]’ or ‘[>’, R cannot execute α and kills
itself.

(2) R finds a peer run-time unit by referring the ‘gate name’ and ‘side’ in the
synchronization table (it creates a table at ‘|[G]|’ if it is not created yet)
and tries to unify its I/O parameters and peer’s.

(3) If the unification is impossible or no peer is in the table, R adds a line to
the table and stores α’s gate name and I/O parameters with their sorts
to the line. Then R waits until its ‘state’ turns to READY or RETRY.
If ‘state’ turns to RETRY, R executes the steps from (1) again to find
another peer. Otherwise, R works according to the phase 2.

(4) If the unification is possible, R searches the upper nodes in the control area
to find the synchronization operator ‘|[G′]|’ (where α’s gate name belongs
to G′) similarly to (1).

(5) If such a ‘|[G′]|’ exists, R executes the steps from (2) with the unified I/O
parameters.

(6) If such a operator does not exist, a synchronization gets ready and R checks
whether all peers are executable according to the phase 2.

phase 2: check of consistency
This phase is to ensure mutual exclusion of several alternative synchroniza-

tions.

(7) R stores READY to ‘state’ of the peer line at each ‘|[G]|’ and waits a
response from each peer. Each peer checks whether other alternative run-
time units have been executed or not by referring each node in the control
area, then stores OK or NG to ‘state’, and waits the result from R.

phase 3: propagation of result

52

(8) If all peer’s responses are OK, R informs its peers that the synchronization
is successful by storing EXEC to ‘state’ and the unified I/O parameters
to ‘values’ of the peer line at each ‘|[G]|’. R also stores RETRY to other
lines in the synchronization table. After all peers receives EXEC, then R
and its peers get executable.

(9) Otherwise, R stores RETRY to ‘state’ of the peer line at each ‘|[G]|’ and
executes the synchronization steps from the phase 1 again.

For example, let us consider how the behaviour expression in Fig. 5.5 is ex-
ecuted in our implementation. Here, we suppose that R1, R3, R8, R7, R6, R2, R5

and R4 are activated in that order.
First, R1 creates a synchronization table TBL1 at the node (1) in Fig. 5.5

corresponding to ‘|[a]|’ and stores its I/O parameters (5 : int, true : bool) to
TBL1 and waits for the peer. Next, R3 finds the peer R1 in TBL1 and tries
to unify its I/O parameters (x : int, true : bool) and the I/O parameters of
R1 in TBL1. Since the unification is possible by assigning 5 to the undefined
variable x, R3 refers the upper node (2) ‘|[a, b]|’ with the unified I/O parameters
(5 : int, true : bool). Here the synchronization table is not created yet, so R3

creates the table TBL2 to store the I/O parameters and waits for the peer.
Similarly, R8 creates a synchronization table TBL3 at the node (3) to store
its I/O parameters (w : int, u : bool), and waits for the peer. Next, R7 can
unify its I/O parameters and that of the peer R8 in TBL3 by assigning 4 to
w, and refers TBL2 in the upper node (2) with the unified I/O parameters
(4 : int, t : bool). Since R7 cannot unify its I/O parameters (4 : int, t : bool)
and that of the peer of R3 (5 : int, true : bool), R7 keeps the I/O parameters in
TBL2 and waits another peer. When R6 refers the node (2), it can find the peer
R3 whose I/O parameters (5 : int, true : bool) can be unified to the that of R6

(z : int, true : bool) by assigning 5 to z. Since there is no upper synchronization
operators, R6 stores READY to the corresponding line in TBL2 to check the
executability of the peer R3 (R3 also stores READY to its peer line in TBL1
to check the executability of its peer R1). Since no other alternative run-time
units are executed, R6 receives OK from R3 (R3 also receives OK from R1)
and informs R3 that the synchronization is successful by storing EXEC to the
corresponding line in TBL2 and RETRY to the line of other waiting run-time
unit R7 (R3 also informs R1 in the same way). Since the nodes corresponding
to ‘[]’ are modified before the event a!5!true is executed, other run-time units
R2, R4 and R5 detect that other side run-time units are selected by referring the
node, and kill themselves.

5.2.4 Implementation of abstract data types

We have developed a functional language ASL/F and its compiler [22, 30]. Using
the compiler, we implement the abstract data type (ADT) parts of LOTOS as
follows:

53

(1) converting the ADT part described in ACT ONE [14] into an ASL/F
description (it is a syntactical conversion and both languages have similar
syntax).

(2) deriving C codes from the ASL/F description.

The derived C codes are compiled and linked to the multi-threaded codes
derived from the behaviour expression part explained before.

The functions defined in the ADT parts are used for:

(1) calculating the output values in executing an event (a!f(x,y)),

(2) restricting the execution of events by conditions (a!x[x>0]),

(3) restricting the execution of behaviour expressions ([G(x,y)]->B).

Since these functions are compiled into the functions in C language, we
only call each function and get its return value. In (1) and (2), the function is
called in executing the event. In (3), Code(B) for the behaviour expression B
is invoked if the return value is true, otherwise not invoked.

Here, we restrict the class of the ADT parts to a functional program [22, 30].
We need to describe the ADT parts in LOTOS specifications only using the
axioms in a functional class.

5.2.5 Optimization

Simplifying control area

In the above explanation, we need n − 1 nodes in the control area for imple-
menting alternative execution among n run-time units. If we assign different
connection identifiers to the alternative run-time units and compose the control
area as a general tree, we can reduce the n−1 nodes to only a node. We can also
remove each node corresponding to ‘|||’ by assigning the same connection iden-
tifier to the run-time units executed in parallel. For example, in Fig. 5.6, seven
nodes are reduced to a node. Here, we assign the different identifiers to the al-
ternative run-time units R1, R2, R3(R4), R5 and R6(R7) and the same identifier
to the run-time units R3 and R4 (R6 and R7). Our current implementation uses
the above technique.

Shortening analysis path in control area and garbage collection

Once a selection or interruption has been executed, some nodes in the current
control area may become unnecessary. If we leave such nodes, the analysis path
in the control area will be long and it will take much time for each run-time
unit to decide whether it can execute each event or not. So we remove such
unnecessary nodes from the control area as follows (see Fig. 5.7) :

(1) Once a run-time unit R is selected and the mark (left/right) is stored at
a node in the control area, the run-time units which connect to the same
side of the node skip the node in the next analysis.

54

[]

[]

R1 R2 R3 R4 R5 R6 R7

|||

[] |||

[]

R1 R2 R3 R4 R5 R6 R7

Control Area

parallel parallel

New Control Area

id1
id2 id3 id3 id4

id5 id5

[]

Figure 5.6: Simplification of the control area

1

[>

||

R1 R2 R3 R5 R6

[]
[>2

[>

R5 R6

[>
||

R1 R2

removed

skip

left

3

4

Figure 5.7: Garbage collection of the current control area

(2) Each run-time unit which is not selected removes the unnecessary node
before it kills itself.

Local selection among action-prefixed sequences

Alternative execution among multiple action-prefixed sequences can be imple-
mented efficiently within a thread by treating the sequences as a run-time unit
and selecting one of alternative events within the unit.

So, we implement such a run-time unit R, say, a1; B1[]a2; B2[]...[]an; Bn as
follows (here, ak and Bk are any event and any behaviour expression, respec-
tively):

(1) Code(R) calculates the set of executable events E from a set of events
{a1, ..., an} by analyzing the current control area.

(2) If E is empty, it kills itself.

(3) Code(R) selects an event ai from E and executes ai after modifying the
control area.

(4) If Bi is also alternative execution among action-prefixed sequences such as
a′

1; B
′
1[]...[]a

′
m; B′

m(1 ≤ m), then the same operations from (1) to (3) are
applied for Bi until Bi is stop or exit.

55

a1

a3 a4

a4 a3 a4

a1
a1

A1

Visualization Scenario
Original Specification

synchronize
 at
Gv={a1,a2}

a2!0

a2!1

a2?x:int

A21 A22
x=0 x=1

S V

Figure 5.8: Our visualization method

(5) If Bi is not such an expression, then Code(Bi) is invoked with connecting
Area(Bi) to the corresponding node in the current control area.

Our current implementation uses the above technique.

5.3. Real-time visualization of dynamic behavior of LO-
TOS specifications

5.3.1 Visualization method

How to describe scenarios

LOTOS has a multi-rendezvous mechanism[31] which enables multiple concur-
rent processes to synchronize with respect to the specified gates (events).

For example, two processes P1 and P2 can be synchronized with respect to
G, a set of gates, describing as follows:

P1 |[G]| P2

If we specify a gate set {a,b,c} as G, the events executed at those gates are
executed simultaneously between P1 and P2, and the events not included in
G are executed independently. The synchronization mechanism is also called
multi-rendezvous because the synchronization among more than two processes
is possible.

In this paper, we use the multi-rendezvous mechanism to activate the cor-
responding animation when an event is executed. The basic idea is

• to specify the events and their corresponding animations in a visualization
scenario,

• and to execute the original specification and its visualization scenario in
parallel using LOTOS multi-rendezvous mechanism.

To visualize the specification S, we describe its visualization scenario V
and compose S and V by the synchronization operator as follows (Fig. 5.8):

S |[GV]| V

Here, GV is a set of gates whose events should be visualized.

56

Let S[E] be the behavior expression of an original LOTOS specification
where E is the set of all gates (events) used in S[E].

If we would like to visualize S[E] with respect to the gate set G = {a1, ..., an}
⊆ E, we specify the visualization scenario V [G] for S[E] as follows (here,

∏n
k=1 Vk

denotes V1|||...|||Vn):

V [G] :=
n∏

k=1

Vk[ak]

Vk[ak] := (ak; Ak) >> Vk[ak]

Here, Ak is an animation for ak. If we would like to specify the events in
G′ ⊆ G so that each event in G′ and its corresponding animation can finish
before the next event in G′ is executed, we modify a part of the visualization
scenario as follows (here,

∑n
k=1 Vk denotes V1[]...[]Vn):

V [G] := V ′[G′] |||
∏

ak 6∈G′
Vk[ak]

V ′[G′] :=

 ∑
ak∈G′

(ak; Ak)

 >> V ′[G′]

If we would like to change the scenario V1[G] to another scenario V2[G]
when an event ai is executed, we describe it as follows:

V [G] := V1[G − {ai}] [> ((ai; Ai) >> V2[G])

In general, when each event is executed, the data values are input and/or
output via the corresponding gate. The data values can be exchanged among the
several concurrent processes using the synchronization operator of LOTOS[31].
If we need to change the progress of visualization depending on the data values,
we get the values in the visualization scenario using the operator and display
the different animation using the values.

Suppose that there is an output event a!val which outputs the value val
whose sort is sort via the gate a in the original specification S. If we need to vi-
sualize the event a!val depending on the value val, we describe the visualization
scenario V [a] for a as follows:

V [a] := a?x : sort;

(
N∑

i=1

([condi]− > Ai)

)
>> V [a]

Here, N is the number of conditions to distinguish the values. Ai is dis-
played as the animation for a if the condition condi holds. “[condi]− > B” is
called a guard expression[31] and it represents that the expression B can be
executed only if the condition condi holds.

The data from each gate, say a, may have different data types. For example,
suppose that the following behavior expression is given.

S[a] := a!val1; ... [] a!val2; ...

57

Let us suppose that the types of val1 and val2 are “string” and “int”, respec-
tively. In order to distinguish the data types and display different animations
depending on the data types, for example, we can describe the following visu-
alization scenario.

V [a] := ((a?x : string; A11)
[] (a?y : int; (([y < 0]− > A21)

[] ([0 ≤ y ≤ 10]− > A22)
[] ([10 < y]− > A23)
)

)
) >> V [a]

Using the mechanism, the data values of each input /output in the specifi-
cation can be transmitted to the visualization scenario, and different animations
can be displayed depending on the values. The above technique can be also used
if several values are input/output in an event.

Describing animations

Introduction of animation primitives

In order to describe animations in LOTOS, first we introduce some primitives
for animation operations such as registration, indication, movement and elim-
ination of animation objects(Casts). Describing each primitive as an event of
LOTOS via a special gate for animations, we can compose various animations
in combination with those events and LOTOS operators such as parallel, choice
and so on.

In this paper, each animation operation is described as follows:

AE?id : cast t[id = Operation(parameters)]
or

AE!Operation(parameters)

Here, we use AE as a gate for displaying animations on a window called
Stage. We can also use several Stages simultaneously. If we require n Stages
for visualization, we can declare gates AE1, · · · , AEn. If we need to distinguish
the animation corresponding to each event from others, we can use the gate
name associated with the gate in the original specification such as AEa, AEb, · · ·
(see section of “Structural visualization”). We also use cast t as a sort for an
identifier of each Cast, and the identifier for a created Cast is kept in a variable
id.

For example, we describe an operation which registers a bitmap file “fork.xbm”
as a Cast used in an animation as the following event.

AE?fkid : cast t[fkid = CreateCast(”fork.xbm”)]

We show the part of animation primitives in Table 5.3.
Using the operators in Table 2.1, we can describe various animations such that
the multiple Casts are moving in parallel.

58

Table 5.3: Animation primitives
Primitives Contents
CreateCast registering a bitmap as a

Cast
CreateString registering a string as a

Cast
CopyCast creating a copy of a Cast
MoveCast moving a Cast to the spec-

ified location in the speci-
fied time

DestroyCast destroying a Cast
ChangeAttribute modifying the attribute of

a Cast
... ...

Structural visualization

In LOTOS, it is recommended that the specifications are described in the re-
source oriented and/or constraint oriented styles[55]. Most of existing LOTOS
specifications are hierarchically described where the processes for specifying the
behavior of resources and the processes describing the restrictions among them
are executed in parallel. In visualizing such specifications, we would like to see
a part of behavior such as actions to the external environment as well as the
whole behavior.

In our visualization method, the animations for the events hidden by hide
operator of LOTOS are not displayed on the display.

For example, for the original specification S[a,b] and its visualization sce-
nario V[a,b], the visualized specification VS[a,b] is described as follows:

VS[a, b] := S[a, b] |[a, b]| V[a, b]

If we want to see only the animations for event “a”, we add hide operator
as follows:

hide b in VS[a, b]

In order to hide the animation events depending on the events, we use
several animation gates such as AEa and AEb for describing the animations for
events “a” and “b”. By describing “hide b in ...”, the event AEb is also hidden.
The details are described in Ref. [58].

5.3.2 Execution of visualized specifications

We use the LOTOS compiler [59] explained in Sec. 5.2 to convert the visual-
ized specifications into the executable object codes. Here, we have extended
the LOTOS compiler to treat the animations. We have used our Interactive
Animation Server[50] to display the animations in the generated object codes.
Since most of the animation primitives defined in Table 5.3 are equivalent to

59

P3

P4

P1

P2

Cast B

Cast A

updated

next location updated

next location

updating the Stage
every 1/T sec.

Module for moving Cast 1

Module for
updating Stage

Module for
moving Cast 2

Module for
moving Cast n

Figure 5.9: Mechanism for real-time animations

the instructions on Animation Server, the LOTOS compiler only replaces the
animation primitives to the subroutine calls in C language.

Mechanism for real-time animation

Our Animation Server[50] enables an easy operation for each animation ob-
ject(Cast) such as registration, indication, modification of attributes (i.e. loca-
tion, color, priority, and so on) and elimination of it. To indicate animations
successively according to a scenario using Animation Server, it is needed to
repeat the following process:

• informing the instructions for changing Cast attributes to Animation Server
in advance.

• updating the animation window (Stage) so that all modifications for Cast
attributes are reflected.

For easy construction of the visualization scenarios, we allow the primitive
operation which enables each Cast to move to the destination in the specified
time. Since LOTOS allows parallel execution of multiple processes, the mecha-
nism that the multiple Casts can move in parallel is needed. For this purpose,
the Stage for Casts should be updated at a fixed time interval.

We have composed the mechanism of two types of modules: a module for
updating Stage and a module for moving each Cast. For simplicity, we fix the
time interval for updating the Stage to a certain constant such as 30 frames/sec
(here, we call each image displayed on the Stage at every time interval as frame).

When the multiple modules for moving Casts are executed in parallel, they
and a module for updating Stage are synchronizing at a fixed time interval as
the following steps (Fig. 5.9).

60

[Behavior of a module for moving each Cast]

1. calculating the location at the next frame from the interval for updating,
the distance to the destination and the time for whole movement and
calling the instruction of Animation Server for modifying the location of
Cast.

2. waiting until the Stage is updated and repeating the above process until
reaching the destination.

[behavior of a module for updating Stage]

1. calling the instruction for updating the Stage of Animation Server at every
fixed time interval.

Since a module for updating Stage and all modules for moving Casts are
mapped to threads in the generated code, so they run fast. Using the mecha-
nism, the dynamic behavior of the multiple concurrent processes can be visual-
ized.

5.3.3 Example of visualization

In order to examine that our visualization method is useful to understand the
dynamic behavior of concurrent systems, we have tried to visualize a LOTOS
specification. We have selected Dijkstra’s dining philosophers as an example of
a concurrent system.

Dijkstra’s dining philosophers

“Dijkstra’s dining philosophers” is a typical model for discussing problems aris-
ing in concurrent systems. In the model, five philosophers (processes) are acting
concurrently, either thinking or eating. Five philosophers are sitting around a
table, and one fork (resource) is placed between any two neighbor philosophers.
Each philosopher must take two forks in his both hands to eat.

In order to enable all philosophers to cooperate to proceed without dead-
locks, a control for accessing the shared forks fairly is required.

Specification of philosophers

In order to represent the actions of each philosopher, we introduce the following
events in LOTOS:

61

lfk!take!h to r philosopher takes his left fork
‘lfk’ (‘lfk’ is moved from the
home location to the right side)

lfk!release!r to h philosopher releases his left fork
‘lfk’ (‘lfk’ is moved from the right
side to the home location)

rfk!take!h to l philosopher takes his right fork
‘rfk’ (‘rfk’ is moved from the
home location to the left side)

rfk!release!l to h philosopher releases his right
fork ‘rfk’ (‘rfk’ is moved from the
left side to the home location)

ph!eat philosopher ‘ph’ eats
ph!think philosopher ‘ph’ thinks

Note that each action concerning with a fork ‘lfk/rfk’ has enough informa-
tion for both a philosopher ‘ph’ and the fork ‘lfk/rfk’.

Using the above actions, we have described a behavior of each philosopher
as the following process in LOTOS:

process Philosopher[ph,lfk,rfk]: noexit:=
(ph!think; exit
[]
lfk!take!h_to_r;(

rfk!take!h_to_l; ph!eat;
rfk!release!l_to_h; lfk!release!r_to_h; exit

[] lfk!release!r_to_h; exit)
) >> Philosopher[ph, lfk, rfk]
endproc

In the specification, each philosopher starts thinking or trying to take his
left fork. If he can take it, he tries to take his right fork. If he can take it, then
he starts eating. Otherwise he releases his left fork to avoid deadlocks.

We describe the specification of each fork process similarly as follows:

process Fork[fk] : noexit :=
(fk!take!h_to_l; fk!release!l_to_h; exit
[] fk!take!h_to_r; fk!release!r_to_h; exit
) >> Fork[fk]
endproc

The above specification represents that after the fork ‘fk’ is moved from
the home location to the left/right side, it must be moved from the same side
to the home location.

According to the above discussion, the specification for all philosophers is
described by combining five philosopher processes and five fork processes using
the parallel and synchronization operators of LOTOS. We use the gates ph1,
· · ·, ph5 and fk1, · · ·, fk5 for distinguishing five philosophers and five forks,
respectively (here, fk1 is shared between ph5 and ph1, fk2 between ph1 and
ph2, · · ·).

62

process Philosophers[ph1,...,ph5, fk1,...,fk5]
: noexit :=
(Philosopher[ph1,fk1,fk2] ||| ...

||| Philosopher[ph5,fk5,fk1])
|[fk1,...,fk5]|
(Fork[fk1] ||| ... ||| Fork[fk5])

endproc

Visualization scenario

In visualizing specification “Philosophers”, we keep displaying the animation
objects for five forks and five philosophers throughout, and activate the corre-
sponding animation when a particular event in “Philosophers” is executed.

When an event “a philosopher taking a fork” is executed in “Philosophers”,
we would like to display the following animation:

• moving the fork object from its home location to the philosopher (moving
for the opposite direction in “releasing”)

Similarly, we would like to display the following animation when an event
“a philosopher thinking (or eating)” is executed.

• changing the shape of the philosopher object to the corresponding one
(either “thinking object” or “eating object”) for a certain time.

In order to describe the visualization scenario, first we define the animation
objects (Casts). Here, we define the Casts for five forks and five philosophers.
For example, a Cast for “fork1” is defined using a primitive in Table 5.3 as
follows:

AE?fkid1 : cast t[fkid1 = CreateCast(”fork1.xbm”)]

(here, “fork1.xbm” is a name of a bitmap file of “fork1”)
In the next step, we describe the animations in LOTOS.
We describe one process which animates each moving fork. Let home be the

home location of each fork. Let left be the destination of the moving fork when
the left side philosopher takes it (let right be the destination when the right side
philosopher does). In order to select the destination of the fork, we describe
the visualization scenario for forks so that it can know which side philosopher
takes/releases the fork. The following is an example of the visualization scenario
for forks. Here, we specify that each fork animation takes t seconds.

process MvFork[fk,AE](home,left,right:pos_t,fkid:cast_t)
: noexit :=
(

fk!take?dir:direction_t;
([dir=h_to_l]->AE!MoveCast(fkid,home,left,t);exit
[] [dir=h_to_r]->AE!MoveCast(fkid,home,right,t);exit
)

[] fk!release?dir:direction_t;

63

([dir=l_to_h]->AE!MoveCast(fkid,left,home,t);exit
[] [dir=r_to_h]->AE!MoveCast(fkid,right,home,t);exit

)
) >> MvFork[fk,AE](home,left,right,fkid)
endproc

Other actions of philosophers “eating” and “thinking” are visualized simi-
larly by describing their visualization scenario MvPhilo[ph,AE](...).

The whole visualization scenario is described as follows:

process VS[fk1,...,fk5,ph1,...,ph5,AE]:noexit :=
(Definitions of all Casts) >>
(MvFork[fk1,AE](HOME1,LEFT1,RIGHT1,fkid1)
||| ...
||| MvFork[fk5,AE](HOME5,LEFT5,RIGHT5,fkid5)
||| MvPhilo[ph1,AE](...)
||| ...
||| MvPhilo[ph5,AE](...)
)
endproc

(here, the constants HOMEn, LEFTn and RIGHTn represent the home location and the
left/right destinations of the fork n, respectively)

The original specification “Philosophers” can be visualized by combining it
and its visualization scenario “VS” with the synchronization operator as follows:

Philosophers |[fk1, ..., fk5, ph1, ..., ph5]| VS

We have executed the visualized specification of philosophers in our system
explained in Sec. 5.3.2. The animations are displayed on the graphic window
(Fig. 5.10). Fig. 5.10(a) shows the initial state. Fig. 5.10(b) shows the situation
that the left-down side philosopher is now taking his right fork after he took
his left fork. And the top and right-down side philosophers are now thinking.
The right-up side philosopher has just taken his left fork. In Fig. 5.10(c), the
left-down side and right-up side philosophers are now eating after taking two
forks. The left-up side philosopher has taken his left fork and is trying to take
his right fork. Other philosophers are thinking. In Fig. 5.10(d), the top side
philosopher is eating after he took two forks which had been taken by both side
philosophers. And left-down side philosopher is now releasing his right fork.
Other three philosophers are thinking.

Like the above, we can easily understand the dynamic behavior of concur-
rent processes from the animations.

5.3.4 Related work

There are several researches for visualizing protocol specifications for facilitat-
ing understanding and designing them and for a stepwise refinement[3, 53]. In
formal specification language Estelle, each process is described as a finite state
machine. In Ref. [3], a visualization technique of Estelle specifications and its

64

(a) (b)

(c) (d)

Figure 5.10: Visualized Dijkstra’s philosophers

65

Table 5.4: The number of executed events per second in parallel execution
Number of run-time units Ours COLOS TOPO

100 1724/sec 700/sec 57/sec
200 1214/sec 421/sec 26/sec
300 928/sec 276/sec 17/sec
400 712/sec 227/sec 12/sec
500 565/sec 183/sec 9/sec

system called GROPE are proposed. GROPE reads a given Estelle specifica-
tion and displays its state machines to the graphic window, where the state
transitions are dynamically visualized. In GROPE, each process as a black box
is also displayed as a rectangle. Communications between two processes are
implemented so that the animation objects representing messages are moving
along the line drawn between two processes (rectangles). In GROPE, since the
specification is executed virtually by an interpreter, the visualization makes an
interactive progress. It is useful for understanding of the behavior of protocols,
but the visualized specifications may run much slower than the programs de-
rived from the specifications using compilers. SOLVE [53] is proposed as a visual
language based on LOTOS instead of G-LOTOS [32] which is a graphical repre-
sentation of LOTOS. SOLVE aims at facilitating the design and description of
LOTOS specifications using visual and easy operations like animations. Using
SOLVE, the designers can describe the system specifications only using inter-
active operations, if they do not know LOTOS. The specifications described in
SOLVE can be converted into LOTOS specifications. However, it also uses the
simulator to execute the visualized specification, so the real-time visualization
of concurrent systems may be impossible.

5.4. Evaluation
5.4.1 Evaluation of implementation method

Experimental results

Here, we will evaluate our implementation method. Although some LOTOS
compilers have been developed for several years, most of them do not use multi-
thread mechanisms to implement LOTOS specifications. As long as we know,
only COLOS [13] uses a multi-thread library to implement LOTOS specifica-
tions efficiently. COLOS has been developed within the ESPRIT project LO-
TOSPHERE and is based on the algorithm introduced in Ref. [13]. We have
compared our compiler with other compilers, COLOS [13] and TOPO [40, 41].

In order to examine how efficiently multiple concurrent processes are exe-
cuted, we have measured the number of events executed in one second when we
execute the object codes derived LOTOS specifications which include several
hundreds of concurrent run-time units. In the specifications, all run-time units

66

Table 5.5: The number of executed events per second in alternative execution
Number of Alternatives Ours COLOS TOPO

5 1900/sec 510/sec 600/sec
10 940/sec 520/sec 360/sec
15 730/sec 510/sec 240/sec
20 570/sec 516/sec 170/sec

are connected by the parallel operator ‘|||’, and each run-time unit is an action-
prefixed sequence composed of ten events. We show our experimental results in
Table 5.4. Here, we have used Sun SPARCstation IPX with 24MB memory.

Table 5.4 shows that our compiler is more efficient than COLOS and TOPO
in concurrent execution. Since TOPO do not use a multi-thread library, the
object codes by TOPO run much slower than others with respect to parallel
execution. In our compiler, more than a thousand of concurrent run-time units
can be derived and executed fast if we assign 8KB memory to each thread stack
(on Sun SPARCstation IPX with 24MB memory).

In order to examine the efficiency in alternative execution, we have mea-
sured the number of events which are executed in a second for the following
process P :

P := (a1; exit[]a2; exit[]...[]an; exit) >> P

In measurement, we have changed the number of alternatives n from 5 to 20 for
examining the selection cost for the case that many alternatives are specified.
We show the result in Table 5.5. In the experiment, the object codes derived
from our compiler and TOPO have selected each alternative in each loop. Oth-
erwise, the code from COLOS has always selected the first alternative.

In LOTOS, it is recommended that the specifications are described in re-
source oriented and/or constraint oriented styles [55], and a lot of LOTOS
specifications have been described in those styles. In order to examine how ef-
ficiently the specifications in those styles are executed, we have also measured
the number of events in one second when we execute the specifications with sev-
eral constraints. For the behaviour expression B which includes 100 run-time
units connected by ‘|||’, we have used the specifications B||B (one constraint),
B||B||B (two constraints), B||B||B||B (three constraints) and B||B||B||B||B
(four constraints) for measurement. We show the experimental results in Table
5.6.

According to Table 5.6, the codes generated from COLOS run faster than
others with respect to the synchronization. However, COLOS restricts the class
of LOTOS behaviour expressions. For such a restricted class, more efficient
implementations for synchronization may be considered on our implementation.

67

Table 5.6: The number of executed events per second in synchronous execution
Behaviour expression Ours COLOS TOPO
B 1724/sec 700/sec 57/sec
B||B 244/sec 509/sec 12/sec
B||B||B 195/sec 365/sec 0.9/sec
B||B||B||B 175/sec 273/sec —
B||B||B||B||B 155/sec 224/sec —

Related work

Several LOTOS compilers have been proposed and they are classified into four
approaches. The first approach is to derive a finite state machine from a given
LOTOS specification by reducing parallelism in the specification [17]. However,
this approach focuses only the resource oriented specifications, so we cannot deal
with the general LOTOS specifications. The second approach is the technique
to use the languages which can handle parallel processing such as PARLOG [18].
In this approach, each parallel process can be easily mapped to a concurrent
unit in those languages. However, the efficient implementation of synchroniza-
tion and interruption among multiple concurrent processes is difficult due to
the difference between LOTOS and those languages. Third approach uses the
technique for mapping each concurrent process to a UNIX process [8]. Although
it implements the concurrency, the overhead in the context switching and com-
munication among processes causes low performance in the derived codes when
there are many concurrent processes in the specification. The last approach
uses the mechanisms to handle concurrent processes efficiently [13, 40, 41, 47].
In Ref. [40, 41], a LOTOS specification is transformed into an abstract model
which is independent of machine architectures. However, in its current imple-
mentation, co-routine calls of concurrent processes are virtually executed. So,
the generated codes are not very fast. In Ref. [47], a process scheduler written
in an assembly language is used for executing concurrent processes. A LOTOS
compiler COLOS [13] uses SUN’s light-weight process mechanism(LWP) [51] for
this purpose. However, those mechanisms depend on machine architectures and
the generated codes may not be executed on various machines and/or operating
systems.

Most of existing LOTOS compilers except TOPO [40, 41] cannot generate
the object codes automatically from the abstract data type (ADT) parts of
LOTOS specifications. Although COLOS has a framework handling the ADT
externally, the contents of the ADT functions must be described in C language
by the designers. Our LOTOS compiler can generate the object codes from
the ADT parts automatically by using the compiler for our functional language
ASL/F [22, 30].

Since existing LOTOS compilers [13, 47] use hardware dependent mecha-
nisms for generating fast object codes, derived object codes may not be portable.

68

Table 5.7: Amount of description in C and LOTOS

Lang. Orig. Spec. Scenario Total

C — — 288 (steps)
LOTOS 23 (steps) 37 (steps) 60 (steps)

Using our implementation method proposed in this paper, we can derive fast
and portable object code from LOTOS specifications. According to the above,
our LOTOS compiler can be used more widely to develop actual systems and
protocols.

5.4.2 Evaluation of visualization method

In order to examine (1) the facility for describing visualization scenarios and
(2) overhead costs for visualization in our method, we have carried out some
examinations.

For evaluating (1), we have also described a program implementing the
same visualization of Dijkstra’s philosophers (explained in previous section) in
C language and compared with the description in LOTOS. The program in C
uses the primitives in Table 5.3 and the multi-thread library as well as the code
which the LOTOS compiler generates.

The comparison about the amount of description in C and LOTOS is shown
in Table 5.7. Here the number in the LOTOS specification represents the sum
of events and process invocations. We also used 25 LOTOS operators to specify
alternative, parallel and synchronization execution.

The reason why the program in C is larger than one in LOTOS is because
the concurrent execution of multiple processes must be sequentially described
in C even if we use the multi-thread libraries. In describing the program in C,
it was difficult to compose the animation part independently of the control part
since C has no synchronization mechanism as a standard. In LOTOS, we can
describe the visualization scenario easily and independently of the control part.

For examining (2), we have measured the number of executed events per
second in both cases of executing the original specification and the visualized
specification in Sec. 5.3.3 (here, we do not take the time for animations into
account). The number of executed events per second in the visualized specifica-
tion was about 80% of the number in the original specification. The percentage
varies depending on the number of events to be visualized. The reason why the
execution is slow down in the visualized specification is that the processes for
the animation are added and all events must synchronize between the visual-
ization scenario and the original specification. In the generated codes from the
LOTOS specifications, more than 150 events are executed at every second.

69

5.5. Conclusion
In this chapter, we have described an implementation method of LOTOS spec-
ifications using our portable multi-thread mechanism. Our compiler based on
the method can treat all of the basic operators in LOTOS such as choice ([]),
parallel (|||), synchronization (|| and |[g1, ..., gn]|), enabling (>>) and disabling
([>). It can also treat the ADT parts described as functional programs in LO-
TOS specifications. Since the derived object codes are portable, they can be
executed on many architectures and/or OSs.

According to the results in Sec. 5.4, we believe that our compiler can be
used for the developments of many practical distributed systems and communi-
cation protocols more widely.

The current version of our compiler does not support (1) par, choice and
accept statements, nor (2) the parameterized exit operator. Now we have
been extending our LOTOS compiler so that they can be used. Our current
implementation cannot generate faster object codes for the restricted class of the
LOTOS behaviour expressions than the compilers which can generate efficient
object codes for such a restricted class. We would like to improve our compiler
to generate optimized codes from the specifications written in such a class. The
developments of practical communication protocols using the compiler is one of
our future work.

We have also proposed a method for visualizing LOTOS specifications using
the multi-rendezvous mechanism.

Main characteristics of our visualization method are that (1) the dynamic
visualization depending on the contents in the given specification becomes pos-
sible since the visualization scenario is also described in LOTOS, that (2) the
visualization scenario can be described without modifying the original specifi-
cation, and that (3) the real-time visualization of concurrent systems becomes
possible. We could visualize the LOTOS specification of Dijkstra’s philosophers
based on our method with a lower cost. From the experimental results, we can
execute the visualized specification as fast as the original specification.

In our visualization method, only the gate names and the values of each
executed event in the original specification are used in the visualization scenario.
Suppose the several parallel processes can execute a same event whose gate
name and values are the same. Under the situation, to display a different
animation depending on a process which executed the event, we need to modify
the original specification so that the events which belong to those processes
can be distinguished. In our visualization method, each animation synchronizes
the event in the original specification only at the start point. If we need to
synchronize the end point of the event, we modify the original specification.

In our current system, we must prepare each animation description in LO-
TOS for visualization. To compose the visualization scenario more easily, we are
now trying to design and implement an interactive tool for making animation
behaviors on a graphical window by mouse operation.

70

Chapter 6

Conclusion

In this thesis, as a method to design and develop reliable distributed systems
efficiently, we have studied the following three research topics on the execution
and visualization of the system specifications in a wider class of LOTOS.

(1) For a given service specification with data parameters and all basic opera-
tors in LOTOS, and an assignment of each gate to the node, a technique to
derive correct protocol entity specifications has been proposed. A deriva-
tion system based on the algorithm has been also developed.

(2) A graphical LOTOS simulator which can execute a tuple of protocol en-
tity specifications and display the dynamic behavior visually, has been
provided.

(3) An implementation method for a wide class of LOTOS specifications using
a multi-thread mechanism and a compiler based on the method has been
proposed. A real-time visualization method for LOTOS specifications
using the compiler has been also proposed.

It was shown that the derivation technique can be applied to a practical
service specification with data parameters and the operators such as synchro-
nization and interruption using the ISPW6 problem as an example. It was also
shown that the proposed LOTOS simulator can be used to analyze the behavior
of distributed systems. The experimental results have shown that the proposed
compiler can generate efficient object codes from a wider class of LOTOS speci-
fications where the tuple of synchronizing processes is dynamically decided, and
that the compiler can also generate object codes which can display the dynamic
behavior of parallel processes in LOTOS specifications in real time.

As explained in 3.3, the proposed derivation method assumes the asyn-
chronous message exchanges to assure the temporal ordering of events and
data distribution among the distributed nodes. However, LOTOS has multi-
rendezvous (synchronization) operators which enable multiple concurrent pro-
cesses to synchronize in executing events and to exchange data values. If we
can use the operators for the communications among the nodes, we can describe

71

each protocol entity specification more simply and clearly. Although the pro-
posed derivation algorithm can be easily modified to use such multi-rendezvous
operators, it is still difficult to implement the multi-rendezvous mechanism ef-
ficiently on a distributed environment with asynchronous message exchanges
between the nodes.

There are several researches to implement the multi-rendezvous mechanism
under the various restrictions [5, 9, 44]. Under the assumption that a tuple of
synchronizing processes are never changed, these researches statically compose
the special logical graphs connecting the synchronizing nodes to reduce the
message exchanges.

In the future, we would like to implement an efficient multi-rendezvous
mechanism which allows a tuple of the synchronizing nodes to be dynamically
decided. We think it may be possible by using a broadcast mechanism in bus-
connected networks. Design and development of an algorithm for such a multi-
rendezvous mechanism, and implementation of the algorithm within the LOTOS
compiler are our future work.

72

References
[1] Abe, K., Matsuura, T. and Taniguchi, K.: “An Implementation of Portable

Lightweight Process Mechanism under BSD UNIX”, Journal of Informa-
tion Processing Society of Japan, Vol. 36, No. 2, pp.296-303 (1995) (in
Japanese).

[2] Aho, A.V., Sethi, R. and Ullman, J. D.: Compilers–Principles, Techniques
and Tools–, Addison-Wesley, p.796(1986).

[3] Amer, P. D. and New, D.: “Protocol Visualization in Estelle”, Computer
Networks and ISDN Systems 25, pp.741-760 (1993).

[4] Bochmann, G. v. and Gotzhein, R., Deriving protocol specifications from
service specifications, Proc. SIGCOMM’86, pp.144-156(1986).

[5] Bochmann, G. v., Gao, Q. and Wu, C.: “On the Distributed Implemen-
tation of LOTOS”, Proc. of the 2nd International Conference on Formal
Description Techniques (Forte’89) (1989).

[6] T. Bolognesi and E. Brinskma : “Introduction to the ISO Specification
Language LOTOS”, Computer Networks and ISDN Systems, Vol. 14, No.
1, pp 25-59, 1987.

[7] Chanson, S. T., Loureiro, A. A. F. and Vuong, S. T.: On tools supporting
the use of formal description techniques in protocol development, Computer
Networks and ISDN Systems(1993).

[8] Cheng, Z., Takahashi, K., Shiratori, N. and Noguchi, S.: An Automatic Im-
plementation Method of Protocol Specifications in LOTOS, IEICE Trans.
Inf. & Syst. of Japan, Vol. E75-D, No. 4(1992).

[9] Cheng, Z., Huang, T. and Shiratori, N.: “A New Distributed Algorithm
for Implementation of LOTOS Multi-Rendezvous”, Proc. of the 8th. IFIP
Intl. Conf. on Formal Description Techniques (FORTE’94) (1994).

[10] Cooper, E. and P. Draves, R.: C Threads, TR CMU-CS-88-154, Depart-
ment of Computer Science, Carnegie Melon University (1988).

[11] Curtis, B., Kellner, M. and Over, J. : Process Modeling, Commun. ACM,
Vol. 35, No. 9, pp. 75 – 90 (1992).

[12] Deiters, W. and Gruhn, V.: Managing Software Processes in the Environ-
ment MELMAC, ACM SIGSOFT, Vol.15, No. 6(1990).

[13] Dubuis, E.: An Algorithm for Translating LOTOS Behavior Expressions
into Automata and Ports, Proc. of the 2nd Formal Description Tech-
niques(FORTE’89), pp.163-177(1990).

[14] Ehrig, H. and Mahr, B. : Fundamentals of Algebraic Specification 1,

73

EATCS Monographs on Theoretical Computer Science, Vol. 6, Springer-
Verlag(1985).

[15] P. H. J. van Eijk, C.A. Vissers and M. Diaz : “The Formal Description
Technique LOTOS”, North Holland, 1989.

[16] P. v. Eijk and H. Eertink : “Design of the LOTOSPHERE Symbolic LO-
TOS Simulator”, Proc. of the Formal Description Technique III, North-
Holland, pp.577-580, 1990.

[17] Van Eijk, P., Kremer, H. and Van Sinderen, M.: On the use of spec-
ification styles for automated protocol implementation from LOTOS to
C, Proc. of the 10th Int. Symp. on Protocol Specification, Testing, and
Verification(PSTV-X), pp.157-168(1990).

[18] Gilbert, D.: Executable LOTOS: Using PARLOG to implement an
FDT, Proc. of the 7th Int. Symp. on Protocol Specification, Testing, and
Verification(PSTV-VII), pp.281-294(1987).

[19] R. Gotzhein and G. von Bochmann : “Deriving Protocol Specifications
from Service Specifications Including Parameters”, ACM Trans. Comput.
Syst., Vol. 8, No. 4, pp.253-283, 1990.

[20] R. Guillemot, M. Haj-Hussein and L. Logrippo : “Executing Large LO-
TOS Specifications”, Proc. of 8th IFIP WG 6.1 Symposium on Protocol
Specification, Testing and Verification, North Holland, pp.399-410, 1988.

[21] T. Higashino, H. Seki and K. Taniguchi : “Refinements of Algebraic Spec-
ifications to Functional Programs and Their Efficient Execution”, J. IPS,
Vol. 29, No. 8, 1988 (in Japanese).

[22] Higashino, T. and Taniguchi, K. : A System for the Refinements of Alge-
braic Specifications and their Efficient Executions, Proc. of the 24th Hawaii
Int. Conf. on System Sciences(HICCS-24), Vol. II, pp.186-195(1991).

[23] T. Higashino, R. Kato, K. Yasumoto and K. Taniguchi: “Deriving Pro-
tocol Specifications from Service Specification Written in LOTOS with
Data Parameters”, Technical Report of IEICE of Japan, IN91-111, 1991
(in Japanese).

[24] T. Higashino : “Service Specification and Its Protocol Specifications in
LOTOS - A Survey for Synthesis and Execution -”, IEICE Trans. Funda-
mentals, Vol. E75-A, No. 3, pp.330-338, 1992.

[25] Higashino, T., Bochmann, G. v., Li, X., Yasumoto, K. and Taniguchi, K.
: A Test System for a Restricted Class of LOTOS Expressions with Data
Parameters, Proc. of the 5th IFIP Workshop on Protocol Test Systems,
pp.205-216(1992).

[26] Higashino, T., Okano, K., Imajo, H. and Taniguchi, K. : Deriving Protocol
Specifications from Service Specifications in Extended FSM Models, Proc.
of the 13th IEEE Int. Conf. on Distributed Computing Systems, pp.141-

74

148(1993).

[27] G. J. Holzmann : “Design and Validation of Computer Protocols”, Prentice
Hall Software Series, Prentice Hall, 1991.

[28] Huff, K. E. and Lessor, V. R.: A plan-based intelligent assistant that sup-
ports the software development process, Proc. of the 3rd Software Engineer-
ing Symposium on Practical Software Development Environments, Software
Eng., Notes 13, 5, pp.97-106(1989).

[29] IEEE. Threads Extension for Portable Operating Systems(Draft 6), Febru-
ary 1992, P1003.4a/D6(1992).

[30] Inoue, K., Seki, H., Taniguchi, K. and Kasami, T. : Compiling and Opti-
mizing Methods for the Functional Language ASL/F, Science of Computer
Programming, Vol. 7, No. 3, pp.297-312(1986).

[31] ISO : Information Processing System, Open Systems Interconnection, LO-
TOS - A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour, IS 8807(1989).

[32] ISO : G-LOTOS : A Graphical Syntax for LOTOS, ISO/IEC JTC1/SC21
N 3253(1989).

[33] P. C. Kanellakis and S. A. Smolka : “CCS Expression, Finite State Pro-
cesses, and Three Problems of Equivalence”, Information and Computa-
tion, Vol. 86, pp.43-68, 1990.

[34] Kant, C., Higashino, T. and Bochmann, G. v. : Deriving Protocol Specifica-
tions from Service Specifications Written in LOTOS, Proc. of the 12th Int.
IEEE Phoenix Conference on Computers and Communications, pp.310-
318(1993).

[35] Kellner, M. : Software Process Modeling Example Problem, Proc. of the
1st Int. Conf. on Software Process, pp.176-186(1991).

[36] F. Khendek, G. von Bochmann and C. Kant : “New results on deriv-
ing protocol specifications from services specifications”, Proc. of the ACM
SIGCOMM’89, pp.136-145, 1989.

[37] Langerak, R.: Decomposition of functionality: A correctness-preserving
LOTOS transformation, Proc. of the 10th IFIP Int. Symp. Protocol Speci-
fication, Testing, Verification, pp.203-218(1990).

[38] X. Li, K. Yasumoto, T. Higashino and K. Taniguchi : “A Test System for a
Restricted Class of LOTOS Expressions”, Technical Report of IPS Japan,
91-DPS-54-4, pp.25-32, 1992 (in Japanese)

[39] Matsuura. T, Nakamura, T., Higashino, T., Taniguchi, K. and Masuda. S
: VTM : A Graph Editor for Large Trees, Proc. of the IFIP 12th World
Computer Congress, Vol. I, pp.210-216(1992).

75

[40] T. de Miguel, T. Robles, J. Salvachua and A. Azcorra : “The SRTS ex-
perience: Using TOPO for LOTOS Design and Realization”, Proc. of the
Formal Description Techniques III, North-Holland, pp.383-394, 1990.

[41] Manas, J. A., Salvachia, J.: Λβ: a Virtual LOTOS Machine, Proc. of the
4th Formal Description Techniques(FORTE’91), pp.445-460(1991).

[42] Milner, R.: A calculus of communicating systems, Springer Lecture Notes
in Computer Science, Vol. 92, Springer-Verlag (1980).

[43] Mueller, F.: A Library Implementation of POSIX Threads under UNIX,
1993 Winter USENIX(1993).

[44] Naik, K.: “Distributed Implementation of Multi-rendezvous in LOTOS
Using the Orthogonal Communication Structure in Linda”, Proc. of the
15th Int. Conf. on Distributed Computing Systems (ICDCS-15), pp. 518 –
525 (1995).

[45] Nakata, A., Higashino, T. and Taniguchi, K. : LOTOS Enhancement
to Specify Time Constraints among Non-adjacent Actions using 1st-order
Logic, Proc. of the 6th Int. Conf. on Formal Description Techniques(1993).

[46] Nakayama, T., Higashino, T. and Taniguchi, K.: Derivation of Software
Process Description for each Developer from Whole Process Description
written in LOTOS, Technical Report of IEICE of Japan, COMP 91-65(SS
91-22), pp.59 – 67 (1991) (in Japanese).

[47] Nomura, S., Hasegawa, T. and Takizuka, T. : A LOTOS Compiler and
Process Synchronization Manager, Proc. of the 10th Int. Symp. on Protocol
Specification, Testing, and Verification (PSTV-X), pp.169-182(1990).

[48] K. Ohmaki, K. Takahashi and K. Futatsugi : “A LOTOS Simulator
in OBJ”, Proc. of the Formal Description Technique III, North-Holland,
pp.535-538, 1990.

[49] N. Shiratori, H. Kaminaga, K. Takahashi and S. Noguchi : “A Verification
Method for LOTOS Specifications and its Application”, Proc. of the Ninth
IFIP WG 6.1 Symposium on Protocol Specification, Testing and Verifica-
tion, North Holland, pp.59-70, 1989.

[50] Shiroshima, T., Matsuura, T. and Taniguchi, K.: “Implementation and
Evaluation of an Interactive Animation System”, Proc. of Computer Sym-
posium of IPS Japan, Vol. 95, No. 7 (1995) (in Japanese).

[51] Sun Microsystems: System Services Overview, pp.71-106(1988).

[52] K. Takahashi, H. Kaminaga and N. Shiratori : “LOTOS Features with
Survey of Their Support Processing Systems”, J. IPS of Japan, Vol.31,
No.1, pp.35-46, 1990 (in Japanese).

[53] Turner, K. J. and McClenaghan, A.: “Visual Animation of LOTOS using
SOLVE”, Proc. of the 7th Formal Description Techniques (FORTE’94), pp.

76

283-285 (1994).

[54] C. Vissers and L. Logrippo : “The Importance of the Concept of Service
in the Design of Data Communications Protocols”, Proc. of the Fifth IFIP
Workshop on Protocol Specification, Verification and Testing, North Hol-
land, pp.3-17, 1985.

[55] Vissers, C. A., Scollo, G. and Sinderen, M. v.: “Architecture and Specifi-
cation Style in Formal Descriptions of Distributed Systems”, Proc. of the
8th Int. Symp. on Protocol Specification, Testing, and Verification(PSTV-
VIII), pp. 189-204 (1988).

[56] Yasumoto, K., Higashino, T. and Taniguchi, K. : “Execution of Protocol
Specifications Written in LOTOS”, Technical Report of IEICE of Japan,
IN91-112, pp. 51 – 56 (1991) (in Japanese).

[57] Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K. :
PROSPEX: A Graphical LOTOS Simulator for Protocol Specifications
with N Nodes, IEICE Trans. Commun., Vol.E75-B, No 10, pp.1015 –
1023(1992).

[58] Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K.: “Visualiz-
ing Dynamic Behavior of LOTOS Specifications”, I.C.S Research Report,
95-ICS-3, Dept. of Information and Computer Sciences, Osaka University
(1995).

[59] Yasumoto, K., Higashino, T., Abe, K., Matsuura, T. and Taniguchi, K.: A
LOTOS Compiler Generating Multi-threaded Object Codes, Proc. of the
8h Formal Description Techniques (FORTE’95), Chapman & Hall, pp. 271
– 286 (1995).

[60] Yasumoto, K., Higashino, T., Matsuura, T. and Taniguchi, K.: “Protocol
Visualization using LOTOS Multi-Rendezvous Mechanism ”, Proc. of the
IEEE 1995 Int. Conf. on Network Protocols (ICNP-95), pp. 118 – 125
(1995).

77

List of Figures

2.1 Janken game in a distributed system 9
2.2 An execution process of protocol specification 11

3.1 Snapshot of support system . 19
3.2 Syntax tree of the service specification of ‘MakeCode’ 22

4.1 Simulation of protocol specification 32
4.2 Canvas and GlobalView . 37
4.3 Support system . 38
4.4 Guidance on menu . 39

5.1 Tree representation of a behaviour expression 43
5.2 alternative execution between two run-time units 46
5.3 interruption by a run-time unit 46
5.4 Control area . 48
5.5 A LOTOS specification with synchronization operators 51
5.6 Simplification of the control area 55
5.7 Garbage collection of the current control area 55
5.8 Our visualization method . 56
5.9 Mechanism for real-time animations 60
5.10 Visualized Dijkstra’s philosophers 65

78

List of Tables

2.1 LOTOS operators . 8
2.2 Service specification of Janken Game 10
2.3 Protocol specification of Janken Game 12

3.1 Service specification of “MakeCode” 17
3.2 Protocol specification of ‘MakeCode’ 26
3.3 Time of deriving protocol entity specifications 28
3.4 The number of derived communications 28

5.1 Target class of behaviour expressions 43
5.2 A synchronization table . 51
5.3 Animation primitives . 59
5.4 The number of executed events per second in parallel execution 66
5.5 The number of executed events per second in alternative execution 67
5.6 The number of executed events per second in synchronous execution 68
5.7 Amount of description in C and LOTOS 69

79

