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1. Introduction

The problems we consider in this report are often
referred to as the secretary problem, the beauty contest
problem, the dowry problem and the marriage problem and they
fall under the general heading of problems of optimal stopping.
In each of these problems the decision-maker takes observations
one by one sequentially and at each stage he must decide
whether to accept (choose) it or reject it and take another
observation so that he may maximize the specified stopping
reward. Before discussing our problems, we shall give a brief
outline of the variants of the secretary problem studied so far.

Gilbert and Mosteller (%), who investigate the secretary
problem and several related variants extensively, distinguish
between the two extreme cases, i.e., no-information and full-
information.

1. The "no-information" case: The decision-maker has no
information about the distribution of the observed values.

The only information he can know about each object is the
relative rank among those that have already appeared.

2. The "full-information" case: The decision-maker can
observe a sequence of the independently and identically
distributed random variables each with a known cumulative
distribution function.

The original problem in the no-information case,

described by Lindley (5) for example, is as follows.



There are N objects. They are supposed to appear before the
decision-maker sequentially in a random order and can be
ranked according to some quality (1 being the best and N the
worst). The decision-maker observes the rank of the present
object relative to those preceding it and decides either to
accept it or to reject it and take another observation.

(There is no.recall of objects already passed over.) He makes
only one choice and his goal is to find a stopping rule which
maximizes the probability of choosing the best object.

Gilbert and Mosteller (3], Gusein-~Zade (4] and Mucci (6]
treat the problem in which the decision-maker regards the
choice as successful if the chosen object is one of r best
among N objects. In the problem we shall consider in Section
2.1 the decision-maker makes two choices and succeeds if
either of his choices is the best or the second best. We give
the name "l-candidate" to any object which is best among all
that have already appeared and also give the name "2-candidate"
to any object which is second best among all that have already
appeared. When we need not distinguish between l-candidate
and 2-candidate, we call them by the name of "candidate".

Then it is obviously seen that any object which is not a
candidate can not be chosen. For 1l<t=N, we denote by (t,i),
i=1,2, the state where the decision-maker is facing the t~th
object which happens to be a i-candidate and he is allowed
two choices, and by (t,ij), i,j=1,2, the state where the
decision-maker, who has already chosen the i-candidate among
the first t-1 objects as the first choice, is facing the t-th
object which happens to be a j-candidate. Then our result

can be stated as follows. There exists a pair of integers
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di and 4%, 1§d{§d§§N, such that the optimal strategy in state

(t,i), i=1,2, is to accept the candidate if tzd}, and there
also exists another pair of integers si and sg, lgsiésgéN,

such that the optimal strategy in state (t,2j), j=1,2, is to
accept the candidate if tgss. In state (t,13), J=1,2, it
does no good to accept the candidate.

Recently Nikolaev (8) considers the problem of choosing
both the best and the second best. In Section 2.2 we shall
solve the same problem by using the OLA (one stage lookahead)
policy which was proposed by Ross(l2) to solve a certain
class of problems in Markov decision processes for which
action space essentially consists of two alternatives -
acceptance and rejection. We easily see that the first choice
should be restricted to a l-candidate and that, once the first
choice is made and if the earliest candidate thefeafter is
a l-candidate, it should be unconditionally accepted as the
second choice. Hence, the decision-maker is interested in
only states (t,1) and (t,12). It will be shown that there

exists a pair of integers ri and ré, lgrggriéN, such that
the optimal strategy is to accept the candidate if tgré in
state (t,1), and accept the candidate if tzr] in state (t,12).

Though in most of the problems the number of objects N
is known, it is natural to study the situation where N is not
known in advance but is a random variable whose distribution

is given beforehand. Problems of this type have been studied



by Presman and Sonin [(9) and Rasmussen and Robbins (11] .

We also consider the problem, in which knowing an a priori
distribution of the actual number of the objects the decision-
maker makes T choices and succeeds if either of his choices

is the best. In Section 2.3, the explicit solution is obtained
in the case where the decision-maker makes two choices and

a uniform a priori distribution is assumed for N and can be
stated as follows. Let <t,r>, r=1,2, be the state where

the decision~-mgker is facing the t-~th object which happens

to be a l-candidate and there remain r choice(s) allowed to

be made. Then there exists a pair of integers my and ml,

lgmégmigN, such that the optimal strategy in state <t,r>,

r=1,2, is to accept the candidate if tgm;.

Another modification of interest is to allow more
flexibility in recalling an object which has been passed
over at a previous stage. Smith and Deely (21) treat the
problem with finite-memory of size m, where the decision-maker
is allowed a backward solicitation to any one of the last m
objects. Yang (28) assumes that at every stage a backward
solicitation to any object which was passed over is allowed
but with a known probability of success. Rubin and Samuels
(131 also consider a different type of the finite-memory
problem. A variant in Smith (20) and Sakaguchi (18) assumes
that each of the objects has the right to refuse an offer of
acceptance with a fixed probability. In Section 2.4, we shall

investigate a mixed model where the decision-maker, who is



allowed a backward solicitation at any stage, succeeds if
his choice is the best among all, while each of the objects
has the right to refuse an offer of acceptance with a known
and fixed probability. If an object is chosen and it accepts
the offer, we call it available. Suppose that the decision-

maker is at stage k. ILet my be the relative position (to k)

of the available l-candidate if it exists. We call the
available l-candidate a "current candidate" if m, =0, and a
"potential candidate" if l=m <k-l. Now assume that, if at
stage k our attempt is made to procure the available
l-candidate, this attempt will be successful with the
specified probability q(m ), where q(0)=1l. Then our result
becomes as follows. In the case of q(m)=q,m=1, there exists

an integer ni such that the optimal strategy is to pass over
the first ni—l objects and thereafter accept the earliest

current candidate. If it happens that stage N is reached
and the absolute best is among the first nj-1 objects, we
attempt to procure it. On the other hand, in the case of
q(m)=q®, m=1, there exists an integer n3 such that the optimal

strategy is to pass over the first ns-l objects, solicit the

available l-candidate, if possible (no matter where it is) at
stage ni, and if the procurement at stage ng is unsuccessful,
continue the observations of the remaining objects and accept

the earliest current candidate thereafter.



lucci (63 (73 treat the problem with a generalized
payoff function and obtain the asymptotic form for the
optimal payoff and the stopping rule by the analysis of
related differential equations. Game theoretic approach
is incorporated into the secretary problem by Presman and
Sonin (103 . This approach is also employed in Sakaguchi (177 .
Although the secretary problems stated above are mainly
concerned with maximizing the probability of choosing the
desired object, Lindley (5] and Chow et al. (1) discuss the
problem in which the decision—maker wishes to minimize the
expected absolute (not relative) rank of the object he chooses.

We now turn to the full-information case. Let X
i=1,24...4 N, be the value attached to the i-th object and
suppose that Xl’ X2, eeey Xy be independent and identically
distributed random variables that can be observed sequentially.
Then the decision-maker, observing the random variable at each
staée, must decide whether to accept it or not. His objective
is to find the stopping rule which maximizes the probability
of choosing the largest random variable. Gilbert and
Mosteller (3) originally studied this problem with one choice.
Since their derivation depends on some ingenious and heuristic
method and the optimality of strategy is not necessarily
clear, Sakaguchi [(16) solves the same problem via the dynamic
programming method and provides much insight into the optimal

strategy. The problem treated in Section 3.1 is that the



decision-maker makes two choices and succeeds if either of
his choices is the largest of the sequentially presented
random variables. We give the name candidate to any object
which has a maximum value observed so far and let (x;n,r),
r=1,2, be the state where the decision-maker is facing a
candidate whose value is x and he is allowed to make r
choice(s) from the remaining n+l observations (including
the present one). We can assume without loss of generality
that each of the observed values has a uniform distribution
on the interval (O, 1). Our result in this case can be
summarized as follows. There exists a pair of increasing
sequences (s} and {dn}, such that the optimal strategy

is to accept the candidate if xzs  in state (x;n,1) and

accept the candidate if x=d_ in state (x3n,2).

Apart from the two extreme cases - no-information and
full-information, Sakaguchi (14] and Stewart (22) consider
the intermediate case in which the value attached to each
object is a random variable whose distribution has a
parameter unknown a priori.

Secretary problem has so far received a great aeal of
attention for its simple structure. This report is composed
of five papers (23, 24, 25, 26, 271, and the author wishes

it will be a step to further research.



2. Secretary Problems with No-information

2.1 Recognizing the Best or the Second Best

The problem we consider here is that the decision-maker
makes two choices and succeeds if either of his choices is
the best or the second best. If he has not accepted until
the last two objects then he is forced to accept both of them.
He wishes to find the stopping rule which maximizes the
probability of success.

Given the t-th object is é candidate, the conditional
probability that the s-th (s>t) is the earliest candidate
and, at the same time, earliest i-candidate (i=1,2) is
t(t—l)/s(s—l)(s—z) whiéh we indicate by m.. Hence, the

probability that no candidate will appear after stage t is

N
1-2 [, V4
s=t+1

the probabilities of success under an optimal policy starting

tg = B(t-1)/N(N-1). We denote by uéi) and vgij)
from states (t,i) and (t,ij) respectively. The probabiiity
of success is t(2N-t-1)/N(N-1) when the decision-maker
chooses l-candidate among the first t objects and terminates
the process and the probability of success is t(t-1)/N(N-1)
when he chooses 2-candidate and terminates the process.

So we now obtain the following recurrence relations

A t(2N-t-1)
(2.1.1) v§21) = max N (1) (22)
R : Z ‘ 7Tts(vs + Vg )
s=t+1

(3=taN-1; vPP)a1)



(2.1.2)

(2.1.3%)

(2.1.4)

(2.1.5)

(22

11
L)

=max{

A %%%E%%

N
21 22
R : S=E+17Tts(v§ ) . vé ))

(3<tsN-1; v§22)=1)

£(2N-t~1)

A
= max { N
P Lol )

s=t+l

(2<t<N-1; v§;1)=l) ,

N

NCOIS--S N ORI e

1
Ned

=max{

s=t+1

(2=t=N-1; v§12)=l)

N
oHED ¢ Lm0

s=t+1
N
e ] rea@® o)
s=t+l

(1=t=N-1; u§l>=l) ’



(v(21) ézz))

(2.1.6) u§2> = max

N
. 1) 2
R : s=%+l nts(ug + ué ))

(2st=N-1; uff):l)

where A and R symbolically represent acceptance and rejection
respectively. (2.1.4) comes from the fact that it does no
good to stop in state (t,12). The system of equations
(2.1.1)-(2.1.6) can be solved fecursively to yield the

(1)

optimal stopping rule and the maximum probability u;T.

We put

N
[ e o2

s=t+1

(2.1.7) Vi

*

then we have by (2.1.1) and (2.1.2)

(2.1.8) v,y =+ PV, S22y 2y

Ve % [111za><(§—(%-1\1—?f—)H t.0)+max(%§%}}%— - v 00l

Hence, v, is non-increasing in t. Considering that
£ (2N-t-1)/N(N-1)>t(t-1)/N(N-1), for 1<t<N, and that both
of these functions are increasing in t, we can summarize

the optimal policy in state (t,2j), j=1,2, as follows.

- 10 -



Theorem l.1. There exists a pair of integers si and sg,

1ssf=s)=N, such that the optimal strategy in state (t,23),

j=1l,2, is to accept the candidate and stop immediately if and
only if tgsg, where

t(2N-t-1)
DS = v, ] ,

]

(2.1.9) s¥* =min [t |

4

and

t(£-1)
MNol) = Ved .

(2.1.10) s =min[t |

N

Gilbert and Mosteller ( 3] and Gusein-Zade (4] have shown
this theorem. The explicit expression of Vi was given in [4)

and the values of Si and s§ were given in Table 6 of (3).

Lemma 1l.2. véll) is increasing in t and we have,

for 1<t<N,

(11)_ t(t-l% t(oN-t-1)
(201.11) V_t - N — + v-b = N -— -

Proof: It is easily seen by (2.1.1), (2.1.2) and (2.1.7)

N
t(t-1 _ t%t—l% (21) (22)
MR- + Vv = — + z ”ts(vs + Vg )

s=t+1
. ( )
t(t-1 s(2N-s-1 s(s-1
= ﬂ%N:I% ) s L WD Y WONELY A
s=t+l
- t(oN-t-1)

- 11 -



Thus, by (2.1.3), the latter half of the lemma is shown.

(11)

Showing that vy is increasing in t is equivalent to

showing that véll) §1%)>o (2.1.7) and (2.1.11) give

(2.1.12) VDAL L Q1) 1)y, (A1) (22)y 7

Hence, considering (2.1.9) and (2.1.10), we can rewrite

(2.1.12) as

1 getl) 2<t<s]
(2.1.13) véll>~vézi)= % [(v(11> t(2N—t—1)) E%E:%% s1=t<s}

1 (11) t(EN—t-lz *
E [(Vt - “NIN=1 )+ vt] , Szgth .

In either case, (2.1.13) is positive. Thus the lemma is proved.

Lemma 1.2 and (2.1.4) show that, as far as the object
chosen as the first choice remains a candidate, the decision-
maker should not accept a new candidate as the second choice.

We can rewrite (2.1.4) as

@a.aw) 312 - A GL) (12D,

We have the following lemma.

Lemma 1.3. vélg)

1<t<N, v,§12) > v,gln.

is increasing in t and we have, for

- 12 -



Proof: We show vélg) > vgll) by backward induction.

It is easily checked v(lz) > vé %). Suppose that v§l§)>-v§1i>,
then, by (2.1.14) and Lemma 1.2, we soon have v(lg) éi%)>véll)

Hence, the induction is completed. Applying this result to

(2.1.14), we also have v§12)<v§1§). Thus the lemma is proved.

Now put
N
(2.1.15) u, = Ej nts(uél) + uéz)).
=t

Then, by (2.1.5) and (2.1.56), u ¢ turns out to be non-increasing
in t. Hence, (2.1.5) and (2.1.0), combined with Lemma 1.3,

lead us to the following theorem.

Theorem l.4. There exists a pair of integers dy and di,

1=d]=d3=N, such that the optimal strategy in state (t,i),
i=1,2, is to accept the candidate if any only if tzdf,

where
. 1
(2.1.16) d{ = min[t | vé 2) = Uy ]
and
' X 11
(2.1.17) d} = minlt ‘ v§ ) =

Ultimately optimal stopping policy of our problem is
given by Theorem 1.1, 1.4, Lemma 1.2 and (2.1l.4). Table 1

gives the values of s{, sé, di, dé and the maximum probability

for some values of N.

- 1% -



Table 1

N si sé di dé u%l)
e T e e

4 2 (3)4 (1) (2)3 0.9167

5 (2)3 4 2 3 0.9167

6 3 5 2 3 0.9000

9 3 5 2 4 0.8810

8 4 6 2 4 0.8705

2 4 7 3 5 0.8585

10 4 7 3 5 0.8551

20 8 14 5 9 0.8248

50 18 34 11 22 0.8056

100 35 67 22 43 0.7995

200 70 134 4y - 85 0.7965

500 174 334 108 211 0.7946

1000 348 667 216 421 0.7940

= 0.3470N 0.6667N 0.2150N 0.4201N 0.79%34

The values of si and sé are reproduced from Table 6 in Gilbert

and Mosteller (1966).
Following the method propoéed by (63 4, (7) and (181 ,

we finally derive the asymptotic values of s{,sé,di and 65,

when N tends to infinity, by the analysis of the corresponding
(13) (1)
t

differential and integral equations. Write v s UgT 7,

vy and ug, as f(13>(t/N), g(l)(t/N),p(t/N) and q(t/N)
respectively, and let N and t go to infinity, setting t/N=x.
Then, by (2.1.1),(2.1.2),(2.1.11),(2.1.12) and (2.1.14),

we have, for o«x=l,

- 14 -



(2.1.18) £(21) ()

max(x(2-x),p(x)),

2.1.19) £ (x) = max(:2,p(x)),

(2.1.20) p(x) = f(ll)(x) —.xg.

(2.1.21) £ WG = 260D - L1p (@D 5y 4 232Dy,
(2.1.22) £ 3D(x) = 2205y - (D)5,

where £(21)(1)=¢(@2)(1)r (1) (1)-¢(12) (1)1 ana p(1)-1.
These equations (2.1.18)-(2.1.22) can be solved easily and
especially f(ll)(x) and f(lz)(x) become

2

| x +a1(2-a1), Ox=qy
(2.1.23) (A1) (5) ={ 2x(x-1n x+1n ay), oy sxsa,
X(2"X)’ azéXél

and

_x2+(a§—2a1+1—21n a2)x+al(2-al), O=x<a;
(2.1.24) f(lz)(x) ={ x(2-2x~21n a2+(ln x/a2)2), a =Xy

x(x-21ln x), a,=x<1
where a,=2/3 and @,%0.3470 is the unique root in (O,az) of

the equation

(2.1.25) x-1n x=1-1n ay.

This coincides with the results of (3) and (4] . Similarly

we have, by (2.1.5), (2.1.6) and (2.1.15), for O=x<l,

- 15 -



(2.1.26) e () = max((2)(x),q()),

(2.1.27) @) (x) = max (e (x),q(x)),
1 2

(2.1.28)  qx) = j = 6D (5@ (3))ay,
X y3

where, g(l)(1)=g(2)(l)=l and q(1)=0.
Applying (2.1.23) and (2.1.24) to (2.1.26)-(2.1.28), we have,

after tedious calculations,

Pq(ﬂl)’ . Osx<8y

X2+[(a1-1)21n a)-21n ayln By-(1n ay-1n 32)1n2a2
+(1n2a1~1n232)1n an= %(lnaal—lnaﬂé)] x

+(l~a§+2ln al)xln x+a1(2—al), BsXsay
2X2+(1n2a21n B2+21n a2-ln a21n252

(2.1.29) q(x)={-21n a,ln B,+ %ln532)x- %xlnax

+(1n ag)xln2x+(2ln a2-2—ln2a2)xln Xy asX<6s

'-5x2+(1n2a2-21n ay+2)x

+x1n°x-2(1n ag)xln X, Bo=¥sas

~2x1ln x, aggxgl .

where 32%0.4201 is the unique root in (0,1) of the equation

- 16 -



(2.1.30) (1n x-1n a2)2+2-5x—41n a,+21n x=0
and 8,%0,2150 is also the unique root in (0,82) of the equation

2x+(1—a§+21n al)ln x+[(l—a§)+(a§-2al+3)ln ay
(2.1.31) ~21n ayln 8,-(1n @j-1n 32)1n2a2

2 2 _ 13 5 -
+(1n a;-1n 32)1n a 5(1n a;-1ln 32)]-0.
Summarizing the above results we reach the following lemma.
Lemma 1.5. We have asymptotically s*;alN, séz SN,

df28;N and d3xB,N. And then q(Bl) in (2.1.29), the maximum

probability of success, becomes approximately 0.7934.

-17 -



2.2 Recognizing the Best and the Second Best

In this section, we consider the problem of choosing
both the best and the second best by using the OLA policy
which was proposed by Ross [12] to solve a certain class

of problems in Markov decision processes for which action

space essentially consists of two alternatives -~ acceptance
and rejection.

Suppose that the Markov decision process has the countably
infinite state space {i]|i=0,1,2,...) and the transition
probability (pijii,j=0,1,2,...} and that, in each state, the
decision-maker must decide whether to accept a terminal
reward R(i) aﬁd stop or, by paying C(i), to proceed to the
next state according to the above transition probability

Then we have the following optimality equation

A : R(@1)
V(i) = max { -

R : ‘C(i) + [ Pijv(j) (i=oola2a---)a
3=0

pi,j'

where V(i) is the expected reward under an optimal pllicy
starting from the initial state i. We define B as the set
of states for which stopping immediately is at least as good
as proceeding for exactly one more period and then stopping.

That is

B =(i|R(i) = -C() + ) pin(j)}

- 18 -



and we also define the OLA policy as the one which tells us
to stop immediately in state i i1f and only if ieB. Say that
B is closed, if pij=o for all ie¢B and j¢B. Then Ross shows
that, under some reasonable conditions which assure stability
of the decision process, if B is closed, then the OLA policy
is optimal.

It is easy to see that the first choice should be
restricted to a l-candidate and that, once the first choice
is made and if the earliest candidate thereafter is a
l-candidate, it should be unconditionally accepted as the
second choice. Hence, the decision-maker is interested in
only states (t,1) and (t,12). If he has not accepted until
the last two objects, he is forced to accept them. ILet g(t)
and f(t) be the probabilities of success under an optimal
policy starting from states (t,l) and (t,12), respectively.
Then considering that the conditional probability that the
s-th (s>t) object is the earliest l-candidate given that the
t-th is a candidate is t/s(s-1) and the joint probability
that the l-candidate and the 2-candidate among the first ¢
objects are, respectively, the best and the second best among

N all is t(t-1)/N(N-1), we obtain the following recurrence

relations
A t t:l
(2.201) f(t) = max
R : E: L [ 8 8:1 + f(s) ]
s=t+1

(2stsN-1; £(NM)=1),

- 19 -



(2.2.2) g(t) = max

(2<t<N-1; g(W)=0),

A 5 LS+ t@]

(2.2.3) g(1l) = max N

. 1
R : SZé FESY) g(s)

where ntszt(t—l)/s(s-l)(s—2). The system of equations
(2.2.1)=(2.2.3) can be solved recursively to yield the
optimal stopping rule and the maximum probability g(1).
The following theorem shows the optimal strategy in state

(t,12).

Theorem 2.1. In state (t,12), the optimal strategy

is to accept the candidate if and only if tgr{, where

N-1
* s 1 1
(2.2.4) I‘l =min (¥ ‘ sg'b =T = 5 }

Proof: For (2.2.1), we let

- 20 -



N
= t(t=1) _ - - s(s-1 s(s-1)
(2.2.5) Bl = {(t,l2) ! Nrﬁ:I% = sz%;l7rts [ — + ﬁrf:ryj }

Then the set By, which can be written as By=((t,12) | rist=N-1) ,

turns out to be closed. Thus the theorem is proved.

Let F(t)=f(t)/t(t-1), we can rewrite (2.2.1) as

1
A m
(2.2.6) P>(t) = max{ N
R: ) g Lyery + P9
s=t+1

and since we already know the type of the stopping rule,

we obtain by (2.2.5)
ry-2 ri-t-1

3-
=1 [F(ri-1) ,
(2.2.7) F(t) =={1*. 1 * N(N“I)(rl‘EJJ, 2§¢§r1-1
1

- ’ riétsN ,

where
- N-1 1

(2.2.8)  FGi-D) =gy L oFr

¥
s—rl 1

It is important to note that F(ri—1)>1/N(N-l). Moreover,
with G(t)=g(t)/t(t-1), we can rewrite (2.2.2) and (2.2.3) as

- 2] -



(2.2.9) G(%)

il

N
R:‘%%-I ZIG(S) ’

]

(2.2.10) g(1) = max

Let H(t)= giy [F(t) + ypy] for t=3, then we have by (2.2.7)

r¥-2
T @D - paery ), 3t
(2.2.11) H(%) =

2
TN=-1)(T=2) , r{=t<N .

Now we define ¢ (t) as

N
Sgg (2-8)H(s) + F(2) + yhepy » b=
(2.2.12) ¢(%) =
N .
) (2t-s)H(S) , 2<t<N-1 .
s=t+1

Theorem 2.2. In state (t,1), the optimal strategy is

to accept the candidate if and only if tgrg,

where

(2.2.13) ry =min (%] ¢ (£)20) .
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Proof: For (2.2.9) and (2.2.10), we let

N
F(2) + yoiery = 22 (s-2)H(s),  t=2
S=
(2.2.14) B, = (t,1) N N-1 N
b OH(s) =g ) Y H(K), 25t =N-2
s=t+1 s=t+l k=s+1 .

It is sufficient to show that B, is closed. By (2.2.12),
we can rewrite (2.2.14) as

(2.2.15) B, = ((t,1)] ¢(t) = 0.

Showing that B, is closed is equivalent to showing that, if

there exists an integer r} such that ¢(r§)go, then ¢ (t) is

also non-negative for any tgrg. It is easy to see that, by

(2.2.11) f
ri-2
1 1
+ N'(N:U [ Q(EI‘i-N—t-g) - (I‘i‘—g) Z s ]
r¥-2 s=t
(2.2.16) (%) = < U .
+ (ri..z)F(I-i_l)(g.. z §> , 2§t§‘r1-2
s=t
N-1
2 2(t-1) -
wmiED ) S 11, rf-lsesnl .
=t
Hence, by the definition of rf, we have for tgri-l
N-1
(2.2.17)  * (&) - 0(t+l) =gy (- T gz 0
s=t+1
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and for 2§t§r{~5

ri—2 ri—2
(2.2.18) ¢ (t) - ¢(t+1)

i

> ri—2
-y (= D<o .

N\

By (2.2.17) and (2.2.18), ¢(t) proves to be unimodal. Since
¢$(N-1)=2/N(N-1)>0 we see that, from second stage onward, B,

is closed and that state (ri,l) belongs to Bg.. To éomplete
the proof that B2 is closed, we need to show that, if ¢(2)<O0,
then ¢(1)<O. We show this in the case of rjz4. Bince, for
f{gj, the proof is easy and can be done in the similar way,
we omit it. By the assumption, we have |

N
(2.2.19)  ¢(2) = ) (#-s)H(s) <O .
8=3

Hence, by using the fact that F(2)=2F(3)+1/N(N-1), ¢(1)

can be rewritten in the following form

(2.2.20) ¢ (1)

N
2(2) + [F) + grimy - 2 ) H(s) 1
| 5

#

N
*(2) -2 ) H(s) .
g=l4

Since H(s)>0 for all s, the right hand side of (2.2.20) is

negative; Thus the proof is completed.

-2 -
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We have by (2.2.9)

N
1
= Z G(s), 2§t§r§—1
s=t+l
(2.2.21) G(t) = -
Y ECs), riotoN-1
g=t+1

Therefore, by (2.2.10), we can calculate g(1), which is the
probability of success under the optimal strategy. Combining
Theorem 2.1 with Theorem 2.2, we can now summarize the optimal

stopping rule as follows.

Pass over the first ré—l objects and thereafter accept

the earliest l-candidate(as the first choice) and after that,
if the earliest candidate is a l-candidate accept it
unconditionally(as the second choice), but if the earliest
candidate is a 2-candidate accept it only when it appears

after stage r{.

Finally we shall give several asymptotic results.

Theorem 2.3. Let 7;=lim pf/N, i=1,2. Then we have
N—ooo

e-1/2

(2.2.22) ryl = = 006065

and 7, ~ 0.2291 is the unique root x of the equation

(2.2.23) 1+ x)et’? —inx=r7/2.
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The asymptotic value g* of the maximum probability of choosing

both the best and the second best is given by

Now

(2.2.24) g* = 1lim g(1) =Wé(27i—72) > 0.2254.

Proof: The proofs of (2.2.22) and (2.2.23) are straight-
forward by (2.2.4) and (2.2.13), respectively. By (2.2.21),
we have for 2§t§r§-1

(r3-2)(r3-1) .
(2.2.25) G(t) = (E-17% G(r3-1)

and, for large N, by (2.2.10) and (2.2.25)

N-1
(2.2.26) s(1) = ) 6(s) = (r3-1)(r3-2)6(r5-1) .
8=2
Noting that
N-1 N
(2.2.27)  (rz-2)e(x3-1) = } ) H(s) ,
t=r§ s=t+1

we get, by (2.2.11), (2.2.26) and (2.2.27)

ri—l
_ x_ *_SYRl(p*_ 1 ;
(2.2.28) g(1) = (r2 1) [(rl 2)F(rl 1) 5: =1 -1 }
s=r* :
2

r{—l
+ NT§:I7 {2(N+1) + r§ - Bri + (r{—2) E: E%I}]

o
SI'2

We can immediately obtain (2.2.24) by (2.2.28).
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Table 2 gives the values of ri, r5 and g(1) for some

values of N.

Table 2

N ri ré g(1)

3 3 1 0.5000

4 3 1 0.%33%33

5 4 2 0.33%23%

& 5 2 0.3139

7 5 2 0.2956

8 6 2 0.2800

9 % 3 0.273%9
10 7 ) 0.2714
20 13 5 0.2461
50 31 12 0.233%3
100 62 24 0.2293%
200 122 46 0.2273%
500 304 115 0.2262
1000 608 230 0.2258
00 0.60e5N 0.2291N 0.2254

Remark. In a similar way, it is easy to extend our
model to the one in which the decision-maker is allowed
to make k choices and succeeds only when what he chooses

are exactly k best.
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2.5 Random Number of Objects

The problem we tfeat in this sedtion is as follows.
At most N objects appear before the decision-maker but he
does not know exactly how many objects will appear. He has
only an a priori distribution pm=Pr{M=m} on the actual number

N
M of the objects, where ) p,=l. The decision-maker is
m=1 ‘

alléwed to make r choices and succeeds if either of his
choices is the best object. If the decision-maker has not
accepted last r objects, he he forced to accept them. Our
purpose is to find the optimal strategy which maximizes the
probability of success. Let ¢r(t), r=l, be the probability
of success under an optima% policy starting from state

<t,r>, and also let = ¥ P,» 1ss=N. Then the conditional
m=s

probability that the s-th (s>t) object is the earliest
l-candidate given that the t-th is a l-candidate is t7, /s(s-—l)ﬂ-’t
and hence the probablllty that no 1l- candldate will appear

after stage t is 1- z tns/s(s—l)n = Z tpg /sn .
. s=t+1

Therefore we have the following recurrence relation

(2.3.1) ¢ _(t) = max N
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where ®r(N)=1 (rz1).

We do not consider the case of general a priori

distribution on M, but only the case of uniform distribution;

Py = 1/N, 1l=m=N. Then (2.3.1) becomes

N
. t N-s+1
Argoesrl 5Cs-17
(2.3.2) ‘¢r(t) = max s t+1
N—s+1

RN_"-E_"IZ
s=t+1

N

¢ 1(s) + } I

s=t

¢ (s)

Now definecbr(t) = N-t+1/t o¢r(t), then (2.3.2) becomes

N
A X E_%_I'®r-1(s) +
(2.3.3) @r(t) = max s=t+1

N 1
R : E E—:*prr(s) .
s=t+1

When r=1, we have the following theorem.

N

T3

s=t

Theorem 3.1. In state <t,1>, the optimal strategy is

to accept the candidate if and only if tgm{, where

N N-1 N
(2.3.4) mf = min (¢ | ) %; I % 3
s=t s=t k=s+1

Proof: PFor r=1 in (2.3.3), we let

N N N
(2.3.5) Blz{<t,1>f )y %% = Z b
s=t s=t+1 k=g
where N . N-1 . N
23.6) &)= ] -1 5 L & -
s= s=%t k=g+1

1
£ }o.

{<t,1> | gi(t)zo .



Note that

N
(2.3.7) g e+ (®) =3 ¢ | -1,
s=t+l

It is easily seen that gl(t) is unimodal. Since gl(N;1)=2/N>O,

we can say that By is closed. Hence, we can rewrite (2.3.5) as
(2.3.8) By =(<t,1> | mjst=N-11.
Thus the theorem is proved.

This theorem has been already shown by Rasmussen and
Robbins (11J. They also give the table of m} and ¢1(1),

the probability of success under the optimal policy. We

now have
Zr £0,(s41) | 1stsmi-1
(203'9) @1(1;) =
g 1 nd <t<N
S=t ? ’ k
N-1 N
Let Wl(t)= Z' 01(s+1)/s + 1/s. Then we have
s=t s=t ‘
N
;o1 1<tsm¥-1
s=t 5’ Sl
(2.3.10) @ ,(£)-0;(t)=¢
%il N-1 N
1 1 1
=0.(s+l)= Z = Z my<t<N-1
s=t S 1 st S k-g+1 E 1

And hence
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N-1
(2.%.11) 3 %-[qfl(s+1)-®l(s+l)]=

s=t

If we let

™=

(2.3.12) g,(t)=

s=t

ft

we have the following theorem for r=2.

m{-2 N N-2
1 1 1
s Z k* s
s=t k=s+1 s=m{—1
N-1 N
ﬁ Z %E Z %— » lst=m{-2
k=g+1 £L=k+l
N-2 N-1 N
Z é Z T]é }: %,mi—lgtgl\l—l .
s=%t k=s+1 L=k+1

N-1
‘i" - S[_:—_-t %[Wl(s+l)_(pl(s+l)] s

Theorem 3.2. In state <t,2>, the optimal strategy is

to accept the candidate if and only if tgmé, where

(2.3.13) m} = min { t| 8,(t)=0 .

Proof: For r=2 in (2.3.%), we let

(2.%3.14) 32 E{<£,2:>|wl(t) =

It is sufficient to show that B2 is closed.

we can rewrite (2.3.14) as

N-1

3

s=t

(2.3.15) B, =1 <t,2>>l g,(t) =0 .

By (2.%.10) and (2.3.12), we see that

B (t+1)-g,(t)=

- 31 -
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By (2.3.12),



N

Oy -, lstznl-2
s=t34l
(2.3.16) = . N-1 N L
1([ 1 7 2., mr-lst=y-2
= 9 ~LSUSEN—ce
i3 s=t+l S k=s+1 k 1

Since, for tsmi-2, by (2.3.7) and the definition of mj,

1
N-1 N
gg(t+1)-gg(t)=g1(t+l)—gl(t)>0 and for tzm]-1, 5: 1/s [: 1/k-1
s=t+l k=s+1

is a decreasing function in t, gg(t) is unimodal. Thus,
considering g2(N—1)=(2N-1)/N(N-1)>'O, we can say that B, is
closed. Hence, we can rewrite (2.3.15) as

(2.3.17) B, =1{ <t,2>| mbst<N-1) ..

Thus the proof is completed.

We now show that m3<mj. This is equivalent to showing

N N-1 N
that 8,(m)=0. Since, by (2.3.6), Sgtl/s = s[:-:t 1/s k=§s:+11/k

for tzm}, we soon obtain, using (2.3.11)

N N-2 N-1 N
1 1 1 . 1
g(S*)=[ 1_ ) 1 =
271 s=mi 5 s=mi S k=s+l E',&=k+1 £
) N N-1 N N
=L 2-L. ¢ L =0
S=m; S=mq k=s+1

For the computation of ¢é(1), the probability of success

under the optimal policy, we can utilize the following relation

- 32 -



N-1

) %@2(54.1), l=tem’-1
s=t

(2.%.18) @2(t) =
N-1 N
z %01(s+1) . ls'-, mi<t<N-1
s=t s=t

Finally we give the asymptotic results.

Theorem %.3. Let &, = lim m;/N, i=1,2. Then we have
Nooo :

(2.3.19) 3, = e7% ~0.1353
and

(2.3.20) 5, = e~ (3+731)/3 » ¢ 0m99.

The asymptotic valuesA¢r(l), r=1,2, are given by

(2.3.21) %T'im 01 (1) = 2¢™° ¥ 0.2707

and

(2.3.22)  lim 0,(1) = 2e24(3+721)/3 o e‘(3+’/2_1)/3 x~ 0,4725,

Proof: The proofs of (2.%.19) and (2.3.20) are
straightforward by (2.3.4) and (2.3.12), respectively.
By (2.3.9), we have

(2.3.23) ¢ ()= 5 9, (V)= x— O (m}-1)= —j— Z* L s k[ k °
S=M_ ~ =S+1
1
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(2.3.21) soon becomes from this relation.

Moreover, we get, by (2.3%.9) and (2.3.18)

m*"l N N
_ 1 1
(2.3.24) Oy(m3-1)= ey O (mi-1)+ ) § L
s=m§—1 k=s+1
N-2 N-1 N
' 1 1 1
* Z: 5 Z: K Z zZ .
S=mi-l k=s+1 LZ=k+l
Hence
1 m5—1
(2.3.25) ¢,5(1)= § 2,(1)= ~F— @, (un3-1)
m5—1 mi—a 1 N
= . 1
s=m3-1  k=s+1

We can immediately have (2.3%.22) by (2.3.25)

Table 3 gives the values of mj, mJ, ¢1(1) and ¢2(l) for

some values of N.

N-2

N-1

1 1
L
s=m{—1 k=s+1 L=k+1

N

L

Table 3

N my m5 $1(1) (1)
3 1 1 0.61111 0.94444

4 1 1 0.52083% 0.88542
> 1 1 0.45667 0.83167

6 1 1 0.408%3 0.78426

7 2 1 0.3%37222 0.74263%
8 2 1 0.%6621 0.70594

9 2 1 0.35907 0.67340 -

10 2 1 0.35145 0.64435
20 3 2 0.30760 0.54821
50 7 5 0.28491 0.49984
100 14 9 0.27779 0.48613
500 68 40 0.27208 0.47522
1000 136 80 0.2713%7 0.47386
oo 0.13533N 0.07986N 0.27067 0.47251
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The values of m¥ and ¢1(1) are reproduced from Table 1 in

Rasmussen and Robbins (1975).

Remark. The recurrence relation (2.3.2) for rz3% can

also be solved similarly and we can obtain the critical

numbers m; (r=z3).
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2.4 Backward Solicitation with Rejection Probability

We shall investigate a model where the dicision-maker,
who ié allowed a backward solicitation at any stage, succeeds
if his choice is the best among ail, but each of the objects
has the right to refuse an offer of acceptance with a known
and fixed probability l-p, O«p<l, independent of its rank
and the arrangement of the other objects. If an object is
chosen and it accepts (refuses) the offer, we call it
available (unavailable). We assume that a backward solicitation
may be attempted at any stage, but that solicitation may
not be successful, whereupon the decision-maker must resume
his observation of the remaining objects. Suppose that the
decision-maker is at stage k and has recognized that the
j-th (1l=j<k) object is the relative best among those k objects.
We set mk=k-j, if Jj-th object is available and no attempt
has been made to procure it and m= >, if j-th is unavailable
or an unsuccessful attempt has been made to procure it.
Thus o is interpreted as the relative position (to k) of
the best available object and it can take values O,1l, ce.,
k-1, ® . We denote this state by (k, m. ). In state (k, w.),
we call the (k—mk)—th object a "current candidate" if m, =0

and a "potential candidate™ if lgmkgk-l. When we need not
distinguish between a current candidate and a potential

candidate, we call them by the name of candidate.
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We suppose that the decision-maker is now in state
(k, mk). Let 74 (k, mk) be the probability of obtaining the
best object if he decides to observe the next object without

solicitation of the candidate and 7 ,(k, w, ) be the probability

of that if he decides to solicite the candidate. Then 7 (k, m),
probability of obtaining the best object under an optimal

policy starting from state (k, m), becomes '

(2.4.1)  7(ky, m) = max[7,(k, my ), 75(k, m )],

and, for all Iy

(2.4.2) ﬂl(k, mk) E-EI- 7T (k+140) + I]éi:% (k+l, =)+ E_}-EI n(k+1,mk+l),

I

(2.4.3) 7ok, m) = Falm) + (Q-q(m )7k, =),

(2.4.8) 7 (k=) = Ry 7 (k+1,0) + BELR 7 (k41,00 ) lskgil,

(2.4.5) 7 (N, m= q(my).

Since #(N,0)=1 and 7 (N, »)=0, by repeated applications of
(2.4.4), we have

(2.4.6) 7(k,=)=pk | Fd® 1 . .
J=k+1 Lk

b. .
In this section, we assume 1 (1 + ;iR) =1, if b<a.
L=a
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Once the set of values of {a(m)} is given it is easy
to solve recursively the system of equations (2.4.1)-(2.4.3)
and obtain the optimal policy. The case of constant
probability and geometric probability of successful procurement
are discussed in detail in (i) and (ii), respectively.
Our model reduces to the Yang model if p=1, and also to the
Smith model if the appropriate limit cases are taken in (i)
and (ii). We owe the proofs of our theorems and lemmas to

Yang [28] .

(i) Constant probability; q(m)=q, mxl.

Here we consider the case of constant probability
of successful procurement g(0)=1, q(m)=q, for l=m<N-1.

Then we have the following result.

Theorem 4e¢1. Pass over the first n{—l objects and
thereafter accept the earliest current candidate. If it
happens that stage N is reached and the absolute best is
among the first n{—l objects, attempt to procure it.

n{ is the smallest integer s such that

N-1

(2.4.7) 1+ 5By <1, (1‘PI))(1‘<L>
L=sg .

The maximum probability of obtaining the best object is given by

(nf-1)pg  (nr-1)p N1
_ 1 ' 1 1 i-py _
(2.4.8) U N + m[L:ni-l (1 + 7 ) 1l ]
It is also shown that
s * = D 1/1-p
(2.4.9) I]\ﬁ?; I’ll/N —'[I — q(l_p)] ',
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. . 1/1-p
(2.4.10) 1lim U = | P ] .
N oo {1-q(1-p)}¥

Proof: First we show that 7z, (k, mk) z T,y(k, m ) for all

k<N-1, when m 3 O. We prove this by backward induction.

When m =« , it is evident that ﬂl(k, mk) = ng(k, mk).

For k = N-1, it is easy to see that

Now assume that nl(k, mk);zﬂg(k, mk) for all k = s+1,

S+2y ee.y N-2, N-1, when m > O. Then, for mg ¥ « , repeating

(2.4.2) we obtain

N N
(2.4.11) 7[1(3, ms) = ps Z 7[( '_O + (l—p)s Z (5 oo %q )

j=s+1 I j=s+l IV97

and by (2.4.3), for msi: 0

(2.4.12) ”2(5, ms) = % g+ (1-q) w(s, > ).

Hence, substituting (2.4.6) into (2.4.11) and (2.4.12), we have

7108y mg) = 78, my)
. N | i-2
1 7(i,0) =
= ps ~1441% + (1-plps - vrffI% (1+
Z Z .S_-I.Z. ll L=j
J=s+1 J =s+1 1=j+1
—(1-q)ps Z ,TJ;I} n LG l:E)
N
-pas L HbO (1+lZP-)Zo.
j=s+1 J%d =S £

1-p,
Z



Thus we get 74 (k, mk)gﬂg(k, m ) for m % O.

Moreover, we must show that if there exists s such that
7(5,0)=s/N, then m(s+1,0)=(s+1)/N. Assume that, when
7(s,0)=s/N, 7(s+1,0)= 7,(s+1,0) >(s+1)/N. Since, for My %

]

7, (k, m ) does not depend on m., we have by (2.4.2)

1_ .
”l(s,O)= EET ﬁ'l(s+l,0)+ S—£ T(s+l, © )+ —S% ﬂl(s+l,1)

S+D S+p s+l _ s+p
= or1 T1(s+L,0) > 5 o Ty

Therefore, 7(s,0)=max [74(s,0)y, s/N] > s/N. This is
a contradiction. &ince we have known the form of the optimal
policy, the maximum probability of obtaining the best object

can easily be computed. When we set u= ﬂl(s,O), the decision-

maker accepts the s~th object if and only if s-th is a current

candidate and us§;s/N. Let ni =min {s ] u, = s/N } , then

we have by (2.4.2), (2.4.5) and (2.4.6), for nj = s =N

N-1
=B
&

(2.4.13) ugq =B &, 12 m(s,0), 8L o -

1~ s-1
s S (l+_ZE +— u

S

with Uy g = p/N + (N-1)g/N. The solution of (2.4.13) is

N-1
S s 1-
(2.4.14) u = *Nq' + ﬁ(iL_f)-)-[LI:S(l + 72) - 1], for s=n{-1, eesy N-1.

Hénce, ni can be expressed by (2.4.7) and the maximum

probability U, which is equal to pun{—l + (1~p)7t(ni-1,W).
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becomes as given by (2.4.8).

We can immediately obtain

(2.4.9) and (2.4.10), by (2.4.7) and (2.4.8), respectively.

Table 4 gives the values of ni and U for some values

of p,q and N.

Table 4
'p=O. 5
q 0.2 0.5 0.8
N ni U ni U ni U
2 1 0.3750 1 0.3750 2 0.4500
3 2 0.3%3250 2 0.3750 3 0.433%%
4 2 0.3219 2 0.3594 3 0.4292
5 2 0.3122 3 0.3563 4 0.4275
& Z 0.3016 3 0.3516 5 0.4250
7 3 0.3015 4 0.3489 5 0.4232
8 3 0.2987 4 0.3472 6 0.4230
9 3 0.29%46 5 0.3450 7 0.4222
10 4 0.2938 5 0.3444 8 0.4212
20 7 0.2858 10 0.3385 14 0.4189
50 16 0.2809 23 0.3354 35 0.4176
100 32 0.2793 45 0.3344 70 0.4171
1000 309 0.2779 - 4u5 0.3334 695 0.4167
o  0,309N 0.2778 0. 444N 0.%33%3 0.694N C.4167
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a 0.2 0.5 0.8
* * sk

N ny U nl U n1 U
2 2 0.4800 2 0.6000 2 0.7200
3 2 0.4800 2 0.5600 3 0.693%3
4 2 0.4480 3 0.5467 4 0.6800
5 3 0.4352 2 0.5312 i 0.6720
6 3 0.4284 i 0.5296 5 0.6720
v 4 0.4177 5 0.5221 6 0.6705
o Ly 0.4170 5 0.5213% 7 0.6686
9 i 0.4120 6 0.5178 8 0.6667
10 5 0.4098 6 0.5164 8 0.6656
20 o) 0.3976 12 0.5077 16 0.6620
50 21 0.3905 28 0.5026 40 0.6596
100 41 0.3%881 56 0.5011 79 0.6589
1000 403 0.3860 556 - 0.4996 784 0.6582
o  0,402N 0.3858 0.555N 0.4994  0.784N 0.6582

Remark. When g-0, (2.4.7) - (2.4.10) agree with those
of Smith [20] , and when p-1, (2.4.7)- (2.4.10) reduce to
Theorem 4 of Yang [28] and in this case ni is the smallest

integer s such that } 1/£ < 1-q and U = (n{-l)/N e (g+ } 1/4).
L=8 : L=n{—1

Hence, N-ow , ni:x Neq-l, and Uizeq~1.

(ii) Geometric probability ;. q(m)=q".

Here, we consider the case where the probability of
successful procurement is geometric, that is, q(m)=q”.
We must prepare two lemmas before deriving the optimal strategy

in this case. Let n* be the smallest integer s such that
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Temma 4.2. For any {a(m)} , no solicitation should

be made prior to stage n*.

Proof: Tet

N

Jj=2
(3,0 1~
ae) =fF-» YEEP 1 a+BB) 1cssn
j=s L=s-1

Since a(s) is increasing in s, we can define o as max(s|a(s)=0].
Now put
(2.4.15) D(s, m) =7(s, m) -772(8, m).

Then we have

71(s=1, m) - 7,(s-1, m) = L [pn(s,0) + (1-p)z(syw ) ]
+ _s%]_._ [D(s,m+l) + 75(s, m+l) ] - 'qu}'Q(m) - (1-q(@)) 7(s-1, = ).

Using (2.4.3) on 7t2(s, m+l) and (2.4.4) in simplifying, we find

-

mq,(s-1, m) -m,(s-1, m) = f’-g—]'- D(s, m+l) + (s-1)[a(s+1)q(m+1)

- a(s)q(m) 7.

For s=o, a(s) =0, we have a(s+l)q(m+l) - a(s)q(m) = O.

D(s, m+l) is non-negative, we see that the right side of
(2.4.16) is non-negative for all m and s = o . Hence, no
solicitation should be made prior to stage o. To complete
the proof, it suffices to show that o =n*., From the

definition of n*, this is equivalent to showing that
N-1 .
71+ L2)<l | By the fact that 0 <a(owl) and 7 (3,0) =g,
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we find N §=2

t-R ) A7 1-p
N N j=0+1_J- =0 £
This can be rewritten as
N-1
1 i-p 1
(1 + 7 ) = 5 .
L:(J‘
N-1 1
Now let b(xr) =p =& (1+ fiR) . Then n* is the largest
£L=r-1

integer such that 1-b(r)=0.

Lemma 4.3. Suppose gq(m)> O for all finite m. If there

exists a T such that 7 is the smallest r(= n*) satisfying

(m+1) 1 - b(r+l)

then the decision-maker should mske solicitation to the
earliest candidate as it appears if the process has not

terminated before stage 7

Proof: Note that relation (2.4.17) holds for any r<T,
because 1 - b(r+1)/1-b(x+2) is a monotonically increasing
function for r=n*. We prove our lemma by backward induction.

'It is easily seen that 7,(N-1, my_y)= 7o(N-1, my_3). Suppose
that nl(k, mk) -'ﬂg(k, mk) < O for all m and k = s+l > 7.

1/N - [b(s) - p] /N(1-p) for all

i

Then D(k, m.) = O and a(s)

k=s+l. By (2.4.16)
7[1(S, rns) - 7[2(59 mS)

= s[a(s+2)a(mg+1) - als+1l)q(m) ]

ST



= Wiy [(1 - Blss2)lalmg,;) = (1 - b(s+l)almy) ] = ©

This induction terminates at k = 7. Thus our lemma is proved.

For the geometric case we can derive the optimal strategy

of obtaining the best object by the next theorem.

Theorem 4.4, In the geometric case, the optimal strategy
is to pass over the first n§-l objects, solicit the candidate,
if possible (no matter where it is) at stage n3, and if the
procurement at stage n§ is unsuccessful, continue the
observations of the remaining objects and accept the earliest
current candidate thereafter.. The value of né is the largest

t which satisfies

(2.4.18) R_%_}P)C(t) - > 1l-q ,

where

'IVN-1
(2.4.19) e(t) =p I (1 + 1—2;2)
L=t

The maximum probability of obtaining the best object is given by

-

n3 e '
(2.4.20) V m-l—f—ﬁaﬁ[l - c(n3) I+ WCI[%TI [e(n3) -p 1 .

Proof: n* satisfies the relation (2.4.18) for all q.

Thus ng exists and n§ = n* which is guaranteed by Lemma 4.2.
- , .

It is easy to see that, when we put 7 =n3, (2.4.17) and
(2.4.18) are equivalent in the case of q(m) = qm.
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Therefore, by Lemma 4.3, all we have to do to complete the

- - *
proof is showing that 7, (k, mk);:ﬂg(k, mk) for all k <n..

We prove this by backward induction. From the definition

of nz, we obtain

1 - b(né) a(n§)

V> r—pEnD - 3ORD
- n2+ a n2+

Also, by (2.4.16) and the fact D(n§, m) = O for any m, we have
(2’4_21) 7[1(1'12_.1’ m) - ﬂ'g(né‘—l, m) = (ng-l)qm [a(n§+l)q - a(ng)].
Since ny =7 = o, a(ny + 1) > 0, (2.4.21) is positive. Now
suppose that ﬂl(k, m);;”2(k, m) for all kX = s+l, S+2, eeey

né -2, X -1. Then we have

2
i ) 2 ( )
_ 7(j, O ”%ﬂ;jir
(2.4.22) ”l(s, m) - pS j;s.;_l J J - ) + (1_p) S J.=Zs+1 J j - )

s .

By (2.4.6), second term in the right hand side of (2.4.22) becomes

n3
(g )
(1—p)sj=zs+l'ja—)
N .
-p s 3 Z.’.éiz_%[a;; (1 + R) - 1]
jesv2 33 T D) T, £
N .
J-2
Sps L ROz LRy -1
J=nx+2 £=13
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n*
2 .
(2.4.23) = 7(sy @ ) - ;f-é M3 =) -ps ) 2ty

Jj=s+

By (2.4.6) and the fact that #(j, 0) = j/N for j > n% , we have

* N j"‘g *k
pn - n
(2.8.28) Z(ng, =) =2 T ir m (1 + 5B = gty le(ng)-n] .
j=n§+1 L=n§

Therefore, (2.4.23) becomes

n*
2
(1-p) s ). N 73[%-'-?-%) = w(s, ) - N(l"%ﬁ [c(n3) - p]

J=s+

n*
2
(2.4.25) -ps 2: %{gi:g%) .

J=s+1
By using (2.4.24), third term of (2.4.22) becomes
*
oo

* *
s ”(n;_;’ m + né - s) = §.* [_N_ qm+n2 ] + (1 - qIII+n2 S) ﬂ(né,oo)]

n3 n,
m+nk - s 5 -
(2.4.26) = % q oo TS WL = p) a - qm+n2 %) [c(ng) ~-p] .

Hence (2.4.22), combined with (2.4.25) and (2.4.26), can be

rewritten in the following form

(2.4.27) 7=, (s, m) =7(g, ) + § qm+n§—s - Nrr—gfgy qm+n§-s [c(né)epj .

On the other hand, we get

(2.4.28)  7y(s, m) = §q" + (1 - g(s, ).

Thus by (2.4.27) and (2.4.28), to prove 7, (s, ﬁ);;nz(s, m)

is equivalent to showing that
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(2.4.29) g(s) =[1 - c(n})] Q%278 - (1-p) + g(l--p)ft(s,oo )= 0.

Since we already know that g(né - 1) = 0, it suffices to

show that 2(s) is a decreasing function in s. By (2.4.29)

we have

g(s+1) - g(s) = (1- q)qn2 -5l - c(n3)]

(2.4.30) - N(1-p) [ ”ﬁséj&l - zggf%*ﬁl)] i

It is easily seen by backward induction that, for s+1;§j§;n5 -1

n3-j-1
7(j, 0) = E* Z: (nX m) + ir 7(nX, nX - j)
n 2 n3 22 Hp
" | )(nx-3)
| (1-p)(nx-3
2
(2.4.31) + n3 7(n3, »)

and
%

n
(2.4.32) (a5 , m) ===q" + (1 - ™) wny ,=),

Hence, by substituting (2.4.24) and (2.4.32) into (2.4.31),
we can reduce (2.4.31) to '

ng[ctng)—p]

1- -
p '—%_—- + J qn2 J]+ N(l"p) .

1- c(n2)

(2.4.33) =(j, 0) =

By (2.4.6), we have

(2.4.34) - N(1-p) [ Zea=)  stlaw) 4

2 . J-2
Ik )
: j=8+2 L=s+1
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Since p < c(né) = 1, by (2.4.33) the first term in the right

gside of (2.4.34) becomes

s+l, 0)

(2.4.35) - N(1-p)p -ig(giry—

pri-e(n3)1 1-q
N(1-p) 1-q

C(n>P *
2 (n} - <s+1)qn2-s—l}

*
ng—s—l

+-

. %(s+1)qn§'s"lj (1-E)R g2 Yeg-1

By the fact that 7(j, 0) = j/N,the second term of (2.4.34) becomes

N j-2
(2.4.36) -N(1-p)° R 7(s O M (1, LRy
’ s j=§;2 TG =1 g ¢

From the definition of nj}, we have (1-9) L1 - c(né)] <(1—p)c(n§)/s .

Therefore (2.4.3%0), combined with (2.4.34)-(2.4.36), becomes

. (1-p)e(n3)
(2.4.37) (1) - ()= ™ 5 [ (1-0)(A-e(n3)) - ———2"7 <0,

which shows that g(s) is decreasing in s. The maximum
probability V is given by
*—
ns 1
(2.8.38) V= | Bra(as, m) + (1-pda(ag,=).
2

m =0
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Substituting (2.4.24) and (2.4.32) into (2.4.38), we have

(2.4.20).

Thus the proof is completed.

Table 5 gives the values of n§ and V for some values

of p, g and N.
Table 5
p-':Oo 5
q 0.2 0.5 ¢ 0.8
N né \') nt v né v

2 1 0.3750 1 0.3750 2 0.4500
3 2 0.3167 2 0.3542 3 0.4067
4 2 0.%3104 2 0.3%307 ) 0.3792
5 2 0.2994 2 0.3102 4  0.358%
6 2 0.2878 ) 0.303%0 4 0.3459
9 3 0.2804 3 0.2962 4 0.3337
8 3 0.2785 3 0.2889 5 0.3%3249
9 3 0.2753 4 0.283%2 5 0.3183%
10 3 0.2713 4 0.2809 5 0.3115
20 6 0.2604 6 0.26%0 8 0.2804
50 12 0.2539 14  0.2545 16 0.2595
100 26 0.2519 27 0.2521 29 0.253%6
1000 251 0.2502 252 0.2502 255 0.2502
©  0.250N 0.2500 0.250N 0.2500 0.250N 0.2500

p=0.8

Q 0.2 0.5 0.8
N n§ s n§ \'s né \'4

2 1 0.4800 2 0.6000 2 0.7200
3 2 0.4587 2 0.5067 3 0.6507
4 2 0.4203% 3 0.4567 4 0.5904
5 3 0.%912 3 0.43%6 4 0.53%79
& 3 0.%860 3 0.4091 5 0.5098
7 % 0.3754 4 0.3977 5 0.4828
8 4 0.3659 4 0.3%883% ) O. 4647
9 4 0.%6%9 4 0.3774 6 0.4491
10 4 0.%59% 5 0.37%% 7 0.4355
20 8 0.3419 8 0.%468 10 0.3757
50 17 0.%33%2 18 0.3341 21 0.%3411
100 24 0.3304 35 0.3306 37 0.33%26
1000 329 0.%280 329 0.3%280 332 0.3280 .
o 0.,328N 0.3277 0.3228N 0.3277 0.3%28N 0.3277




Remark. When gq-o0, (2.4.18) and (2.4.20) agree with
those of Smith [ 20] , and when p—1, (2.4.18) and (2.4.20)

reduce to Theorem 5 of Yang [287] and, in this case, n§ is

N-1
the largest t which satisfies {1/(1-q)(t-1))+ T 1/e>t

L=t
. N-1 N-1
and V = (1-9"2)(1- )" 1/£)/K¥(1-q) + (n3 § 1/£)/W.
£=n} £=n3

Since, as N—x, n’E", is large and the relative position m_.

o2
of the candidate is also large with high probability.
Hence, it does not matter whether we make backward solicitation
or not. Therefore the asymptotic results for O=g<l become

nélel/l"P and V=x pl/l'P, which are independent of g. When

a=1, it is trivial that n§ = Nand V = p.
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3. A Secretary Problem with Full-information

3.1 Recognizing the Best with Two Choices
Let ) i=l, 24 eeey N, be the value attached to the

i-th object and suppose that Xl’ X2, coey XN be independent

and identically distributed random variables with a common
distribution function F(x). F(x) is assumed to be known to
the decision-maker and is continuous and strictly increasing
on the set where O0<F(x)<1l. After a random variable has been
observed, the decision-maker must decide to accept it or
reject it and take another observation. The decision-maker
is allowed to make two choices, and if he has not accepted
until the last two observations, then he is forced to choose

both of them. If either of his choices is the largest of

the sequentially presented random variables, he suéceeds.
The problem in this section consists of finding a policy
which maximizes the probability of success. Since the
distribution function F(x) is continuous and strictly
increasing, and since the largest measurement in a sample
remains the largest under all monoton;c transformations of
its variable, we can assume without loss of generality that
F(x) is a uniform distribution on the interval (o, 1).
Following Sakaguchi [16], we employ dynamic programming approach.
Let pr(lr)(y), r= 1,2, lsngN-1, be the probability of
success under an optimal policy, given that y was the largest
value observed so far and was rejected, and that the decision-
maker is still allowed to make r choices from the remaining n

observations. Let also qgl)(y) be the probability of success
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under an optimal policy, given that y was the largest value
observed so far and was already chosen, and that the decision-
maker is still allowed to make one choice from the remaining

n observations. We have, from the principle of optimality

il

.1.1) 2P - & @)« max (P, 5D 00y ax

2

Py,

(1=n<N-1, p(1>(y) =0 ),

il

1
(3.1.2) «P = 3l &) + [ max ("%, p{H) ) ) ax
J

(1<n=<N-1, qél)(y)il ),

(3.1.3) P ()

fl

1
ypggi (¥) +/(max {qg L (), p(e) (x) } ax

(1=n=N-1, péz)(y)EO Je.
It is easily seen, by (3.1.1) and (3.1.2)
G.1.4) oV =5 s pP .

(3.1.1) is the fundamental equation for one choice problem
and is completely solved in Sakaguchi [16] . We now review
some remarkable results in [{16] . If we define the

functions, for nzl, over [0,1]

n
(3.1.5) #,(5) = %1_ * n%I J +,ﬁ%2' AR G kgl b,



then the equation

(3.1.6) ¢ (3) =5"  (nzl)

has a unique root s in the interval (s, _;, 1) where we
interprete Sq as O. Thus the sequence {sn} is strictly

increasing. It is also proved that, for y=8, 1

(3.1.7) p () =0 (3) .

Inspection of (3.1.1) shows that the optimal strategy in the

state described by this equation is to

reject v
(3.1.8) { } the observation, if x {ég} max (y, Sn-l) .
accept >
Hence (%.1.1) can be rewritten as
4
Sn-1
(1) 1 n .
<5.1.9) p<l)(y) _ Yp(li(y) = { pn_l(X)dX + n (l—sn_l) if y§Sn_l
1 n .
Ln a -y 1t I>Spa1 .

Let (aVb) be the larger of the numbers a and b. Since

the sequence {(sﬁ/y)} is non-decreasing in n for each y,
‘we can give the explicit expression of pgl)(y) by the argument}
proposed by Gilbert and Mosteller [3] . Let, for n=1

Sj if j:o, l 2, LI Y n_l
(3.1.10) sj(n) = {
1

if ,j =Tl .
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b

Then we have the following lemma. We interprete E:=O if

a

b<a in the remaining part of this section.

i

(3.1.11) M) = L{1-(5e1dr™s Zyn Lo, () Z:l I
l Ir=

n-1 i

+ Z Z—-—l—-sl-q-r]

i=j+1 r=1 BT T

Proof: By [ 3; Section 3¢] and (2.5), it follows
that for Osy=l

n-1

pMy) =L (1-(s v)? ) +Z [ Z (L (s, Vo)

1 Vi, _ 1
T n (sn—i y)7) n (s r—l y)

-1 i |
1 - n 1 -
=5 [1-Gp "™ + L1 L G+ (s

i=1 . r:l
i
SCROLED I S CHING LB
k=1
n-1 .
- - \V
SLlpagn . [ (syvyynoies(svo)-(syVy)
i=1

1
; == (s;Vy)*T}] .

-55_.
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Hence, by (3.1.6), we soon obtain (3.1.11).

It is easily checked

coincides with (%.1.7).

that, for s _,=y=l, (3.1.11)

In fact, by (3.1.11) and (3.1.5),

we have
) oo i
1 1 n 1 n-i 1 _i-r 1 i
Pr ) =5 -yt e Ly LEy T -l
i= I‘=l r:l
-1 i
1% 1 _n-r
*n L mx Y
i=1l r=1
n-1 i n-1 i
- 1 n 1 n-r 1 1 n
"nT 7 7 Zr(n—r) y . 1n 3 Y
i=1l r=l i=1 r=1
n-1
n-1
-1 _ oo i n-r _1 n-r _n
_n y Z I‘y —n -—-——r y
r=1 =1
n a
- 1l n-r 1 .n
= L T Y - L T7
r=1 r=1
= ¢n(y) .
Although it is obvious by its definition that qgl)(y)

is increasing in y, we can prove this by using (3.1.11).

Lemma 1.2. For nz=l

qgl)(y) is

Proof: By (3.1l.4),

Sj (n)§y§Sj+1(n)

?

increasing in y.

(3.1.5) and (3.1.11), we have for

- 56 -



J i i

L 1 . . . .
D) =i s @1-pyt s [T Lyl p Ll
i=1 r=1 r=1
J p 212 L
ne- n"I'
R =EAR) Z A si ).
i=1l r=1l i=j+1 r=1

Differentiating both sides, we get

- g i i
1 1 [\ n-1 - -
R ORI R B e R L T Sl W 30
i=1l r=l

J .
(n-1-3)7"71 4 Y g 11
i=1 r

1l _i-r i
rJ -y

i

B

7 e

1

i

?'P’]H-

H

J
~Non-1 ~1-i
(n-1-5)y*t &+ |71 *;(3) »
i=1

’ v
and hence, for O<y<1, qgl)(y) > 0

Since pgz)(x) is non-increasing in x by its definition,

(L

and q (x) is increasing in x by Lemma 1.2, the equation
(3.1.12)  p{P ) = oM (n=1)

has a unique root which .we denote by dn, where we interprete

dy as O. Then (3.1.3) shows that, when the decision-maker

is allowed to make two choices, the optimal strategy in the

state described by (3.1.3) is to
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reject -

(3.1.13) { } the observation, if x~{>} max (y, dn_l} .

accept
As for the first observation, interprete the above strategy

as y=O. DNow (3.1.3), with (3.1.4), can be rewritten as

n-1 1
j (2)(x)dx +d pI(1 %(Y)dx + (l—-dg_-l )
n-1
.1.18) ) (1)-3p3) ()= if y<d__;
=<d,_

f (1)(x)dx + ]’(1 - if y>d, 4
v

(2)(3’)

Since we have obtained p( )(x) explicitly, we can solve p

recursively by (3.1.12) and (3.1.14). Differentiating (3.1.1%4)

=
for y=d,_,, we have

(3.1.15) ‘2><y> @&

with the boundary condition
1

(3.1.16) p{Pa, ) =L+ a-Lat, +a lp(l)(dn D)+ /[ W oax .
y

Lemma 1l.3%. dl<:dz<:... <dn_l <:dn<' cee

L ]

Proof: In order to prove d_ _, <d , it is sufficient to show

(3.1.17) p?a 1) > oM

We obtain, by (3.1.4) and (3.1.16)
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1
p{a__) - e ) = Ta1-a® ) +/f’ p{1) (x)ax

dn-l
(3:2-18) o (1) (1)
1
@10 =y gy 108 ) )
Wwell, by (3.1.9), the right hand side of (3.1.18) becoues
s
n-1
. j W yax + L(1-s"_))
d
(3.1.19) l(1 ar 1) +,f' (1)(v)dx -¢ i if d j.8, 4
d
n-1 1 .
_ (l'dn 1) if dn-1>Sp-1
1
1, n n (1) ;
E<sn—l - dn—l) +./f (X)dx ifa .8, 4
1 sn"l
= (1)(
x)dx )
<g if dn-l>sn—l
n-1

In either case, (3.1.19) is positive. Hence, the lemma is

proved.

Lemma 1l.4. For y=d _, ,

n-1 1
(3.1.20) pgg)(y) =o (y) 4 ) L /{ pﬁl)(x)ax (nz1) .
i=1 ¥

Proof: We show this by induction. Since, by (3.1.3),
p£2>(y)=l—y, the lemma is true for n=l. For n=2, if y=d_,

then y>dn_1 by Lemma 1.3.
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Therefore we have, by induction hypothesis and (3.1.14),
1

225 = P f pMoax + Zpa-y™1)
. y
. e 1
=y{o (y) + z yn"l_l] p]g-l)(x)dx} +/ pgl)(x)dx
i=1 y v

1 n+l
+ HII(I-} )

1
n -
- ¢n+l(y) " }j y /C p§1>(x)dx ’

i=1

where we used the relation ¢n+l(y)=y¢n(y) + (1-yn+l)/n+1.

By Lemma l.3, l.4 and (%3.1.12), we can successively

define the value dn as the unique root in the interval of

(dn—l’ 1) of the equation

1

n-1

(3.1.21) ¢ _(¥) +iZ1yn'1"1/ pgl)(x)dx =y + pgl)(y) .
= y

Theorem 1.5. The optimal stopping policy of our problem
is given by (3.1.8) and (3.1.13).

The following lemma shows a relation between the

sequences {s,} and {dn} .

Lemma 1l.6. For n=1 , sn3> a .
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Proof: We prove this lemma by induction. Since it is
easily shown that s;=1/2 and d,=0, the lemma is true for n=1.
Assume that the lemma is true for n=k-l. Since p(g)(y) is
non-increasing and ﬂél)(v) is strictly increasing, it suffices
to show

(3.1.22) (1)(sk) > pﬁg)(sk)

in order to prove s, >d,. We observe by (3.1.4), (3.1.6) and
(3.1.7)

(3.1.23) o () - 0825y = 25K - 2P (s,
The sequence {sn} is strictly increasing, so sk>dk—1 by

induction hypothesis. Hence, with Lemma 1.4, (3.1.2%) can

be rewritten as

k-1
(3.1.24) 28k | Rl Z si-1-1 f D Goax)=sf- T sf " / of1 (x)ax.

1
k-1 v
/ p(l)(x)dx < Z Si*l-—lf deX - q;k(sk) _ Sllz—l + sllz

i=1 Sk
.k k-1
=285 -5 T,

Applying this inequality to (3.1.24), we have

oM (s) - 8P (s) > s (a-5,) > 0
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which is the desired result.
We finally calculate the probability of success, which
we denote by Pn. As easily seen by Lemma 1.3, 1.4 and

(3.1.13), P can be written as

1
P,= ) max { {2 (x), all{Gx) ) ax
In-1 1
=/f'p§2i (x)ax fj;{ L Pgli(x) } dx
0 n-1
(3.1.25) [ B2 n-1 n-2 1
:3j P§§i<X>dx TJ {¢n_1(X)-+z: xn-e—iI p§1>(y)dy } dx
0 d i:l X
n-2
1
/£ Pé?f(x)dx + % (l—dﬁ_l) .
n-1

To calculate the first term of (3.1.25), we prepare the

following lemma which is similar to that obtained in Sakaguchi

[16; Section 37.

Lemma 1.7. For any positive integers m and k

/j dp1 /f'dm~2 dp1 5
(2) K+l o ;
(2>(x)dx A (x)ax " +)&{¢m—l(x>+§: et
m-2 i=1
(3.1.26)
1 1
'/( (1>(v)dy A %‘dg-l(l“d$-1> + dE-l/(. (1)<X)dx )
X dm--l
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Proof: (3.1.4), (3.1.12), (3.1.15), (3.1.1%), Lemma

1.4 and integration by parts give

j dm-—l . drn--l
. p{®) (x)axk - [pég)(x>xk]om-l“/£‘ (2)(X)X A=

dm-l
= pélz)(dm—l)dg-l _{ (2)(X)1{k+1
dm—l
~ d
- p$P(a ek | - pl2d Gty o j p{2) (x)axk+

il

(2. -, v a8 ) / (1>(x>dx}a}_§_l
d

dp-2 -1
(1) k+l (2) k+1 |\ _(2) LK+l
- (atTrepitica, o )yakt 7Gx ) prof (x)dx
0 m-2
1 dp-2
1
LT B LN B L J ) (x)ax + J (2) (xyaxk+t
m—l 0
m-2 1
1(x) + }: X —/r p§l)(y)dy)dxk+l .
d i=1 X
Thus the lemma is proved.
Theorem 1.8. For n=3%,’
n-1 d i-1 9% .
Po= T [(o-1) () e Goax + ) f 2dax [ oM (may)
i=p ¢i-1 j=17a; X

(3.1.27) /1( )
1 ,n-l-i_sn n-1-i 1
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Proof: Applying (3.1.26) repeatedly, we have

J/dme /(dmé dp-2 ne3 /(1
2 2 —-3~3 1 2
o ( )(x)dx 4 ( )(X)dX jg (o, _o(x) + }: x5 lx P§ )(Y)GY}dX

n-3 i=1

1
1 n (1)
+ @ o=dp_p) + dn—2/( 5(x)ax
d

n-2

dn-4 dn-} n-4
=/£—p£§%(x)dx5 2!’ o 5(X)-+2: n-4-1 /{ (1)(y)dy}dx

n-4 i=1

d 1
n-2 n-3
% (o, o(x) +} 373 [ D payran® + (a2 -ak )

n-3% i= X

1 1
v 22(a__,-aB o) + d§_5/// (1)(x)dx +a__ 2J[ (1) (x)ax
n= 3 dn--2

(3.1.28)
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Note that

i-1 g=1

dl i-1 _ _
{o.(x) + Z Xl—l-—g
3. & :

X

1

l . di -
/( pgl)(y)dy}dxn_l= (n—i{d/ Xn"l_l¢i(x)dx
d 4

a.
i-1 1
+-2: X
J=l/4;_

1
n'g"jd%/(,pgl)(y)dy b
X

i-1

Substituting this into (3.1.28) and combining the result

with (3.1.25), we have the desired expression (3.1.27).

Table 6 gives the values of s_, d  and P for n=1(1)30.

Table 6
n sn dn Pn
1 0.5000 0.0000 1.0000
2 0.6899 0.4083% 1.0000
3 0.7759 0.5676 0.9430
4 0.8246 0.6605 0.9170
5 0.8560 0.7202 0.9021
6 0.8778 0.7623 0.8923
7 0.8939 0.793%3 0.8854
8 0.9063% 0.8172 0.8803
9 0.9160 0.83%61 0.8763
10 0.9240 0.8515 0.8731
11 0.9305 0.8642 0.8705
12 0.9%61 0.8749 0.8683
13 0.9408 0.8841 0.8665
14 0.9448 0.8920 0.8649
15 0.9484 0.8989 0.86%6
16 0.9515 0.9050 0.8624
17 0.9542 0.9104 0.8614
18 0.9567 0.9152 0.8604
19 0.9589 0.9195 0.8596
20 0.9609 0.9234 0.8589
21 0.9627 0.9269 0.8582
22 0.9644 0.9302 0.8576
23 0.9659 0.93321 0.8570
24 0.9673 0.9358 0.8565
25 0.9686 0.9%83 0.8560
26 0.9697 0.9406 0.8556
27 0.9708 0.9428 0.8552
28 0.9719 0.9448 0.8548
29 0.9728 0.9466 0.8545
30 0.9737 0.9484 0.8541
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The values of s, are reproduced from Table 7 of Gilbert and

Mosteller (1966).

Remark. Our problem can be generalized to the case with
r choices. The decision-maker is allowed to make r choices
and succeeds if the either of his choices is the largest of

the sequentially presented random variables. Let pgm)(y),

lsm=r, l=n, be the probability of success under an optimal
policy, given that y was the largest value observed so far
and was rejected, and that the decision-maker is still

allowed to make m choices from the remaining n observations.
Let also qgm)(y), l=m=r-1l, l=<n, be the probability of success
under an optimal policy, given that y was the largest

observed so far and was already chosen, and that the decision-
maker is still allowed to make m choices from the remaining n

observations. Then we have

1 o
Pgm)(y) = ( {(y) tgrmax (m l)(x), p(m)(x)}dx (1=m<r, 1l=n)

Pgo)(Y)EO, for all y and O=n )

P(()m)(Y)EO, for all y and Osmsr y

1
oM () = 7™ +} max ({7 (x), p{%(x)ax (l=msr-1, 1=n)

(O)(y):yn for all y and O=n )
< (m)(y)‘l for all y and Osm=<r-1
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We immediately have, using above equations

(m)(y) = yP ( )(y) (O<m=r-1, O=<n) .,

Since qgm—l>(x) is non-decreasing in x and pgm)(x) is non-

increasing in x, by their definitions, the eqguation
(m) _ (m-1)
p, (x) =q (x)

has at least one root. Let sgv) be the smallest root of this

(. o , s§2)= d ). Then we can easily

equation (of course, S, n

prove, in a similar way as used in Lemma 1.3, that the

(m)

sequence {s =) is increasing in n for any given m. But it

seems to be difficult for the author to prove the conjecture

that the sequence {s(m)} is decreasing in m for each n.
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