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                     1. Xntroduction

     g]he pTobiems we censider in this ]?eport aye otten

referred to as the secretary problem, the beauty contest

p.roblem, the dowry problem and the marriage probiem and they

Åía.ll under the {,eneral heading, of problems of optimal stoppip-g.

Zn each of these problems the decision--maker takes observations

one by one sequentially and at each stag.e he must deeide

whether to accept (ehoose) it or reject it and take ano+.her

observation so that he may ma>r.irnize the sp. ecified stopping.

reward. BeÅí• ore diseussing our problems, we shall give a brief

outline oÅí the variants of the secretary problem studied so far.

     GUbert and Mosteller (5), who investigate the secretary

p]robiem and severai reiated variants extensively, distinguish

between the twe extreme cases, i.e., no-information and Åíuil-

information.

     1. The "no-information" case: Whe decision-maker has no

infermation about the distributien of the observed values.

The only information he can know about each obg'ect is the

relative rank among those that have already appeared.

     2. ruhe "full-information" case: {MLe deeision--maker ean

observe a sequenee of the independently and identieaily

distributed random variables each with a known cumulative

distribution function.

     The original problem in the no-information ease,

described by LindXey it5) for example, is as ÅíoZlows.
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[!!here are N objects. [[laey are supposed to appear before the
                                                            'decision-maker sequentially in a random order and can be

ranked accerding te some quaiity (1 being the best and N iche

worst). I!he deeision-maker observes the rank oÅí the present

ebjeet relative to those preeeding it and deeides either te

accept it er to rejeet it and take another observation.

(!ffhere is no recall of objects already passed ever.) He makes

only one ehoiee and his goal is to Åíind a stopping rule which

maximizes the probability of choosing the best eb"'ect.

     Gilbert and Mostener (5), Gusein-Zade (4) and Mueei (6)

treat the probiem in whieh the decision-maker regards the

ehoice as suecessful iÅí the chosen obJ'eet is one of r best

among N objects. In the problem we shail consider in Seetion

2.1 the deeision-maker makes two ehoices and suceeeds iÅí

either of his choiees is the best glrL the second best. We give

the name "1-candidate" to any obJ'eet whieh is best among ail

that have aiready appeared and aZso give the Rame "2-eandidate"

to any object which is second best amoAg ail that have already

appeared. wtien we need not di$tinghish between i-eandidate

and 2-tiÅëandidates we eall them by the name of "eandidate".

fEhen it is obviously seen that any obJ'ect which is not a

candidate can not be ehosen. For 1$tsNs we denote by (tii)e

i=1,2f the state where the deeÅ}sion-maker is Åíaeing the t-th

object which happems to be a i-eandidate and he is allowed

two choices, and by (t,iu'), i,J'---l,2, the state where the

deeision-maker, who has already chosen the i--candidate amor!g

the first t-1 objeets as the fSrst cheiee, is Åíaeing the t-th

object which happens to be a j•-eandidate. C[!hen eur re$uit

Åëan be stated as ÅíoUows. !E!here exists a pair of integers
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dl and d5, ISdi$d5$N, such that the optimai strategy in state

(t,i), i=l,2, is to accept the candidate if tid{, and there

azso exists another pair of integers sl and s5, 1$sif.gs5sN,

sueh that the optimal strategy, in state (t,2j), j=1,2, is to

accept the eandidate if t)ss'.. In state (t,IJ'), J=i,2, it

does no good to accept the candidate.

     Recently Nikoiaev (8) censiders the problem of choosing

both the best and the second best. In Section 2.2 we shall

solve the same problem by using the O]IA (one stage iookahead)

policy which was proposed by Rosst12] to solve a certain

class of problems in Markov decision processes for which

action space essentiaUy consists of two aZternatives -

aeceptanee and re,jection. We easily see that the Åíirst choice

should be restricted to a 1-eandidate and that, once the first

choice is made and if the earliest candidate thereafter is

a l--candidate, it should be unconditionaliy accepted as the

second choice. Hence, the deeision-maker is interested in

oniy states (t,1) and (t,12). !t will be shown that there

exists a pair of integers ri and r5, lsr5$risN, such that

the optimai strategy is to accept the candidate iÅí tir5 in

state (t,i), and accept the eandidate iÅí t)ri in state (t,12).

     Mhough in most of the problems the number of obJ'ects N

is known, it is natural to study the situation where N is not

known in advanee but is a random variable whose di$tribution

is given beÅíorehand. ]?roblems of this type have been studied

-5-



by P)?esman and Sonin (9) and Rasmussen and Robbins (ID .

We alse consider the problem, in whieh knowing an a priori

distribution oÅí the aetual number oÅí the objects the decision•-
maker makes r c' heiees and succeeds if either eÅí his ehoiees

is the best. !n Section 2.5, the explicit soZution is obtained

in the case where the dectsion-rnaker makes two choiees and

a uniform a priori distribution is assumed Åíor N and can be

stated as follows. Iet <t,r>, r=1,2, be the state where

the decisien-maker is facing iche t-th object which happens

to be a i-candidate and there remain r choice(s) allowed to

be made. {Mten there exists a pair of integers mi and m5s

ism5$mls-N, such that the optimal strategy in state <t,r>,

r=i,2, is to accept the candidate if t4m".

     Another modification of interest is to allow more

Åílexibiiity in reealiing an object which has been passed

over at a previous stage. Smith and Deely (2b treat the

preblem with finite-memery of size m, where the decision-maker

is aliowed a backward solicitatien to any one of the last m

objects. Yang (28) assumes that at every stage a backward

solicitation to any object which was passed over is allowed

but with a known probability of suceess. Rubin and Samuels

(l5) aiso consider a difÅíerent type oÅí the finite-memory

probiem. A variant in Smith (20) and Sakaguchi (l8) assumes

that each of the objects has the right to reÅíuse an ofÅíer oÅí

aeceptance with a Åíixed probabiiity. Zn Seetion 2.4s we shall

investigate a mixed model where the deeision-makers who is

-4-



aiiowed a backward soiicitation at any stage, sueceeds iÅí

his choice is the best among aii, while each ef the objects

has the right to refuse an oÅífer ef aeceptance with a known

and fixed probability. Zf an object is ehosen and it accepts

the offer, we call it avaiiable. Suppose that the decision-

rnaker is at stage k. Let mk be the relative position (to k)

of the avaiiable 1--candidate if it exists. We caU the

avaiiable 1-eandidate a "euerent candidate" if mk=O, and a

"potentiaZ eandidate" if i-s.lnkLsk--1. New assume that, if at

stage k our attempt is made to proeure the availabie

1-eandidate, this attempt will be successful with the

specified probability q(mk), where q(O)=1. {I!hen our resuZt

becomes as follows. Xn the case of q(m)--q,mils there exists

an integer ni such that the optimal strategy is to pass over

the Åíirst nl--1 objeets and thereafter accept the earliest

cument candidate. !f it happens that stage N is reached

and the absolute best is among the first ni-i objeetse we

attempt to procure it. On the other hand, in the ease oÅí
q(m)=qM, m41, there exists an integer n5 such that the optimai

strategy is to pass over the first n5-1 ebjects, solicit the

available 1-eandidate, if possible (no matter where it is) at

stage n5e and if the precurement at stage n5 is unsuceessfule

eontinue the observations of the remaining obJ'ects and accept

the eqrliest eumrent candidate thereafter.

-5-



     Mueci (6) C7) treat the problem with a gene]?alized

payoÅíf funetion and obtaim the asymptotic Åíorm Åíor the

optimal payoff and the stopping rule by the analysis of

related differential equations. Game theoretic appreaÅëh

is incorporated into the secretary problem bsr Presman and

Sonin CIO) . This approach is also employed in Sakagvtchi (17) .

Although the secretary problems stated above are mainiy

coneerned with maximizing the probability of choosing the

desired object, Lindley C5) and Chow et al. (1) diseuss the

probiem in which the decision--maker wishes to minimize the

expected absolute (not relative) rank of the object he chooses.

     We now turn to the full-information ease. Iet' X
                                                     i'
i=1,2,..., N, be the value attached to the i-th objeet and

suppose that Xi, X2, ..., XN be independent and identicaXly

distributed random variables that ean be observed sequentialiy.

[Ehep the decision-maker, observing the random variable at each

stage, raust decide whether to aceept it or not. His objective

is to find the stopping rule which maximizes the probability

oÅí choosing the largest randem variable. Gilbert and

Mosteller (5) originalZy studied this problem with one choice.

Since their derivation depends on some ingenious and heuristie

method and the• pptimality of strategy is not neeessarUy

clear, Sakaguchi (16) solves the same problem via the dynamic

programming method and provides much insight inte the optimaX

strategy. urhe probiem treated in Seebion 5.1 is that the
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decision-maker makes two choiees and succeeds if either oÅí

his cheiees is the largest oÅí the sequentially presented

random variables. We give the name eandidate to any ebject

which has a maximum vaiue observed so tar and let (x;n,r)s

r=Z,2, be the state where the decision-maker is Åíacing a

candidate whose value is x and he is allowed to make r

cheice(s) from the remaining n+1 observations (ineluding

the present one). We can assume without loss of generality

that eaeh of the observed vaiues has a uniform distribution

on the interval (O, 1). Our resuit in this case can be

summarized as foliows. There exists a pair of inei?easing

sequences {sn} and {dn}, such that the optimal strategy

is to aeeept the candidate if xlsn in state (x;n,1) and

accept the candidate if xidn in state (x;n,2).

     Apart from the two extreme cases - no-information and

full-information, Sakaguchi [14] and Stewart (22] consider

the intermediate case in which the value attached to each

obJ'eet is a random variable whose distribution has a

parameter unknown a priori.

     Secretary probiem has so far received a great deal eÅí

attention for its simple strueture. [Ehis report is composed

of five papers [25, 24, 25, 26, 27], and the author wishes

it wiil be a step to Åíurther research.
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        2. Secretary ?roblems with No-information

2.l Recognizing the Best or the Seeond Best

     {Ilhe problem we consider here is that the decision-maker

makes two choiees and succeeds if either oÅí his ehoices is

the best or the seeond best. If he has not aceepted untU

the last two objects then he is forced to accept both of them.

He wishes to find the stopping rule which maximizes the

probability oÅí success.

     Given the t--th objeet is a eandidate, the conditional

probabUity that the s--th (s>t) is the eariiest eandidate

and, at the same time, earliest i-candidate (i=l,2) is

t(t-•1.)/s(s-1)(s-2) whieh we indicate by 7rts. Hence, the

probability that no candidate wili appear after stage t is
     N
1-2

s.i.1 'rts = t(t'-1)/N(N-1). We denote by uEi) and vEiJ')

the probabilities of success under an optimal pdlicy starting

from states (t,i) and (tiij) respeetively. tlEhe probabiiity

ot success is t(2N-t-1)/N(N--1) when the decision-maker

chooses i-candidate among the Åíirst t objeets and terminates

the process and the probability of sueeess is t(t-Z)!N(N--1)

when he chooses 2-candidate and terminates the proeess.

So we now obtain the foiiowing recurrence relations

                               '                              '                 , /A,szs({llli"iigS2Nt1)

(2.i.o  vE2i) ec max fiIR, zN ',,t.(.g2o . vg22))

                            s=t+1

                                       (sst$N-i; vfi2i).o ,

                         -" 8-



(2.1.2)  (22)
vt = max

(:.   t(t-i
:

-

 NE
s=t+1

zts(v (2i)
s

+ v822))

( 5$t$N--1 ; vfi22)=i) ,

(2ei•5)  (zovt = max
 (

A,S.S(:k\i$iSi22Ntl)

R : t N(tN--l .
 N
 Åí nts(v
si' t+i

(21)
s

+ v822))

(2$t$N•-1 ; vSO .1 )
'

(2.i.4)  (l2)
vt

m [lliElkiEIB' "
  N

z
.s=t+i

rr ts(v (11)
s

' v8i2))

(2$t$N--i ; .gi2).1)
'

(2.1.5)  (1)
ut = max

 (
A : illilidMil•

      N
R: E
    s=t+1

   N
+ Z zts(v
  s=t+1

zts(u (1)
s

(11)
s

. .g2))

" v.(22))

(1$tsN--l ;
ufi1 ) tsi )

'
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                                     N
                      A : tN(tii .+• s.i.i 7rts(v82i) . vg22))

          uE2)=max N '(2.1.6. )

             ' R : s.ll.1 7tts(ugi) + ug2))

                                  ( 2-<t-s;N-1 ; uft2 ) =l )

                              '
where A and R symboiicaUy ]?epresent acceptance and rejection

respectiveiy. (2.1.4) eornes Åírom the Åíact that it does no

good to stop in state (t,X2). The system oÅí equations

(2.1.1)-(2.i.6) ean be soZved recursiveiy to yieid the
optimal stopping ruie and the maximum probability u{1).

     We put
                   N
(2.ie7) vt g 2 rrt.(v82!)+vg22)) ,
                 s=t+!

then we have by (2.1.1) and (2.l.2)
                                          '                                      '(2el•8) vt" = ll; (vE21) + vE22)) + ti2 vt

                   '
                             t(2N-t-l)               = vt + ll; [max(-ntiarN:rr - vt,o)+max(tN(tN--.i - vtto)].

                                  '
Heneet vt is non-inereasing in t. Considering that

ic(2N-t•-l)/N(N--1)>t(t-•1)/N(N--l), Åíor X<t<N, and that both

of these Åíunctions are increasing in ts we can sumarize

the optimal policy in $tate (t,2j), j=l,2, as feliows.

-- 10 -



     Theorem i.1. There exists a paÅ}r of integers si and s5e

1$si.sgs5sN, such that the optimai strategy in state (t,2J'),

j=i,2, is to accept the eandidate and sbop immediately if and

only if t2-s5•t where

(2•i.g) si = min [t l S2•S({}lkSEiilli-2-2N t l) 2- vt],

and

(2.i.io) ss -:in[t t il}i(fi}{Bt i) .vt].

     Giibert and Mosteller (5) and Gusein-Zade (4) have shown

this theorem. [Mte exg>licit expression of vt was given in (4)

and the values oÅí si and s5 were given in Mabie 6 of (5).

     i]emma i.2. vEii) is increasing in t and we have,

for 1<t$N,

                              '                                           '(2.z.n) vEii)- tN(t--i +vic i t2NN.'-te-i .

     I2roof: It is easUy seen by (2.1.i), (2.l.2) and (2.1.7)

                            N
tN tNii + vt = l38ftiB + Z 7rt. (v8 2i) + v822))

                          s=t+l

                            N
              . tN tN---1 . Åí 7Tt$ [ ES(:{ffliiSiiiftL2N S 1) + iilli{X•il]

                          s=t+l

              - t(2N-t-1)
              -rm•
                         -u-



Thus, by (2.l.5),

showing that vEll)

Showing that vEii)

              (11)(2el•12) V              t

fience, considering

(2.1•12) as

(2.1.15)  (li)
vt

the latter half of the lemma is showne

 is inereasing in t is equivaient to

    (u) - Vt-.1 >O. (2.1•7) and (2.1.il) give

-v
Ei..ii)- } [(vEii)-vE2i))+(vEii)-vE22))] .

 (2.1.9) and (2.1.10), we can rewrite

  (ll)
-- Vt-.l =

l
E'

2t(t-1)

ll; [(vE;X)   t(2N-t-i)   t(t-1)+  N N- ],

2st<s{

si $t<s *
2

!n either cases (2.l.15)

l
li'

is

   (11)[(Vt - N

positive.

t (2N--t-1
 -l

fi!hus

)+

the

vt]e

lemma is

sE$tsN .

proved .

     lemma 1.2 and (2.Z.4)

ehosen as the first choice

maker sheuld net accept a

We can rewrite (2.!.4) as

 show that, as far as

 remains a eandidate,

new candidate as the

 the object

 the deeision-

second ehoice.

<2.1.l4)

     We have

 (i2)
vt

 the

    1 = E:+rr (v

foliowing

(il)
      + tv t+l

 1emma.

(12)    ).t+i

     Lemma 1.5•
        (12)1<t<N, vt >

 vEi2) is

 (11)
vt '

incveasing in t and we havei for

- 12 --



     pr?oof: we show vEi2) > vEU) by baekward induction.

it is easny checked vfiiElil) > vli!l). suppose that vEi.2i)> vE:+t:iL),

                                             '
then, by (2.i.i4) and lemma 1.2, we soon have vE12)>vEl+l)>vELl)

                                                    '
Henee, the induetion is compieted. Applying this result to
(2.i.i4), we aiso have vEi2)<vEi+2z). cmtus the iemma is proved.

     New put

                     N
(2•ieis) ut g E zt.(u8i)+ug2)).
                   s=t+1

Then, by (2.1.5) and (2.1.6), ut turns out to be non--increasing

in t. Hence, (2.1.5) and (2.1.6), cornbined with Lemma 1.5,

lead us to the following theorem.

     Mheo]?em 1.LF. [Vhere exists a pair of integers di and d5s

                                              'isdisd5$N, such that the optimal strategy in state (t,i),

i=l,2, is to accept the candidate if any only iÅí t4.db

where

             di = min[t i vEi2) ) ut ](2.l.i6)

and

           ' dls =rnin[t l vEii) i ut].(2.1.i7)

.

     Ultimateiy optimal stopping poiicy of our probiem i$

given by {l?heorern 1.1, i.4, Lemma l.2 and (2.1.4). Table 1

gives the values oÅí s{, s5, dl, d5 and the maximum prebability

for some values of N.

                        - i5 -



Mable i

N sl s5 df d5
(l)Ul

4 2 (5)4 (l)2 (2)5 Oe9167
5 (2)5 4 2 5 O.9167
6 5 5 2 5 O.9000
7 5 5 2 4 O.88iO-
8 4 6 2 4 O.8705
9 4 7 5 5 O.8585

10 4 7 5 5 O.8551
20 8 14 5 9 Oe824'8

50 18 54 11 22 O.80S6
IOO 55 67 22 45 Oe7995
200 70 l54 44 85 O.7965
500 i74 554 108 21Z O.7946

iooo 548 667 216 42i O.7940
oo O.5470N O.6667N O.2150N O.4201N O.7954

The vaiues of si and s5 are reproduced Åírom Mable 6 in Gilbert

and Mosteller (1966). '
     FoZlowing the methed pvopesed by C6) , (7) and (l8) ,

we finally derive the asyrnptotie values of si,s5sdl and d5,

when N tends to infinity, by the analysis of the correspotading
                                            (ij)                                                   (i)differential and integral equations. Write vt , ut ,
vt and ut, as f(ij)(t/N), g(i)(t/N),p(t/N) and q(t/N)

respectively, and let N and t go to infinity, setting t/N=x.

CEhen, by (2.1.1),(2.1.2),(2.1.!1),(2.1.12) and (2.Z.14),

we have, for o$x$ls '

                          -14-



(2.i.is) f(2i)(x) = max(x(2-x),p(x)),

(2.lei9) f(22)(x) = max(x2,p(x)),

(2el•20) p(x) = f(11)(x) - .2,

            f'(ll)(x.) . if(ll)(x) - l(f<2i)(x) + f(22)(>c)),(2•ie21)

(2•1•22) f'(12)(x) = }(Åí(i2)(x) - f(li)(.)),

where f(21)(o-f(22)a)=f(11)(1)=f(i2)(1)=1 and p(i)=1.

{[[hese equations (2.1.i8)-(2.1.22) can be soived easily and
especiany f(U)(x) and f(i2)(x) become

                       x2+al(2-al), Osx$%
(2.1.2s) f(ll)(x) = 2x(x-ln x+in a2), afxsa2

                       x(2-x), a2x.; sl

and

                        -x2+(ai-2ai+1-21n a2)x+al(2-ai), OSorr $ctl

(2.1.24) f(12)(x) = x(2-2x-2in a2+(in x/a2)2), ai$-x$-a2

                        x(x-21n x), a2sxL,gi

whepe a2=2/5 and ai:O.5470 is the unique root in (O,a2) oÅí

the equation

(2.i.25) x-ln x=1-in a2.

Mhis eoineides with the results of (5) and C4) i Simiiarly

we have, by (2.l.5), (2.i.6) and (2.i.15), for O-sxst,

- l5 --



(2.1.26) g(i)(x) = max(f(Z2)(x),q(x)),

(2.1•27) g'(2)(x) - max(Åí(ll)(x),q(x)),

            q(x) =5:SSt (g(i)(y)+g(2)(y))dy,
(2el•28)

            '
where, g(1)(l)-g(2)(1)-1 and q(1)=o.

Applyine (2.l.25) and (2.1.2LV) to (2.i.26)-(2.1.28),

after tedious ealeulationst

(2.X.29)

where

q(x)-

P2z-' O.zi•2ol

we haves

q(Bl), O$y..s.gBl
x2+ [(al-1)2zn ai-21n a21n B2-(in al--in B2)ln2a2

+(ln2al-ln2B2)ln a2- l}(in5al-in5B2)] x

+(l--ct?1+21n al)xln x+al(2-al), Bfx$al

2x2+(ln2a21n B2+21n a2-ln a21n2B2 , '
               '-21n a21n B2+ }ln5B2)x- }xin5x

+(ln a2)xln2x+(21n a2-2--ln2a2)xln x, ctlgxf3, 2

-sx2+(ln2a2-21n a2+2)x

       '+xin2x-2(ln ct2)xln x, B2$X$a2
           '

-2xln xe a2$xspm1 e
 is the unique root in (O,1) of the equation

-16-



(2.1.50) (ln x-in a2)2+2-5x-41n ct2+21n x=O

and BIXO.2150 is also the unique root in (O,B2) oÅí the equation

             2x+(i-ai2!n al)ln x+ [(i-ai)+(ai-2al+5)ln al

(2.1.5i) -21n a21n B2-(ln al-•ln B2)ln2a2

             +(ln2al--ln2B2)ln a2- }(ln5arln5B2)]=Oe

Summarizing the above resuZts we reach the following lemma.

     ])emma 1.5. We have asymptoticaily sl2aiN, s52a2N,

di!BiN and d5xB2N. And then q(Bl) in (2.1.29), the maximun

probability of success, becomes approximately O.7954.
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2.2 Recognizing the Best and the Second Best

     In this seetion, we consider the problem of choosing

both the best and the second best by using the OLA poliey

which was proposed by Ross [l2] to solve a certain eiass

oÅí problems in Markov decision processes Åíor which action

spaee essentially consists of two alternatives - acceptance

and rejection.

     Suppose that the Markov decision process has the eountably

infinite state space {ili=O,1,2,...} and the transition

probability {pijii,j=O,1,2,...} and that, in each state, the

decision-maker must decide whetheic to accept a terminal

reward R(i) and stop or, by paying C(i), to proceed to the

next state according to the above transition probability

pij. {[hen we have the foliowing optimality equation

     V(z) = max (A : R(i) .

                NR : -C(i) + 2 piJ.V(j) '(i=O,i,2,...),
                             j=o

where V(i) is the expected reward under an optimal pllicy

starting from the initial state i. We define B as the set

of states for which stopping immediately is at least as good

as preceeding for exactly one more period and then stopping.

Miat is

                                  oo         B ----{ilR(i) i --c(i) + 2 pijR(j)}
                                 j=o

- 18 -•



and we aiso define the Ol)A poliey as the one whiÅëh teiis us

to stop immediateiy in state i iÅí and oniy iÅí iiEB. Say that

B is elosed, if pij--O for ali ieB and jeB. Mhen Ross shows

that, under some reasonable eonditions which assure stability

of the decision pMocess, if B is closed, then the 03)A policy

is optimai.

     Xt is easy to see that the first ehoiee should be

restricted to a i-candi'date and that, once the Åíirst ehoiee

is made and if the eaxrliest eandidate thereaÅíter is a

i-eandidate, it should be unconditionally accepted as the

secend choice. Hence, the decision-maker is interested in

only states (t,l) and (t,i2). If he has not aecepted until

the last two objecics, he is foreed to acÅëept them. Let g(t)

and f(t) be the probabiiities of success under an optimal

pelicy starting Åírom states (t,1) and (t,12), respectively.

[Uhen considering that the conditionai probabiZity that the

s-th (s>t) object is the earliest i-candidate given that the

t-th is a candidate is t!s(s-1) and the joint probability

that the Z-candidate and the 2-eandidate ameng the first t

objects are, respectively, the best and the second best among

N all is t(t-1)/N(N-1), we obtain the following recurrence

reXations

(2'2'i) f(t' ) = max(A : IIiliil{B .

                      NR: Åí ?z't. [ii}li'f:IB'+ f(s)]

                           s=t+1

                                           (2-sgt$N-1; f(N)=1),

-. I9 -



                              N
                                        s(s-i)                        A: Åí rrts [ NTN::v + f(S) ]

                            s--t+Z
(2.2.2) g(t) - max
                              }i
                        R: Z g-dg:v g(s)
                            s=t+1

                                          (2stsN-i; gOI)=O)

                                           '                        A: } [kkii .f(2)]

(2.2.5) g(1) = max N
                        R;sE.2 giik:" g(s) ,

where 7tts=t(t-1)/s(s-1)(s-2). {I!he system oÅí equations

(2.2.1)-(2.2.5) can be solved recursively to yield the

optimal stopping rule and the maximum probabiltty g(i).

[Ehe Åíoilowing theorem shows the optimal strategy in state

(t,12).

                     '
     [[hoeorem 2.1. Xn state (t,12), the optimaX strategy

is to accept the eandidate iÅí and onZy iÅí t:-!irfs where

                           N-l
(2.2.4) rl=min {t .jl.lt ks s}}.

     Proof: Por (2.2.1), we let

'

- 20 •-



(2 e2 • 5 ) Bi :-: '= { (t,12) i t(kli
    N

iX  s=t+l TtS
[fiEes3+ s(s--1)rm] }•

Mhen

turns

the

 out

set B     i'

 to be

 whieh

closed.

can be

  Thus

written as

the theorem

Bl={(t,12)

 is proved.

ristsl•J-1 } ,

Let F(t)=Åí(t)/t(t--1), we can rewrite (2.2.i) as

(2.2 .6) F(t) ---

 max( A: mh
      N
R: Z ,i-2[
    s=t+1

  1rm+F(s)]

and

we

  . smee
obtain

(2.2.7)

we already knew the type of the stopping

by (2.2•5)
  F(t) .{\ti 2 [F('{-i) ' iy<"NISt{iil=:? rt l ],

          rm,

rulee

2-gtsri-i

rl$tsN '

where

(2.2 .8) F(r{-1)     2-rm
  N"i
  2
s=ri-•1

1
ges : .

rt is

with

 important to note

G(t)=g(t)/t(t-1),

 that F(r{-1)>11N(N-1).

we can rewrite (2.2.2)

  MereQvers

and (2.2.5) as

- 2i -



                            N
(2.2.g) '

, G(t) . ... .{rA : ,.i.i g.iEi: [wtZ + i?(.s)]

 ,, . NR:EiliT s.?+i G(S) '

                      A : tsif'("ilin'>' + F(2)
(2.2.10) g(1)=max (` N •

                     ,SLR, 2 G(s) •
                          s=2

                                       'Let H(t)= yiLzf [F(t) + mb] for tS, then we have by (2.2.7)

                  R,{i=llgt{l:? r2 [F(Ti-o + im ] , sstsri-i

(2.2.ll) H(t) = 2
                  Tramr>'( E= ), ri$tsN.
                           '
Now we deÅíine Åë(t) as

                    N
                   .2.2 (2-S)H(s) ` F(2) + im , txl

           tp (t)= '(2.2.12)

                    N.                    Z (2t-s)H(s), 2$tsN-1
                  s=t+z -                           '

     [Vheorem 2.2. Xn state (t,1), the optimal strategy is

to aceept the candidate if and only if tzr5,

where
(2.2.i5) r5 = min {tiÅë (t)iO } .

                        - 22 -
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     P]?oof: For (2.2.9) and (2.2.10), we let
                            '

                                       l)if
                     F(2) + im i .E.2' (s-2)H(s), t=2

 (2.2.i4) B2 iE (t,i)! ill H(.).er N2-i ll H(k), 2st

                     s=t+1 s=t+l k=s+i

Tt is sufficient to show that B2 is closed. By (2.2.i2),

we can rewrite (2.2.14) as

(2.2.1 5) B2 =- { (t,1)i Åë (t) i O }.

Showing that B2 is ciosed is equivaient to showing that, iÅí

there exists an integer rE, 3uch that Åë(rE)40, then tp(t) is

aiso non-negative for any t2-)r5. It is easy to see that, b.y

(2.2.11)
                                                  ri-2
                   + irditrT [2(2rl--N-t-2) •- (ri'-2) 2] } ]

                                        ' s=t               - rf-2(2.2.16) Åë(t)               - +(ri-2)F(ri-i)(2- .ilt {;) , 2$tsri-2

                         N-1
                   mh z [ agg;liilLt i) -i ] , .f.tsic-sgN.-i

                         s=t

Hence, by the deÅíinitien of rb we have Åíor tsi-Z

                                         N-i
(2•2e17) Åë(t)-Åë(t+i)"N'(lltrr(}- Z -s )iO
                                        s=t+i

                        -- 25 -in

$N-2

.

.



and for 2$t$r"5

           '
(2•2•is) Åë(t) -Åë(t+i) •= "[tillltiiArr2 + 'lpt2 F(r"i) - im

         .fi.

                         < "' Nzriirr ( Åíit:22 -i)<o .

                              '
 .By (2.2.17) and (2.2.Z8), tp(t) proves te be unimodal. Since

Åë(N-i)=2/N(N-Z)>O we see that, from second stage onward, B2

is elosed and that state (rl,i) belongs to B2. To eomplete

the proof that B2 is clesed, we need to show that, if Åë(2)<O,

then tp(i)<O. We show this in the case oÅí ri4. Since, for

ri$5, the prooÅí is easy and can be done in the similar way,

                                                        t.we omit it. BY the assumption, we have ' ''
                                                           '
                                                       '                     N-(2•2•i9) tp (2) - 2 (t,--s)H(s) <o .

                    s=5
                                     '
Hence, by using the Åíact that F(2)=2F(5)+1/N(N--i), tp(i)

can be rewritten in the ÅíoZiowing torm

                                              N
(2.2.2o) Åë(1) -Åë(2) +[F(2) + iifdiicr>- -- 2 Z H(s)]

                                             s=5
 '                      t tt                             N
                 -Åë(2) -• 2 Z H(s) .

                            s=4
                '
Since H(s)>O for ail s, the right hand side of (2.2.20) is

negative. E["ius the prooÅí is eompZeted.

                         -24-
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     We have by (2.2.9)

                            N'                     fil![ 2 G(s), 2stsrs-i
                          s=t+1
(2.2.21) G(t) -                      N
                      2) H(s), rs $t =<N-i
                    s=t+1
                                                        •

Mherefore, by (2.2.IO), we can calculate g(1), which is the

probabUity of success under the optimai strategy. Combining

C"heorem 2.1 with [[fiteorem 2.2, we ean now summarize the optimal

stopping rule as follows.

     Pass over the first r5-Z objects and thereafter aceept

the earliest l-candidate(as the first ehoiee) and after that,

if the earZiest candidate is a 1-candidate aeÅëept it

unconditionaily(as the seeond choice), but if the earliest

candidate is a 2-candidate accept it only when it appears

aÅíter stage r{.

     Finally we shall give several asymptotic results.

     '     Mheorem 2.5. Let tyi=INIm. ri'/N, i=i,2. C[inen we h'ave

(2e2.22) 71 = e-i/2 -'-V- O.6065

                '                 tt                 '
and 72 2 O.2291 is the unique root x of the equation

(2.2•2s) (1 + x)el/2 - ln x'= 712 .

.-  25 -



1!he asymptotic vaiue g" oÅí the maximum probabilit'y oÅí ehoosing

both the best and the second best is given by

(2.2.24) g* = }"m. g(1) =72(27i--72) Z O.2254.

                                                         '
     Ihroof: The proofs of (2.2.22) and (2.2.25) are straight-

forward by (2.2.4) and (2.2.l5), re$pectivelv.. By (2.2.2i),

we have Åíor 2=<t$r5--Z

            '(2.2.2s) G(t)-S!'ll13I;lli;i222)("2i)G(.l3.-b

and, for iarge N, by (2.2.IO) and (2.2.25)

                                                 '                     N--l
(2e2•26) g(i) - .E-.2G(s) - (r5-i)(i,:;-2)G(r2i--i) •

                                                  '      '
                                 '

                                     '          - N•e•1 N(2.2.27) (r5-2)G(rS-i) - E Z H(s) ,
                            t=r5 s=t+1

we get, by (2.2.ll), (2.2.26) and (2.2.27)

                                    ' rl-1
(2.2.28) g(1) - (r5--1) [(ri-2)F(ri-1){ S -. -i}
                                            *                                         s=r2 '
                                                   ri--l
                + im {2(N+D + rs - sri + (r{-2) 2 g,iEr }]

                 , s=r5
We can immediately obtain (2.2.24) by (2,2.28).

                          •- 26 --
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     Mable

values of

 2 gives the values

N.

oÅí ri, r5 and g(l) Åíor some

Table 2

N *rl *r2 g.(1)

5 5 l O.5000
4 5 1 O.5555
5 4 2 O.5555
6, 5 2 O.5159
7 5 2 O.2956
8 6 2 O.2800
9 7 5 O.2759

10 7 5 O.2714
20 15 5 O.2461
50 51 l2 O.2555

100 62 24 O.2295
200 122 46 O.2275

500' 504 U5 O.2262
1000 608 250 O.2258

co o. 6065N o. 2291N O.2254

     Remark. In a similar way, it is easy to

model to the one in which the decision-maker

to make k choices and suceeeds oniy when what

are exactly k best.

 extend our

is allowed

 he chooses
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2.5 Random Number of Objects

                                               tt t                                                        '                                    '     The probiem we treat in this section is as follows.

At most N obJ'eets ap, pear beÅíore the decision-maker but he

does not know exaetly how many objects will appear. He has

oni; an a priori distribut Nibn pm=Pr{M=m} on the actual number

"C of the objeets, wheTe m;.1 pm=1. The decision-maker is

aliowed to make r choiees and suceeeds if either of his

ehoices is the best object. If the decision-maker has not

aecepted last r Objects, he he forced to aceept them. 0ur

purpose is to find the optimai strategy which maximizes the

probabUity of success. Let Åër<t), r41, be the probability

of success unde]? an optimal policy starting from state
                          N
<t,r>, and also let 7rs = m;.s pm, 1$s$N. Mhen the conditional

probability that the s-th (s>t) object is the earliest

i--candidate given that the t-th is a Z-candidate is tTs/$(s-1)

:?d,.:eg:g,. gh: P,gO:S:ISt' IY,Z;g,:2,IE;ae.dl ,l:t:,pa,f?pear

     '
Therefore we have the following recurrence relation

                           NN(2•s•i) tp.(t) . ...fA : ,-il.i g(g-linei7 tXt9 Åër-i(s)+.;t g tpt

                   N/R : s.i.,i g(g-'li'-:ff /l2 Åër(s)

           '
                             (lsts-N -- l; rll; Åëo(t)='O)

                          - 28 -

rr t



where Åër(N)=i (ril).

     We do not consider the case of general a priori

distrÅ}bution on M, but oniy the case of uniform distribution;

Pm = YN, 1$msN. Mhen (2.5.l) becomes

                                       NN                      A:wh. [ 2 l\?g'Etli;"i ep.-i(s)+ E}

(2'5"2)
 Åër(t)=MaX(R,N.-:.-g.:+;-r S"Ett'lgigti{b+i Åë,r(s) . S"t

                                     s=t+1

Now define Åër(t) = N-t+i/t .Åër(t), then (2.5.2) beeomes

                            NN                      A: X -s Åër"(s)+Åí }

(2.5.5) Åër(t) -k max S=t+1 s=t
                            N                      R: 2 gdil-rÅër(s).

                          s=t+1
Vthen r=1, we have the following theorem.

     [theorern 5.l. In state <tsi>, the optimal strategy is

to aceept the eandidate if and only if timi, where ,

                          N N-1 N(2.s.4) ml - min {t Åí } 4. E k Z] e}•
                          s=t smt k=s+1
     Proof: Fer r=1 in (2.5.5), we iet

                       NNN(2.ses) Bi='{<t,i> .;.t ll 3- ..?.i -s k)l.l. I}}={<t,z>l gi(t))O

                                           'where                  N N--1 N(2.s•A..) g,(t)=Z }-E } Z ft '
                 s=t                         s=t                                 k=s+1
                       '
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Note that
                        '
(2es•7) gi(t+i)-gi(t)-}( N z .k-"o.
                             s=t+l '
Mt is easily seen that gl(t) is unimodal. Since gi(N-l)=21N>O,

we can say that Bl is cio$ed. Hence, we ean rewrite (2.5.5) as

(2.5.8) Bi e{<t,1> l mists-N-X } ..

ashus the theorem is proved.
                                                    '

     This theorem has been alread,y shown by Rasmussen and

Robbins (11). The; also give the tabie of mt and Åël(1),

the probabiiit: oÅí success under the optimal poliey. We

now have

                    gE.i: i} Åëi(s+i) , is.t$mi-i

(2.5.9) Åël(t) -
                     N                    si.lt 'i} , . . ..mi$tsN .

Let qi(t)= N -" i Åëi(s+i)/s + g ys. then we have '

           s=t s=t'
                 '
                          N

(2e5vXO)

And hence

er i(t)-Åëz(t)=

sEt }' is-ts,mi"

,)llt {l Åëi(s"i)-- ,.lt }k.E.i k, mistsN'"i .
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(2.

rf

(2.

we

to

(2.

(2e

It

we

(2.

By

                              Mili-'2} ]lli lit. Ns2 {;

                              s=t k=s+1 s=m{-i
s•ii)N 2-;i }[vi(..i)-Åëi(,.i)]. N)IZ l ÅíN zi- , i$ts-,mi-2

     s --t k =s+i                                     L=k+1

                              N-2 N-1 N
                              Z } E ft E .-i-,mi-i.t.N..i

                              s=t k=s+i L=k+Z

we let

             A!,T N--1
5•12) g2(t)= ,Z.t k- ,Åí.t t[ql(s+1)-Åëi(s+1)l ,

have the Åíoliowing theorem tor r=2.

  Mheorem 5.2. In state <t,2>, the optimal strategy is

aceept the candidate if and only iÅí tzm5, where

5.15) m5 = min {tlg2(t)iO}.

  ]lroof: For r=2 in (2.5.5), we let

                            N-l
s.14) B2 --" {<t,2 >I Vi (t) i 21 vl(s+1 )/s }.

                            s=t

is su:fÅíieient to show that B2 is closed. By (2.5.l2),

ean rewrite (2.5.14) as

s.15) B2 ={<t,2> g2(t) )O}.
                    '
(2.5.iO) and (2.5.i2), we see that

   g2(t+1)-g2(t)= } [ Vi(t+1)-Åëz(ic+1)•-i]

                     - 51 '-

.



                         N
                    }( E }" ), z$ts-mi-2
                       s=t+1

(2e5•l6) = ' N"'i N                    l (s=?+i } kEs.i l -i ), ml'-i-sts-N-2.

  '                  '
Since, Åíor 'tEml-2, by (2.5.7) and the deÅíinition of ml,

                                              N-i N
g2(t+1)-g2(t)=gl(t+i)-gl(t)>O and for timi-1, X ils [) z/k-1
                                              s=t+l k=s+i

is a decreasing function in t, g2(t) is unimedai. {!!hus,

eonsidering g2(N-i)=(2N-1)/N(N-i)> O, we ean say that B2 is

closed. Hence, we can rewnite (2.5.i5) as

(2•5.i7) B2 E{<t,2 >l m5stsN-1} ..

filhus the proof is eorapleted.

                                        '
                                                        .     We now show that m5$,ml. [I!his is equivalent to showzng

                                   N N--i N
that g2(mi)iO. since, by (2.5e6), s!.]tYS k s4.t YS k.?."/k

for t)mi, we soon obtain, using (2.5.Zl)

                                         '                     N••-2            N                            N•-Z N
   g2(sp- ,!.{ l; - ..--E.i l; k.ig" IL.i].i it•

                   '        'N N-1 N         i sZ---mt i} - sil-lmf l} k--I.).i ik iO'

For the computation of oj2(1)s the probability oÅí success

under the optimal policy, we can utilize the foilowing relation
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                                                  '                    N-l
                    Z igÅë2(s+1), 1-sgt$mE-1
           '                    s=t

(2.5.l8) Åë2(t) -
                    N--1                                    'N
                    2] }Åëz(s+i)+ Z }, :5-,gt$r"-i .
                    s=t                                    s=t

                                           '
Mnally we give the asymptotie results. ,

     TheoTem 5e5. Let 6i = k:l m. m{/N, i=i,2. fllhen we have

(2e5•19) 61 = e-2 MO•1555

and

(2e5•20) 62 = e'-(5" fi21)/5 2` Oe0799.

Mhe asymptotie values Åër(i), r=1,2, are given by

(2•5•21) k-l m. Åëi(1) - 2•e-2 A< o.27o7

and
(2•5•22) Nllm. Åë2(1) -2e"'2+(s+ A21)/s e e""(5"i25il)15 2t o.472s.

     Proof: {rhe proofs of (2.5.i9) and (2.5.20) are

straightforward by (2.5.4) and (2.5.12), respectively.

By (2.5.9), we have

(2•s•2s) tpx(i)= ik Åëza)- IIIiti:i!i Åë,(ml-o- IIIif} li N2':bi {k li ik

                                              s=ml-1 k=s+i
          '                '

                         •- 55 -
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(2.5.21) soon becomes Åírom this reiatien.

boreover, we get, b.y (2.5.9) and (2.5ei8)

                                   NN(2.s•24) Åë2(ms"-i)= liibil;}i Åëi(Mi-i)' ,..i.Il-i i} kEls+i i}

                     N•--2 N-l N
                  "Z ill' EkE L'i"'e
                    s=mf-1 k=s+1 L=k+1

Henee
(2.s.2s) tp2(1)- -IN Åë2(i)-- M2i'-l Åë2(.s-1)

             .,,,,,. iiii,i;iEi lMii2' k. S l. Ns2 }Nsik S

                          Ns=m5-1 k=s+1 s=mf-l k=s+! Ltsk+1

We can immediateZy have (2.5.22) by (2.5.25)

     [Dable 5 gives the values of ml, m5, Åë1(1) and Åë2(l) for

                                             'some values of N.

                       Mable 5

1
L'
}

.

N ml m5 Åë1(1) Åë2(1)

   5
   4
   5.
   6
   7
   8
   9
  io
  20
  50
 xoo
 500
IOOO
  oo

      1
      1
      1
      1
      2
      2
      2
      2
      5
      7
     14
     68
    156
O.15555N

      1
      l
      1
      1
      1
      1
      l
      i
      2
      5
      9
     40
     80
O.07986N

O. 61Ui '
O.52085
O . 4•56,67

O.40855
O.57222
O.56621
O.55907
O.55145
O.50760
O.2849i
O.27779
O.27208
O.27157
O.27067

O . 9LIZUut

O.88542
O.85167
O.78426
O.74265
O.70594
O.67540
O . 6tut5 5

O.5482i
O.49984
'O.48615
O.47522
O.47586
O.4725i
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'[Mne vaZues

Rasmussen

 of mi and

and Robbins

tpi(1) are

 (X975)•

reproduced from Table 1 in

     Remark. [[he recurrence

also be solved simiiarly and

numbers m" (rk5).

relation (2.5.2)

we can obtain the

Åíor k.5 can

 critieaZ
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2.4 Backward Solicitation with Rejection Probabiiity

     We shall investigate a model where the dieision--maker,

who is aZlowed a backward solieitation at any stage, succeeds

if his choice is the best among aU, but eaeh of the objects

has the right to reÅíuse an oÅífer of aeceptanee with a known

and fixed probability Z-p, O<p'<1, independent of its rank

and the arrangement of the other objects. IÅí an object is

chosen and i•t accepts (reÅíuses) the offer, we caZl it

available (unavailable). We assume that a backward solieitation

may be attempted at an,y stage, but that solicitation may

not be successtul, whereupon the decision-maker must resume

his observation of the remaining objects. SUppose that the

decision-maker is at stage k and has recognized that the

j-th (lsj$k) object is the relative best among those k objects.

We set mkrk-J' , if j-th obJ'eet is available and no attempt

has been made to procure it and mk=cos iÅí j-th is unavaUabie

or an unsuccessful attempt has been made to procure it.

Vhus mk is interpreted as the relative position (to k) of

the best available object and it can take values O,i, ...,
k--1, co . We denote this state by (k, mk)e ln state (k, Mk);

we call the (k-mk)-th object a "eurrent candidate" if mk=O

and a "potential candidat.e" iÅí 1$mksk--i. Wiaen we need not

distinguish between a cui?rent candidate and a potentiaZ

candidate, we call them by the name oÅí candidate.
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     We su.ppose that the decision-maker is now in state

(k, Mk). I)et 7t,1(k, mk) be the probability of obtaini.ng the

best object if he decides to observe the next object without

solicitation of the eandidate and 7r2(k, mk) be the probabUity

oÅí that iÅí he decides to solicite the eandidate. {[laen 7T(k, mk),

pr'obab"ity of obtaining the best object under an optimal

policy starting from state (k, mk), becomes'

(2.4.1) 7r(k, mk) = max[7rl(k, mk), 7r2(k, Mk)],

and, Åíor aZl mk

(2.4.2) 7Ti(k, mk) = ig+lr z(k+isO) + iifiIl}. z(k+i, co)+ Iil+ir rr(k+i,mk+i),

(2.4e5) 7T2(k, mk) = -k- q(mk) + (l•-q(mk))7r(k, oo),

                                         '
(2•4.4) n (k, co ) = IEI.IT '7r (k" ,O) + !Efi.Lii2 z (k+l, co ). "skiN-l,

                                               '
                                '(2.4.5) 7r (N, MN)= q(MN)•

S'ince 7r(N,O)=1 and 7r(N,co)=O, by repeated appiications of

(2.4.4), we have

                       N j-2(2•4.6) tr(k,co)=pk 2 Iu}llfl!rSl(u ) ll (i +`il{iR) e

                     j=k+i L=k

rn this section, we assume ,LtL'a- (i + :i!tZR) = i, if b<a.
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     Once the set of values eÅí{q(m)} is given it is easy

to solve recursively the system of eqthuations (2.tF.D-(2.4.5)

and obtain the optimal policy. rohe case oÅí constant

probability and geometric probabiiity of successÅíul procurement

are discussed in detail in (i) and (ii), respectiveZy. .

Our moqel reduces to the Yang model if p=1, and also to the

Smith model if the appropriate limit cases are taken in (i)

ii:dng(llgJ 'LVe OWe the proofs of our theorems and iemmas to

(i) Constant probability; q(m)=q, m).1.

     I{ere we consider the case oÅí constant probability

of successful procurement q(O)=1, q(m)=q, for 1$m$N•-i.

Then we have the following result.

     {Dheorem 4el. Pass over the first n{-1 ebjeets and

thereafter accept the earliest eurrent eandidate. Te it

happens that stage N is reached and the absolute best is

among the first nf-1 obJ'eets, attempt to procure it.

n{ is the smailest integer s such that

            N-i
(2.4.7) ll (1.:1!tz}Z)$1..s(t]2igA=!,=gz.1 )(Z )

            L=s '
                     '
The maximu.rn probability 'of obtaining the best object is given by

                                                          '(2.4.s) u.SI'}!if!.2iRgi1)pq.Sl'}lil!g;1lgp[L./r,1"(1.,iE").I].

It is also shown that •
(2•4•9) iklgg ni/N =[r:REti<T:is7, p ]i/i-P ,,
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 (2'4'LO) iAi.McoU=['7"itr:u?lil:s'i;;is"q(i-p)}pli/i-P'

     Pi?eof: First we show that 7Zi(k, mk) 4 7r2(k, mk) for ail

ksN--1, when mk\ O. We prove this by 6ackward induction.

When mk = co , it is evident that 7ii(k, Mk) = 7r2(k, Mk).

ndor k = N-1, it is easy to see that

             '     7r1(N--l, mN-1) - 7T2(N-1, mN-i) = ]liSl i O, for mN-1 tsF O .

Now assurne that 7rl(k, mk)l7r2(k, mk) for ali k = s+1,

s+2, ..., N. --2, N-1, when mktF O. Then, Åíor mst\ co , repeating

(2.4.2) we obtain

(2.zF.u) zi(s, m.) = ps j.lii.i J'•T(J'-.O + (i-p)sj.X.i fJlli-il!{i3I"FJ it}q ,

and by (2.4.5), for ms\ O

(2.4.12) 7T2(s, m.) = R q + (i-q) 7r(s, oo ).

Hence, substituting (2.LF.6) into (2.4.li) and (2.4.l2), we have

            7rl(s, ms) •- 7r2(s, ms)

                                                   i-2       = psj--ii., iJ}Silili3J + (i'-p)psj--II., :uSErilij., .T(' Zi•-O .'g,. q+ :iEzE

                 N j-2                 Åí z(lO ll a.,i!:R)        -(1-q )ps
                j=s+IJJ- L=s •L
              N j--2      = Pqs j.g.1 fJl[i{l l8o 2g. (1 + :ZEii2).o .
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 I!hus we get 7Tl(k, mk)i7T2(k, Mk) fO]b Mk )F O.

 Moreover, we must show that if there exists s sueh that

 7T(s,O)=s/N, then 7T(s+1,O)=(s+1)/N. Assume that, when

 7r(s,O)=s/N, 7v(s+1,O)= 7zrl(s+l,O) >(s+l)/N. Since, for mk# oo
                                                            '                               ' Zl(k, mk) does not depend on mk, vLre have by (2.4.2)

                                           '
     rri(s,O)= gBr rri(s+Z,O)+ is}ilR+ rr(s+i, co )+ gilr Ti(s+i,i)

             '
                    '            4 g{/ii?l rrl(s+1,o)>gsEIi?+ .Ski = Eipeg .

                        '

                                              ' orherefore, 7r(s,O)=max [nl(s,O), s/N] > s/N. Mhis is

 a contradiction. Sinee we have known the form of the optimal

 policy, the maximum probability of obtaining the best object

 can easily be comp.uted. When we set us= rri(s,O), the deeision-

maker aeeepts the s-th object if and only if s-th is a cutrrent

 candidate and us-E{ s/N. Let ni = min{s us s s/N } , then

    'we have by (2.4.2), (2.4.5) and (2.4.6), for n{ $ s$ !g "

  '

(2.4.u) u.-i = ].2 ' ft + :i! g]2 z(s,oo)+sgi u. - l} 2gtLi.a.:itii]!t).sgi ..,

with UN-.1 = p/N + (N-l)q/N. Mhe solution of (2.4.is) is

(2•4•i4) u.= i{L + N?li:spy[llil:(i + :iL7R) -- i], for s=ni--i, ..., N"

Hence, nl can be expressed by (2.4.7) and the maximum

probability U, whieh is equal to punl-1 + (l--p) 7Zr(ni-1,co).

.
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beeomes as

(2.4.9) and

    Table

of p,q and

given by (2.4.8). We

 (2e4•10), bY (2e4e7)

       '
4 gives the vaZues of

N.

             Mable 4

can immediately obtain

and (2.4.8), respeetively.

ni and U for some values

p=O.5

q Oe2 O.5 O.8

N n{ U nl U n{ U

   2
   5
   4
   5
   6
   7
   8
   9
  10
  20
  50
 100
zooo
 co

    1
    2
    2
    2
    5
    5
    5
    5
    4
    7
   16
    52
   509
O.509N

O.5750
O.5250
Oe5219
O.5122
O.50i6
O.5015
O.2987
O.2946
O.2958
O.2858
O.2809
O.2795
O.2779
O.2778

    ,
    ;
    k
    g
   ,g
   2g
o . iiMft

O.5750
O.5750
O.5594
O.5565
O.5516
O.5489
Oe5472
e.5450
O.5Z#F4
Oe5585
O.5554
O.5544
O.5554
O.5555

    2
    5
    5
    4
    5
    5
    6
    7
    8
   i4
   55
   70
  695
O.694N

O.4500
O.4555
O.4292
O.4275
O.4250
O.4252
O.4250
O.4222
O.4212
O.4189
O.4176
O.4171
O.4i67
e,4167
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p=O.8

q O.2 O.5 O.8

N ni U nl U nl U

   2
   5
   4
   5
   6
   7
   g
   9
  IO
  20
  50
 100
1000
  oo

     2
     2
     2
     5
     5
     4
     4
     4
     5
     9
    21
    4Z
   405
O.402N

o.4soo
O.4800
O.tl2"80
O.4S52
O e t"28Li"

O.4177
O.4170•
O.4120
O.4098
O.5976
O.5905
O.588Z
O.5860
O.5858

     2
     2
     5
     5
     4
     5
     5
     6
     6
    12
    28
    56
   556
O.555N

O.6000
O.5600
O.5467
O.5512
O.5296
O.5221
O.5215
O.5178
O . sl ro4

O.5077
O.5026
O.501i
O.4996
O.4994

     2
     5
     4
     4
     5
     6
     7
     8
     8
    i6
    40
    79
   784
O.784N

O.7200
O.6955
O.6800
O.6720
O.6720
O.6705
Oe6686
O.6667
O.6656
O.6620
O.6596
O.6589
O.6582
O.6582

                        '                '
     Remark. ithen q.O, (2.4.7) - (2.tt.10) agree with those

of Smith [20] , and when p-1, (2.4.7)-- (2.4.10) reduce to

filheorem 4 of Yang [2 i]21and in this ease ni is the sMaUflEi •

integer  s such that LZ.s 1/L $ !-q and U = (ni-1)/N'(q+i---nl.iZ/L)'

Hencev N.co , ni it Neq-i, and u2eq-l. ,,

                                         '

(ii) Geometric probabiZity ;. q(m)=qM.

     Here, we consider the ease where the probability of

suceessÅíul procurement is geometrie, that is, q(m)=qM.

We mu$t prepare two lemmas beÅíore deriving the optimal strategy

in this case. Let n' be the smallest integer s such that ,

                     Si.l (i+ :iEfz)..$- .
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     Lemma 4.2. For any {q(m)} , no soZieitation'should

be made prior to stage n'.
                           '
     PreeÅí: Let

                     N j-2        a(s) -k-p 2 g(g-.O n a + ;itii]? ), i<$$ eg.

                    j=s L=s-i

Since a(s) is inereasing in s, we can define cr as max{sla(s)SO}.

Now put

(2.4.15) D(s, m) = tr(s, m) •-• 7r2(s, M).

f[laen we have

 7zr x(s-1, m) - 7T2(s-1, m) = g [p7T(s,O) + (Z--p)z(s, co ) j

 + Sgi [D(s,m+1) + 7T2(s, m+l)] -- Sili:q(m) - (1-tsq(m)) 7T(s-1,oo ).

                                       '
 Using (2.4.5) on 7r2(s, m+i) and (2.LF.4) .in simplifying, we find

  7tl(s-l, m) •- z2(s", m) = Sgl D(s, m+l) + (s-i)[a(s+1)q(m+O

             - a(s)q(m) ].

                                           '
For s$ cT, a(s) $ O, we have a(s+1)q(m+i) -• a(s)q(m) ) O.

D(s, m+i) is non-negative, we see that the right side of

 (2.4.16) is nen-negative for ali m and sSa. Hence, no

solicitation should be made prior to stage o'. Mo eomplete

the prooÅí, it suffices to show that cr in". From the

definition of n', this is equivaient to showing that
N-l
Lg..(i + :ltZ12)$ l; . By the fact that o<a(a+1) andz(j,o) ift,



we find                        N j--2
            O<k- ft j.;., ,3Jlr ,g.. (z + Aii2) •

[[his can be rewritten as

                 N•-1
                 n (i + :ZiF2)$} .

                 L=a

                      N--1 -     Now iet b(r) =p o (l+ :lkZ2) . g?hen n" is the largest

                     L=r-1
integer such that Z-b(r)-S O.

     Lemma 4.5. Suppose q(m)>Ofor ail finite m. :f there

exists a T such that T is the smallest ]?(i n") satisfying

(2.4.i7) S2{(i$ifigf}) si.-.bi'.i for an m<.,

then the deeision-maker should make soiicitation te the

earliest eandidate as it appears if the process has not

terminated beÅíore stage 7.

          '     ProoÅí: Note that relatien (2.4.l7) holds Åíor any r<T,
                                                      'beeause 1 -- b(r+1)1L•-b(r+2) is a monotonically increasing

function for rin'; We prove our lemma by backward induction.

Xt is easUy seen that 7Zrl(N-1, mN-1)S 7T2(N--1, MN.-i). SUPPOSe

         'that 7Tl(k, mk) -'7T2(k, mk) S O for aU mk and k) s+1> T.

[ehen D(k, mk) = O and a(s) = 1/N -[b(s) - p] IN(1-p) for all

                           'k4s+1. By (2.4.16)
    7Tl(S, Ms) •-b 7T2(S, Ms)

     = s[a(s+2)q(ms+1) - a(s+1)q(m.)]

                        -- op -



    = N?IS[=is'rp [{1 - b(s+2)}q(m..1) -{1 - b(s+1)}q(m.)]$ o.

                                                           '
[[inis induction •terminates at k = 7. [Mtus our lemrna is D)?oved.
                                                       L               '

                                                         '     For the (cbreometrie case we can derive the optimal strategy

                                                         'of obtaining the best obJ'ect b;- the next theorem.

     C[heorern 4.4. In the geometrie ease, the eptimal strategy

is to pass o' ver the first n5-1 objeets, soiicit the eandidate,

if possibie (no matter where it is) at stage nE, and iS the

procurement at stage n5 is unsuccessfuis continue the

observations of the remaining obJ'ects and accept the earliest

eurrent eandidate thereafter. The value of n5 is the largest

t whieh satisfies

                   )e(t)             ffS(ilS]irir:E'<7e'>]- > i-'q ,(2.4.18)

where
 ' '                           N•-1
  '                  c(t) -P LE.t (l + :i\ZP) •(2.4.19)

CMze maximum probability of obtaining the best object is given by

                        *•(2.4.2o) v rkp •i!f8gq22[i - e(h5)]+ rdiltis s-p [c(ns) ep ] •

                                                    .
                                        '
     ProoÅí: n" satisfies the relation (2.4.X8) fer all q.
    ttThus n5 exists and n5 k n", which is guaranteed by 1)emma 4.2.

                             '    '
!t is easy to see that, when we put T= n5, (2.4.Z7) and
(2.4.18) are equivaient in the case oÅí q(m) = qM.

-• 45 -



fi!herefore, by Lemma 4.5, aM we have to do to complete the

proof is showing that 7T l(k, mk)47t2(k, mk) for aU k<n5.

We prove this by backward induction. )"rom the definition

of n5, we obtain .

         ' z- b(nE) a(n5)
              q>rm2 = zitti?2ru .

Also, b,y (2.4.16) and the faet D(n5, m) =O for any m, we have

(2.4.21) 7rl(n5-1, m) - zr2(n5-Z, m) = (n5-1)qM [a(nS+i)q - a(n5)].

Since nE =7 i Cr ,a(n5 + 1) > O, (2.4.21) is positive. Now

suppose that 7rl(k, m)l 7T2(k, m) for all k = s+1, s+2, ...,

n5 -2, n5 -l. Then we have

(2.4.22) 7Ti(s, m) = ps jil:.1 ngJ J ) + (i-p) sjtli.i IJ?2•g-2- 9-jl(J ))

                  + {.ll 7T(n5, m+ ns - s) .

By (2.4.6), second term in the right hand side of (2.4.22) becomes
 'i  i'' (i-p)so.ZIIi.i.iIJ;ll-i}2Il2`i(u )) ' ' '

                N                              j-2         = p s j.i.2 ZtoFli{la-:S?J )) [.L e., (i + :IEi]2) - 1]

                   N                                j-2          -P S j.ni..2 io\li{l"2':S\" ))[Le..s (i + :i!ii]2) -i]
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(2.4•2s) = z(s, co ) -- is rr(ns,oo ) - p s j.zn .li fJ\li•fl2-:Ell(J )) .

B:.r (2.4.6) and the fact that 7z(j, O) = j/N for j> n5 , we have

(2•4•24) rr(ns,oo)=2i'S5 zN ?JT:!ri ji2 (i +:iv2) -futp [e(ns)-p]

                      j----nS+Z L=n5
     '
reherefore, (2.4.25) becomes

             45
    (i"'p) s j;..i iJlIi-il'2' 2-IJ ) = z(s, co) - mbp gc(ns) -p]

                                 n5
 (2e4•2s) - p s J..l[.).i ilJIFIi'g'2=91J ) .

By using (2.iS.24), thind term Qf (2.ZF.22) beeomes

                          .                                              'g{ 7r(ns, m+ ns - s) = -,S{i. [-"fir5 qM'n5 -' S+ a - qm"n5 -s) 7t(ns,co)]

(2.4-.26) = •E--. qM"";ili -S + :IFir(-r:S p (1 - qM"";lli -S) [e(n2') -- p] .

Hence (2.4.22), cembined with (2.4.25) and (2.4.20, can be

rewritten in the foUowing form
                           '(2.zF.27) 7Tl(s, m) =7r(s, co) •+ {li qM"n5'S -- Teerg-iprqM""5-S [e(n5)--pi

           '
On the other hand, we get

(2.4.28) 7r2(s, m) = fl qM + (1 -- qM)7r(s, oo ).

{ffhus by (2.4.27) and (2.4.28), to prove nrl(s, m)47zr2(S, M)

    '
is eq.uivalent to showing that

.

.
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 (2.4.29) g(s) ![i - c(n5)] qn5-S - (i-p) + }'(i-p)rr(s,oo )i o.

Sinee we elready know that g(n5 - 1) l O, it suffices to

show that tL(s) is a decreasing function in s. By (2.tF.29)

we have
         g(s+i) -- g(s) - (i--q)q"5'S-i [i -- c(ns)j '

(2.4.so) -l,NT(1--I)['L:i=Nbf:.'(Soo)-ZES(,.l}tt..eEL,.l )j.

xt is easily seen by backward induction that, for s+1 $j$ n5 -1

                n5-j-1
    z(j, o) - Xs .Åí., 7T(nS , m) .+ g.s "("5:,-".,5)I.g.]j)

                                      ' -pt:.Ezr--'- rr(n5,-)(2et"•51)

and

(2.Lv.52) 7t(n:3 , m) - " lli qM + (i - qM) 7t(nl5 ,oo ). •

5,g"ggA ;g,gggst;rxrl,ng ig•4•24) and (2•4•s2) into (2.4.,,),

(2.4.ss) z(j,o)=sui =isr-'- -C("5) [p!L:{ill2q:il.J.qns-J'].Ilt41Ki:fllil3:!21[C("p2)P].

                        '
B,y (2.4.6), we have

(2.4.s4) -N(1-p)[;7Z:ZL:.s.;:-L(SOO).-Z!S(:{IEIi-22-,2...Z )]

                                         N        ..pN(i-p), z!3(gtÅ}ifsLLz o)-•"N2ig:]2`t:E{(i )2j.ii.2fJ}E{l"82(o )2.ilZ(i+:iEiE

                                                               '

                          '
                  '

                         - 48 -
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Since p < c(ni) -S 1, by (2.4.55) the first term in the right

side of (2.4.5LF) becomes

(2.4.ss) - N(1-•p)p •Z!!(:{}ili`Sttil-Z-1 O)

        . .. is[{(I}ge-}) [ Si:l(eell5gn2)pP {.s -- (..i)q.n5-s-i}

        .e.Etili?;ll]IZic(p"2)]iL:i'lli:E:]L":Si .k(..i)qns-s-i]-,..-s(Eg]2z2i ) qns-s`-i.

By the Åíact that 7r(j, O) 2 j/N,the second term of (2.4.5i-) becomes

                      N J'-2(2.4.s6) -N(i-p)2 gj.g.2 i,\8•:.9i}J ) ..R..i (i + :i-ZR )

                    N-1
        s -- :iEgR[p L.g.i (1 + :iL2R) - p]$- :iÅígE [c(ns) - p]

         $ .- :isg2 qn5-S-'i [c(ns) - pl .

From the definition of n5, we have (i-q)[1 - c(n5)] <(i-p)e(n5)ls

Therefore (2.4.50), combined with (2.4.54)-(2.4.56), becemes

                        '                                                 (i-p)c(n5)(2.4.s7) g(s+i) - g(s)sqn5'S-1[(1-q)(1-e(ns)) - . ] r<.o

whieh shows that g(s) is dec?easing in s. {I!he maximun

probability V is given by .
(2.4.ss) v= .n2/Lio l.lg z(ns , m) + a--p)z(ns,oo ).

                                                              '
               '
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Substituting (2.4.24) and (2•4e52) into (2.4e58), we have

(2.4.20)• Mhus the proof is compZet'ed.

Mable 5 gives the values oÅí n5 and V for seme vaiue's

of p, q and N.

Table 5

p=O.5

q O.2 O.5 " O.8

N n5 v n5 v n5 v

   2
   5
   4
   5.

   6
   7
   8
   9
  10
  20
  50
 100
1000
  oo o.

   1
   2
   2
   2
   2
   5
   5
   5
   5
   6
  15
  26
 251
250N

O.5750
Oe5167
O.5104
O.2994
O.2878
O.2804
O.2785
O.2755
O.2715
O.26e4
O.2559
O.2519
O.2502
O.2500

     l
     2
     2
     2
     5
     5
     5
     4
     4
     6
    14
    27
   252
O.25eN

O.5750
O.5542
O.5507
O.5102
O.5050
O.2962
O.2889
Oe2852
O.2809
O.2650
O.2545
O.2521
O.2502
O.2500

     2
     5
     s
     4
     4
     4
     5
     5
     5
     8
    16
    29
   255
O.250N

o.4soo
O . ZI067

O.5792
O.5585
O.5459
O.5557
O.5249
O.5185
O.5U5
O.2804
O.2595
O.2556
O.2502
O.2500

p=O.8

q O.2 O.5 O.8

N n5 v n5 v n5 v

   2
   5
   4
   5
   6
   7
   8
   9
  10
  20
  50
 ioo
IOOO

  i
  2
  2
  5
  5
  5
  4
  4
  4
  8
 l7
 54
529

oo O.528N

O.4800
Oe4587
O.42e5
O.5912
O.5860
O.5754
O.5659
O.5659
Oe5595
O.5419
O.5552
O.5504
O.5280
O.5277

     2
     2
     5
     5
     5
     4
     4
     4
     5
     8
    18
    55
   529
O.528N

O.6000
O.5067
O.4567
O.4556
O.4091
O.5977
O.5885
O e 5774'

O.5755
O.5468
O.554i
O.5506
O.5280
O.5277

     2
     5
     4
     4
     5
     5
     6
     6
     7
    10
    21
    57
   552
O.528N

O.7200
O.6507
O.5904
O.5579
O.5098
O.4828
O.4647
O.4491
O.4555
O.5757
O.541i
O.5526
O.5280.
0.5277
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     Remark. VXhen q-o, (2.4.18) and (2.4.20) agree with

those of Smith[20] , and when p-•1, (2.4.Z8) and (2.4.20)

reduee to [[heorem 5 of Yang [28] and, in this case, n5 is

                                               N-lthe iargest t whieh satisfies {11(1--q)(t-1)}+ 2]                                                  1/L>t
                                               L=t

                   N-l N-1
and

 v = (i-q"5)(i'- L21.l.s k/L)/ i"'(i"'q) ' ("5 zil.]-.s i/L)/ N'

 'since, as N-co, n5 is iarge and the relative pOsitiOn mns

of the eandidate is also large with high probability.

Hence, it does not matter whether we make backward solicitation

or not. {"hereÅíore the asymptotic results for OsE{q<i become
n5kNpYi-P and vMpl/1"'P, which are independent of q. When

q---i, it is trivial that n5 = N and V = p.
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      5. A Seeretary Problem with Iiltill-information

5.1 Recognizing the Best with [[beo Choices

     ])et Xi, i=1, 2, ..., N, be tlLe value attached te the

i-th obJ'ect and suppose that Xi, X2, ..., XN be independent

and identicaUy distributed random variabies with a common

distribution function F(x). F(x) is assumed to be known te

the deeision-maker and is eontinuous and strictly increasing

on the set where O<F(x)<1. After a random variable has been

observed, the decision-maker must decide to accept it or

reject it and take another observation. {I!he decision-maker

is aiiowed to make two choiees, and iÅí he has not accepted

until the last two observations, then he is forced to choose

both of them. If either of his choiees is the iargest of

the sequentiaily presented randem variables, he suceeeds.

Mhe problem in this section consists of finding a policy

which maximizes the probabiiity of suecess. Since the

distribution function F(x) is continuous and strictlY
                                                      '
increasings and since the iargest measurement in a sample

remains the largest under aU monotonie transformations oÅí

its variable, we can assume without loss of generaZity that

F(x) is a uniform distribution on the interval (O, 1).

Foilowing Sakaguchi [16], we employ dy.namic programming approach.
     Let pÅír)(y), r= i,2, 1$nsN-1, be the probability of

success under an optimal poliey, given that y was the largest

value observed so far and was reJ•ected, and that the decision-

maker is stili allowed to make r choiees from the remaining n
                         (l)observations. Iet also qn (y) be the probabUity of suecess

                                                        '
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under an op. timal p.oliey, given that y was the largest value

observed so far and was already ehosen, and that the decision-

maker is sti11 ailowed to make one choice from the remaining

n observations. 1•;-Je have, from the I>rinciple of optimality

              '                             v"1' .(s.i.i) p- Åíi)(y) = :ypÅíll (y) .lmax{..n-i, pgi.-i) (.)} d.

                               L•
                                                    (o                                         (1$nsN--l, Po                                                       (y)=-o ),

(s.i.2) q,fii)(sr) =yq.Åíl2 (y) .lmg.{.rn-i, pÅíz-i) (.)} d.

                             hT•
                                         (isn$tN-l, q81)(y)Ei ),

                                 l(s.i.s) pÅí2)(y) - ypÅí2-z) (y.) +/rmax{q.(i") (x), pÅí2i) (x)} dx

                             -v
                                         (is nL,g N--i , p82 ) (y )=- o ) .

It is easily seen, by (5.1.1) and (5.1.2)

(s•le4) q-.(Z)(:.sr)= yn + pEi)(y).

(5.1.1) is the fundamental eq.uation for one choice problem

and is completely solved in Sakaguchi [16] . We now review

some remarkable results in [16.] . !f we define the

funetiens, fer n2-)1} over [O,1]

                                                  n
(5•le5) Åë.(y) =k+ silT y+ S. y2 + .•e+ yn-i - k\.1 (k"'i) yn ,
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 then the equation

 (5•1•6) Åë.(y) - yn (nS)
 has a unique root sn in the interval (sn-l, l) where we

 interprete so as O. Thus the seqvtence {sn} is strictly.

 increasin.pt.,. It is also proved that, ÅíOr Y2-iSn-1

 (s•i.7) , pÅíi)(y) - Åë.(y) •

 Inspection of (5.1.1) shows that the optimai strategy in the

 state described by this equatiion is to

 (s.i.s) (IcecJgittl the observation, :f x{$>) max (y, sn") .

 Hence (5.1.l) can be rewritten as

                                 s                               t n-1

(s.i..g) pgi)(y) - .,fi2(.) . J, pÅíl2(x)dx + k a-s.n.i) iÅí yss.-i

                              }a- y") if y>s..1

     Let (aVb) be the larger of the numbers a and b. Since

the seq,uence{(snVy)} is non-deereasing in n for each y,

'we can give the expiicit expression oÅí pfi1)(y) by the argument'

proposed by Gilbert and Mosteller[5] . Iet, Åíor nil

 (5.1•10) sj(.) . f Sj 'iÅí, j=O' 1 2, ..., n-'1

.
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                                            b
[M2en we have the following lemma. We intemprete E =o if

                                            a
b<a in the remaining part of this section. '

         '
    ])emma i.1. For sj(n).s:y-g-sj.1(n)

                               j ji(s.1.n) pÅíl)(;) = }. [1-(j+i)y"+ i!.lyn-iÅëi(y)+ i\.1 .!1 nlr Yn'"r]

                   n--1 ' i
                "ii.1 r;.l ir Sln'"r] (o$j$n-1, nko .

    Proof: By [5; Seetion 5c] and (2.5), it Åíollows

that for O=<y=<Z

                              n-i r
   pSi)(;) = ll { i-(s.-ivy)n } + 2) [.l'. 2] {} (s...ivy)r

                             r=1 i=1 -

            - } (s...iVy)"} - }' (sn-r-.IVy)" l

                                       '                            n-1 i           = }[i-(sn-i"y)n + [ { E (nl-r + })(siVy)ner

                            i=l r=l •
                      i'             --(sivy)n z kel -(.ielvy)n }]

                     k=1 .
                ' n-i           = }[i-yn . E {(.ivy)n-itpi(sivy)-(sivy)n

                     •i=1

                i
             " E n}r (sivy)ner}] .
               r=1

                      - 55 -



 Hence, by (5.1.6), we soon obtain (5.1.11).

      It is easily eheeked that, for sn-l$y$i, (5.1.ll)

 coincides with (5.1.7). In fact, by (5.1.IZ) and (5.1.5),

                            '

                      n-1 i i    pÅíi)(,y) .}- ,yn .k z yn--i{Åí} yi-r .Åí} yi}

                      i=1 r=1 r=i

                     n-1 i                   "}E Åí nl. y""r
                     i=1 r=1

               , n-l i n•-l i           -k- yn + Z Z iFzrits y"-r- } z Åí } yn

             - i=1, r=i ,i=l r=Z
                    n-2           .k- yn + E } yn-r -t nii nir yn

                    r=1                                 r=1

             n n-          . z },n-r- z }.n
            r=l r=1
          = Åën(Y) '

     Although it is obvious by its definition that qfii)(y)

is increasing in y, we can prove this by using (5.1.U).

     Iemma 1.2. For nS ,
              a)             q,n (Y) iS increasing in y.

     Proof: By (5.Z.4), (5.1.5) and (5.i.IZ), we have Åíor
s J• (n)=sg yssj.z (n)
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                                  JX i     qÅíi)(y) -kn + (n-i-j)yn . Åí yn-'i{E} yi-r - Åí} yi }

                                 i=1 r=1 r--1

               + Åí Åí ..l.'yn-r+nii 'S .l. s}'t].

                i=l r=1 'i=J'+l r=1

Differentiating both sides, we get

                                    -- -     qSi)(y, ) - } [n(n-i-j).vn'i + n z { z } yn'-r'"i e yn'-i z}

                 • i=Z r=1 r=1
                             ---                             J ie 1             . (.-l-.j)yn-i . 2 yn-1'-i{E}.yi-•r - yi z }}

                            i=i r=1 r=1
                             j
             . (.-1.-j)yn-1 . Åí yn-1-i Åëi(y) ,

                            i=l

                        2 and henee, for o<y<i, qÅí1)(y) > o .

                     '
            (2)              (x) is non-increasÅ}ng in x by its deÅíinition,     Since p           n
and qSl)(x) is increasing in x by Lemma i.2, the equation

(s•1.12) pÅí2)(x) - qgl)(x) (na)

has a unique root which.we dgnote by dns where we interprete

do as O. Mhen (5.1.5) shows that, when the decision-maker

is allowed to make two ehoices, the 6ptimal strategy in the

state deseribed by (5.1.5) is to

}]

- 57 -



(s.1.b7) (ieecjeegl,] the observatlon, zf x(>f'g]max (y, dn"l) .

As for the Åíirst ebservation, interprete the above strategy

as y=O. Now (5.i.5), with (5.1.4), can be rewritten as

                            f. ,d."/i(x)dx +J,.p-iii-i)(x' )dx " k(i-d:-'i )

(s.1.14) pfi?)(y)-srpÅí2-1)(y) if ySd.-1
                              .                            fyX pfill(x)dx + -k-.(1-y") if' y>dna .

since we have obtained pfil)(x) explicitly, we can solve pfi2)(y)

recuarsivel,y by (5.1.i2) and (5.1.l4). Differentiating (5.1.14)

for:Sdn-v we have

              tp(s•z•is) pfi2)(Y) - ypÅí21(y) ,

with the boundary eondition
                                            •1(s•i•i6) pE2)(d.-i) = ' ik + (i" ik)dg-i + d.-ipfii-i)(dn-i) tlpl[l2(x)dx

                                                      L                                                       y'

     ])eMMa le5. di<d2<..' <dn" <dn< "' .

     Proof: !n order to preve dn-x<dn, it is suÅíficient to show

                                                                 '
(5•1•17) PÅí2)(dn-1) > qfi1)(dn.-l) .

We obtain, by (5.1.4) and (5.1.16)
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    p. E2)(dn-1) " qÅí1)(dn-1) = ik,(1-dll'1) "7d(.iil(X)dX

(5.Z.l8)
                       -{PSi)(d.-1) ' d.-iPÅí1") (dn-l) }

IJell, b,y (5.i.9), the right hand side of (5.1.Z8) becomes
                             Sn-1                  1 /i pÅíl-l)(x)dk + }(1--s:-1)

(.z..i.ig) ka-d:-i) +I pH gl{(x)dx• - dn-i if dn-issn-x

. dn--l }(1-d:..i) if dn.1>Sn-l
                    '
                         l          }(s:-i -d."")+7S pÅíll(x)dx it dn-.issn-i

       = fdniill(x)dx Sn-i zf dn-i>sn-i

In either case, (5.1.19) is positive. Hence, the lerma is

pyoved .

    :Jemma 1.L;. ]IOr y).dn-1 ,

                '
                                   '(s•i•2o) pfi2)(y) - Åë.(y) + l/Lly"-i" fy IS.i)(x)dx (n).i) .

                       '                                       tt                         '             '                           '                       '
    Proof: We show this by induction. Since, by (5.1.5),

pS2)(y)=z-y, the lemma is true for n=i. For rp2, if kdn,

then y>dn-i by ])emma i.5e
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     ProoÅí: We prove this lerrma by induceion. Since it is

easil.y shown that si=i/2 and dl=O, the lemma is tr'ue for n=i.

Assurne that, the lemma is true for n=k-i. sinee pÅí2)(y) is

non-increasing and aEi)(,y) is strictiy increasing, it sufÅíices

to show

(.z.i.22) qÅíX)(skS > pÅí2)(sk)

in order to prove sk>dk. We observe by (5.l.4), (5.1.6) and

(5.1.7)

('p.i.2s) qiii)(sk) - pE2)(sk') - 2sl - pi22)(sk)•

g]he seQuence {sn} is strictly increasing, so sk>dk.-l by

induction hypothesis. Hence, with Lemma 1.tP, (5.1.25) can

be rewritten as

                     k--l tr! k-1 vl
(27 •1-24) 2si- { Åëk(sk)+i;.1sl"i"i)(l.kp5• 1)(x)dx}=skkkZ.1si-i-'V.kp.(• i)(x)dx.

since p5.1)(x)<xi, for all i=1,2, ..e, k"1, and x>sk,

 k--i vi k-i tri  z si-x-V            pi(i)(x)dx < E sl-i'-i)21 xidx = tpk(sk) -- Si-i + sl

 i=1 Sk i=l                                 Sk

                      = 2si -.si-i .

Applying.. this inequality to (5.i.24), we have

       qS)(sk) -- pE2)(sk) > si-i(i-sk) > o
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whieh is the desired result.

     We finally calculate the probability of suecess, which

we denote by. Pn. As easiiy seen by Lemma l.5, i.4 and

(5.1.15), P•n ean be written as

      '
    p.! fo kax { pS2-i)(x), qÅíi-i)(x) }dx

      .-I g:/2'.-.l/ (x)dx +L/(,i{..ly"-Z + pgi-,)(x) }dx ,

(5'i'25
1J,d,n"fi22-l(.),. .J,d

." ]{,i,.-.,(.) +IZ: x"-"2-zJ.ip5•i)(y)dy } dx

           i        "fd.P-ni"ii)(X)dX " } (i-dft..i) •

                     '                           '

To calculate the first term of (5.l.25), we prepare the

following lemma which is similar to that obtained in Sakaguchi

[16; Section 5].

                '
    Lemma 1.7. For any positive integers m and k
        z,( g:/2-i)(.),.. .J, ;:/ii/(.)dxk+i +JddhltS..1(.).lil.ii.m--2-i

 (5.1.26)
       '.,l. IS•1)(y, )dy }dxk"i + } dkm-1(1"-d:-}) " di"fd.;-mil-z)(X)dX. '

                                  '
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   Proof: (5.1.4), (5.le12), (5.l.15), (5.l.l6-), ])emma

!.4 and integration by parts give
.s,1 jm./sg(,,),.k . [,s2)(.).k]gm-i.hf, gimi/sg(.).k,.

                .d                          m-1          = pE2)(dth-i)dk-i -fp'./22(x)xk"idx

                       o
          - p,S2)(d.-.i)dl:-i - [ pth21(.).k+1]dom•-i .L,S ;MS:/(.),.k+i

                                     o
          = { k ' (i- ih)d:-i ' dm-ipÅíll (dm-i ) "/d .iiZ- i) (X)dX }d lE "-i

            - { d::ii"pSl(d.-.i)}d:"-IJ S'8pME'il(x)dxk"ig5,,iMill(x)dxk"i

           = iildi -,(i-d$-,) -- glX-,)z,i.ip..S-.,)(x)dx .ggM./5i.),.k+i

            +>d(kd-tM.2:l(x) + ':i.2i xm-2-iL,.lri p;i)(y)d.}d.k+i .

[[hus the lernma is proved.

   [Mieorem 1.8. For m-5,

   pn = i:.i [(n'-i) {7(d ilihi-i-i oi(x)dx + lt'.--iz fdidil"-2-J'dx/.ip(u.o(y)dy}

                '
(5'i'27)  . ii.:i:ri (dlf. -i-i-dl.i) + dl•i-i-i/d.IE•i)(x)dx].

                            i
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Proof: Applying (5.1.26) repeatedly, we have

fo dn--2

(2)
Pn-1(x)dx =

fo d
n-5
(2)

Pn•-2
(x)dx2

  '5,gn,I•Z-,(.,.
n--5

ÅíX
i=l

n-5-xf
   X

1

(1)
pi

(y)dy}dx2

" iiii-!]l-(dn-2-d n
n-2 ) + dn-2

Jd.i";!3

(x)dx

-J,gnÅíi4}

(x)dx5
 d+fd.-z"tsÅë:-s(x)+.".:.i4.

n-4-i
fx$E'i)

(y)dy}dx5

5,g{:•;nt,(x)+i.,Ll .n-5-i f

    x

l

(1)
pi

(y)dy}dx2 . 1
n-2

(d fi-s-d ."-s)

 1+ n-Z (dn-2-d n
n-2 )+d

g-s/,.plSii

(x)dx + d

"-2fdiil3

(x)dx

(5.1.28)

--ee

-".:.i[),ll,l/ll    i-i
(x) +Ex
   J' =1

i-1-j /x i
(l)

pj (y)dy}dxn-i. z
r.T

(di '-i-i
--

d\. )

+d\-i-zL4d(i
1

pfi)
z

(x)dx ] .
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Note

s,{g

  z-

that

i

i(x)
1

+itL.lxz-i-J,.(

Substituting this

with (5.1.25), we

    Table 6 gives

into

have

 the

$S)(y)dy}d.n-i= (n-z)IY31./iln-i-iÅë.(.)dx

      .;l/S'1,d.}I2-Jd.L,C}gi)(y)dy} •

(5el.28) and combining the result

the desired expression (5.1.27).

values of sn, dn and Pn for n=1(1)50.

  Table 6

n Sn dn P
n

1
2
5
4
5
6
7
8
9

10
ll
12
i5
l4
i5
l6
17
18
19
20
21
22
25
24
25
26
27
28
29
50

O.5000
O.6899
O.7759
O . 82dy6

O.8560
Oe8778
O.8959
O.9065
O.9i60
O.9240
O.9505
O.9561
O.9408
O . 94tt8
O e 948`l'

O.9 51 5
O.9542
O.9567
O.9589
O.9609
O.9627
O.9644
O.9659
O.9675
Oe9686
O.9697
O.9708
O.97i9
O.9728
O.9757

o.oooo
O.4085
O.5676
O.6605
O.7202
Oe7625
O.7955
O.8172
O.8561
O.8515
O.8642
O.8749
O.8841
O.8920
O.8989
O.9050
O.9104
O.9i52
O.9195
O.9254
O.9269
O.9502
O.9551
O.9558
O.9585
O.9406
O.9428
O . 9ZiZ-8

O.9466
O.9484

l.OOOO
1.0000
O.9450
O.9170
O.9021
Oe8925
O.8854
O.8805
O.8765
O.875I
O.8705
O.8685
Oe8665
O.8649
O.8656
O.8624
O.8614
O.8604
O.8596
Oe8589
O.8582
O.8576
O.8570
O.8565
O.8560
O.8556
O.8552
O.8548
O.8545
O.8541
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The values of sn are reproduced from Table 7 of Gilbert and

r-losteller (i966).

            '
     Remark. Our problem ean be generalized to the ease wz'th

r choices. The decision-maker is allowed to make r choices

and su.cceeds if the either of his choices is th'e largest of
the sequentiany presented random variables. ])et pEM)(y),

1$m$r, ls-gn, be the probability of success under an optimal

policy,, given that y was the largest vaiue observed so far.

and was rejected, and that the decision-maker is still

allowed to make m choices from the ]?emaining n observations.
Let also qfiM)(y), 1$m$r-1", isn, be the probabiXity of success

under an optimal policy, gtven that y was the largest ,

observed so far and was alread,y chosen, and that the decision-

maker is still allowed to make m choices from the remaining n

observations. g]hen we have -                                            '
                                               '
                                '                                                   '                        1'  pgm)(y) . ypfi!l(y) .;,!I max {qfieii)(Å~), pfiel(x)}dx a$m$r, i$n)

                      y

                       ( g,i2]:;,):g; ig; gll l .aXd, &`:.. ),

                                                     '
                                                     '  qgM)(y) = yqfi!l(y) +Jy :ax{"q.(eii)(x), pgel(x)}dx (zrvsgmsLr-•i, irvf{n?

                       (gg(,2')[;]:.ll',g;r.:li,Y.:gd,2.`.l},-i)•

                                    '
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We immediately have, using above equations

     qÅíM)(y) . yn . pfiM)(y) (Q$asr-Z, O$n) .

since qÅíM-i)(x) is non--decreasing in x and pfiM)(x) is non-

increasing in x, by their deÅíinitions, the equation

     pÅíM)(.) . o.fiM'i)(x) .

                            (m)has at least one root. Let s                               be the smallest root of this                            n
equation (oÅí eourse, sfii)= sn, sfi2)= dn). ci!hen we can easiiy

prove, in a simiiar way as used in X)emma 1.5, that the

sequence {sfiM)} is increasing in n for any given m. But it

seems to be difficult for the• author to prove the conjecture
that the sequence{sfiM)} is deereasing in m for each n.
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