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SUMMARY

This thesis is concerned with the theory of successive
inference. When there is an ambiguous information about the
assumed model dr values of parameters included in it, a process
that checks its wvalidity and then makes inference according
to the outcome is discussed. The theory is approached from
the two aspects:(I) Which model is to be selected? (II) How
well inference 1is carriled out under the model?

Two problems are dealt with in the thesis. The first
is pooling problem in analysis of vériance. Interval esti-
mation of cell effects in a two-way layout fixed model is
discussed. The relative efficiency of the pooling method
with respect to the never pooling method and the coverage prob-
ability are calculated, from which it 1s recommended to use
the pooling method. The efficiency is defined as the ratio
of the expected lengthes of the methods. Furthermore a method
of testing main effect which is often used in practice by
modifying the proper pooling method is justifiedvby considering
its Size and power.

The second problem is to make inference about the normal
mean through the framework of statistical dicision theory.
Using Inagaki's loss function which evaluates both an error of
model fitting and an error of estimation, admissibility and
minimaxity of some procedures which use Akalke Information
Criterion and maximum likelihood estimators are proved.
Furthermore a notion of "data-compatible model selection" is

given and discussed.
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CHAPTER 1

INTRODUCTION

Let X .,Xn be random variables from one-dimensional

15 -
normal distribution Nl(e,gz), and let us consider the problem
to estimate 02 under the gradratic loss function. When the
value of 8 1is known (without loss of generality we can
assume 6=0), g§=7?=lX§/(n+2) is the best scale invariant
estimator and an admissible estimator (cf. Karlin[l1l7]).
However, with unknown g, the best location and scale invariant
estimator ;2=22=1(Xi—2)2/(n+1) is inadmissible and 1s dominated
by the estimator ag=min[8§,8§] (ecf. Steinl[487). The latter
estimator has the following interpretation: we use Stﬁdent
t-test of the null hypothesis HO:6=O and 1f it is accepted
at some significance level (i.e. t2=nX2/(22=lCXi-X)2)il/(n+l)),
then the estimator Si which has a good performance with 6=0
is adopted, while 83 is used, otherwise. That 1s, it is a
kind of preliminary test estimator. There are some cases,
in which similar improvement of’ﬁsual estimators can be
done (for example, see Arnold[1] or Nagatal[24] which will
be worked out 1n some detalls in‘AppendiX).

However, statistical brocedures wlth the preliminary

tests cannot always improve usual ones uniformly, or rather

abovestated cases are somewhat exceptional. In most cases



they cause trade-off, that is, they are better than usual
ones in some set of the parameter space but worse 1in the
complementary set.

The theory of statistical procedure with a preliminary
test is often called "the successive process of statistical
inference". (We abbreviate 1t as "successive inference".)

It involves many issues in mathematical statistics, such

as pooling problem in analysis of variance (ANOVA), Behrens-
Fisher problem and variable selection problem In regression
analysis. Since statistical procedures are developed based
on several assumptions, 1t is reasonable that we should check
them by using data at hand and proceed along the outcomes.
From this point of view we can state that successive inference
contains vast area to discuss steadily. Bibliographies

in Bancroft and Han[3] and Kitagawal[l9] are gooa sources of
references.

Preliminary test 1s used when there is an ambiguous
prior information about assumed models or parameters. If
this prior information can be formulated in exact expressions,
there are different approaches (e}g. Bayes statistic and see
also Nagatal[25] in relation to it), which will not be treated
here. In this thesis we discuss the successilve inference
procedure from the standpoint that we check the information
by preliminary test and make inference as the final purpose.
Thus, we have two kinds of things to discuss:(1l) Which model
is chosen?;(2) Is the inference taken appropriately under

the model? The example in the first paragraph is a very



fortunate one and therefore 1t is not the problem to be
discussed any more.

In Chapter 2 we treat the pooling problem in ANOVA model.
Since Bancroft[2], it has been one of central parts in the
theory of successive inference and many literatures have been
published. Various models and various situations have been

discussed, but we deal with in particular a two-way layout

fixed model. First we review known results on test of main
effect and polnt estimation of error variance. Next we
deal with interval estimation of a cell mean. By calculating

the relative efficiency of the expected length of the interval
with pooling method to that with never pooling method and the
coverage probability, we find that there is a trade-off between
the two kinds of performance. We give recommendation for
the practical purpose that it may be used at 25 percent sig-
nificance level of the preliminary test because the method
with such a level does not cause disturbance on the nominal
coverage probability. Further we discuss a method used
by many experimenters in practice. In testing main effect
they do not use the ordinary method faithfully but modify
it conveniently. We call the modified one‘the practical
pooling method, formulate it and justify it by calculating
the size and the power numeriéally. We find that it is
very close to the ordinary one wiﬁh 25 percent of significance
level of the preliminary test.

In Chapter 3 we formulate the successive inference of

the normal mean with known variance mathematically through



the framework of statistical decision theory, in which there
have been few interesting results obtained so far. We make
use of the loss function introduced by Inagaki[1l5], which

is based on Kullback-Leibler information measure and evaluates
both an error of model fitting and an error of estimate, so that
it is suiltable for our standpoint to successive inference.
Under this loss function the procedure that selects a model

by using Akaike Information Criterion (AIC) and estimates
parametersrby maximum likelihood estimator (m.l.e.) is
considered. For one-dimensional case both admissibility

and minimaxity of the procedure are proved and an extension

to multi-~variate case 1s aléo considered. Furthermore

the notion of "data-compatible model selection” is introduced

and its relation to minimaxity is considered.



CHAPTER 2

POOLING PROBLEM IN ANALYSIS OF VARIANCE

2.1, GENERAL REMARKS

In this chapter we discuss the pooling problem in the
ANOVA, It involves three kinds of procedures; test of main
effect, point estimation and interval estimation. They can
be treated separately, but it 1s more desirable for practical
experimenters that total recommendation would be given. We

consider a fixed model in a two-factor analysis of wvariance

with repetiﬁion throughout this chapter. Let the full model
be
(2.1) Xijk =uta; f bj + Lab)ij + €i3%>

: _vm _ -2
where 21 184 J _1P 5 Z (ab)ij'_j=l(ab>ij"of eijkNNID(O,Q2),

i=l,2,...,l,J—l,2,...,m and k=1,2,...,n. If the effécts of
interactions are suspected to be nonexistent, we usually test
those effects preliminarily. If the effects of interactions
can be ignored, then the further analysis would be carried

out according to the simplified model,

(2.2) Xijk =y +a, +b, +e



Otherwise, the analysis follows the original model (2.1).

There are many studies on such a preliminary test pro-
cedure on this or other models where we test doubtful error
first and then further analysis is carried out on the basis
of the outcome of the preliminary test, e.g.;(l)Srivastava
and Guptallé], Toyoda and Wallace[50], Hirano[13] and Ohtani
and Toyodal[32] on the point estimation of the wvariance og of
error term;(2) Paull[34], Bozivich, Bancroft and Hartleyl(6]
and Mead, Bancroft and Han([22] on the size and power of test
of main effect. There are also studies on the case where
several doubtful errors exist; Gupta and Srivastaval[l0], Singh
[43] and Srivastaval[ld7] on the point estimation; Srivastava
and Bozivich[447, Srivastavallis5], Guptakand Srivastavalg]
and Saxena and Srivastaval[39] on the size and power of the
test of main effect.

The pooling procedure is summarized as follows. Let
Vl’ V2 and V3 denote the mean square error (m.s.e.) of the
interaction AxB, of the error term and of the main effect A,

respectively. (The main effect B can be treated similarly.)

Let ni be the number of degrees of freedom (d.f.) of Vi and

2

E(Vi)=ci (i=1,2 and 3). Let the null hypotheses of nonex-

istence of the main effect and of the interaction AxB as a

- . 2_ 2 L 2_ 2 .
doubtful error be Ho.o3-02 and Hoo.ol—oz, respectively. In

advance of testing HO, we will test preliminarily HOO by using

the statistic Vl/v2' And i1f the hypothesis H is rejected

00
0> otherwise HOO is
/V will be used, where V

we will use the statistic V /V2 to test H

3

judged to hold and the statistic V3



is a pooled error defined as V=(n1Vl+n2V2)/(nl+n2).

Since 1t may be possible tc increase the degree of freedom
of error term by using this procedure, one may expect more
powerful test. However, in fact the size of the main test
beccmes disturbed. So a question willl arise as to how to
control the significance level of the preliminary test by
taking the size disturbance and the gain of power into con-
sideration. Mead et al.[22] gave a warning in regard to the
indiscriminate use of preliminary tests because the accuracy
1s not always better. On the other hand many authors have
reported that if we consider that the purpose of pooling is
not only to get an accurate procedure but to simplify the
model 1f possible, preliminary test with significance level
about a=0{25 do not disturb the size so much and may be used
in many practical situation.

When we estimate error variance og,

also arises. But in this case it is similar to the example

the same problem

in Chapter 1 and we had better use preliminary test at some
significance level (cf. abovestated literatures (1)).

In Section 2.2 we will treat interval estimation. In
particular we clarify the inflﬁence of pooling on interval
estimation of a cell mean by calculating the-coverage proba-
bility and the expected length numerically. And in Section
2.3 returning to test of main effect, we notice that experi-
menters do not follow the pooling procedure in this‘section

éxactly in practice and give the formulation of this procedure

and the Jjustification.



2.2. INTERVAL ESTIMATION OF A CELL MEAN UNDER A PRELIMINARY
TEST

In this section we discuss the interval estimation of
3 cell mean following Nagata and Araki[29]. In order to

egtimate u+ai+bj+(ab)ij when the interaction effect is judged
to exist, or p+ai+bj otherwise, the following pooling procedure

is considered:

i..' + tl/Vz/n, if Hyy is rejected,

(2.3)
X. + X . -X * t2/V/ne, otherwise,

where tl and t2 denote the upper critical point of some nominal

levels with N, and n1+n2 degrees of freedom, respectilively

and ne(=lmn/(l+m—l)) is the effective number of replication.

FORMULAS FOR COVERAGE PROBABILITY. Let P denote the coverage

probability, then it 1s written as the sum of the probability

and P where

Py 2>

(2.4) Py = Pr{Vy/V, 2 A, [X

1 - (u + a; + bj + (ab)ij)[
< tIVVz/n},

ij.

and

(2.5) P, = Pr{Vl/V2_< )\,lx.“ + X.j- -X - (u _-;-‘ai +bj)|

< t2/V7ne},



where )\ is a critical value of the preliminary test.

In order to evaluate the probabilities P, and P we

1 2°
follow arguments similar to Mead et al.[22] using the Patnaik's

approximation [33] in which the sum of squares nlvl with a

noncentral chi-square distribution (with noncentrality parameter

_ 2 2 24 s . 2 2 _ 2
n—nl(ol—o2)/202) is approximated by OZClel where vl—nl+un /
=l+2n/(nl+2n) and xi is a central chi-square dis-

1

degrees of freedom. This approximation was

(nl+4n), Cl

tribution with vy
evaluated by Gurland et al.[l1l] numerically in the study of
Behrens-Fisher problem.
: _2,2 oz 2
Define 6—01/02 (>1) and Vu n{xij' (“+ai+bj+(ab>ij)} .

Then Vu/cg is distributed as central chi-square distribution

with one degree of freedom independently of Vl and V2. The
joint density of Vl’ V2 and VM is
v, /2
1 2,1

(2.6) (v F1,%1)/2 (n,/Cy05).

2 r(1/2)r(v,/2)r(n,/2)

5 n,/2 5 1/2 v1/2—1 n2/2—l 1/2-1
x(n,/05) (1/¢5) ¥y v, V)

2
xexp{-(anl/Cl+n2V2+Vu)/2g2}.

Now we define the new variables u1=anl/n201V2, u2=Vu/n2V2

and W=n2V2/2c§. Then the joint density of Ugs U, and w is
1 (v1+n2+l)/2—l vl/2ﬁl 1/2-1
(2.7) = W T u u ‘
r(1/2)T(v¢/2)T(n,/2) 1. 2

Xexp{_W(l+ul+u2 ) } °



Integrating out w, we obtain the joint density f(uj,u?) of ug

and u., as

2

I((vy+n,+1)/2) v /2-1 1/2-1
(2.8)  flug,uy) = T(1/2)T (v, /2T (n,/2) "1 Uy
—(v,+n.+1)/2
X(1+ul+u2) 172 .

In terms of new variables, P, can be rewritten as follows:

1
2.9) P. = Pr{u, > uO U, < uo}
(2. 1 1= "1 2= "2
0_ 0_.2
where ul—nlk/n2cl and uz—t /n |
- - 2
Furthermore we define Vu—n {Xl..+x.j.-x..._(“+ai+bj)}
newly, and similarliy we obtain P2 as follows:
- 0
(2.10) P2 = Pr{ul 2 up, Uy < (1 + Cl l)u

Making use of the joint density of u

0_,2
where u3—t2/(nl+n2). 1
and Uss Pl may be rewritten in an integral form:
O

P((v +n +1)/2)

(2.11) P} = ;T 7T (E,/2) fo

I 1/2 1y,72-1
O 1

—(v1+n2+l)/2 -

du- du

x(1+u +u2) 1du, .

1

Taking the integration by parts, we get the following set of

recursion formulas:

-10-



r(n /2+a+l) ug a+l —n2/2
Hervellcr Ty Y

(2.12) Pl(a) = Pl<a+l)

x(1 = I,(ny/2+a+1,1/2)),

where a=v1/2—1, A=(l+ug)/(l+ug+ug) and IX(c,d) denotes the

incomplete Beta function defined by
X - -
I(c,d) = (1/B(c,d)) [§ y* -yt ay.

The initial value is given by

—n2/2

(2.13)  Py(0) = (L +u)) © (1 -1I,(n,/2,1/2)),

For P2, it holds that

= 0 0 0
(2.14) P, = Priu; 2 0, u, 2 u3} - Priu; > uy, u, < u3}
+ Pr{u; < uo ul < < (1+Cju )u .
1<% Y32 171

The first two terms in the right-hand-side of (2.14) are

evaluated from the formulas for P.. Let P

1 23 denote the third

term, then

(2.15) P23 = Pr{(uZ—ug)/Clug < u uo

A

5 2 (l+Clul)u 1.

UJO

The corresponding recursion formulas for P23 are

-11-



P((n2+l)/2+a+1)

- B 1/2-1
(2.16)  Ppala) = Pyo(a+l) + T(1/2)T(n,/2)T(a+2] ffuo Yo
3
, Oa+1 0 —((n2+l)/2+a+l)
x{ul (1+u2+ul)
_ué_uo a+tl .uz;uo ~((n,+1)/2+a+1)
- (23 Qe =) bdu, T,
C-u C-u
193 173
where a=vl/2-1 and B=(1+Clug)ug. The initial wvalue is
I((n,+1)/2) B ul‘ug (n,+1)/2
- 2 1/2-1 T o
(2.17)  Ppg5(0) = T(I/2)T(n,/2)) 0 12 [(T+uy+ oL
u C.u
3 173
0 —(n2+l)/2
- (1+u2+u1) ] du2.

The probability P can he evaluated by ﬁsing these recursion
formulas. Note that a in (2.12) and C2¥l6) is not necessa-
rily an integer. Figures 1 and 2 are drawn by connecting
smoothly several points corresponding to integral Valués for

a.

FORMULAS FOR THE EXPECTED LENGTH OF CONFIDENCE INTERVAL., We

call the estimation procedure with confidence limits (2.3)
sometimes—pooling procedure (SPP). On the other hand the
following two procedures not incorporating pooling procedure
are often used. One is the procedure with the confidence
limits:

(2.18) X., = tl/vé753

lJu

-~12-



which is used in the situation where interaction is always

regarded to exist. We call it never-pooling procedure I (
NPP-TI). The other has the following confidence limits:
(5.19) Xy, + tl/V27n, if Hy 1is rejected,

X + X.j. - X £ t1/V27ne, otherwise.

In this procedure one judges the existence or the nonex-

istence of the interactions by the preliminary test, and
reflects the outcome only on the point éstimation, but does

not pool the doubtful error term into the original error term.
We call it never-pooling procedure II (NPP-II). The feature

of these two procedures is that they give the interval with

the exact prescribed nominal probability. And NPP-II is

always shorter than NPP-I since ne>n. Now we compare the
expected length of SPP with that of NPP-ITI, using as a criterion

the relative efficiency of expected length(%):

(2.20) R = 100{(expected length of the confidence interwval
of NPP-II) - (expected length of the confidence
interval of SPP)}/(expected length of the confi-

dence interval of NPP-II) .

Let f(ul) be the density function of u,, and f(w[ul) be
thé conditional density function of w for given U, - By wvirtue
of (2.7) and (2.8) the numerator of R (say Num) is written

as

-13-



~

U

u
I01[f§{2tl/éogw/n2ne - 2t2/ég§(1+clul)w/(nl+n2)ne}

(2.21) Num

xf(w[u ) dw]f(u ) dulxlOO

v./2 n./2
2V2 F((v +n +l)/2)n 1 n e

2
= vl/z
/H;F(vl/2)F(n2/2)Cl

n.y+n, 1/2 v,/2-1 —(v,+n,+1)/2
A 1 2 1 1 1 2

xdyx100.

The denominator of R (say Den) is

1

(2.22) Den = fwofw{2th§;§;7;;;}f(w|ul) dwf(ul) du
uq 0
U'O
+ f01f3{2tl/2o§w/n2ne}f(wlul) dwf(ul) du

1

F((v +n +l)/2) F(v /2)F((n +1)/2

= 2t,/205/nyn, (v /2>r(n 75y Lvng/n T((v o +1)/27

vl/Z (n2+l)/2
+ (1 - /n /n)nl i fl y
e v1/2 0
Cq
+n2+l)/2

vl/2—l

=(v

1
x(n,y/Cy+n,)

dy].

Then R is described

~1b-



vl/2 (n2+l)/2

n.. n o y+tn, 1/2 v,/2
(2.23) R=2 2 (o2 )yt
. c.l 1 72
1
—(vl+n2+l)/2
X(nly/Cl+n2) dyx100
v1/2 (n2+l)/2
F(vl/Q)T((n2+l)/2) ny n,
/Wne/n sy 2y F (A/ne/m) v 72
c
1
, vp/2-1 —(vyn,+l) /2
xfo v (nly/Cl+n2) dy1.

From (2.23) we can get the numerical results for the relative

efficiency.

SoME THEOREMS. For fixed g we give some theorems on the be-
havior of coverage probablility and interval length as a function
of \. For the coverage probability we consider the volume D())

defined as D(X)=(coverage probability of NPP-II)-(coverage

probability of SPP). Note that (coverage probability of NPP-
II)=1-T, where T is a prescribed constant. D(A) is written
as

_ 0 0 | 0 0
(2.24) .Dgx) Priu; < uy, up< upl = Pr{u; < ug, uy < (340 uq)usld
= IO [fo - fO j f(ul,u ) duzdu1
Recalling that u A/n2 1> D(A) may be differentiated in term

of A as follows.

-15-



n 0
us (1+n,A/n,)us
(2.25)  dD(A)/AA = (ny/myC)f % - [o 1 2 31rudLuy) au,.

Let AO denote a A which satisfies the equation; ug=(l+nlk/n2)uo,

then D()) is zero at A=) Now we obtain the following theorem.

0
THEOREM 2.1. D()X) attains <its maximum at A=AO={(nl+n2)t§
—ngtg}/nltg, and is monotone increasing when A<, and monotone

decreasing when A>X e

As for the expected length, we define G()\) as G()\)=(ex-
pected length of the confidence interval of NPP-II)-(expected
length of the confidence interval of SPP)=(Numerator of (2.23)),

differentiate it and obtain the following theorem.

THEOREM 2.2, G(X) attains its maximum at A=A,, and is
monotone increasing when K<k0 and monotone decreasing when

K>A0.

These theorems imply that there is tradé-off concerning
the coverage probability and the expected length when we use SPP.

We next fix the significance of the preliminary test and

observe the extent of the trade-off numerically.

NUMERICAL RESULTS,AND DISCUSSION, The coverage probability

and the relative efficiency of expected length are obtained
from the derived formulas. Numerical results for the two
cases (nl,n2)=(6,12) and (12,40) which correspond to the model

(2.1) with (1,m,n)=(4,3,2) and (5,4,3), respectively, are given

-16-



in Figures 1 and 2, where g is a level of significance of the
preliminary test. The coverage probabllity is small in a
neighborhood of 6=1.0, while it is conservative about the
ncminal level 0.95 for 6>1.5. On the other hand, the relative
efficiency R 1s negative for «=0.10 when 6 is larger than
about 1.5. In other words the expected length of the interval
for sometimes-pooling procedure is longer than that for never-
pooling procedure. For a=0.25, R 1is pbsitive when 6 is smaller
than about 2, and R may be sometimes negative when 8 is larger
than 2 but R has only about =0.1% as minimum value. And for
o=0.50 R i1s positive for all 6. The behaviors of coverage
probability and expected length for o=0.25 are very close to
those for a=0.50. We may deduce that the sometimes-pooling
procedure is robust for the level of significances from 0.25
to 0.50. Computation was carried out at other wvalues of
(1,m,n)=(3,3,2),(5,4,2),(5,5,2),(3,3,3),(4,3,3) and (5,5,3)
and similar results were obtained. We can see that the
larger the degrees of freedom are, the less the differences
of the expected length get.

Pooling 1s a statistical procedure in which we start
from a full model, take a process of model-bulilding and then
make the main test or estimation. Hence if we are not inter-
ested in model-building, it 1s appropriate to use NPP-I and we
don't have to discuss any more. In the process of model-
building we consider that SPP is more reasonable than NPP-II.
And fortunateiy the loss of coverage probability of SPP is

Just slight. By considering the trade-off of the loss of

-17-



probability

expected length -

0.93

Figure 1
Coverage probability curve and relative efficiency

curve of expected length for (nl,n2)=(6,12)°
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probability

expected length

0.96%

a =0.25 o a =0.10
o.9s%s— 4 S—
o =0.50
0.9k |
0.93}
1 2 3 n
(%
5

Figure 2

Coverage probabllity curve and relative efficiency

curve of expected length for (nl,n2)=(l2,llo)°

~19-



coverage probability and the relative efficiency of expected
length, it is desirable to set a in the range from 0.25 to
0.50. We recommend SPP with a=0.25 as the significance level
of the preliminary test, for a smaller significance level

will increase the possibilities of pooling the doubtful error

and working with simpler model.

2.3, PRACTICAL POOLING METHOD

Nagata énd'Araki[30] noticed that many experimenters
usually do not apply the pooling method defined in Section
2.1, which will bé called PM, precisely. They modify the
PM in practice unconsciously as follows. They make the ANOVA
table on the basis of the full model (cf. ANOVA TABLE I),

and they will test the main effect A as well as doubtful error

ANOVA TABLE I

Source of wvariationid.f.|m.s.e.|test statistic e.m.s.
’ 2 2
= +
Treatment A ng V3 V3/V2 03 o5 2n3/n3)
2_ 2
Doubtful error AxB n, Vl Vl/V2 01—02(1+2n1/nl)
2
Error » n, | Yo %2

AXxB. If the hypothesis H 0 is accepted, they will pool AXB

0
and error terms and test HO by making the pocled ANOVA table
(cf. ANOVA TABLE II). At this time there is a possibility

that the outcome of the test of the main effect is significant

-20-



in ANOVA TABLE I but not significant in ANOVA TABLE II. In
such a case experimenter who has made two ANOVA tables will

decide that the main effect i1s "significant", but 1f PM was

ANOVA TABLE IT

Source of wvariation d.f. | m.s.e. |test statistic
Treatment A n3 V3 V3/V
Error n.1+n2 V.

taken, opposite result would he obtailned. This testing

procedure corresponds to the method that when the main effect

A is significant in ANCVA TABLE I, experimenter does not have

to test A further. And if AxXB can be pooled, the modified model
(2.2) should be used with the sole obJect of estimation; (If

A is not significant in ANOVA TABLE I and AxB can be pooled, we
should test A in ANOVA TABLE II.) This testing procedure

will be called "practical pooling method" (PPM).

FORMULAS FOR THE SIZE AND POWER, Let F(p,q;r) denote the

upper 100t percent point of central F distribution with (p.,q)

degrees of freedom and t be a prescribed significance level.

2_ 2

0:03=02 if either

PPM rejects the null hypothesis H
(2.26)  {V3/Vo2h,} or {V3/Vy<dy, Vi/Vy<iy and Va/V2isl,

where A1=F(nl,n2;a), A2=F(n3,n2;Tl) and A3=F(n3,nl+n2;rz)¢
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Then the probability P of rejecting HG is fThe sum of the two
probabilities of the disjoint events in (2.1) and is rewritten

as follows;

(2.27) P

Pr{V3/V2;x2} + Pr{V3/V2<A V,/Vy<iy and ¥V /V;x3}

27 1 3

Pr{V,/V,2A

1 and V3/V2;x2} + Pri{V /V,<i; and V /V;A3}

1 3

+ Pr{V3/V2;X V,/V52hq and V. /V<i

1 3 T,

2° 3

Let P P, and P3 denote the first, second and third term of

12 -2
extreme right-hand-side of (2.27), respectively. Note that

the probability of rejecting H, by PM is P.+P and that both

0 1 -2
the size and power of PPM are, therefore, larger by P3 than those
of PM. To evaluate the probabilities we take parallel argu-

ments to Mead et al.[22] using the Patnaik's[33] approximation
as in Section 2.2. Each of the sum of squares niVi (i=1 and
3) with a noncentral chi-square distribution and with n; degrees

of freedom and noncentral parameter ni shown in ANOVA TABLE I

] 2 2 . _ 2 —
can be approximated by U2Cixvi’ where vi—ni+uni/(ni+4ni), Ci—
l+2ni/(ni+2ni) and XVZ is a central chi-square distribution

i
with Vi degrees of freedom. Define the wvariables ul=n3V3/

- _ 2
(n2VEC3),Aug—anl/(n2VZCl) and w—n2V2/(202), and then the
Pi's are reduced as follows;

(2.28) P, = Pr{u >ud and u >uo}
- 1 1="1 2="2

0 0
(2.29) P2 = Pr{u1;u3(01u2+l) and uzépg}

-22-



(2.30) P, = Pr{ug;u

0 0
3 ;u3(01u2+1) and u,<us,},

1

where ug=n3A2/(n2C3), ug=nlxl/(n201) and ug=n3k3/{(n1+n2)03}.

To evaluate P, we consider the following three exclusive and

3

exhaustive cases;

. 0 0 . .
(1) Case 1 [ul;u3, i.e. A2/n2;A3/(nl+n2)]. In this case P3

is written as

_ 0 0 0 0

(2.31) Py = Pri{u,>u; and u,20} - Pr{u,>u; and u,>u,}
0 0
- Pr{u1;u3(clu2+l) and u,<u,!}

- 0

= Pr{u,>u; and u,20} - P; - P,

X — _ 0 .
and we obtain P—P1+P2+P3—Pr{ul;pl and u,>01}. Therefore this
case corresponds to the never pooling method. But since the

experimenter would usﬁally set T1=7T5 at some nominal level, 1t

follows that A ;A3 and Case 1 would not arise.
0.0 0 . , '
1Sus(Cqustl), d.e. AB/(nl+n2);k2/n2;{K3/(nl

2
(i1i) Case 2 [ug;u

+n2)}(nlxl/n2+l)]. In this case P3 is represented as the

shaded area in Figure 3. Let z denote the solution u, of

2

. 0_..0
the equation ul—u3(Clu2+l), or

0

(2.32) z = (ud - ug)/(fugcl),

P3 is written as
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(2.33) P, = Pr{ul;uo

3 1 and ugiZ} - Pl - P2

0
+Pr{ul;u3(clu2+l) and ugéz}.
Then the probability P is reduced to

_ 0 0
(2.34) P = Pr{ul;ul and ugiz} + Pr{ulip3(01u2+1) and u,<z}.

2

_.0
ul—u3(Clu2+l)

ol
o

e

Figure 3

By (2.32) and (2.34) it can be seen that in Case 2 P does not
depend on the significance level a of the preliminary test,
and that this probability P is equal to the probability of
rejecting HO under PM by setting ug at z. That is in Case 2
PPM corresponds to PM with the controlled significance level
of preliminary test so as to maximize the probability of

rejecting HO' Note that if we set the significance level

—ol



o at 0.25, Case 2 is usually realized. By setting z=ul, it

%
holds that kl={(n2/n1+l)k2/k3-n2/nl} (=Al, say).

0
l’

=0 and P is equal to that of PM.

0
lu2+l);u

In this case, P

(111) case 3 [ug(c 1.e. {Ag/(ny+n,) 3 (0 hq/nytl)g

A2/n2]. 3

Note that if we set the significance level o at 0.50, this
case holds usually.
By above arguments it is shown that PPM 1s considered

%
as either PM with A.=X, (in Case 2) or PM (in Case 3). Table

171
%*

1 with Al's for a=0.10, 0.25 and 0.50 under several

combinations of (nl,nz,n3) and Tl=T2=O.O5.

1 compares A

By Table 1 we

Table 1

%
- - 3
Al {(n2/nl+l)>\2/>\3 n2/nl} and Als for

0=0.10, 0.25 and 0.50.

(ny,m,,n5) | (8,15,4) | (12,20,4) | (16,25,4) | (20,10,4)
N 1.268 1.198 1.156 1.440
a=0.10 2.119 1.892 1.758 2.201
A, a=0.25 1.463 1.387 1.338 1.524
a=0.50 0.961 0.978 0.985 1.035
(24,10,4) | (12,21,6) | (18,28,6) | (8,18,8)
1.443 1.211 1.146 1.266
2.178 1.875 1.704 2.038
1.518 1.380 1.317 1.431
1.041 0.976 0.987 0.953

-25-



may say that A, 1is near to Al at o=0.25. To evaluate P in

Cases 2 and. 3 we shall give recursion formulas for P1 and P2.

The formulas for Pl are the same as in Mead et al.[22]. The

formulas for P2 are slightly different from those in Mead et
al. but they enable us to evaluate P2 for any value of Gi=
ci/og, whereas formulas in Mead et al. are applicable only at

specified values of el. Since those formulas can be derived

similarly as in Mead et al., we will give only the results.

Let a=v3/2—l. The recursion formulas for Pl are
1 1—X2 a+l
(2.35)  Py(a¥l) = B (a) + (a+1)B(a+1,n,/2) (%)

1

X +t¥,-1 n,/2
X (——) I, (a+l+n,/2,b+1),
Xy Xy 2

0

: _ _ _ 0 0 _ 0 0
where b—vl/2 1, Xl—(1+u1)/(1+ul+u2), X2-(1+u2)/(1+u

1
B(.,.) denotes the complete Beta function and IX(“’°) denotes

0
+u2),

the Incomplete Beta function. The initial value is
X1+X2—l n2/2
(2.36) P.(0) = (——) I, (n,/2,b+1).
1 Xl _ Xl 2

The corresponding formulas for P2 are

T((v1+n2)/2+a)
F(v1/2)P(n2/2)T(a+l)

(2.37)  P,(a) = Py(a-1) +

0
us vl/2—1 a

<[ up

{(Cquy+1)ud)

—( (Vl+n2)/2+a)

0 0
X{l+u3+(Clu3+l)u2} du,
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and the initial value is

0
T((vl+n2)/2) us

vl/2—l
(2:38)  B(0) = ym7ayra,rey Joo e

—(vi,+n,)/2
1 2 du

0 0
x{l+u3+(Clu3+l)u2} 5
By using these formulas we can evaluate the sizé and power

of PPM.

NUMERICAL RESULTS AND DISCUSSION, Let us discuss the
numerical results obtained by (2.35) to (2.38). . Tables 2

and 3 give i1llustrative examples. In Tables 2 and 3 the
probabilities of rejecting HO by ¥sing PPM and the differences
of the two pf&babilities of rejecting HO by PPM and PM under
the combinations (ni,nz,n3)=(20,10,4)’and’(8;15,U) with ¢=0.10
and 0.25 are given. Former combination of degrees of freedom
can occur in two-way layout model with ﬁnequal and proportional
subclass frequencles and latter corresponds to l=5; m=3
and n=2 in (2.1). The values ), for 0=0.10 and 0.25 result
in Case 2; and the probability P obained by PPM for a=O;lO
is equal to that for a=0.25. We are interested in the power
gain and size increasevby PPM compared with PM and 1t is
reflected in the value P3{ ‘For 0=0.50 the probability P
by PPM coincides with that by PM and we will leave the dis-
cussion on this case to othér references;

In Tables 2 and 3 the first row on each cell gives the

probability of rejecting H0 by PPM in Case 2, the second row

-27=



Table 2
The probabilities of rejecting HO by using PPM
(first row in each cell) and differences of the
two probabilities of rejecting HO by PPM and PM

(second row for 0=0.10 and third row for o0=0.25)

— 3 = =2
fgr (nl,n2,23)1(20,10,u) and =T, 0.05. el 01/
szand e3=03/02.
(%)
e3 1.000 2.336 3.4k 4. 436 5.kkg
1
7.452 41.412 65.826 82.278 91.693
.000 0.362 1.075 1.051 0.758 0.450
0.012 0.039 0.0k41 0.032 "0.020
5.501 32.654 55,391 73.260 85.327
.500 0.259 1.505 1.997 1.890 1.450
0.006 1 0.0L43 0.060 0.061 0.0k49
5,091 29.L65 50,590 $8.186 81.011
.000 0.123 1.225 2.029 2.320 2.117
0.002 0.027 0.0k49 0.059 0.056
5.015 28.L76 4L8.767 65.905 78.7L8
.500 0.0L5 0.743 1.481 1.978 2.080
0.000 0.01kL 0.028 0.040 0.0k
5.003 28.203 48.166 65.033 T7.759
.000 0.005 0.371 0.873 1.334 1.585
0.001 0.005 0.013 0.021 0.027
5.001 28.135 47.989 64,739 77.383
.500 0.004 0.162 | 0.hk2 0.762 1.009
0.000 0.002 0.006 0.010 0.01h
5.000 28.119 47.940 64 .648 T77.254
.000 0.001 0.063 0.119 0.383 0.560
0.000 0.000 0.001 0.003 0.006
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The probabilities of rejecting H

Table 3

0

by using PPM

(first row .in each cell) and differences of the
by PPM and PM

two probabilities of rejecting H

0
(second row for ¢=0.10 and third row for oa=0.25)
_ o .2
for (nl,nz,ng)—(8,15,ﬂ) and Tl—Tg—0.0B. 91—01/
e and © =02/o2
2 37 -3/ 72"
(%)
65 1.000 2.336 3.h1k 4,436 5,449
o,
} 6.522 38.767 62.905 79.831 89.993
1.000 0.Lh3 1.361 1.394 1.065 0.577
0.039 0.13L4 0.146 0.115 0.077
5.547 34.953 58.523 76.115 87.388
1.500 0.452 1.976 1.387 2.114 1.543
0.031 0.148 0.186 0.170 0.128
5.180 33.159 56.2u42 T4 .003 85.782
2.000 0.343 1.955 2.6L47 2.585 2.065
0.019 0.117 0.164 0.165 0.135
5.056 32.392 55.168 72.92L4 84.898
2.500 0.219 1.572 2,264 1.485 2.138
0.010 0.077 0.118 0.128 0.113
5.016 32.088 54,703 72.420 8L .Lh56
3.000 0.122 1.097 1.886 2.037 1.872
0.00L 0.043 0.073 0.085 0.090
5.005 31.976 54,515 72.202 8k ,252
3.500 0.063 0.690 1.217 1.585 1.450
0.002 0.022 0.0ko 0.050 0.050
5.001 39.936 Sk bl 72.113 8L,16L
4.000 0.029 0.399 0.761 0.988 1.021
0.001 0.010 0.020 0.027 0.029
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gives the values P3 (i.e. the power gain when eQ=g§/g§$l and

size increase when 6,=1) for ¢=0.10 and the third row gives

3

P3 for a=0.25. By Table 2 1t can be seen that the maximal

power gain by PPM is 2.302% for a=0.10 and only 0.061% for

a=0.25. This can be expected from the fact that in Table 1
%

Al is close to Al for ¢=0.25. Thus PPM corresponds practi-

cally to PM with about a=0.25 in this case. When (nl,n2,n3)

=(8,15,4), Ai is not so close tq Al for d=0;25 compared with
abovestated case, but we can see from Table 3 similar behavior.
That is, the maximal power gains by PPM are 2.647% and 0.186%
for o=0.10 and 0.25; respectively. When a=O.25; it can be
seen that there is little sizé increase. The size increase
are only 0.012% and 0.039% under the combinations (nl,n2,n3)=
(20,10,4) and (8,15,4), respectively. We have evaluated the
probabilities fof other combinations listed in Table 1 and

we have obtained similar results. By using PPM we suffer
1ittle size disturbance and power gain seems to exceed the
loss.

As a conclusion, when we would take the pooling method
with the main objective of making the model simpler, PPM may
be used. That is, if the main effect 1is significant in the
first ANOVA table, we need not to make the pooled ANOVA table

and should use pooled model for estimation objJect.

2.4, CoNcLusION

We have discussed the pooling procedure in a two-factor

analysils of variance model from several directions in this
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chapter. The procedures discussed, in particular, the test
of main effect and the interval estimation cause the trade-
off and they are not recommended only from view points of
accuracy. However, when we consider that the simpler model
makes experimenters take actions more easily, i1t is reasonable
to pool the doubtful error if possible, that 1is, if 1t does
not cause much disturbance of the nominal level or the coverage
probability. If we wish to treat all procedures discussed
in this chapter together, we can Justify the pooling procedure
with the significance level of the preliminary test a=0.25.
And the PPM is also justified in the sense that it differs
from the PM with a=0.25 only slightly.

In the next chapter we will discuss the preliminary test

procedure more mathematically.
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CHAPTER 3

DECISION THEORETIC APPROACH TO MODEL SELECTION AND
ESTIMATION PROCEDURE FOR THE NORMAL MEAN

3,1. GENERAL REMARKS

In this chapter we discuss the statistical decision the-
oretic approach to the successive inference through the
inference of the normal mean. Let a random variable X
follow one-dimensional normal distribution Nl(e,cg), where
8 is an unknown parametér and 02 is known (Without loss of
generality we assume a2=1). We wish to estimate the unknown
parameter 6 in the situation where we have vagﬁe information
about 6 that it is equal to zero. In such a case the following

preliminary test estimator has been considered:

0, if |X|ze,
(3.1) 4 (X) =
X, otherwise.

It looks appealing at a glance, but there are some lnadequacies.
First ofrali it is inadmissible under many loss functions for
estimation, including a quadratic loss function. For an
admissible estimator must be a (proper) Bayés estimator or its
1imit and therefore it must be a smooth function in X. ‘But

the estimator (3.1) is not smooth in X, neither a Bayes esti-

mator nor its 1limit, which implies its inadmissibility.
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Secondly it 1s not minimax under quadratic loss function (cf.
Sclove et al.[401]). Furthermore this procedure is different
from the example in Chapter 1 in the sense that 1ts relative
efficiency to the usual estimator d(X)=X (e.g. the ratio of
mean square errors) is large in some restricted region of the
parameter space but small in the complementary region.
Therefore, many statisticlans have come to consider that the
preliminary test estimator cannot accomplish the purpose of
improving inference.

Some statisticians considered the preliminary test esti-
mation as a model selection problem, introduced some criteria
and derived the optimal critical values (e.g. optimal value
¢ in (3.1)) (see Sawa and Hiromatsu[36], Toyoda and Wallace[50]
and [51]). Shibatall42] stated the following two standpoints
of model Seiection:(I) to select the tfue model accurately,
assuming its existence and (II) to select a model, considering
the accuracy of sequent estimation. Above authors discussed
the determination of optimal value ¢ from the standpoint (II)
and they chose one in the class DO={dC(X);cs[O,w)}, where
dc(X) is defined in (3.1). The standpoint (II) may be
reasonable in the situation where there are many data sets
after determining the model. Buﬁ the proposed model se-
lection procedure often depends on the forms of sequent
estimator. Furthermore,rwhén the whole inference must be
takeﬁ by using only one data set, we must give both "a model"
and "an estimate under the model" as outputs of our statistical

analysis, which necessarily requlres us to consider the
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performances of two kinds of procedure, that is, model se-
lection and estimation, simultaneously.

On the other hand Kitagawal[l8] discussed that the pre-
liminary test estimation does not fit the usual decision
theoretical framework of estimation and that therefore it
should be approached from some other directions. Following
this suggestion, Cohen[7], Meeden and Arnold[23] and Stonel[49]
studied the admissibility of (3;1) under the suitable loss
functions as hybrid problems. Theilr loss functions are
indeed one approach to preliminary test estimation, but are
not based on the idea described in the last paragraph. We
willl approach preliminary test estimation from the view
points which have been stated through this thesis. In the
next section we wiil define the loss function introdﬁced
by Inagaki[15] whidh incorporates model fitting and evaluation
of an estimate simultaneously. It is based on Kullback-
Leibler information measure. And we will discuss the ad-
missibility and minimaxity of the preliminary test estimation
in the subsequent sections. It 1s noted that we will treat
the optimality invthe class of whole estimators not only in

the one-parameter family DO'

3,2, INAGAKI'S LOSS FUNCTION

In this section we will describe the loss function due
to Inagaki[15] based on the Kullback-Leibler information
measure. Let X be a random variable with prdbability density

function (p.d.f.) f(x:0)eF={f(x:8);0c0}, where 0 1s a parame-
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ter space. Suppose that Fy={fy(x:§);ceey} is a model for
F and @Y a parameter space indexed by‘y, and that QY(G) is

defined by the following equation:
(3.2) flog{f(xze)/fY(X:;Y(e))}f(xze)'dx

:= min [log{f(x:08)/f (x:z)}f(x:8) dx.
ze® Y
Y
Sawa[38] called cy(e) the pseudo true parameter. That is,
when we determine the model FY,>we set CY(G) as a target of
our estimation as if it were a true parameter. Inagaki's

loss function has the following form:
(3-3)  L((k,d),6) = log{f(x:8)/f (x:z,(8))}
+ flog{fk(yzck(ﬁ))/fk(y:ck(d))}fk(yzzk(e))dy,

where k(X), 4(X) and ;Y(d(X)) are estimators of the index v,
the unknown paraméter 6 and cy(e), respectively. He intro-
duced the first term, the log-likelihood ratio, as a smooth
loss for the model fitting and the second term as a loss
incurred by an estimate. It is noted that this loss function
(3.3) is not always nonnegative, but the first term is de-

and J

composed into the sum of the following two parts, JO 1>

J, being common to all y and J, nonnegative:

0 1

(3.4)  T,(08) = log{r(x:0)/:°(x:6)}
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T1(k,0) = log{r%(x:8)/7 (x:z,(8))}
where fo(x:e)=s$pfv(ngy(e)). The second term is, of cource,
nonnegative. We can proceed as a usual statistical decision

problem, since the risk function, which is the expectation

of (3.3) with respect to £(x:0), is always nonnegative.

3.3, ONE-DIMENSIONAL CASE

Now, let X follow a one-dimensional normal distribution
Nl(e,l) with p.d.f. £(x:98). We consider two models FO={f(X:O)}
and Fl={f(x:e);eg(-m,w)}. In this problem Hirano[1l2] proposed
the following preliminary test estimator by using Akaike infor-

mation Criterion (AIC) procedure,

0, irf |X|</Z,
(3.5) 4 ,5(X)

X, otherwise.

This means that the model F, is selected when |X|</2, while

Q

Fl is selected and the unknown parameter 6 is éstimated as

X when |X|>/2. Inagaki's loss function (3.3) then becomes

{x° - (x - 8)%}/2, if k=0,
(3.6)  L((k,d),8) = )
a-e9)</2, if k=1.

We shall first show the admissibility of the procedure

(3.5).



missible under the loss function (3.6).
We prepare the following lemma.

LemmA 3.1, If 8 follows a prior distribution N1<O,T2),
then the Bayes estimator of 6 under the loss function (38.6)

18

0, if |X|</2/(2=ax)),
(3.7 a_(X) =

a(t)X, otherwise,

where a(r)=T2/(l+T2)-

PROOF. The posterior distribution of 6 given X is
Nl(a(T)X,a(r)). Let g(e|X) be the conditional p.d.f. given
X. Then the posterior risk p((k,d),T) can be written as

(3.8)  0((0,d),7) = [L((0,d(x)),8)g(6]x) ds

(1/2) ((2a(t) - alt)2)x® - a(1)),

and

(3.9)  p((1,d),7) = (1/2)[(d(x) - 8)%g(8]x) ds,

which is minimized by putting d(x)=a(t)x and we obtain

(3.10) minp((1l,d),1) = a(t)/2.
d
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Therefore comparing (3.8) with (3.10), we obtain (3.7) as a

Bayes solution. Q.E.D.

Note that since a(t)>1l as T>~, the procedure (3.5) is

the limit of (3.7).

ProoF oF THEOREM 3.1, We shall use the method of Blyth

£57.

By straightforward calculation the respective risk

functions of d/ﬁ and dT become

(3.11)

and

(3.12)

R(6,d 5) = fL((,k(x),d@(xn,e)f(x:e) dx
= 1/2 + (1/2)]’_/% (4x6 - x° - 28°)f(x:8) dx
R(6,d.) = [L((k(x),d_(x)),0)f(x:0) dx

(1/2){a(t)® + 8°(alr) - 1)°}

e 2/(2=alt))
+ (1 2x8(1 + a(T))
ARG o

- a(r)2x2 - 262}f(x:e) dx.

Next we calculate the. Bayes risk functions of d/? and dT with

respect to Nl(O,T2), obtaining

(3.13)

r(x?,d5) = 1/2 + 1/2)[725(x2(ba(t) - 1 - 2a(1)?)
- 2a(T)}fT(X) dx,
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where fT(x) is the p.d.f. of marginal distribution of X,

Nl(O,l+T2), and

, ) /2/(2-a(t)) 5
(3-14)  r(t%,4.) = a(1)/2 + (1/2)f {x"(2a(t)-a(T)")
-/2/(2-a(T1))

-v2a(T)}fT(x) dx.

Suppose that d/g is inadmissible. Then there exists

%

another estimator d such that for all 66
¥

(3.15)  R(8,d4") < R(8,d )

and for some eoe@

%

(3.16) R(eO,d ) < R(eosd/§)°

Since the loss function (3.6) is continuous in 6 for a fixed
d, there exists e (>0) and ¢ (>0) such that for all ee(eo=6,
eo+6),

(3.17)  R(8,d") < R(8,d5) - .

Therefore from (3.15) and (3.17) we obtain

o : 0.+8
(3.18) © r(1%,d5) - r(x?,a") > ef O (1/V3mr)exp(-0%/212) ae
8-
= ¢K/T,
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where X 1s a positive constant. From (3.13) and (3.14) it

follows that

(1/2) [Pz (M) = 1 - 2a(0)?)

(3.19)  r(°,d.) - r(r%,d)

v2/(2-a(1))
- 2a(t)}f_(x) dx - (1/2)] {zx"(2a(1)
T -/2/(2-a(1))

- al(t)?) - 2a()}f_(x) dx + 1/(2(1+19)).

Using (3.18) and (3.19) and Lebesgue's dominating convergence

theorem, we have
(3.20)  {r(t2,a) - r(12,a)}/{r(t?,d5) - r(1%,d)} > @

as Tow. So the left-hand-side of (3.20) is larger than one

for a large T, which implies
%
(3.21) r(r2,d ) < P(T2,dT).
This contradicts the fact that dT is a Bayes solution. R.E.D.

Next we shall show the minimaxity.

THEOREM 3.2 (Nagata and Inaba[27]); The procedure (3.65)

18 minimax under the loss function (3.6).

In order to prove the theorem we need the following well-
known lemma, which is stated without proof. (See Lehmann[21],

Theorem 4.2.2.)
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LEMMA 3.2, Suppose that there exists a class {WT} of
distributions such that the Bayes risk P(T,dT) of the Bayes
solution dT of 8 with respect to T, converges to some constant
r as T tends to infinity. If the risk, R(e,do), of'do satis~
fies that R(e,do);r for all 8, then dO 18 a minimax estimator

of 9.
From (3.14) the following lemma holds.
LEMMA 3.3, r(t,d_) converges to 1/2 as T>e.

PROOF, This lemma is a simple consequence of the facts

that a(t)>1 as 1+« and that

(3.22) |the second term of (3.14)] < (l+£§)l 2

xjf?%le(Za(r) - a(t)?) - 2a(r)]ax,

where K 1s a positive constant. Note that the right-hand-
side of (3.22) clearly converges to zero. Q.E.D.

For the proof of the theorem we have only to show that
the second term of the right-hand-side of (3.11) is non-

positive. Putting
(3.23) g(8) = ffgé{xz - 2(x - 6)2}exp{—(x—6)2/2} dx,

we shall prove the next lemma.

LEMMA 3.4, It holds that for all Oe(-»,=),
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(3.24)  g(8) < 0.

PROOF, Since we can easily show that g(-6)=g(8), we
may confine ourselves to the case where 6e[0,»). Furthermore,
for ee(/§+l,m) the quadratic function of the integrand in (3.23)
is always negative in the domain of integration (-v2,/2).
Hence we have only to prové (3.24) for ee[O;/§+l]. Now

carrying out the integral (3.23) we obtailn

(3.25) g(8) = (/2-30)exp{~-(/Z-8)°/2} + (/2+36)expl-(/3+6)°/2}

V2-8

+ (8%-1)] exp(-x°/2) dx.

-/2-8
we note that g(O)=—f{3§xzexp(—kz/ajdx<o from (3.23) and that
g(1)=exp(-3/2){(/2-3)exp/2+(/2+3)exp(~/2)}<0 from (3.25).
We shall separete the following two cases.
(1) Case 1 when ee[O;l); We shall show that gl(e)=g(6)/(l—

82)<0 for 0e[0,1). We have

(3.26) g (8) = /EFgg expl=(/3-6)2/2} + /§+3g exp{~(/3+8)°2/2}
1- 1-6
V2-6 5
- exp(-x~/2) dx.
-/2-9

Differentiating (3.26) and simplifying, we obtain

(3-27) g '(8) = A(O){(~/Z - 20 + 2/26° - o3)
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+ (=/2 + 29 + 2/?92 + e3)exp(—2/§b)},

where A(e)=2eexp{—(/5—6)2/2}/(1-92)2 (>0). Clearly for
[0,1/v2] gl'(e)<0. Since for 0e[1/v¥2,1) the expression in
the second parentheses in the bracket of (3.27) is positive

and exp(-2v28)<exp(-2)<1/5, it follows
(3.28) gy'(8) < (A(9)/5)g,(0),

where g2(e)=—6/§L8e+l2/562—ue3. Examining the behavior of
gg(e) by differentiating, we can see that it increases in
[1//2,1). Since g2(l)=6/§—12<0, g,(8) is negative in [1/V2,1).
Hence from (3.28), gl'(e)<0 for 6e[1/V/2,1). Now as g,'(8)<0
for 6¢[0,1), gl(e) is decreasing. Therefore noting gl(o)=
£(0)<0, we conclude that gl(e);o for 8e[0,1).

(1ii) Case 2 when 6e(1,v/2+1]. We shall show that g3(6)=g(6)/
(62—1);0 for 6e(1l,vV/2+1]. Since g3(6)=—gl(e), similarly to

(3.27) we obtain,
(3-29)  g5'(8) = A(B){(VZ + 28 - 2/26° + )

+ (/2 - 28 - 2/?62 - 63)exp(—2/§b)}.
Since for 6¢(1l,/2+1] the second parentheses in the bracket

of (3.29) is negative and exp(-2v20)<exp(-2v/2)<1/16, it

follows
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(3.30) g3'(6) > (A(e)/l6)g4(e),

where g4(6)=l7/§+306-34/§e2+1563. Examining the behavior
of gu(e), we can see that it has a local maximum at a=(34,/2-
/962)/45 and a local minimum at 8=(34,/2+/962)/45. Since
a<l<B</2+1 and gu(8)>0, gu(e) is positive for ee(l;/?+l].

Hence from (3.30), '(g)>0 for 6e(l,/2+1], which implies

&3
that g3(e) is increasing. Therefore noting g3(/§+1)=g(J§¥
1)/(2+2/2)<0 (g(y2+1) is negative recalling that the quadratic
function of the integrand in (3.23) is always negative in the
domain of integration (—/5;]?)),'We conclude that g3(6)<0

for 6e(1,/2+1]. Q.E.D.

Our theorem follows 1mmediately from Lemmas 3.2, 3.3

and 3.4.

CorROLLARY 3.1, Under the loss function (3.6), usual

procedure d(X)=X is also minimax but is inadmissible.

ProoF, Corollary 3.1 is obtained clearly by the facts
that the risk of d(X)=X is 1/2 for all © and it is equal to
or greater than the risk of d 5 , (3.11), from Lemma 3.4,

That is, it is dominated by d/§. Q.E.D.

3.4, EXTENTION TO MULTI-DIMENSIONAL CASE
In this section let a p-dimensional random vector %

= LI tor
follows Np(g,Ip), where g (el,...,ep) is the unknown vec

and Ip is the identity matrix of order p. We wish to construct

=Ly



an estimation procedure d(X)=(d;(X),...,d (X))' for 0. We
Ny n, P a, n,

consider two situations (Cases A and B).

Case A, We discuss the estimation of the unknown mean vector
® when there is an ambiguous information that some components

AV}
of 6 are zero. In such a case, we often decide which

com;onents are zero (model selection) and then estimate the
femaining components under the model. We consider 2P com-
peting models, or Fl={f(%:%l);%l=(o,0,...,O)'}, F2={f(¥:%2);
E2=(2y,0,. 4500, eR ), Fom(f(xiz3)35232(0,0,,0,...,0) 0,5k},
s Fp+1={f(%:5p+l);%p+l=(0,0,...,O,gp
p+2

+2 ' 1
)5p =<C sC :O:"°3O)':C 5C ER}"""F
12>2 1°=2

1
t = .
_ 2P 2P
2p_{f(%§-‘% )’/%
(C1:C2:---s§p)'€Rp}- Then, for example, %1(Q)=(O,O,...,O)'

for th F : = ' :

or e model 1> %2(2) (el,O, ,0)' for the model F2, %3(2)
=(O,62,O,...,O)' for the model F3 and £p+2(g)=(el,62,0,...,0)'
for the model Fp+2, etc. The loss function (3.3) becomes

= 1k 2 _ _ 2 nk, 2
(3.31) L((k,g),g) [z {xj (xj ej) I+ z (dj(%) - 8507172,

where for any chosen model Fk’ Z'k means the summation over
subscripts of components in Ek which are eqﬁal to zero,
while Z"k is the summation over the remaining subscripts.
Under this loss function, we discuss the procedure with
AIC for model selection and m.l.e. for estimation.

Since AIC=-2log(maximum likelihood under the model) +

2(number of free parameters of the model), AIC of the model

FY is
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2

(3.32) AIC(y) = C + Z'ij + 271

C o+ 2p + [UV(xy% - 2),

where C is a constant éommon to all models. The model is
chosen by minimizing AIC(y), so that we have the following
procedure with model selection and estimatilon
_ : 2 .

(3.33)  4p(X) = TX  if (1-2,£5)%,7<(1-2,£5)2 (§=1,2,...,p),

=34 = Py A 16 4.
where Tk—dlag(ktl,kt2,...,ktp) (k 1,2,...,2‘),,1{1:j 0 if j-th
component of %k of the chosen model is zero, =1 otherwise.

Then we ohtain the following results.

THEOREM 3,3 (Nagatal28]). The procedure (3.33) is

inadmissible if p>3 under the loss function (3.31).

ProoF, Theorem 3.3 is a kind of Stein problem (see
James and Stein[16]) and the procedure (3.33) is dominated

by the following one:

) p) .
TX,  Af (1-25)%,°<(1-2,6,)2 (J=1,2,...,p),

(3.34) dg(X) =
. 2 .
Ve (1 - c/%'%)%, if Xj >2 (3=1,2,...,D0),
where k=1,2,...,2p—l and ¢ 1is a constant satisfying 0<c<2(p-2).
Theorem 3.3 is proved by integration by parts. We consider

the difference of risk functions of (3.33) and (3.34) and
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define the region A={x=(xl,x2,...,x Yy, |>v/2 (1=1,2,...,P)}.
. p 1

It follows that

(3.35)  R(8,dy) - R(B,dy) = (L/2)[[p(x = )" (x - 9)f(x:9) dx

- jA(x -0 —cx/x'x)'"(x - 8 - cx/x'x)f(x:6) dx]
N, n n, Ny Ny n, N, n, v n, N, n,

=(1/2)[2f,(x - &)'(cx/x'x)f(x:0) dx - [ (cz/x'x)f(xze) dx].
AN A AV VI VA VA Y A vl AR TR

Now, the i-th term of the right-hand-side of (3.35) becomes,

by integration by parts

(3.36)  [p(xy - 8;)(exy/x'x)f(x:0) dx

2

= IA,[{C/E/(§'§ - %, + ) (V20 + {c/§/(§'§

- xi2 + 2)}f<-/§:ei>]f(x:@)/f(xi:ei>dxi

[AVERRAV} ny
+ [, 1(8/0x) (exy /x'x)IE(x:8) dx

> IA{(B/axi)(cxi/i'%)}f(ﬁzg) dx,

i .
where A'={% =(x1,x2,...,xi_l,xi+l,...,xp)';lxj|;/§ (j=1,2,...

,i=-1,i+1,...,p)}. Therefore we obtain from (3.35) and (3.36)

(3.37) R(6,d,) - R(8,dy) > (1/2)[,{(2pc - Uc - ¢®)/x'x}f(x:0)dx>0
" a0 LA = A NN v
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and Theorem 3.3 1s proved. QR.E.D.

We remark that 4, in (3.34) improves 4. only in the region
V] V]

0
A, and that better procedures may be constructed by considering
other regions.

We also consider minimaxity again.

THEOREM 3;4 (Nagatal[28]). The procedure (3.33) is

minimax for all p under the loss function (3.31).

To prove this theorem we shall again make ﬁse of Lemma

3.2. First we prepare the following lemma.

lEMMA 3.5, If 9 follows Np(%,f2lp), the Bayes solution

of Q under the loss function (3.31) is
.38 X) = a(q)T LFf (1-2,6 )X, °<(1-2, ¢, -
(3.38) 4 (X) = aln)T X, 4f (1-2,£,)X,<(1-2,8,)2/(2-a(1)),

where Ty and ktj are defined after (3.33) (j=1;2;..;,p).

ProorF, The conditional distribution of 8 given X is
N n
N (a(t)X,a(t)I_ ) with p.d.f. g(8|X). The posterior risk
P n, b Ny

p((k,%),T) can be written as

I

(3.39)  plk,d),T) = (1/2)[L((k,d),8)8(8x) a8

il

/)] *{(2alr) - a(r)®)x,® - a()}

+ I"ay () - 8)%8(8l7) agl,
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which is minimized by putting dj(x)=a(r)xj, and we obtain
o

(3.40)  minp((k,d),1) = (a(r)/2)[I"F0(2 - ale)x,® - 1} + ["1]
A 5 _

d
N

(a(1)/2)[p + z'k{(e - a<T>>xj2 - 2}1.

Noting that this form is similar to that of (3.32), this lemma
holds. Q.E.D.
Note that (3.38) converges to (3.33) as f+w.

PrRoOF OF THEOREM 3.4, Equation (3.31) implies that the

risk function corresponding to the procedure (3.33) is

_ D ‘ﬁ? 2
(3.41) R(g,go) = (1/2)[Zi=lf_/§{xi - (x;

2 .
;- ei) }f(Xi.ei) dxi

, . 2 )
*IReaf |k, |5/0F - 812 5y tey) axy]
= /2o + 15 1800,)7,

where

(3.42)  &(8;) = [T351x,2

2 .
- 2(xy - 8;) }f(xi.ei) dx,
and f(xi:ei) is the p.d.f. of one-dimensional normal dis-
tribution Nl(ei,l). Furthermore the risk function of dT
N

given by (3.38) is

V27 (2=alt))

) = (1/2)[F0_ [x.°
Zl‘lf-/§7téiat?73 1
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- (Xi - ei)z}f(xi:ei) dxi

2 .
+ 2§=lf|xi|;/2/(2—a(1))(a(T)Xi - 03)"f(xy:04) Axgl,

where the Bayes risk of dT is
AV}

%) r(r,d) (e + 30 (BRI ) - a0
3. r(t,d = pa 2 + YL _ a - a
( Tt § =1 s i i

xxi2 - 2a(1)}f_(x;)dx, /2,

where fT(xi) is p.d.f. of N1(021+T2>' Therefore we obtain
from (3.44) that r(r,%f) converges to p/2 as T w, Since it
was proved in Lemma 3.4 that g(ei);O for all 6, (i=1,2,...,0),
the condition of Lemma 3.2 are satisfied and Theorem 3.4
holds. Q.E.D.

Now let us divide the sample space rP into the following

3p disjoint areas:

N a
(3.45) A = A;"xA x...xApp (m=1,2,...,3),

-1_
1

) / O_ .
{Xi,xi;—/§}, Ai—{xi,—/§<xi;/§} and

1

where ai=0 or 1, A
A%={Xi;xi>/§} are subsets of R and x in (3.45) means Cartesian
product. Observing which area a sample belongs to, we

decide a model. This partition seems somewhat artificial

pbut may be justified 1n the following way. For p=1 it is

rational from our situation of problem and symmetry about
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zero to divide R1 into three parts of forms {X;x;—c}, {x3;-c
<x<c} and {x;x>c}, where c¢>0. Furthermore if we set c=v/2,
generalized Bayes estimator with respect to Lebesgue measure
under our loss function is well related (recall the comment
following the proof of Lemma 3.5). (Even if we choose
arbitrary finite value of ¢, Theorem 3.6 which we describe
below still holds. However Lemma 3.4 may be false, so that
the forthcoming Theorem 3.5 may not be generalized.) Since we
consider 2P competing models, forms of Cartesian product (3.45)

are natural.

DEFINITION 3,1; Under the above formulation, a model
selection rule is said to be data-incompatible i1f in at least
- v
one area A the rule selects a model of which I-th component

18 zero when a;=tI for’at least one index <. It 18 said to

be data-compatible if it is not data-incompatible.

For illustration we také théycase p=2. In this case
we have four models: F ﬁ{f(xzcl);;l=(0,o)3}, F #{f(x:c2);c2=
1 [AVERRAV} V] 2 [AVERRAV! V]

' 1 = R N ' 1 = 4y,
(21,0)",29eR™}, Fo={f(x:27)3507=(0,2,)",0,eR™) and F)={f(x:57);

%u=(;l,c2)'eR2}. We divide R2 into 32=9 areas. There are
49 model selection rules and some of them are exhibited below.
4 3 4 4 4 4 4 4 4
2 1 ]2 2] 2 |2 2| 4 | 4
4 3 4 4 4 4 4 3 4
(I) (1II) (ITI)
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3 1 3 1 1 1
4 3 | 4 4 3 4
(IV) (V)

Both Xq- and xg—axés are omitted and a number in each area
indicates which model is selected. . Model selection rules
(I), (II) and (III) are data-compatible and (IV) and (V) are
data-incompatible. Exhibit (I) corresponds to the procedure
(3.33). A family of data-compatible model selection rules

is quite large, since some member selects a model which allows
effects for some components remain from thé practical view-
point even if the corresponding components of the data are
small in absolute values (cf. Exhibit (II)). Furthermore

i1t contains rules which do not have clear statistical impli-

cation (ecf. Exhibit (III)).

Now we state following results.

THEOREM 3.5 (Nagatal[31]). Every procedure that selects
a model data-compatibly and estimates the remaining parameters
under the chosen model by m.l.e. is minimax under the loss

funcetion (3.31).
To show this theorem following lemma ic used.

LEMMA 3.0, The model selection and estimation procedure
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is minimax under the loss Ffunction (3.31) if and only if its

risk function is less than or equal to p/2.

ProoF, The -"if" part clearly follows from the proof
of Theorem 3.4. The "only if" part is easily obtained by
considering that the procedure d(X)=X (it means that one

NN ny

always selects the full model F p) has a constant risk
.2
function: R(e,g)=p/2. Q.E.D.
V)

#
ProoF oF THEOREM 3,5. Let % be an arbitrary procedure

that selects a model data-compatibly and estimates by m.l.e.
It can be obtained by modifying the procedure (3.33) on some

%
areas of the form (3.45). Now we assume that % is a modi-

fication gf thg proceduge (3.33) on only one area of (3.45),
o, m m m
say A_ =A Ixa. 2x...xA_ P, And assume without loss of gen-
my 1 2 p
erality that, among the p superscripts 2, 's, the first kl
i

are equal to zero, the succeeding k2 are ~1 and the remaining

k3=p—k —k2 are 1. Following the procedure (3.33), one

1
selects a model with first kl components zero and remaining
n
k2+k3 components nonzero when %EAm , SO we may assume kl+O.
v 1 .

Furthermore assume that the model selection rule of d 1is
[\J

different from (3.33) concerning only the first coordinate

]
% .
on Am , that 1s, following g one selects a model with
1
(Cl,O,...,O,Ckl+l,...,Cp)’. Then, the risk function of
V]
(3.33) restricted to area Am is

1

_ (VT /T o /3 /Z o1 2
(3.46) rl = (l/2){_m ...f_@ f/?'"f/ff—/?"'j—{?[zi=l{xi

g " g

k2 k3 kl
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29D .
- (x; - 84 )2y + e k1+1 - 0,071 f(x;:0,) dxg

%
and that of 4 1is

A"
* - o) 2
(3.47) 1y = WP e [ e [Ty = 8y
Ky o 2 D >
+ zi___2{xi - (Xi - Gi) } o+ zi=kl+l(xi = ei) :l
D
le lf( 10, ) dX

: %
Therefore, recalling (3.41), the risk function of % is

#
1

(3.48)  R(8,d") = (1/2)[p + [5_,e(8,)] = rq + 7

(1/2)[p + (1 - Cyleley) + J§_oe(8)],

where

(3.49) ¢y j 2, Y j/— fj§ff3§...jf§§n§=2f(xi:ei) dx, .

k2 k3 kl—l

¥ %
Since 0<C,<1 and thus R(Q,d YJ<p/2 from Lemma 3.4, d is minimax
n, = ny

1
by virtue of Lemma 3.6.

B % ny

When the model selection rule of % impliles that on Am

1

one selects a model with several components of first k., coordi-

1
*

nates nonzero, minimaxity of d holds similarly: it only changes
Av]
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the coefficients of corresponding g(ei) just as (3.48).
Next when %% is a modification of (3.33) on not only
Xml but other areas, minimaxity of %* is also wvalid. In
such a case coefficients of g(ei) changes to, say 1—01—02.
02 is a same type integral of C1 but has different integral
domain, so 0;1—01—02<l, which implies minimaxity of d*.

Y
Q.E.D.

COROLLARY 3,2; The risk function of the procedure (3.33)
is smaller than or equal to that of every procedure stated in

Theorem 3.5 uniformly in 8.

PrROOF, Corollary 3.2 is easily obtained from the proof
of Theorem 3.5. Q.E.D.
THEOREM 3.6 (Nagatal[31]). Every procedure that selects

a model data-incompatibly and estimates remaining parameters

by m.l.e. is not minimax under the loss function (3.351).

Note that the following lemma holds.

LEMMA 3.7. g(6)>0 as 8~iw, where g(8) is defined in
(3.23).

Proor, If 6>/2, we obtain

(3.50)  |g(8)]

A

f{gé-x2f(x:e) dx + 2f{§% (x - 6)2f(x:6) ax

(2//m){2 + (V2 + 6)2}exp{—(/§—6)2/2}—»0,

A
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as f-w. The case g-+-» is reduced to (3.50) by using the
symmetry about zero. Q.E.D.

%
ProoF oF THEOREM 3.6, Let & Dbe an arbitrary procedure
n
that selects a model data-incompatibly and estimates by m.l.e.

%%
Assume that 4 contains a data—%ncompatigle model selection
v N n n
on only cne area, say A=A le 2x...xA P, And we may
n4 1 2 o)
assume that the first k, a_ 's are -1, next k, a_ 's 1 and
1 ny 2 n,
=7 - ! !
3=P-k; -k, ani s zero, and that k;$0 since kq+k,>0.
Furthermore assume that one selects a model data-incompatibly
n
concerning only first component on An s, that is, a model
: 1
with (o,;z,...,gk,,o,...,o)', where ktzkl+k2 rearranging co-
Je.‘l.
ordinates. By modifying it on this area, we can change d

remaining k

to the procedure with a data-compatible model selectlon, say

d', whose risk function is from the proof of Theorem 3.5
AV}

(3.51) R(s,d") = (A/2)[p + }5_jwye(8,)],
n, Ny
where O<w,<l (1=1,2,...,p). The risk function of d' restricted
v
to area An is

1

(3:52) sy = R Tg Sl T Sl R i

k3 k2 kl

3 =007+ Ity
TP f(x,:6,) dx.
i=1 i 71 i
%%
and that of d is
n,
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¥ % ®© = -
(3.53) 55 = (1/2) [ 2 [P [T TP k)P -

2 k? 2 ; ¢©p

2 2, 1,D 6

{Xi - (Xi
¥ %
Therefore the risk function 4 is
A}
%%

(1/2)[p + [0 w,g(6,0] = s, + 5,

(3.54)  R(8,d ) 5
[aVERNAV]

(1/2)[p + J5_qw;8(6,)] + Dyh(ey),

1

where

f‘/?-

(3.55) D, = (1/72) )" f(xi:ei) dx;

i=2

V2 _ (e o =y/2 -/2_p
RN M-S IV CERU IV, BT B

g v

S

k3 k2 kl-l

and
1317{x12 - 2(x; - el>2}f<xi:el> dx

(3.56)  h(8y) = L

(ei - 1)[:£§f(xl:el)dxi - (V2 + 387)

xexp{-(/2+6,)2/2}/V2T.

Fix the values of © .,ep and put M=Z§=2wig(ei). Using

IR
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ILemma 3.7, we can choose el to be negative and large absolute

value, such that
(3.57)  h(ey) > |wyg(ey) + M|/D.

¥ %
Thus there exists eeRp, such that R(6,d )>p/2, which implies
" N

%%
from Lemma 3.6 that d is not minimax.
n av]

When on An a model selection rule is data-incompatible
1

concering two or more components, similar argument also works.
¥ %
For instance, if by d one selects a model with (O’O’C3’°°°’
v
ck,,O,...,O)', the risk function becomes

(3.58)  R(8,d ) = (1/2)[p + [§_jw;g(6;)] + Dyn(8y) + B n(8,).

E, depends on 6; but noting that 0<E;<l or [Elh(e2)]<lh(62)l,

we can poceed just as (3.57). Furthermore when we must modify
aV]
% %
d on several areas of forms (3.45), not only An , to change
v 1

it the procedure with a data-compatible model selection, paral-
lel arguments are valid. Q.E.D.

We should emphasize that the minimaxity in Theorem
3.5 holds among all model selection (not only based on (3.45)).
and estimation (not only by m.l.e.) procedures. So the class
of minimax procedures stated in Theorem 3.5 is, of course,
not maximal. By Theorems 3.5 and 3.6 the procedures that
select a model based on (3.45) and estimate by m.l.e.
are separated in the sense of minimaxity according as each

model selection i1s data-compatible or incompatible.
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It is also remarked that through Definition 3.1 we
consider a kind of unbilasedness of model selection rule.
In the model selection theory unbiasedness seems to be in-
tractable. Our procedures may not be unbiased in the sense
of Lehmann (see Lehmann{20]) except trivial ones that select
always only one model. (Another criterion of unbiasedness

of model selection is given in Sawa and Takeuchi[37].)

Case B. We consider the situation where there is an am-

biguous information that~g=g. We consider two models, FO=
: - .6Y.aerD - . '

{f(i'g)} and Fy {f(%.g),geR }. In this problem Hirano[12]

discussed the followling preliminary test estimator by using

AIC procedure,

s if X'X<2p,
(3.59) 4, (X) ={ ~ov
neP T

0
aV]
X, otherwise.
Ny

And Inagaki's loss function (3.3) becomes

A"

{x'x - (x - 0)"(x-290)}/2, if k=0,
(3.60) L((k,d>,e>={ v v
o (@ - 0)'(a - 8)/2, if k=1.
n, ny n, AV}

Under this formulation of the problem, we obtain the following

result.

THEOREM 3,/ (Inaba and Nagatal[lli]). The procedure (3.59)
18 minimax for even p<l2 under the loss function (3.60), but

not for p=14.
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ProoF, The Bayes solution of g with respect to the

n,
v

prior distribution Np(O,TZIp) is given by
v

0, if X'X<2p/(2-a(t)),
(3.61) dT(X) =1V T
vh a(t)X, otherwise,
n,
which is derived as in Lemmas 3.1 or 3.5. The risk function

of the procedure (3.59) is

(3.62) R(8,d

dy) = /2 + (1/2)[ 0y o0 (x'x = 2(x - 8)'(x - )}

xf(x:0) dx.
LAVERRAV! n,

Noting that the conditional distribution of 6§ given X is
v AV

Np(a(T)X,a(T)Ip), the Bayes risk of the procedure (3.60) is
Y]
(3.63) r(t,d ) = pa(r)/2 + (1/2)I§'£é2p/(2—a(r)){§'§(2a(T)
- a(1)®) - 2pa(n)}r_(x) ax,
n V]

where f (x) is p.d.f. of N_(0,(l+t°)I ), the marginal
T 'n P p
distribution of X. Therefore r(T,dT)+p/2 as Tro. In order
V] Y]
to prove the minimaxity of the procedure (3.59) by using
Lemma 3.2 we must establish that the second term of the right-
hand-side of (3.62) is nonpositive for all QeRp, On the other
hand, noting the form of the loss function (3.60), the risk
function of the usual estimator AdA(X)=X 1is
n v

n
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(3.64) R(s,d) = p/2 for all geRP,
AV V) "]
which establishes the minimaxity of 4 for all p. Putting
n

oo {x'x - 2(x - 8)'(x - g)}f(x:8) 4
ﬁ'iégp{z X 2(& g) (5 Q)}f(§ g) X,

(3.65) g(8) = [
V]

we obtain the following lemma from the above discussion as

in Lemma 3.6.

LEmmMA 3.8, A necessary and sufficient condition for

the procedure (3.59) to be minimax is g(0)20 for all 6eRP.
n Ay

We need the following lemma at this stage of the proof

of the theorem.

LEMMA 3.9, Suppose the random vector X follows Np(Q;D)
V]
. . . it - 3
with p.d.f. f(ﬁ.g,D). Let S be the set of x such that C%+%)
D—l(ﬁ+%);c for a nonnegative constant c. Then

(3.66) fsg\clf(_;\c}:g,D) dx = ,%J[Pr{xz(p;a);c} - Pr{xz(p+2;6);c}]

and

(3.67)  Jgxx'£(x:0,D) dx = DL1 - Prix®(p+258)2c}]
- aa'[Prix”(p;8)ze} - 2pPrix*(p+2;8)ze)
+ Prix 2 (p+h;8)<el T,
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. . \ -1
where a is a p-dimensional comstant vector, S:=a'D ~a and
~ N

a, N

xz(k;a) 18 a random variable of a noncentral XZ-distribution

with degrees of freedom k and noncentrality parameter S

These equalities are described in Sen[41] without proof.
They can be proved by indﬁction with respect to p. Now, g(#8)
n

can be rewritten as follows by using (3.66) and (3.67):
7 = - 2 cAaT Al YT . 2 . ’
(3.68)  g(p) = -pPriy " (p+2;9'9)<2p} + g'ol-2Pr{y"(p;9'p)<2P}
+uPr{X2(p+2;e'e)é2p} - Pr{x2(p+4;6'@)i2p}]
n oy = [AVARRA VIR

= e'rz;=l(rj/j!)[—pB(p/2+l) + 2r{-28(p/2+j-1)

+ 4B(p/2+5) - B(p/2+3+1)}1,

k

_rp_~x k _ o —X -
where g(k) foe xdx/T(k+1l), r(k+l) foe xdx and r Q'Q/Z.

We shall use the following lemma in order to modify (3.68).

LEMMA 3.10. (1) It follows (i) B(k)-g(k-1)=-e Pp* k1,
(i1) g(r)=1-¢"PIX_ p*/it and (i41) 8 (k=1) /8 (k)=1+[°_ 17__ (p/
(k+£)171.  (II) If e>1 and isep-1, then B(i-1)/8(i)sc.
(ITI) Putting n(j)={2(j+1)-p}{38(p/2+j)-28(p/2+5-1)}/(5+1)!,
() if j>p-1, them n(3)<0, (ii) if j=p-2 and p>4, then n(§)<0
and (iii) if j<p/2-1, then n(§)<0.  (IV) Putting e(4)=n(4)pd*2,

(o]

if §>3p/2+1, then |e(jl)/e(j-1)|<2/3. (V) It follows zg=3p/2+1

e(gl)>2e(3p/2).
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ProoE, Parts (I) and (IV) are obvious. Part (II) can
be proved by considering the function g(i-1)-cg(i). Part (III)
(1) is established by considering c=3/2 in (II), whereas (ii)
and (iii) are obtained by considering p/(k+i);2/3 for 1;6 and
HT=lp/(k+i);O for m;3, respectively, in (I) (iii). Part (V)
follows from (III) and (IV). Q.E.D,

Using n(j) defined in Lemma 3.10 (III) and rearranging

we can write g(8) in (3.68) in the following form:
AV
(3.69)  &(g) = e -pg(p/2) + JT_gn(3)x? ™11,

Now for p=2 or U, we can see that_g(g}io for all g, since
n(J)<0 for all j from Lemma 3.10 (III). Therefore the pro-
cedure (3.59) is minimax for p=2 or 4. For p=6,8,10 or 12
the procedure (3.59) can be proved to be also minimax by

calculating n(j)'s for j=0,1,...,3p/2 and showing that
' - e
(3.70)  &(8) < eI EnPIT <.

This line of the argument is similar to the case for p=1}4
which is discussed below, but in the latter case it is proved

that there exists some r.=6.'6./2 such that g(8.)>0 and that
0 r\,O r\,o ’\:O

therefore the procedure (3.59) is not minimax. In order

to prove the fact for p=14 described above, we take r.=1.4,.

0
Making use of Lemma 3.10 (V), we obtain from (3.69)

(3.71)  8(8,) = eTH[-148(T) + 70 ()]
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[ 14p(7) + ZJ Os(j) + 2¢(21) 1.

Now let us give the following notations:

(3.72)  aG0) = T¥_wet/an, Bao = oM - At (=eMB0)),

C(3) = 3B(I+T) - 2B(j+6) and D(3) = (2RIt
xc(3) (=et*1878c(3)), (k=0,1,...,28 and §=0,1,...,21).

Using above notations, the extreme right-hand-side of (3.71)

becomes

(3.73) 8 > e BBr1uTa(7) + 131 p(s) + 2pC2n)].

Here, we obtain that -147/B(7)>-0.02, 221 D(3)>5.46 and 2D(21)
>-0.27, exactly. Hence, the bracket of the right-hand-side
of (3.73) 1s positive. Therefore we conclude that the pro-
cedure (3.59) is not minimax for p=14, and the theorem has
been proved. Q.E.D.

Theorem 3.7 shows that the vallidity of minimaxity in
Case B depends on the dimension p. (It seems false also in
the case that p;lu and is even. The assumption that p is
even serves for the convenience of the proof and it may not

be essential.) Considering practically, it is not reasonable

to deal with so many parameters and to decide whether they

-6h4~



are all zero or not, and therefore we may as well follow
Case A or Case B 1n lower dimension. However, 1t is somewhat

strange mathematically.

THEOREM 3.8 (Nagatal[26]). The procedure (3.59) is

inadmissible when p;S under loss function (3.60).
ProorF, The procedure (3.59) is dominated by the

following procedure:

0, if X'X<2p,
(3.74) dl(x) = n A VLV
Ve (1 - ¢/X'X)X, otherwise,
n vy

where ¢ 1s a constant sétisfying 0<c<2(p-2). This fact can

be shown similarly to the prcof ¢of Theorem 3.3. Q.E.D.

65—



ACKNOWLEDGMENT

I wish to ekpress my gratitude to Professor M.Okamoto
of Osaka University for his recommendation ‘to write this thesis
and his encouragement. I am grateful to Professor N.Inagaki
of Osaka University for helpful suggestions and essential
comments. I am also indebted fto Drs. S.Shirahata and Y:Toyooka
and Mr. H.Nagahata of Osaka University for their suggestions
and comments with instructive encouragement. Finally, I
would like to thank Mr. T.Araki of Osaka University and Mr. T.
Inaba of Nagoya University‘for acknowledging me to refer the

results in joint works.

AUTHOR'S ADDRESS

Department of Applied Mathematics,
Faculty of Engineering Scilence,
Osaka University,

Toyocnaka, Csaka,

JAPAN.

-66-



APPENDIX

In this appendix, we will give a similar result to the
example in the Chapter 1 following Nagatal[24]. We consilder
the estimation of the Pareto parameter of the Pareto dis-
tribution, which is often used for the distribution of income
and has the following density;

(A.1) f£(x) = (ax?/x2%1

YI(x>k), a,k>Q,
where I(x>k) is the indicator function of the set {x;x>k},
a being called the Pareto parameter and k the cﬁt—off parame-
ter.

Let Xl""’Xn follow the distribution (A.1l). In the
following we discuss the optimal estimation for the Pareto
parameter a with the quadratic loss function L(d,a)=(d/a—l)2

and its admissibility in two cases: k i1s known (Case 1) and

k is unknown (Case 2).

Case 1, Clearly 22=llogxi is a sufficient statistic for a.

Now we consider the class of estimators for a, {cw=w/(2?=llogxi—
nlogk);w>0}, which contains the m.1l.e. c, as well as the

minimum variance unbiased estimator due to Baxter[4], and

derive the value of w which attains the minimum risk with
quadratic loss.

According to Baxterl[li4], T=2an/cn is a X2—variab1e with
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2n degrees of freedom. Hence the risk of the estimator c

TaT
vy

=W/(Z?=llogxi—nlogk) is given by

(A.2)  R(e,a) = E(c /a - 1)°

E((w/n)cn/a - 1)2

(1/(n-1)(n-2)L(w = (n = 2))° + n - 2], if n>2,

so cn_2=(n—2)/(2?=1logxi—nlogk) attains the minimum risk
uniformly in a in the class under consideration. We note

that the risks of c ¢,_7 and c  Dbecome larger in this

-2
order.

Now we remark that Cn—2 is admissible by the proposition
of Ghosh and Singh[8] or Ralescu,D: and Ralescu,S.[35]: If

(x .,xn) 18 a random sample from the distribution with the

730
density aexp(-ax)I(xz>0), then C”'2)/ZZ=1xi 18 an admissible
estimator for a. In fact if we transform to yi=1og(xi/k)
(i=1,...,n), then (yl,...,yn) is a random sample from the

above exponential distribution and hence cn_2=(n—2)/(zg=llogxi

-nlogk) is admissible.

= n .
Case 2. When we put S—Ql/n)zi=llogxi and k'=m1n(xl,...,xn),
(s,k'") is a sufficient statistic for (a,k). If we transform
tQ yi=logxi (i=1,...,n), (yl,...,yn) is a random sample from

the exponential distribution with the density; aexp(-a(y-logk))

xI(y>logk). So this problem is invariant under the trans-
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formation yi+byi+c (i=1,...,n) and (a,logk)=(a/b,blogk+c),
O<b<o, —w<C<o, An estimator d for a should be determined
on the basis of the sufficilent statistic ((l/n)zgzlyi,min(yl,
...,yn)) and therefore should have the property of the
equivariance, d(b(l/n)2?=lyi+c,bmin(yl,...,yn)+c)=(l/b)d((l/n)
§=lyi,min(yl,...,yn)). Thus it will be reasonable to
confine ourselves to the class {dw=w/(zg=llogxi—nlogk');w>O}.
According to Baxter[4], dn and k' are mutually independent
and T=2an/dn is a X2—variable with 2n-2 degrees of freedom.
Futhermore k' has a Pareto distribution with the Pareto parame-
ter na and the cut-off parameter k. Hence the density of dn

is

(A.3) [(na)n_l/(n—Z)!](l/dnn)exp(—na/dn)l(dn>o)
and the density of k' is

(a.4)  (nak™/x Py 1K),

With the quadratic loss function, the risk of the estimator

= n - V= . —
dy W/(zi=1108Xi nlogk')=(w/n)d 1is given by

(4.5)  R(d_,(a,k)) = E(d_/a - 1)°

E((w/n)d /a - 1)°

(1/(n-2)(n=3))[(w - (n - 3))° + n - 31,
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if n>3. So d“_3=(n—3)/(22=llogxi—nlogk') attains the minimum

risk uniformly in (a,k) in the class under consideration. We
note that the risks of dn—3’ d _, and 4, become larger in this
order.

Now we shall show that dn-3 is inadmissible. To see 1it,

we should exhibit an estimator for a whose risk is better
than or equal to that of dn—3 uniformly in (a,k) and is better
at some (ao,ko) than the risk of dn—3‘ We shall show that

the following estimator has such a property:

max[ ((n-3)/n)d_,({(n=-2)/(n+nd_logk*))d_ 1,
(A.6) d(d_,k') = n n n
n if logk's>0,

[(n-3)/n]d,, otherwise.

It should be remarked that d will not be shown to be admissible.
Since dn and k' are mutually independent, the joint density of

(dn,k') is

nkna na+l]n

(A.7)  (na) exp(—na/dn)I(dn>O)I(k'>k)/[(n—2)!dnnk'

Transforming to the random variable (dn,r)=(dn,ndnlogk'), we

obtain the joint density of (dn,r);

na-1

(A.8)  f(d ,r) = (na) aknaexp(—(n+r)a/dn)I(dn>0)

XI(r/n>dnlogk)/[(n—2)!dnn+l].
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Hence the marginal density of r is

(8.9)  £(r) = [°_(na)" tax™exp(-(n+r)a/d )I(d >0)

+
n l:|

><I(r/n>dnlogk)/[(n-2)!dn ddn

(na)?"lak"®/ (n-2)1 [L/N10BK(y /g DHT,
xexp(-(n+r)a/d )dd , if logk>0, rx0,

(na)" tak"®/(n-2)1[3(1/a, " M) exp (~(n+r)a/a ad_,

= if logk=0, r>0 or logk<0, r>0,
n-1_,na S n+l1
(na) ak /(n_z)'fr/nlogk(l/dn )
>exp(-(n+r)a/dn)ddn, if logk<0, r<o0,

a, otherwise.
(transforming to z=(n+r)a/dn)

nn_lkna/[(n_z)!(n+r)n]f?n+r)anlogk/f 2

xxp(-z)dz, if logk>0, r>0,
nn_lkna(n—l)/(n+r)n, if logk=0, r>0 or logk<0, r>0,
" HE /[ (n-2) 1 ()P (PP )anToEk/T -l
xexp(-z)dz, if logk<0, r<0,

Q, otherwise.

Thus we obtain the following conditional density of dn given

r,

(A.10) f(dnlr) = £(d ,r)/f(r)
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y -, Nl . o o, .
A( /drl )exp(—(n+r)a/dn)l(dn>0)
:Q(r/nlogk>dn), if logk>0, r>0,

n+1l

B(l/dn )exp(—(n+r)a/dn)I(dn>O)

>¢(r/nlogk<dn), if logk<0, r>0,

= n+l
c(1/d, )exp(—(n+r)a/dn)I(dn>O)
XI(r/nlogk<dn), if logk<0, r<o0,

n+l

D(l/dn )exp(—(n+r)a/dn)I(dn>O),

if logk=0, r>0,

0, otherwise,

where

A ¢! n, o n-1

A = a (n+r) /f(n+r)anlogk/r‘z exp(-z)dz,

B = an(n+r)n/(n—l)!,

bl —

c = an(n+r)n/fén+r)an+ogk/r 0 lexp(—z)dz,
and

D = an(n+r)n/(n—l)!.

By (A.10), if we denote by u(r) the value of u that minimizes

the conditional expectation
(A.11)  E[(ud_/a - 1)°|r],

then
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(4.12)  u(r) = aB(d_|r)/E(d_°|r)

o0 n—2 o]
f(n+r)anlogk/r z eXp(_Z)dZ/[(n+r)f(n+r)anlogk/r

Zn_3exp(—z)dz], if logk>0, r>0,

(n=-2)/(n+r), if logk=0, r>0 or logk<Q, r>0,
fén+r)anlogk/r zn-zexp(—z)dz/[(n+r)fén+r)anlogk/r

zn—3exp(—z)dz], if logk<0, r<o0,

a, otherwise

v

(n-2)/(n+r), if logk>0, r>0,

(n-2)/(n+r), 1if logk=0, r>0 or logk<0, r>0,

fin

(n-2)/(n+r), if logk<0, r<0,

= 0, otherwise.

For r such that r>0 and (n-3)/n<(n-2)/(n+r), it holds that

(n-3)/n<(n-2)/(n+r)<u(r), so that we obtain
(4.13)  E[([(n-2)/(n+r)1d /2 - 1)%|r] < E[([(n-3)/nld /a - 1)°|r],

noting that (A.11) is a quadratic function of u. Examining

(A.9), clearly
(A.14) Pri{r > 0, (n-3)/n < (n-2)/(n+r)} > O.

Taking expectations of the both sides of (A.13) with respect
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to r and noting the form of (A.6), we have
(4.15) E[d(d_,k')/a - 11° < E[((n-3)/n)d_/a - 13°.

Thus it has been proved that dn—3 is inadmissible.
Next, adopting I=lOO[(R(dn_3,(a,k))—R(d,(a,k)))/R(dn_3,
(a,k))] (%) as a measure of the improvement of d over dn—3’

we obtaln the following table by numerical computation. We

note that the value of I depends on (a,k) only through k2.

Table 4

Values of I, the improvement of d over d,_ o (%)

K&
n
.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
410.03 0.43 2.16 6.83 16.67 19.36 11.53 7.02
510 + 0.10 0.79 3.34 10.19 9.98 3.41 1.18
6|0 + 0.03 0.34 1.93 7.34 5.21 0.83 0.13
710 + 0.01 0.16 1.20 5.74 2.53 0.15 0.01
810 + 0+ 0.08 0.79 h,72 1.10 0.02 0O +
910 + 0 + 0.04 0.54 4,00 0.41 o + o +
10| C + 0 + 0.02 0.37 3.48 0.13 o + 0 +
Table 4 shows that the advantage of using d instead of
dn—3 is almost negligible for large n. Therefore using

the simple best equivariant estimator dn—3 in such case may

be appropriate although it 1s inadmissible. But the

T



improvement is considerable for small n and for (a,k) with

k% near l, so that if we had some possibly vague prior infor-
mation that k?® is near 1, we would hesitate to use dn-3'
Arnold[1l] showed that the improvement of his estimator

over the best location and scale equivariant estimator is

at most 3%, far less effective than in the present case.
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