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Explosion problem for holomorphic diffusion processes

and its applications

(EEREBREORRMEL 20IA)




EXPLOSION PROBLEM FOR HOLOMORPHIC DIFFUSION PROCESSES

AND ITS APPLICATIONS

SETSUO TANIGUCHI

(Recieved

1.Introduction

A holomorphic diffusion process on an n-dimensional complex
manifold M is a diffusion process {(Zt,g,PZ):zeM} on M, & being the
life time, such that h(ZtAr) is a local martingale for each stopping
time t©<¢ and h€Hol(M), the space of holomorphic functions on M. Such
diffusion processes connect martingales with holomorphic functions.
Thus, holomorphic diffusion processes enable us to discuss topics of
complex analysis in probabilistic terms. The aim of this paper is to
see that the conservativeness of holomorphic diffusion processes is
closely related to domains of holomorphy.

Several classes of holomorphic diffusion processes were studied
by Debiard-Gaveau[4], Fukushima-Okada[81,[9] and Kaneko-Taniguchi[16].
Especially, Fukushima and Okada {8] showed that there is a one to one
correspondence between a family of symmetric holomorphic diffusion
processes on M and the totality of admissible pairs (8,m) on M of
closed positive current @ of bidegree (n-1,n-1) and everywhere dense
positive Radon measure m on M (for the definition of admissible
pairs, see Section 2). For a bounded domain D in Cn, one can
constract the admissible pairs (Gb,mb) on D and (eg,mg) on Dxcgs
Dx(Cn\{O}) from the Bergman kernel function K(z;D) and the

Carathéodry infinitesimal metric c(z,&;D), zeD, gecg, respectively,



For details, see Section 4. Let Mb (resp. Mg) be the holomorphic
diffusion process on D (resp. DXCE) associated with (Gb,mb) (resp.
(Gg,mg)). One of the main objects of the present paper is to show

that the conservativeness of either Mb or Mz implies that D is a

domain of holomorphy under suitable assumptions on the boundary. In
fact, we will see that D is a domain of holomorphy if either (i) Mb
is conservative and Cap(U\D)>0 for any open U with Un8D=¢, where Cap

stands for the Newtonian (logarithmic if n=1) capacity, or (ii) Mg is

conservative and ﬁO=D. See Theorem 4.

It is well known ({2]1,{19]) that K(z;D) and c(z,£;D) can be
extended to a holomorphic extension M of D and its holomorphic
tangent bundle TM, respectively, and hence so are (Gb,mb) and (Qg,mg).
Therefore, in the proof of the above assertion, a key role is played
by the observation that if an admissible pair (6,m) on M satisfies
the "ellipticity" condition, then the conservativeness of the part on
an open set G ¢ M of the holomorphic diffusion process associated
with (@,m) implies the smallness of M\G. For detailed statement, see
Theorem 2.

Before stating another object of this paper, let us consider an
example. Let D be an bounded strictly pseudoconvex domain in c™.
Then, the Bergman metric 8(D) of D is Kahlerian ([2], [18]). Denote
by M(D) the Brownian motion on the Kahler manifold (D,8(D)), i.e. the
minimal diffusion process generated by A/2, where A is the
Laplace-Beltrami operator (for the definition of minimal diffusion
processes, see [15]). As will be seen in Section 4, the holomorphic
diffusion process Mb discussed in the above paragraph coincides with

M(D) up to time change t—t/2n. Since D is strictly pseudoconvex,




(D,B(D)) looks like a space of constant holomorphic sectional

curvature near the boundary ([{17]). Hence the Ricci curvature is
bounded from the below by a constant. Therefore M(D) is conservative,
i.e. the life time is infinity a.s. ([13]) and so is Mb'

On account of this example, it is natural to ask whether the
contrary to the first assertion holds, i.e. whether either Mb and Mﬁ
is conservative if D is a domain of holomorphy. In order to answer
to this question, we will establish that My {resp. Mg) is

conservative if there is a nice exceptional set E ¢ 8D such that
limsupkK(zk;D)=+m (resp. limsupkc(zk,ﬁk;D)=+w)

for every zk—az*eaD\E (resp. (zk,ﬁk)—#(z*,&*)e(SD\E)xcg). For

details, see Theorem 3. As will be seen in Examples 4.1 and 4.2,
this assertion yields that Mb and Mg are conservative if D is a
domain of holomorphy with nice boundary.

This assertion follows essentially from more general criteria for
conservativeness and explosion for symmetric holomorphic diffusion
processes, see Theorem 1. Since we can not expect the smoothness of

admissible pairs (68,m) in genaral (this is the case when
(9,m)=(92,m2)), we have no nice expression of the generator of the

diffusion process. Therefore, the results due to Hasminskii [12],
Ichihara [13],[14] are not applicable in our situation. We will
establish our criteria by using the stochastic analysis for
plurisubharmonic functions. As will be seen at the end of Section 2,
our criteria yields also a unified way to test the explosion and

conservativeness of these specific symmetric holomorphic diffusion




processes already studied by Fukushima-Okada [8],[(9], Debiard-Gaveau
[4] and Kaneko-Taniguchi [16] respectively.

The organization of this paper is as follows. We will begin
Section 2 with giving a brief review on the symmetric holomorphic
diffusion processes. We will then give the above mentioned general
criteria for them. 1In Section 3, we will see that if the part on G

of the holomorphic diffusion process on M is conservative then M\G is

small. Section 4 will be devoted to showing that the conservativeness
of either Mb or MZ implies that D is a domain of holomorphy. A
criterion for Mb or Mg to be conservative will be also given in the

same section. Several examples will be presented at the end of the

section to illustrate our results.

2.Conservativeness

In this section, we will discuss the conservativeness of
symmetric holomorphic diffusion processes. We first give a brief
review on symmetric holomorphic diffusion processes, following
Fukushima and Okada [8],[9]. Let M be a o-~compact connected complex
manifold of complex dimension n. A pair (6,m) of closed positive
current 8 of bidegree (n-1,n-1) and everywhere dense positive Radon

measure m on M is said to be admissible if the symmetric form

£%(u,v) = f duadSvag, u, veCs (M)
M

is closable on LZ(M:m), the space of m-square integrable functions,




where d=8+3 is the exterior derivative and d°=i(3-8). We denote by
U(M) the totallity of admissible pairs on M. For (8,m)eU{(M), the

0

minimal closed extension E(G’m) of EY with the domain F(G,m) is a

Cg—regular local Dirichlet form on LZ(M:m). Then, every he€Hol(M) is

E(e’m)—harmonic. As usual, the associated capacity for compact set K

c M is defined by

Cap(e’m)(K) = lnf{f uzdm + E(e’m)(u,u): uGCo(;(M), u=zl on K}
M

and is extended to the capacity for any set as a Choquet capacity,
which we call the E(e’m)—l—capacity. Throughout this paper, by

(G,m)_l_ capacity zero'".

"E(g’m)—q.e." we mean "except for a set of E
By virtue of the theory of Dirichlet spaces [5], we obtain a
diffusion process M(G,m)= {(Zt,g,Pée’m)):zeM} associated with this

E(G,m), up to equivalence, where ¢ i1s the life time. Then, each

h(ZtAt)’ he Hol(M), is a local martingale for every stopping time t<g

under P;G,m)’ E(e’m)—q.e. zeM. We call M(G,m) the holomorphic
diffusion process associated with (8,m)eU(M). Moreover, we say that
M(G,m) is conservative 1if P;e’m)[§=+w] =1, E(e’m)—q.e. z€M and that
it explodes if P;e’m)[§<+m] = 1, E(e’m)~q.e.

A function u:M—|[-w,+») is called a plurisubharmonic {abbreviated
to psh) if u is upper semicontinuous and the derivative dd®u in the
distribution sense is a positive current. A subset N of M is said to
be pluripolar if there is a psh function ¢ such that N c ¢_1(—w).
Finally, for locally bounded psh u and closed positive (n-1,n-1)-

current 8 on M, we define a positive Radon measure ddCuAB on M by




f £ ddung = f u dd®fag, FeCT (M) .
M M 0

For details, see [21]. We are now ready to state our result on

conservativeness and explosion:

Theorem 1. Let D be a bounded domain in C" and (6,m)eU(D).

(6,m)

Denote by M the associared holomorphic diffusion.

(i) Assume that there exists a locally bounded psh function p

M(G,m) is conservative, if either of the

such that mzddeAG. Then,
following conditions is satisfied:

(i.a) there is a sequence {Aj} of analytic sets in c™ such that
Aj N D =¢ and for every zk—»z*e aD\{nglAj}, it holds that

(2.1) limsupkp(zk) = +w and 1iminfkp(zk) > —w,

(i.b) m is equivalent to the Lebesgue measure V on D and there is
a pluripolar set N in c™ such that N ¢ 8D and (2.1) holds for any
zk—»z*eaD\N.

(ii) Assume that there exists a locally bounded psh function g
such that msddchQ. Then, M(G,m) explodes if either of the following
conditions is fulfilled:

(ii.a) there is a sequence {Aj} of analytic sets in c™ such that
Aj Nn D = ¢ and for every zk~»z*e aD\{szlAj}, it holds that

(2.2) limsupkq(zk) < 4o,



(2.4) pég’m)[{N£31<+m,1(“)>-m}A{s(“)<+m}] -0, egl®m_g...,

where AAB = (ANB)u(B\NA). If mzddeAG for some locally bounded psh p

on M, then it holds

(2.5) Pée’m)[{§<+m and I(P)>-m}\{s(P)<+m}] = 0, E(e’m)—q.e. ZEM.
Finally, if msdquAQ for some locally bounded psh q on M, then
(2.6) Pée’m)[{s(q)<+m}\{g<+m}] = 0, E(g’m)—q.e. Z€EM.

Proof. By using a standard time change argument (cf.[15]), it

follows from (2.3) that

(2.7) u(z,)-u(z) = B(<MWs ) 4+ nlul, t<g,

t t t
under P;Q,m), where B(t) is an Rl—valued Brownian motion with B(0)=0,
Since Niu] is a nonnegative increasing process, this implies that

. [ul (u) _
llmsuptth(<M >t) < S u{z),
- [u] (u) _ _ ylul
llmlnftng(<M >t) > I u(z) N;— .
Recalling that limsuptth(t) = 4o and liminftTmB(t) = -, we deduce
from these inequarities that <M[u]>§_ is finite P;e’m)—a.s. on

{S(u)<+w}u{N£B]<+m,I(u)>—m}. Pluging this into (2.7), we obtain that

{2.4) holds, because B(t),te[0,»), is continuous.



(ii.b) m is equivalent to V and there is a pluripolar set N in ch

*
such that N ¢ 8D and (2.2) holds for any Zy % €8D\N.

For the proof of Theorem 1, we prepare two lemmas. We first

recall that locally bounded psh u is locally in F(G’m), the domain of

E(G,m). See [8]. Moreover, there exist a continuous local martingale

[u]
t

functional Ngu], te[0,&) such that

additive functional M and a continuous positive additive

(i) the Revuz measure of Néu] is dd®ua@ and

(ii) the semimartingale u(Zt) has a decomposition

(2.3) u(z,)-u(z) = MM 4 NIW, t<g,
under P;G,m)’ E(e’m)—q.e. zeM (cf. [8]1,[9]1). We now proceed to the

first lemma.

Lemma 1. Let us consider an n-dimensional complex manifold M.
Let (8,m)eU(M) and M(e’m)={(Zt,§,P;e’m)):zeM} be the associated
symmetric holomorphic diffusion process. For R-valued function f on

M, we denote by I(f) and S(f) the random variables given by

L(F)

.. f
= 11m1nft1§f(zt), S( ) -

= limsupttgf(zt).

For every locally bounded psh function u on M, it holds that




To see the second and the third assertions, it suffices to

[p
;._
The proof is complete.

mention that § = N ] {resp. < Né?]) if m > ddeAQ (resp. < dquAG).

Lemma 2. Let us consider a bounded domain D in C". Let (é,m)e
U(D) and M(Q,m)= {(Zt,g,P;G’m)):zeD} be the associated holomorphic
diffusion process. Then,

E(G’m)

(2.8) P;G’m)[limtfgzt exists] = 1, -q.e. z€D.

If A is an analytic set in ¢™ such that A Nn D= ¢, then

(2.9) P;G’m)[lim e Al =0, ©E(®m_g o

trelt

Finally, if m is equivalent to the Lebesgue measure V on D and N is a

pluripolar set in c¢™ such that N c 8D, then

(2.10) Pée’m)[limttgzt € N] = o0, gl0m)_g o,
Proof. Since D is bounded, each component of Zt is a bounded
martingale on [0,%) under P;G,m)’ E(e’m)—q.e. Thus, the martingale

(91m)_

«eS.
2 a

convergence theorem implies that limttgzt exists P
To see the second assertion, let woeA N 8D. By the definition
of analytic sets, there are an open set U in c¢® and wl,wz,“-,wk €

Hol(U) such that WOGU and U n A = {w1=-~-=wk=0}. By shrinking U if

necessary, we may and will assume that wl's are all bounded on U. Put




T = inf{t>O:Zt ¢ Un D}.

Then, wl(Zt) is a Cl—valued continuous martingale on [0,&At) such
that <wl(Z.),w1(Z.)>tEO. By a standard time change argument

(cf.[15]), we have

wi(z,) = wi(z) + BH(<wi(z,),wH(2,)>), t<gax,

under P;G,m)’ E(G’m)—q.e., where Bi(t) is a Cl-valued Brownian motion
with Bi(O) =0. By the argument similar to that in the proof of
Lemma 1, we see that <wi(Z_),Wi(Z_)>(§At)_<+m a.s. Since AnD = ¢,
wi(z) # 0 for some 1l<i=i(z)<k for every z € U n D. Moreover,

Cl—valued Brownian motion never hits —wl(z). Hence

(91m)_

Pée’m)[lim € Un A, ¢<t] = 0, E q.e. z € Un D.

trelt

Therefore, by [5:Theorem 4.2.1], there exists a Borel set N c¢ D such

that
(2.11) cap'®m) () = o,
(2.12) Pée’m)[limtngt € UnA, g<t] = 0, z € Un (D\N),
(2.13) P;G’m)[zt € D\N, 0 < t <g] =1, 7z € D\N.
Let
Ar = {limtT§Zt € Un A and Zt € UNnD forr<t < t&}.



Then, (2.12) implies

(2.14) p{Om)(y,) for z € U n (D\N).

"
(=]

Combining (2.11), (2.13) and (2.14) with the Markov property, we have

(2.15)

= 0,
for E(e’m)-q.e. z€D, where E;G,m) stands for the expectation with
respect to P;G,m). Note that

{lim € Un A} c v, Ar’

trgzt
where the union is taken over all nonnegative rational numbers r.
Thus, (2.15) yields

(2.16) Pée’m)[lim ceUnA] =0 gl8,m)_o o,

t1et
Covering A n 8D with countably many U’s as above, we can conclude
from (2.16) that (2.9) holds.

We finally verify the third assertion. For this purpose, we
modify the argument in the proof of [7:Theorem 1]. For a bounded
domain Q < Cn, the extremal function uE(z;Q) of a set E c Q is

defined by




uE(z;Q) = sup{v(z):v is a nonpositive psh function on Q with
v £ -1 on E}
* .
uE(z,Q) = llmsupw_qzuE(w,Q).
We set
*
C,(E;Q) = —I wi(z;0)V(dz).
# Q E

It is known ([11,[9]1) that

(i) C#(E;Q) = inf{C#(O;Q): O is open, O o E},

(ii) C#(E;Q) < C#(E;Q’) if Qe Q.

Let N ¢ 8D be a pluripolar set in c? and ) be a bounded domain such
that D ¢ Q. Then, C#(N;Q) = 0 ([1]). Hence there exists a sequence

{Ok} of open sets in c™ such that N c Ok c Ok—l’ k =2 2 and
C#(Ok;Q)—AO as ko,

Since m is equivalent to the Lebesgue measure V, by [8:Lemma 4], we

have

J’D P;e’m)[0k<+w]V(dZ) < C#(Ok;D) < C#(Ok;Q)’ k=1,2,'°~,

where o, = inf{t>0:Zt € DnOk}. Letting k—®, we have




(2.17) P OMA® (o) < +=}] = 0

for V-a.e. z€D. Since m is equivalent to V, (2.17) holds for m-a.e.
z€D. Note that u(z)=Pz[n;=1{ok<+m}] is excessive (for the definition
of excessive functions, see [5:p.99]). Due to [5:Lemma 4.2.5], we see
that (2.17) holds for E(e’m)—q.e. z€D. Thus, (2.10) holds. The proof

of Lemma 2 completes.
We now proceed to the proof of Theorem 1.

Proof of Theorem 1. We first assume the existence of locally
bounded psh function p with mzddcpAG. Since M(G,m) has no killing
inside, due to (2.8), we have

P;G,m)[{,—;(_’_m}\{lim € 8D}] - 0’ E(B,m)_q.e.

trglt

Combining this with (2.1) and Lemmas 1 and 2, we have

E(G’m)—q.e.

Hence the first assertion of Theorem 1 has been seen.

To see the second assertion, assume that there is a locally
. bounded psh function q on D such that msddchB. Since q is upper
semicontinuous, S(q) <+ on {limttgzt € D}. It follows from (2.6)

and (2.8) that




P;G’m)[{limtrgzteD}] = pée’m)[{g<+m}n{limtT§ZteD}]
for E(e’m)—q.e. z€D. Thus, since M(G’m) has no killing inside, we
obtain

P;e’m)[lim € 8D] = 1, {0 m)_q o,

trelt

Combining this with (2.2) and Lemmas 1 and 2, we obtain
1= pl®m sl i) < plOM reya], gl®m)_g e,

The second assertion of Theorem 1 has been verified. The proof is

completed.

Remark 2.1. Let u be a locally bounded psh function on D. By

the same reasoning as at the end of the proof of Lemma 1, M(G,m) is

conservative {(resp. explodes) if dd®ung < m (resp. =2m) and

P;e’m)[N£8]<+w] = 0 (resp. =1). Let h be a locally bounded upper

semicontinuous function with dd“h = 0. Note that ddcu=ddc(u+h) and

hence ddc(u+h)A6 enjoys the same inequality as dd®un@ does. Moreover,

N[u] =N[u+h]. Therefore, as far as we discuss the conservativeness

and explosion problem after evaluating Pée’m)[N£E]<+m], there is no

difference between choosing u or ut+h. However, Lemma 1 gives a way to

(e’m)[N[u]<+oo

estimate PZ ] in terms of I(u) and S(u). Thus, to

estimate P;Q’m)[N£E]<+w], a particular u will be much easier to

"handle than the others.




In the remainder of this section, we will apply Theorem 1 to some
known examples. In what follows, D is a bounded domain in ¢™ and
M(G,m) is a holomorphic diffusion process associated with (8,m)eU(D).

Moreover, for locally bounded plurisubharmonic Uy,c-c,u, on D, we

will use dd®u,A---Add®u, to denote the (k,k)~closed positive currents

1
defined inductively by

k

f fAdd®uya- - -Adduy = f u, dd®fAdd®u - - -add u
D D

1 k-1

for every C~ (n-k,n-k) form f with compact support.

Case(1). Fukushima and Okada [8] showed that M(G,m) explodes if
0 = (ddcp)n and m = ddclzleG,

where p is a bounded psh function on D such that m(dz)= g(z)V(dz) for

some positive continuous g. In this case, Assumption (ii.a) in
Theorem 1 is satisfied with q(z) = lzlz. Hence, Theorem 1 also
implies that M(G,m) explodes.

Case(2). In [9], Fukushima and Okada showed that M(Q,m) explodes
if m(D) < +» and the Poincarée type inequality holds:

I wz dm < C E(e’m)(w,¢) for every wGCZ(D)

D

for some constant C>0. Suppose that there exists a bounded psh

function u on D such that m < ddun@. Then, the Poincaré type

inequality holds:




f wz dm < 8fluli_ E(e’m)(w,w) for every @ECE(D)

D

where llull | = sup{lu(z)l:z€eD} (see [9},[21]). 1In this case,
Assumption (ii.a) is fulfilled with q = u. Thus, even if m(D) = +=,
M(G,m) explodes.

Case(3). Debiard-Gaveau[4] and Kaneko-Taniguchi{16] treated the

case when
0 = (dd°3{(-1og(-9;))}" ! and m = (dd°5H(-1og(-e,)))"

for some bounded plusisubharmonic negative functions @5 with

n§=1¢i(z)—a0 as z—8D. Then, it was seen that M(G,m) is conservative.

In this case, Assumption (i.a) is satisfied with p=—§§:1log(—wi).
Thus, Theorem 1 also yields that M(G,m) is conservative.

Case(4). Finally we consider an example. Let

2 2

D = {z=(z1,zz)EC : |z1|<1,|z 1<1},

= ddclzzl2 and m = ddclzleG.

o]
i

Then, Assumption (ii.a) is fulfilled with q(z)=|z|2. Thus, by virtue
of Theorem 1, M(g’m) explodes. Furthermore, it is straightforward

to see that P;G’m)[zi = z2 for t = 0] = 1. Hence the «-order Green

measures Ga(z,-) = f e-atP(t,z,-)dt, P(t,z,-) being the transition
0
pProbability of M(G,m)’ are not equivalent. Thus, the criteria due to
- 16 -




Ichihara [14] for explosion are not applicable directly. However, it
should be noted that if we restrict ourselves to the submanifold Dw =

{(z,w):zeC1 and 1z1<1}, then the criteria by Ichihara are applicable

and yield in the end that M(G,m) explodes.

3.Smallness of sets

Let G be an open subset of a o-compact connected n-dimensional
complex manifold M and (8,m)eU(M). The part Még’m) of M(G,m) =
{(Zt,g,Pée’m)):zeM} on G is by definition the holomorphic diffusion

process on G given by
(3.1) Ml ™ = {(z,,0n,pL0™)) zeq),

€ M\G }. Our aim of this section is to see

t
that the conservativeness of Mée’m) implies the smallness of M\G. To

where ¢ = inf{t>0: Z

state our result, we prepare some notions. We say that A ¢ M is of

measure zero (resp. of capacity zero) if, for every coordinate

neighbourhood U and diffeomorphism ¢:U — @(U) c ¢, @(AnU) is of

Lebesgue measure zero (resp. of Newtonian (logarithmic if n=1)

" "

capacity zero). For (k,k)-currents u,v, we mean by "uzv" that u-v is

a positive current. Our goal of this section will be

Theorem 2. Let G be an open set in a o-compact connected
n-dimensional complex manifold M and (6,m)eU(M). Assume that
i,2\n

(3.2) 0 = c(U)(da®s}_1z"1%)" ! and m > c(U)(da®sT 121157,




on each relatively compact coordinate neighbourhood U with a
coordinate system zl,-”,zn for some C(U)>0. If the part Mé@,m) of
M(G,m) on G is conservative, then M\G is of measure =zero. 1f,
furthermore, m(A) = 0 for any A ¢ M of measure zero, then M\G is of

capacity =zero.

Proof Let M(e’m)={(zt,§,P;e’m)):zeM} be the holomorphic
diffusion process associated with (8,m). By (3.1), the
(91m)

conservativeness of MG implies that

(3.3) P& Mo ¢ 4a] = 0 g(0m _g o, zea,

because A ¢ G is of Eée’m)—l—capacity zero if and only if it is of

E(e’m)—l-capacity zero (see {5:Theorem 4.4.2]). Recall that
(3.4) p{® ™, = 01 = 1 (@™ _g e, zeM\G
(see [5:p.94]). Thus, (3.3) and (3.4) imply the identity

(3.5) (fxy0g) (2) = ELO ™ [e™98(2 )] B(@m) g e, zen,

for every f € CB(M), where xA(z)=1 or 0 accordingly as z€A or not and

P(e’m).
z

E;G,m) stands for the expectation with respect to By virtue

of [5:Theorem 4.4.1], we can conclude from (3.5) that

(3.6) € F(Q,m) for every nonnegative feCE(M),

fxyng



where F(€'™) ig the domain of E(9:1),

Let z € G and zl,--~,zn be a local coordinate system on a

relatively compact coordinate neighbourhood U of z, where G is the
closure of G in M. Then, U N G # ¢. By identifying U with a bounded
open set in ch through the coodinate system, we can construct the
absorbing barrier Brownian motion on U. We denote by (F’,E’) the
corresponding Dirichlet space. Then, combined with Assumption (3.2),

(3.6) yields that
(3.7) fo\G € F’ for every nonnegative f € CS(U)

and hence

(3.8) is locally in F’.

XuNG
Recall that (F’,E’) is irreducible, i.e., either A or UNA is of
Lebesgue measure zero if A is locally in F’ ([6]}). Thus, either U n G
or UNG is of Lebesgue measure zero. Because the open set U n G is not
empty, UNG is of Lebesgue measure zero. In particular, UNG = ¢ and U
c G. This implies that G is open and closed and hence G = M, for M

is connected. Therefore, M\G is of measure zero.

We next assume, moreover, that m(A) = 0 for every A c M of
measure zero. By the above observation, we have
(3.9) m({M\G) = 0.
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This and (3.3) imply that M\G is of E(e’m)—l-capacity zero ([51).
Therefore, by Assumption (3.2), we see that UNG = U n {M\G} is of
E’-1-capacity zero, where (F’,E’) is the Dirichlet space of the
absorbing barrier Brownian motion on U as in the proceding paragraph.
Recall that A ¢ U is of capacity zero if and only if it is of
E’-1-capacity zero. Hence M\G is of capacity zero. The proof is
completed.

(6,m)

Remark 3.1. The generator A of M is expressed formally as

A(p - &d@ﬁ_’ ¢€CN(M)
m
(cf.[21]). Let U be a coordinate neighbourhood with a coordinate
system zl,---,zn. We denote by V the Lebesgue measure on U induced

through this coordinate system. Suppose that it holds for some alJ,

b € C”(U) that
dm = b dV and 0(idz adzd) = ald gv.
Then, we have |

.. 2
_ 1 <n ij 9 @
Ae = 24, 5=1 @ 9z1979"

Moreover, Assumption (3.1) is equivalent to that

ij ij
(a )lsi,an b-3 C(6 )lsi,jsn and b 2 C on U for some C>0.



Thus, Assumption (3.1) can be thought of as an assumption on the
ellipticity of the generator A.
Without the "ellipticity" assumption (3.2), the assertion of

Theorem 2 does not hold in general. For example, let M = 02 and G =

{z € CZ: Izl > 1}. Then, M\G is not of measure zero. Take ¢ € Cz(Rl)

+ o0
such that ¢ > 0, supple] c [1,2] and I ¢{x)dx = 1. Define ¢(x) =
x y 2 c
I dyflw(w)dw, p(z) = ¥(1z1°) and 8 = dd”p. Then, (6,V), V being the
1

Lebesgue measure on Cz, is an admissible pair and the associated

holomorphic diffusion is generated by

A = 1637 ;_jatY(0%/0270%Y),

where
. (1212 v (1212)12212  —e(1212)2132
(atd) =
—0(1212)z7122 ¥ (1z12)+e(1212) 12112
Since

sup{l""”(x)| , lgillﬁ :x > 1} < 4o, k=0,1,---
|x-1] Ix-1]
¥’(x) = 1 and ¢(x) = 0 for x € [2,+=),

it is straightforward to see that
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(6,m) 2
E, ! [SUPOStST 1/(|Zt| -1)] € + o

(6,m) 2
E, [supg poplZel™1 < 4,
for every z € G and T > 0. Thus, we see that the part of M(Q,m) on G

is conservative,.

4 .Domains of holomorphy
This section is devoted to the study of domains of holomorphy as

an application of Theorems 1 and 2. Let D c ¢™ be a bounded domain.

The Bergman kernel function K(z;D) of D is defined by
_ 2 2 2
K(z;D)=sup{1f(z)1°/0fN": feL (D)},

where Lﬁ(D) is the space of holomorphic functions on D with Hf"2 =
I If(z)le(dz)<+w. We set
D
pb(z) = log K(z;D), Qb = (ddcpb)m_1 and my = (ddcpb)n
As we will see later, (Gb,mb) € U(D). Therefore, a holomorphic

diffusion process associated with (Gb,mb) is defined. 1In what

follows, for the sake of simplicity, we write Mb={(Zt,§,PZ):z€D}

(eb’mb) (Qb’mb)
instead of M ={(Zt,§,Pz ):zeD}. Now let us show that

(Gb,mb)EU(D). To do this, recall that Py is ¢® and strictly psh on D

([21,[18]1). Hence, 0, is a closed positive current on D of bidegree

b
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(n-1,n-1) and m, is a everywhere dense positive radon measure on D.
0
Thus, it suffices to show that E b is closable. To this end, take a
sequence {u_} in CH(D) such that f u2 dm, —0 as n—w, Let @eCn(D).

n 0 p D b 0
Since Py is strictly psh, we have

-C dmb < ddeAGb < Cx dmb on D

xsuppw sSuppe

for some C > 0. This implies that
(4.1) ID u, ddc@AGb — 0 as n—w,

On the other hand, the closedness of Gb implies that

2]
b - _ C
E (un,w) = ID u, dd 2N
Therefore,
Gb -
E (un,w) — 0 as n—o for every weCO(D)

6
and hence E b is closable on LZ(D:m) (cf.[5]).
An important property of Mb is that it coincides with the Brownian
motion associated with a Kahler metric on D. To state more precisely,

.let us introduce the Bergman metric B8(D) on D defined by



82p
_ <«h b i,=J
B(D) Zl,J=1 azla_é_ dz dz”.
It is known ([2],[18]) that B(D) is Kahlerian. We observe that the

time changed process ﬁb = {(Zznt,§/2n,PZ):zeD} is the Brownian motion

on the Kahler manifold (D,8(D)). 1In fact, it is easy to see that

ddcheb = 2P 2 1)1ae dv

n! dv,

where A is the Laplace-Beltrami operator and v is the volume element

on (D,B(D)). Thus the generator A of Mb is expressed as
Ap = A¢/4n for weCE(D).

This implies that ﬁb is the Brownian motion on (D,B8(D)).

To define symmetric holomorphic diffusion processes corresponding
to the Caratheodory infinitesimal metric, we introduce some more
notations. The Carathéodory infinitesimal metric c(z,£;D), z€D, &eC?

is given by

c(z,ﬁ;D)=sup{Izg_lgif(z)ﬁil:f:D — A is holomorphic and f(z)=0},
T3z
where A={zeClzlz|<1}. It is well known ([19]) that c(+,+;D) is a non-

negative continuous psh function on Dxcg. Let Ext(D) be the totality

of pairs (X,n) of o-compact connected n-dimensional complex manifold




X and local biholomorphism n:X—eCn such that

(i) Dec X and D is open in X,

(ii) n(z) =

(iii) every

z, Z€D

f € Hol(D) has a g € Hol(X) such that f = g on D.

For a complex manifold M, we set

SP(M) = {p:M—R:(1) p is locally bounded and psh

It is straightforward to show that, for peSP(M), (ddcp)n

(ddcp)n satisfy
the totality of
SP(TX,) so that

where TX* is an
X consisting of

£(1z12)+g(1£1%)

(2) on each relatively compact coordinate

neighbourhood with coordinate system z=(zl,-~,

zn), p—élzl2 is psh for some §>0 }.

-1 and

Assumption (3.2) in Theorem 2. We use E(D) to denote
nonnegative weSP(DxC?) such that there is a @ €

@ = ¢ on DXCE = TD, c TX, for every (X,n)e Ext(D),
open subset of the holomorphic tangent bundle TX over

nonzero tangent vectors. It is easyly seen that

€ E(D) for any Cz—functions f,g on [0,») with

positive first and nonnegative second derivatives. For ¢ € E(D), let

po(z,8)=c(z,&;D)+0(z2,8), 92=(ddcpg)2n_1 and mg=(ddcpg)2n-

By the same argument as we saw that (Gb,mb)eU(D), we can see that

(Gg,mg) € U(DxC?). We denote by Mg={(zt,£t),§,P?é?ﬁ)):(z,&)erCQ} the
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holomorphic diffusion process on Dxcg associated with (Gg,mg).

We will establish the criteria for conservativeness of Mb and Mg

as follows.

Theorem 3

(i) M, 1is conservative if there is a pluripolar set N in c™ such

b
*
that N ¢ 8D and limsupk K(zk;D)=+oo for every z, —z € 8D\N.

(1i) Mg is conservative if, for every a > 0, there exists a ¢ >0

such that
{(z,8)eDxCy:0(z,8)<a} c {(z,8)eDxCy:I&l<c)

and there exist analytic sets Aj in ¢™ such that Aj N D = ¢ and

) X %
llmsupk c(zk,E;k;D)=+oo for every (zk,ﬁk) — (z ,E ) € (OD\{Uj Aj})XC:'

Combining Theorem 2 with the well known fact that K(-;D) (resp.
c(+,+;D)) can be extended to X (resp. TX), (X,n)eExt(D), we will have

the following theorem, which is a generalized version of the result

announced in [23].

Theorem 4. A bounded domain D in C" is a domain of holomorphy

if either of the followings is satisfied:

(i) Mb is conservative and U\D is of positive Newtonian
(logarithmic for n=1) capacity for every open U with Un 8D = ¢,
(ii) Mg is conservative for some @€E(D) and ﬁo = D.

The difference between the assumptions on the boundary in (i) and




(ii) of Theorem 4 comes from that K(z;D) is C~ but c(z,g£;D) is only

continuous in general. Before proceeding to the proofs of Theorems 3

and 4, we remark an immediate consequence of these theorems.

Corollary. A bounded domain D c c” is a domain of holomorphy if
either of the followings holds:
(i) for each open U with U n 8D = ¢, U\D is of positive Newtonian

{logarithmic for n=1) capacity and there is a pluripolar set N in c?

*
such that N c 8D and limsupk K(zk;D)=+oo for every Z, —z € 8D\N,

0

(ii) D° = D and there is a sequence {Aj} of analytic sets in C"

such that Aj Nn D= ¢ and limsupk c(zk,ﬁk;D)=+m for every (zk,ik) —

(z%,&%) e (8DN{U; A} )xCy.

Proof. The first assetion is an immediate consequence of

Theorems 3 and 4. To see the second one, it suffices to take

e(z,2)=1z12+1212.

We now proceed to the proofs of Theorems 3 and 4.

Proof of Theorem 3. Suppose that the assumption in the first

assertion of Theorem 3 is satisfied. Because Py, € SP(D) n c*(D), my
is equivalent to the Lebesgue measure V on D. Moreover, since 1le€

Lﬁ(D), it follows from the definition that

K(z:D) = 1/V(D).

Thus, Assumption (i.b) in Theorem 1 is satisfied with p = Py Hence,




by Theorem 1, we see that Mb is conservative.
We next suppose that the assumption in the second assertion is
fulfilled. Since {¢<a} c {I&i<c} and ps 2 0, by (2.5) in Lemma 1, it

suffices to show that

(4.2)  PY. [{e<=ln{limsupy ;, (c(Zy, & 3D)+1E 1)<+m}] = O,

Notice that the i-th component &; of &t is a continuous local
martingale on [0,&) with values in ch. Then, by by a standard time

change argument(cf.[15]), we have
i i

ﬁt = ﬁo + Bi(<&i’gi>t)’ t<g,

for some Cl—valued Brownian motion with Bl(O) = 0. Since

limsuptTmlBl(t)l = +o, we obtain that
<§},E?>§_ { 4o, i=1l,--+,n, a.s. on {limsupttglﬁtl<+w}.
Recall that Bl(t) never hit —&l. Hence it holds

(Z E)[{llmsupttglstlﬂw}]
(4.3)

(z ﬁ)[{llmsuptTglﬁtl<+m}n{11mtT§E,t exists in C*}]

Furthermore, since Mg has no killing inside, limtngt exists in 9D,
c’(‘o - oo 1 oo
P %, E) a.s, on {g<+m>, llmsupt1§|5t|<+ }. Moreover, the argument

similar to that in the proof of Lemma 2 implies that



C,Q . . . oo _
(4.4) P(z,&)[llmt1gzt exists in Vj=1 Aj] = 0.

Therefore, we have

P(z g)[{§<+m}n{limsupt1§(C(Zt,ﬁt;D)+Igtl)<+m}]
(z g)[{llmsuPttgc(zt’5t’D)<+w}n{llmtT§(zt’g )€8D\{UJ 1A }xC*}]

From this and the assumption, (4.2) follows and hence the proof of

the second assertion is complete.

Proof of Theorem 4. It suffices to show that

(i) if D is not a domain of holomorphy and Mb is conservative,
then there is an open set U such that U n 8D = ¢ but U\D is of
Newtonian (logarithmic) capacity zero and

(ii) if D is not a domain of holomorphy and Mg is conservative,

then 50 # D,

To do this, in the remainder of this proof, we assume that D is
not a domain of holomorphy. Then, there are a connected open set U c
c™ and a connected component V of U n D such that Un D # ¢, U\D = ¢
and each f € Hol(D) has a g € Hol(U) with f = g on V. By attaching U
and D at V, we obtain (X,n)eExt(D) such that n(X) = U u D, n(X\D) =
UN\V and n:X\(D\V) — U is biholomorphic.

Assume that Mb is conservative. It was seen by Bremermann [2]

that there is a q € SP(X) n C”(X) such that 4 = p, on D. We put 8=

(ddcq)n—1 and m=(ddcq)n. Then, since q € SP(X), the argument similar



‘_iﬁ |

to that used to see that (Gb,mb)eU(D) implies that (8,m)eU(X).
Obviously, Gb = 6|D and m = m,D. Thus, by [9:Proposition 9.1]1, we
see that Mb is the part of M(Q,m) on D. Moreover, 6 and m satisfy

0 if A ¢ X is of measure zero, because

Assumption (3.2) and m(A)
q € SP(X). Hence, by Theorem 2, we have that X\D is of capasity zero.
Because m:XN\(D\V) —U is biholomorphic, this implies that U\D is of
Newtonian (logarithmic if n=1) capacity zero. Moreover, the
connectedness of U and the assumption that Un D # ¢ and U N D # ¢
imply U n 8D = ¢. Thus, the first assertion has been verified.

Next assume that Mg is conservative. Let c(z,£) be the

Caratheéodory infinitesimal metric of X:
c(z,g) = sup{“(f*)zﬁu: f € Hol(X) taking values in A},

z € X, £ € TZX, where (f*)z is the differential of f at =z, lI-ll is the
norm associated with the Poincare metric on A = {z € Clz lz] < 1} and
TZX denotes the space of holomorphic tangent vectors at z. It is well

known ([19]) that c(z,&) is a non-negative continuous psh function on

TX. Let

alz,t) = cl(z,g8) + o(z,8), (z,8) € TX,,

§ where ¢ € SP(TX*) is the function appearing in the definition of E(D).
g We set

1

8 = (ddcq)zn— and m = (ddcq)zn.




l--1l!E---f-----------------:————————————————————————————————————::

Then (0,m) is an admissible pair on TX, and satisfies Assumption
(3.2) in Theorem 2. We observe that, by identifying TD, c TX, with
DxCy, the following identities hold:

and m

@ (0
(4.5) 9, ¢

= 8 = m .
| pxcB | pxch
Indeed, since @(z) = ¢(z), z € D, (4.5) follows immediately from the

well known fact ([19]) that
(4.6) c(z,E;D) = c(z,&) for (z,&) € Dxcz = TD, c TX,.

Thus, Mg is the part of M(G,m) on TD, ([91). By Theorem 2, we

conclude that TX, N\TDy is of zero measure. In particular, X\D = ¢ and

hence UN\D = ¢. This implies that U ¢ D and which implies that 70 = D,

for UN\D = ¢. Therefore, the second assertion has been seen.

In the remainder, we will give five examples to illustrate our

result.

Example 4.1. We say that the generalized conic condition is
satisfied at z*eeD if there are a sequence {wk} c Cn\D, a=21 and 0<rxl
such that wk¢z*, wk—az* and D n {zeanlz—wkl<rlz*—wkla} = ¢ for every
k. It was shown in [22] that limsupkK(zk;D)=+w for every zk—az* if D
is a domain of holomorphy and the generalized conic condition is
satisfied at z*. Therefore, by virtue of Theorem 3, we conclude that

Mb is conservative if D is a domain of holomorphy and there is a



pluripolar set N in Cn such that N ¢ 8D and the generalized conic

A . . . *
condition is satisfied at every z € 8D\N.

Example 4.2, If D is a strictly pseudoconvex bounded domain in

n 1/2

C’, then c(z,tE)=Clel/d(z) for every (z,E,)erCn for some C>0, where

d(z)=inf{lz-wl|:wedD} (see [10]). Thus, Mg is conservative if {¢<a} c

{1£1<c} for some c¢ for each a=0. Next, let reCm(CZ) be psh and D=

2

{z=(zl,z2)€C :r<0} be bounded. Obviously, D is a bounded domain of

holomorphy in Cz. We define

or, 8. . 8L 8., (s)=ar([L,T1)(2) and Cy(z)=(LD)* la(z),
8z~ Bz 9z

oz

where [L,L]1=LL-LL. Assume that there are a sequence {Aj} of analytic
sets in C" and k:SD\{L"j AJ}—e{1,2,---} such that DnAj=¢, J=1,2,+++,
Ck(w)(w)#O and Ck(w)=0, 1<k<k(w). Then, for each w € 8D\{Uj Aj}’
there is a constant C>0 such that c(z,g;D)zCI&I/d(z)l/Zk(w) near w

(see [3]). In this case, Mz is also conservative if {g<alc{l£&l<c} for

some c for every ax0.

Example 4.3. Without the assumption on the boundary, the

assretion in Theorem 4 does not holds in general. For example, let

DO = {z € CZ: Izl < 1 } and D = DO\{O}. Then, not only 50 = D but
also UND is of Newtonian capacity zero, where U = {z € C2: Izl < 1/2}.
Remark that every f € Hol(D) can be extended to a holomorphic

function on D0 and hence D is not a domain of holomorphy. Let us show

that Mb and Mg with @(z,&)= Izl2+|ﬁ|2 are both conservative. By the



N

above remark, it holds that K(z;D) = K(z;DO) and c{(z,&;D) =
c(z,ﬁ;DO), zeD., It is known that K(zk;DO)—»w, c(zk,&k;DO)—-aoo for

X L3
(zk,gk)—a(z ,E ) € 8D0xC§ (for the former, see [2] and for the
latter, see [3]). Thus, due to Theorem 3, we see that Mb and Mg are

both conservative.

Example 4.4. Theorem 4 is a stochastic analogy of the well

known result that D is a domain of holomorphy if B8(D) is complete

([2]). In this example, we see that there is a domain of holomorphy

which is not complete with respect to B(D) but Assumption (i) in

Theorem 4 is satisfied.

2 =0

Let D={(Z1,ZZ)GC2:|21|<IZ {<i}. It is obvious that D = D and,

especially, U\D is of positive Newtonian capacity for every open U
1 2 2
W )

with UndD = ¢. If we define D’= {(w ec?:0q1wli<1, 1w21<1} and

F:D’—D by F(wl,w2)=(w1w2,w1), then F is a biholomorphism. It is well

known ([2]) that

2,,2

! (4.7) K((wh,w2);D%) = 1/{n(1-1w112) (1-1w21%)}2,

This yields that D’ is not complete with respect B(D’') and hence D is

not complete with respect to B(D), for B(D) is the pullback of B8(D’)

by F_1 ([21). To see that M, is conservative, recall that

b
K(F(w);D)= K(w;D’)Idet(-g——vF;)l_2 ({2]1). Hence, due to (4.7), we have

1 22);p) = 1/{n(1-12212) (12212-12112) )2

(4.8) K((z ,z

Combining this with Theorem 3, we can conclude that Mb is
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conservative.

Example 4.5, If a bounded domain D of holomorphy in c™ has a C1
boundary, then the Bergman metric B(D) is complete ([20]). Moreover,
as mentioned in Example 4.1, then Mb is conservative. In this

example, we consider the case when D is not known a priori to be a

domain of holomorphy but B8(D) is complete and Mb is conservative. In
the remainder, for the sake of simplicity, we write B8 for B8(D).

Assume that D is simply connected and that there is a Kahler
metric g on D which makes D a complete Kahler manifold of non

positive sectional curvature. Assume, furthermore, that

(4.9) -B £ sectional curvature < -A on D for some A,B>0.

Then, Greene and Wu [11] showed that

(4.10) B 2Cg onD for some C>0.

Since g is complete on D, so is Bf. Especially, D is a domain of
holomorphy. In this case, we can also show that Mb is conservative.
The proof of the conservativeness of Mb will be completed once we

show the existence of a>0 and nonnegative ueC” ({r>a}) such that

(4.11) u(z)—+o as r(z)—+=x,

~

(4.12) Agu < Cu on {r » a} for some C > 0,



ﬁ—ﬁ'

where AS is the Laplace-Beltrami operator associated with 8. In fact,

as we saw after the definition of Mb’ the time changed process
ﬁb={(22nt,§/2n,Pg):zeD} is the Brownian motion on (D,8). For the
sake of simplicity, we denote ﬁb={(Xt,n,PZ):zeD}. Let o =
inf{t>0:r(Xt) < a}. Then, (4.12) yields that, for any stopping time

T < N,

0 < Ez[e-c(tAo)u(XtAa)] < u(z) for z with r(z) > a,

where EZ stands for the expectation with respect to PZ. Thus, by

(4.11), we can conclude

(4.13) Pz[o = 40, p < 4] = 0 for z € {r > a}.
Let

Ty = inf{t)O:r(Xt) > a+l},

oy = inf{t>tk:r(Xt) < a},

Typsl = inf{t)ck:r(Xt) > a+l}.

By the strong Markov property of ﬁb and (4.13), we have

Pz[ok=+w, tk<n<+m] = EZ[PXt [o=+w,n<+m];rk<n] = 0.
k

Note that
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{n < +»} c U§=1 {tk < n < 4o, Ok = +tw},

Thus, Pz[n<+w] = 0. Therefore, ﬁb is conservative and so is Mb.
Let us see the existence of such a and u. Fix o€D and let r=r(z)
be the distance from o to z. It suffices to show that
, 1/2 )
(4.14) ABr £ C’ coth(B r) on {r > 0} for some C’ > 0.

To do this, let (D’,0’) be a real 2n-dimensional model with the

radial curvature function k(s)=-B (for definition, see [11]). It was

seen in [11] that A’r’z(zn_l)Bl/z 1/2r,)

coth(B , where A’ 1is the
Laplace~-Beltrami operator on (D’,0’) and r’ is the distance from o’.
For normal geodesics y(t) and y’(t) starting at o€D and o’eD’,

respectively, it follows from (4.9) that

each radial curvature of D at y(t)

> -B = every radial curvature of D’ at y’(t).

By applying the Hessian comparison theorem ([11]), we have

1/2

(4.15)  a r(v(t)) < a’r’ (¢’ () = (20-1)8"Zcotn(s'%¢).

Since B2Cg and r is strictly psh on D ([11]), this implies

A,r < C.-1(2n—1)Bl/2 1/zr)

8 coth(B



and which yields (4.14).
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