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Preface 

 

The studies presented in this thesis were carried out under the guidance of 

Professor Dr. Susumu Kuwabata at Department of Applied Chemistry, Graduate School 

of Engineering, Osaka University. 

 

 The objectives of this thesis are elucidation of the unknown characteristic 

features of ionic liquids and development of their new applications. Ionic liquids have 

been attracting much interest from the view point of not only industrial electrochemistry 

but also various chemical fields. The author hopes sincerely that the knowledge 

obtained in this work would contribute to progress in the field of electrochemistry and 

vacuum technologies such as electron microscopes. 

 

A part of chapter 1 was conducted in collaboration with Professor Dr. Charles 

L. Hussey at Department of Chemistry and Biochemistry, The University of Mississippi, 

USA. 

 

Satoshi Arimoto 
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General Introduction 

Background 

Ionic liquids, which are room temperature molten salts, have been receiving 

considerable attention because they have some specific properties such as non-volatility, 

low-combustibility, ionic conductivity and ability to dissolve many kinds of substances. 

In the electrochemical field, it would be one of the most notable features that ionic 

liquids possess considerably wide potential window, since they consist of cation and 

anion and behave as an electrolyte without any solvent.[1-18]  In case of aqueous 

solution, for example, effective potential range is restricted by electrolysis of solvent 

(water) and/or supporting electrolyte. Therefore, ionic liquids have been expected to 

show their inherent electrochemical behaviors which cannot be seen in conventional 

aqueous and non-aqueous solutions. However, their properties as electrolyte have not 

yet been completely elucidated because electrochemical theories for electrolyte without 

any solvent are not yet established. 

Investigation of ionic liquids including molten salts was commenced from 

1950s in relation with aluminum industry. In the initial research using AlCl3-base ionic 

liquid by F. H. Hurley and T. P. Wier, eutectic point was reduced to as low as –40 °C for 

hygroscopic 66.7-33.3 mol% AlCl3–ethylpyridinium bromide.[19]  Since the first water- 

and air-stable ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate was 

reported by J. S. Wilkes and M. J. Zaworotko in 1992,[20] not only electrochemists but 

also scientists in various fields have been interested in the novel salts,[21-30] based on the 

fact that many kinds of ionic liquids could be designed easily by changing the 

combination of cation and anion. 
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Electron microscopes, such as scanning electron microscope (SEM) and 

transmission electron microscope (TEM) give magnified still images and elemental 

information with energy dispersive X-ray fluorescence (EDX) analysis. However, since 

electron microscope observation is conduced under vacuum condition, it has been 

impossible to introduce any liquid into the vacuum chamber so far. Even if a 

low-vacuum SEM is used, a wet sample like water-containing biomaterial must be 

frozen. Furthermore, it is necessary for insulating samples to be subjected to multistep 

pretreatments such as coating of metal and carbon by vapor deposition or sputtering 

under vacuum condition in order to avoid charging of the sample during observation. 

It was recently reported that very slow vaporization of some ionic liquids is 

detected under severe condition; high vacuum and high temperature.[31]  In other words, 

it was confirmed that no analysis conducted under high vacuum conditions can detect 

the vaporization of ionic liquids at room temperature.[32, 33]  This has encouraged the 

introduction of ionic liquids into several vacuum techniques including SEM,[34] TEM,[35, 

36] XPS[37-41] and SIMS,[41, 42] remaining their fluidity. If it were possible to observe 

chemical phenomena with electron microscopes and EDX in real time, this would be a 

powerful tool for clarification of reaction mechanisms. 

 

The Present Work 

The present study has been conducted focusing on utilization of ionic liquids as 

solventless electrolyte solutions and antistatic agents of insulating materials for electron 

microscopes. Based on these findings, it was then attempted to develop a new technique 

of in situ SEM observation of electrochemical reactions in ionic liquids. This thesis 

consists of four chapters. 
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Chapter 1 deals with electrochemical reaction using ionic liquids as electrolyte 

solutions. As an example, electrochemical reductive desorption of n-alkanethiol 

self-assembled monolayer (SAM) was chosen. This reaction is well known to be 

strongly affected by electrolyte and solvent. Another electrochemical reaction chosen 

was electrodeposition of aluminum alloys from AlCl3–1-ethyl-3-methylimidazolium 

chloride, as the particular reaction which cannot be conducted in aqueous solution. 

Chapter 2 introduces the application of ionic liquids to the antistatic agents for electron 

microscopy. Considering living specimen including water, the use of ionic liquids must 

give desired methods to observe true features of the samples with electron microscopes. 

Chapter 3 concerns development of in situ electrochemical SEM technique using ionic 

liquids as electrolyte solutions. Redox reaction of conducting polymer which 

accompanies volume changes is adopted. At the same time, in situ EDX analysis is also 

attempted. In chapter 4, electrodeposition of silver is observed with SEM in real time. 

Here, the deposition processes are compared with the predicted morphologies from the 

electrochemical behaviors.  
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Chapter 1 

Evaluation of Electrochemical Reaction 

Using Ionic Liquids as Electrolyte Solution 

 

1-1. Introduction 

Since ionic liquids consist of only ionic species without solvent, they have been 

expected to show specific electrochemical behaviors which cannot be interpreted by the 

conventional theories. Therefore, it is required to consider if ionic liquids could be 

utilized as electrolyte solution. For this purpose, electrochemical reductive desorption of 

n-alkanethiol self-assembled monolayer (SAM) and electrodeposition of aluminum 

alloy in ionic liquid have been investigated.  

Since the first report by Allara and Nuzzo in 1983,[43] n-alkanethiol SAM 

formed on a metal substrate (Au, Pt, or Cu) has been intensively studied. The SAM 

possesses highly organized structure developed by van der Waals forces between alkyl 

chains. However, as reported first by Porter et al.,[44] the closely packed monolayer can 

easily be desorbed by electrochemical reduction formulated by  

 R-S-M  +  e– → R-S–  +  M                          (1) 

where R and M represent an alkyl chain and a metal electrode, respectively. This 

reaction is sensitive to several parameters, including length of the alkyl chain, kind of 

electrolyte solution, and kind of metal substrate.[44-74]  Then it was attempted to 

investigate of ionic liquids focusing on roles of cations and anions in this reaction. 
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On the other hand, Lewis acidic ionic liquids, such as aluminum 

chloride–1-ethyl-3-methylimidazolium chloride have been investigated focusing on 

electrodeposition of aluminum-transition metal alloys.[75-81]  These alloys are deposited 

from solutions containing dissolved low–valent transition metal ions, which are reduced 

at potentials equal to or slightly negative of that for the electrodeposition of Al in these 

ionic solvents. It is impossible to conduct these reactions in aqueous solution due to 

electrolysis of water. Moreover, aluminum-transition metal alloys exhibit enhanced 

resistance to chloride–induced corrosion relative to pure Al.[78-83]  The purpose of this 

work is preparation and evaluation of ternary Al-Mo-Ti alloy. 

 

1-2. Experimental 

1-2-1. Preparation and electrochemical desorption of alkanethiol SAM 

 An Au/mica electrode substrate having a quasi (111) surface was prepared by 

vacuum evaporation of Au on a freshly cleaved natural mica sheet (Nilaco Co.) heated 

at 290 °C. The electrode coated with the SAM of four kinds of n-alkanethiols, 

n-propanethiol, n-hexanethiol, n-octanethiol and n-decanethiol (Wako Pure Chemical 

Ind.), was prepared by immersing the Au/mica substrate in 1 mM alkanethiol/ethanol 

for 3 h at room temperature. Their alkyl chain lengths will be indicated in this thesis by 

numbers of carbon atoms (n of CnH2n+1SH). 

 The electrochemical cell used was a Pyrex glass tube (φ1.5 cm × 9 cm), both 

ends of which were open. The SAM coated electrode was placed at the bottom hole of 

the cell with a silicone rubber O-ring (apparent electrode area of 0.36 cm2), and the top 

hole was tightly fitted with a silicon rubber stopper having a Pt foil counter and Ag/Ag+ 
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(0.1 M) reference electrodes.[84-87]  The effective surface area of the electrode, which 

was determined from the electric charges of anodic oxidation of chemically adsorbed 

iodine,[88] was 0.40 cm2. Linear sweep voltammetry was conducted using a potentiostat 

(Hokuto Denko, HSV-100) in a dry-argon atmosphere glove box (Miwa Co., Ltd., 

1ADB-3). Ionic liquids used for this measurements, 1-ethyl-3-methylimidazolium 

tetrafluoroborate (EMI-BF4), 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF4), 

1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (EMI-TFSA) and 

1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (BMI-TFSA) were 

purchased from Kanto Chemical Co., Inc. and were dried under vacuum at 105 °C for 3 

h at least prior to use. 

 Computational simulation of linear sweep voltammograms was carried out 

using a program that was composed by Visual Basic 6.0 based on a formula considering 

the stabilizing energies due to thiol-thiol and thiol-solvent interactions.[44-54, 89] 

 

1-2-2. Preparation and characterization of electrodeposits 

 The procedures used for the synthesis and purification of EMI-Cl, the 

sublimation of AlCl3, and the preparation of a Lewis acidic 66.7-33.3 mol% 

AlCl3–EMI-Cl ionic liquid were identical to those described in other reports.[76]  

Solutions of Mo(II) and Ti(II) in the AlCl3–EMI-Cl were prepared by the addition of 

anhydrous molybdenum(II) chloride, (Mo6Cl8)Cl4 (Cerac) and anhydrous titanium(II) 

chloride (Aldrich), respectively. After preparing stock solutions of Mo(II) and Ti(II), the 

composition of each plating bath was adjusted by combining these stock solutions as 

needed. All experiments were conducted in a nitrogen gas-filled glove box (Vacuum 

Atmospheres Co. NEXUS system) at 50 °C. 
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 Cyclic voltammetry and electroplating experiments were conducted with an 

EG&G Princeton Applied Research Model 263A potentiostat/galvanostat controlled 

with EG&G PARC Model 270 software. A Pt disk electrode (Bioanalytica Systems, 

MF-2013, 0.02 cm2) used as the working electrode, was polished to a mirror finish with 

a slurry of 0.3 μm alumina and then rinsed with distilled water and dry ethanol before 

use. A coil of φ1.0 mm Al wire (Alfa Aesar) was used as the counter electrode, which 

was immersed directly in the plating bath and encircled the working electrode. The 

reference electrode (Al/Al(III)) was constructed by placing a φ1.0 mm Al wire into a 

φ12 mm Pyrex tube terminated with a porosity glass frit (Ace Glass) and filling this tube 

with neat AlCl3–EMI-Cl. The Al electrodes were cleaned with a mixture of concentrated 

H2SO4, HNO3 and H3PO4, rinsed with distilled water and dried under vacuum before 

use. Copper wire (φ1.25 mm) served as the substrates for alloy electroplating, was 

electropolished at anodic current of 100 mA cm–2 in 0.236 M CuSO4 aqueous solution 

for 1 min. Alloy samples of 5 μm thickness estimated by assuming that all of the charge 

produced an ordered layer of pure Al (14.5 C cm–2), were deposited from ionic liquid 

solutions of Mo(II) and/or Ti(II) onto the Cu wire electrodes.  

 The surface morphology and crystal structure of electrodeposited alloy were 

observed with a scanning electron microscope (SEM, Keyence VE-8800) equipped with 

an energy dispersive X-ray fluorescence (EDX, EDAX VE-9800) spectrometer and 

examined by a X-ray diffractometer (XRD, RIGAKU X18 SAXS-IP) with CuKα 

radiation in a θ-2θ scan mode with scan rate of 2° min–1. Pitting corrosion 

measurements were conducted on the resulting Al-Mo-Ti alloys by linear sweep 

voltammetry at room temperature in a 0.1 M NaCl aqueous solution. Some samples 
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were examined in a physiological saline solution composed of 137 mM NaCl + 2.7 mM 

KCl + 10 mM phosphate buffer at pH 7.4 and in Ringer’s solution, which is composed 

of 38.5 mM NaCl + 1.41 mM KCl + 1.09 mM CaCl2·2H2O at pH 6.9. These 

measurements were carried out with an Ivium Technologies electrochemical interface 

CompactStat. Prior to these measurements, the solutions were thoroughly deaerated 

with nitrogen. Platinum foil and Ag/AgCl in saturated KCl solution were employed as 

the counter and reference electrodes, respectively. The potential values for this 

measurement are reported with respect to a NaCl-saturated calomel electrode (SSCE).  

 

1-3. Results and Discussion 

1-3-1. Reductive desorption of n-alkanethiol SAM in aqueous solution and ionic liquids 

 Figure 1-1 shows liner sweep voltammograms taken in 0.5 M KOH solution for 

Au(111) electrodes coated with n-alkanethiol SAM having different alkyl chain length. 

Each voltammogram shows a cathodic wave indicating reductive desorption of the 

alkanethiols, and its peak potential is negatively shifted and its width becomes narrower 

with an increasing in chain length. When the alkyl chain length of alkanethiol SAM 

increases, van der Waals interaction between alkyl chains becomes large, resulting in an 

increase in stability of the SAM. By considering such an interaction using an 

appropriate coordination model of adsorbed in alkanethiol molecules, Aoki and 

Kakiuchi have developed a method to numerically simulate the voltammogram of the 

reductive desorption of the alkanethiol SAM.[53, 89]  

 The same experiments were carried out in four kinds of ionic liquids. In order 

to compare the desorption potentials in different solutions, the redox potential of 



 9

ferrocene/ferricinium (Fc/Fc+) couple was measured by cyclic voltammetry in each 

ionic liquid and all electrode potential were given respect to this redox potential. Figure 

1-2 shows liner sweep voltammograms of the SAM-coated Au(111) electrodes taken in 

(a) EMI-BF4, (b) BMI-BF4, (c) EMI-TFSA and (d) BMI-TFSA. All voltammograms 

show definite cathodic waves, indicating clearly that electrochemical desorption of the 

alkanethiol SAM took place even in ionic liquids. In analogy with the case of the 

reductive desorption in aqueous solution, negative potential shifts were observed with 

an increase in the alkyl chain length. However, changes in shape of the cathodic wave 

were different from those in aqueous solution; the width tended to broaden as the alkyl 

chain became longer. The area of each cathodic wave was estimated by comparing the 

voltammogram for the SAM-coated Au(111) and that for a bare Au(111) taken in the 

same ionic liquid. The obtained values ranging from 0.69 × 10–9 to 0.79 × 10–9 mol cm–2 

were close to the coverage (0.77 × 10–9 mol cm–2) expected for a ( 3  × 3 )R30° 

overlayer structure of alkanethiols absorbed on the Au(111) surface.[44, 53-57, 90, 91]  In 

voltammograms of n-decanethiol SAM-coated Au(111) taken in EMI-BF4 and BMI-BF4, 

shoulder peaks appeared with the main peaks . It has been reported by Poter et al. that 

such the peak splitting was observed even in aqueous solution especially for long 

alkanethiol SAM.[91]  It was speculated that appearance of the peak splitting indicated 

presence of different structure in the SAM which have difference in accessibility of 

protons and/or electrolyte cationic species to the gold/sulfur interface. Similar argument 

might be made for voltammograms taken in ionic liquid but further investigation must 

be required for elucidation of the behavior. 

 Plots of peak potentials and peak widths of the cathodic waves as a function of 

chain length of the alkanethiol SAM are shown in Figure 1-3. The peak width at half 
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height was estimated using the voltammogram obtained for the naked Au(111) electrode 

as a base line. As mentioned above, however, cathodic waves obtained for decanethiol 

SAM in EMI-BF4 and BMI-BF4 exhibited shoulder peaks, making it difficult to 

determine precisely the main peak widths. It was attempted to remove the shoulder 

peaks with geometric means, but the values obtained by such the intentional treatment 

should include some errors. Then, the widths were estimated from five time experiments 

and they are given in Figure 1-3 with error bars. As mentioned above, negative shifts of 

the peak potential were observed for all cases, but the ratio of potential shift per increase 

in number of methylene unit was slightly different among the electrolytes used. The 

largest ratio was seen for aqueous KOH solution and it decreased in the order of 

BMI-BF4, EMI-BF4, EMI-TFSA and BMI-TFSA, as shown in Figure 1-3(a). 

 The relationship between peak width and alkyl chain length as shown in Figure 

1-3(b) indicates clearly difference in the peak width changes among voltammograms 

taken in aqueous and ionic liquids. The width change tendencies could be classified into 

three types; decrease (in aqueous KOH solution; type I), no change (in EMI-BF4 and 

BMI-BF4; type II) and increase (in EMI-TFSA and BMI-TFSA; type III) with an 

increase in chain length. The type I is widely observed for electrochemical desorption of 

the alkanethiol SAM in aqueous solutions. In general, it was explained that stabilization 

of the SAM by the van der Waals interactions between alkyl chains concerns both 

negative peak potential shifts and the peak narrowing. However, it would be better to 

consider separately the effect of chain length on the peak potential shifts and that on the 

wave width for voltammograms obtained in ionic liquids. The results shown in Figure 

1-3(b) suggest strongly that the anion species of the ionic liquids has a significant effect 

on the width of the cathodic wave. 
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Figure 1-1. Linear sweep voltammograms for reductive desorption of 
self-assembled monolayer of n-alkanethiols having different chain lengths. All 
voltammograms were obtained in 0.5 M KOH aqueous solution with a scan rate 
of  0.1 V s–1. 

 
 
Figure 1-2. Linear sweep voltammograms for reductive desorption of SAM of 
n-alkanethiols (n-C3H7SH, n-C6H11SH, n-C8H17SH, and n-C10H21SH) obtained in 
ionic liquids (a) EMI-BF4, (b) BMI-BF4, (c) EMI-TFSA and (d) BMI-TFSA. The 
scan rate was 0.1 V s–1 for all voltammograms. 
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1-3-2. Numerical simulation of reductive desorption of n-alkanethiol SAM 

 In order to understand the above-mentioned effects of chain length on reductive 

desorption of the alkanethiol SAM in ionic liquids, the numerical simulation was 

attempted using the method developed by Aoki and Kakiuchi, which expressed the 

reductive desorption behavior of the alkanethiol SAM based on a model of hexagonally 

packed thiol molecules as shown in Scheme 1-1. Before desorption, one thiol molecule 

is surrounded by six thiol molecules. When the thiol molecule is stabilized by a 

neighboring thiol molecule with the stabilization energy of uR, the thiol molecule in a 

perfect SAM in stabilized by 6 uR. It is assumed here that the center thiol molecule  

 
 
Figure 1-3. (a) Changes in peak potentials and (b) peak width at half height 
with increase in chain length. The reductive desorption of n-alkanethiol SAM 
was conducted in 0.5 M KOH aqueous solution (Δ) and ionic liquids 
(EMI-BF4(●), BMI-BF4(■), EMI-TFSA (○) and BMI-TFSA (□)). 
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remains, while the surrounding thiol molecules are desorbed, allowing solvent 

molecules to occupy the generated vacancy sites. If the stabilization energy of the center 

thiol molecule by the solvent is denoted by uV, desorption of one thiol molecule changes 

the total stabilization energy for the center thiol molecule to 5uR + uV. The energy is 

then continuously changed to 4uR + 2uV, 3uR + 3uV, 2uR + 4uV, uR + 5uV, and 6uV with 

progress of the desorption. Based on such a model, the electrode potential (E) and 

current (I) can be formulated as functions of the coverage of thiol SAM (x) 

where Eo is the standard electrode potential of the desorption reaction, R is the gas 

constant, T is the absolute temperature, F is Faraday’s constant, α is the transfer 

 
 
Scheme 1-1. The honeycomb model used for numerical calculation of linear 
sweep voltammograms. In this case, the center thiol molecule is stabilized by 
three neighboring thiol molecules (–3uR) and three vacancy sites occupied by 
solvent molecules (–3uV), respectively. 
 
 

 (2) 
 

 (3) 
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coefficient (0.84 in this case),[89] k is the rate constant of the desorption reaction, Γ is the 

surface density of the closely packed thiol SAM (0.77 × 10–9 mol cm–2), kB is the 

Bolzmann constant and v is rate of potential scan. Values of E and I are obtained by 

substituting values from 1 to 0 into x in eq. (2) and (3). Then, plots of I values as a 

function of E give a simulation curve of the linear sweep voltammogram. 

 In the case of desorption in aqueous solution, it is assumable that solvent is the 

same even if supporting electrolyte and solution pH are different. Based on this 

assumption, in the first paper regarding this model,[89] u = uR – uV is treated as the 

parameter representing the interaction energy between alkanethiol molecules relative to 

the energy between alkanethiol molecules and vacant, which takes always negative 

value. However, when ionic liquid containing no solvent is used as an electrolyte, it is 

required to consider that the uV is changed by changing kind of ionic liquid used as an 

electrolyte. 

 Simulated voltammogram curves exhibit how uR and uV influence the peak 

potential and the shape of the cathodic wave of the voltammogram. Some typical 

examples are shown in Figure 1-4. The negative shift of the uR value with an increase in 

chain length means more stabilization of the SAM due to van der Waals interaction 

between alkyl chains. Increase in chain length also increase numbers of solvent 

molecules that can touch to alkyl chains, resulting in proportional changes in uV value to 

the chain length. As shown in Figure 1-4, negative shift of both uR and uV with alkyl 

chain length causes negative shift of the peak potential, while relationship between uR 

and uV values determines tendency of the width changes. As mentioned previously, the 

electrochemical desorption of alkanethiol SAM in the ionic liquids was classified to 

three types. The simulated voltammograms shown in Figure 1-4 seem to express well 
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the three types; Figure 1-4(a), (b), and (c) depict the voltammograms belonging to the 

types I, II and III, respectively. 

 
 

 
 
Figure 1-4. Changes in potential and width of simulated desorption peak with 
increase in stabilizing energies due to thiol-thiol (uR) and thiol-solvent (uV) 
interactions in the cases of (a) ΔuR > ΔuV, (b) ΔuR = ΔuV and (c) ΔuR < ΔuV. 
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1-3-3. Plausible reaction model for SAM desorption in ionic liquids 

 The comparison of experimentally obtained voltammograms shown in Figure 

1-2 and numerically simulated voltammograms shown in Figure 1-4 gives several hints 

for considering reductive desorption behavior of the alkanethiol SAM. The alkanethiol 

SAM is definitely desorbed by electrochemical reduction even in ionic liquid but it is 

required to consider that the reaction takes place under the condition without any 

solvent. Negative charges of the desorbed alkanethiolate molecules are, of course, 

compensated by cationic species of ionic liquid. However, both anionic and cationic 

species should concern dissolution of the alkanethiolate molecules. In addition, the both 

species also should interact with the alkanethiol SAM on the Au electrode, as shown in 

Scheme 1-2. In other words, although the parameter uV concerns interaction between the 

alkyl chains of the SAM and solvent for the desorption in aqueous solution, it must 

concern interaction between alkyl chains of the SAM and anionic and cationic species 

in the case of the desorption in ionic liquids. 

 The most notable influence of ionic liquid on the SAM desorption is that 

anionic species determines the desorption behavior; the desorption in ionic liquids 

containing BF4
– belongs to the type II and the reaction in ionic liquids containing 

TFSA– belongs to the type III. As well known, EMI-BF4 and BMI-BF4 commingle with 

water but EMI-TFSA and BMI-TFSA are completely separated from water, indicating 

that anionic species, i.e. BF4
– and TFSA– determine hydrophobicity of the four ionic 

liquids used in this study. This fact allows me to speculate that TFSA– possessing more 

hydrophobicity than BF4
– interacts more strongly with alkyl chain of the SAM and 

dissolved alkanethiolate. Such the situation might enlarge slope of the changes in uV 

value with an increase in chain length of the SAM. It was a little difficult to estimate 
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precisely the slope of uV changes and that of uR changes from the voltammograms 

obtained in this study. However, it is likely that higher interaction between TFSA– and 

the alkyl chain of the SAM is the main reason why the cathodic peak broadened with an 

increase in alkyl chain length. Although the ionic liquids of BF4
–-salts are mixed with 

water, hydrophobicities of this organic species must be higher than that of water. 

Therefore, the slope of uV changes for these ionic liquids might be larger than that for 

water, resulting in almost no changes in cathodic wave width. 

 

 
 
 
Scheme 1-2. Schematic illustration of proposed mechanism of reductive 
desorption of SAM in ionic liquid. 
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1-3-4. Voltammetric behavior of AlCl3–EMI-Cl ionic liquid 

 Figure 1-5(a) shows cyclic voltammograms recorded at a Pt rotating disk 

electrode (Pt-RDE, 2000 rpm) in 66.7-33.3 mol% AlCl3–EMI-Cl before and after the 

addition of (Mo6Cl8)Cl4 and TiCl2. Al deposition occurs by the electrochemical 

reduction of the coordinately unsaturated Al2Cl7
– ion in the ionic liquid according to the 

equation.[92] 

4Al2Cl7
– + 3e– ⇆ 7AlCl4

– + Al 

When Mo(II) or Ti(II) is present in the ionic liquid, this reaction becomes 

xM(AlCl4)p
(p–2) – + 4(1–x)Al2Cl7

– + (3–x)e- 

⇆ Al1–xMx + [7(1–x) + px]AlCl4
– 

where M(AlCl4)p
(p–2)– presents Mo(II) or Ti(II) solvated in the chloroaluminate ionic 

liquid by AlCl4
– and Al1–xMx denotes the resulting aluminum-transition metal alloy. In 

 
 
Figure 1-5. Cyclic voltammograms recorded at a Pt-RDE (2000 rpm) in 
66.7-33.3 mol% AlCl3–EMI-Cl: (a) (···) pure ionic liquid, (—) 15 mM Mo(II), 
(---) 15 mM Ti(II); (b) (—) 30 mM Mo(II) + 15 mM Ti(II), (---) 15 mM Mo(II) + 
30 mM Ti(II). The scan rates were 0.05 V s–1, and the temperatures were 323 K. 
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the pure ionic liquid, a stripping wave for electrodeposited Al begins at around 0 V, but 

this wave is replaced by waves corresponding to the stripping of the electrodeposited 

Al-Mo and Al-Ti alloys in the solutions containing Mo(II) or Ti(II), respectively.[78, 80]  

Cyclic voltammograms recorded in the ionic liquid containing both Mo(II) and Ti(II) 

are shown in Figure 1-5(b). Regardless of the Mo(II)/Ti(II) concentration ratio, 

CMo(II)/CTi(II), these voltammogram are more or less similar in appearance to that 

recorded in the Mo(II) solution. This implies that the formation of Al-Mo dominates the 

ternary Al alloy deposition process. 

  

1-3-5.Preparation and characterization of Al-Mo-Ti alloys 

 Alloy samples were deposited on cupper rotating wire electrode substrates 

under constant current conditions at a rotation rate of 2000 rpm. The various alloy 

samples that were produced and the deposition conditions used to produce them are 

given in Table 1-1. Figure 1-6 shows the variation in the Mo and/or Ti content of the 

resulting Al-Mo, Al-Ti and Al-Mo-Ti electrodeposits as a function of the applied current 

density. In the case of the binary alloys that were prepared in solutions containing either 

Mo(II) or Ti(II), the Mo content of the Al-Mo is always significantly greater than the Ti 

content of the corresponding Al-Ti alloys even when the two binary alloys were 

prepared under identical conditions of applied current density, electrode rotation rate, 

concentration of the precursor ions and temperature. As shown in Table 1-1 and Figure 

1-6, this same result carries over to the ternary alloys, including those prepared with 

CMo(II) = CTi(II), because the Ti content of these alloys is always significantly smaller 

than the Mo content. 

 This result can be reconciled by considering the diffusion coefficients of Mo(II) 
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and Ti(II), DMo(II) and DTi(II), respectively, in the ionic liquid. Although there are no 

direct measurements of these diffusion coefficients under the exact experimental 

conditions employed herein, a rough estimate of DMo(II)/DTi(II) can be obtained from the 

ratio of the Stokes-Einstein products for Mo(II) and Ti(II). The Stokes-Einstein product, 

Dη/T, where D (cm2 s–1) represents the diffusion coefficient of the electroactive species, 

η (g cm–1 s–1) is the absolute viscosity of the ionic liquid, T (K) is the absolute 

temperature, is inversely proportional to the radius of the diffusing entity in the solvent. 

All conditions being equal, an ion or molecule with a larger Dη/T is expected to diffuse 

more rapidly than the species with a smaller Dη/T. For a Ti(II) concentration of 12.6 

mM, DTi(II)η/T = 3.1 × 10–11 g cm s–2 K–1 in the 66.7-33.3 mol% AlCl3–EMI-Cl ionic 

Table 1-1. Summary of Al-Mo-Ti Alloys electrodeposited from 66.7-33.3 mol% 
AlCl3–EMI-Cl. 
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liquid.[80]  It is necessary to report the Ti(II) concentration at which the measurements 

of DTi(II)η/T were carried out because this species is known to form polymeric or 

aggregated species, [Ti(II)]n, as the Ti(II) concentration is increased.[93]  This indicates 

that the radius of the diffusing Ti(II) increases as its concentration is increased.  

 In order to obtain more insight into the Al-Mo-Ti deposition process, the 

composition data in Figure 1-6 were converted to partial current densities by using the 

following expressions, 

jMo = jtnMoxMo / (nMoxMo + nTixTi + nAlxAl) 

jTi = jtnTixTi / (nMoxMo + nTixTi + nAlxAl) 

jAl = jt – jMo – jTi 

where jt is the total applied current density; jMo, jTi and jAl represent the partial current 

 
 
Figure 1-6. The relationship between the plating current density and the 
percent atomic fraction of Mo (upper panel) and Ti (lower panel) in the 
deposits. The solution compositions were: (○) 30 mM Mo(II); (□) 30 mM 
Ti(II); (▲) 30 mM Mo(II) + 15 mM Ti(II); (♦) 30 mM Mo(II) + 30 mM Ti(II); 
(▼) 15 mM Mo(II) + 30 mM Ti(II). The substrate rotation rates were 2000 
rpm and the temperatures were 323 K. 
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densities for Mo, Ti and Al, respectively; nMo, nTi and nAl represent the number of 

electrons involved in the alloy deposition: 2, 2 and 3, respectively; and xMo, xTi and xAl 

are the atomic fractions of Mo, Ti and Al in the alloys, respectively. Plots of –jMo, –jTi 

and –jAl vs. –jt are shown in Figure 1-7, indicating that –jAl varies almost linearly with –jt, 

whereas the plots of –jMo vs. –jt and –jTi vs. –jt display a more complex behavior. For 

example, –jMo increases at low values of –jt, but reaches a limiting value as –jt is 

increased. This behavior explains why the Mo content of the Al-Mo and Al-Mo-Ti 

alloys decreases as –jt is increased because once –jMo reaches a limiting value, it 

becomes a smaller fraction of –jt, whereas –jAl becomes an increasingly larger fraction of 

–jt as the latter is increased. This result was noted during studies on the 

 
 
Figure 1-7. Plots of the partial current densities for the deposition of (a) Al, (b) 
Mo and (c) Ti vs. the total current density as calculated from the composition 
data in Figure 1-6. The solution compositions were: (○) 30 mM Mo(II); (□) 30 
mM Ti(II); (▲) 30 mM Mo(II) + 15 mM Ti(II); (♦) 30 mM Mo(II) + 30 mM 
Ti(II); (▼) 15 mM Mo(II) + 30 mM Ti(II). 
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electrodeposition of Al-Mo[78] and Al-Mo-Mn[79] from the same ionic liquid, and it is 

based on the fact that the concentration of Mo(II) in the solvent is much smaller than the 

concentration of the reducible Al(III) species, Al2Cl7
–. Figure 1-7 also shows that –jTi 

generally increases with –jt, but always remains considerably smaller than either –jMo or 

–jAl as expected based the substantial difference between DMo(II) and DTi(II). 

 SEM images of some Al-Mo-Ti alloy samples are shown in Figure 1-8. Figure 

1-8(a) and (b) depict the surface morphology of Al-Mo-Ti alloys prepared at different 

 
 
Figure 1-8.  SEM images of electrodeposited Al-Mo-Ti alloy samples. The alloy 
compositions, current densities, and solution compositions were: (a) 
Al89.6Mo9.7Ti0.7, −5 mA cm−2, 30 mM Mo(II) + 15 mM Ti(II); (b) 
Al93.3Mo6.0Ti0.7, −20 mA cm−2, 30 mM Mo(II) + 15 mM Ti(II); (c) 
Al92.4Mo6.9Ti0.7, −5 mA cm−2, 30 mM Mo(II) + 30 mM Ti(II); (d) 
Al94.0Mo5.3Ti0.7, −20 mA cm−2, 30 mM Mo(II) + 30 mM Ti(II); (e) 
Al92.5Mo6.7Ti0.8, −5 mA cm−2, 15 mM Mo(II) + 30 mM Ti(II); and (f) 
Al97.3Mo2.0Ti0.7, −20 mA cm−2, 15 mM Mo(II) + 30 mM Ti(II).  
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current densities under the condition of CMo(II)/CTi(II) = 2. The surface of alloy produced 

at –5 mA cm–2 (Al89.6Mo9.7Ti0.7) shown in Figure 1-8(a) is covered with elongated 

carrot-shaped, dendritic nodules from 2 to 4 μm diameters. Deposits prepared at –20 

mA cm–2 (Al93.3Mo6.0Ti0.7) consist of asymmetric, fused nodules without 

crystallographic faces (Figure 1-8(b)). Deposits prepared at –5 mA cm–2 with 

CMo(II)/CTi(II) = 1  (Al92.4Mo6.9Ti0.7, Figure 1-8(c)) are similar in structure to those 

appearing in Figure 1-8(a), but the nodules are somewhat smaller. A deposit prepared at 

–20 mA cm–2 in the same plating bath (Al94.0Mo5.3Ti0.7, Figure 1-8(d)) consists of small 

fused nodules with crystalline characteristics. When the plating bath was adjusted 

CMo(II)/CTi(II) = 0.5, alloy deposit prepared at –5 mA cm–2 (Al92.5Mo6.7Ti0.8) exhibits a 

macroporous structure (Figure 1-8(e)). Deposited prepared at –20 mA cm–2 in the same 

solution (Al97.3Mo2.0Ti0.7) display a fused leaflike structure which is very similar to pure 

Al, probably because of their relatively low transition metal content (Figure 1-8(f)).[94] 

 The crystal structure of several electrodeposited alloy samples were examined 

with XRD techniques and the diffraction patterns are shown in Figure 1-9. In all cases, 

the diffraction patterns could be indexed to face centered cubic (fcc) Al and the 

underlying Cu substrate. Considering that the solid solubility of Mo and Ti in pure Al is 

quite small; around 0.001 atom% at 833 K for Mo and 0.14 atom% at 783 K for Ti,[95] 

the Al-Mo-Ti alloys prepared herein must be supersaturated solid solutions with fcc Al 

structure. Before examining these deposits with XRD techniques, it was expected that 

this ternary alloy system would form amorphous metallic glasses similar to those found 

for Al-Mo[78] and Al-Mo-Mn.[79]  The formation of amorphous deposits was found to 

occur when the Mo content of these alloys exceeds 8 atm%, and it is usually signaled by 

the disappearance of the fcc Al reflections and the development of a broad reflection 
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centered at about 2θ = 41°. However, even when the total Mo content of the Al-Mo-Ti 

deposit approached 10 atom% (Figure 1-9(a)), there was no obvious evidence of a 

metallic glass phase. Given that no amorphous Al-Ti alloy has been reported to date,[80] 

it is likely that Ti atoms in the Al-Mo-Ti alloys act as a barrier to metallic glass 

formation. 

 

1-3-6. Corrosion resistance test of electrodeposits 

 It is well known that nonequilibrium Al-transition metal alloys are more 

resistant to chloride-induced pitting corrosion than pure Al.[82, 83]  Furthermore, 

previous research has shown that such alloys prepared by isothermal electrodeposition 

in chloroaluminate ionic liquids have almost the same pitting potentials as similar alloys 

 
 
Figure 1-9. X-ray (Cu Kα) diffraction data of Al-Mo-Ti alloys: (a) Al89.6Mo9.7Ti0.7, 
(b) Al93.4Mo6.0Ti0.6, (c) Al96.0Mo3.2Ti0.8, and (d) Al97.3Mo2.0Ti0.7. Reflections from the 
Cu substrate are denoted by (▼). 
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prepared by other nonequilibrium alloying method, such as rapid solidification, ion 

implantation and sputter deposition.[78-81] 

 The corrosion resistance of several electrodeposited Al-Mo-Ti alloys was 

examined by linear sweep voltammetry in a deaerated 0.1 M NaCl aqueous solution, 

shown in Figure 1-10. The Al-Mo-Ti alloys are spontaneously passive at the rest 

potential in the measuring solution and sustain a stable passive region, followed by a 

sudden rise in current at the pitting potential. The resulting variation of the pitting 

potential is collected in Table 1-1 and displayed graphically in Figure 1-11 along with 

selected data for the binary alloys, Al-Mo[78] and Al-Ti.[80] The Al-Mo-Ti alloys display 

higher corrosion resistance than the Al-Ti binary alloys and compete with Al-Mo alloys, 

regardless of the overall transition metal content (Mo + Ti). For example, the pitting 

 
 
Figure 1-10. Anodic polarization curves recorded in deaerated 0.1 M NaCl 
aqueous solution for (a) Al92.4Mo6.9Ti0.7, (b) Al93.8Mo6.2, (c) Al97.3Mo2.0Ti0.7, (d) 
Al97.8Ti2.2 and (e) pure Al. The scan rates were 0.5 mV s–1, and the 
temperatures were 298 K. 
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potential for the Al98.0Mo1.6Ti0.4 alloy sample is 0.07 V more positive than that for 

Al84.3Ti15.7. Similarly, the pitting potential for Al97.3Mo2.0Ti0.7 is comparable to that for 

the Al94.9Mo5.1. Thus, it follows that the addition of a second transition element, either 

Mo or Ti to Al-Ti or Al-Mo, respectively, results in a ternary alloy with superior 

corrosion resistance compared to the corresponding binary alloy. However, the pitting 

potential of the best Al-Mo-Mn alloy electrodeposited from 66.7-33.3 mol% 

AlCl3–EMI-Cl ionic liquid, Al89.5Mo9.1Mn1.4,[79] is 0.095 V greater than that of the best 

Al-Mo-Ti alloy, Al91.0Mo8.4Ti0.6. The difference in pitting potentials may be attributed to 

the fact that the former forms a metallic glass phase, whereas the latter does not appear 

to do so. 

 Figure 1-12 shows SEM images of Al91.0Mo8.4Ti0.6 before and after pitting 

potential measurements. As expected, the anodic polarization experiments resulted in 

considerable modification of the surface morphology of the alloy deposit; the dense, 

smooth surface with spherical and/or elongated cone-shaped nodules in Figure 1-12(a) 

 
 
Figure 1-11. Pitting potentials of electrodeposited Al-Mo-Ti alloys: 
(●) pure Al, (○) Al-Ti, (▼) Al-Mo, and (▽) Al-Mo-Ti. 
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changes to a spongy appearance after the measurements as Figure 1-12(b). EDX 

analysis of the deposit shown in Figure 1-12(b) indicated a sharp increase in the surface 

concentration of Mo and Ti, indicating that Al was the primary element stripped from 

these alloy deposits during the anodic polarization experiments. Similar results were 

found during a previous investigation involving Al-Mo binary alloys.[78] 

 Polarization measurements were also carried out in simulated body fluids using 

the two solutions; physiological saline and Ringer’s solutions, because some alloys 

based on Al and Ti are useful biomedical and dental implant materials. The results are 

also given in Table 1-1, but there is not much difference between these data and those 

recorded in the NaCl solution. By comparison, the pitting potentials of typical Al alloys 

that are used as biomaterials such as Al54.6Ti9.1V36.3 and Al42.9Ti7.1Nb50.0 are around 1.50 

V vs SCE.[96] These materials contain a much greater proportion of the transition metal 

component than the Al-Ti-based alloys that can be prepared from the AlCl3–EMI-Cl 

ionic liquid and are also much more resistant to chloride-pitting corrosion. 

 

 

 
 
Figure 1-12. SEM images of Al91.0Mo8.4Ti0.6 (a) before and (b) after the 
anodic polarization measurements in Figure 1-11 
 
. 
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1-4. Conclusions 

 It has been clarified that ionic liquids without any solvent could be used as 

electrolyte solution for electrochemical reductive desorption of alkanethiol SAM and 

electrochemical deposition of aluminum-transition metal alloy.  

 In KOH aqueous solution, the peak potentials shifted in a negative direction 

and peak width narrowed with an increase in alkyl chain length of the SAM. This means 

that the stabilizing energy due to thiol-thiol interaction became dominant compared to 

that due to thiol-solvent (water) interaction. On the other hand, although negative shifts 

of the peak potential with an increase in chain length were also observed in 

voltammograms taken in all ionic liquids, the peak width was not notably changed in 

EMI-BF4 and BMI-BF4, and the peak widths broadening were observed in EMI-TFSA 

and BMI-TFSA. Considering the desorption reaction in the ionic liquids used in this 

study, it is likely that anionic species of the ionic liquids work as solvent and cationic 

species work as charge compensators of alkanethiolate generated by the electrochemical 

desorption.  

The electrodeposition of Al-Mo-Ti ternary alloys containing up to 9.7 atom% 

Mo and 0.7 atom% Ti was achieved in the 66.7-33.3 mol% AlCl3–EMI-Cl ionic liquid 

containing (Mo6Cl8)Cl4 and TiCl2. When Mo(II) and Ti(II) coexisted in the plating bath, 

it was not possible to prepare alloy deposits containing more than 1 atom% Ti. Thus, 

Mo(II) strongly suppresses the codeposition of Ti. Nevertheless, the chloride pitting 

corrosion resistance of Al-Mo-Ti containing small amounts of Ti was superior to binary 

Al-Mo alloys with a similar or even larger Mo content.  
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Chapter 2 

Scanning Electron Microscope Observation 

of Insulating Materials Using Ionic Liquids 

as Antistatic Agents 

2-1. Introduction 

Since electron microscope observation requires placing specimen in a vacuum 

chamber, it is impossible to observe a wet sample as it is. Even if a low-vacuum 

scanning electron microscope is used, a wet sample like biomaterial must be frozen 

during observation. Furthermore, it is required for insulating samples to be subjected to 

pretreatments such as coating of metal and carbon by vapor deposition or sputtering 

under vacuum condition to avoid charging of the sample during observation. The 

finding that ionic liquids behave like an electronic conducting material for electron 

microscope observation[34-36] let to have got an idea of observing samples wetted by 

ionic liquids having electronic conductivity. In this chapter, I will introduce some ways 

to use ionic liquids for SEM observation. It will be shown that ionic liquids are useful 

for putting electronic conductivity to insulating materials without any special instrument. 

This technique is easily applied to biomaterials such as brown seaweed, whose 

morphology is changed by including much water. First, abrasive paper and absorbent 

cotton were observed as the sample having a rough surface and a complicated 

three-dimensional structure, respectively.  
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2-2. Experimental 

 Ionic liquids of 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF4), and 

1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (BMI-TFSA) were 

treated by the same procedure described in chapter 1 prior to use. Water used for 

swelling of seaweed was purified using a Milli-Q water system (Millipore Corporation). 

Abrasive paper, absorbent cotton and dry seaweed were purchased on the market. 

Coating of insulating samples with gold was conducted by a sputter coater (Eiko, IB-3). 

A scanning electron microscope used in this work was Keyence VE-8800 SEM. The 

probe current and the electron dose for SEM observation are 4.0 × 10–10 A and 2.4 × 

10–8 C ml-1 (ionic liquid), respectively, at most. 

 

2-3. Results and Discussion 

2-3-1. SEM observation of insulating materials 

 Utilization of ionic liquid for putting electronic conductivity to an insulating 

sample was examined using a # 150 abrasive paper. Of course, this insulating sample as 

is gave a bright SEM image with lots of noises, as shown in Figure 2-1(a). Then, 

coating it with metal or carbon is necessary to obtain its clear image as shown in Figure 

2-1(b). Figure 2-1 (c) shows a SEM image of the same abrasive paper, surface of which 

was coated with ionic liquid of BMI-TFSA in place of gold. The coating was made by 

putting the sample in BMI-TFSA, and excess amount of the liquid was removed by a 

tissue paper. The sample was not charged at all, as expected. However, some amount of 

the ionic liquid remained, hiding the concave portions because SEM could only observe 

the surface of the sample. Then, the real roughness of the sample surface could not be 
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clearly observed. This unfortunate situation was met even if different kind of ionic 

liquid having low-viscosity was used. Among several attempts for erasing the ionic 

liquid pools from the sample surface, dilution of ionic liquid worked most effectively. In 

this case, BMI-TFSA was diluted by ethanol so as to give concentration of 2.0 M and 

the abrasive paper was dipped in this solution, followed by evaporation of ethanol in air. 

The resulting SEM image as shown in Figure 2-1(d) and the image of gold-coated 

sample (Figure 2-1(b)) have no significant difference, indicating that very thin ionic 

liquid layer coated on the sample surface and it worked effectively as an antistatic agent 

for SEM observation with a high accelerating voltage. 

 As the complex material having a three-dimensional structure, a scrap of 

absorbent cotton was observed in two ways described above. After the pretreatment, the 

cotton was cut in order to observe both surface and cross section. Figure 2-2(a) shows 

the SEM images of gold sputtered absorbent cotton. The cross section gave a white 

   
 
Figure 2-1. SEM images of surfaces of #150 abrasive paper (a) without any 
treatment, coated with (b) gold (c) neat BMI-TFSA and (d) BMI-TFSA/ethanol 
solution. The accelerate voltage for SEM observation was 20 kV. 
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image with lots of noises due to charging although the surface was observed clearly, 

implying that gold sputtering could not coat the inside of the sample. During sputtering, 

since gold atoms shot out from the target and ran against the sample, the surface of the 

sample was coated preferentially. Absorbent cotton soaked in BMI-TFSA diluted by 

ethanol gave clear images of both surface and cross section without charging, as shown 

in Figure 2-2(b), because ionic liquid reached inside of the cotton.  

 

2-3-2. Application of ionic liquids for biomaterial 

 As the next sample, brown seaweed was chosen for SEM observation of the 

sample wetted by ionic liquid. Brown seaweed is well known to be a Japanese favorite 

food. It is sold on the market in dry condition. Figure 2-3(a) shows a SEM image of 

cross section of a dried seaweed leaf whose surface was coated with gold. Volume of the 

dried seaweed is several times smaller than that of natural one in wet condition. First, it 

was attempted to swell the dried brown seaweed by putting it in hydrophilic BMI-BF4 

for several hours. Although a little increase in its volume was observed, the magnitude 

 
 
Figure 2-2. SEM images of absorbent cotton pretreated with (a) gold and (b) 
BMI-TFSA/ethanol solution. The accelerate voltage for SEM observation was 20 kV.
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of swelling was much smaller than the case of swelling it in water. It was then attempted 

to make replacement of water contained in swollen seaweed with ionic liquid. A leaf of 

dried brown seaweed was fully swollen by putting it in water for several minutes. After 

wiping surface of the swollen seaweed leaf, it was put in a petri dish containing 

BMI-BF4. Then, the petri dish was left in an outgassed desiccator for about 2 h to 

 
 
Figure 2-3. SEM images of cross section of a dried seaweed leaf coated with (a) 
gold and seaweed leaves swollen by water, followed by soaking in (b) BMI-BF4 
and (c) BMI-TFSA under vacuum condition. The accelerate voltage for SEM 
observation was 20 kV. 
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remove water. Even in vacuum condition, significant volume change of the seaweed in 

BMI-BF4 was not recognized, indicating that replacement of water included in the 

seaweed with ionic liquid was completed. It may be possible that some water molecules 

were still absorbed on the surface of the seaweed although their presence could not be 

confirmed in the present study. Figure 2-3(b) is a SEM image of cross section of the 

resulting seaweed taken after wiping excess amount of ionic liquid on the sample 

surface. As recognized by comparing it with Figure 2-3(a), the swollen seaweed had a 

few times larger thickness because of swelling. It is noteworthy that in this case coating 

of the sample with metal or carbon was not required because ionic liquid in the sample 

gave electronic conductivity to the sample. 

 Doing the similar experiments using other ionic liquid clarified that the 

hydrophilicity of ionic liquid was an important factor. When the swollen seaweed 

soaked in hydrophobic ionic liquid of BMI-TFSA was put in an outgassed desiccator, 

significant shrinkage of the seaweed was recognized. Then, it gave a SEM image of 

partially dried seaweed, as shown in Figure 2-3(c). It is likely that the swollen seaweed 

having strong affinity to water prevents penetration of hydrophobic ionic liquid in it, 

resulting in evaporation of water in the sample under vacuum condition. Therefore, use 

of hydrophilic ionic liquid is essential for replacement of water included in the 

biomaterial with ionic liquid for its SEM observation. 

 

2-4. Conclusions 

 It has been clarified that ionic liquids are useful for providing electronic 

conductivity for insulating materials without any special instrument. In case of samples 
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showing different morphology in dry and wet states, the use of ionic liquid must be an 

advanced technique for wet sample observation, evidenced in this chapter by observing 

a seaweed leaf swollen by ionic liquid. However, this must be applicable to many 

biological materials if the materials were not got serious damage from ionic liquid. 

Furthermore, for the samples having three-dimensional structure like absorbent cotton, 

it is more efficient to use ionic liquid than gold sputtering, in terms of giving electric 

conductivity inside of the samples. 
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Chapter 3 

Development of In Situ Electrochemical 

Scanning Electron Microscopy Using Ionic 

Liquid 

3-1. Introduction 

 In the previous chapters, it was found that ionic liquids could be used as 

electrolyte solutions for electrochemical reactions (chapter 1) and could be observed by 

scanning electron microscope (SEM) without charging (chapter 2). These findings 

suggest the possibility of observing the process of electrochemical phenomena in ionic 

liquids by SEM. For this purpose, it is necessary to design an appropriate 

electrochemical cell which could avoid charging by the electron beam irradiation and to 

build up a new system for electrochemical reaction in the vacuum chamber of the SEM. 

Redox reaction of polypyrrole (PPy) film was chosen as the first demonstration. It is 

well known that conducting polymers, such as PPy, polyaniline and polythiophene, 

exhibit volume changes that accompany their redox reactions because of doping and 

dedoping of electrolyte ions.[4-8, 97-105]  However, since the volume change is slight, it is 

impossible to conduct direct measurement, even if an optical microscope is used. It has 

only been estimated by indirect methods, such as actuator tests using a spring electrode 

entirely covered with the conducting polymer[4, 5, 99, 100] and a bimetal-structured 

composite film of the conducting polymer and a soft insulating polymer.[6-8, 101-107]  In 

this chapter, I will introduce direct measurements of slight changes in the thickness of a 
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PPy film with the in situ electrochemical SEM system, modifying a commercially 

available SEM instrument. I will also show that in situ energy dispersive X-ray 

fluorescence (EDX) analysis could be employed to detect doping of ions in the polymer 

and their dedoping. 

 

3-2. Experimental 

 Ionic liquid of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)- 

amide (BMI-TFSA) was pretreated by the same procedure described in chapter 1 before 

all experiments. Pyrrole (Wako Pure Chemical Ind.) was purified by Kugelrohr 

distillation. Lithium bis(trifluoromethanesulfonyl) amide (Li-TFSA), lithium 

tetrafluoroborate (Li-BF4) and propylene carbonate (Kanto Chemical Co., Inc.) were of 

regent grade and used without specific purification. Tetrabutylammonium 

hexafluorophosphate (TBA-PF6, Aldrich), sodium perchlorate and sodium 

p-toluenesulfonate (Wako Pure Chemical Ind.) were of regent grade and used without 

specific purification. K-TFSA was prepared by mixing equimolar aqueous solution of 

KOH and H-TFSA, followed by evaporation and drying in vacuum. The vacuum 

chamber of the SEM (Keyence VE-8800) was a little modified so as to introduce 

electric lead wires from a potentiostat (Hokuto Denko, HSV-100). In situ 

electrochemical SEM measurements were conducted using a glass petri dish (20 mmφ) 

containing two Pt electrodes (10 mm × 5.0 mm × 1.0 mm in thickness) and ionic liquid, 

as an electrochemical cell, as schematically depicted in Figure 3-1. One Pt electrode 

used as a counter electrode was coated with relatively thick PPy film by electrochemical 

oxidation of pyrrole solution. Redox reaction of this PPy film allowed occurrence of 
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electrochemical reaction on the Pt electrode (a working electrode) without any side 

reaction. Another Pt foil electrode was also put in the ionic liquid and its other end was 

connected to the sample stage of the SEM. This worked as a grounding wire and details 

will be mentioned in Section 3-3-1. Electrochemical reactions were conducted by 

applying dc voltage between two PPy-deposited Pt electrodes in the vacuum chamber of 

the SEM. The same electrochemical reaction was conducted out of the vacuum chamber 

of the SEM using the same electrochemical cell but a reference electrode of Ag/Ag+ 

(0.1 M) in BMI-TFSA was put in ionic liquid to measure the net working electrode 

potential. Thus, the correlation between electrode potential and dc voltage applied 

between the two Pt electrodes was estimated. A Pt foil electrode and an Ag/Ag+ (0.1 M) 

in BMI-TFSA were used as counter and reference electrodes, respectively, for cyclic 

voltammetry measurements. EDX (EDAX VE-9800) line analysis was conducted using 

K+ as a marker reagent in BMI-TFSA including 100 mM K-TFSA. The measurements 

were carried out by drawing intensity of the energy band at 3.310 keV with dead times 

around 30 %.  

 

 
 
Figure 3-1. Schematic illustration of electrochemical cell for in situ SEM 
observation of redox reaction of a PPy film deposited on a Pt electrode. 
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3-3. Results and Discussion 

3-3-1. Fabrication of the in situ electrochemical SEM system 

Figure 3-1 shows a schematic illustration of the cell used for in situ 

electrochemical SEM observation. It was composed of a glass petri dish, two Pt plate 

electrodes and another Pt foil electrode. Although it would be better to use a metallic 

cell considering the electrical conduction between the BMI-TFSA in the cell and the 

sample stage, it would be very difficult to prevent the electrodes from touching the cell, 

as the sample stage is so small. When the cell was put on a sample stage of the SEM, an 

end of the Pt foil electrode was touched to the sample stage by a screw for making 

electronic contact between ionic liquid in the cell and the sample stage. The role of this 

grounding wire could be clearly recognized from the SEM images of ionic liquid in the 

 
 
Figure 3-2. SEM images of a part of a glass cell and ionic liquid in the cell in 
(a) the absence and (b) the presence of a Pt wire connecting ionic liquid and a 
sample stage. The accelerate voltage for SEM observation was 20 kV. 



 41

glass cell, as shown in Figure 3-2. When the cell was observed without the grounding 

wire, the insulating glass cell and ionic liquid in the cell were charged, giving a bright 

image, as shown in Figure 3-2(a). However, charges in the ionic liquid were effectively 

removed when the grounding Pt wire was set in the cell, as shown in Figure 3-2(b). 

Unfortunately, it has not been clarified how the irradiated electrons behave in ionic 

liquid but electrons in ionic liquid have been studied by fast pulse radiolysis 

experiments using methyltributylammonium-TFSA[29] and XPS measurement.[37-41] The 

former technique generated solvated electrons having a life time of 300 ns when 8.7 

MeV electron pulse were injected. It is then speculated that generation of the solvated 

electrons occurs also in the case of SEM observation, allowing ionic liquid to behave 

like an electronic conducting material. However, it should be considered that any 

chemical reaction including decomposition of ionic liquid takes place although total 

electron dose irradiated to ionic liquid in the SEM observation is usually quite small as 

compared to the amount of ionic liquid. Clarification of this possibility has been the 

next subject.  

The electrochemical cell shown in Figure 3-1 was used for observation of 

redox reaction of PPy. In this case, the vertically set electrode was observed from 

topside, giving an image of cross section of the electrode, as shown in Figure 3-3. The 

PPy film was prepared by electrochemical oxidation at 0.4 mA cm–2 in propylene 

carbonate containing 0.06 M pyrrole and 0.05 M TBA-PF6 for 20 min. From this SEM 

image, the film thickness is estimated to be 30 ± 3 μm. The electrode was soaked in 

ionic liquid but small top portion was exposed from the ionic liquid, allowing 

observation of the electrode cross section without interference by the ionic liquid, 

although this is not evident in Figure 3-3. 
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3-3-2. In situ electrochemical SEM observation of PPy film 

Although attempts were made to observe changes in the film thickness at this 

magnification, these changes were insufficient to recognize in the image (Figure 3-3). 

Then, a section of the PPy surface was observed at a higher magnification and the SEM 

images were taken by changing applied dc voltage. As already mentioned in the 

experimental section, the Pt electrode used as a counter electrode was coated with PPy 

exhibiting redox reaction. Since relatively large amount of PPy was deposited, redox 

reaction of PPy alone should take place as counter reaction of the working electrode 

reaction, allowing occurrence of electrochemical reactions without any unexpected side 

reaction in the vacuum chamber of the SEM. The obtained images are arrayed in Figure 

3-4 for comparison of the PPy surface level at each applied voltage. The numbers given 

under the SEM images in Figure 3-4 indicate the electrode potentials applied to the 

working electrode with respect to Ag/Ag+ (0.1 M) in BMI-TFSA. The initial dc voltage 

was –2.5 V, which polarized the working electrode at –1.7 V vs. Ag/Ag+ (0.1 M), and 

 
 
Figure 3-3. SEM image of a cross section of PPy deposited on the Pt working 
electrode immersed in BMI-TFSA. The acceleration voltage for SEM 
observation was 20 kV. 
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the voltage was increased to 2.0 V at intervals of 0.5 V. Each voltage was applied for 

several tens of seconds until the current had decreased to less than 1.0 μA cm–2. Figure 

3-4 shows that the PPy surface level sinks with positive potential shifts, implying a 

decrease in the film thickness. An image drift does not occur when the applied dc 

voltage was changed, since no level change was observed when a PPy/Pt interface was 

investigated under the same conditions. 

Figure 3-5 shows a typical cyclic voltammogram of a PPy film-coated Pt 

electrode taken at a scan rate of 0.05 V s–1 in BMI-TFSA (——). The PPy film was 

prepared under the same conditions as those used for preparation of the PPy film 

subjected to the in situ electrochemical SEM observation. A Pt foil electrode and an 

Ag/Ag+ (0.1 M) in BMI-TFSA were used as counter and reference electrodes, 

respectively. Oxidation and reduction waves are seen in the voltammogram, indicating 

that redox reaction of the PPy film accompanying doping and dedoping of ionic species 

definitely took place in BMI-TFSA. In the same figure, the film thickness as a function 

 
 
Figure 3-4. In situ electrochemical SEM observation of surface level changes of a 
PPy film in BMI-TFSA caused by changing electrode potential. The working 
electrode potentials were indicated referring to Ag/Ag+. The acceleration voltage for 
SEM observation was 20 kV. 
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of electrode potential estimated from the results shown in Figure 3-4 are also plotted 

(-----). The relationship between the PPy film thickness changes and the sum of charges 

in negative potential shift estimated by integrating cathodic currents observed in Figure 

3-5 is plotted in Figure 3-6, showing a linear relationship. The same relationship is seen 

during the oxidation of PPy though not shown here. The linear relationship shows that 

the amount of charge on PPy is directly proportional to the magnitude of the change in 

film thickness.  

Several reports on the redox reactions of conducting polymers have been 

published.[4-8, 103, 104]  For PPy, two modes of redox reaction have been reported; 

reactions accompanying doping and dedoping of anions and of cations. In the latter case, 

anions are immobilized in the polymer as fixed dopants, resulting in doping of cations 

by reduction of positively charged PPy to neutral PPy. The results of decrease in the 

PPy film thickness by its oxidation shown in Figure 3-5 strongly suggest that this redox 

reaction corresponds to the reaction mode accompanying movement of cations. 

 
 
Figure 3-5. Cyclic voltammogram of PPy film-coated Pt electrode taken at a 
scan rate of 0.05 V s–1 (solid line) and changes in thickness of the film as a 
function of electrode potential (broken line). 
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 The PPy films prepared under different conditions were also subjected to the in 

situ electrochemical SEM observation. The preparation conditions of PPy films and 

results obtained by their in situ SEM observations are summarized in Table 3-1. 

Contrary to the result mentioned above, the PPy film prepared in aqueous solution 

containing sodium p-toluenesulfonate (p-TSNa) exhibited an increase in the film 

thickness by oxidation. In this case, p-toluenesulfonate anion that should be doped in 

the freshly prepared PPy film can be eliminated by reduction of the film, and doping 

and dedoping of anion of the ionic liquid, i.e. TFSA– are accompanied by the successive 

redox reaction. The PPy films prepared from nonaqueous solutions seem to take the 

reaction mode of cation doping and dedoping, as judged from the results of an increase 

 
 
Figure 3-6. Relationship between thickness change and sum of charge during 
reduction of PPy film. 
 
 

Table 3-1. Changes in thickness of PPy film prepared under different conditions. 
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in their film thicknesses by reduction. The rates of film thickness changes obtained for 

the latter reaction mode are significantly larger than those for the former reaction mode, 

suggesting that the reaction mode accompanying doping and dedoping of electrolyte 

cation is more desirable to fabricate actuators.  

 

3-3-3. In situ EDX measurement 

 The in situ electrochemical SEM observation has a possibility to conduct 

analysis of the composition changes of the specimen under polarization conditions using 

EDX attached to the SEM. This kind of measurement could potentially be used for 

clarifying the reaction mechanisms. Then, it was attempted to confirm the reaction 

mechanism mentioned in Figure 3-4, if the PPy indeed undergoes reduction by the 

movement of cations. However, since a BMI cation is composed of carbon, hydrogen 

and nitrogen, as is PPy, it seemed to be difficult to distinguish the cations in PPy by 

EDX. Therefore, potassium bis(trifluoromethanesulfonyl)amide (K-TFSA) was 

dissolved in BMI-TFSA in order to use K+ as a marker for EDX analysis. In this ionic 

liquid, doping and dedoping of K+ and BMI+ should take place simultaneously. 

 The EDX line analysis was conducted along a line drawn from the ionic liquid 

to PPy film by measuring K-Kα X-ray intensities at 3.310 keV with the acceleration 

voltage of 20 kV. As shown in Figure 3-7, the EDX measurements could be conducted 

without any problem even under polarization conditions. The X-ray intensities of K-Kα 

in PPy polarized at –1.70 V vs. Ag/Ag+ were much larger than those in the film 

polarized at 0.87 V vs. Ag/Ag+, while no significant difference in the K-Kα X-ray 

intensities was observed in the ionic liquid. These results clearly indicate doping of K+ 

into the PPy film upon reduction and dedoping of K+ into the PPy film upon oxidation. 
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Although not shown here, the EDX line analysis was also done on S-Kα X-ray 

intensities at 2.308 keV to gauge the change in the amount of TFSA– in PPy. No 

significant difference in the S intensity was observed upon reduction of PPy, evidencing 

clearly that TFSA– stayed in the polymer as a fixed dopant. Based on the EDX 

measurements and the results shown in Figure 3-6, it can be concluded that only the 

doping and dedoping of cations exclusively cause the changes in the PPy film.  

 

3-4. Conclusions 

 An in situ electrochemical SEM system which allows a specimen to be 

observed under polarization conditions has been developed. The use of ionic liquids as 

electrolyte enabled this measurement. The observation of a PPy film polarized at 

various potentials clearly revealed that its oxidation and reduction were accompanied by 

 
 
Figure 3-7. EDX line analysis of K+ along a white line drawn in the SEM image 
by K-Kα X-ray intensities at 3.310 keV. Results obtained for PPy polarized at 
–1.70 (solid line) and +0.87 V vs. Ag/Ag+ (broken line) are shown. The 
acceleration voltage for SEM observation was 20 kV. 
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decrease and increases, respectively, in the film thickness. It was subsequently 

confirmed by EDX measurement under polarization conditions that doping of cations 

into the PPy film took place upon reduction and dedoping of cations from the film 

occurs upon oxidation. 

Commercially available SEM instruments, including those utilized here are 

designed to provide magnified still images. However, they have a viewing mode that 

allows the viewing of samples in real time in order to determine an appropriate position 

for obtaining the final still image. In the present study, I recognized changes in the PPy 

film thickness in real time when the polarizing potential was changed, although the film 

thickness at each potential was measured from each still image (Figure 3-4). 

Investigation to consider the moving image in the viewing mode at a sufficiently fast 

rate is underway.  
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Chapter 4 

In Situ Scanning Electron Microscope 

Observation of Metal Deposition from Ionic 

Liquids 

4-1. Introduction 

In the kinetic studies on metal deposition, observation of the deposited metal 

surfaces with scanning electron microscope (SEM) gives information on morphology of 

the deposited metal, from which growth mechanisms can be speculated. However, it is 

required to prepare multiple samples with different deposition time for SEM 

observations in order to know changes in the morphology as a function of deposition 

time. In other words, a requirement of vacuum condition limits SEM to ex situ 

observation. In situ observations of metal deposition with high magnification have used 

to be mainly conducted by the scanning probe microscopes including scanning 

tunneling microscope and atomic force microscope.[108-110]  Based on the finding 

described in previous chapters; metal electrodeposition (chapter 1) and in situ 

electrochemical SEM observation using ionic liquids (chapter 3), it would be possible to 

observe the process of metal deposition in real time. 

 In this chapter, I will describe a new electrochemical system, which allows in 

situ SEM observation of metal deposition from ionic liquid. If a conventional cell were 

used, ionic liquid in the cell should disturb observation of metal deposition on the 

electrode surface. A specific cell which is appropriate for observing morphology 
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changes in real time is designed. Using it, SEM observation of silver electrodeposition 

from ionic liquid containing silver ions will be demonstrated.  

 

4-2. Experimental 

  1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (BMI- 

TFSA, Kanto Chemical Co., Inc.) was purified by the same way described in chapter 1. 

Silver bis(trifluoromethanesulfonyl)amide (Ag-TFSA) was prepared by mixing Ag2O 

and H-TFSA in a molar ration of 1:2, followed by evaporation and drying in 

vacuum.[111]  The SEM (Keyence VE-8800) equipped with energy dispersive X-ray 

fluorescence (EDX, EDAX VE-9800) was a little modified to introduce electric lead 

wires from a potentiostat (Hokuto Denko, HSV-100).  

 

4-3. Results and Discussion 

4-3-1. Quasi in situ observation using conventional electrochemical cell 

Figure 4-1 shows cyclic voltammogram of a Pt wire electrode taken in 

BMI-TFSA containing 20 mM Ag-TFSA at 0.02 V s–1. A cathodic wave due to Ag 

deposition and an anodic wave due to stripping of the deposited Ag were clearly seen at 

around –0.22 and 0.02 V, respectively.  

For the SEM observation, the working electrode was horizontally positioned 

just under the ionic liquid surface. However, since the ionic liquid presenting on the 

electrode surface made resolution of the SEM image a little lower, reaction was 

intermitted and the electrode surface was exposed from ionic liquid during taking a 

SEM image. In this respect, this technique cannot be regarded as a proper real time 
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observation. The exposure of the electrode surface was conducted by tilting the sample 

stage a little. Silver deposition was made by polarizing the electrode at –0.5 V vs. 

Ag/Ag+ (0.1 M) in BMI-TFSA containing silver ion. Figure 4-2(b) shows the SEM 

image obtained after Ag deposition for 35 min. Comparison of this with the SEM image 

before deposition shown in Figure 4-2(a) revealed that the electrode surface was entirely 

covered with Ag layer, on which some Ag particles appeared. After deposition, the 

applied potential was changed to 0.5 V to induce oxidative dissolution of the deposited 

Ag, giving the SEM image shown in Figure 4-2(c), which is identical with the Pt 

surface before Ag deposition (Figure 4-2(a)).  

The possibility to employ EDX analysis for the electrode polarized in ionic 

liquid was examined using this Ag-deposited Pt electrode. The EDX spectra shown by 

broken line and solid line in Figure 4-3 were taken for the SEM images as shown in 

Figure 4-2(a) and (b), respectively. The X-ray band due to Pt-Mα at 2.054 keV was 

 
 
Figure 4-1. Cyclic voltammogram of Pt electrode taken at 0.02 Vs–1 in 
BMI-TFSA containing 20 mM Ag-TFSA. 
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found in both electrodes and the band due to Ag-Lα at 2.982 keV appeared after 

deposition. The shape of the spectra was not influenced at all even under polarization 

condition. If Ag deposition and its oxidative dissolution were induced during 

measurements, changes in the intensity of the Ag-Lα band were recognized. 

 

 
 
Figure 4-2. SEM images of a Pt electrode (a) before and (b) after in situ 
electrochemical deposition of Ag and (c) an image of the same electrode taken 
after oxidative dissolution of deposited Ag. The accelerate voltage for SEM 
observation was 10 kV. 
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4-3-2. Designing a specific cell for metal electrodeposition  

Electrodeposition of metal takes place on an electrode surface which contacts 

with electrolyte solution. It is necessary to consider the disturbance by ionic liquid in 

order to observe electrochemical reactions in ionic liquid by SEM. One of ways to avoid 

it may be fabrication of an electrochemical cell, which allows occurrence of 

electrochemical reactions at very shallow area underneath the surface of ionic liquid. 

For this purpose, a fluorine doped tin oxide-coated glass (FTO-glass; Asahi Glass Co., 

Ltd.) having an FTO layer of 0.9 μm with sheet resistance of 10 Ω/□, was used to 

fabricate an electrochemical cell, as schematically shown in Figure 4-4. Two grooves 

having T-shape were cut on its oxide layer to be divided into three regions which were 

used as working, counter, and grounding electrodes, respectively. A Pt wire was 

attached to each part with an electrically conducting carbon adhesion tape. Small 

amount of BMI-TFSA containing 20 mM Ag-TFSA was carefully put in the groove 

between working and counter electrodes without its overflow on the working electrode 

surface. Some amount of ionic liquid was spread on the grounding electrode surface 

which is electrically contacted with the sample stage. This can easily be conducted 

because wettability of the FTO surface to BMI-TFSA is quite high. 

 
 
Figure 4-3. EDX spectra of Pt electrode before (broken line) and after (solid line) 
electrochemical Ag deposition. 
 



 54

  Cyclic voltammetry was conducted in the standard ambient condition at 0.05 V 

s–1 using this electrochemical cell with a reference electrode of Ag/Ag+ (0.1 M) in 

BMI-TFSA put in the ionic liquid. Prior to measurements, silver metal was deposited on 

the counter electrode by passing constant current (2 μA) for 3 min between the counter 

electrode and an Ag wire which touched to the ionic liquid in the groove. The deposited 

Ag allowed occurrence of electrochemical reaction at the working electrode without any 

unexpected side reaction. The obtained voltammogram was shown in Figure 4-5. 

 
 
Figure 4-4. Schematic illustration of electrochemical cell fabricated by cutting 
grooves on an FTO-glass for in situ SEM observation of electrochemical 
reactions. 
 
 

 
 
Figure 4-5. Cyclic voltammogram of BMI-TFSA containing 20 mM Ag-TFSA 
taken by the FTO-glass electrochemical cell at 0.05 V s–1. 
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Cathodic and anodic wave are seen at around –0.31 and +0.04 V, respectively. The 

obtained CV shape was quite similar to the CV shape obtained using the FTO glass 

surface as a working electrode. These results imply that both cross section and surface 

of the FTO layer possess the same characteristic as an electrode. 

 

4-3-3. Comparison of electrochemical behavior with growth of metal deposition 

  In situ SEM observation of silver deposition was made by applying electrode 

 
 
Figure 4-6. SEM images of gradual deposition of silver particles polarized at –0.22 V 
vs. Ag/Ag+ for (a) 0, (b) 15, (c) 30, (d) 60, (e) 180 min and (f) EDX line analysis of 
Ag along a white line drawn in the SEM image by Ag-Lα X-ray intensities at 2.982 
keV. The accelerating voltage for SEM observation was 20 kV. 
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potential to the working electrode, while observing the edge of FTO layer. The 

polarization potential chosen was –0.22 V, which was a little more negative than the 

onset potential of silver deposition (–0.15 V). It is known that silver deposition with 

nucleus growth is dominant in ionic liquid at such the polarization potentials.[112-114]  

As shown in Figure 4-6, it was succeeded to observe gradual growth of silver on the 

FTO electrode. Polarization for 15 min generated granular deposits (Figure 4-6(b)), 

followed by increase in number of Ag particles and their growth. After the in situ 

observation, EDX line analysis was carried out by detection of X-ray band derived from 

Ag-Lα at 2.982 keV along a white line drawn from ionic liquid to the FTO in Figure 

4-6(f). The X-ray intensity became large in the region where deposited particle was seen, 

confirming that the particles were certainly Ag particles.  

 Similar experiment was conducted but the applied potential was shifted to 

–1.14 V vs. Ag/Ag+ where the reaction rate is determined by diffusion of Ag+, as judged 

from the voltammogram shown in Figure 4-5. In such the reaction condition, several 

metals including Ag and Cu tend to form aciculate deposits.[114-116]  These phenomena 

could be explained on the fact that the diffusion of Ag+ to the end of the branch would 

prefer to the electrode substrate, leading the further growth of deposited dendrites. As a 

matter of fact, the in situ SEM observation gave clear SEM images showing gradual 

growth of Ag dendrites, as shown in Figure 4-7(b-e). EDX analysis revealed again that 

the obtained dendrites were Ag, as shown in Figure 4-7(f). It is impossible to take such 

the sequential SEM images of growth of one dendrite by the usual ex situ SEM 

observation.  
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4-4. Conclusions 

 The results reveal the development of in situ SEM observation system for metal 

electrodeposition. The fabricated system allowed to find out difference in the 

morphology of Ag deposited at different electrode potential and sequential growth of the 

deposited metal, using an FTO glass plate. However, based on the results, similar 

electrochemical cells were fabricated using slide glasses that were coated with Pt, Au, 

 
 
Figure 4-7. SEM images of gradual generation of silver dendrite polarized at 
–1.14 V vs. Ag/Ag+ for (a) 0, (b) 15, (c) 30, (d) 60, (e) 180 min and (f) EDX 
line analysis of Ag along a white line drawn in the SEM image by Ag-Lα 
X-ray intensities at 2.982 keV. The accelerating voltage for SEM 
observation was 20 kV. 
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and other metals by a sputtering method. It was then found that those metal-deposited 

glasses, on which grooves were cut, worked well for in situ SEM observation of 

electrochemical metal deposition, implying that the method developed here has been 

widely applicable to in situ SEM observation of several kinds of electrochemical 

reactions. 
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Summary 

 Ionic liquids could be used as electrolyte solution without solvent for 

electrochemical desorption of n-alkanethiol self-assembled monolayer and 

electrodeposition of aluminum alloys. Their electrochemical behaviors were different 

from those in conventional aqueous solutions. In addition, ionic liquids behaved as 

antistatic agents of insulating materials for electron microscopy. This fact was easily 

applied to biomaterials including much water such as seaweed. 

During implementation of the in situ observation, it was found that SEM 

observation of the PPy film polarized in ionic liquid could be conducted for long time 

without giving any damage to the SEM instrument or the specimen. Such the favourable 

situations are owed to ionic liquid possessing negligible vapour pressure in room 

temperature and antistatic property. Even if ionic liquid is put in an insulating vessel, its 

SEM observation is possible by connecting ionic liquid to a metal sample stage with a 

grounding Pt wire. It was confirmed that EDX analysis was also available even under 

polarization conditions. The combination of in situ SEM observation and EDX analysis 

must be a powerful method to clarify reaction mechanisms of the electrochemically 

active materials. 

In situ SEM observation is appropriate for observing non-ordered morphology 

of materials. For example, since the images of the growth of metal particles (Figure 4-6) 

showed no change in electrode surface but cross section view of the deposited Ag 

floating on ionic liquid, it is impossible to observe them by the scanning probe 

microscopes.  
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Accordingly, the in situ electrochemical SEM technique developed in the 

present study must be widely applicable to not only electrochemical reactions but also 

other chemical phenomena, including various chemical and biochemical reactions. 

Further investigation aiming development of other in situ measurement systems and 

clarification of phenomena whose mechanisms are unknown by using the developed 

systems are currently in progress. 
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