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SumIV!ARY

     This thesis is concerned with the theory of suecessive

inference. Tnfhen there is an ambiguous information about the

assumed model or values of parameters included in it, a process
                                       'that checks its validity and then makes inference according
                  '
to the outcome is diseussed. The theory is approached from

the two aspects:(I) Which model is to be selected? (II) How

well inference is carried out under the model?

     orwo problerns are dealt with in the thesis. The first

is pooling problem in analysis of variance. Interval esti-

mation of eell effects in a two-way layout fixed model is

discussed. The relative effieiency of the pooling method

with respect to the never pooling me'thod and the eoverage prob-

abil'ity are calculated, from which.it is recommended to use

the pooling method. The efficiency is defined as the ratio

of the expected lengthes of the methods. Furthermore a method

of testing main effect which is often used in practice by
                                                 'modifying the proper pooling method is Justified by considering
                         '
its size and power.

     The second problem is tQ make inference about the normal

mean through the framework of statistieal dicision theory.

Using Inagaki's loss funetion which evaluates both an error of

model fitting and an error of estimation, admissibiZity and

minimaxity of some procedures which use Akaike Znformation

Criteyion and maximurn likelihood estimatops are proved.

Fu]?thermo]?e a notion of "data-compatible mQdel seleetionT' is

given and discussed.
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CHAPTER 1

INTRODUCTION

     Let Xl,•••,Xn be random variables from one-dimensional
normal distribution Nl(e,u2), and let us consider the problem

to estimate o2 under the qradratie loss funetion. when the

value of e is known (without loss of generality we can
assume e=o), Gi=2E.lxi./(n+2) is the best scale invariant

estimator and an admissible estimator (ef. Karlin[17]).

However, with unknown e, the best location and seale invariant
estimator 82=2g..1(xi-X)2/(n+o is inadmissible and is dominated

by the estimator 82o=rnin[3i,GZ] (cf. stein[4s]). The iatter

estimator has the folZowing interpretation: we use Student
                                                       't-test of the null hypothesis Ho:e=Q and if it Å}s aeeepted
at sorne signifieance levei uee. t2=nX2/(]El.ICxi--X>2)-.ki/(.n+i>),

then ehb 6stimator 3i which has a good performance with e=o

is adopted, whne 8; is used, otherwise. That is, it is a

kind of preliminary test-estimator. There are some cases,

in which sim"ar improvement of usual estimators can be

done (for example, see Arnold[1] or Nagata[24] which wiU

                        t t.be worked out in sorne details in Appendix).
                                 '                           '                                   '     However, statistieal proeedures with the'prelirninary
                                              '
tests cannot always improve usual ones uniformly, or rather

abovestated cases are somewhat exceptional. Xn most cases
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they cause trade-off, that is, they are better than usual

ones in sorne set of the parameter space but worse in the

eomplementary set.

     The theory of statistical proeedure with a preliminary

test is often called "the suceessive proeess of statistical

inferenee". (We abbreviate it as "successive inference".)

It involves many issues in mathematical statistics, such

as pooling problem in analysis of varianee (ANOVA), Behrens-

Fisher problem and variable selectiQn problem in regression

analysis. Sin6e statistical procedures are developed based

on several assumptions, it is reasonable that we shouZd eheek

them by using data at hand and pceoceed along the outeomes.

From this point of view we can state that suecessive inferenee

eontains vast area to discuss steadily. Bibliographies

in Bancroft and Han[3] and Kitagawa[19) ar'e good sources of

references.

     Preliminary test is used when there is an ambiguous

prior information about assumed rnodels or parameters. If

this prior information can be formulated in exact expressions,

there are different approaches (e' .g. Bayes statistic and see

also Nagata[25] in relation to it), which will not be treated

here; In this thesis we discuss the suceessive inferenee

procedure from the standpoint that we eheck the information

by preliminary test and make inferenee as the final purposd.

Thus, we have two kinds of things to diseuss:(1) Which model

is chosen?;(2) Is the inference taken appropriately under

the model? The exarnpZe in the Åíirst paragraph is a very
                                               '            '                                           '              '
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fo]?tunate one and therefore it is not the pi?oblem to be

discussed any more.

     In Chapter 2 we treat the pooling problem in ANOVA model.

Since Bancroft[2], it has been one of central parts in the

theory of successive inferenee and many literatures have been

published. Various models and various situations have been

discussed, but we deal with in particular a two-way layout

fixed model. First we review known results on test of main

effeet and point estimation of error variance. Next we

deal with interval estimation of a cell mean. By ealculating

the relative efficieney of the expected length of the interval

with pooling method to that with never pooling method and the

coverage probability, we find that there is a trade-off between
                                'the two kinds of performanee. We give 'recommendation for

the practical purpose that it may be used at 25 pereent sig-

nifieance level of the preliminary test because the method

with such a level does not cause distuybance on the nominal

coverage probabUity. Further we discuss a method used

by many experimenters in practiee. !n testing main effect

they do not use the ordinary method faithfully but modify

it conveniently. We calZ the modified one.the practical

pooling method, formulate it and justify it by calLeulating

the size and the power numerieally. We find that it is

very close to the ordinary one with 25 percent of significance

level of the preliminary test. '
      '
     ln Chapter 3 we formulate the successive inference of

the normal mean with known variance mathematically through
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the framework of statistical deeision theory, in which there

haVe been few interesting resuks obtained so far. We make

use of the loss function introduced by Inagaki[15], which

is based 'on Kullback-Leibler infoi?mation rneasure and evaluates

both an erro]? of model fitting and an error of estimate, so that

it is suitable for our standpoint to sueeessive inference.

Under this loss function the procedure that selects a model

by using Akaike Information Criterion (ArC) and estimates
           '      'paramGters by maximum likelihood estimator (rn.1.e.) is

considered. For one-dimensional case both admissibility

and minimaxity of the proeedure are proved and an extension

to multi-variate ease is also eonsidered. Furthermoye

the notion of "data-eompatible model seZection" is introdueed

and its relation to minimaxity is eonsidered.

-4-



CHAPTER 2

POOLING PROBLE?rl IN ANALYSIS OF VARIANCE

2,1, GENERAL RErvlARKs

     In this ehapter we discuss th.e pooling problem in the

ANOVA. It involves three kinds of procedures; test of main

effect, point estimation and interval estimation. They ean

be treated separately, but it is more desirable for praetical

experimenters that total reeommendation would be given. We

eonsider a fixed model in a two--faetor analysis of varianee

with repetition throughout this chapter. Let the full model

be

(2.l) xijk = p + ai + bj + (-ab)iJ• + eijk,

where 2 l• .iai=2 I]•i. ibj. =E l• .i ( ab )iJ =Z II•i. i (ab ) ij =o , eij k"vNiD(Q ;' Q; ) ,

i=1,2,...,1,j=1,2,...,m and k=l,2,...,n. :f the effects of

interactions are suSpeeted to be nonexistent, we usually test

those effects preliminhrily. :Åí the effects oÅí interactions

can be ignored, then the fgrther anaiysis would be earried

out a.ec' ording to the simplified rnodel,

(2.2) xijk = p + ai + bj + eijk•
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Ctherwise, the analysi: fAvllowq.. the original rc-ode] (2.l,).

     There are many studies on such a preliminary test pro-

cedure on this or other models where we test doubtful error

first and then further analysis is carried out on the basis

of the outcome of the preliminary test, e.g.;(l)Srivastava

and Gupta[46], Toyoda and Wallaee[50], Hirano[l3] and Ohtani
and Toyoda[32] on the point estimation of the variance a22 of

error terrn;(2) PauU[34], Bozivich, Bancroft and Harf.ley[6]

and Mead, Bancroft and Han[22] on the size and power of test

of main effect. There are also studies on the case where

seve]?al doubtful errors exist; Gupta and Srivastava[10], Singh

[43] and Srivastava[47] on the point estimation; Srivastava

and Bozivich[44], Srivast'ava[45], Gupta and Srivastava[9]

and Saxena and Srivastava[39] on the size and power of the

test of main effect.

     The pooling procedure is summarized as foZlows. Let

Vl, V2 and V3 denote the mean squaye error (rn.s.e.) of the
      'interaetion AxB, of the error term and oÅí the main effect A)

respeetively. (The main effect B can be treated similarly.)

Let ni be the number of degrees of freedom (d.f.) of Vi and
E(Vi)=ai. (i=Z,2 and 3). Let the null hypotheses of nonex--

istence of the rnain effect and of the interaetion AxB as a
doubtful error be Ho:u2 3=a; and Hoo:o21=u22, respectivezy. In

advance of testing Ho, we wiil test prelirninarUy Hoo by using

t4e statistic Vl/V2. And if the hypothesis Hoo is rejected

we wiZZ use the statistie V3/V2 to test Ho, otherwise Hoo is

judged to hold and the statistic V3/V will be used, where V
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is a pooled error d.efined aS V=(nlVl+n2V2)/(nl+n2)e

     Since it may be possible to increase the degree of freedom

of error term by using this procedure, one may expeet more

powerful test. However, in fact the size of the main test

becomes disturbed. So a question will arise as to how to

control the signifieanee level of the preliminary test by

taking the size disturbance and the gain of power into eon-
sideration. Mead et aZ.[22] gave a warning in regard to the

indiscriminaee use of preliminary tests because the accuracy

is not always better. On the other hand many autbors have

reported that if we consider that the purpose of pooling is

not only to get an aecurate procedure but to simplify the

model if possible, prelimina?y test with significanee Zevel

about ct=O.25 do not disturb the size so much and may be used
                                             'in many practieal situation.
     When we estimate error variance ai the same p?oblem

also arises. But in this case it is similar to the example

in Chapter l and we had better use pre.liminary test at some

signiticanee level (cf. abovestated literatures (1)).

     In Seetion 2.2 we will treat intervaZ estimation. In

particular we clarify the influence of pooling on interval

estimation of a celZ mean by calculating the-coverage probaL

bility and the expected length numerically. And in Section

2.3 returning to test of main effect, we notice that experi-

menteys do not folZow the poolM in- g procedure in this ' section
                               -.'

exactly in practice and give the formulation of this procedure

and the justification.
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2,2, IN'TERvAL ESTIMAATION oF A CELL rTGEAN' UNDER A PRELIiMnlNARY

TEST
     In this section we discuss the interval estimation of

a cell mean following Nagata and Araki[29]. Xn order to

            .+b.+(ab).. when the interaction effeet is judgedestimate p+a                     zJ            zJ
to exise, or p+ai+bj otherwise, the foUowing pooling procedure

is considered:

(2•3) [il1: : 2.lg.Y2C"i-... , ,,,,,,,,slf Hgs.IS.:.ZliCted'

where tl and t2 denote the upper critical point of some nominal

levels with n2 and nz+n2 degrees of freedorn, respeetively

and n (=lmn/Q+m-l)) is the effective number of replication.
     e

FORMULAS FOR COVERAGE PROBABILITy, Let P denote the eoverage

probability, then it is written as the $um of the probabUity

Pl and P2, where

(2•4) Pi = Pr{Vi/V2 l, X, IXij. - (v + ai + bj + (ab)ij)l

                 g ti,!VT2:7il/ },

                                                     H(2E5) P2 = Pr{Vi/V2'`< X,Iki.' .'  + E' .' j. - E.' .' .' - Cv .+ 'ai +bj)I

   ' ;t2/K77ii'.T},
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where X is a critical value of the preliminary test.

     In order to evaluate the probabilities Pl and P2, we

follow arguments similar to Mead et al.[22] using the Patnaik's

approxirnation [33] in which the sum of squares nlVl with a

noncentral chi-square distribution (with noncentrality parameter
?:21igila;,ee',i:,2g9gOgk:al.2S ig gZgi.:;2;.gh2::-gs::;g"gig-

tribution with vl degrees of freedom. This approximation was

evaluated by Gurland et al.[11] numericaUy in the study of

Behrens-Fisher problem.
     Define e=u21/uZ (2;l) and v4=n{!ij.-(p+ai+bj+(ab)ij)}2.

Then V4/oi fis distributed as central chi-square distribution

with one degree of freedoin independently of Vl and V2. The

joint density of Vl, V2 aRd V4 iS

(2'6)
 2(Vl+n2+l)/llT(l/2)r(.l/2)r(.2/2) (nl/CIU2)Vl/2

        Å~(n2/.2)"4/2(i/.z)i/2vV;/2-iv:2/2-ivz/2--i

        xexp{-(nzVl/Cz+n2V2+V4)/2ai}.

Now we define.the new variableS ul=nlVl/n2CIV2, U2=V4/n2V2 '
             2and w=n2V2/2u2. Then the joint density of ul, u2 and w is
            '
                  l (Vl+n2+1)/2-l vl/2-J l/2--1
(2'7) y i/2)r(v {'/2)r(n2/2) W "z .. ' "2
                                '

        xexp{-w(1+Ul+U2)}.
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Integrating out w, we obtain the joint denSitY f(Ul,U2) Of Ul

and u2 as

                     r((Vl+n2+1)/2) vl/2-•1 l/2-1
(2•8) f("l,U2) = r(1/2)r(vl/2)r n2/2) Ul U2

                            -(vl+n2+1)/2
                  Å~(1+Ul+U2) '

rn terms of new variables, Pl can be rewritten as follows:

(2.g) pz = Pr{ul l u2, u2 s ug},

where u2=n"/n2ci and u8=ti/n2e

     Furthermore we define v4=ne{!i..+!.j.-g...-(u+ai+bj)}2`'

                                              'n.ewly, and similarly we obtain P2 as foUows:

(2.lo) p2 = Pr{ul g u2, u2 Åí (1 + Clul)u03}s

                                                '                                                      'where u8=tZ/(nl+n2). Making use of the joint density of ul

and u2, Pl may be rewritten in an integral form:

                                    o(2•ii) p,-,iSg;+:i/"iif2A,,? fg2 {:, .l/2-i.v,,/2--i

             Å~(i+ui+u2)"'(Vi+n2+i)/2 dUldu2.

                     '                                 '                                     '
'

Taking the integration by pai?ts, we get t'he following set of

recursion formuZas:

-10-



                                           o(2•i2) pi(a) = pi(a+o - rri:2f2;7.".ii (iii2)a'i(i+.g)-"2/2

                Å~(1 - IA(n2/2+a+1,1/2)),

       '
where a=vl/2-l, A=(1+u2)/(l+u2+u20) and Ix(c,d) denotes the

                                    'incomplete Beta function defined by

         Ix(C,d) = (1/B(c,d)) fii yC-la-y)d-1 dy.

[rhe initiaL value is given by

(2.i3) pi(o) = a + u2)-"2/2a -- iA(n2/2,i/2)).

            it hoids that     For P          2'

(2.l4) P2 = Pr{ul l O, u2 ; u30} - Pr{ul ; u2, u2 s u30}

                        oo             + Pr{ui E ui, u3 E u2 g (i+Ciui)u8}e

The first two terms in the right-hand-side of (2.Z4) are
                                                          '
        'evaluated frorn the formulas for P                                    Let P                                            denote the third                                         23                                y

term, then '
                               '                                                '                                                            '
                           '
(2•ls) p23 = pr{(u2-u8)/clug g ul E u2,.ug g u2 s (1+clu9)u8}o

The corresponding recursion formulas for P                                           are                                        23
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(2•i6) p23(a) = p23(a+i) + r(i;i?i:.kili;?"(.il2) [f:: ug/2-i

                  Å~{u2a+l(1+u2+u2)-C(n2+1)/2+a+1)

                  - (U' /1'i': it ) a+l a+.2+ U2-iiit )- ( (n2+1 )/2+a+l ) } d.2 ] ,

where a=vl/2-l and B=(l+Clu9)u8. The initial value is

                                                     o(2•l7) p23(o) =' rri;:2;1-.)I;i f:3o .:/2-1[(1+.2+ Uil--." io)e'(n2+1)/2

                           o -Cn2+1)/2
                  - Cl+u2+ul)                                      ] dU2'

                                            '                                      'The probabUity P can be evaluated by using these recursion

formulas. Note that a in C2.12) and C2.16) is not neeessa-

rily an integer. Figures 1 and 2 are dr'awn by eonnecting

smoothly several points corresponding to integral values for

a.

FORIVIULAS FOR THE EXPECTED LENGTH OF CONFIDENCE INTERVAL, We

call the estimation procedure with confidence limits (2.3)
                                               '     'sornetimes-pooling procedure (SPP). On the other hand the
                                'foUowing two pyocedures not incorporating pooling proeedure

are often used. One is the proeedure with the confidence

limits:

(2e18) Xij. Å} t1/K7127fi:,
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whieh .f..qv- iv,.sed jn tjhe $it]uati.on where interaction is always

regarded to exist. We call it never-pooling procedure I (

NPP--I)e The other has the following confidenee limits:

(2•ig)
[i-l.1'I:l-ljY5'E.;...,,,,,,,i,lll,Ilfi?iS.:Zg'S:l.Zd.I

In this procedure one J'udges the existence or the nonex-

istence of the interactions,by the preliminary test, and

reflects the outeome only on the point estimation, but does

not pool the doubtful error term into the original error term.

We call it never-pooling procedure II (NPP-II). The featu]?e

of these two procedures is that they give the interval with

thb exact prescribed nominal probability. And NPP--II is

always shorter than NPP-X since ne>n. Now we compare the
                                               'expected length of SP? with that of NPP-II, using as a eriterion

the relative efficiency of expected length(%):
                                    '

(2.20) R = 100{(expected length of the confidenee interval

           of NPP-U) - (expected length of the confidence

           interval of SPP)}/(expeeted length of the confi-

           dence intervaZ of NPP-II) g

     Let f(uz) be the density function of ul, and f(wlul) be
the'  conditional density function of w for given u2. By virtue
of (2.7) and (2.8) the numerat6r of R (say Num) is written

as
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                o(2.21) Num = fgl[f8{2tl 2o2w/n2n. - 2t2 2u2(1+Clul)w/Cnl+n2)ne}

              xf(wlul) dw]f(ul) dulxlOO
              2 Ru2r ( (vi+n2+o/2 )n;]/2.:2/2

            = i/iT5r(vi/2)r(n2/2)ciVi/2

             Å~f Xo (t l-t2(nSi++ n.l i/2 )yV 1/2-1 (.ly/cl+.2)-(vl+n2+1 )/2

             xdyxlOO.

The denorninator of R (say Den) is
                  '

(2.22) Den = f:2f:{2tl'2a3w/n2n}f(wlul) dwf(ul) dul

                 o             + fglfs{2t1/5U.:'IM7IT5ITg2 / 2 }f(wluz) dwf(u2) dul

            - 2t,i/5[;i,7?il?I/ , ;(gii,i?;"iil;) [,iffg7,i{riVkiIXi:2;;)/2

                          vz/2 (n2+1)/2
             + (1 - i/iiT.7E')nl cii/2 fh yVl/2-l

                        -(vl+n2+1)/2
                                    dy].             Å~(nlY/Cl+n2)

Then R is described

-14-



              vl/2 (n2+1)/2

(2•23
) R = "1'' cl.]'i/i ' fb(l-(t2/tl)(nk'Yz+.Xi)l/2)yVl/2

                        -(vl+n2+1)/2
            Å~(nly/Cz+n2)                                     dyxlOO

                                                   vL/2 (n2+1)/2
            :,',i'7i'";gn,,Iili,:/vililii':'lliiii.:,g;t/F'iili/,i"'cii

Frorn (2.23) we ean get the numerical yesults for the relative

efficieney.

SOME THEOREMS, iFor fixed e we give some theorems on the be-

havior of coverage probability and interval length as a funetion

of X. For the eoverage probabUity we consider the volume D(A)

defined as D(X)=(eoverage probabUity of NPP-U)-(eoverage

probability of SPP). Note that (coverage probability of NPP-

U)=1-T, where T is a preseribed constant. D(A) is written

as

                                         '(2.24) ,DgA). = pr{ui :s u2, u2; ti20} - Pr{ui.g u2-,. u2 ;: (.i+Ciui)u8

              . fg9[fg20 - f8i'Cr"i)"8 ] f(uÅ},u2) 'du2duie

                               '                                                  '                                           '
                          .. -1 .RecalZing that u9=nlA/n2Cl, D(A) may be differentiated in te?rn

of X as follows.

                             -l5-
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(2.2s) dD(x)/dA = (ni/n2ci)[fg20 - f8i""ZX/"2)":]f(u91u2) du2.

Let Ao denote a X which satisfies the equation; u20=(1+n"/n2)u8,

then D(A) is zero at X=Ao. Now we obtain the following theorem.

     THEoREM 2,1, D(M attains its maaimum at X=Xo={(nl+n2)ti

-n 2ti}/nlt;, and is monotone ineTeasing when X<Ao and monotone

deeTeasing when X>Xo.

          '
     As for the expeeted length, we define G(A) as G(X)=(ex--

peeted length of the confidence interval of NPP-IX)-(.expected

length oi' the eonfidence interval of SPP)=(Numerator of (2.23)),

dzfferentiate it and obtain the foUowing theorem.
                                                    .t                                             '                                                    '
     THEoREM 2,2, G(X? attains its maaimum at A=Xo. and is

monotone inereasing when X<Ao and ?nonotone decTeasing when

J)L>)Loe

     These theorems imply that there is trade-off eoncerning

the coverage probability and the expected length when we use SPP.

We next fix the signifieance of the preliminary test and

observe the extent of the trade-ofÅí nurnericaily.

NUtvlER:CAL RESULTS AND DIScuSSIoN, The coverage probabiZity

and the relative efficiency of expected length are obtained

from the derived formUlas. Numerical results for the two '
                     I -.cases (nl,n2)=(6,l2) and (12,40) which correspond to the model
                                        '(2.l) with (1,rn,n)=(4,3,2) and (5,4,3), respectively, are given
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in Mgures l and 2, where ct is a level of signifieanee of the

pTeliminary test. The coverage probability is small in a

neighborhood of e=l.O, while it is eonservative about the

nominal level O.95 for e>l.5. 0n the other hand, the relative

efficiency R is negative for or=O.10 when e is larger than

about 1.5. !n other words the expected length of the interval

for sometimes-pooling procedure is longer than that for never-
pooling proeedure. For or=O.25, R is p' ositive when e is smaller

than about 2, and R may be sometimes negative when e is larger

than 2 but R has only about -O.1% as minimum value. And for

ct=O.50 R is positive for all e. The behaviors of coverage

probability and expected length for or=O.25 are very close to

those for ct=O.50. We may deduce that the sometimes-pooling

procedure is robust for the level of significanees from O.25

to O.50. Computation was carried out at other values of

(l,m,n)=(3,3,2),(5,4,2),(5,5,2),(3,3,3),(4,3,3) and (5,5,3)

and simiZay results were obtained. We can see that the

lar'ger the degrees of freedom are, the less the differenees

of the expected length get.

     Pooling is a statistical procedure in whieh we start

from a full model, take a process of model-building and then

make the main test or estimation. Henee if we aTe not inter--

ested in rpodeZ-building, it is appropriate to use NPP-r and we

donrt have to discuss any more. In the process of modeZ-

building we consider that SPP is more reasopa-ble than NPP--IZ.

And fortunately the loss of coverage probability of SPP is

just slight. By considering the trade-off of the loss of
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coverage probability and the relative effieieney of expected

length, it is desirable to set ct in the range from O.25 to

O.50. We recommend SPP with ct=O.25 as the significance level

of the preliminary test, for a smaller significance level

wiU increase the possibilities of pooling the doubtful error

and woyking with simpler model.

2,3, PRAcTlcAL pooLrNG METHoD

     Nagata and Araki[30] noticed that many experimenters

usuaUy do not apply the pooling method defined in Section

2.1, which will be called PM, preeisely. They modify the

?M in practice unconsciously as follows. They make the ANOVA

table on the basis of the full rnodel (cf. ANOVA 1?ABLE I),

and they will test the main effect A as well as doubtful error

                       ANOVA [I]ABLE I

Sour.e.e.o.f.var.iat,i,on ,d.,f... m..s,;.e. 'test.stat.i,s•t•ic• e...m.,s..,

TreatmentA

DoubtfuZeri?orAxB

Error

n3n'1n.2 V3VlY2 V3/V2

Vl/V2

ui=oiCl+2n3/n3)

oi=oi(1+2ni/ni)

.Z

AxB.

and

(ef.

t hat

   If the hypothesis

error terms and test
tt :t

 ANOVA TABLE IX).

 the outcome of the

 Hoo is

 Ho PY

At this

test of

                    '         tt accepted, they will pool AXB

making the pooled ANOVA table

 ti"me there is a possibility

 the main effect is significant
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in ANOVA [VABLE ! but not significant in ANOVA [rABLE rl.

such a case experimenter who has made two ANOVA tables

decide that the main effect is "significant", but if PM

                       ANOVA [I]ABLE II

   In

will

 was

So.ut?.e.e.o.Åí vaniat.ion d..Åítt

. m.,s..e.. .t.e.s.t .s.tat.is.t.ie

Treatment

Erro.r

A n3

n1+n2

V3v.' V3/V

taken, opposite result would be obtained. This testing

proeedure eorresponds to the method that when the main effeet

A is significant in ANOVA TABLE I, experimentei? does not have
                      'to test A further. And if AxB can be pooled, the rnodified modeZ
                                                        '(2.2) should be used with the sole object of estimation. (If

A is not significant in ANOVA TABLE I and AxB can be pooled, we'

should test A in ANOVA TABLE II.) [Phis testing pi?ocedure

will be called "praetieal pooling method" (PPM).

FoRMuLAs FoR TAE SrZE AND PowER, Let F(p,q;T) denote the

uppe]? 100T pereent point of central F distribution with (p,q)

degyees of freedorri and T be a prescribed significance Zevel. '
PPPG ]?ejects the nulZ hypothesis Ho:a2 3=Q;- if either

                                            '
                             '                                                        '(2..26) '{V3/V24X2} or {V3/V2<A2, Vl/V2<Xl and V3/V;X3},

where Xl=F'(nl,n2;ct), X2=[Ei(n3,n2;Tl) and X3=F(n3,nl+n2;T2)•
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Then the probability P of rejecting H. is the sum of the two
                                     U
probabilities of the disjoint events in (2.1) and is rewritten

as follows;

(2.27) P = Pr{V3/V24X2} + Pr{V3/V2<X2,Vi/V2<Al and V3/VkX3}

           = Pr{Vl/V21Xl and V3/V21X2} + Pr{Vl/V2<Xl and V3/VIX3}

            + Pr{V3/V2;X2, Vl/V291 and V3/V<A3}e

Let Pl, P2 and P3 denote the first, second and third term of

extveme right-hand-side of (2.27), respeetively. Note that

the probabUity of rejecting Ho by PM is P"P2, and that both

the size and power of PPM are, therefore, larger by P3 than those

of PM. To evaluate the probabilities we take parallel argu-

ments to Mead et al.[22] using the Patnaik's[33] approximation

as in Section 2.2. Each of the sum of squares niVi (i=1 and

3) with a noncentral ehi-square distvibution and with ni degrees

of freedom and noneentral pararneter ni shown in ANOVA TABLE I
can be approximated by o2cixv?, where vi=ni+4nl•/(ni+4ni), ci

                     211+2ni/(ni+2ni) and xv.                        is a central chi--square distribution
                    .z
with vi degyees of freedom. Define the vayiabl.es ul=n3V3/
(n2V2C3),-U2=nlVl/(n2V2Cl) and w=n2V2/(2u2 2), and then the

Pi's are redueed as follows;

(2.28) pi = pr{ullu2 and u21u8}

(2.29) P2 = Pr{ul;ug(Clu2+1) and u25u20}
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(2•3o) p3 = Pr{u2:uigu8(ciu2+i) and u2su8},

where u9=n3X2/(n2C3), u2=nlXl/(n2Cl) and u03=n3A3/{(nl+n2)C3}e

To evaluate P3 we consider the following three exelusive and

exhaustive eases;
(i) Case 1 [u2gu:, i.e. A2/n2sX3/(nz+n2)]. In this case P3

is written as

                                                        '(2•30 P3 = pr{u14u2 and u2G.)O} -- Pr{ui;u2 and u21u8}

             -- Pr{ulzu03(Clu2+1) and u2Eu8}

            = pr{usu2 and u21C} e Pi - P2

and we obtain P=Pl+P2+P3=Pr{u12;u2 and u210}. Therefore this

case eorresponds to the never pooling method. But since the

experimenter would usually set Tl=T2 at some nominal level, it

follows that X2V3 and Case 1 would not arise.
(ii) case 2 [u8gu2Eug(clu20+1), i•e• X3/(nl+n2);X2/n2S{X3/(nl

+n2)}(nlXl/n2+1)]e Zn this case P3 is rep]?esented as the

shaded area in Figure 3. Let z denote the solution u2 of
the equation u2=u8(c:u2+o, or

(2.32) z = (u2 i ug)/(iu. e3c!).

          '

P3 is written as
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(2.33) P3 = PT{Ul,ll,U

+Pr{ullU

o
1

o
3

and u21z} - Pl - P2

(Clu2+1) and u2gz}.

Then the probability P is reduced to

(2.34) P=

  u

 o
uZ

 o
U3

Pr{ullu2 and u21z} + Pr{u14u8(Clu2+l) and

l

ul=u8(clu2+o

u2gz}.

            O Z OU2                                         U2

                        Figure 3

By (2.32) and (2.34) it can be seen that in Case 2 P does not

depend on the signifieance level ct of the preliminary test,.

and that this probability P is equal to the probability of
rejecting Ho under PM by setting u20 at z.'  That is in Case' 2

PPM corresponds to PM with the eontrolled significance level

of preliminary test so as to maximize the probabiZity of

rejecting Ho. Note that if we set the significanee Zevel
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ct a.t O.25, Case 2 is usually realized. By setting z=u.O, it
                                                     "                                      eeholds that Al={(n2/nl+l)X2/A3-n2/nl} (=Al, SaY)•
(iii) case 3 [u8(ciu8+i)Eu2, i•e• {x3/(ni+n2)}(niXi/n2+i)s

X2/n2]• In this ease, P3=O and P is equal to that of pM.

Note that if we set the significance level ct,at O.50, this

case holds usually.

     By above argurnents it is shGwn that PPM is considered
                     eeas either PM with Xl=Xl (in Case 2) or PM (in Case 3). Table
            ee1 compares XL with Xl's for or=O.10, O.25 and O.50 under several

combinations of (nl,n2,n3) and Tl=T2=O.05. By Table l we

                        Table l
            ee           Xi{(n2/nl+l)X2/X3-n2/nl} and Xis for

           ct=O.10, O.25 and O.50.

(nl,n2,n3) (8,15,4) (Z2,20,4) (l6,25,4) (20,IO,4)
eeAl

l.268 1.198 1.156 l.44o

ct=O.10

Xlor=O•25

ct=O.5O

2.U9
l.463

O.961

!.892

1.387

O.978

Z.758

1.338

Oe985

2.201

1.524

1.035

(24,zo,4) (12,21,6) .(18,28,6) (8,18,8)

1.443 1.211 .1.l46 1.266

2.178

1e5Z8

1.041

1.875

1.380

O.976

1.704''il.317

Oe987

2e038

Le431

O.953
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              eemay say t•hatT XT-Å} is near to Xz at ct=O.25. To evaluate P in

ca$es 2 and.3 we shaZl give reeursion formulas for Pl and P2•

The formulas for Pl are the sarne as in Mead et al.[22]. The

formulas for P2 are slightly different frorn those in Mead et

al. but they enable us to evaluate P2 for any value of el=
ai/a2, whereas fo]?mulas in Mead et al. are applieable only at

specified values of ez. Sinee those formulas can be dei?ived

similarly as in Mead et al., we will give only the results.

Let a=v3/2-1. The recursion forrnulas for Pl are

(2•35) Pl(a+l) = pl(a) + a+l)B all,.2/2) (l-xX12)a+1

                 .(Xi;i2'i)n2/2ixi(a+i+n2/2,b+i),

     'where b=vz/2-1, Xl=(1+u2)/(1+u9+u20), X2=(1+u20)/(l+u2+u20),

B(.,.) denotes the complete Beta funetion and Ix(.,.) denotes

the incomplete Beta function. The initial value is

                 Xl+X2-l n2/2
(2.36) Pz(O) =( xl ) Ixl(n2/2,b+1)"

The corresponding formulas for P2 are

                                        '
                             r((vz+n2)/2+a)
(2.37) P2(a) = P2(a--1) + r vl/2 r n2/2 r a+1
                       '
               .fJUo8 u2Vi/2-i{(ciu2+i)u8}a

               Å~ { l + u 30 + ( c l . 8+ 1 ) u 2 } - ( ( V l + n 2 ) / 2 + a ) d . 2
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and the initial value is

                                   o(2.38) p2(o) =' i[gVl/1;?i)gi)2 fg2 .2Vl/2'-l

                      o o -(vi+n2)/2
                 Å~{1+u3+(Clu3+l)u2} du2.

By using these formulas we can evaluate the size and power

of PPM.

NUMERICAL RESULTS AND DZSCuss!oN, Let us discuss the
                                                  'numerieal results obtained by (2.35) to (2.38). Tables 2

and 3 give illustrative examples. In Tables 2 and 3 the

probabilities of rejecting HQ by Elsing PPM and the differences

of the two probabilities of rejecting Ho by PPM and PM under

the eombinations (nl,n2,n3)=C20,10,4) 'and (8,15,4) with ct=o.10

and O.25 are given. Former cornbination of degrees of freedom

ean occur in two-way layout model with unequal and proportionaZ

subcZass frequencies and latter corresponds to 1=5, m=3

and n=2 in C2.1). The values Al fo]? ct=O.10 and O.25 result
in Case 2; and the probabiZity P obained by PPM for ct=O.10

is equal to that for ct=O.25. We are interested in the power

gain and size inerease by PPM .compared with PM and Lit is
                       '                          .. treflected in the v' alue P3. ' For ct=O.50 the probabÅ}lity P

by PPM coincides with that by PM and we will leave the dis-

cussion on this case to other references. '

     In Tables 2 and 3 the first row on each cell gives the

probability of rejeeting Ho by PPM in Case 2, the second row
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                    Table 2
The probabilities of rejecting Ho by using PPM
(first row in eaeh eell) and differences of the
two probabilities of rejecting Ho by PPM and PM
(seeond row for ct=O.IO and third row for ct=O.25)
g:,.r.Åí:i6:2ggggl,,I20•iO,4) and Ti-T,-o.os. e,-oi/

(%)

1.000 2.336 3.414 4.436 5.4U9

7.452 4L.4L2 65.826 82.278 91.693

l.OOO O.362 1.075 1.052 O.758 O.U50

O.OZ2 O.039 o.o4L O.O32 ;O.020

5.501 32.6s4 55.39Z 73.260 85.327

l•500 O.259 1.505 1.997 1.890 z.4so

o.oo6" o.o43 o.o6o o.o61 o.o4g

5.091 29.U65 50.590 68.z86 81.ou
2.ooo O.123 l.225 2.029 2.320 2.117

O.O02 O.027 o.o49 O.059 o.os6

5.015 28.476 U8.767 65.905 78.748

2.500 o.o4s O.743 1.481 l.978 2.o8o

Q.OOo o.olL O.028 o.o4o o.o4U

5.003 28.203 48.166 65.033 77.759

.3.000 O.O05 O.371 O.873 1.334 1.585

o.ooi O.O05 O.O13 O.021 O.027

5.001 28.135 47.989 64.739 77.383

3.500 o.ooU o.z62 o.442 O.762 i.O09

o.ooo O.O02 o.oo6 O.OIO O.OIU
'

' 5.000 28.I19 47,gLo 64.648 77.25L

U.ooo O.OOI o.o63 O.IZ9 O.383 o.s6o

o.ooo o.ooo O.OOI O.O03 o.oo6
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                    Table 3
The probabUities of rejeeting Ho by using PPM
(first row .in eaeh eell) and differences of the
two probabilities of rejeeting Ho by PPM and PM
(seeond row for or=O.10 and third row fo? ct=O.25)
gir.Xn.i6g;g:%li8•i5•4) and T,-T,-o.os. e,-u?./

(%)

l.OOO 2.336 3.zaIU U.436 5.UU9

1.000

6.522

o.443

O.O39

38.767

l.361

O.I34

62.905

1.394

o.!46

79.831
z.o6s

O.Il5

89.993

Oe577

O.077

l.500

5.547

o.452

O.O31

34.953

L.976

O.I48

58.523

l.387

o.I86

76.u5
2.ZIU

O.170

87.388

1.5U3

O.128

2.000

5.18o

o.343

O.Ol9

33.159

1.955

o.U7

s6.242

2.647

o.z64

74.oo3

2.585

o.l65

85.782

2.o65

O.135

2.500

5.056

O.2L9

O.OIO

32.392

1.572

O.077

55.168

2.26L

O.ll8

72.924

l.485

O.L28

84.898

2.L38

O.1.].3

3.000

5.016

O.122
o.oo4

32.088

1.097
-O.OU3

54.703

1.886

72.420

2.037
o.085

84.4s6

1.872

O.090

3.500

5.005
o.063

O.O02

31.976

o.6go

O.022

54.515

1.217
o.o4o

72.202
1.585

o.oso

8U.252

1.4sO

O.050

4.ooo

5.001

O.029

O.OOI

39.936

O.399

O.OIO

5U.L2,U

O.761

O.020

72.113

O.988

O.027

84.164

1.021

O.029
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gives the values P3 (i.e. the power gain when e3=o3t/uitl and

size increase when e3=1) for ct=O.10 ahd the third row gives

P3 for or=O•25• By Table 2 it ean be seen that the maximal

power gain by PPM is 2.302% for ct=O.10 and only O.061% for

ct=O.25. This can be expected from the fact that in Table l
 ee
Xl iS CIose to Xl for ct=O.25. Thu.s PPM corresponds practi-
                                                           ttcalZy to PM with about ct=O.25 in this ease. When (nl,n2,n3)

            ee -- .-=(8,l5,4), Xl is not so close to Al for or=O.25 eompared with

abovestated ease, but we ean see frorn Table 3 similar behavior.

That is, the maximal power gains by PPM are 2.6479o and O.l869,
                .. .t                                                  '                                                            'for or=O.IO and O.25, respeetively. When ct=O.25, it can be

seen that there is little size inerease. rphe size increase

           tt                                    'are only o.O12% and O.039% under the eombinations (nl,n2,n3)=

(20,IO,4) and (8,l5,4), ?espectively. We have evaluated the
                 '
probabilities for other eombinations listed in Table 1 and

we have obtained similar results. By using PPM we suffer
                                                 'little size disturbance and power gain seems to exceed the

loss.

     As a conclusion, when we wouZd take the pooling method

with the main objective of rnaking the model simpler, PPM may

be used. That is, if the main effect is significant in the
first ANOVA table, we need not to make the pooled ANOVA table

and should use pooled model for estimation objeet.

2,Ll, CONcLuSION

     We have discussed the pooling proeedure in a two-faetor

analysis of variance rnodel from several directions in this
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ehapfv-er. The procedures discussed, in particular, the test

of main effeet and the interval estimation cause the trade-

off and they are not recommended onZy frorn view points of

accuraey. However, when we consider that the simpler model

makes experimenters take actions more easily, it is reasonable

to pool the doubtful error if possible, that is, if it does

not eause much disturbanee of the nominal level or the coverage

probability. If we wish to treat all procedures diseussed

in this chapter together, we can justify the pooling procedure

with the significanee level of the preliminary test ct=O.25.

And the PPM is also justified in the sense that it differs

from the PM with ct=O.25 only slightly.

     In the next chapter we wiLl discuss the preliminary test

procedure more mathematieally.
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CHAPTER 3

DECISION THEORETIC APPROACH TO iVIODEL SELECTION AND

ESTID,IATION PROCEDURE FOR THE NORP-IAL iVIEAN

3,1, GENERAL REivlARKS

     In this ehapter we discuss the statistieal decision the-

oretic approach to the successive inference thro' ugh the

inference of the normal mean. Let a random variable X
                                                     'follow one-dimensional normal distribution Nl(e,u2), where

e is an unknown parameter and 62 is known (diithout loss of

generality we assume a2=i). we wish to estimate the unknown

                                      'parameter e in the situation where we have vague information

about e that it is equaZ to zero. Zn sueh a case the following

preltminary test estimator has been considered:

(3•i) d.(x)-191 .i,f.Si.i'l.g.'.

                        '
It looks appealing at a glance, but there are some inadequaeies.

First of all it is inadrnissible under many loss funetions for

estimation, including a quadratic loss function. For an

admissible estimator rnust be a (proper) Bayes estimator or its

Zimit and therefore it must be a smooth funetion in X. ' But

the estirnator (3.1) is not smooth in X, neither a Bayes esti-

mator nor its Zimit, which impZies its inadmissibility.
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Seeondly it is not minimax under quadratic loss funetion (cf.

Selove et al.[40]). Furthermore this proeedure is different

from the example in Chapter Z in the sense that its relative

efficiency to the usual estimator d(X)=X (e.g. the ?atio of

mean square errors) is Zarge in some restricted region of the

parameter space but smaU in the compZementary region.

Therefore, many statistieians have come to consider that the

preliminary test estimator cannot aceomplish the purpose of

improving inference.

     Some statisticians considered the preliminary test esti-
          'mation as a model selection problem, introduced some eriteria

and derived the optimal critical values (e.g. optimal value

e in (3.1)) (see Sawa and Hiromatsu[36], Toyoda and Wallace[50]

and [51]). Shibata[42] stated the following two standpoints
of model ' selection:(I) to select the true modeZ accurate!y,

assuming its existence and (II) to seleet a model, considering

the aceuracy of sequent estimation. Above authors discussed

the determination of optimal value c from the standpoint (II)

and they chose one in the class Do={dc(X);ce[O,co)}, where

dc(X) is defined in (3.1). The standpoint (II) may be

reasonable in the situation where there are many data sets

after determining the model. But the proposed model se-

lection proeedure often depends on the forms of sequent
                                 '                          'estimator. Furtherrnore, when the whole inference must be

taken by using only one data set, we must give both 'Ta modelTV

and "an estimate under the model" as outputs of our statistieal

analysis, which necessarily requires us to consider the
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perform.anc-es of tw..o kin.ds of proeedure, that is, rnodel se-

leetion and estimation, simultaneously.

     On the other hand Kitagawa[l8] discussed that the pre-

liminary test estimation does not fit the usual decision

theoretical framework of estimation and that therefore it

should be approached from some other direetions. FolZowing

this suggestion, Cohen[7], Meeden and Arnold[23] and Stone[49]

studied the admissibUity of (3.l) under the suitable loss

functions as hybrid problems. Their loss functi.ons are

indeed one approach to preliminary test estimation, but are

not based on the idea described in the last paragraph. We

will approaeh preliminary test estimation from the view

points ,which have been stated through this thesis. In the
                   '                                                      'next seetion we wil,1 define the loss functi.on introduced
                   'by Inagaki[15] which incorpo?ates model fitting and evaluation

of an estimate simultaneously. It is based on KuUbaek-

Leibler information measure. And we w-ill discuss the ad-

missibUity and min.imaxity of the preliminary test estimation

in the subsequent sections. It is noted that we wiU treat

the optimality in the elass of whole estimators not onZy in

the one-parameter family Do.

3,2, INAGAK!'s LOSs FUNCTION

     In this section we will describe the loss function due

to ZRagaki[15] based on the 'Kullbqck-Leibler information

measure. Let X be a random variable with probability density

function (p.d.f.) f(x:e)eF={f(x:e);eeO}, where O is a parame-
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te]r, sn.ace, Suppose that Fy={f.-t..(x:C);4eOy} is a model for'

F and ey a parameter spaee indexed by ' y, and that Cy(e) is

defined by the following equation:

(3.2) flog{f(x:e)/fy(x:cy(e))}f(x:e) dx

               := egg flog{f(x:e)/fy(x:4)}f(x:e) dx.

                     "v,

Sawa[38] ealled cy(e) the pseudo true paramete' r. That is,
                               'when we determine the model F y, we set cy(e) as a target of

our estimation as if it were a true parameter. Inagaki's

loss function has the folZowing form:

                                            '
(3.3) L((k,d),e) = 10g{f(X:e)/fk(X:Ck(e))}

                    +flog{fk(y:4k(e))/fk(y:4k(d))}fk(y:Ck(e))dy,

                                          '
where k(X), d(X) and cy(d(X)) are estimators of the index y,

the unknown parambter e and cy(e), respeetivezy. He intro-

duced the first term, the log-likelihood ratio, as a smooth

loss for the model fitting and the seeond term as a loss

incurred by an estimate. It is noted that -this loss funetion

(3.3) is not always nonnegative, but the first term is de--

composed into the sum of the following two parts, Jo and Jl,

Jo being common to aZl y and Jl nonnegative:

            '
(3•4) Jo(e) = iog{f(x:e)/fO(x:e)}

                           -35-



        Jl(k,e) = log{fO(x:e)/fk- (x:gk(e))}

where fO(x:e)=supf (x:c (e)). The se6ond term is, of eource,
               YY Y
nonnegative. We ean proceed as a usual statistieal deeision

problem, since the risk function, which is the expectation

of (3.3) with respect to f(x:e), is always nonnegative.

3,3, ONE-DIiVIENSIONAL CASE

     Now, let X follow a one-d'imensional normaZ distribution

Nl(e,1) with p.d.f. f(x:e). We consider two models Fo={f(x:O)}
                     'and Fl={f(x:e);eeC-co,co)}• !n this problem Hirano[12] proposed

the following preliminary test estimator by using Akaike infor--

mation Criterion (AIC) procedure,

(3.s) d.(x)-i91 iS.gk.ll?.l

This means that the model FQ is selected when IXIEM, while

Fl is seleeted and the unknown parameter e is estimated as
                     'x when iXl>E. Inagaki's loss funetion (3.3) then becomes

(3•6) L((k,d),e) = I{cdX2-'-eii/5,e)2}/2' lf l:2:

     We shaU first show the admissibility of the procedure

(3•5)e
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     THEoREM 3,1 ON'a'hgc-tta[26]). 'T,Z.'e p.nee.p.d7.t.3oe (3.5.) 7i$ ad.-

missabZe undeT the Zoss funetaon r3.6).

     We prepare the following Zemma.

     LE"(sp4A 3,1, ff e foZZows a p2pio? di$trihution Nz(o,T2)

then the Bayes estimato? of e unde? the Zoss j'unction r3.6)

is

(3e7) d.(x) - Igl.)x, gikiii;..21(2-a(T)),

zoheipe a(T)= i?/(1+T2).

     PRooF, [rhe poste]?ior distribution of e given X is

Nl(a(T)X,a(T))e Let g(elX) be the conditional p.d.Åí. given

X. [Ehen the posterior risk p((k,d),T) can be written as

(3.8) p((o,d),T) = fL((o,d(.x)),e)g(elx) de

                  '
                   = (-l/2)C(2a(T) - aCi>2>x2 m- a(.T>>,

and

(3•9) pC(1,d>,T) = (J/2>t(=dCx). F- e)2g(elx) de,

which is minimized by putting d(x)+=a(T)x and we obtain

(3.10) minp((1,d),T) = a(T)/2.
          d
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Therefore cornparing (3.8) with (3.10), we obtain (3.7) as a

Bayes solution. Q.E.D.
     Note that since a(T)+1 as T+oe, the p]?ocedure (3.5) is

the liMit Of (3e7)e

     PROOF OF THEoREM 3,l, We shaU use the method of Blyth

[5]e By straightforward calculation the respective risk

functions of d,i7 and dT beeome

(3.11) R(e,d-2) = fL((.k(x),dfi(x)),e)f(x:e) dx

                   = i/2 + CY2).ffiE c4xe - x2 - 2e2)f("x:e) dx

and

(3.l2) R(e,d.) = fLC(kCx),d.Cx)),e)f(.x:e) dx

                 " Cl/2){aCT>2 + e2cacT) -- 1)2}

                           !Mt:ERr"scc))
                  +(-i/2)I-ant( ()){2xe(i+acT))

                  - a(JT>2x2 - 2e2}fcx:e> dx.

                        '

Next we calcuZate the Bayes risk funetions of dm and dT with
respect to Nl(O,T2), obtaining

                                                      '
(3.IT3 )" r(t2jdE) = l/2 + Cl/2)f2f,l/l {x2(4a(T) -- L- 2acT)2)

                    -- 2a CT )}fT Cx) dx,
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where fT(x) is the p.d.f. of marginal distribution of X,
Nl(O,1+T2), and

(3ti4) r('r2,d.,.)=a(T)/2+(L/2)f-2 tt5,Id'(i)))){x2(2a(T)-=a(T)2)

                   - 2a(T)}f.(x) dx.

     Suppose that d,fE is inadmissible. Then there exists

                   ee •another estimator d sueh that for all eeO

              ee(3.15) R(e,d ) E R(e,d,/r2)

and for some eoee

               ce(3.16) R(eo,d ) < R(eo,dE)e
                                                    '

Since the loss function (3.6) is eontinuous in e for a fixed

d, there exists e (>O) and 6 (>O) such that for all ee(eo--6,

eo+6)s

              x(3.l7) R(e,d )< R(e,dm) - e.

Therefore from (3.Z5) and (3.Z7) we obtain

(3.i8> J r(T2,dE) - r(T2,d'ce) > efe eOo:66(i/G2Tt)exp(-e2/2T2) de

                             = eK/T,
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wh.t']re K. is a posit-ivnv eonst•anfvt. .F.reorn (3,13) and (3.14) it

follows that

(3•19) r(T2,dE) - r(T2,d.) = (1/2)f-i/.2' A{x2(4a(T) - 1 -- 2a(T)2)

                                        /Mt-a(T))
                                                   {x2(2a(T)               - 2a(T)}f.(x) dx - (1/2)f
                                       - 2/(2-a(T))

               -- a(T)2) - 2a(T)}f (x) dx + L/(2(l+T2)).
                                 T

Using (3.l8) and (3.l9) and Lebesgue's dominating eonvergenee

theorem, we have

(3.2o) '{r(T2,dE) - rCT2,dee)}/{rCT2,dE) -- rCT2,d.)} • co

                     '    -
as TÅÄco. So the left-hand-side of C3.20) is largey than one

fo]? a large T, whieh implies

(3.2L) ]r'('r2,dee ) < r(T2,dT)e

                                    tt[rhis cont]f,adicts the fact that dT is a Bayes solution. Q.E.D.

     Next we shall show the minimaxity.

                                                        '                                           '                                     '                                          LL     THEoREM 3,2 (Nagata and Inaba[27]), tZ'ke p?oeeduwe C3.s)

                                                        'is minimax under the Zoss f'unetion r3.6). -

     rn order to prove the theorem we need the foZlowing weZZ-

known lemma, which is stated without proof. (See Lehmann[21],

Theor'eTn 4.2.2.)
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     LEMMA 3,2, Suppose that the2ee e`nist$ a eZass {TT} of

dastTibutions sueh that the Bayes Tisk ?CT,dT) of the Bayes

soZution dT of e with Tespeet to TT convex7ges to some eonstant

r as T tends to infinity. Tf the ?isk. Rre,do). of do satis-

fies that R(e.do)g:? fo? aZZ e, then do is a minimax estimato?

of e.

     From (3.14) the following lemma holds.

     LEMMA 3,31, r(T.dT] eonverges to 1/2 as T+co.

     PRooF, This lemma is a simple consequence of the facts

that a(T)+1 as T+co and that

(3.22) lthe second term of C3"i4)1 :; '7c=:{;Tr7'2'i+.K
)

                 xf-]/i,i,I lx2(2a(T) - a(T)2) - 2a(T)ldx,

where K is a positive constant. Note that the ?ight-hand-

side of (3.22) elearly eonvei?ges to ze]?o. Q.E.D.

     For the proof of the theorem we have only to show that

the second term of the right-hand--side of (3.ll) is non-

positive. Putting

(3•23) g(e) = ffle{x2 - 2(x - e)2}exp{--(x-e)2/2} dx,

we shall prove the next lemma.

     LEMMA 3,4, lt hoZds that fo? azz eer-.co.oo).

                            -41-



(3.24) g(e) s O.

     PRooF, Since we can easily show that g(-e)=g(e), we

may confine ourselves to the ease where ee[O,oo). Furthermore,

for eE(}!2;+l,co) the quadratic function of the integrand in (3.23)
                                             'is always negative in the domain of integration (-]/2;,]/:l).

Hence we have only to prove (3.24) for ee[O,j/:T+11. Now

carrying out the integral (3.23) we obtain

(3•2s) g(e) = (!2-3e)exp{-(E--e)2/2} + (M+3e)exp{--(fi+e)2/2}

              + <e2-i)f!2-e exp(-X2/2) dx'.

                       -,/2r-e

we note that g(o)=-fnt!,21 x2expc--k2/2..)dx<o from (.3.23) and that

g( l ) =exp (-3/2 ) { (. )!Z;;-3)exp E+ (E+3 ) exp (--M )J }<O frorn (.3 . 25 ) .

We shall separete the foUowing two eases.
                     '(i) Case l when ee[O,1). We shaU show that glCe)=gCe)/(1-
e2)so for eE[o,o. we have

(3•26) gi(e) = ftig2 exp{--(E-e)2/2} + 41g2 exp{--cfi+e)2/2}

                   M--e                -f exp(-x2/2) dx.
                   --M--e

Differentiating (3.26) and simplifying, we obtain

(3-27) gi'(e) = A(e){(-f2 - 2e + 2f2e2 -. e3)

                  '

                             -42-



                    + (-za + 2e + 2Ae2 + e3)exp(--2vi2'e)},

whe]?e A(e)=2eexp{-(E-e)2/2}/a-•e2)2 (>o). cieariy for

[O,l/vr2;] gl'(e)<O. Sinee for eE[YE,1) the expression in

the seco.nd parentheses in the bracket of (3.27) is positive'

and exp(-2Me)<exp(-2)<1/5, it foUows

(3.28) glr(e) < (A(e)/5)g2(e),

where g2(e)=-6!:7-8e+12Me2-4e3. Examining the behavior of

g2(e) by differentiating, we can see that it increases in

[1/i,1). '  Since g2(1)=6vi7-12<O, g2(e) is negative in [l/!:;,1).

Hence from (3.28), gl'(e)<O for e6[1/E,l). Now as gl'(e)<O

for ee[O,1), gl(e) is deereasing. Therefore noting gl(O)=

g(O)<O, we eonclude that gl(e)EO for eE[O,1)•

(ii) Case 2 when eE(l,M+l]. IATe shall show that g3(e)=g(e)/
(e2--1)Eo for ee(1,M+1]. Since g3(e)=--gl(e), similarly to

                    '(3•27) we obtain, •
(3•29) g3'(e) = A(e){(M + 2e - 2me2 + e3)

                  + (!7 - 2e -- 2Ee2 - e3)exp(-2Ee)}.

Since for ee(1,E+1] the second parentheses in the bracket

of (3.29) is negative and exp(-2vC;e)<exp(-2E)<1/l6, it

fo llows
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(3.3o) g3'(e) > (A(e)/l6)g4Ce),

where g4(e)=l7M+3oe-34Me2+lse3. Exarnining the behavior

of g4(e), we can see that it has a local maximurn at ct=(34E-

M9 )/45 andalocal minimum at B=(34fi+)/9g61i)/45. Since

ct<1<B<vr:;+1 and g4(B)>O, g4(e) is positive for ee(1,j/2'+1].

Hence from (3.30), g3'(e)>O for eE(l,v12+Xl, which implies

that g3(e) is increasing. Therefore noting g3(yl2+l)=g(E+

1)/(2+2!7)<O (g(E+l) is negative reealling that the quadratic

function of the integrand in (3.23) is always negative in the

domain of integration (-YT2,E)), we conclude that g3Ce)<O

for ee(1,E+1]. Q.E.D. '
     Our theorem follows immediately from Lemmas 3.2, 3.3

and 3.4.

     COROLLARy 3,l, UncleT tke Zoss funetion (3.6?, usuaZ

p?oeedu?e d(X?=X is aZso manimax but is inadmissabZe.

     PRooF, Corolla]?y 3.1 is obtained clearly by the faets

that the risk of d(X)=X is 1/2 for all e and it is equal to

or greater than the risk of dvz2T , (3.11), from Lemma 3.4.

That is, it is dominated by d.,fr2• Q.E.D.

3,4, EXTENTION TO MULTI-DIiVIENSIONAL CASE

     In this seetion let a p-dimensional random vector X
                                                     N
follows Np(Sl,Ip), where Sl=(el,...,ep)' is the unknown vector

       is the identity matrix of order p. We wish to constructand I     p
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an estimation procedure 9,(X..)=(dl(3S.),•.•,dp(2S,))' for ll• We

conside]? two situations (Cases A and B).

CAsE A, We discuss the estimation of the unknown mean vector

e when there is an ambiguous information. that some eomponents
N
of e are zero. In such a case, we often decide which
   N
eomponents are zero (model selection) and then estimate the

remaining components under the model. We consider 2P com-
peting rnodels, or Fl={f(E:El);El"(o,O,•o•,O)'}, F2={f(E:h2);

Ki2=(ci,o,•••,o)',cieRi}, F3={f(js:jE3);sE3=CO,42,O,•••,o)',g2ERi},

•••
e Fp+i"{f(Rs:sEP+i);EP+i=(o,o,•••,o,4p)',4peRi}, Fp+2={f(;ls:

EP'2);sEP"2=(4i,c2,o,e••,o)' 7gi',c2eRi},•••, F2p"{f(.Rs:je2P);E2P--"'

(cl,42,•••,4p)'eRP}• Then, for example, El(g)=(O,O,...,O)r

for the rnodel Fz, E2(2)--(el,O,••e,Q)' foY the MOdel F2, SE3(Sl)

=(o,e2,o,...,O)T for the model F3 and <ip+2(l2,)=(eL,e2,O,•••,O)'

for the model Fp+2, etc. The loss function (3.3) beeomes

                                                          '(3•3i) L((.k,f3),g) = [2'k{xj2 -- cxj - ej ).2} + z"kcdj (-xs) - ej)2

where for any chosen model Fk, 2'k means the summation over
                                'subscripts oÅí eomponents in ck which are equai to zero,
                            Nwhile 2"k is the summation over the remaining subseripts.

Under this loss function, we discuss the procedure with

AIC for model selection and m.1.e. for estimation. '

     Since AIC=-21og(maximum likelihood under the model) +

2(number of free parameters of the model), AIC of the rnodel

Fy is
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                           2(3.32) AXC(y) = C + 2'Yxj + 22"Yl

                                  2                = C + 2p + 2,Y Cxj -- 2),

where C is a constant eommon to aU xnodels. The model is

chosen by minimizing AIC(y), so that we have the following

procedure with model selection and estimation

(3'33) S3o(,X.) = Tk,X, i'f ('l'2ktj>Xj2;l(lny2ktj>2 Cj=IJ2,''"sP)s

where Tk=diag(ktl,kt2,.•.,ktp) (.k=1,2,...,2P),. ktj=O if J'-th

eomponent of ck of the chosen model is zero, =1 otherwise.
             N
Then we obtain the fQllowing ]?esults. '

     THEoREM 3,3 (Nagata[28]). Tke p2pocedu?e (3.332 i$

inadmissible if p)3 under tke Zoss funetaon C3.312.

     PRooF, [rheorem 3•3 is a kind of Stein problem (see

James and Stein[l6]) and the proceduye (3.33) is dominated

by the following one:

(3•34) 2ce(E)-IT.S,,Ikgi2ktriXsiÅíZ,'ig.E-g'i2,,ij.IS:'"''p)s

 '
                                               '
where k=1,2,...,2P-1 and c is a constant satisfying O<e<2(p-2).

Theorem 3.3 is proved by integration by parts. We considey

the difference of risk funetions of (3.33) and (3.34) and
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define the region A={s,=(xl,x2,...,xp)';1xil>!:7 (i=1,2,.•.,p)}•

Xt follows that

           '
(3•35) R(Sl,2,) -- R(El,f3ee) - (i/2)[fA(2S - Sl)'(2E - Sl)f(ag:Sl) dRS

              - fA(3E - Sl ' CilS/2S'RS)'(2E - Sil - Ci5/RS'RS)f(2E:,e.) dili]

       =( 1/2 ) [2fA( 2s - 9) ' (cRs /Rs ' Rs )f( 2s :9) d2s -' fA(e2/Rs ' jks )f( fls : El ) dks ] e

                                                              '

Now, the i-th term of the right--hand-side of (3.35) becomes,

by integration by parts

(3•36) fA(xi - ei)(cxi/2s'E)f(Rs:9) d2S

                            2         - fA,[{cE/(ag'E - xi + '2)}f(vi2':ei) + {cM/(s'E

          - xi2 + 2)}f(-vir2:ei)]f(x:e)/f(xi:ei)dxi

                                t'vN N

             '          + JA{(a/axi)(exi/2s'Rs)}f(RE:2) dRs

             '

         21 fA{(a/aXi)(eXi/E'Ri)}f(2S:Sl) d2S,

                     '
           .whe]r'e A'={;liZ=(xl,x2,••e,xi-1,xi+1,•••,xp)';lxj12}v'2i (j---1,2,...

,i-1,i+l,...,p)}. Therefore we obtain from (3.35) and (3.36)

(3•37) R(2,2o) - R(El,f3ee) :l (i/2)fA{(2pc - 4c - c2)/ks'Rs}f(ag:Sl)dE>O

                                                             '
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and Theorem 3.3 is proved. Q.E.D.

     We remark that 2x in (3.34) improves 2o only in the region

A, and that better procedures may be constructed by considering

other regions.

   We also consider minimaxity again.

     THEoREM 3,4 (Nagata[28]). The pToeedu?e r3.33) is

minima: for aZZ p unde? the Zoss funetio4 r3.30.

     To prove this theorem we shall again make use of Lemma

3.2. First we prepare the following lemma.

     LEMMA 3,5, lf Sl foZlows NpCO.,,t2Ip). tke Bayes $olution

ofe unde? the Zo$s funetion r3.30 is
   N

(3•38) fe.(,X.) = aCT)[Vk,X., if Cl-.2ktj)Xj2g:;(+1-2ktj>2/(-2--a(T).>,

whe?e Tk and ktg• aTe defined after C3.33) Cg'---1.2.....p).

     PRooF, [Vhe conditional disti?ibution of e given X is
                                               rv N
Np(a(T)kl,a(T)Ip) with p•d.f• gCSZl,X.)• [rhe posterio]r; i?isk

                                               'p((k,d),T) ean be written as
     N

      tt
(3•3g) p((k,sl),T) = Cl/2)fLC(-k,se),S2- )g(.21Rs) dSl

                    = a/2>[2'k{ (-2acT) - a(T)2>xj2 - acT)}

                     + 2"kfcdj(,x,,) - ej)2g(.9IE) d2],
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which is minirnized by putting dj(ks)=a(T)xj, and we obtain

                                                   '
(3•40) mgnp((k,.d,),T) = (a(T)/2)[2'k{(2 - a(T))xj2 - l} + 2"kl]

          N
                       = (a(T)/2)[p + 2'k{(2 -• a(T))xj2 - 2}].

    '
Noting that this foym is simiZar to that of (3.32), this iemma

holds. Q.E.D.
     Note that (3.38) converges to (3.33) as TÅÄoo.

     PROOF OF THEoREM 3,LI, Equation (3e31) implies that the

risk function eorresponding to the procedure (3.33) is

                             '(3•4i) RCg,2o) = Ci/2)[22•.if-!- ilr7{xi2 - Cxi - ei)2}f(xi:ei). dx;

                  + 2Pj=J1xil2,/:7(-x'i -- ei>2fcxi:ei> dxi]

                                       '                 = a/2)ip + 29•.igCei)],

where

(3.42) g(+ei) = f-E,/:E{xi2 -- 2(-xi -- ei>2}fcxi:ei) dxi

     '                     '
                            '
and f(xi:ei) is the p.d.f. of one-dimensional normal dis-

tribution NICei,l).. Furthermore Vhe r'isk function of s3T

given by (3.38) is

(3•43) R(g,se.)=(.l/2)[2Pj.Ytdmt( (li){xi2

       '
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                  - (xi - ei)2}f(xi:ei) dxi

           "2Pi=ifExili!E7/'r2:z;(-i-s-s( (.))(a(T)xi-ei)2f(xi:ei)dxi],

where the Bayes risk of d is
                        rvT

                                  M/((T))
(3•44) r)('r,fi{}.) = pa(T)/2 + 21i•l-if-,ii;/ft-:i-:-{;{i-Fd-s-s( (.)){(2a(T) e a(T)2)

                     2                  xxi -- 2a (T) }fT (x i. )dx i. /2 ,

where fT(xi) is p•d•f. of Nl(O?l+T2). [Dherefore we obtain

f]?om (3.44) that r(T,d') converges to p/2 as T+co. Since it
                     tvT
was p]?oved in Lemma 3.4 that g(ei)EO for aU ei (i=1,2,...,p),

the condition of Lemma 3.2 are satiisfied and Theorem 3.4

holds. Q.E.D.
     Now let us divide the sarnple space RP into the following

3P disJoint areas:

         Na(3.4s) A. = AllxAZ2Å~...xApaP (.=l,2,...,3P),

where aio or Å}i, AI.i={xi;xiÅí-E}, A2.={xi;-v!:;<xi;f2} and

Al.={xi;xi>M} are subsets of RZ and Å~ in (3.45) means caTtesian

product. Observing which area a sample belongs to, we .

decide a model. This partition seems somewhat artificial

but may be justified in the following way. For p=l it is

rational from our situation of problem and symmetry about

                         '
                                                '
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zero to divide Ri into three parts of forms {x;x-<.-c}, {x;-c

<xEc} and {x;x>e}, where'c>O. Furthermore if we set c=E,

generalized Bayes estimator with respeet to Lebesgue measure

under our loss function is well related (recalZ the eomment

following the proof of Lemma 3.5). (Even if we choose

arbitrary finite value of e, Theorem 3.6 which we describe

below still holds. However Lemma 3.4 may be false, so that

the forthcoming Theorem 3.5 may not be generalized.) Since we

consider 2P competing models, forms of Cartesian product (3.45)

are natural.

                                                '     DEFINITIoN 3,1; Unde? tke ahove foTmuZation. a modeZ

seZeetion ruZe is said to be ddta-ineompatabZe if in at Zeas#
       ., rV
one aTea Am the ?uZe seZeets a modeZ of whiek i-th eomponent

is geTo when ai---+1 fo? at Zeast one index i. It is $aid to

be data-compdtihZe if it is not data-ineompatibZe.

     For illustration we take the case p=2': rn this ease

we have four modeis: Ff{Åí(-E:El);Ei=(o,o)'}, F2={fCx.:E2);sE2= •

(4i,o)',cieRi}, F3={f(Rs:ki3);E3=(o,c2)',42eRi} and F4L{f(2s:EL4);

E4=(ci,42)'eR2}• we divide R2 into 32=g areas. There a]?e

49 model selection rules and some of them are exhibited below.

4 3 4

2 2

4 3 4

(I)

4 4 4

2 2 2

4 4 4

crn
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l 1

4 3 4

3 1 3-

4 3 4

l l

4 3 4

'1• 1 1

4 3 4

                (xv) (v)

Both xl- and x2-axes are omitted and a number in eaeh a"ea
indicates which model is selected. ,Model seleetion rules

(I), (IZ) and (II!) are data--compatible and (IV) and (V) are

data-incompatible. Exhibit (I) eorresponds to the procedure

(3.33). A family of data-eompatible model seleetion rules

is quite large, since some member selects a model which allows

effects for some components remain from the practical view-

point even if the eorresponding components of the data are

small in absolute values (cf. Exhibit (Ir)). Furthermore

it contains rules which do not have clear statistical impli-

cation Ccf. Exhibit CIU)).

     Now we state following results.

     THEoREM 3,5 (Nagata[31])• E7veTy p?oeedu?e that seZqets
                                                               'a modeZ data-compatihZy and estamates the remaining pa?amete?s
                            t.unde" the ehos.en modeZ by m.Z.e. is minamaa unde? the Zoss

funetion C3.3V.

     To show this theorem following lemma i,s used•

     LEMMA 3,6, The modeZ seZeetion and estimation pToeeduTe
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is minimax under the Zoss lfunetion (3.30 if and onZy af its

risk funetion is Zess than or equaZ to p/2.

                                             '
     PRooF, [rhe'"if" part elea]?ly foilows frorn the proof

of Theorem 3.4. The "only if" part is easUy obtained by

considering that the procedure d(X)=X (it means that one
aiways seiects the fun modei FN  tr h21s a eonstant risk

                                2P
function: R(e,d)=p/2. Q.E.D.
            fiJ rv                                   x     PROOF oF THEOREM 3,5, Let d be an a]?bit]?ar'y procedur,e
                                  os
that selects a model data-compatibZy and estimates by m.1.e.

It can be obtained by rnodifying the proeeduye (3.33) on some
areas of the forrn (3.45). Now we assurne that dX is a modi--
                                                N
fiea kion gig thgmprocedurame.(3•33) on only one area of (3.45),
gSY.,ts=2.i.lX,"g.Z:g"L:ip,Pg.,.Sn,gS,j:U,M2.yllh,o:g.i?:;,:f,fen-'

                                          1
are equal to zero, the sueeeeding k2 are -l and the remaining

k3=P-kz-k2 are 1• Following the procedure (3.33), one

selects a model with first kl eomponents zero and remaining
                                Nk2+k3 components nonzero when. EeArnl, so we may asSumgeekliO"

Furthermore assume that the model selection rule of d is
                                                     N
dif íerent from (3.33) concerning only the fii?st coordinate

n 
Aml, that is, following af one selects a model with

gl'O'''',O,Ckl+1,•••,Cp)', t Then, the risk function of

3.33) restricted to area Aml iS '

3•46) r,-(i/2)tt.vi:r f-gefct2Ei.:J.:-Ll7foomflLllitl2;J.;{Lllilf-EA[S•-ii{xi2

                       k2 k3 kl
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         - (xi - ei)2} + 29•.ki+i(xi - ei)2]n9•.if(xi:ei) dxi

             ee -and that of d is
            N

(3.47) r: = (i/2)f:.M...f:.Mfoom.e•foozaf-M/2E-••ef-V' %- [(.Xi tm ei)2

             + 2i•l2{xi2 - (xi -- ei)2} + 2Pi.ki.i(xi -- ei)2]

             Å~ll Pi =lf(xi : ei) dxi•

                F eeTherefore, recalling (3.41), the risk funetion of d is
                                                  N

(3•48) R(g,2ee) = (1/2)[p + 29• .lg(ei)] - rl + r:

                 = (1/2)[p + (1 - Cl)g(el) + 2Pi.2g(ei)],

where

(3.4g) c,=f:.E•••f:.'Efoo :7•••foo ,ir2f-E,ri•••ft'f2llPi.2f(xi:ei)dxie

              V----v---- v--.--- X-e--v
                  k2 k3 kl--1

                           ee eeSinee O<Cl<1 and thus R(9,2 )gp/2 from Lemma 3.4, 2 is minimax

by virtue of Lemma 3.6.

     When the model selection rule of A implies that on Am
                                                           1
one selects a model with several eomponents of.fiyst kl coordi-
                              cenates nonzero, minimaxity of d holds simila]?Zy: it only changes
                             N
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the coefficients of corresponding g(ei) J'ust as (3.48).
                ee     Next when d is a modification of (3.33) on not only
                                    eeAml but other areas, minimaxity of 2 is also valid. In

such a ease coefficients of g(ei) changes to, say 1-CrC2•

C2 is a same type integral of Cl but has different integral
domain, so O;sl-Cl-C2<1, which implies minimaxity of af.

Q.E.D.
  '

     CoRoLLARy 3,2, The ?isk funetaon of the proeedu?e (3.33)

is smaZZe? #han o? equaZ to that of eveTy proeedu?e stated in

TheoTem 3.5 unifowmZy in e.

     PRooF, Corollary 3•2 is easily obtained from the p]?oof

of Theoi?em 3.5. Q.E.D.

     THEoREM 3,6 (Nagata[31])• EveTy p"oeedui7e that seZeets

a modeZ data-ineompatihZy and estimates ?emaining pa?amete"s

hy m.Z.e. is not minimax unde? tke Zos$ funetion r3.31).

     Note that the following lemma holds.

     LEMMA 3,7, g(e]+0 as e+Å}co, whe?e gCe) is defaned in

(3. 2 3).

     PRooF, If e>E, we obtain

(3.so) Ig(-e)i : f-EE x2fcx:e) dx +. 2ftf,i/l (x -- e)2f(-x:e) dx

                              '                s (.2/}/IF).{2 + (-E + e)2}exP{-(.J12--e)2/2}ÅÄQ,
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as e+co. The case e.-co is reduced to C3.50) by using the

symmetry about zei?o. Q.E.D.
                                  xee     PROoF OF THEoREM 31,6, Let d . be an arbiti?ary procedure
                                N
that seleets a model data--ineompatibly and estimates by m.1.e.
             ee eeg:Sg:2,tgZl Ng...ZO:ga,iX.S ,2.',fi:a.Ki:;:T.Y?l,igak8.MOd:;,.S:lexg'loR

assume that the first kl an.'s are -Z, next k2 an.'s 1 and
                           z- iremaining k3=p-krk2 ani's zero, and that kliO sinee kl+k2>O.

Furthermore assume that one selects a rnodel data--ineompatibly
                                   N
                                      , that is, a modeiconcerning only fi?st eornponent on A            ... nlwith (O,c2,eo•,4kTsO,••.,O)', where k'=>.kl+k2 rearranging co-
                                                          ee y.ordinates. By modifying it on this area, we ean change d
                                                         N
to the procedure with a data-compatible modeZ seleetion, say

d', whose risk funetion is from the proof of Theorem 3.5
N

(3.sl) RC2,2') = Cl/2>[p + 2Pi.lwigCei)ls

                          '                     .t                                   ttwhere OgEggj;l (i=1,2,...,p). The risk function of fe' restricted

to areaA is         nl

(3.52) s,-(i/2)f-ME...fLMEfco ,,:7...fO mO f:.}E'
...

f:.E[2i-,

                   'twN.-.--V V-.V-i-V
                        k3 k2 kl
           (xi - ei)2 + 2Pk,+i{xi2 - (xi -- ei)2}]

           Å~llg•.lf(xi:ei) dxi

             ee eeand that of d is
            N
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(3•53)
 ee
Sl =

(i/2)f-i/2,E'

'''
f -E,,2i-f co

m'''
f co

m
f:.m

'''
f -m

-co

[xl2 -

(Xl
- ei)2 + 2.k• .' 2(xi - ei)2 + 2 p

i=kT+1

{xi2 - (xi - ei)2}]iPi.i f(xi:ei) dxi.

N ee

The?efore the risk function d
N

is

(3.54) ' R(e,d
 N tV

x ee

) = (1/2)[p   p+2  i=1 wigCei
         ee)] - Sl + Sl

= (1/2)[p   p+Z  i=1 wig(e i )] + D!h(el),

where

(3e55)
Di = (i/2)f-E,/:7••ef-'/.2' Ef
         Nv----,v--------
            k3

coE'''foo E
N`-----v------.•i

   k2

f:.'/2;...f:.E

   kz-1

Eg. .2f(xi:ei) dx
i

and

(3.56) h(el) . f:.M{.l2 -- 2(xl --   2el) }f(x i:el) dxl

- (ei - of -m
-oo

f(xl:e1)dxi - (v{E + 3el)

Å~exp {-( E+el) 2/2 }/ iE ii'.

Fix the values of e2,...,e
p

and put M-2p
i=2 wig(ei)• Using
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Lemma 3.7, we can choose ez to be negative and large absolute

value, such that

(3•57) h(ei) > lwig(ei) + ]Yi UDe
                              '

Thus there exists eeRP, sueh that R(e,deei)>p/2, which implies

                   N NtV                      ee eefrom Lemma 3.6 that d is not minimax.
             N t'L,
     When on Anl a model seleetion rule is data-ineompatibie

concering two or more components, similar argument also works.
                      ee xFor instance, if by 2 one selects a model with (O,O,C3,eee,

4k,,O,•..,O)', the risk funetion beeomes

                   '(3•s8) R(sz,feeeX) = (l/2)[p + 2Pi.lwig(ei)] + Dzh(el) + Elh(e2)•

                                                     '
                                              'El depends on el but noting that O<El<1 o]? IEIh(e2)I<lh(e2)I,

we can poceed just as (3.57). Furtherrnore when we must modify
                             •N ee {
2 on several areas of forms (3.45), not only Anl, to change

it the pyocedure with a data-compatible model selection, paral-

lel arguments are valid. Q.E.D.

     We should emphasize that the minimaxity in Theorem

3.5 holds among all model selection (not only based on (3.45)).

and estimation (not only by m.l.e.) procedures. So the class

of minimax procedures stated in Theorem 3.5 is, of course,

not maximal. By Theorems 3.5 and 3.6 the procedures that

seleet a model based on (3.45) and estimate by m.1.e.

are separated in the sense of minimaxity according as each

model selection is data-compatible or incompatible.
                                           '
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     It is also remarked that through Definition 3.1 we

consider a kind of unbiasedness of model seleetion rule.

In the model selection theory unbiasedness seems to be in-

tractable. Our procedures may not be unbiased in the sense

of Lehmann (see Lehrnann[20]) except trivial ones that seleet

always only one model. (Another criterion of unbiasedness

of model seZeetion is given in Sawa and Takeuehi[37].)

                                             '                                       'CAsE B, We consider the situation where there is an am-
                             'biguous information that '' 2=2. We cgnsider two models, Fo=
{f(RS:9)} and Fl={f(RS:Åí);SIERP}e In this problem Hirano[l2]

discussed the following preliminary test estimator by using

AIC procedure,

(3'59) 22p(.X)=i;l .i,f,i3..t12.P.l'

                   N

                              '                               'And rnagaki's loss funetion C3.3). becornes

(3.6o) L((k,g)Åí)-l[Ng'$i,--.Åí8YX-9'}/2' l.il:2:

                        N rV NN
                             '
                                       '                                         'under this formulation of the problem, we obtain the foUowing

result.

     THEoREM 3,7 (Inaba and Nagata[14])e The proeeduor,e (3.sg)

is minimax for even ps12 unde? the Zoss funetaon r3.60). but

not for p=14.
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     PRooF, [Dhe Bayes solution of e with r}espect to the
                                    'vprioT distribution Np(9,T2Ip) is given by

                  '
(3•6i) g.(.x)-IXI.),, .i,f,gkt.2,P.((2-a(T))'

                      N
'

whieh is derived as in Lemmas 3.! or 3.5. The risk function

of the procedure (3.59) is

(3"62) R(9,22p) = P/2 ' (1/2)fxtx<2p{Z'E - 2(ilS " 9)'(E #" 9)}
                                N tV-

                   xf(x:e) dx.
                      NN rv

NoCing that the conditional distribution of e given X is
                                            N rN,
Np(a(T).X,,a(T)Ip), the Bayes risk of the procedure (3.6o) is

(3•63) r'('t,f(l,) = pa(T)/2 + (i/2)f.,..2p/(2-a(.)){ilS'RS(2a(T)
                                   rv N-

                  - a(T)2) - 2pa('v)}f (x) dx,
                                     T tx, rv

Whe]7e fT(Rs) is p•d•f• of Np(2,(l+T2)Ip), the marginal

dist]?ibution of E. Therefore r(T,$)+p/2 as T+oo. In order

to prove the minimaxity of the procedure (3.59) by using

Lemma 3.2 we must establish that the second term of the right-
hand-side of (3.62) is nonpositive for all eeRP. On the other
                                           N
hand, noting the form of the loss function (3.60), the risk

function of the usual estimator d(X)=X is
                                rv N rv
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(3.64) R(e,d) = p/2 for a!1 eeRP,
           Nrv ru
                      '

which establishes the minimaxity of 2 for all p. Putting

(3'65) g(9) = ktzS2p{E'E - 2(i ' 9)'(E q' 9)}fCXr,:9) dE'

                                                     '
we obtain the following lemma from the above discussion as

                 'in Lemma 3.6.

     LEMMA 3,8, A neeessa?y and suffaeaent eondition fopm

the p?oeedu?e C3.592 to he minamaca is g(e?gO fove aZZ eeRP.
                                        N tNv
     We need the following lemrna at this stage of the proof

of the theorem.

     LEMMA 3,9, ' Suppose the Tandom veetoT X,. foZZows NpC!il,D)

witk p.d.f. f(x,.:fZ,D). Let S be tke set of ec,. $uck tkat Cx,.,Lfe]'

D'1(rc+a]!le fo? a nonnegative eonstant c. Then
    NN-

(3•6 i) fsRsf(2E:Sl,D) d2s = .a[Pr{x2(p;6>lc} - pr}{x2cp+2;6)sc}]

and

(3'67) fs;sRs'f(,x,:2,D) dRs = Dgl - Pr{x2CP+2;6)4e}]

                           - aa'[pr {x 2 cp ;6 )sc } - 2pfe {x 2 cp +2 ; 6' )sc}

                             rx,N• " -
                           + pr{x2cp+4;6)sc}],
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wheTe a is a p-dimensionaZ eonstant veetor. 6:=a'D-la and

x2(ks6) is a random vantahze of a noneentTaz x2-dist?ibution

with deg?ees of f?eedom k and noneent?aZity paramete? 6.
                                                 -         '
     These equalities are described in Sen[41] without proof.

They can be proved by induction with respect to p• NoWs g(9.)

can be rewritten as follows by using (3.66) and (3.67):

   '(3.68) g(Åí) = -ppr{x2(p+2;g'Åí).S2p} + Åí'g[•-2Pr{x2(p;g'g)S2p}

                                                         '                              '
               +4pr{x2(p+2;ete)k2p} -- pr{x2(p+4;e'e)s2p}]
                           rM tlJ == NN'

                         .              = e 'r2:. .1( rJ/j ! )[-p B(p /2 +l ) + 2 r{ -23 (p /2 +j -- 1 )

               + 4 6 Cp / 2 +j > - B+ Cp / 2 +j + 1 ) } ] ,

where 3(k)=f8e-Xxkdx/r(k+O, r(k+O=f8e-Xxkdx and r=g'2/2.

We shall use the following lemma in order to modify (3.68).

     LEMMA 3,IO, (O rt fozzows ca) Bck)-B(k-o=-e-Ppk/k.r.
                                                       '                                       'ai? 3 ck] =i -e-P2 .k. =opi/i ! and (iii] B Ck -• i) /6 rk)-i +[ 2:=i rt T• =i (p/

(k+i)]-1. Clx) ff e>1 and ilep-1. then 6E-1)/6Ci)>e•

(rfO Putting n(g')={2(g'+1)-p}{33(p/2+g')-23(p/2+g'-1)}/rg'+O .r,

        tt(i] if gL)p-1, then nrg')<0. Cii) if g'----p-2 and p=>4. then nrg')<0

                    'and riii) if g'Esp/2-1. then nCg'2sO. (JV2 Putting e(g')=n(g')pg'+1,

if g'.)3p/2+1. then le(g'2/e(g'-1?l<2/3• (V] -Tt foZloWs 2:7•,.3p/2+1

eri) >2e r3p/2).
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     PROOF, Parts (I) and (IV) ar,e obvious. Part (lr) can

be proved by considering the Sunction B(i-1)-eB(i). Part (TII)

(i) is established by considering c=3/2 in (U), whereas (ii).

and (iii) are obtained by considering p/(k+i)<2/3 for i>6 and
llg.ip/(k+i)2;o for m2;3, respectiveiy, in (r) (iii). part.(v)

foUows frorn (III) and (IV). Q.E.D.

     Using rL(j) defined in Lemma 3.10 (III) and rea]?]?anging

we ean write g(e) in (3.68) in the following form:
               N

(3•69) g(Tflt) = e-]r'[-p3(p/2) + E!•7.Qn(j)rj'i].

                                     '                                       'Now for p=2 or 4, we can see that gCe><O for all e, since
                                     tX, ==' N
n(j)<O for all j from Lemma 3.IQ CUI). [Vherefore the pr'o--

cedure (3.59) is Tninimax for p=2 or 4. For p--6,8,IO or 12

the procedure (3.59) ean be proved to be also minirnax by

calcuiating n(.j)'s for j=Q,1,...,3p/2 and showing that

           '(3•70) g(fl) < e-r[E,3.P---62n.(j)rj'i] < o.

     This line of the argument is similar to the case for p=l4

which is discussed below, but in the latter case it is proved

that there exists some ro= 2o'9o/2 such that g(9o)?O and that

therefore the procedure (3.59) is not minimax. In order

to prove the faet for p=14 described above, we take ro=l4.

Making use of Lemma 3.10 (V), we obtain frorn (3.69)
                          '

(3•7i) g(-go) = e-i4[-i43(-7) + 2S.oe(j)]

                                          '
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                  -l4                                  21               > e [-14B(7) + 2j.oe(j) + 2e(21)]•

Now let us give the following notations:

(3•72) A(k) = Zl.f.o14i/i!, B(k) = e14 -- A(k) (=e14B(k)),

         C(j) = 3B(j+7) - 2B(j+6) and D(J') = {2S({-i;i}{Fy+.LLJSI) 14}L4j-1

                  14                      -8                        E (j ) ) , ( k= O , l , • e e , 2 8 an d J' -- O , l , • e e s 2 1 ) e                    l4         xC(j) (=e

Using above notations, the extreme right-hand-side of (3.71)

becomes

                                                       '(3.73) g(flo) > e-28i48[-i4-7B(7)"  + 2J2.loD(J') + 2D(2i)].

                            '
                  'Here, we obtain that -14-7B(7)k--o.o2, 2J2.tl.oD(j)ls.46 and 2D(21)

)-O.27, exactly. Hence, the bracket of the right-hand-side

of (3.73) is positive. Therefore we eonclude that the pro-

cedure (3.59) is not minimax for p=14, and the theorem has

been proved. Q.E.D.

     Theorem 3.7 shows that the validity of minirnaxity in

Case B depends on the dimension p. (Zt seems false also in

the case that pz14 and is even. The assumption that p is

even serves for the convenience of the proof and it may not

be essential.) Considering practically, it is not reasonable

to deal with so many pararneters and to decide whether they

      '
  '
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are all zero or not, and therefore we may as weli follow

Case A or Case B in lower dimension. However, it is somewhat

strange mathematically.

                 '                                         '     THEoREM 3,8 (Nagata[26]). The pr,oeedur7e r3.59) is

inadmissibZe when pl3 undey Zoss function (3.60).

     PRooF, [ffhe proeedure C3.59) is dominated by the

following procedure:

                                   t.                                     '(3•74) fi,(,x.)-[i?;.. ,/.,,).F rXv.lilitliile.r..,

                         rv N "Y

where c is a constant satisfying O<c<2(p-2). This fact can

be shown sirnUarly to the proof of Theorem 3.3. Q.E.D.
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APPENDIX

   In this appendix, we will give a similar result to the

example in the Chapter 1 following Nagata[24]. We consider

the estimation of the Pareto parameter of the Pareto dis-

tribution, whieh is often used foy the distribution of income

                                               'and has the following density;

(A.l) f(x) = (aka/xa+l)I(x>k), a,k>Q,

                                                           '
where I(x>k> is the indicator funetion of the set {x3x>k},

a being called the Pareto pa?arneter and k the eut-off parame-

ter.
                                                       '
     Let Xl,•e•,Xn foUow the distributioR (A.1). In the

following we discuss the optimal estimation for the Pareto
                                                             2parameter a with the quadratic loss function L(d,a)=(d/a-1)

and its admissibility in two cases: k is known (Case 1) and

k is unknown (Case 2).

CAsE l, Clearly 2E•l.llogxi is a sufficient statistic foi? a.

Now we consider the class of estimators for a, {cw=w/(Z2•.11ogxi-

nlogk);w>O}, whieh eontains the m.l.e. cn as well as the

minimum variance unbiased estimator due 'to Baxter[4], and

derive the value of w which attains the minirnum risk with

quadratic loss.
     AceQ]?ding to Baxter[4], [P=2an/c is ax2-var,iable with
                                     n
      '
               '                                                         '
                            -67-



2n degrees of freedom. Hence the risk of the estimator c.,
                                                            vv
=w/(22•.ilogxi-nlogk) is given by

                            '        '
                   '                              2(A.2) R(c.,a) = E(c./a - i)

                = E(.(w/n)c./a - z)2

                = (J/Cn-1). Cn-2)-).[(.w - (Jn - 2))2 + n - 2], if n>2,

                   '                                                   '                       'SO Cn-2=(n'2)/(E2•.llogxi-nlogk) attains the minirnum risk

uniformly in a in the class under consideration. We note

that the risks of cn-2, cn-1 and cn beeome larger in this

order.

     Now we remark that cn.2 is admissible by the proposition

of Ghosh and Singh[8] or Ralescu,D. and Raleseu,S.[35]: Tf

(xl,..•.xn) as a Tandom sampZe jOrom the dist?ibution with the
                                                                .                        'density aexp(--ax)r(x>0). then (n-2?/ZZ•=lxi as an admissabZe

estamator fo? a. In faet if we transforrn to yilog(xi/k)

(i=1,.••,n), then (.yl,...,yn) is a randorn sample from the

                                                       'above exponential distribution and hence cn-2=(n-2)/(22•.llogxi

-nlogk) is admissible.

CAsE 2, when we put s=Cl/n>EE--llogxi and k'=min(xl,•••,xn),

(s,k') is a suffieient statistic for (a,k). If we transform

tO Yilogxi (i=l,..•,n), (.yl,..•,yn) is a random sample from

the exponential distribution with the density; aexp(-a(y-logk))

Å~:(y>logk). So this problem is invariant under the trans-
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formation yi+byi+c (i=1,...,n) and (a,logk)+(a/b,blogk+e),

O<b<oo, -oo<e<co. An estimator d for a should be determined
                                                non the basis of the suffieient statistic ((1/n)Zi.IYi,Min(Yls

      )) and therefore should have the property of the••• ,y     n
equivariance, d(b(1/n)2g..lyi+c,bmin(yl,...,yn)+c)=(l/b)d((1/n)

22•.lyi,min(yl,••e,yn))" Thus it win be reasonable to
                                                 'confine ourselves to the class {dw=w/(22..llogxi-nlogk');w>O}e

     Aecording to Baxter[4], dn and k' are mutually independent
and T=2an/dn is a x2-variable with 2n-2 degrees of freedom.

Futhermore k' has a Pareto distribution with the Pareto parame-

ter na and the cut--off parameter k. Hence the density of d
                                                            n
is

(A.3) [(na)"-1/(n-2)!](l/d.n)exp(-na/d.)I(d.>O)

and the density of k' is

(A.4) (nakna/k,na+l)I(kT>k).

With the quadratic loss function, the risk of the estimator
dw=w/(22•.llogxi-nlogk')=(w/n)dn is'given by

                                 2(A.5) R(d.,(a,k)) = E(d./a -- 1)

                                      2                    = E((w/n)d./a -- 1)

                    = (l/(n-2)(n-3))[(w - (n - 3))2 + n - 3],
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if n>3• SO dn-3=(n-3)/(2i,.11ogxi-nlogk') attains the minimum

risk uniformly in (a,k) in the class under consideration. We
note1hat the risks of dn-3, dn-2'  and dn become larger in this
                    'order.

                                 is inadmissible. To see it,     Now we shall show that d                            n-3
we shou!d exhibit an estimator for a whose risk is better

than or equal to that of dn-3 uniformly in (a,k) and is better

at some (ao,ko) than the risk of dn-3. We shall show that

the following estimator has sueh a property:

                    max[((n-3)/n)d.,((n-2)/(n+nd.iogk'))d.],
(A'6) d(d.,k') =
                                            if logk'>O,

                    [(n-3)/n]dn, otherwise.

It should be rernarked that d wiZl not be shown to be admissible

Sinee dn and k' are mutually independent, the joint density of

(dn,k') iS

(A.7) (na)nknaexp(-na/dn)I(dn>o)I(kt>k)/[(n--2)!dnnkyna+1].

Transforming to the random variable (dn,r)=(dn,ndnlogk'), we

obtain the joint density of (dn,r);

(A.s) f(dn,r) = (na)na'"laknaexp(-(n+r)a/dn)I(dn>O)

                                         n+1                 xl(r/n>dnlogk)/[(n-2)!d. ]•
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Henee

(A.9)

the marginaL density of r is

  f(r) . fee.(na)"-laknaexp(-(n+r)a/d.)Z(d.

                         '
        xl(r/n>d.logk)/[(n-2)!dnn+1]ddn

(transforming

Thus we

r)

(A.10)

obtain

Åí(d.Ir)

>o)

 (na )"-iak"a/ (n-2 ) ! fg/"iOgka/d.n+i )

      ><exp(-(n+r)a/dn)ddn, if Logk>O, r';l,Os

 (na)n-lakna/(n-2)!fÅé(1/d.n+l)exp(-(n+r)a/dn)dd

      if logk=O, r)O or logk<O, r)O,

                        ' (na)nhlakna/(n-2)!f;/nlogk(1/dnn+1)

      >(exp(--(n+r)a/dn)ddn, if Zogk<O, r<O,

to z=(n+r)a/dn)
 nn-ikna/[(n-2)!(n+r)n]f?n+r)aniogk/F zn-i

      >exp(-z)dz, ' if logk>O, r)O,

 nn-lkna(n-1)/(n+r)n, if logk=o, rzO or logk<O,

 nnmlkna/[(n-2)!(n+r)n]f8n+r)anlogk/r .n-1

      >Gxp(--z)dz, if logk<O, r<O,

 O, otherwise.
                    ' the foUowing conditional density of dn given

    '

  = f(d        sr)/f(r)
       n
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                 J.i- J- n+1.t .. . .. . . .                  Au/ctn-- -)expC-Cn+r)a/dn)ICdn>O)

                       xl(r/nlogk>dn), if logk>O,

                  B Q /d.n+1 )exp (-(n+r)a/d.)I(dn>O)

                       xl(r/n:ogk<dn), if logk<O,

             = c(1/d."+1)exp(-(n+r)a/d.)I(dn>O)

                       xl(r/nlogk<dn), if logk<O,

                  Da/d."+1)exp(-(n+r)a/d.)I(d.'O)

                                       if logk=O,
                                    '
                  O, • otherwise,

where

      'A = an(n+r)n/f17n+r)anlogk/r .zn-lexp(-z)dz,

       B = an(n+r)n/(n-1)!,

       c = an(n+r)n/f8n+r)anlogk/r zn-lexp(-z)dz,

and

       D = an(n+r)n/(n-1)!.

By (A.IO), if we denote by u(r) the value of u that

the eonditional expectation

(A•li) E[(ud./a - l)2lr],

then
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(A.12) u(r) = aE(d.Ir')/E(d.2lr)

                f?n+r)anzogk/r zn-2exp(-z)dz/[(n+r)ffn+r)anzogk/r

                      zn-3exp(-z)dz], if iogk>o, rzo,

                (n-2)/(n+r), if logk=O, rlO or logk<O, rlO,

                f8n+r)anlogk/r zn-2exp(-z)dz/[(n+r)f8n+r)anlogk/r

                      zn-3exp(-z)dz], if iogk<o, r<o,
                          '
                O, otherwise

              ) (n-2)/(n+r), if Zogk>O, r)O,

              = (n--2)/(n+r), if logk=O, r)O or logk<O, r)O,

              s (n-2)/(n+r), if logk<O, r<O,

              = O, otherwise.

For r sueh that r>O and (n-3)/n<(n--2)/(n+r), it holds that

(n--3)/n<(n-2)/(n+r)Åíu(r), so that we obtain

(A.13) E[([(n-2)/(n+r)]d./a - 1)2ir] < E[([(n-3)/n]d./a - 1)21r]

noting that (A.11) is a quadratic function of u. ExaTriining

(A.9), clea]?ly

(A.l4) Pir'{r' z O, (n-•3)/n < (n-2)/(n+r)} > O.

Taking expeetations of the both sides of (A.13) with respect
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to r and noting the form of (A.6), we have

(A•15) E[d(d.,k')/a - l]2 < E[((n-3)/n)d./a - l]2.

                                          '
Thus it has been proved that d                                   is inadmissible.                               n-3
     Next, adopting Z=1OO[(R(dn-3,(a,k))-R(d,(a,k)))/R(dn-3s

(a,k))] (%) as a measure of the improvement of d over dn-3e

we obtain the following table by numerical computation. We
note that the value of I depends on (a,k) only thTough ka.

                            Table 4

       values of I, the improvement of d over dn.3 (%)

ka
n

O.2 o.4 o.6 o.8 1.0 l .2 1.4 ]- .6

4 O.03 o.43 2.I6 6.83 l6e67 l9 •36 U.53 7 e02

5 o+ O.10 O.79 3.34 10e19 9 •98 3e41 1 el8

6 o+, O.03 O.34 Z.93 7.34 5 .21 Oe83, o o13

7 o+ O.Ol O.16 Z.20 5.74 2 e53 O.I5 o .ol

8 o+ o+ o.o8 Oe79 4.72 1 e10 O.02 o +

9 0+ o+ o.o4 O.54 4.oo o e41 o+ o +

lo o+ o+ O.02 O.37 3.48 o .13 o+ o +

     Table 4 shows that the advantage of using d instead

dn-3 is almost negligible for large n. Therefore using

the simple best equivariant estimator dn-3 in such case

be appropriate although it is inadmissible. But the
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improvement is considerable for small n and for (a,k) with

ka near 1, so that if we had some possibly vague prior infor-

mation that ka is near 1, we would hesitate to use d
                                                       n-3'
Arnold[l] showed that the improvement of his estimator

over the best location and scale equivariant esttnator is

at most 3%, far less effective than Å}n the present ease,
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