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Abstract

Since the discovery of superconductivity of SrsRuO4, many interests have been at-
tracted to its non-s wave superconducting properties. SroRuQOy is the first non-cuprate
superconductor with the same layered perovskite structure as in high-T, Lay_,Sr,CuQy.
We succeeded in growing high-quality single crystals with the superconducting transition
temperature T,=1.52 K by using a floating-zone technique and measured the magnetoresis-
tance, de Haas-van Alphen (dHvA) effect and specific heat to clarify the two-dimensional
Fermi surface and superconducting properties.

First, we clarified the quasi-two dimensional electronic states in SroRuO4 from the
magnetoresistance and dHvA effect experiments. The Yamaji effect, which is a charac-
teristic feature for a quasi-two dimensional Fermi surface, is observed as the oscillatory
angular dependence of the magnetoresistance. From the angular dependence of the dHvA
amplitude, we also determined the Yamaji angle for three quasi-cylindrical Fermi surfaces
named a, § and 7y to be 30.6° for the Fermi surface «, about 30° for 8 and 15.3° for . The
cyclotron masses of sum and difference oscillatory components, mp., and ml, ,, are found
to be highly different from mpg + my, and m} + mg, respectively, for any field direction.
The dHVA oscillation due to sums and differences is found to be not due to the magnetic
interaction but to the chemical potential oscillation related to the quasi-two-dimensional
Fermi surfaces. We determined the cyclotron mass for each Fermi surface: 3.3mq for o,
6.9m for B and 17mg for y for the field along [001]. These total masses correspond to
the electric specific heat coefficient of 40 mJ/K?-mol, which is in excellent agreement with
39.8 mJ/K2-mol, determined from the specific heat experiment.

Next, the superconducting properties were studied by the specific heat measurement.
A residual electronic specific heat coefficient 7,..s at T — 0 in the superconducting state
decreases with increasing the quality of the sample. The 7,.s-value, estimated at 0 K, is 8
mJ/K?-mol. We concluded that the existence of 7., is not intrinsic in superconductivity
of SroRuQy. The temperature dependence of the electronic specific heat in the supercon-
ducting state C, shows the T? dependence at low temperatures. A characteristic power
law of C, ~ T? at low temperatures claims line nodes in the superconducting energy gap.
This is direct evidence that the superconducting state of SroRuQy is of the non-s wave
type. The Maki parameters , obtained from the specific heat in magnetic fields is found
to be highly anisotropic, which was discussed on the basis of the quasi-two-dimensional
electronic states and the existence of the paramagnetic effect.
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Chapter 1 Introduction

Strongly correlated electron systems attract strong interests with respect to the non-
BCS superconducting property. For example, UPt3, which is a typical heavy fermion
compound, is well known to possess two superconducting transition temperatures and
three phases called A, B and C in the superconducting phase diagram. 1) The existence
of multiple superconducting phases is reminiscent of superfluid *He and is very strong
evidence that UPts is a reduced symmetry superconductor. It was recently reported
that UPts is of odd parity in symmetry from the NMR-Knight shift and magnetization
experiments. 23 High-T, cuprates also show the non-BCS behavior, which is known as a
spin-singlet superconductor. The mechanism of high-T; superconductivity in the layered
perovskite copper oxides is also one of the most important issues to be solved urgently.

SroaRuQy4 is an interesting superconductor, in which the superconductivity was dis-
covered in 1994, to bridge the above two electron systems. *) Its crystal structure with
the tetragonal K,NiF-type is the same as the high T,-superconductor Las_,Sr,CuQOy,
although the superconducting transition temperature 7; is about 1 K, in contrast with
~40 K in Lay_,Sr,CuO,4 and the quasi-two-dimensional network of CuQ, plane is replaced
by the RuO; one.

The electronic state in the normal state is two-dimensional, reflecting the layered
structural character. The temperature dependence of p,; is metallic, while that of p. is
nonmetallic at room temperature, but becomes metallic below about 130 K. The Fermi
surface consists of three kinds of cylindrical Fermi surfaces, named «, 8 and 7, by the quan-
tum oscillation measurements and the results of energy band structure calculations. 7.
Their cyclotron masses are rather heavy, ranging from 3 to 12mg. SroRuQ, is therefore
an enhanced Pauli paramagnet. Recently, an interesting phenomenon was observed in the
Shubnikov-de Haas oscillation at an angle § = 31°, where 6 denotes a tilt angle measured
from the c-axis or the [001] direction.?) The cyclotron effective masses of the sum and
difference oscillatory components mj,, are found to be highly different from mj + mj,,
which is derived from the usual magnetic interaction. This phenomenon was explained
on the basis of the dHvA oscillation derived under the constant total electron number,
so-called chemical potential oscillation, which is in contrast with the Lifshiz-Kosevich
formula derived under the constant chemical potential. %

In the superconducting state, the anisotropic pairing state was claimed from the spe-
cific heat and NMR experiments as in heavy fermion and high-T, superconductors. 1%
There was found no coherence peak just below T, in the Ru-NMR-relaxation rate, indicat-
ing the non-s-wave superconductivity in SrsRuQy. 1 The large residual density of states
was observed at lower temperature from early Ru-NQR and specific heat measurement.'!12)
Recently, the result of uSR experiments indicates that the superconducting state is char-
acterized by the breaking of time-reversal symmetry. '*) The recent Knight shift measure-
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ments for 1"O-NMR also revealed that the spin susceptibility for the field perpendicular
to [001] remains unchanged through T.**) This result is inconsistent with the spin-singlet
pairing, where the spin susceptibility becomes zero as T' — 0.

~Triplet superconductivity was theoretically discussed on the basis of two-dimensionality.
There were proposed five possible p-wave pairing states without any gap nodes in a weak
spin-orbit coupling scheme.'® Several ideas have been proposed in order to explain the
intrinsic residual density of states. Agterberg et al. proposed the orbital dependent
superconductivity.!®) A part of the Fermi surfaces (, 8) or -y opens up a large supercon-
ductivity gap, where Fermi surfaces (o, 3) and 7 are considered to be domained by Ru
dyy, and dgy orbitals, respectively. If the ves-value is intrinsic, only the Fermi surface
named -y is expected to open up the energy gap. Theoretically, there is a possibility that
the gap size of the Fermi surface + is one order of magnitude larger than those of the other

16) If it is true, the electronic specific heat in the form of C,/T

two Fermi surfaces (a, ).
might be reduced at temperatures lower than 0.3 K. Recently, Miyake and Narikiyo have
done anther theoretical approach, in which the exchange-enhanced ferromagnetic coupling
dominated between the nearest-neighbor Ru spins leads to the spin-triplet wave function
with a strong four-fold anisotropy in the superconducting gap.!” The ratio between the
maximum and minimum of the magnitudes of the gap is of the order of ten. The specific
heat may be explained even if all the bands equally contribute to superconductivity.

To clarify the topology of the cylindrical Fermi surface in detail, we have grown a
high-quality single crystal of SrsRuO, and have measured magnetoresistance and the de
Haas-van Alphen (dHvA) effect. We have extended our investigations, especially on the
chemical potential oscillation by measuring the de Haas-van Alphen oscillation at low
temperatures and in high magnetic fields. There are still some open questions on the
superconducting state. One of them is whether a residual density of states is intrinsic or
not. The other is the to confirm experimentally the existence of the anisotropic energy
gap. For this purpose, we have measured the specific heat in magnetic fields up to 20 kOe
and at low temperatures down to 70 mK.

In this paper we will introduce a review of the low-dimensional electronic system,
strongly correlated electron system and type II superconductor including an anisotropic
superconductor in Chap. 2. Next, we will present the sample preparation of SroRuQO,4 and
experimental methods in Chap. 3, and experimental results and discussion are presented
in Chap. 4. Finally we will give a conclusion in Chap. 5.



Chapter 2 Review

2.1 Fermiology and strongly correlated electron systems

2.1.1 Fermi surface topology of low-dimensional electronic system
1) Yamaji effect

Low-dimensional conductors are characterized by an anisotropy in the electrical con-
duction, strong electron-phonon coupling and strong Coulomb interaction. When the
electron conduction along a certain crystallographic axis is larger than those in the other
directions, we call it a quasi-one dimensional conduction. This occurs when the electron
transfer energy t for a particular direction is much stronger than the other direction ¢, .
In organic conductors this occurs in linear polymers and charge-transfer salts composed
of stacks of planar molecules.'® For example, for polyacetylene the electron transfer en-
ergy between atoms is given by the resonance integral. For columnar arrays of molecular
stacks, the overlap of m-orbitals on adjacent molecules within a stack is usually stronger
than that between stacks. The transfer energy between molecules is given in the extended
Hiickel approximation by

1
t= EK(Ez""EJ)SzJa (211)

where F; is the energy level of the ith atomic orbital and K is a constant which is
conventionally taken as a value 1.75. Sj; is the overlap integral between the atomic
orbitals ¢ and j.

By applying the tight-binding band approximation to the quasi-one dimensional sys-
tem, an energy band can be written as a cosine form

€(kq) = 2t4 cos(kqa). (2.1.2)

Here, we take the direction of highest conductivity as the a-axis, and a and k, are the
lattice spacing and the wave number of the a-axis, respectively. Figures 2.1.1(a) and (b)
show the energy dispersion and the density of states N(e) of the one-dimensional band
with a bandwidth of 4¢,. The Fermi surface for this quasi-one dimensional system is given
by a pair of flat planes, as shown by solid lines in the k, — k; plane in Fig 2.1.2, since
the energy in this system is determined by k,, and it is independent of both k; and k..
When the inter-stack electron-transfer energy t, in the b-axis is not negligible, the energy
dispersion is modified to

(k) = 2t, cos(kqa) + 2t, cos(kpb), (2.1.3)

where b and k;, are the lattice spacing and the wave number of the b-axis, respectively.
When the t;, term is not negligible, the Fermi surface is warped, as shown by dashed lines
in Fig 2.1.2. If ¢, is much less than t,, e.g., less than 10% of ¢,, the Fermi surface cannot
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Fig. 2.1.1 (a)Energy-dispersion relation for a one-dimensional electronic
system in the tight-binding band model and (b)the corresponding
density of the states.!®)
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Fig. 2.1.2 Fermi surface for the one-dimensional(solid lines) and quasi-one
dimensional metal(dashed lines) in the k, — kj plane.'®



be closed within the Brillouin zone, whereas if ¢, reaches more than about 30% of t,, it is
closed and has a shape something like a cylinder parallel to the k.-axis (two-dimensional
Fermi surface).

In general, the lattice is three-dimensional but it exhibits obvious anisotropy between
the stacking direction and the perpendicular directions. Due to the interstack couplings,
the crystal is not very rigid. Thus, changes in the electronic system affect the lattice, and
electron-phonon interactions may be strong and result in Peierls instability. _

In quasi-one dimensional metals, the electronic system tends to become unstable
against perturbations with the wave number 2kr, kr being the Fermi wave number. As
the result, the electron density is modulated predominantly with the wave number 2kp.
In reality the electron system is more or less coupled to the underlying lattice system,
and hence the lattice is also deformed when the electron density is perturbed through
electron-phonon interactions. Then, the lattice becomes unstable against perturbations
below the critical temperature. The critical temperature Tp for instability is given by

—mh2woup

kBTp = 1.1363 exp( ), (214)

2g%a
where ep specifies the energy region where the electron distribution may be perturbed, wg
is the normal-mode frequency in the absence of an electron-phonon interaction and g is
the electron-phonon coupling constant. Below Tp the lattice is modulated with the wave
number 2kr and the phase transition to this lattice is called a Peierls transition. In this
structure Bragg reflections occur for electrons with the modulation wave number 2kg.
As a consequence an energy gap, called the Peierls gap, appears in the electron energy
spectrum; in this situation the quasi-one dimensional metal changes into an insulator.

The 2kp-modulated electronic structure corresponds to an electron density modula-
tion, and hence is called a Charge Density Wave (CDW). Since this is usually accompanied
by a lattice modulation through electron-phonon coupling, CDW is regarded as a collec-
tive mode of coupled electron and lattice systems. There are two kinds of CDW. One is
the bond ordering wave in which the charge density is spatially modulated according to
the distribution of bonding electrons. The bond alternation between single and double
bonds splits the conduction band, resulting in an insulator. The other CDW is the charge
ordering wave, where the charge density is determined from the distribution of conduction
electrons. Hereafter, we discuss the latter case.

In quasi-one dimensional conductors, the Fermi surface consists of a pair of planar
sheets. With increasing transverse interactions, the sheets are warped. If the degree of
the warping is low, two unique features emerge. First, one sheet can be nested with the
other by a shift of the wave vector Q given by (+2kp,7/b,0). The nesting is necessary
to induce the CDW instability, but with increased warping the nesting is deteriorated,
the CDW instability is weakened, and finally it is suppressed. The second characteristic
feature of the weakly warped Fermi surface is its openness. In ordinary metals, the Fermi

surfaces are mostly closed within the Brillouin zone, or the surface is opened and connected



to an adjacent zone in limited regions. For quasi-one dimensional metals a Fermi surface
exists only in one direction; in other directions no surfaces, which confine electrons in
momentum space, exist. Thus the Fermi surface is thoroughly open in two directions.

In quasi-two dimensional conductors, the Fermi surface consists of a cylindrical one
with conducting planes. When the inter-plane electron transfer energy ¢, is not negligible,
the Fermi surface is warped along a direction perpendicular to the conducting plane. For
simplify, we assume the following band-energy relation:

201.2 2

€ = ks +ky) (];xmt k) _ 2t cos(ck,), (2.1.5)
where k, and k, are the conducting plane components of the crystal wave vector k, and
¢ and k. are, respectively, the spacing between neighboring conducting plane and the
component of the wave vector perpendicular to the plane; m* is the effective mass in the
conduction plane. The transfer energy t. is assumed to be much smaller than the Fermi
energy ep = h’k2/2m*, kr being the Fermi wave number in the case we can neglect t..
An intersection of the Fermi surface in the extended Brillouin zone is shown in Fig 2.1.3.

kz A

Fig. 2.1.3 Fermi surface for quasi-two dimensional metal in the extended
Brillouin zone.

The oscillatory angular dependence of the magnetoresistance is often observed in the

quasi-two dimensional organic conductors.'®)

Yamaji explained this phenomenon in terms
of geometrical consideration.??) This explanation is as follows. When the applied magnetic
field H is tilted by the angle  from the k,-direction to the k,-direction, the trajectories
of semiclassically closed orbits are given by the intersection k-space of the Fermi surface

with the plane normal to the field, as

kysinf + k,cosf =p = kgo) cos ), (2.1.6)
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where kgo) denotes the point of intersection at the k,-axis with the orbital plane. By
employing the polar coordinates k and ¢ in the k,k, plane, the area Sp(k;) of orbit in the
k-space can be calculated with a precision of up to the first order of e in the following

way:
Sr(k.) = {mk% + 4mm*t cos (ck.) Jo (ckr tand)} /cos®, (2.1.7)

where kp is the Fermi wave number having relations with Sp = wkZ of a cylinder, m*
is the effective mass, t, is transfer energy, Jy is the Bessel function and c is the lattice
constant along the z-axis. Since Jy(2) is proportional to cos(z — w/4) for z > 1, the
k.-dependent term in eq.(2.1.7) vanishes periodically for the value of 8, satisfying

ckptan@, — /4 = mn (2.1.8)

with integer n.

This is noteworthy because for these values of 6,,, all orbits on a corrugated Fermi sur-
face have the same cross-sectional area of wk%/ cos,. The peak angles in the oscillatory
angular dependence of the magnetoresistance were explained by Yamaji on the basis of
eq.(2.1.8). Therefore, the similar behavior are observed in the quantum oscillations. We
will apply this relation to the dHvA effect and call “Yamaji effect”.

2) Chemical potential oscillation

In principle, the two-dimensional (2D) system is simpler than the three-dimensional
system, so that basic problems such as the magnetic breakdown (MB) effect can be
investigated more thoroughly.?!) With this in mind, an experiment?® and a numerical
simulation®® were performed on the de Haas-van Alphen (dHvA) effect of -(ET),Cu(NCS)s,
which is a simple and typical 2D MB system. We show in Fig. 2.1.4 the Fermi surface
schematically. The results of both the experiment and simulation indicate the existence of
an expected frequency component in the dHvA oscillation. It is a novel phenomenon which
cannot be explained by existing theories. On the Fermi surface structure in Fig. 2.1.4, a
small orbit is named «, and a large orbit due to the MB is named 3. These orbits produce
the oscillation components of frequencies f, and fg, which are determined by the k-space
areas enclosed by the respective orbits. In addition to these, components of frequencies
fata = fa £ fo are observed. As we take into account of MB, the fg;, component is
naturally expected, while the fz_, component cannot be explained conventionally, The
origin of fg_, is as follows:

1) It is not due to MB in the conventional sense, because it is not permitted in the
standard Falicov-Stachowiak (FS) theory?*) based on the network model.?%26)

2) It is not due to the Shoenberg magnetic interaction (SMI),?®) because of its large
magnitude in the dHvA experiment. In the simulation, no electron interaction is
included, so that the possibility of SMI is excluded from the first.
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3) It is not due to a Stark quantum interference effect,?”) because the f5_, oscillation
appears not in a transport coefficient but in a thermodynamic quantity.

The origin of fg_, remained mystery. Recently, the interference though the chemical
potential oscillation (CPO) is proposed to cause this unexpected frequency components in
the quantum oscillation.?) The chemical potential is not constant in the two-dimensional

\- gt
..'o . ** TCe, POL
"ol e
.‘ ¢ .o o‘
ole sle
oo, il
o'. ..o_ -o‘. .'o_

Fig. 2.1.4 Schematic Fermi surface of k-(ET);Cu(NCS),, which is a simple
and typical 2D MB system.?")

system, while it is constant in the usual three-dimensional system.
The thermodynamic potential €2 for a chemical potential i, and the free energy F' for
a electron number N are obtained as

Up, B) =D _Qulu B), F(N,B)=3 F(N,B) (2.1.9)

Note that the total € is literally a simple sum of each €;, but the total F' is not so. The
parameter g in the formula for F; depends on B and N, where N is the total electron
number, not the electron number of each band. Therefore, F; is affected by the existence
of the other band through p(N, B). On the other hand, all the parameters in the formula
); are external parameters, so that §2; is not affected by the existence of the other band.
The chemical potential u(N, B) oscillates as a function of B. Thus, we designate the
coupling among the bands through p in the fixed NV case as the interference through
CPO.

CPO affects all the thermodynamic quantities in the fixed N case, because it affects
the free energy. As an example, we consider the magnetization M in the following. The
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corresponding magnetization are derived as

o0 oF
3B M(N, B) = ~35

The dHvVA effect is the oscillation of the magnetization. The numerical calculation
of the dHvA oscillations for fixed 1 and N cases are shown in Fig. 2.1.5: while M(u, B)
is simply M, (u, B) + Mg(p, B), the fast oscillation in M (N, B) is clearly modulated by
the slow one. This means that some new frequency components should exist in M (N, B).
Actually, in its Fourier spectrum shown in Fig. 2.1.6(a), both of the fgi, components

are present, while they do not exist in Fig. 2.1.6(b) for M(u, B). From these, CPO is
important for the 2D system when we discuss the dHvVA experiments.

M(u,B) = — (2.1.10)

M(N,B)

M(u.B)
o
LTI LT TV T T ¢

(=)
o =
i 'mﬁ.m;; =l

035" 0.26 0257
Inverse Magnetic Field 1/8

Fig. 2.1.5 dHvA oscillations of the two-independent-band system. The
lower three are for fixed . The amplitudes for Mz and M, can
be calculated analytically to be 1000 and 320 in this unit, which
is reproduced in the numerical result.?!)
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Fig. 2.1.6 Fourier amplitudes of dHvA oscillation. (a)constant N case and
(b) constant z case.?!)

2.1.2 Strongly correlated electron systems
(1) 3d itinerant system
a) Hubbard model

The 3d electron system is often described as the following Hubbard model:

H=> tycl,cjo+UD njnyy (2.1.11)

ijo j

where ¢;; is a transfer integral, U is Coulomb energy, c;ra and ¢;, are anihiation and creation
operators of the 3d electron, respectively and n; is a number operator denoted as n; = c}cj.
First term means a kinetic energy when the electron moves into the neighbor site, which
is proportional to a band width. The second term is a Coulomb repulsion energy when
the two electrons set on one site. Relative difference between two terms provides the
different character for the 3d electron. For example, the 3d-electron is localized on the
lattice and shows a ferro- or antiferromagnetism when U is extremely large. The limit
of U/t > 1 provides the Heisenberg Hamiltonian H = — Zij Ji;S; - 85, which is useful
model for magnetism of an insulator, where § is spin of localized electron and J;; is an
exchange interaction between ¢ and j sites.

From the band theory and dHvA experiment, however, the 3d electron in Fe and Ni
can be described as a one-body band picture in the ground state, that is, the 3d electron is
itinerant. Here, the one-body band picture means the theory which treats the correlated
electron under the mean field approximation. This contradiction was explained by Stoner.

10



b) Stoner’s theory

The itinerant 3d electron system such as Fe or Ni shows the Curie-Weiss law at higher
temperatures, just like a localized moment system, whereas they are described by the
itinerant band picture, as mentioned above. Stoner added the molecular field theory into
Pauli paramagnetism and introduced a spontaneous magnetization:

M = x,(H+aM) . (2.1.12)
This is transformed into
x=M__x (2.1.13)
H 1-axp

where M is the magnetization, x; is the Pauli susceptibility and H is a magnetic field.
The susceptibility is enhanced by the molecular field . Ferromagnetism appears when a
denominator 1 — axp < 0, namely,

20pp®D(Ep) > 1 (2.1.14)

where ug is Bohr magneton and D(EF) is the density of states at the Fermi energy. This
is called the Stoner’s condition, and large o or D(FEF) is a condition of ferromagnetism.

Difficulty of this theory is that it can not explain the Curie-Weiss law at higher tem-
peratures and it gives a large Curie temperature.

¢) SCR theory

Difficulty in the Stoner model was removed by Moriya on the basis of SCR (self
consistent renormalization) theory, which treats the spin fluctuation in the band electron.

We show the spatial distribution of the spin density p,(r) in Fig. 2.1.7%%. p,(r) can be
expressed as a deviation between the wave functions of up-spin and down-spin, namely,
ps(r) = |1 (r)|> = |¥y(r)|2. In the Stoner model, there is no difference between the
density of states of up- and down-spins above a Curie temperature T, and thus p,(r) = 0
(Fig. 2.1.7(a)). On the other hand, in the localized spin model, the magnitude of each
moment is constant, but the spin takes any directions by the thermal motion above T
(Fig. 2.1.7(b)). Considering the spin fluctuation effect, the spin at the finite temperature
varies not only the direction but also its amplitude, as seen in Fig. 2.1.7(c).
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(a) Stoner model

ps(r) T=0 ps(r) T>TC
r r
(b) localized spin model
ps(r)
(c) spin fluctuation model
ps(r) T=0 p(T) T>T,

-

r

MIVIVIV I A,
VW

Fig. 2.1.7 Spatial distribution of the spin density ps(r) for (a) Stoner model, (b) localized spin model
and (c) spin fluctuation model. Left side is at 7' = 0, right side is T > T.. In (a) ps(r)
vanishes, in (b) ps(r) is unchanged and in (c) the local density of spin is slightly diminished

at T > T,29),
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(2) Heavy fermion aspects
a) RKKY interaction

The 4f electrons in the Ce atom are pushed into the interior of the closed 5s and 5p
shells because of the strong centrifugal potential {({ + 1)/r2, where | = 3 holds for the
f electrons. This is a reason why the 4f electrons possess an atomic-like character in
the crystal®®. On the other hand, the tail of their wave function spreads to the outside
of the closed 5s and 5p shells, which is highly influenced by the potential energy, the
relativistic effect and the distance between the Ce atoms. This results in hybridization of
the 4f electrons with the conduction electrons. These cause various phenomena such as
valence fluctuations, Kondo lattice, heavy fermions, Kondo insulator and unconventional
superconductivity.

The Coulomb repulsive force of the 4f electron U at the same atomic site is so strong,
for example U ~5eV in Ce compounds (see Fig. 2.1.831)). In Ce compounds the tail of

Py (E)

E: E: E+U

Fig. 2.1.8 Density of states of 4f electrons in the Ce compound (Ce3+)31).

the 4f partial density of states extends to the Fermi level even at room temperature,
and thus the 4f level approaches the Fermi level in energy and the 4 f electrons hybridize
strongly with the conduction electron. This 4 f-hybridization coupling constant is denoted
by V. When U is strong and/or V is ignored, the freedom of the charge in the 4 felectron
is suppressed, while the freedom of the spin is retained, representing the 4f-localized
state. Naturally, the degree of localization depends on the level of the 4f electrons Ey,
where larger E¢ helps to increase the localization. This situation is applied to most of the
lanthanide compounds in which the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
plays a predominant role in magnetism. Therefore, the mutual magnetic interaction
between the 4f electrons occupying different atomic sites cannot be of a direct type,
such as in 3d metal magnetism, but should be indirect, which occurs only through the
conduction electrons.

In the RKKY interaction, a localized spin S; interacts with a conduction electron with
spin s, which leads to a spin polarization of the conduction electron. This polarization
interacts with another spin S localized on ion j and therefore creates an indirect inter-
action between the spins S; and S;. This indirect interaction extends to the far distance
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and damps with a sinusoidal 2kg oscillation. When the number of 4f electrons increases
in such a way that the lanthanide element changes from Ce to Gd or reversely from Yb
to Gd in the compound, the magnetic moment becomes larger and the RKKY interaction
stronger, leading the magnetic order of which the ordering temperature roughly follows
the de Gennes relation, (gy — 1)2J(J + 1). Here g; and J are the Landé g factor and the
total angular momentum, respectively.

b) Dense Kondo effect

Higher V tends to enhance the hybridization of 4f electrons with conduction elec-
trons, thus accelerating the delocalization of the 4f electrons®?. The delocalization of 4 f
electrons tends to make the 4f band wide. When E¢ > V, we have still better localization
and expect the Kondo regime in the Ce (or Yb) compounds such as CeSb and CeBg.

The Kondo effect was studied for the first time in a dilute alloy where a ppm range
of the 3d transition metal is dissolved in a pure metal of copper. Kondo showed that
the third-order scattering of the conduction electron with the localized moment of the
transition impurity diverges logarithmically with decreasing temperature, and clarified
the origin of the long standing problem, and it took ten years for theorists to solve this
divergence problem at the Fermi energy.

The many-body Kondo bound state is now understood as follows. For the simplest case
of no orbital degeneracy, the localized spin S(7) is coupled antiferromagnetically with the
spin of the conduction electron s(|). Consequently the singlet state {S(1)-s(1)£S(1)-s(1)}
is formed with the binding energy kgTk. Here the Kondo temperature Tk is the single
energy scale. In other words, disappearance of the localized moment is thought to be
due to the formation of a spin-compensating cloud of the conduction electron around the
impurity moment.

Kondo-like behavior was observed in the lanthanide compounds, typically in Ce and

33-35)  For example, the electrical resistivity in CezLa;_,Cug increases

Yb compounds
logarithmically with decreasing temperature for all the z-values®®), as shown in Fig. 2.1.9.
The Kondo effect occurs independently at each Ce cite even in a dense system. Therefore,
this phenomenon is called the dense Kondo effect. The Kondo temperature in the Ce (Yb)
compound is large compared to the magnetic ordering temperature based on the RKKY
interaction. For example, the Ce ion is trivalent (J = 5/2), and the 4f energy level is

split into three doublets by the crystalline electric field, namely possessing the splitting

energies of A; and A, (see Fig. 2.1.103"). The Kondo temperature is given as follows®”;
1
T8 = Dex (————-—> when T > Ay, A, 2.1.15
K P\ 3l7xID(Er) b (2:1.19)
and
2 1
Ty = — Dexp(—————] when T <Ay A, 2.1.16
K ArA, P ( |JeX|D(EF)) e b ( )
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Fig. 2.1.9 Temperature dependences of electrical resistivity of Lal_zCexCuG%).

Here D, |J| and D(Ef) are the band width, exchange energy and density of states,
respectively. If we postulate Tk ~5K, for D = 10*K, A; = 100K and A, = 200K, the
value of Tf ~50K is obtained, which is compared to the S = %-Kondo temperature of
1073 K defined as T = D exp(—1/|Jex| D(EF)). These large values of Kondo temperatures
shown in eqgs.(2.1.15) and (2.1.16) are due to the orbital degeneracy of the 4f levels.
Therefore, the Kondo effect occurs from the room temperature. Even at low temperatures
the Kondo temperature is not T3 but Tk shown in eq.(2.1.16).

On the other hand, the magnetic ordering temperature is about 5K in the Ce (Yb)
compound, which can be simply estimated from the de Gennes relation under the con-
sideration of the Curie temperature of about 300 K in Gd. Therefore, it depends on the
compound whether or not magnetic ordering occurs at low temperatures.

c¢) Heavy Fermion system

The ground state properties of dense Kondo system are interesting in magnetism,
which is highly different from the dilute Kondo effect. In the Ce intermetallic compounds
such as CeCug, Ce ions are periodically aligned whose ground state can not be a scattering
state but becomes a coherent Kondo-lattice state. The electrical resistivity p decreases
steeply with decreasing temperature, following p ~ AT? with a large value of the coef-
ficient A4%). The v/ A-value is proportional to the effective mass of the carrier and thus
inversely proportional to the Kondo temperature. Correspondingly, the electronic specific
heat coefficient v, which is proportional to the effective mass, roughly follows the simple
relation v & 10*/Tk (mJ/K?mol) because the Kramers doublet of the 4f levels is changed
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Fig. 2.1.10 Level scheme of 4f electrons in Ce3+31),

into the «y value in the Ce compound, namely v = RIn2/Tx = 5.8 x 103/Tk (mJ/K?mol).
It reaches 1600 mJ/K?mol for CeCug because of a small Kondo temperature. The Ce
Kondo-lattice compound with magnetic ordering also possesses the large v value even if
the RKKY interaction overcomes the Kondo effect at low temperatures. For example, the
v value of CeBg is 250 mJ/K%mol, which is roughly one hundred times larger than that
of LaBs, 2.6 mJ/K?*mol. The conduction electrons possess large effective masses and thus
move slowly in the crystal. Therefore the Kondo-lattice system is called a heavy fermion
or a heavy electron system.

When Ef < V, the 4f electrons may tend to be delocalized, manifesting the valence
fluctuation regime. CeSnsz and CeNi were once called valence fluctuation compounds or
mixed valent compounds. The magnetic susceptibility in these compounds follows the
Curie-Weiss law at higher temperatures than room temperature, possessing the magnetic
moment near Ce3", while it becomes approximately temperature-independent with de-
creasing temperature, showing a broad maximum around 150—200K3?). Thus the valence
of Ce atoms seems to change from Ce?t into Ce** (non-magnetic state) with decreasing
temperature.

A significant correlation factor is thought to be the ratio of the measured magnetic
susceptibility x, which is proportional to the effective mass for Pauli paramagnetism, to
the one calculated from the observed v value®®:

e () () -
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This ratio Rw is called Wilson ratio. Stewart evaluated Rw for the heavy fermion
system*!), as shown in Fig. 2.1.11%?. He suggested that for the heavy fermion system
Rw is not 1 but 2. Kadowaki and Woods stressed the importance of a universal relation-
ship between the A and v, as shown in Fig. 2.1.12%3). They noted that the ratio A/~?
has a common value of 1.0x107% uQ-cmK?mol?/(mJ)2. Thus obtained relations of p ~
AT?, x =~ x(T = 0) and C = ~T at low temperatures are a characteristic feature of Fermi
liquid. Namely, v/A ~ x(T = 0) ~ ~ is hold for the heavy fermion system.

d) Fermi surface study

Fermi surface studies are very important to know the ground state properties of the
various magnetic compounds?®%®. Even in the localized system, the presence of 4f elec-
trons alters the Fermi surface through the 4f electron contribution to the crystal potential
and through the introduction of new Brillouin zone boundaries and magnetic energy gaps
which occur when 4 f electron moments order. The latter effect may be approximated by
a band-folding procedure where the paramagnetic Fermi surface, which is roughly similar
to the Fermi surface of the corresponding La compound, is folded into smaller Brillouin
zone based on the magnetic unit cell, which is larger than the chemical unit cell.

If the magnetic energy gaps associated with the magnetic structure are small enough,
conduction electrons undergoing cyclotron motion in the presence of a magnetic field can
tunnel through these gaps and circulate the orbits on the paramagnetic Fermi surface. If
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this magnetic breakthrough (or breakdown) occurs, the paramagnetic Fermi surface may
be observed in the de Haas-van Alphen (dHvA) effect even in the presence of magnetic
order.

For Kondo lattice compounds with magnetic ordering, the Kondo effect is expected to
have minor influence on the topology of the Fermi surface, representing that Fermi surfaces
of the Ce compounds are roughly similar to those of the corresponding La compounds,
but are altered by the magnetic Brillouin zone boundaries mentioned above. Nevertheless,
the effective masses of the conduction carriers are extremely large compared to those of
La compounds mentioned above. In this system a small amount of 4 f electron most likely
contributes to make a sharp density of states at the Fermi energy. Thus the energy band
becomes flat around the Fermi energy, which brings about the large mass.

There is a big difference in f-electron character between the Kondo regime and the
valence-fluctuation regime. One may be tempted to think that 4f electrons in a Kondo
lattice compound with a large value of Tk are itinerant. This is true, as shown in CeSns.
Recently, it has been furthermore clarified that f-electrons in a heavy fermion compound
CeRu,Sis as well as UPt3 are itinerant at low temperatures.
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2.2 Anisotropic superconductivity

2.2.1 Magnetic and thermodynamic properties of type II superconductors

A macroscopic cylinder of type II superconductor placed in a field H parallel to its axis
exhibits the properties shown in Fig. 2.2.1. There are three regions of interest depending

1 (@) 1 (b)

-

~

—4rM

O Hcl Hc2 i O Hcl Hc Hc2

Fig. 2.2.1 Schematic variation of (a) the induction B versus the field H and (b) the magnetization
—4mwM versus the field H in a type II superconductor.

on the value of the external field.

(1) The exclusion of the field from the sample (Meissner effect) is total only for values
of field H smaller than H_,, where H,, is a critical field smaller than the thermodynamic
critical field H,, called the lower critical field.

(2) For Hes > H > H¢ flux gradually penetrates the sample, but even at the ther-
modynamic equilibrium this flux is small than in the normal state. A new state appears
in which a lattice of quantization flux-enclosing supercurrent vortices (or filaments) is

“vortex state”.

formed: this state is usually called the “mixed state” or the

(3) For H > H., the specimen becomes normal and the transition at H = H, is of
the second order. The critical field H., is greater than H, and can be very high, where
H, is called the upper critical field.

H., and H. vary with the temperature. This variation is shown in Fig. 2.2.2. The
curves H;(T) and Heo(T) are the boundaries of three regions (1) for which B = 0
(Meissner effect), (2) for which B < H (mixed state), (3) for which B = H (normal state).
The magnetic properties of type Il materials at a fixed temperature may be displayed as

the induction inside the material (Fig. 2.2.1(a)) or as the magnetization (Fig.2.2.1(b)):
_4rM = H — B, (2.2.1)

The concept of a “thermodynamic critical field” H, for a type II superconductor can
be introduced:

_ HX(T)
T 81

Fy(T) — Fy(T) (2.2.2)
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Fig. 2.2.2 Schematic variation of the critical fields H.y, H. and H.; versus the reduced temperature
T/T. in a type II superconductor.

where F,(T') and F(T) are the free energies of the normal and superconducting states
in zero field, respectively. It must be emphasized that for a type I superconductor, this
equation defines an actual critical field, while for a type II superconductor it defines only
a convenient concept. The magnetic properties of type I and type II superconductors
having the same shape and the same value of H, are compared in Figs. 2.2.1 and 2.2.2
where the dashed line gives the variation of the magnetization versus H and of H, versus
T for the type I superconductor.

In the former, for H < H,, B = 0 and it has the property that

H. H?
A MdH = ~“er (2.2.3)
A type II superconductor has the analogous property

Hea H?2
MdH = ——=. 2.2.4
0 87!' ( )
The Gibbs thermodynamic potential can be generally written as

BH

=F —_ — L.
G=F(B)~——, (2.2.5)
The equilibrium value B(H) being obtained from
oG
(8_B)H =0. (2.2.6)
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In the normal state, where the induction B, is equal to H, the suitable form for G is

B? BH
G. =F o 2.2.7
" (0) 8T 4m’ ( )

while G is given by eq. (2.2.5) with F(B) = Fy(Bs).

Then
0 Bs-B, Bs—H
—(G. — = = . 2.2.
According to eq. (2.2.6),
0 d
- — - — - 2.2.
572(Ga = Gy) = < (Ga — Go) (2:2.9)
and
Heo
MdH = |G, — G,[{. (2.2.10)

0

For H = He, Gy = G and for H = 0, G, — Gs = F, —F, = —H?/8n which proves
eq. (2.2.4). Hence, the thermodynamic critical field can be found from the reversible
magnetization curve by evaluating the area under the curve M = f(H).

Another interesting feature of type II superconductors is that the transition at He; (T')
and Ho(T) are of the second order. There should be no latent heat and a discontinuity
of the specific heat should exist. Several interesting thermodynamic relations have been
deduced by Goodman for these transitions®®).

Defining the thermodynamic potential G; corresponding to phase ¢ (¢ = (1), (2) and

(3)), then

B;:H
G; = F,(T, B;) — o (2.2.11)
G; must be a minimum for fixed H and T, so that
oF H
(aBi)H,T = (2.2.12)
The corresponding entropy is
0G| OF;

= — = -2 2.1

S ( aT )H T (22.13)

At the equilibrium between the two phases ¢ and j, the field is equal to the critical
field H;;(T"), the thermodynamic potentials are equal, and if the transition is of the second
order, there is no latent heat, and the entropies are also equal. As a result of this, it can
be shown that the induction is continuous at the transition.
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Calculating the variation of G; for a variation dH of the field along the curve H =
Hij(T) i.e. for dH = (dHZJ/dT)dT

dG;, dF, B;H; HydB;

dT ~ dT 4xrdT  4r dT
_OF; O0F;dB; B;dH; H;dB;
~ ST YR Al dmdl  dr dT
B; dH;
T 4n AT
In establishing eq. (2.2.14), egs. (2.2.12) and (2.2.13) have been used. On the transition
curve H = H;;(T). G; = Gj, i.e. dG;/dT = dG;/dT. If there is no latent heat, S; = S},
so that

(2.2.14)

B; = B. (2.2.15)

Let us now calculate the discontinuity of specific heat. For a fixed H in the phase ¢

0S;
( 05, ) ) (22.16)
Along the equilibrium curve H = H;;(T), the total derivative of the entropy is
aS; a0S; 0S;\ dH;;
= : 2.2.1
= (o1),+ Ga), o (22.17)
As there is no latent heat, S; = S; along the curve H = H;;(T') and
dS;  dS;
ﬁ —_ d_T. (2.2.18)
The discontinuity in the specific heat is
0S; S,
T — 2.
C;—Ci= (dT) T(&T)H (2.2.19)
dH;; | [0S, 0S;
- (o), (). (2220

The derivative 0S;/0H can be written as

(gf;)Tz (ggi)j,@%)j,: 3825 < )T (2.2.21)
1 /OH B
T ar (_T) 5. <8H

) , (2.2.22)
T
where eqs.(2.2.12) and (2.2.13) have been used.

On the other hand dH,;/dT is given by

dHy _ (0H\ |
dT ~ \aT /4,
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where dB/dT = dB;/dT = dB;/dT is the variation of B along the equilibrium curve (see
eq. (2.2.15).
The combination of expression egs. (2.2.22) and (2.2.23) yields
S\ _ 1dH;0B; 1dB
OH),  4n dT 0H = 4ndT

(2.2.24)

and the discontinuity of specific heat is given by

T (dHy;\*[(8B; OB;
o-c=5: () |(5%),- (). (2:229)

This relation is in fact a generalization of Ehrenfest’s formula.

A number of conclusions can be drawn from eq. (2.2.25): for the transition (1) —
(2) (perfect Meissner effect — mixed state), H = H(T') and we expect from experi-
ment 0B;/0H = 0 and 0B3/0H = oo (see Fig. 2.2.1(a)). One should find an infinite
discontinuity of the specific heat. Actually, this is difficult to observe because the sin-
gularity is masked by hysteresis effects. However, a lamdba transition for H = H., was
found in niobium by Serin®”; for the transition (2) — (3) (mixed state — normal state)
H = He(T) and, from experiment, dBs/OH > 1 and 0B3/0H = 1. Knowing the value
of dH,/dT, Cs — C3 can be calculated. It is first concluded that Cy > C3. However,
the comparison of eq. (2.2.25) with experiment is not always possible since not all the
quantities of interest have been measured. In V3Ge, it was found that there is no latent
heat and the discontinuity Cy; — C3 was measured as well as dH.p/dT. An extrapolation
of 9B/0H for H = H_, gives an agreement of the order of 10.

2.2.2 Anisotropic superconductors

After the first discovery of the heavy fermion superconductor of CeCuySi, by Steglich
et al.®®, there were found six heavy superconductors (UPts, UBe;3, URuSis, UNigAl; and
UPd;Al;). These exhibit many features suggesting a non-BCS-like pairing mechanism.
Especially, UPt3 has a multiplicity of superconducting phases which have been inferred, in
particular, from the two distinct discontinuities observed in the specific heat and thermal
expansion in the zero applied magnetic field.

The microscopic theory of superconductivity, which was provided by Bardeen, Cooper
and Schrieffer in 1957, is based on an idea that, when an attractive interaction between
fermions is present, the stable ground state is no longer the degenerated Fermi gas but
becomes a coherent state in which the electrons are combined into pairs of spin-singlet
with zero total momentum (Cooper pairs). BCS theory simplifies calculations by some as-
sumption and approximation. One of the uniqueness of these assumptions is to be treated
as electron systems are isotropic in the normal and superconducting states. Namely, the
superconducting energy gap is opened over the entire of the Fermi surface.

Heavy fermion superconductors are, however, well known to show the power law in
physical properties such as the electronic specific heat C. and the nuclear spin-lattice
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relaxation rate 1/7}, not indicating an exponential dependence predicted by BCS theory.
This indicates the existence of an anisotropic gap, namely existence of a node in the
energy gap. When we compare the phonon-mediated attractive interaction based on the
BCS theory to the strong repulsive interaction among the f electrons, it is theoretically
difficult for the former interaction to overcome the latter one. To avoid a large overlap of
the wave functions of the paired particles, the heavy electron system would rather choose
an anisotropic channel, like a p-wave spin triplet or a d-wave spin singlet state, to form
Cooper-pairs.

We will discuss the pairing wave function and symmetry of superconductivity. The
pairing wave function can be expressed as a product of two electrons’ orbital and spin
term:

V(ry,01,79,00) = Y(r1,m2)x(01,02) . (2.2.26)

The spin term x(o01,02) of the wave function is categorized when the spin is the pairing
state of S = 0 (spin singlet)

S:O(

X (T =1im (2.2.27)

01,02) = 7

or the pairing state of S = 1 (spin triplet) is

|11 Sz =1
X o1, 09) = %U TH+IL1) 5z2=0 (2.2.28)
|11 Sz = -1

U(ry, 01,72,02) has to be antisymmetric against exchanging two particles on the whole.
In case of x°=0, an orbital term (01, 02) has a symmetric form like the s-wave or d-wave

pairing. On the other hand, in case of x°=!

, it has an antisymmetric form as in the
p-wave.

Here, we can express the spin term with the superposition of the plane wave:

x(o1,02) Z A(k) exp(ikyr; + tkors) = ZA exp(ikr). (2.2.29)

k1,k2

Here, the coordinate of the center of the paired particle is expressed as R = (r; + 72)/2,
the momentum of the center of the particles K = k; + ko, the relative coordinates
r = r] — 79 and the relative momentum k = (k; — k2)/2. In this case the momentum of
the center of the particle for pairing is zero (K = 0). This wave function can be solved:

[_th? +V(r )] U(r)= EV(r) , (2.2.30)

where V(r) is an attractive interaction. As mentioned above, BCS theory accepting
isotopic pairing symmetry indicates that the attractive interaction should be constant:
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V(k — k') = 0. Here, if V(k — k') depends on the only relative angle 6 between k and K/,
it can be expanded on the Legendre function or the spherical harmonics function:

Vik—k) = =) (2l+1)Vi(k, k') Pi(cosf) (2.2.31)
)

= —4r Y Vi(k,K) ) Y(6,0) Y0, ). (2.2.32)

m=-—1

The gap function is represented as

Alk) = Do) AnY™(0,9) (2.2.33)
Ay = 2hwpexp (—W) (2.2.34)

Here, in the case of s-wave (I =0, m = 0) it is to be A(k) = Ag. On the other hands, as
shown in eq. (2.2.28), in the p-wave (I = 1) there are three pairing states (m = —1,0,1).
For [ =1 and m = —1, the superconducting gap is the same as the s-wave and is isotropic.
This condition corresponds to the Balian-Werthamer(BW) state of 3He superfluid.*” For
I =1 and m = 0, the gap is represented as A(f) = Agcosf and has a line node in
the equator on the Fermi surface. This structure is called the polar type. For [ = 1
and m = 1, it is shown as A(f) = A¢sind and has a point node in the poles on the
Fermi surface. This condition corresponds to the Anderson-Brinkman-Morel(ABM) state
of 3He superfluid.’®) This is called the axial type. Figure 2.2.3 shows the gap structure
for these cases.?!) To describe the spin triplet state, matrix description by the d-vector is
convenient. The superconducting gap function in eq. (2.2.33) is also represented by the
2x2 matrix:

A _ ATT ATl . "dz'f"ldy dz
A(k) = ( AL A = 0. 4, +id, : (2.2.35)

where Ay = Ay = Ag and k = (kg, ky, k;) is the vector specifying the direction in
momentum space. The representation in eq. (2.2.33) is not convenient in dealing with the
rotation of spin space. Therefore, the d-vector is introduced as in

d = dx+dy+dex (2.2.36)
= 27VH{AR 1) + Ayl L) + Aol 1) + LU} (2-2.37)

The d-vector d(k) = (d,, d,, d,) can be transformed as a three-dimensional vector under
the rotation in spin space.

Next we will explain the density of states in the superconducting state.’” The density
of states (DOS) for the s-wave is

N.(E) _ { T (E>40) (2.2.38)
No 0 (E < Ag)
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(a) normal state (b) BCS type

(c) polar type (d) axial type

Fig. 2.2.3 Schematic picture of the gap structures: (a) normal state, (b) BCS-type superconductor,

which has an isotropic gap, (c) polar type and (d) axial type.3)

where N is the density of states of one spin per unit energy at Fermi level in the normal
state. It indicates that there is no DOS inside of the gap, diverging at E = Ep + Ag. In

the case of the polar type, DOS is represented as

2 i -
N(E) _ _E_/ 7r/ sin d0d¢
NO 4 0 0 \/m

B Aﬁosin“1 2 (E > Ay)

% (E < Ao)

DOS of the axial type is shown as

NJ(E) E /2 /’f sin 6
— 2 = — |7 dod
Ny ar J, 0o VE?—A2siné ¢
E

B In E+ Ay
20, |E-A

Asint e (E>A
x B (E< A eroEsm E (E > Ay)

26

(2.2.39)

(2.2.40)

(2.2.41)



Therefore, in the energy region far below gap edge A¢ (E < Ay), DOS with the anisotropic

gap is expressed as

) _ (2.2.42)
No E*°  axial type.

We show Ny(E) in the case of the BCS state (A = Ay), the polar state (A = Agcosd)
and the axial state (A = Agsiné) in Fig. 2.2.3. Next, we will explain the temperature

Ns(E) « {E polar type

N,(E)
£A _, (b)ABM
" E
A0
SN~
Ny _._..~._..,4._,,f__-§__.._:::::._: ~~~~~~~~
7T
y 7 a4 (c)polar
s . ~E*
Er Ert+dp E

Fig. 2.2.4 Density of state N; for (a) the BCS state, (b) the axial ABM state and (c) the polar state.52)

dependence of C, and 1/7) indicating the power law, which reflects the anisotropic DOS.

a) Specific heat

Generally, the electronic specific heat C, of the metal in the normal state is represented

as

2
c, = = ;BN(EF)T (2.2.43)

= AT,

where v is the Sommerfeld coefficient or electronic specific heat coefficient and N(FEF) is
DOS at the Fermi energy. Its coefficient in the superconducting state can be expressed as

C, 2 [ [ Of
T=1 ) N,(E)E ( 8Ek)dE, (2.2.44)

where f is the Fermi-Dirac distribution. Thus, for the BCS(s-wave), polar and axial
types, the electronic specific heat can be represented as

exp(—A/T) BCS type
— =T polar type (2.2.45)
T2 axial type.
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b) Nuclear spin-lattice relaxation rate

The nuclear spin-lattice relaxation rate 1/7; in the superconducting state is caused
by the scattering of the normal electrons excited above the superconducting energy gap.
1/T; in the BCS state is expressed as

1 2T
27 A2
T h

/ (Ns(E)* + M,(E)?) (—8—f) dE, (2.2.46)
0 )]
where M is the density of states related to the coherence effect. M; is given by

{%%—Az ExA

M, =
0 E<A.

(2.2.47)
Thus just below T, is characterized in T; ' the so-called ” Hebel-Slichter peak” or ”coher-
ence peak” originated not only the divergence of N, at the gap edge Ag, but also from the
density of states M. This effect is weakened by the lifetime broadening of the quasiparti-
cles and/or the damping effect due to the electron-phonon coupling. In the temperature
region of T <« T, 1/T decreases exponentially with decreasing temperature as

1 e (-A_) , (2.2.48)

reflecting the isotropic opening of the energy gap.

On the other hand, for the d- or p-wave pairing, the coherence effect is weakened or
disappears owing to the anisotropic gap and/or the lifetime broading of the quasiparticles.
From eq.(2.2.44), we can get the relations as follows,

exp(—A/T) BCS type
= T3 polar type (2.2.49)
T° axial type
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2.2.8 Typical examples of anisotropic superconductor

We take three materials of CeRugy, UPt; and UPd.Al; for typical examples of s-, p-
(or f-) and d-wave superconductors, respectively.

CeRuy has the cubic crystal structure with 7, = 6.3 K. For NMR and NQR mea-
surements using the powder sample, Matsuda et al. and Ishida et al. reported important
information for superconductivity.5>%% Figure 2.2.5 shows the temperature dependence of
a nuclear spin-lattice relaxation rate 1/7T; of 1°!Ru. They observed a Habel-Slichter peak
just below T; and an exponential decrease in 1/7;. The magnitude of superconducting
gap 2A/kgT, was, however, obtained as 4.0 by Matsuda et al. and as 3.8 by Ishida et
al., respectively. These values are larger than an expected BCS value (2A/kgT, = 3.54).
Thus, these results indicate that CeRu, is a strong-coupling BCS superconductor. The
exponential decrease in 1/7} is also consistent with the same temperature dependence of
the specific heat data obtained by Huxley et al. and Hedo et al.5%%)
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Fig. 2.2.5 T-dependence of 1/T; in CeRu,. A solid curve is a BCS line.?¥

The T? dependence of the specific heat in the form of C/T under the several constant
fields are shown in Fig. 2.2.6. A jump in the specific heat is sharp at the superconducting
critical temperature. In fields higher than 55kOe the sample is changed into the normal
state. The electronic specific heat parameters are vy = 27 mJ/ K? - mol and ©p = 120K.
The electronic specific heat C, in the superconducting state is well explained by the
BCS theory, as shown in Fig. 2.2.7. The superconducting parameters are obtained as
2A(0)/ksT. = 3.7 and A(0) = 11.7K. The value of 2A(0)/kgT, is compared to the BCS
value of 3.53. AC/~T, is obtained as 2.0, where AC is the jump in the specific heat at

29



200 T T T T

CeRu,
H// <110>

S
£
¥
-
E
£ 0
@]
0
0
0
0
0 ] 1 | 1 0
0 10 20 30 40 50

T? (K?)

Fig. 2.2.6 T? dependence of the specific heat in the form of C/T un-
der several constant fields. Solid lines connecting the data are

guidelines.?®

I —
10" £ E
: \\"\-_‘\ 2 E
o - CeRu, Tl T =
% 107 -
) S ~T 3
107 =
s BCS g

C | l l
1 2 3 4 5

T,/T

Fig. 2.2.7 Temperature dependence of the specific heat in the supercon-
ducting region. The T? and T dependences of the specific heat
correspond to the gap structures with polar and axial nodes,
respectively.®)
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T.. This value is also larger than BCS value of 1.43.

In Fig. 2.2.7 another relation is drawn from a viewpoint of anisotropic superconduc-
tivity, where the specific heat follows the 7% and T dependences for the superconducting
gap with the polar and axial nodes, respectively. This data follows the BCS relation.

The temperature dependence of a Maki parameter ko is shown by circles in Fig. 2.2.8.
The k9 value is 12 around T, and increases with decreasing the temperature. The behavior
is predicted to be no paramagnetic effect. The data do not diverge as \/ln(—TC/TT) at low
temperatures, but saturate to a finite value when extrapolating the temperature down
to 0 K. This means that the sample is, rigorously saying, not in the pure limit.>") It is,
however, close to the pure limit because the theoretical ratio of k3 at 0 K to the one at 7,
becomes 2.0 for £/1 = 0.05, where [ is the mean free path.>” The corresponding ratio for
the present sample is about 3. In fact, the £/¢ value is approximately 0.03-0.04 because
the coherence length is determined as 79.3 A from H:5(0) and the mean free path, which
has been determined by the de Hass-van Alphen oscillation, is 2600 A for branch «, 2000
A for branch §; and 2400 A for branch € 93.5%

40+ K, CeRu,
H// <110>

20

(=]

T (K)

Fig. 2.2.8 Temperature dependence of Maki parameters x; and ko and k3
shown by triangles, circles and squares, respectively. Solid lines
connecting the data are guidelines.

The k; value is almost the same as Ky near T, but becomes smaller than ko with
decreasing the temperature. This behavior is normal in usual type II superconductors. 7
Next, we will explain the typical non s-wave superconductor UPt3 with the hexagonal
structure, which is a strong candicate for a p or f-wave superconductor. The double
superconducting transition was observed in the specific heat measurements. Figure 2.2.9

shows the superconducting multiple H-T phase diagram of UPt3, which was obtained
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from magnetization and specific heat measurement under the magnetic field>2%61,62),

From this phase diagram, there are three superconducting phases, called A, B and C, and
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Fig. 2.2.9 Multiple H-T phase diagram of UPt; determined by the static

magnetization and specific heat experiments® 29:61:62),

the anisotropy between the field directions along [0001] and [1120].

Figure 2.2.10 shows the temperature dependence of nuclear spin-lattice relaxation rate
1/T; of 19°Pt.5%) No NMR anomalies associated with AF ordering have been observed near
or below Ty = 5K, suggesting that the static long-range ordering is ruled out. A Habel-
Slichter peak was not observed just below T, and a power law(~ T3) is observed in the
temperature dependence of 1/7;. This results claims a polar type gap.

The '9°Pt Knight shifts do not decrease at all below T, within an experimental error
of £0.02% regardless of the crystal directions and of the superconducting multiphases.?
These novel results have eliminated the possibilities of both even parity superconductivity
and odd parity superconductivity with the strong spin-orbit (SO) coupling. As a result,
unconventional superconductivity of UPt; is characterized by odd parity with an equal
spin pairing keeping the same anisotropy of the spin susceptibility as in the normal state
and following the direction of the magnetic field in a range of 4.4 — 15.6 kOe without an
appreciable pinning to the lattice. The Pt Knight shift study has provided an important
clue that the SO coupling for the pair is not so strong as to lock the pseudo-spin de-
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gree of freedom in the crystal direction. The one-dimensional scenario incorporating the
symmetry-breaking-field (SBF) for the weak SO coupling seems to be promising.

The normal state paramagnetic susceptibility x, of UPt3 is large and anisotropic,
with the easy direction being H L [0001] (c-axis). Since a substantial part of x, comes
from the pseudo-spin Pauli paramagnetism, the behavior of My, near H,, may depend
strongly on the pairing symmetry.®") Figure 2.2.12 shows the M(H) curves, measured
at 50mK. The strong irreversibility appearing at low field is due to the ordinary flux
pinning effect. The hysteresis rapidly decreases as H increases, and M(H) becomes almost
reversible at H ~17kQOe. The linear magnetization above H.s is due to the normal state
paramagnetism. In both field directions, the irreversibility in M (H) increases again in
a narrow region just below H.,, which is called “peak effect”. When the magnetization
hysteresis is small, the equilibrium magnetization M, of the vortex state can be well
approximated by the average of the increasing- and decreasing-field data. The results for
M,q are shown in Fig. 2.2.12 by thin solid lines.

In general, ng near H.y can be expressed in terms of a Ginzburg-Landau parameter
k9. Temperature variation of x, evaluated from ng is summarized in Fig. 2.2.13, which
further confirms the existence of the anisotropic paramagnetic effect. In a conventional
superconductor, ks could be direction-dependent, reflecting the effective mass anisotropy.
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Remarkably, x$(1") continues to increase on cooling, without an indication of saturation.
This is actually the behavior which is predicted for a clean superconductor in the absence
of the paramagnetic effect, where ko \/W as T' — 0 as shown by the dotted line.
In contrast, k5 continues to decrease on cooling: this is a typical feature in the presence of
the paramagnetic effect where the pair breaking by the Zeeman energy becomes important
at low temperatures. As a result, there is a crossover in the anisotropy ratio k3/x$ at
about 7'~ 0.77.

The probable scenario is the odd parity pairing with anisotropic pair-spin orientation.
The apparent lack of the paramagnetic effect in the basal plane would imply an equal spin
pairing in this direction, whereas the appreciable paramagnetic effect along the [0001]
direction would mean that the pair-spin orientation is somewhat confirmed in the basal
plane, implying a non-negligible spin-orbit coupling in the pairing channel. This scenario
is consistent with the result of the NMR Knight shift, except for the anisotropy along the
[0001] direction: no change is observed in the Knight shift for two principal directions.

UPd;Al; with the hexagonal structure is known as a typical heavy fermion super-
conductor in which antiferromagnetic ordering with a Neéel temperature Tny=14.5 K and
superconductivity with a critical temperature T,=2 K. Form the results of 2?Al-NMR
measurements using the high-quality polycrystalline sample, a Habel-Slichter peak was
not observed just below T, which imply the non s-wave superconductor, as shown in
Fig. 2.2.14. The T3-law of 1/T; holds down to sufficiently low temperatures, resulting
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Fig. 2.2.15 T-dependence of the Knight

Fig. 2.2.14 T-dependence of 1/7; in shift below T, in UPd,Al,. 6

UPd;Al;. A solid line shows
T2 dependence. The dash-
dotted lines show the low-T'

behavior reported by Kohori
et al..54 %)

64,65) Figure 2.2.15 shows the temperature dependence

from the line-node gap (polar-type).
of the Knight shift below T,. The large residual shift originates from the antiferromag-
netic susceptibility, while the isotropic reduction of the spin shift below T is due to the
formation of a singlet pair among quasiparticles near the Fermi level. Combining both the
results of 1/7) and Knight shift, it has been clarified that superconductivity in UPd,Al;
is of the d-wave pairing type characterized by line nodes on the Fermi surface.

The magnetization curves in the increasing- and decreasing-field processes at 50 mK
are shown in Fig. 2.2.16%). A pronounced peak effect are observed in the mixed state.
A broken and a thin solid line show the equilibrium magnetization and normal state
magnetization, respectively. Figure 2.2.17 shows the temperature dependence of the Maki
parameter ko, obtained from the slope of the equilibrium magnetization. The value of
k9 decreases monotonously with decreasing the temperature and becomes constant. This
indicates the existence of the paramagnetic effect for the field parallel to the hexagonal
basal plane.

Next, we show in Fig. 2.2.18 the inelastic scattering profiles measured with E¢ = 4 meV

at the (0 0 0.5) antiferromagnetic Bragg point as a function of the sample temperature.5”
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At T= 4.2 K, the profile can be described by a combination of a broad quasielastic (dotted
line) and an inelastic Lorentzian line shape at AE = 1.5 meV (dashed line), as well as
a sharp Bragg peak (dashed line) and an incoherent scattering (dash dotted line) both
centered at £ = 0.0 meV. The broad peak at AE= 1.5 emV is a spin wave excitation.
Below T, = 1.9 K, the position of the quasielastic peak shifts to a higher energy. A clear
peak with a maximum at AF = 0.4 meV appears at 0.4 K.

Fig. 2.2.19 shows the temperature dependence of the energy of the magnetic excitation
gap. The gap starts to open at T, = 1.9 K and increases with decreasing the temperature.
This temperature dependence is comparable to the one of the superconducting energy
gap expected from the weak coupling BCS theory (dotted line), which is normalized by
the maximum energy gap. The energy gap at the low temperature is 0.36 meV, which
corresponds to 2A = 2.2kgT,. It is the same order compared with the weak-coupling BCS
theory, 2A = 3.5kgT,. In addition we note that the gap disappeared with applying the
magnetic field larger than the upper critical field H,.5®

From these results it is concluded that the observed magnetic excitation gap corre-
sponds to the superconducting gap. At present we don’t know the microscopic mechanism
why the magnetic excitation gap behaves very similar to the superconducting gap which
is obviously a charge gap. It should be noted, however, that this phenomenon is due to
the strong coupling between magnetism and superconductivity.

High-T, cuprates also indicate the similar features as in UPdyAls, indicating a d-wave

superconductor.
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2.3 Characteristic properties of SroRuQOy4
2.3.1 Nomal state

SroRuQy is the first non-cuprate superconductor with a layered perovskite structure
as in Lay_;Sr,CuQy4. The superconducting temperature 7. was for the first time about
1 K, but later on it reached to 1.49 K.%6%

Reflecting the layered structural character, the transport property is highly anisotropic
with the ratio of the resistivity along the c-axis or the [001] direction to that of the ab-
plane, p./pap ~ 850 at 2 K. The temperature dependence of p, is metallic. On the other
hand, that of p. is nonmetallic, but becomes metallic below Tj; which is the crossover
temperature from 2D to 3D metal. The metallic behavior along the c-axis is only valid
below Ty; ~ 130 K. Neutron diffraction experiments for the single crystal revealed that
any structural transition was not observed across Ths.™®

N

Pap (1074 Q cm)

0 — —— 0
0 100 200 300
T{K

Fig. 2.3.1 Temperature dependence of the electrical resistivity in SroRu0,4.%

A T? dependence of py; and p, below 25 K implies the Fermi liquid nature.”™ The
electronic specific heat coefficient vy is substantially enhanced from the band calculation
by a factor of 3.8, being in satisfactory agreement with the expectation from the enhanced
masses obtained from quantum oscillations.” Although the magnetic susceptibility shows
a Pauli paramagnetic weak T-dependence up to 700 K, the spin susceptibility estimated
by Ru-NMR measurement is exchange-enhanced by a factor of 5.4. The Wilson ratio is
expected to be 1.36, indicating that the enhancements in x and « are of the same origin.

According to the band-structure calculations® ), the electronic states of SroRuQ, near
the Fermi level are derived mainly from four 4d electrons of Ru. The hybridization with
the oxygen 2p electrons is substantial. The quantum oscillations(both the de Haas-van
Alphen and Shubnikov-de Haas oscillations) by Mackenzie et al.”) showed that the Fermi
surface consists of three pieces of two dimensional sheets, labeled «, 8 and . The observed
cyclotron masses are in agreement with the observed y-value and all enhanced from the
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Fig. 2.3.2 Magnetic susceptibility up to 700 K in SroRu0,.™

respective expectations of the band structure calculation by a factor of three to four. The
surface « is a small hole Fermi surface, while, the surfaces 3 and «y are electron ones.

The Hall coefficient Ry exhibits a complicated temperature dependence.”™ ™) It changes
from negative to positive below 130 K, and changes again to negative below about 25 K.
Mackenzie et al.” have shown that below 1 K, it saturates at a value of -1.15x 1071 m?3/C.
According to an analysis for a two-dimensional metal, the negative value at low temper-
atures where the mean free path can be assumed isotropic, requires that the number of
electrons be greater than that of the holes. This means that SroRuQ, is an uncompen-
sated metal. The above assignment is also consistent with the negative sign and the value
of the Hall coefficient at low temperatures.

Significantly different Fermi surface has been observed by angle-resolved photoemission
spectroscopy(ARPES) by two independent research groups.”’”) These ARPES results
are in agreement with each other and indicate the presence of an extended van Hope
singularity (a flat band), much like the ones commonly observed in high-T, cuprates.
The reported Fermi surface consists of one electron Fermi surface and two hole ones, in
sharp contrast to the results of the quantum oscillations. Such Fermi surfaces would give
the de Haas-van Alphen frequency of only 47% of the actual observation for . Since
ARPES has been a powerful and unparalleled method of providing useful information on
the electronic states near the Fermi level for high-T, cuprates, it is quite important to
resolve this controversy on this layered perovskite material. ARPES is a surface sensitive
technique and the consistency with the bulk properties such as the de Haas-van Alphen
effects should be confirmed for each compound under investigation.
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Fig. 2.3.4 Temperature dependence of the weak-field Hall coefficient Ry.™)
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Recently, an interesting phenomenon has been observed in the Shubnikov-de Haas
oscillation at an angle § = 31°, where 6 denotes a tilt angle measured from [001] to
[100]. ® Both Fermi surfaces a and 3 become perfectly two-dimensional at 31°. Namely,
this corresponds to the Yamaji angle. The cyclotron effective masses of the sum and
difference oscillatory components mj,, are found to be highly different from mj + m;,
which is derived from the usual magnetic interaction. This phenomenon was explained
on the basis of the dHvA oscillation derived under the constant total electron number,
so-called chemical potential oscillation, which is in contrast with the Lifshiz-Kosevich
formula derived under the constant chemical potential. 9

FFT Amp. (arb. units)

0 " n L i Tlo A 4, " 2 2’6 L
SdH Frequency (kT)

Fig. 2.3.5 FFT spectra of the oscillations for various angle 8 values.®)

2.8.2  Superconductivity

The superconducting properties are also highly anisotropic due to quasi-two dimen-
sional electronic character. The ratio of the coherence lengths, £;/¢, ~660A/33A ~
2089, is large. Nevertheless, the coherence length along the c-axis is several times longer
than the interlayer spacing of d=6.4A. The effect of strong Coulomb repulsion among the
electrons, reflected in the Fermi-liquid properties”™), tends to favor pairing states with
non-zero orbital angular momentum. From the early Ru-NQR measurement, the absence
of the Hebel-Slichter peak in 1/77 just below T. excluded a possibility of the s-wave
pairing state.'® The large residual density of states of 62% was observed at lower tem-
peratures from Ru-NQR, which was consistent with the estimated by the specific heat
measurement.'!?) Even in the better sample with T, ~1.43 K, the residual electronic
specific heat have been observed.” The unconventional nature of superconductivity is
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reinforced by the observation of the extremely strong suppression of T, by disorder intro-
duced by nonmagnetic impurities and defects.”™ Recently, the measurements of the 7O
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Fig. 2.3.6 T dependence of 1/T; at Ru site in SryRuQO4.1%

Knight-Shift in SroRuQy4 have been performed.'*%% For the field of 0.65 T parallel to the
ab-plane, the spin part of the Knight shift does not change down to 15 mK, much below
T.(H = 0.65 T) ~ 1.2 K. Since the system is in the clean limit, the invariance of the
Knight shift cannot be attributed to the strong spin-orbit scattering in the s-wave super-
conductor. This constitutes the decisive evidence for the spin-triplet pairing in SroRuQ,.
Here, the d-vector should be perpendicular to the applied field. Considering the tetragonal
crystal symmetry, it is concluded that the d-vector is most likely d = zf(k).

Another important observation is the spontaneous internal magnetic field in the su-
perconducting state, probed by uSR.'® When the crystal of Sr,RuQy is cooled below T}
under zero external field, the relaxation rate clearly increases below T.. This indicates
the spontaneous emergence of an internal field in the superconducting state. Therefore,
the superconducting state of SroRuQ, is characterized by the broken time-reversal sym-
metry(TRS). In principle, the spontaneous field may arise from either the spin part or
the orbital part of the wave function. The spin state that breaks TRS is the non-unitary
state. Among the allowed spin-triplet states under the tetragonal symmetry of SryRuQy,
the wave function compatible with the results of the Knight shift and uSR is therefore
represented by the d-vector d = z f(k; £ ik,).

More recently, the specific heat measurement for the sample with T, =1.48 K was per-
formed under the magnetic fields precisely parallel to the [110] direction.®") The temperature-
sweep measurements of the electronic specific heat clearly show that a profound change
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in the superconducting state takes place near T,(H) under the fields above 1.2 T. The
specific-heat jump at T.(H) contains large entropy release only below 1.1 - 1.2 K. These
results indicate that there is a second phase transition in the vincity of To(H) at low
temperatures and under high magnetic fields. In addition, in-plane anisotropy of H., was
reported by Z. Q. Mao et al.%?, which shows four-fold symmetry corresponding to the
tetragonal crystal structure. The magnitude of the anisotropy shows a sharp decrease
above 0.8 K or under slight field misalighment. Then, the anisotropy is enhanced in the
region where the second phase transition observed in the H — T" phase.

3
E
X
e ]
E
5
O
/ Sr,Ru0,
? H //[110]
0 1 1 L
00 05 10 15 20
T(K)

Fig. 2.3.11 Dependence of the electronic specific heat divided by tempera-
ture for the field along [110].5

From theoretical studies, the spin-triplet pairing has been suggested over the spin-
singlet pairing'®. Rice and Sigrist had predicted the possibility of the spin-triplet su-
perconductivity stabilized by ferromagnetic spin fluctuation on analogue of superfluid
3He!®). There were proposed five possible p-wave pairing states without any gap nodes
in a weak spin-orbit coupling scheme. From experimental results mentioned above, the
possible pairing state is proposed to be a p-wave state expressed by a so-called d-vector:
d(k) = z(k, £ ik,).}?) This state breaks time-reversal symmetry. The internal field is
originated from the orbital part (k, £ k,) of the pair wave function.

Furthermore, the several ideas have been proposed in order to explain the intrinsic
residual density of states. One idea is based on the non-unitary p-wave superconductivity,
which actually realized in A; phase of 3He?®3%), The other idea is to explain by the
orbital dependent superconductivity proposed by Agterberg et al.!® A part of the Fermi
surfaces, (a, 8) or 7, open up a large superconductivity gap, where («a, §) and -y sheets are
considered to be domained by Ru d,,,, and d,, orbitals, respectively. It is also proposed
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that the existence of a second phase transition in the mixed state when the magnetic field
applied along a high symmetry direction in the basal plane.®®

Recently, Miyake and Narikiyo have proposed anther theory, in which the exchange-
enhanced ferromagnetic coupling dominated between the nearest-neighbor Ru spins leads
to the spin-triplet wave function with a strong four-fold anisotropy in the superconducting
gap.'” The ratio between the maximum and minimum of the magnitudes of the gap is of
a factor of ten, the specific heat may be explained even if all the bands equally contribute
to superconductivity.

2.8.3 FEnergy band structure and Fermi surface

The band structure calculations were done by some researchers. Among them, to
clarify the precise angular dependence of the dHvA frequency, Betsuyaku and Harima have

87.88) The Fermi surface was calculated by

done the energy band structure calculations.
using an FLAPW method and the local density approximation, which is parametrized by
Moruzzi et al.89 Scalar relativistic effects are taken into account for all electrons, and the
spin-orbit interaction is included for valence electrons in a second variational procedure.
Lattice parameters used in the calculations are the same as the previous report.® Self-
consistent potential is given from eigen states at sampling 24 k-points in the irreducible
Brillouin zone (IBZ), calculated with basis functions truncated at |k+G;| < 4.15%, which
correspond to LAPW functions at the I' points. To obtain a final band structure, eigen
energies are calculated at 175 k-points in IBZ.

The band structure, as shown in Fig.2.3.14, is very similar to the previous results.®?)
Total and particial density of states are shown in Fig 2.3.15. Valence bands are formed by
the Ru-4d and O-2p hybridization. Three kinds of cylindrical Fermi surfaces originate in
the Ru-4d and O-2p antibonding bands. The perspective views of the Fermi surfaces are
shown in Fig. 2.3.16. The orbits, denoted by «, 8 and ~, are due to the band 17-hole, 19-
electron and 18-electron Fermi surfaces, respectively. The band 19-electron Fermi surface
is clearly corrugated, which is denoted by ; and ;. The theoretical angular dependence

of the dHVA frequency are shown in Fig 2.3.17.
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Fig. 2.3.14 Energy band structure of SroRuQO4.The Fermi Energy is
0.6936 Ry denoted by Erp. Three bands, which namely consist
of Ru-4d and O-2p compouents, cross the Fermi energy.
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Fig. 2.3.15 Density of states of SrsRuQ,. Partial density of states for Sr-s,
Ru-d and O-p are also shown.
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Fig. 2.3.16 Fermi surfaces of (a) and (b) band 17-hole, (c) band 18-electron
and (d) band 19-electron in SryRuQy.
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'hapter 3 Experimental

3.1 Single crystal growth

8.1.1 Crystal structure

SroRuQ4 has the tetragonal KoNiFs-type crystal structure, which is the same as the
high T,-superconductor Lay_;Sr,CuQy, as shown in Fig. 3.1.1. The characteristic feature
is that the quasi-two dimensional network of CuQO, plane is replaced by the RuO; one. It

Fig. 3.1.1 Crystal structure of SroRuQOy4

has the space group I4/mmm and contains two molecules per unit cell. Crystallographic
parameters of SroRuQy4 are tabulated in Table3.1-1.

Table 3.1-1 Crystallographic parameters of SroRuQOy4

Crystal structure KoNiF4-type
Space group No.139 D} - I4/mmm
Lattice constant a = 3.8603 A¢
c=12729 A
Atomic positions
Sr Je-site 2=0.3532  (0,0,2)  (0,0,2)
Ru 2a-site (0,0,0)
o(1) 4c-site (0,1/2,0)  (1/2,0,0)
0(2) 4e-site z=0.1619  (0,0,2) (0,0, %)
%ref. 81
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3.1.2 Sample preparation

Single crystals of SroRuO4 were grown by a floating-zone technique using a commercial
infrared radiation image furnace. The photograph of the furnace was shown in Fig. 3.1.2.
Figure 3.1.3 shows the schematic picture of infrared radiation image furnace. In gen-

eral, the method of a floating-zone technique is as follows:
1) Set the seed crystal and nutrient rod in the quartz tube.
2) Control the gas condition for the crystal growth.
3) Set the focus of the radiation at the bottom of the nutrient rod.

4) Increase the power until the rod is melt partially, with the seed and nutrient rod

rotating.
5) After melting seed crystal partially, connect the both melting zone.

6) Move the focus upward along the nutrient rod. A sweeping speed is usually 3~5
mm /hr.

Fig. 3.1.2 Photograph of a FZ-furnace.

In this study, starting materials were 4N4(99.994%)-SrCO3; and 3N-RuQO,. The nutri-
ent rods was made as follows. The reagant powders of SrCO3 and RuO, were weighted
and were mixed in an agate mortar. The mixtures, put into an almina boat, were heated
in a muffle furnace in the conditions at 950 ‘C for 24 hours. The powder was reground
and pressed into rods of about 5 mm in diameter and 70 mm in length. The rods were
sintered at 1350 °C for 3 hours under a flow of oxygen and/or air. At the first time, a
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Fig. 3.1.3 Schematic picture of an infrared radiation image furnace.
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short nutrient rod was used as a seed crystal, which was polycrystalline. After several
times of growth, a single crystal could be used for the seed crystal. The typical single
crystal ingot was about 5 mm in diameter and 50 mm in length, as shown in Fig 3.1.4.

Sr,Ru0O,

s

10mm

Fig. 3.1.4 Typical single crystal ingot of SroRuQOy.

The growth of SroRuQ, is complicated by evaporation of RuQ,, which leads to the
segregation of SrO. Considering this evaporation, the ratio in the nutrient rod of SrCOj3 to
RuO, was systematically changed from the ratio of 2 to 1. We also tried various condition
to the crystal growth, as summarized in Table 3.1-I1.

Table 3.1-II Condition of the crystal growth of SroRuOy.

growth-speed ratio of Sr:Ru atomosphere T,
6 mm/hr 2:1.2~1.3 16%02/84%N2 1[atm)] no superconductivity
12 mm/hr 2:1.15~1.3 16%02/84%N, 1[atm] no superconductivity or 0.8 K
18 mm/hr 2:1.1~1.3 16%02/84%N2 1[atm] 0.8~1.18 K
40 mm /hr 2:1.06~1.24  16%02/84%N; 1[atm] 0.8~1.2 K
2:1.1 10~28%02/90~72%Ar 2[atm)] 1.15~1.3 K
21.06~1.24  14%0,/86%Ar 4[atm] 1.0~1.52 K
60 mm /hr 2:1.06~1.12 13%02/87%Ar 2[atm] 0.7~1.24 K
2:1.1 10~28%05/90~72%Ar 3[atm)] 0.9~1.24 K

From this table, the quality of SroRuQO, tends to increase with increasing the growth-
speed until 40 mm/hr. It is closely related to the evaporation of RuO,. As the growth-
speed becomes slower, evaporation increases more severely. Large evaporation causes a
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large quantity of segregation of SrO. In this case, crystals can be easily cleaved at the
(001) plane. The similar situation occurs in the case of lack of RuO,.

On the other hand, in the case of too excess of RuQOs, the crystal includes metallic
Ru in a shape of fine lamellae, as shown by optical microscopy in Fig 3.1.5. It suggests
that dissociation of RuO, occurred during the crystal growth. The dissociation of RuO,
mainly depends on the partial pressure of oxygen. Giving high pressure is an effective
way to prevent from dissociation and evaporation. It is also effective to make a melting
zone stable during the crystal growth. The high-quality single crystal of SroRuO4 with

Fig. 3.1.5 Optical microscopy picture of polished surface of SroRuQOy.

T. = 1.52 K was reproducibly obtained at a speed of 40 mm/hr in a 14%-0,/86%-Ar
gas mixture with the total pressure of 4 atm, where the ratio of SrCO3 to RuO,; was 2
to 1.12. For the single crystal growth of the ruthenium oxide, it is important to control

evaporation and dissociation of RuQOs.

3.1.8 Determination of the crystallographic direction of the sample

We characterized all the obtained samples by the X-ray back Laue method. We show
the Laue patterns for the typical planes, (100), (110) and (001) planes of SroRuQOj in
Fig 3.1.6. If both ends of an ingot show the same pattern, where we should obtain
a mirror image, the ingot is regarded as a single crystal. After determining a sample

direction, the pieces of crystals were carefully spark-cut from the ingot.
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Fig. 3.1.6 Laue patterns for the typical planes, (a) (100), (b) (110) and (c} (001) of SrpRuO4.
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3.2 Experimental method

3.2.1 FElectrical resistivity

1) Introduction

An electrical resistivity consists of four contributions: the electron scattering due to
impurities or defects po, the electron-phonon scattering ppn, the electron-electron scatter-

ing pe-e and the electron-magnon scattering pmag as in

P = pPo+ Poh t Pe—e + Pmag - (3.2.1)

This relation is called a Matthiessen’s rule.

The po-value, which is originated from the electron scattering from impurities and de-
fects, is constant for a variation of the temperature. This value is important to determine
whether an obtained sample is good or not, because if pg is large, it contains many impuri-
ties and defects. A quality of sample can be estimated by determining a so-called residual
resistivity ratio (RRR=pgrr/po), which is a value of a resistivity at room temperature prr
divided by po. Of course, a large value of RRR indicates that the quality of sample is
good.

Let us introduce a scattering life time 79 and a mean free path [y from the residual

resistivity. The residual resistivity py can be written as
m* 1
Po=—"+ — (3.2.2)
ne Ty
where n is a density of carrier and e is the electric charge. Then 7y and [y values are
m*
To = , (3.2.3)
nepo
hkp

nepo

lo = UVrTp = (324)

The temperature dependence of péh, which is originated from the electron scattering
by phonon, changes monotonously. pph is proportional to T' above the Debye temperature,
while it is proportional to T far below the Debye temperature, and pp, will be zero at
T = 0.

In the strongly correlated electron system, the contribution, p._., which can be ex-
pressed in terms of the reduction factor of the quasiparticle and the Umklapp process,
is dominant at low temperatures. Therefore, we can regard the total resistivity in the

non-magnetic compounds at low temperatures as follows:

p(T) = po + pe—e(T)
= ,0()+AT2 , (3.2.5)

where the coefficient v/A is proportional to the effective mass. Yamada and Yosida ob-
tained the rigorous expression of pe_e in the strongly correlated electron system on the
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basis of the Fermi liquid theory3®. According to their theory, pe_e is proportional to the
imaginary part of the f electron self-energy Ak, and Ak is written as

(= T2 wD{c_q(O)D;;, (O)D;’c,w(())
k'q

ol i

Pe—e X Ak =~

1
x {FTLQ(k, KK +ak—q)+ 5D (kKK + gk~ q)} ,(3:26)

where I',, is the four-point vertex, which means the renormalized scattering interac-
tion process of k(o)k'(c) — k' + q(o)k — gq(0), T}, is denoted as 'y (ky, ko; kg, k) —
L1 (K, k2 Ky, ky), and D;;(O) is the true (perturbed) density of states of f electrons
with mutual interaction in the Fermi level. This Ak is proportional to the square of the
enhancement factor and gives a large T?-dependence to the heavy fermion system.

2) Experimental method of the resistivity measurement

We have done the resistivity measurement using a standard four probe DC current
method. The sample is fixed on a plastic plate by GE7031 varnish. The gold wire
(0.02mme¢) and silver paste were used to form contacts on the sample. The sample is
mounted on a sample-holder and installed in a 3He cryostat. We measured the resistivity
in the temperature range from 0.5 K to the room temperature. The applied current is
about 1-3mA. The thermometers are a RuQO, resistor at lower temperatures (below 15 K)
and a diode thermocouple at higher temperatures.

3.2.2 Transverse magnetoresistance

1) Introduction to transverse magnetoresistance

High field transverse magnetoresistance Ap/p = {p(H) — p(0)}/p(0), in which the
directions of the magnetic field and the current are perpendicular each other, provides
important information on the overall topology of the Fermi surface, although the exper-
imental technique is simple*®. Under the high field condition of w.T > 1, it is possible
to know whether the sample under investigation is a compensated metal with an equal
carrier number of electrons and holes, n, = ny, or an uncompensated metal, n, # n;, and
whether the open orbit exists or not. Here, w. = eH/m is the cyclotron frequency, 7 the
scattering lifetime, m? the effective cyclotron mass and w,7 /27 is the number of cyclotron
cycles performed by the carrier without being scattered. The characteristic features of
the high field magnetoresistance are summarized as follows for w.r > 1:

(1) For a given field direction, when all of the cyclotron orbits are closed orbits, (a) for
the uncompensated metal the magnetoresistance saturates (Ap/p ~ H®), and (b) for

the compensated metal the magnetoresistance increases quadratically (Ap/p ~ H?).

(2) For a given magnetic field direction, when some of the cyclotron orbits are not closed
but form open orbits, the magnetoresistance increases quadratically and depends on
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the current direction as Ap/p ~ H? cos® o, where « is the angle between the current
direction and the open orbit direction in k-space. This is true regardless of the state

of compensation.

In Fig. 3.2.1 we show this transverse magnetoresistance behavior for a metal with a
partially cylindrical Fermi surface whose cylinder axis is in the k,-plane and deviates by
an angle a from the k,-axis. Here, the current J is directed along the k,-axis and the
magnetic field H rotates in the k,-plane.

If we count the number of valence electrons of various compounds in the unit cell,
most of them are even in number, meaning that they are compensated metals. In this
case the transverse magnetoresistance increases as H" (1 < n < 2) for a general direction
of the field. When the magnetoresistance is saturated for a particular field direction,
often a symmetrical direction, some open orbits exist whose directions are parallel to
J x H, namely @ = 7/2 in k-space. We summarize in Table 3.2-I the behavior of
magnetoresistance in a high field at each condition.

As the magnetoresistance in the general direction is roughly equal to (w.7)?, we can
estimate the w,7 value.

The presence of open orbits is revealed by (a) spikes against a low background for
the uncompensated metal (Fig. 3.2.1(c)) and (b) dips against a large background for the
compensated metal (Fig. 3.2.1(d)).

2) Experimental method

The magnetoresistance experiment was carried out with a 3He cryostat and dilution
refrigerator. Measurements were done at temperatures down to 0.4 K and in fields up to
14 T by using a 15T -superconducting magnet with a 3He cryostat, while at temperatures
down to 50mK and in fields up to 17T by using a 17T -superconducting magnet with
the dilution refrigerator. A technique of the magnetoresistance measurement is almost
the same as in the resistivity one. As shown in Fig. 3.2.2, the current direction is fixed to

a crystal symmetrical axis of the sample and the sample is rotated in a constant magnetic
field.

3.2.8 de Hass-van Alphen effect
1) Introduction to de Haas-van Alphen effect

Under a strong magnetic field the orbital motion of the conduction electron is quantized
and forms Landau levels*®. Therefore various physical quantities show a periodic variation
with H~! since increasing the field strength H causes a sharp change in the free energy of
the electron system when a Landau level crosses the Fermi energy. In a three-dimensional
system this sharp structure is observed at the extremal areas in k-plane, perpendicular
to the field direction and enclosed by the Fermi energy because the density of state
also becomes extremal. From the field and temperature dependences of various physical
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Fig. 3.2.1 Schematic picture of the transverse magnetoresistances in uncompensated and compensated
metals when a partially cylindrical Fermi surface exists. The magnetic field H rotates in the
k.-plane.
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Fig. 3.2.2 Detailed picture of the sample holder and the inside wheel.
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quantities, we can obtain the extremal area S, the cyclotron mass m} and the scattering
lifetime 7 for this cyclotron orbit. The magnetization or the magnetic susceptibility is the
most common one of these physical quantities, and its periodic character is called the de
Haas-van Alphen (dHvA) effect. It provides one of the best tools for the investigation of
Fermi surfaces of metals.

The theoretical expression for the oscillatory component of magnetization My due to

the conduction electrons was given by Lifshitz and Kosevich as follows:

-1y . (2nrE;
My = ZZ (TTgAiSIH( H +ﬁz> , (327)

o025 7?

A < HY* | RrRpRs (3.2.8)
Ok,

axrmiT/H
e = sinh(A\rm3,T/H) ' (3.2.9)
Rp = exp(-Arm}Ip/H) , (3.2.10)
Rs = cos(mgirmy;/2mg) (3.2.11)
A = 2n’ckg/eh . | (3.2.12)

Here the magnetization is periodic on 1/H and has a dHvVA frequency F;

he
FF = —85; 2.1
e (3.2.13)

= 1.05%x107% [Oe-cm?-S; ,

which is directly proportional to the i-th extremal (maximum or minimum) cross-sectional
area S; (i = 1,... ,n). The extremal area means a mesh plane in Fig. 3.2.3, where there is
one extremal area in a spherical Fermi surface. On the other hand, three extremal areas
exist in a dumbbell-shape Fermi surface.

The factor Rt in the amplitude A; is related to the thermal damping at finite temper-
atures T. The factor Rp is also related to the Landau level broadening kgTp. Here Tp is
due to both the lifetime broadening and inhomogeneous broadening caused by impurities,
crystalline imperfections or strains. Tp is called the Dingle temperature and is given by

R
Ip = -1 2.
D 27I‘kBT (3 2 14)

= 1.22x 1072 [K-sec] 77"

The factor Rg is called the spin factor, and related to the difference of phase between the
Landau levels due to the Zeeman split. When g; = 2 (free electron value) and m? = 0.5my,
this term becomes zero for r = 1. The fundamental oscillation vanish for all values of
the field. This is called the zero spin-splitting situation in which the up and down spin
contributions to the oscillation cancel out, and this can be useful for determining the
value of g;. Note that in this situation the second harmonics for r = 2 should gave a full
amplitude.
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Fig. 3.2.3 Simulations of the cross-sectional area and its dHvA signal for a simple Fermi surface. There
is one dHVA frequency in (a), while there are three different frequencies in (b).

The quantity |82S/ 8kH2|_1/2 is called the curvature factor. The rapid change of the
cross-sectional area around the extremal area along the field direction diminishes the
dHvA amplitude for this extremal area.

The detectable conditions of dHvA effect are as follows:

(1) The distance between the Landau levels fiw, must be larger than the thermal broad-
ening width kgT’; hw. > kgT (high field, low temperature).

(2) At least one cyclotron motion must be performed during the scattering, namely
wer /2w > 1 (high quality sample). In reality, however, it can be observed even if a

cyclotron motion is about ten percent of one cycle in average.

(3) The fluctuation of the static magnetic field must be smaller than the field interval
of one cycle of the dHvA oscillation (homogeneity of the magnetic field).

2) Shape of Fermi surface

The angular dependence of dHVA frequencies gives very important information about
a shape of the Fermi surface. As a volume of Fermi surface corresponds to a carrier
number, we can obtain the carrier number of metal directly.

We show the typical Fermi surfaces and their angular dependences of dHvA frequencies
in Fig. 3.2.4. In a spherical Fermi surface, the dHvA frequency is constant for any field
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dHvA frequency

Field Angle

Fig. 3.2.4 Angular dependence of the dHvA frequency in three typical Fermi surfaces (a) sphere, (b)
ellipsoide (on center) and (c) ellipsoide (on axes).

direction. On the other hand, in an ellipsoidal Fermi surface such as in Fig. 3.2.4(b), it
takes a minimum value for the field along the z-axis. These simple shape of the Fermi
surfaces can be determined only by the experiment. However, information from an energy
band calculation is needed to determine a complicated one.

3) Cyclotron effective mass

We can determine the cyclotron effective mass m}; from measuring a temperature
dependence of a dHvVA amplitude. Equation (3.2.9) is transformed into:

—2m, —am,
In {Ai [1 — exp (Tm‘ﬂ)} /T} = %T + const. (3.2.15)

From the slope of a plot of In {A,- [1 — exp <_2’\Zf’T)] /T } versus T at constant field H,
the effective mass can be obtained.

Let us consider the relation between the cyclotron mass and the electronic specific
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heat coefficient +. Using a density of states D(Fr), v is written as

2
y= %kBQD(EF) . (3.2.16)

In a spherical Fermi surface, using Er = h’kg”/2m? takes

2 174 om* 3/2
N = %kBQ____( mc) Epl/?

272
2
’“?‘;’TZ mt ke (3.2.17)

where V is molar volume. kg = (S/7)'/? from eq.(3.2.13), then

k?mo [ 2e\? m;
N = ];,;;,20(717) -V—T%FW (3.2.18)

= 2.87 x 107%[mJ/K’mol - (cm®/mol) - Oe] - V%—C-FI/2
0

In the case of the cylindrical Fermi surface,

72 1%
= —kg? —— -m’k,
7 3B " opapr e
kg®V
= %h?—-m:kz , (3.2.19)

where the Fermi wave number k, is parallel to axial direction of the cylinder.

4) Dingle temperature

We can determine the Dingle temperature Tp from measuring a field dependence of a
dHvA amplitude. Equations (3.2.8)-(3.2.10) yield

_ * 1
In {A,-Hl/2 [1 — exp <2’\TmmT~>] } = —-xm% (T +Tp) - 77 + const. (3.2.20)
From the slope of a plot of In {A,-Hl/2 [1 — exp (_—2)‘—%&)]} versus 1/H at constant T,

the Dingle temperature can be obtained. Here, the cyclotron effective mass must have
been already obtained.

We can estimate the mean free path [ or the scattering life time 7 from the Dingle
temperature. The relation between an effective mass and life time takes the form

hkF = m*vp s (3221)

l=vpr . (3.2.22)
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Fig. 3.2.5 Detecting coil and the sample location.

Then eq. (3.2.14) is transformed into

A’k

= 2.2
27rkBm§TD (3 3)

When the extremal area can be regarded as a circle approximately, using eq. (3.2.13), the
mean free path is written as

K? 2e 1/2 m\"!
| = =) -F?[=) 15! 2.24
27rkBm0 (hc) (m()) b (3 )

x\—1
0.776 [A-0e V2. K] F? (m—) 5!
Mo

5) Field modulation method

Experiments of the dHvA effect were conducted by using the usual ac susceptibility
field modulation method. Now we give an outline of the field modulation method in the
present study.

A small ac field hgcoswt is varied on an external field Hy (Hy > ho) in order to
obtain the periodic variation of the magnetic moment. The sample is placed in a pair of
balanced coils (pick up and compensation coils) as shown in Fig. 3.2.5, induced emf V

will be proportional to

aM

“at
dM dH

C——

dH dt

V =

IR ho" d*NY
= —chowsmwtz:zk_1 (]:_ ol (de)H sinkwt (3.2.25)
k=1 0

where c is the constant which is fixed by the number of turns in the coil and so on, and
the higher differential terms of the coefficient of sin kwt are neglected. Calculating the
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(d*M/dH*) it becomes

= 1 wmho\* . [ 2nF )
V= ——ch; Gy (A;) sin ( + 06— —) -sinkwt . (3.2.26)

Here, AH = H?/F. Considering ho®> < H,? the time dependence of magnetization M (t)

is given by

2nF
M(t) = A [ Jo()\) sin (Z__F_+ﬁ) —|—22ka()\ ) cos kwt - s1n< W ﬂ——) ,
Ho k=1
(3.2.27)
where
27TFh0
A= Hy? (3.2.28)

Here, Ji is k-th Bessel function. Finally we can obtain the output emf as follows:

dM - . (2nF .
V=c (E) = ~2ch§ kJi(A) sin ( +0- —) -sin kwt . (3.2.29)

The signal was detected at the second harmonic of the modulation frequency 2w using a
lock-in-amplifier, since this condition may cut off the offset magnetization and then detect
the component of the quantum oscillation only. We usually choose the modulation field hg
to make the value of J5(\) maximum, namely A = 3.1. We used a modulation frequency of
334 Hz for the 3He cryostat or 36.3 Hz for the dilution refrigerator, respectively. Fig. 3.2.6
shows a block diagram for the dHvA measurement in the present study.

3.2.4 Specific heat

1) General

At low temperatures, the specific heat in the normal state C;, is written as the sum of
electronic, lattice, magnetic and nuclear contributions as follows:

Ch = Ce+ Cpn + Crag + Chuc

A
= ’YT + ’BT3 + Cmag + TQ,

where A, v and ( are constants characteristic of the material.

(3.2.30)

The electronic term is linear as a function of temperature and is dominant at suffi-
ciently low temperatures. If we can neglect the the magnetic and nuclear contributions,

it is convenient to exhibit the experimental values of C,, in the normal state as a plot of
C,/T versus T?:

Co/T =7+ BT?, (3.2.31)
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, where 7 is called the electronic specific heat coefficient or Sommerfeld coefficient. Using
free-electrons gas model, for kgT < eF, the electronic specific heat C, in the normal state
can be expressed as

2

C, = %kBD(sp)T = AT, (3.2.32)

where 7 is related to the density of state at the Fermi energy D(er). For the free-electron
with a mass mg the vy-value can be represented as follows:

2 21.2 N
v = TR D(er) = 50N

- = RGN T (3.2.33)

where N, is Avogadro’s number and N/V is the number of conduction electrons per unit
volume.

As mentioned above in section 2.2.2, the electronic specific heat in the superconducting
state Cg can be expressed an exponential form for the BCS superconductor and power
laws for anisotropic superconductors such as heavy fermion superconductors.

According to the Debye T3 law, for T' < ©p, the specific heat based on the phonon
contribution is written as follows: '

120'Nkg (T \°

O =L 1B ) = p73 (3.2.34)
5 ©p

where N is the number of atoms and R the gas constant. Therefore, the Debye charac-

teristic temperature ©p can be represented as follows:

3 127T4N]€B
Op = ,/———5 3 (3.2.35)

For actual lattices the temperatures at which the 7 approximation holds are quite low.
It may be necessary to be below T' = ©p /50 to get a reasonable T law.

2) Experimental

The specific heat was measured in collaboration with laboratories of Prof. N. Wada in
University of Tokyo and of Prof. H. Sato in Tokyo Metropolitan University. It was mea-
sured by the quasi-adiabatic heat pulse method using a dilution refrigerator in magnetic
fields up to 20kQOe and at low temperatures down to 70 mK.

In Wada laboratory, the sample was put on the Ag-addenda, which is arranged hor-
izontally, with APIEZON N grease. The addenda and Cu-heat bath have thermal links
through copper lead wire. In Sato laboratory, the sample was put on the Cu-addenda,
which is arranged lengthways, with GE vanish. The addenda and Cu-heat bath have
thermal links through a very thin silver wire. There is slightly a flow of heat.

To equilibrate the system, we can use the heater set on the addenda. After the addenda
sufficiently reached thermal equibrium, we started a specific heat measurement. We can
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measure the temperature of a sample with constant heating and the specific heat, deduced

as follows:

AQ 1-V-At
AT AT
Here, AQ is the amount of heat, I and V' are the current and the voltage flowing to the
heater, respectively, At is the duration of heating and AT is a change of temperature

C = (3.2.36)

due to heating. The temperature was measured by the RuO;(Sato laboratory) resistor
or carbon(Wada laboratory) resistor at the addenda. The specific heat of the sample
is derived by subtracting the specific heat of the addenda measured. All of the these
experiments were carried out after field cooling process.

We note that the usual temperature dependence of the specific heat in the temperature
range from 0.5 K to 3 K was measured in our laboratory by the usual quasi-adiabatic
heat pulse method mentioned above. This measurement is important to determine the
critical temperature T, for each sample.
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Chapter 4 Experimental Results and Discussion

4.1 Electrical resistivity

We measured the temperature dependence of the electrical resistivity of a sample #A
with two different current directions, as shown in Fig. 4.1.1. The current was applied along
the [100] and [001] directions, corresponding to the open circles and triangles, respectively.
A large anisotropy was observed in the normal-state resistivity, which is the same as the
previous report.?) The characteristic behavior was a broad maximum at about 130 K in
the interlayer resistivity pjgo;;. The in-plane resistivity pj100) shows metallic behavior in the
whole temperature range. On the other hand, pjgo; changes to non-metallic behavior at
high temperatures. A crossover occurs from 2D metallic behavior to 3D metallic behavior
at the broad maximum temperature. The anisotropy ratio increase from about 140 at
300 K to about 650 at 4.2 K. Because of this large anisotropy, it was crucial to achieve a
uniform current distribution for the measurements of pjj0). The temperature dependence
of ppiog slightly contains the contribution of pjgo;) in our measurements.

The resistivities at room temperature are about 260£2-cm for pj199) and about 35m{2-cm
for ppoy), while the resistivity at low temperatures is quite different: 0.54 ufl-cm at 0K
and 0.35m{2-cm, respectively. Here the residual resistivity is estimated following a Fermi
liquid formula p = py + AT? below 20K. The residual resistivity ratio prr/po is thus 480
for pji00) and 90 for pjpoy). These values indicate high quality for the present sample.

The temperature dependence of both pjio0) and pje1) at low temperatures are shown
in Fig. 4.1.2. In the current direction along [001], we show the temperature dependence
of the different two samples in quality, named #A and #B. With the sample #A, su-
perconductivity occurs below 1.45 K for both current directions. On the other hand, the
critical temperature of the sample #B is 1.2 K.

4.2 Magnetoresistance

We show in Fig. 4.2.1 the magnetoresistance of the sample #A with the current along
[001] for the field along [100], [110] and [001] at 50 mK. The magnetoresistance for the field
along [100], which is the transverse magnetoresistance, increases linearly with increasing
the field. For the field along [110] the magnetoresistance increases H'-®>-dependence with
increasing the field. It is because that SroRuQy4 is not a compensated metal and the
direction of the carriers is perpendicular to the current direction in real space. There
is an anisotropy of the field direction between [100] and [110]. This will be discussed
later. On the other hand, a saturated behavior in H//[001] is usual in the longitudinal
magnetoresistance.

We show in Fig. 4.2.2(a) the angular dependence of the magnetoresistance under the
stationary magnetic fields of 80 and 170 kOe at 80 mK. Here the field is tilted from [001]
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Fig. 4.1.1 Temperature dependence of the electrical resistivity in SroRuQ,.
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to [100]. A characteristic oscillatory behavior is found in the angular dependence of the
magnetoresistance. Many peaks are observed at 31°, 556°, 66° 71° and 75°. These peaks
are enhanced when the field is increased. We note that this oscillatory behavior of the
magnetoresistance is mainly due to the Yamaji effect for two Fermi surfaces, as discussed
in Chap.2. The Yamaji effect generally occurs when the following condition is satisfied:

ckrtané, = w(n — 1/4), (4.2.1)

where ¢=12.73 A is the lattice constant along the z-axis or [001] and kr=0.30, 0.61 and
0.74A~! are the Fermi wave numbers of the Fermi surface o, # and =, respectively, which
are obtained from dHvA experiments, shown in the next section. The spacing of the
Brillouin zone along the c-axis in eq. (4.2.1) is 27/c. In the present SroRuQOy, the crystal
structure is body-centered tetragonal. The corresponding spacing is thus 47 /¢, which is
applied to the Fermi surfaces § and <y centered at the I" point. In this case, eq. (4.2.1) is
changed into ckr tan6,, = 27(n —1/4). On the other hand, the Fermi surface « is located
at the X point, as shown in Fig. 2.3.16. The spacing becomes half of that centered at
the I' point. Therefore, eq. (4.2.1) is applied to all Fermi surfaces. In fact, the peak
position in Fig. 4.2.2(b) is in good agreement with a theoretical straight solid line derived
by eq. (4.2.1).

Next, we show in Fig. 4.2.3(a) the angular dependence under the stationary magnetic
fields, tilted from [001] to [110]. The similar oscillatory behavior based on the Yamaji
effect is observed at 30°, 53°, 65° and 70°. The peak position in Fig. 4.2.3(b) is also in
good agreement with a theoretical straight line. We note that the similar experiment was
done by Ohmichi et al., most likely indicating a combined oscillatory feature between the

Fermi surfaces a and 3. %V

Angular dependences of the magnetoresistance at 0.5 K are also shown in Figs. 4.2.4(a)
and (b).57 In this condition, the peak is broad and small in amplitude, compared to that
in Figs. 4.2.2(a) and 4.2.3(a) and the oscillation of the magnetoresistance is mainly due
to the Fermi surface a. It is because that the dHvA oscillation at the present condition
of fields and temperature of 0.5 K mainly come from the branch «. The branch 2 has a
small amplitude. This will be discussed later. A high-field condition is satisfied for the
branch 4 when a much lower temperature than 0.5 K is hold for the present sample. We
could not observe the oscillatory behavior based on the Fermi surface ~.

In addition to the oscillatory behavior due to the Yamayji effect, a sharp peak is found
for the field along [110], as shown in Fig. 4.2.3(a). This effect occurs when the carriers
move along the field direction, namely perpendicularly to the current direction J. This
is closely related to the curvature of the cylindrical Fermi surface a. The Fermi surface
o has a convex part along [110], as shown in Fig. 4.2.5. This is the reason for in-plane
anisotropy of the magnetic field dependence.
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4.3 de Haas-van Alphen effect

We show in Fig. 4.3.1 the typical dHvA oscillation of the sample #A with T, = 1.5 K
for the magnetic field along the [001] direction and its fast Fourier transformation (FFT)
spectrum in the field range from 130 to 170kOe at 25 mK. We observed three fundamental
dHvA branches, named «, 8 (3, and ;) and v as well as higher harmonics of &, namely
2a, 3c, 4a, and the combined harmonics of the fundamental ones; 3, &+ o and v + .9
On the other hand, in the case of the sample #C with T, about 1.1 K, we observed only
three fundamental branches and 2nd harmonics of branch o, as shown in Fig. 4.3.2.87

Figures 4.3.3 and 4.3.4 show the angular dependences of the dHvA frequency. The large
circles correspond to the fundamental branches, while the small circles indicate the har-
monics. The solid lines for the fundamental branches represent the 1/ cos #-dependence,
where 6 is a tilt angle from [001] to [100] in Fig. 4.3.3 and from [001] to [110] in Fig. 4.3.4.
The 1/ cos §-dependence means a cylindrical Fermi surface. The 1/ cos §-dependence for
two branches, named « and #, is in good agreement with the experimental results. The
branch S follows also the 1/ cos #-dependence, but around [001] it splits into two branches,
denoted by 4, and (3, in Fig 4.3.1. The two branches (3; and [, however, merge into one
at 6 ~ 30°. These results are the same as the previous reports. %

The dHvA frequency of the branch « follows the 1/ cos#-dependence up to each tilt
angle of about 70°. The amplitudes of the dHvA oscillation are, however, extremely
angle-dependent, as shown in Figs. 4.3.5(a) and (b). In Fig. 4.3.5(a), we plot not only
the amplitude of the fundamental branch o but also those of higher harmonics. The
amplitude of the branch « strikingly depends on the tilt angle 8. It possesses maxima
around 18°, 30.6°, 44° and 52° and minima around 9°, 24°, 40°, 49° and 58 ° on the tilt
angle from [001] to [100]. On the other hand, it has maxima around 18°, 29°, 38° and
48° and minima around 9°, 22°, 32°, 45° and 57° on the tilt angle from [001] to [110].

The almost zero-amplitude in Fig. 4.3.5(a) around 24° is due to a spin factor, which
is the interference effect of the dHvA oscillations by the conduction electrons possessing
the up- and down-spin states. The zero spin factor around 24 ° is supported by the result
that the second harmonic 2o shows a maximum in amplitude around 25°, as shown in
Fig. 4.3.5(a). This explanation is based on the following theory. As the cyclotron effective
mass m} () increases with increasing the tilt angle 6 as in m() = m*(0°)/ cos 8, the spin
factor Rs = cos(mm}(6)g/2mg) in eq. (3.2.11) becomes zero at a characteristic angle
where the argument 7mm?*(8)g/2mo = 7(2n +1)/2(n = 0,1, 2...) is satisfied. Here g is the
g-factor of the branch a. The spin factor of the second harmonic takes a maximum value
Rs = 1 when the fundamental one becomes zero, because the effective mass of the second
harmonic becomes twice as large as that of the fundamental one. However, the amplitude
of the fundamental one around 30° is extremely large. This is not realized in the usual
case because the amplitude is exponentially reduced as a function of m}.

We have to consider another approach, namely, the Yamaji effect to clarify the angular
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dependence of dHvA amplitude. When we consider a cylindrical Fermi surface, the Lifshiz-
Kosevich formula in eq. (3.2.8) is not right. More rigorously, the curvature factor including
H'Y2 in eq. (3.2.8) is replaced by

Ry = JO(WA§(9>), (4.3.1)

AF(0) = AF(=0°)Jo(ckrtan®)/ cosb, (4.3.2)

where AF(6 = 0°) is a difference between a maximum dHvA frequency and a minimum
one, c is the lattice constant along the cylindrical z-axis and Sp = wkZ.

To clarify the angular dependence of the dHvA amplitude for the branch o, we de-
termined AF (6 = 0°). If the maximum dHvA frequency is highly different from the
minimum one as in the branches 8; and (s, it can be distinguished easily from the FFT
spectrum. The present AF is, however, small. We searched for a node of the beat os-
cillation due to the maximum and minimum frequencies. Figure 4.3.6 shows the field
dependence of the dHvA amplitude for the branch «. Each data point was obtained from
the FFT spectrum for twenty oscillations. The node is found at 72kOe. From this node,
we determined AF(6) = 1.27 x 10° Oe for the branch a.

Another information on the Dingle temperature and the cyclotron mass is necessary
to analyze the dHvA amplitude. Usually, the Dingle temperature in eq. (3.2.10) can be
determined from the field dependence of the dHvA amplitude. In the present case, the
dHvA oscillation due to the branch « has a beat pattern. By using eq. (3.2.8), we tried
to fit the dHvVA amplitude. A solid line in Fig. 4.3.6 is a calculated result. An adjusting
value Tp was determined to be Tp = 0.63 K. In calculations, we used the cyclotron mass
m; = 3.27my, estimated later. The mean free path ¢ was thus calculated to be 2050
A from the following relations; £ = vpr,7 = (h/27kg)T5" and hkp = mivp. In addition,
in the case of another sample with T.=1.1 K, the Dingle temperature and mean free path
were 0.88 K and 1200 A, respectively. The oscillation of the branch a has a node due to
the beat at § = 0°, but has no node from beat around 8 = 30°, as shown in Fig. 4.3.7.
Then, we obtained the Dingle temperature by using eq. (3.2.10).

In addition to this, we show the dHvA oscillation at the angular dependence of previous
magnetoresistance condition of fields and temperature of 0.5 K in Fig. 4.3.8. The main
dHvA branch is a. The branch 3 has a small amplitude.

From these data, we calculated the angular dependence of the dHvA amplitude based
on eq. (3.2.8), as shown by a solid line in Fig. 4.3.9(d). An adjusting value of the g-factor
is determined to be g = 4.2, which is larger than a free electron value g = 2. The minimum
of the dHvA amplitude at 9° and the maximum at 30.6° correspond to Ry = 0 and 1,
respectively. On the other hand, the minima at 24° and about 40° are due to the zero
spin factor, Rg = 0.

The difference between Figs. 4.3.5(a) and (b) is mainly due to the difference of the
shape of its Fermi surface. The Fermi surface « is cylindrical but the cross-sectional area
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perpendicular to [001] is not circular, as shown in Fig. 2.3.16(a) and (b). Therefore, there
are two kinds of cross-sectional areas at the X point, a and ¢, as shown in Fig. 2.3.16(b),
when the field is tilted from [001] to [110]. This can be represented by the angular
dependence of the theoretical dHvA frequency, as shown in Fig. 4.3.10. A thin solid line
corresponds to the maximum cross-sectional area, while both a broken line named o and
a dotted line named o' in Fig. 4.3.10 correspond to the minimum cross-sectional areas
centered at the X point. The latter two lines are the same and cross the solid line at
27° when the field is tilted from [001] to [100]. Theoretically, the Yamaji angle is 27° in
this configuration. On the other hand, the solid line does not cross the dotted line but
crosses the broken line, when the field is tilted from [001] to [110]. The Yamaji angle in this
configuration is 31°, as shown in an inset of Fig. 4.3.10. Note that the experimental results
of the Yamaji angle deviates a little between the measurements of the magnetoresistance
and that of dHvVA. It is because that the Yamaji angle of the dHvA experiments is caused
by both the spin and curvature factors.
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Sr,RuO, branch o

)

N

dHvA Frequency (x107 Oe)

W

60 40 20 0 20 40 60
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Fig. 4.3.10 Angular dependence of the theoretical dHvA frequency for the
branch « in SroRuQy.
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Next, we determined the cyclotron effective mass from the temperature dependence of
the dHvA amplitude. Figure 4.3.11 shows the cyclotron effective masses of the branch o
and higher harmonics at the tilt angles of (a) 0° (H//[001]), (b) 15.3° and (c) 30.6° tilted
to [100]. Note that 30.6° corresponds to the Yamaji angle of the branch «. The effective
masses are also shown in Table I. The effective mass of the branch «, which are 3.3my
at 0°, 3.4mg at 15.3° and 4.0my at 30.6°, increases following the 1/ cos#-dependence.
The effective mass along [001] is proportional to the harmonic index number, as shown
in Fig. 4.3.11(a). At the Yamaji angle of 30.6°, however, the effective mass of the higher
harmonic slightly deviates from a linear relation, as shown in Fig. 4.3.11(c). This is most
likely related to the chemical potential oscillation, as discussed later.

Table 4.3-1 dHvA frequency and the corresponding cyclotron mass at field
angles of 0° (H // [001]), 15.3° and 30.6° in SroRuOy4. (*) and
(**) are cited from refs. (5) and (8), respectively.

0° 15.3° 30.6°
F(x10"0e)  mi(mp) F(x1070e) mi(mg) F(x1070e)  m}(mg)
o 2.97 3.27 £ 0.06 3.07 3.42 £ 0.03 3.46 3.96 + 0.02
(3.4%) (4.2*%)
2¢ 5.95 6.46 £ 0.07 6.15 6.76 £+ 0.2 6.92 7.42 £ 0.03
3o 8.92 10.0 £ 0.1 9.22 10.3 £ 0.2 10.4 10.5 = 0.2
4o 11.9 13.5 £ 0.8
8, 12.2 6.8 + 0.2
14.5 8.24 + 0.06
B2 12.5 7.04 + 0.07 13.0 7.25 £ 0.04 (10.3**)
(6.6%)
B+ a 15.5 7.5+ 0.3 16.1 8.1+£0.2 18.0 9.2 +£0.2
(11.9"%)
-« 11.1 9.5+ 0.6
(12.2*)
0% 18.2 171 £ 0.2 18.8 171 £ 0.1 21.2 19.8 £ 0.2
(12.0%) (16.3**)
Yt o 21.1 180 £ 04 21.9 17.5 £ 0.07 24.6 19.7 £ 04
Y-« 15.2 173+ 04 15.7 17.6 £ 0.2 17.7 203 £ 04

In Figs. 4.3.12(a) and (b) we show the angular dependence of the dHvA amplitude
for the branch 8 (; and ;). There exist so many maxima and minima in the dHvA
amplitude, as for the branch «. The branches §; and 3; merge into one around 30°. This
angle is also the Yamaji angle for the branch £.

Figure 4.3.13 shows the angular dependence of the dHvA amplitude for the branch +.
The amplitude of the branch « also strikingly depends on the angle 8, as in the branch
«. Especially, the dHvA amplitude due to the branch « is enhanced at 15.3°. We think
that a Yamaji angle for the branch v is 15.3°, reflecting the largest dHvA amplitude.
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Fig. 4.3.11 Harmonic index number dependence of the cyclotron effective
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the [001] direction (0°), (b) 15.3° and (c) 30.6 °, tilted from [001]
to [100], in SI‘QRU.O4.
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Next, we show in Fig. 4.3.14 the angular dependence of the dHvA amplitude for the
sum and difference branches §+ « and §— a. Both branches exhibit a broad peak around
17° and a sharp peak around 31°. These peaks are mainly ascribed to those of the branch
a. The amplitude of the latter peak at 31° is enhanced by the Yamaji effect for both
Fermi surfaces a and 3.

Figure 4.3.15 shows the similar angular dependence of the dHvA amplitude for the
sum and difference branches v + a and v — a. Both branches exhibit sharp three peaks
at 15°, 27° and 32°, reflecting the combined amplitudes of the branches o and ~.

We determined the cyclotron effective masses of the branches G and ~ and their har-
monics § + o and 7 + «, as shown in Table I and also Fig. 4.3.16. Usually the cyclotron
masses of the sum and difference branches m,, ; are given as m;, + mp, which is derived
from the magnetic interaction. The present m},,; and m},; values are highly different
from mj +m7, and m} +mg, respectively, for any tilt angle. For example, m> +mj, is 20.4

* *
Y+a Y-

result was reported for the branches 8+ «, which are cited in Table I ®). These results can

mg at 6=0°, which is compared to m = 18.0 mg and m = 17.3 mgy. The similar
not be explained by the usual magnetic interaction, but are due to the chemical potential
oscillation. We note that the cyclotron mass of the Fermi surface v, 17 my is a little larger
than the previous value of 12 mg.

Finally, we note the relation between the cyclotron mass and the electronic specific heat
coefficient . As three branches are almost cylindrical, the y-value from each branch is eas-
ily calculated: the branch a with m} = 3.3m corresponds to a y-value of 4.9 mJ/K?-mol,
the branch 3 with m} = 6.9m, corresponds to 10 mJ/K?.mol and the branch ~ with
m} = 17my corresponds to 25 mJ/K?mol. The total vy-value becomes 40 mJ/K2-mol,
which is in excellent agreement with the measured y-value of 39.8 mJ/K?.mol, as shown
later.

The dHvA oscillation for the i-th extremal cross-sectional area of the Fermi surface is

written as follows:

oo
M, = ;Ai(H, T, p) sin {277;0 <% + ¢,~> } (4.3.3)
Here, the dHvA frequency Fj is proportional to the the extremal cross-sectional area Sg;
and is experimentally determined from the FFT spectrum. The dHvA oscillation is not a
single sinusoidal curve but the sum of the harmonics p. The dHvA amplitude A;(H, T, p)
corresponds to A in eq. (3.2.8). The curvature §2S;/0k% is zero for a perfect cylindrical
Fermi surface or a sinusoidally modulated cylindrical one at the Yamaji angle. Therefore,
the dHvA amplitude becomes large, as observed in SroRuQy.
The cyclotron effective mass is obtained from the so-called mass plot, which is the plot
of the temperature dependence of dHvA amplitude under a constant average magnetic
field as follows:

Ai(H,T, , T
In (—TTLI—)) = const. —In (smh (aﬁ . pm:’i)) (4.3.4)
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Usually, the mass is determined by a method of successive approximation. We note that
the cyclotron effective mass of p-th higher harmonic is p times larger than the fundamental
one.

Next, we will discuss the magnetic interaction effect which yields the sum and dif-
ference dHvA frequencies of different fundamental ones. Here we consider following two

dHvA frequencies Fi, and Fjp:

M = M,+ M (4.3.5)

= A,sin {27r (% + ¢a) } + Agsin {27r (% + qﬁ,@) } (4.3.6)

In the actual substances, however, the magnetic field H should be replaced by the mag-
netic flux density B = H + 4n(M, + Mj). The magnetic oscillation is expanded as
follows:

M = Agsin {27r (%)} + Ag 81;{2“ <%>}

1871'Fa 2 . a 18’/TFﬂ 9 ., Fﬁ
EF(AQ) sm{2-27r ﬁ —5 H? (Aﬂ) sin< 2- 2w ﬁ

- ey [(Fﬂ + Fy)sin {20 (%) } = (= FaJsin {2” (ﬁ"?fi> H

+ . (4.3.7)

Here we neglect the phases ¢, and ¢g for simplicity. Eq. (4.3.7) indicates that we could ob-
serve the sum and difference frequencies in addition to the 2nd harmonic. We note that the
sum and difference frequencies F,,; 3 are F, £+ Fj, but the cyclotron effective mass is given as
MY paq = M o+M g because the factor Ay Ag changes with T exp {—af - (m},+mss) }.
From the viewpoint of the magnetic interaction effect, the effective mass of mj, 5 should
be m}, + mj}, as shown in eq. (4.3.7), but the experimental results in Fig. 4.3.16 do not
satisfy this relation.

The chemical potential oscillation (CPO), which was based on the dHvA oscillation
derived under the constant total electron number, is essentially important in the present
quasi-two dimensional system. In the two dimensional system, all the electrons on a per-
fect cylindrical Fermi surface contribute to the de Haas-van Alphen oscillation, producing
the oscillation of the chemical potential. This is in contrast with the three-dimensional sys-
tem or the Lifshiz-Kosevich formula derived under the constant chemical potential, where
the electrons with higher energies than the Fermi level flow continuously to lower-number
Landau tubes with increasing the magnetic field and only the electrons on an extremal
cross-sectional Landau tube contribute to the dHvA oscillation. Recently, Nakano applied
the CPO effect to a quasi-two dimensional two-band system, considering SroRuQO4. ¥ The
CPO effect of one band influences to the magnetic oscillation of the other band, because
the electrons flow to the other band so as to minimize the free energy. The temperature
dependence of the combination frequency due to the CPO effect is different from that
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based on the magnetic interaction effect. The mass mj,,; is found to be not equal to m;,
+ mj. According to the numerical calculations done by Nakano, the mass ratio becomes
mgtomy, g Mg,g s mg + my =100: 120: 1.14 : 1.43. The corresponding mass
ratio of the present experimental results is 1.00 : 1.15 : 1.12 : 1.48 at the Yamaji angle
of 30.6°, being in good agreement with the theoretical one.

We observed the similar result for the cyclotron masses m} ., as shown in Fig. 4.3.16.
A striking difference between m? + m;, and m},, is also not explained by the magnetic
interaction but by the CPO effect as in mj,,. Important is that mj,, and mi,, are
highly different from mj +m?, and m} +mj, respectively, in the wide field direction, even
along the cylindrical axis, namely [001]. It means that Fermi surfaces observed here are
very close to cylinders.

Finally we note that the mass of the higher harmonic is not strongly influenced by the
CPO effect, holding pm? for the p-th harmonic, although a slight CPO effect is observed
for the 3rd harmonic of the branch « at the Yamaji angle of 30.6°. The self-band (intra-

band) CPO effect is weak compared to the inter-band one.

4.4 Elastic anomalies and acoustic de Haas-van Alphen effect

- Other group’s results -

The ultrasound velocity measurements are based on a phase comparison method that
achieves relative resolution of 10~7.94%) The LiNbOj transducer which generates and
detects the ultrasound waves is glued to parallel surfaces of a sample by RTV silicone
(Sinetsu-Chemical Co, Ltd.) available below = 150 K, together with a liquid polymer
(Thiokol LP-32) which hardens below 240 K. The fundamental frequencies of the longi-
tudinal and transverse transducers are 15 and 7 MHz, respectively.

There are six components of the elastic constant C;; (¢, j = 1-6) for a tetragonal crystal.
Ultrasound waves of four different modes can be generated into the sample; longitudinal
modes of Cy;(k, u//[100]) and Cs3(k, u//[001]), and transverse one of Ca4(k//[100], u//[001])
and Cegs(k//[100],u//[010]), where k and u represent the ultrasound directions of propa-
gation and polarization, respectively. The absolute value of the ultrasound velocity v is
estimated by the time interval between echo signals. The elastic constants are determined
to be C1; =~ 10 x 101, C33 &~ 9 x 1011, Cyy = 1 x 10" and Cgs =~ 1 x 10™ erg/cm?® at 4.2 K
by the relation C' = p,v?. Here the density p, = 5.853 g/cm3 at 300 K is used.

Figure 4.4.1 shows the temperature dependence of the elastic constants below 220 K.
With decreasing temperature, Cyy and Cgg increase monotonically, while C;; and Cis
take a broad maximum at 108 K, followed by a shallow minimum at 61 K (C},) and 48 K
(Cs3). For the tetragonal point group Dy, Cy and Cgg induce the strain e, with I's
representation and e, with I'y, respectively. Remarkable anomalies are not observed in
these transverse modes. On the other hand, there appears a large lattice softening of about
1 % in longitudinal C;; and Cs3. Ci; includes the strain €., with a linear combination fo
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I'; and T'5. Cs; is a response to the strain €, with [';. Although (Cy; — Ci2)/2 with T's
is not measured yet, we can conclude that the strain €, with I'; strongly couples to the
electronic states in SroRuQOy.

From neutron diffraction measurements,®%") the lattice constants along [001] and
[100] rapidly decrease down to 100 K. In comparison with our results, these anomalies are
directly related to the elastic softening in C;; and Cs3. Moreover, anomalies are found
around 100 K in the electrical resistivity pjoor,? the Hall coefficient™ and the magnetic
susceptibility,”” which correspond to the competition between metallic and non-metallic
states. Therefore, the elastic anomalies observed here are associated with the charge of
the electronic states via I'; representation.

Sr,RuO
2 4 szm‘z
\?/r
61k 108K
+ C11
S
S $
< 48K Cas
C44
C66
0 . 510 . 1(;0 ’ 1;0 2(;0
T (K

Fig. 4.4.1 Temperature dependence of relative change of elastic constants
C11,Cs3,Cyy and Cgg below 220 K. Anomalous softening is ob-
served in longitudinal modes.

The temperature dependence of Cy; and Cs3 below 3 K is illustrated in Fig. 4.4.2.
As shown by the solid circles in Fig. 4.4.2(a), C1; takes a maximum around 7, at zero
magnetic field. A monotonic increase (open squares) is observed below T, in the normal
states induced by 2 T ( > H., see Fig. 4.4.4) applied parallel to [100]. Cs3 changes
linearly with temperature above T,. but a discontinuous change in the slope is observed
at T..

A discontinuous change in the longitudinal elastic constant has been observed at T in
many heavy fermion and high-T, superconductors, which originates from the first-order
strain dependence of Ti,, 0T./Jey. In the present study, the remarkable step at T can-
not be obtained, so that the first-order contribution are negligible. The slope, however,
changes at T, in both modes. The discontinuity appears in the temperature deriva-
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tive, coming from second-order strain dependence of T, described by the thermodynamic

relation:%899)

dcg

dCy
dT

_AC, T,
r AT

~ 2 .
T, de;,

(4.4.1)

Te
Here the first-order contribution at 7, is neglected. The specific heat jump is AC, =
19 mJ/K2mol.'?3%) Superscripts S and N represent the superconducting and normal
states, respectively. The difference of the slope A[1/Cy(dCyi/dT)r.] below and above T,
is estimated to be 14.3x107® K~! for C}; and 6.9x1075 K~! for Cs3. Using eq. (4.4.1),
the second-order strain dependence is obtained as 32T, /92, = 5x10* K and 8°T,/de2, =
2x10* K. The large contribution of the former in comparison with the latter reflects the
response of €,, — €,, with I's.

The elastic anomalies accompanied by the superconducting transition consist of mean-
field and fluctuation contributions from the theory proposed by Millis and Rabe.®® The
above calculation with eq. (4.4.1) is to obtain the former contribution and is well applicable
to Cs3. However, the gradual change seen around T, in C}; cannot be explained only by
the mean-field contribution. It might be attributed to the fluctuation contribution for the
response of €, — €.

Figure 4.4.3 shows the magnetic field dependence of Ci; and Csz for the different
temperatures. The magnetic fields are applied parallel to [100] in (a) and to [001] in (b).
With increasing temperatures, the kink-like transition, which is assumed to give the upper
critical field Ho(T) as shown by arrows, moves to the lower magnetic field and becomes

103



broad. The change in C1; observed from H = 0 to Hc is comparable to the difference
between normal and superconducting states shown in Fig. 4.4.2.
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Fig. 4.4.3 Relative change of longitudinal modes C;; and Cjs3 as a function
of a magnetic field applied parallel to [100] in (a) and to [001] in

(b).

The temperature dependence of H, is plotted in Fig. 4.4.4 for H//[100] and [001].
The inset shows an expanded view of HC[‘;"”. The initial slopes given by the straight
lines at T are dHC%OO]/dT|TC=-1.7 T/K and dHC[gOI]/dT|TC=—O.O6 T/K. The ratio is: v =
(dHc[;OO] /dT|1.)/ (dHc[gOI] /dT|r.)=28. From the effective mass model based on the Ginzburg-

Landau theory for an anisotropic superconductor,°%10)

~ represents an anisotropy ra-
tio of the penetration depth A, the coherence length £ and the effective mass m*: v =
(m’[*OOI] / mrloo])l/ % = Ao}/ Aroo] = &joo1)/€po0)- The anisotropy ratio in the coherence length
of 28 agrees with the previous value of 26 obtained by AC susceptibility measurements.'%?
This ratio is one order of magnitude smaller than that in usual high-7.. and organic super-
conductors. The coherence lengths are evaluated to be £j100=680 A and €[00 =24 A using
the relation —dHc[gm] /dT|r, = ¢0/27r§[2100]TC.103) Here, ooy is larger than the interlayer
distance of 6.37 A, in contrast to the high-T, and organic superconductors. From the
superconducting vortex point of view, SroRuQy is an anisotropic but three-dimensional
superconductor and the flux lines are rigid along the interlayer direction as well as a
classical bulk superconductor.

Figure 4.4.5 shows the magnetic field dependence up to 10 T for the magnetic field
parallel to [100] for Cy; and to [001] for Css at 0.58 K. It is noted that the anomaly, which
is weakly temperature-dependent up to 0.93 K, is observed around 5 T in the normal

state.
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Fig. 4.4.4 Temperature dependence of the upper critical fields H.o down to
0.51 K for the magnetic fields parallel to [100](solid circles) and

[001](solid squares). In the inset, the low-field data of Hc[‘;"” are
enlarged.

As shown in the inset of Fig 4.4.5, acoustic dHvA oscillations are observed above
8 T in C33 measured with the third harmonic frequency of 44.9 MHz. The first Fourier
transform (FFT) spectrum indicates that these oscillations are attributed to the a-hole
FS. The dHvA frequency F(= (ch/2me)S, where S denotes the cross-sectional area) esti-
mated as 3.00x107Oe is in good agreement with the pervious values of 3.01x107®") and
3.04x1070e.%) The effective mass is evaluated to be m*= 3.2(£0.2)mg from the tempera-
ture dependence of the oscillatory amplitude, which is close to 3.4mg.?) However, this value
deviates from 4.3m.%” The Dingle temperature T} is estimated to be about 1.540.1 K.
From the angular dependence of the dHvA amplitude, the spin factor becomes zero at
the magnetic field directions of §=16° and 35°.87) If we define the angular dependence of
the effective mass as m* = 3.2my/ cosé, the g-factor becomes 3.32.

~1/2

eH \*?18%S |7 huw,
ACx(H) = (27rch> ok —2 firEpRs
o [ 2w F 2 2nF i
|A.] ( 7 ) cos | — +ng ) (4.4.2)

where the cyclotron angular frequency w, = eH/m*c, and Rr, Rp and Rg represent the
conventional reduction factors at 7= 0.58 K and H= 8.9 T are determined to be Rr=
0.29, |Rs|= 0.56 and Rp= 0.01. The oscillatory amplitude of the acoustic dHvA effect is
evaluated as ACs3= 1.7x10® erg/cm® from the FFT spectrum.
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Fig. 4.4.5 Magnetic field dependence of Cy;(H//[100]) and Cs3(H//[001])
up to 10 T at 0.58 K. As shown in the inset, the acoustic dHvA
effect is measured in Cs3 above 8 T.

The difference in the dHvA frequency between two extremal orbits for the warped
cylinder of a-FS is obtained to be AF, = 1.25 x 10° Oe.?”) According to the Yamaji
theory,?® the interlayer transfer energy for the cylindrical a-FS is estimated as t%=
0.1 meV, which is one order of magnitude smaller than ti= 1.2 meV in B-FS with
AFs = 3.1 x 10% Oe.>®") The a-FS with extremely small warping has more 2D char-
acter than J-FS. The t§ in the present SroRuO,4 is comparable to 0.2 meV for Q2D
a-(BEDT-TTF);NH4Hg(SCN),.1%) The curvature factor of the a-orbit for H//[001] is
given by

~1/2

~1/2

o9%S
ok?

z

4rm*t d?
h?

(4.4.3)

where d= 12.73A, and thus we obtain |[6?5/8k2|~*/?= 3.2. By excluding the contribution
of the reduction and curvature factors from the oscillatory amplitude ACs3, the area
coefficient is finally determined to be |A,,| = 20 £ 5. |A,,| is about six times larger
than the area coefficient of |Ap«p«| = 3.5 for the Q2D FS of similar cylindrical shape with
m* = 2.Tmg and F = 5.76 x 10° Oe in a-(BEDT-TTF),NH,Hg(SCN),.109

According to the KG model,®¥ |A,,| is basically composed of the deformation term A4,

and the multiband term A7, for longitudinal waves. It is rather complicated to separate
these contributions for the present situation. A¢, represents the strain dependence of
the effective mass with conserving the carrier number. The shape of a-FS is perfectly
cylindrical, so that the deformation of the FS along the k,-direction is negligible. The
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contribution of A%, should not be dominant. Therefore, A7} is overwhelming in o-FS with
A™ = A,,= 20. The multiband term without varying the effective mass is attributed to
a charge transfer. In this case, charge transfer takes place between the 17th hole band
forming the a-FS and the 18th or 19th electron band respectively for - or ~-FS. We
expected that the large A,, obtained in the a-FS reflects the strong hybridization of these
bands.

4.5 Specific heat

Figure 4.5.1 shows the temperature dependence of the electronic specific heat C, in
the form of C,/T for three samples with critical temperatures T, = 1.52, 1.24 and 1.14 K,
named #A, #B and #C, respectively. A sharp jump in the specific heat is observed
at T. in each sample. The specific heat in the normal state follows a simple relation
of C/T = v+ BT? + A/T? below T < Op/50, where ©p is the Debye temperature.
Namely, the specific heat at low temperatures consists of the electronic, phonon and
nuclear contributions. A nuclear contribution to the specific heat from Ru in SroRuQy is,
however, negligibly small and can be neglected now. If we apply this relation to the specific
heat data, we can obtain the electronic specific heat coefficient v =39.8 mJ/K2-mol and
©p = 430K. These results are almost the same as reported previously. "2 The phonon
contribution is subtracted in Fig. 4.5.1. The vy-value is also obtained in the magnetic field
of 20kOe. In fields higher than about 16kOe, the sample is in the normal state, as shown
later in detail.

The specific heat shows a jump at T, for each sample #A, #B and #C, but AC/~T, =
0.50, 0.53 and 0.66 are small when compared to the BCS value of 1.43. The residual C,/T-
values of the samples of #B and #C at about 0.2K are extremely large, 22 mJ/K?-mol,
remaining half of the «-value. On the other hand, a residual value 7,5 of the sample #A
is a small, decreasing with increasing the quality of the sample. The ~y,.s-value, estimated
at 0 K, is 8 mJ/K2-mol. It is thus expected that the v,.,-value becomes zero for a much
higher-quality sample. Recently, Nishizaki et al. reported that the ~,..s-value was nearly
zero, 3+ 3 mJ/K2 mol, by using the sample with T, = 1.48 K®). We conclude that the
existence of .5 is not intrinsic in superconductivity of SrsRuQy.

A large 7,.s-value is closely related to the pair-breaking due to non-magnetic impurities
and defects. This is usually inevitable to the p-wave superconductor, as demonstrated
experimentally by the relation of T, to the residual 7,.,-value 2. Moreover, it is closely
related to a characteristic energy gap in SryRuQO4. As mentioned in Chap. 2, it was
theoretically argued that the unconventional paring in the part of the Fermi surface with
Ru-4d,, orbital character, named the Fermi surface ~, is weakly coupled to that with Ru-
4d,, and 4d,,, orbital character, named the Fermi surfaces o and 3. Superconductivity in
the temperature range from 1.2 to 0.1 K is thus originated mainly from the Cooper-pairs
on the Fermi surface -, because the gap size on the Fermi surfaces o and 3, about 0.1 K,
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Fig. 4.5.1 Temperature dependence of the electronic specific heat C, in the
form of C/T for three samples in SroRuQy.
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e order smaller than that on the Fermi surface v, about 1 K, as schematically
shown in Fig. 4.5.2(a). The recent theory ® and the corresponding observation of a
square flux-line lattice %) also suggest that superconductivity resides mainly on the Fermi
surface v. However, there is found no anomaly around 0.1 K in the specific heat, which
is expected from the p-wave theory with different gap sizes.

(a) (b)

Fig. 4.5.2 (a) Supérconducting energy gaps for the Fermi surfaces a, 4 and
v. (b) and (c) Anisotropic energy gapes for the Fermi surface ~y
in SI‘QRHO4.

Furthermore, the temperature dependence of C, shows the T2 dependence at low tem-
peratures and the exponential behavior near T;. A relation of C, ~ T2 at low temperatures
claims line nodes in the superconducting gap. In general, unconventional superconductors
often have nodes in the gap. The Ru-NQR and NMR relaxation rate experiments also
suggest that the gap vanishes on the line of the Fermi surface. '®) From this point, another
theory was presented by Miyake and Narikiyo, proposing a polar like-gap for the main
Fermi surface 7, !”) as shown Fig. 4.5.2(b). The present data might be consistent with
this theory with a non-uniform gap. Furthermore, Hasegawa et al. also proposed another
theory showing a gap with a line node at k, = 0, as shown in Fig. 4.5.2(c).1%® This theory
is also in principle consistent with the specific heat data.

Next, we obtained the thermodynamical critical field H.(T') from the well-known re-
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lation:

Te TC 7] 9 ¢
/ dT / ColT) = g HcgsrT) (4.5.1)

Thus obtained H. is plotted in Fig. 4.5.3 as a function of the temperature for three samples.
The temperature dependence of H, deviates from a simple relation of H.(0)(1—t?), where
t =T/T, and H.(0) at 0K is estimated to be 0.23kOe for the sample #A, 0.16 kOe for the
sample #B and 0.14kOe for the sample #C. A deviation of the data from the parabolic
behavior is represented as follows:

D(t) = H(t)/H.(0) — (1 —?). (4.5.2)

The deviation plot is given in Fig. 4.5.4. A deviation from the parabolic behavior is
similar to a weak-coupling BCS curve for the sample #B and #C. On the other hand, the
absolute magnitude of the sample #A is larger than the BCS curve. This is most likely
related to the fact that a value of AC/~T, is smaller than a BCS value.

Figures 4.5.5, 4.5.6 and 4.5.7 show the temperature dependence of the electronic spe-
cific heat in the form of C,/T under several magnetic fields for the field along [100], [110]
and [001], respectively. The T¢-value decreases with increasing the field. There is highly
anisotropic behavior in the upper critical field H., between the field along parallel and
perpendicular to the quasi-two dimensional plane, reflecting to the quasi-two dimensional
electronic state. In-plane anisotropy was also observed as shown in Figs. 4.5.5 and 4.5.6,
which are the same as the results of the AC susceptibility®?

Figure 4.5.8 shows the field dependence of C/T at 0.25 K and 0.5 K for the sample
#A. At 0.25K, the C./T with a residual value of about 18 mJ/K2-mol indicates a v/ H-like
increase at low fields, increases rather linearly with increasing the field and reaches the
v-value at the normal state. On the other hand, C,/T at 0.5 K increases linearly with
increasing the field but increase steeply near the Ho.

We carried out the similar specific heat experiments for the other samples named #B
and #C. Figure 4.5.9 shows the field dependence of C,/T at several temperatures for the
sample #B. C./T with a residual value of 26 mJ/K?-mol at 0.3K indicates a v/H-like
increase at low fields, increases rather linearly with increasing the field and reaches the
v-value at the normal state. With increasing temperature, Ce/T increases more linearly,
which is the same as the case of sample #A. We also show in Fig. 4.5.10 the temperature
dependence of the electronic specific heat of the sample #C in the form of C./T under
several magnetic fields for the field along [100].

From these data shown in Figs. 4.5.5, 4.5.6 and 4.5.7, we can obtain the temperature
dependence of the upper critical field H., for three typical crystalline directions of the
tetragonal structure, as shown in Fig. 4.5.11. Open circles, triangles and squares indicate
H, for the field along [100], [110] and [001}], respectively. The data at 0.25 K were
obtained from the field dependence of the specific heat measurements. The solid lines
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Fig. 4.5.3 Temperature dependence of the thermodynamical critical field H,

for three samples in SroRuQy.
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D(t)

Fig. 4.5.4 Temperature dependence of D(t) for SrsRuO, and other materi-
als.

in the Fig. 4.5.11 are guide for eyes. Hc for the field along [001] are enlarged in scale,
as shown in Fig. 4.5.12. Anisotropic behavior between H//[100] and H//[110] can be
observed in the whole temperature range below T.. This is different from the result of the
AC susceptibility measurements.®?) H(0) is estimated as 15.7 kOe for [110], 14.2 kOe
for [100] and 0.83 kOe for [001], respectively.

Using the Ginzbug-Landau formula for an anisotropic three-dimensional superconduc-

tor, we can estimate the coherence length. The used formulas are as follows:

Hape = ®0/(2nE3), (45.3)
Hc2//ab = QO/(27T§ab§c)a (454)

where ®g is the flux quantum. We assume that no anisotropy of the effective mass
appears along the field direction between [100] and [110]. We define Hcy//q5(0) as an
average between Hcy//1110/(0)=15.7 kOe and Heg//(100)(0)=14.2 kOe, namely 15.0 kQOe.
The obtained coherence lengths are £,,(0) = 630A and £,(0) = 35A. The superconducting
anisotropy ratio is £45(0)/€.(0) = 19 for the present sample with T, = 1.52 K. These values
are almost same as the results reported by Akima et al.5%

The anisotropic GL parameter kqi(0) are evaluate from H(0) = v2kar(0)H.(0) to
kaL(0) = 44 for H//[100], kgL(0) = 48 for H//[110] and kgr(0) = 2.6 for H//[001]. The
lower critical fields are also estimated using H (0)H(0) = H2(0)(In & + 0.08) for x > 1
and H,,(0)H(0) ~ H2(0) for & ~ 1. Thus obtained H.(0) is 0.014 kOe for H//[100],
0.013 kOe for H//[110] and 0.064 kOe for H//[001]. We summarize in Table 4.5-I the
obtained parameters of the superconducting property.
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Temperature (K)

Fig. 4.5.5 Temperature dependence of the specific heat C, in the form of
Ce/T under several fields for the field along [100] in SroRuOy.
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Fig. 4.5.6 Temperature dependence of the specific heat C, in the form of
Ce/T under several fields for the field along [110] in SroRuO,.
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Fig. 4.5.7 Temperature dependence of the specific heat C, in the form of
C./T under several fields for the field along [001] in SroRuO;,.
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Fig. 4.5.8 Field dependence of the specific heat C, in the form of C. /T under
several constant temperatures in SroRuQy.
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Fig. 4.5.9 Field dependence of the specific heat C, in the form of C/T under
several constant temperatures for the sample #B in SroRuQ,.
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Fig. 4.5.10 Temperature dependence of the specific heat C, in the form of
Ce/T under several fields for the field along [100] with the sample
#C in SI‘QRUO4.
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Table 4.5-1 Obtained parameters of the superconducting property in

SI’QRUO4.
H//[100] [110] [001]
T. (K) 1.52
H.(0) (kOe) 0.23
H(0) (kOe) 14.2 15.7 0.83
H(0) (kOe) 0.014 0.013  0.064
kcr(0) 44 48 2.6
£ar(0) (A) 630 35
1 (A) 2050 for

1700 for v

We also obtain the temperature dependence of H o of three different samples for the
field along [100], as shown in Fig. 4.5.13. The solid lines in the Fig. 4.5.13 are also guide
for eyes. Hcy(0) is roughly estimated as 14.2 kOe for the sample #A with T, = 1.52 K,
12 kOe for the sample #B with T, = 1.24 K and 11 kOe for the sample #C with T, =
1.14 K. H3(0) increases with increasing the sample quality.

From the data on the slope of H.y against the temperature at T' = Ty, (dHeo/dT )1,
in Fig. 4.5.11 and the jump of the specific heat AC at H = T}y in Figs. 4.5.5, 4.5.6 and
4.5.7, we can obtain the Maki parameter k2 by using the following relation:

AC 1 dHc2 2
(T> Ty T 4mBs (263 - 1) < dT >TH, (4.5.5)

where (35 is about 1. The temperature dependence of k, is shown in Fig 4.5.14 for the

sample #A. Open triangles, circles and squares are corresponding to the field direction.
The ko-value is highly anisotropic for the field direction. The anisotropy between the in-
plane and inter-plane is mainly due to the two-dimensional electronic states. The in-plane
anisotropy between [100] and [110] is also related to the electronic states.

For the field along [100] and [110], the k;-value decreases with decreasing the tempera-
ture. Generally speaking, this indicates the existence of the paramagnetic effect. Namely,
it is a typical feature in the presence of the paramagnetic effect where the pair breaking
by the Zeeman energy becomes important at low temperatures. On the other hand, the
kg-value increases slightly with decreasing the temperature for the field along [001], which
is shown in Fig. 4.5.15. This is actually the characteristic feature which is predicted for a
clean superconductor in the absence of the paramagnetic effect, although the data do not
diverge as 1/In(T./T) at low temperatures. This means that it is difficult to determine
definitely whether the sample is in the clean limit or not.>” The &, and &, values, how-
ever, are 630 and 33 A, while the mean free path is #=1700-2050A, which was obtained
from dHvA effect.This fact indicates that the present sample is close to the clean limit.

The anisotropic paramagnetic effect itself is not unusual. For instance, in ErRhyB4
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Fig. 4.5.11 Temperature dependence of the upper critical field He in
SI’QRUO4.
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Fig. 4.5.12 Temperature dependence of the upper critical field H, for the
field along [001] in SroRuO,.
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Fig. 4.5.13 Temperature dependence of the upper critical field H., for three
samples for the field along [100] in SroRuOy.
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where ferromagnetic interactions between Er ions compete with superconductivity of con-
duction electrons, a strong paramagnetic effect is observed in the magnetization for the
spin-easy axis (H//a), while the effect is weak for the hard axis (H//c).1%") UPt; is also
another example. When the field is directed along the [1120] direction in the hexagonal
structure of UPt3, the x5 value increases with decreasing temperature as a function of
\/ln(T/ﬁ . This means no existence of the paramagnetic effect. On the other hand, it
decreases slightly with the decreasing the temperature for the field along [0001], indicating
the existence of the paramagnetic effect. We note that UPt3 is now clarified to be the
odd-parity (p- or f-wave) superconductor. In general, a large k value and high magnetic
fields often cause the paramagnetic effect. In this case, the absence of the paramagnetic
effect for H//[001] of SroRuQ, is mainly due to a small magnetic field and to a small
value. On the other hand, a high & value might cause the paramagnetic effect for H//[100]
and H//[110].

In addition to this, k5 for the sample #C is obtained in the same way. The xo-value
of the sample #C is about 60 and is almost constant against the temperature.
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Fig. 4.5.14 Temperature depehdence of the Maki parameters 9 for the sam-
ple #A in SryRuQ;,.
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Fig. 4.5.15 Temperature dependence of the Maki parameters k4 for the field
along [001] with the sample #A of SraRuOj,.
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Fig. 4.5.16 Temperature dependence of the Maki parameters x5 for the sam-
ple #C in SroRuOQy.
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Chapter 5 Conclusion

We succeeded in growing high-quality single crystals of SrsRuO4 and carried out the

dHvA, magnetoresistance and specific heat experiments. Experimental results are sum-

marized as follows:

1)

2)

High quality single crystals of SraRuO4 with T.=1.52 K were grown by using a
floating-zone technique.

The Yamaji effect is observed as the oscillatory angular dependence of the magne-
toresistance. A sharp peak found at [110] occurs when the carriers move along the
field direction. This is closely related to the corrugated curvature of the cylindrical

Fermi surface a.

In the dHvA experiments, we determined precisely the angular dependence of the
dHvA amplitude for three cylindrical Fermi surfaces a, § and . We considered
the Yamaji effect to clarify the angular dependence of dHvA amplitude. The first
Yamaji angle is determined to be 30.6° for the dHvA branch «, about 30° for
the branch 3 and 15.3° for the branch 7. A striking effect of the chemical potential
oscillation (CPO) is found in the wide range of field direction. The cyclotron masses

*
yEa

the other hand, the CPO effect is negligibly small for higher harmonics of the branch
a, although it is slightly found at a Yamaji angle § = 30.6° for the 3rd harmonic.

mp., and m are highly different from m} + mg, and m} + mg, respectively. On

We determined the cyclotron mass: 3.3 mg for the branch «, 6.9 mg for the branch
B and 17myg for the branch v for the field along [001]. From these values, we can
estimate the electronic specific heat coefficient of 40 mJ/K2-mol, which is in good
agreement with 39.8 mJ/K?-mol, determined from the specific heat experiments.

We measured the specific heat in the temperature range from 70 mK to 2 K in
magnetic fields, ranging from 0 to 20 kOe for three samples with T,=1.52 K, 1.24 K
and 1.14 K. A residual electronic specific heat coefficient v,¢s of the sample with
T.=1.52 K decreases with increasing 7,. The ~,.,-value, estimated at 0 K, is 8
mJ/K?.mol. The temperature dependence of the C, shows the T? dependence at
low temperatures and the exponential behavior near T,. A characteristic power
law dependence of C, ~ T? at low temperatures claims line nodes in the supercon-
ducting gap. We determined the upper critical field H., for the field along [100],
[100] and [001] from the specific heat in fields. H., is highly anisotropic between
H//[100]([110]) and [001], reflecting the quasi-two dimensional electronic states.
The Maki parameter k is also anisotropic. For the field along [100] and [110], the
ko-value decreases with decreasing the temperature, indicating the existence of the
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paramagnetic effect. On the other hand, the ko-value increases slightly with de-
creasing the temperature for the field along [001]. This corresponds to no existence
of the paramagnetic effect for [001].

128



Acknowledgements

This work was performed in collaboration with many researchers. That was a very won-
derful and fortunate experience for me.

I would like to express sincere thanks to Prof. Yoshichika Onuki for valuable and
pertinent advices and great encouragements throughout my study.

Special thanks are also devoted to Prof. Rikio Settai for stimulating and technical
advices. 1 am fortunate to collaborate with him who showed a wonderful technique and
accomplishment of the experimental program.

I wish to express great thanks to Prof. Kiyohiro Sugiyama and Dr. Yoshihiko Inada
for stimulating and technical advices.

I am deeply indebted to Prof. Humihiko Takei for growing samples and helpful discus-
sion. My special thanks are also expressed to Mr. Mikito Mamiya for his kind technical
advices and discussion.

I will express special thanks to Prof. Hisatomo Harima for helpful discussion, showing
me the results of the band calculation. My special thanks are also expressed to Dr. Kiyoshi
Betsuyaku for drawing very beautiful illustrations of the Fermi surface.

Specific heat experiments were performed at Graduate School of Arts and Sciences,
University of Tokyo. I would like to express special thanks to Prof. Nobuo Wada for their
many advices, stimulating discussion and encouragements. My special thanks are also
expressed to Mr. Junji Kiuchi and Mr. Yasuhisa Miyamoto for their assistance.

Specific heat experiments were also performed at Faculty of Science, Tokyo Metropoli-
tan University. For these investigations, I would like to express special thanks to Prof.
Hideyuki Sato, Dr. Yuji Aoki and Dr. Hitoshi Sugawara for their many advices, stimulat-
ing discussion and encouragements. My special thanks are also expressed to Mr. Tatsuma
D. Matsuda for his helpful assistance.

I would like to thank Prof. Naoki Toyota and Dr. Hiroshi Matsui for ultrasonic mea-
surements.

I would like to express special thanks to Prof. Yoshiteru Maeno for his helpful com-
ments.

Thanks are also expressed to Dr. Noriaki Kimura and Dr. Masato Hedo for their kind
technical advices, discussion and encouragements. I wish to thank Mr. Atsushi Mukai for
his helpful assistance, and enjoyed working and discussing with him. Acknowledgements
are also expressed to Mr. Hitoshi Ohkuni, Mr. Dai Aoki, Mr. Shingo Araki for their
interesting discussion.

This work was partially supported by the Japan Society for the Promotion of Science
in frames of the Research Fellowship for Young Scientists.

Finally, I wish also to express great thanks to my family and friends.

129



References

1) S. Adenwalla, S. W. Lin, Z. Zhao, Q. Z. Ran, J. B. Ketterson, J. H. Sauls, L. Taillefer,
D. G. Hinks, M. Levy and B. K. Sarme: Phys. Rev. Lett. 65 (1990) 2298.

2) H. Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto and
K. Maezawa: Phys. Rev. Lett. 77 (1996) 1374.

3) K. Tenya, M. Ikeda, T. Tayama, T. Sakakibara, E. Yamamoto, K. Maezawa,
N. Kimura, R. Settai and Y. Onuki: Phys. Rev. Lett. 77 (1996) 3193.

4) Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and
F. Lichtenberg: Nature 372 (1994) 532.

5) A. P. Mackenzie, S. R. Jullian, A. J. Diver, G. J. McMullan, M. P. Ray, G. G. Lon-
zarich, Y. Maeno, S. Nishizaki and T. Fujita: Phys. Rev. Lett. 76 (1996) 3786.

6) T. Oguchi: Phys. Rev. B 51 (1995) 1385.

7) 1. Hase and Y. Nishihara: J. Phys. Soc. Jpn. 65 (1996) 3957.

8) E. Ohmichi, Y. Maeno and T. Ishiguro: J. Phys. Soc. Jpn. 68 (1999) 24.
9) M. Nakano: J. Phys. Soc. Jpn.68 (1999) 1801.

10) K. Ishida, Y. Kitaoka, K. Asayama, S. Tkeda, S. Nishizaki, Y. Maeno, K. Yoshida
and T. Fujita: Phys. Rev. B 56 (1997) 505.

11) Y. Maeno, S. Nishizaki, K. Yoshida, S. Ikeda and T. Fujita: J. Low. Temp. Phys.105
(1996) 1577.

12) S. Nishizaki, Y. Maeno, S. Farner, S. Ikeda and T. Fujita: J. Phys. Soc. Jpn. 67
(1998) 560.

13) G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi,
Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura and M. Sigrist: Na-
ture 394 (1998) 558.

14) K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z.Q. Mao, Y. Mori and Y. Maeno:
Nature 396 (1998) 658.

15) T.M. Rice and M. Sigrist: J. Phys. Condens. Matter 7 (1995) L643.
16) D.F. Agterberg, T.M. Rice and M. Sigrist: Phys. Rev. Lett. 78 (1997) 3374.
17) K. Miyake and O. Narikiyo: Phys. Rev. Lett.83 (1999) 1423.

130



18) T. Ishiguro, K. Yamaji, G. Saito in Organic Superconductors (Spinger Press, Ger-
mmany, 1998)

19) K. Kajita, Y. Nishio, T. Takahashi, W. Sasaki, R. Kato, H. Kobayashi, A. Kobayashi
and Y. Iye: Solid State Commun. 70 (1989) 1189.

20) K. Yamaji: J. Phys. Soc. Jpn. 58 (1989) 1520.
21) M. Nakano: J. Phys. Soc. Jpn. 66 (1997) 19.

22) F. A. Meyer, E. Steep, W. Biberacher, P. Christ, A. Lerf, A. G. Jansen, W. Joss,
P. Wyder and K. Andres: Europhys. Lett. 32 (1995) 681.

23) K. Kishigi, M. Nakano, K. Machida and Y. Hori: J. Phys. Soc. Jpn. 64 (1995) 3034.
24) L. M. Falicov and H. Stachowiak: Phys. Rev. 147 (1966) 505.

25) A. B. Pippard: Proc. R. Soc. London A 270 (1962) 1.

26) R. W. Stark and L. M. Falicov: Prog. Low Temp. Phys. 5 (1967) 235.

27) R. W. Stark and C. B. Friedberg: J. Low Temp. Phys. 14 (1974) 111.

28) D. Shoenberg: Mangnetic oscillations in Metals (Cambridge University Press, Cam-
bridge, 1984).

29) N. Kimura: Doctral Thesis Osaka Univ. (1997)

30) Y. Onuki, A. Hasegawa, in Handbook on the Physics and Chemistry of Rare Earths
Vol. 20, eds. K. A. Gschneidner Jr., L. Eyring (North-Holland, Amsterdam, 1995)
p-1

31) Y. Onuki, K. Ueda, T. Komatsubara, in Slected Papers in Physics IV: Heavy Electron
System (1994) in Japanese

32) D. D. Koelling, B. D. Dunlap, G. W. Crabtree, Phys. Rev B 31 (1985) 1966.

33) K. H. J. Buschow, H. J. van Daal, F. E. Maranzana, P. B. van Aken, Phys. Rev3
(1971) 1662.

34) R. D. Parks, in Valence Instabilities and Related Narrow-Band (Plenum Press, New
York, 1977)

35) L. M. Falicov, W. Hanke, M. B. maple, in Valence Fluctuations in Solids (North-
Holland, Amsterdam, 1981)

36) A. Sumiyama, Y. Oda, H. nagano, Y. Onuki, K. Shibutani, T. KQmatsubara, J.
Phys. Soc. Jpn. 55 (1986) 1294.

131



37) K. Yamada, K. Yosida, K. Hanzawa, Prog. Theor. Phys. 71 (1984) 450.
38) K. Yamada, K. Yosida, Prog. Theor. Phys. 76 (1986) 621.

39) K. A. Gschneidner Jr., S. K. Dhar, R. J. Stierman, T. W. E. Tsang, O. D. McMasters,
J. Mag. Mag. Mat. 47&48 (1985) 51.

40) A. de Visser, A. Menovsky, J. J. M. Franse, Physica B 147 (1987) 81.
41) G. R. Stewart, Rev. Mod. Phys. 56 (1984) 755.

42) P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, J. W. Wilkins, Comments on
Condensed Matter Phys. 12 (1986) 99.

43) K. Kadowaki, S. B. Woods, Solid State Commun. 58 (1986) 507.

44) M. R. Norman, D. D. Koelling, in Handbook on the Physics and Chemistry of Rare
Earths Vol. 17, eds K. A. Gschneidner Jr., L. Eyring, G. H. Lander, G. R. Choppin
(North-Holland, Amsterdam, 1993) p. 1

45) Y. Onuki, T. Goto, T. Kasuya, in Materials Science and Technology Vol. 3A, ed. K.
H. Buschow (VCH Weinheim, 1992) ch. 7, p. 545.

46) B. B. Goodman: Phys. Lett.1 (1962) 215.
47) B. Serin: Phys. Lett.16 (1965) 112.

48) F. Steglich and J. Aarts and C. D. Bredl and W. Lieke and D. Meschede and W.
Franz and H. Schafer: Phys. Rev. Lett. 43 (1979) 1892.

49) R. Balian and N. R. Werthame: Phys. Rev.131 (1963) 1553.

50) P. W. Anderson and W. F. Brinkman: eds. by K. H. Benneman and J. B. Koterson
(John Wiley & Sons, New York),p. 177.

51) M. Sigrist and K. Ueda: Rev. Mod. Phys 63 (1991) 239.
52) M. Hedo: Doctral Thesis Osaka Univ. (1998)
53) K. Matsuda and Y. Kohori and T. Kohara: J. Phys. Soc. Jpn. 64 (1995) 2750.

54) K. Ishida and H. Mukuda and Y. Kitaoka and K. Asayama and Y. Onuki: Z.
Naturforsch.51a (1996) 793.

55) A. D. Huxley and C. Paulsen and O. Laborde and J. L. Tholence and D. Sanchez
and A. Junod and R. Calemczuk: J. Phys. :Condens. Matter 5 (1993) 3825.

132



56) M. Hedo, Y. Inada, E. Yamamoto, Y, Haga, Y. Onuki, Y. Aoki, T.D. Matsuda,
H. Sato and S. Takahashi: J. Phys. Soc. Jpn. 67 (1998) 272.

57) G. Eilenberger: Phys. Rev.153 (1967) 584.

58) M. Hedo, Y. Inada, K. Sakurai, E. Yamamoto, Y. Haga, Y. Onuki, S. Takahashi,
M. Higuchi, T. Maehira and A. Hasegawa: Philo. Mag. B 77 (1997) 975.

59) Y. Kohori, H. Shibai, T. Kohara, Y. Oda, Y. Kitaoka, K. Asayama: J. Mag. Mag.
Mat. 76&77 (1988) 478.

60) H. Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, K. Maezawa,
Phys. Rev. Lett. 77 (1996) 1374.

61) T. Sakakibara, K. Tenya, M. Ikeda, T. Tayama, H. Amitsuka, E. Yamamoto, K.
Maezawa, N. Kimura, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 65 (1996) suppl. B
202.

62) K. Tenya, M. Ikeda, T. Tayama, H. Mitamura, H. Amitsuka, T. Sakakibara, K.
Maezawa, N. Kimura, R. Settai, Y. Onuki J. Phys. Soc. Jpn. 64 (1995) 1063.

63) H.Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, K. Maezawa,
Int. Conf. of Low Temperature Physics (Prague 1996); Czech. J. Phys. 46 (1996)
Suppl. S2 779.

64) Y. Kohori, K. Matsuda and T. Kohara: Solid State Commun. 95 (1995) 121.

65) H.Tou, Y. Kitaoka, K. Asayama, C. Geibel, C. Schank and F. Steglich: J. Phys.
Soc. Jpn. 64 (1995) 725.

66) Y. Haga, E. Yamamoto, Y. Inada, D. Aoki, K. Tenya, M. Ikeda, T. Sakakibara and
Y. Onuki: J. Phys. Soc. Jpn. 65 (1996) 3646.

67) N. Metoki, Y. Haga, Y. Koike and Y. Onuki: Phys. Rev. Lett. 80 (1998) 5417.

68) N. Metoki, Y. Haga, Y. Koike, N. Aso and Y. Onuki: J. Phys. Soc. Jpn. 66 (1997)
2560.

69) T. Akima, S. Nishizaki and Y. Maeno: J. Phys. Soc. Jpn. 68 (1999) 694.

70) M. Barden, A. H. Moudden, S. Nishizaki, Y. Maeno and T. Fujita: Phisica C 273
(1997) 248.

71) Y. Maeno, K. Yoshida, H. Hashimoto, S. Nishizaki, S. Ikeda, M. Nohara, T. Fujita,
A. P. Mackenzie, N. E. Hussey, J. G. Bednorz and F. Lichtenberg: J. Phys. Soc.
Jpn. 66 (1997) 1405.

133



72) A. P. Mackenzie, S. Tkeda, Y. Maeno, T. Fujita, S. R. Jullian and G. G. Lonzarich:
J. Phys. Soc. Jpn. 67 (1998) 385.

73) N. Shirakawa, K. Murata, Y. Nishimura, S. Nishizaki, Y. Maeno, T. Fujita,
J. G. Bednorz, F. Lichtenberg and N. Hamada: J. Phys. Soc. Jpn. 64 (1995) 1072.

74) A. P. Mackenzie, N. E. Hussey, A. J. Diver, S. R. Jullian, Y. Maeno, S. Nishizaki
and T. Fujita: Phys. Rev. B 54 (1996) 7425.

75) T. Yokota, A. Chainami, T. Takahashi, H. Katayama-Yoshida, M. Kasai and
Y. Tokura: Phys. Rev. Lett. 76 (1996) 3009. :

76) T. Yokota, A. Chainami, T. Takahashi, H. Ding, J. C. Campzano, H. Katayama-
- Yoshida, M. Kasai and Y. Tokura: Phys. Rev. B 54 (1996) 13311.

77) D. H. Lu, M. Schmit, T. R. Cummins, S. Schuppler, F. Lichtenberg and J. G. Bed-
norz: Phys. Rev. Lett. 76 (1996) 4845.

78) Y. Maeno, S. NishiZaki and Z. Q. Mao: J. Superconductivity 12 (1999) 535.

79) A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori,
S. Nishizaki and Y. Maeno: Phys. Rev. Lett. 80 (1998) 161.

80) H. Mukuda: Doctral Thesis Osaka Univ. (1999)
81) S. NishiZaki, Y. Maeno and Z. Q. Mao: to be published in J. Phys. Soc. Jpn.

82) Z. Q. Mao, Y. Maeno, S. NishiZaki, T. Akima and T. Ishiguro: to be published in
Phys. Rev. Lett.

83) K. Machida, M. Ozaki and T. Ohmi: J. Phys. Soc. Jpn. 65 (1996) 3720.
84) M. Sigrist and M. E. Zhitomirsky: J. Phys. Soc. Jpn. 65 (1996) 3452.
85) D.F. Agterberg: Phys. Rev. Lett. 80 (1998) 5184.

86) T.M. Riseman, P.G. Kealey, E.M. Forgan, A.P. Machenzie, L.M. Galvin, A.-W. Tyler,
S.L. Lee, C. Ager, D. McK. Paul, C.M. Aegerter, R. Cubitt, Z.Q. Mao, T. Akima
and Y. Maeno: Nature 396 (1998) 242.

87) Y. Yoshida, R. Settai, Y. Onuki, H. Takei, K. Betsuyaku and H. Harima: J. Phys.
Soc. Jpn. 67 (1998) 1677.

88) K. Betsuyaku: Doctral Thesis Osaka Univ. (1999)

89) V. L. Moruzzi, J. F. Janak and A. R. Williams : Calculated Electronic Properties
of Metals (Pergamon Press Inc. , 1978)

134



90) F. Lichtenberg, A. Catana, J. Mannhart and D. G. Schom: Appl. Phys. Lett 60
(1992) 1138.

91) E. Ohmichi,H. Adachi, Y. Mori, Y. Maeno, T. Ishiguro and : Phys. Rev. B 59 (1999)
7263.

92) Y. Yoshida, A. Mukai, R. Settai, K. Miyake, Y. Inada, Y. Onuki, K. Betsuyaku,
H. Harima, T. D. Matsuda, Y. Aoki and H. Sato: J. Phys. Soc. Jpn. 68 (1999) 3041.

93) K. Kishigi, Y. Hasegawa and M .Miyazaki: submitted to J. Phys. Soc. Jpn.

94) H. Matsui, M. Yamaguchi, Y. Yoshida, A. Mukai, R. Settai, Y. Onuki, H. Takei and
N. Toyota: J. Phys. Soc. Jpn. 67 (1998) 3687.

95) T. Goto, A. Sawada and S. Sakatsume: Jpn. J. Appl. Phys. Series 8 (1993) 140.
96) T. Vogt and D. J. Buttrey: Phys. Rev. B 52 (1995) R9843.

97) J. S. Gardner, G. Balakrishnan, D. McK. Paul and C. Haworth: Physica C 265
(1996) 251.

98) L. R. Testardi: Phys. Rev. B 3 (1971) 95.
99) A. J. Mills and K. M. Rabe: Phys. Rev. B 38 (1988) 8908.
100) R. C. Morris, R. V. Coleman and R. Bhandari: Phys. Rev. B 5 (1972) 895.

101) N. Toyota, H. Nakatsuji, K. Noto, A. Hoshi, N. Kobayashi, Y. Muto and Y. Onodera:
J. Low Tmp. Phys. 25 (1976) 485.

102) K. Yoshida, Y. Maeno, S. Nishizaki and T. Fujita: J. Phys. Soc. Jpn. 65 (1996)
2220.

103) T. P. Orlando, E. J. McNiff, S. Foner and M. R. Beasley: Phys. Rev. B 19 (1979)
4545.

104) M. Kataoka and T. Goto: Phisica B 219 & 220 (1996) 92.

105) H. Matsui, M. Yamaguchi, S. Endo, T. Inuzuka, H. Uozaki and N. Toyota: J. Phys.
Soc. Jpn. 67 (1998) 2586.

106) Y. Hasegawa, K. Machida and M. Ozaki: submitted to J. Phys. Soc. Jpn.

107) G. W. Crabtree, F. Behroozi, S. A. Cambell and D. G. Hinks: Phys. Rev. 147 (1966)
295.

135



List of Publications.

1.

10.

Metamagnetic transition in PrCu, studied by the de Haas-van Alphen effect

R. Settai, M. Abliz, P. Ahmet, H. Azuma, D. Aoki, Y. Yoshida, K. Sugiyama and
Y. Onuki:

Physica B 216 (1996) 326.

Metamagnetic magnetization in DyCus
K. Sugiyama, Y. Yoshida, D. Aoki, R. Settai, T. Takeuchi, K. Kindo and Y. Onuki:
Physica B 230-232 (1997) 748.

Neutron Scattering Study of the Magnetic Structure of DyCu,
Y. Koike, N. Metoki, Y. Morii, Y. Yoshida, R. Settai and Y. Onuki
J. Phys. Soc. Jpn. 66 (1997) 4053.

. Magnetic structure of CeCug_,Au,

H. Okumura, K. Kakurai, Y. Yoshida, Y. Onuki and Y. Endoh:
J. Magn, Magn. Mater 177-181 (1998) 405.

Metamagnetism based on the quadrupolar interaction in RCu,

K. Sugivama, Y. Yoshida, A. Koyanagi, R. Settai, T. Takeuchi, K. Kindo and
Y. Onuki:

J. Magn, Magn. Mater 177-181 (1998) 361.

Metamagnetic transition based on the Quadrupole Moment in DyCu,

Y. Yoshida, K. Sugiyama, T. Takeuchi, Y. Kimura, D. Aoki, M. Kouzaki, R. Settai,
K. Kindo and Y. Onuki:

J. Phys. Soc. Jpn. 67 (1998) 1421.

Fermi Surface and Yamaji Effect in SroRuQO,
Y. Yoshida, R. Settai, Y. Onuki, H. Takei, K. Betsuyaku and H. Harima:
J. Phys. Soc. Jpn. 67 (1998) 1677.

Magnetic and Electrical Properties of GdCus,
A. Koyanagi, Y. Yoshida, Y. Kimura, R. Settai, K. Sugiyama and Y. Onuki:
J. Phys. Soc. Jpn. 67 (1998) 2510.

Oscillatory Angular Dependence of the Magnetoresistance in SroRuQ4
Y. Yoshida, A. Mukai, R. Settai, Y. Onuki and H. Takei:
J. Phys. Soc. Jpn. 67 (1998) 2551.

De Haas-van Alphen Effect and Energy Band Structure in UB,

E. Yamamoto, Y. Haga, T. Honma, Y. Inada, D. Aoki, M. Hedo, Y. Yoshida,
H. Yamagami and Y. Onuki:

J. Phys. Soc. Jpn. 67 (1998) 3171.

136



11.

12.

13.

14.

15.

16.

17.

High-Field Magnetization and Metamagnetic Transition in TbCuy and HoCus Sin-
gle Crystals

K. Sugiyama, M. Nakashima, Y. Yoshida, Y. Kimura, K. Kindo, T. Takeuchi, R. Set-
tai and Y. Onuki:

J. Phys. Soc. Jpn. 67 (1998) 3244.

Elastic Anomalies and Acoustic de Haas-van Alphen Effects in SroRuO4

H. Matsui, M. Yamaguchi, Y. Yoshida, A. Mukai, R. Settai, Y. Onuki, H. Takei and
N. Toyota:

J. Phys. Soc. Jpn. 67 (1998) 3687.

Metamagnetic transitions based on the quadrupole moment in RCu, single crystals
K. Sugiyama, M. Nakashima, Y. Yoshida, R. Settai, T. Takeuchi, K. Kindo and
Y. Onuki:

Physica B 259-261 (1999) 896.

Fermi surface of UB, studied by the de Haas-van Alphen oscillation

E. Yamamoto, T. Honma, Y. Haga, Y. Inada, D. Aoki, M. Hedo, Y. Yoshida,
H. Yamagami and Y. Onuki:

Physica B 259-261 (1999) 1085.

Field-Induced Ferropuadrupolar Ordering in RCu,

R. Settai, K. Sugiyama, S. Araki, Y. Yoshida, P. Ahmet, M. Abliz, K. Kindo and
Y. Onuki:

Jon. J. Appl. Phys. Series 11 (1999) 194.

Fermi Surface Properties in SraRuQ4

Y. Yoshida, A. Mukai, R. Settai, K. Miyake, Y. Inada, Y. Onuki, K. Betsuyaku,
H. Harima, T. D. Matsuda, Y. Aoki and H. Sato:

J. Phys. Soc. Jpn. 68 (1999) 3041.

Fermi surface and superconducting properties in SraRuQOy4
Y. Yoshida, A. Mukai, K. Miyake, N. Watanabe, R. Settai, Y. Onuki, T. D. Matsuda,
Y. Aoki, H. Sato, Y. Miyamoto and N. Wada:

printed in Physica B.

137



