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Abstract

The quantum transport of two-dimensional electron systems (2DES) in
GaAs/AlGaAs heterostructures and Si-MOS FETs is investigated at high
magnetic fields and low temperatures. The mesoscopic size ( =um ) and
macroscopic size ( =mm ) multi-terminal wires are fabricated from
GaAs/AlGaAs heterostructure wafers. The magnetoresistance shows nonlocal
features, such as a geometry dependent resistivity, an influence of the contact
probe and a current dependent resistivity, which can not be explained only by
considering local conductivity tensor. The nonlocal features in 2DES are
understood by considering both edge and bulk state as current carrying channels.
A nonlocal resistance, where the voltage probes are well separated from the
nominal current path, is observed in 2DES samples; not only in the high fnobility
GaAs/AlGaAs heterostructures; but also in the Si-MOS FETs. The observed
nonlocal resistance is explained quantitatively by the Landauer-Biittiker formula.
A negative four—terminal resistance is observed when a probe is not ideal. The
anomalous transmission probability to the edge and bulk channels at the probe
causes an anomalous population of electrons in the channels when the probe is
used as a current source. By using the probe as a voltage probe, selective
detection of the channels is made. The negative resistance is understood by
considering the property of the non-ideal probe and non-equilibrium conduction
in the edge state. In order to investigate the influence of the properties of the
probe on the measured resistivity, the transmission probability of the channels is
artificially controlled by a gate near the probe. Since the chemical potential
equilibration among channels occurs in the probe, it affects the electronic

transport, whether it is in use or not. The nonlocal features of the electronic



transport in 2DES are also changed by variable confinement potential of 2DES at
the sample edge which is controlled by surrounding Schottky gate. The
magnetocapacitance between a metal gate on the sample and 2DES in
GaAs/AlGaAs heterostructure shows minima at the quantum Hall plateau regime.
The capacitance minima are governed by the area of the current carrying edge
state, and is not reflected by the density of states at Fermi level. The width of the

edge state is cstimated.



1 Introduction

The electronic transport property of the two—dimensional electron system
(2DES) has attracted both theoretical and experimental interest as the quantum
effects!. Owing to the technical development of the semiconductor crystal growth
and fabrication process in recent years, the high quality 2DES in the
heterostructures and metal-oxide—semiconductor (MOS) structures can be made.
When the magnetic fields applied normal to the 2DES, the energy band of the
electrons split into the Landau levels. At low temperatures, the magnetoresistance
shows Shubnikov-de Haas (SdH) oscillations, and the peak value of longitudinal
conductivity o, at a n~th Landau level shows a good agreement with the
theoretical value 2e%(n+1/2)/mh , calculated on a self-consistent Born
approximation?. The Hall resistance shows quantized plateaus h/ie? (i=1,2,"),
which is well known as the quantum Hall effect’ (QHE). The QHE has been
understood as follows. The Landau levels are broaden by the scatterers, and only
states near the center of Landau level acts as an extended state (bulk state), and
rest states are localized as shown in Fig. 1. When the Fermi level exists in the
localized state between i—th and (i+1)—th extended states, the conductivity shows
0,,=0 and 0,,~i e?/h . The QHE has been applied to the international resistance
standard, because the quantum Hall (QH) plateau resistance (=h/ie?) is not
influenced by the sample geometry and quality. The accuracy of measured QH
plateau resistance is 1077, and the fine structure constant ¢t =e%/fic can be measured

precisely.

The electronic quantum transport in 2DES shows novel properties such as size
dependent resistivity*>, and a nonlocal resistance, which can not be understood
only by considering the local conductivity o, and axy8’9. The nonlocal resistance

is defined as a four terminal resistance where the nominal current path and voltage



probes are separated well, as shown in Fig. 2. The nonlocal resistance is hardly
observed, in a classical view. Especially in the high quality (with high electron
mobility) 2DES, the nonlocal features in the quantum transport has been clearly
observed®. They are explained by the edge state conduction, whose details are
discussed in the next section. The Landauer—Biittikef formula has been applied to
the electronic conduction in QH regime, and successfully explain the observed

resistance®.

In this thesis, the transport property of 2DES is investigated experimentally and
analyzed using the Landauer—Biittiker formula. In chapter 2, the concept of the
edge state and the Landauer-Biittiker formula are reviewed as a theoretical
backgrounds. In chapter 3, the sample fabrication technic, electron beam
lithography system, and transport measurement system are expressed. Three kinds
of samples, mesoscopic size (Sec.4.1) and macroscopic size (Sec.4.2) wires made
from GaAs/AlGaAs heterostructures and Si—-MOS FETs samples (Sec.4.3) are
examined. The nonlocal features of the quantum transport in 2DES are discussed.
The influence of the probes on the transport is investigated particularly. The width
of the edge state is estimated by magnetocapacitance measurements at the QH

regime. The last chapter 5 is devoted to a summary of the thesis.
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Fig. 1. The schematic illustration of the DOS D(E) , conductivity o, and T,y of the
2DES at the high magnetic fields. Hatched region corresponds to the localized state.
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Fig. 2. Schematic layout of the four-terminal measurements. (a) Ordinary longitudinal

resistance R;. (b) The nonlocal resistance Ry Where the voltage probes are spatially

separated from the nominal current path.



2 Theoretical background
2.1 Edge current

In the 2DES system at high magnetic fields, the electron energy band split into
Landau levels. When the sample has an 'edge', the Landau levels are bent up by
the confinement potential of the 2DES near the sample edge. There are two kinds
of the states at the Fermi energy (Ep), 'bulk' states in the bulk Landau level and
'edge’ states® at the bent up Landau levels, as shown in Fig. 3. The electrons in the
edge states circulate along the sample edge as an edge current channels®1°, In the
classical view, the edge electrons are moving along the skipping orbit, as shown in
Fig. 3(b). The direction of the edge current is determined by the direction of the
magnetic field, the edge currents go backward at the opposite side of the sample.
The number of the edge channels are that of the fully occupied Landau levels. In
the interior of the sample, the topmost Landau level provides a bulk current
channel, when the E;, crosses an extended state. In this thesis, the terms 'bulk state'
and 'bulk channel' are used by a current carrying fopmost Landau level extending
- in the sample, and the 'bulk current' is denoted by a current carried through the
'bulk state'.

It is noteworthy that the electron backscattering is suppressed in the edge
channels. The backscattering occurs only when electrons in a edge channel are
scattered to another edge channel at the opposite side, or to the a bulk channel.
The backscattering to the opposite side of the edge channel is negligible in the
wide sample. The edge and bulk states are spatially separated because electrons
are gently confined in the sample (see. Fig. 3) and then the overlap of the wave
function between edge and bulk channels is small.

If the chemical potential of the edge state at each side of the sample is y; and

Uy, as shown in Fig. 4, the amount of the current / is written by;



I=e[ ; vD(E)dE, (1)

where v is the group velocity of the electrons and D(E) is the DOS at the energy E.
The product v D(E) is equals to 2/h, because D(E) = | wdE /dk | ! and
v=(2m /h) (9 E/0dk). Then the current I is given by

I=Q@e /)t~ i) @)

The total current J is the sum of n edge currents?,

T = @e /B3 (s ) - 3)

( spin degeneracy is considered )

The total current J is determined only by the chemical potential difference of the
edge currents at both sides. In the quantum Hall plateau regime, the localized bulk
state does not contribute to the transport; the observed phenomena can be
understood by the edge current picture”. The edge channel can be regarded as the
one dimensional channel, connecting the probes along the edge. Biittiker applied

the Landauer formula (see sec. 2.2) to the electronic transport in the quantum Hall

regime8,

* Note that the expression of total current J, as shown in Eq.(3), is valid whether
the fully occupied Landau levels in the interior of the sample is carrying a current or
not'!,  Now, it is still important problem where is the current carrying region in the
quantum Hall regime.



2.2 The Landauer-Biittiker formula

In this section, the model of the electronic transport in a mesoscopic system
proposed by Landauer!? is introduced. Consider an one dimensional conductor
with probe (1) and (2). Applying the voltage difference (V) between the probes,
the current 7 flows in the channel, as shown in Fig. 5(a). Without the scattering,
the current I is expressed as;

I=evy[f ) “DE)dE-[ " D(E)dE ]
~evpyDE)eV = (2eh)V, )

where D(E)= | ndE/dk | -1 isDOS,
ve=(2m/h)(0E/dk) isthe Fermi velocity.

The conductance (I/V) of the one dimensional ideal conductor is expressed as

2e%/h, where the spin degeneracy is considered.

In order to take into account of the backscattering effect, the transmission
probability of the electron between the probes denoted by ¢ is considered. Since
the voltage difference is written with the chemical potential difference (¢, —H,=eV)

of the probe (see Fig. 5(b)), the current in the Landauer formula is expressed as;

I=(2e%h)t(u,-p)/e. 6))

Biittiker extended the Landauer formula to the multi channel and multi terminal
geometry® , as shown in Fig. 6(a). At the i—th probe with the chemical potential
M, there are N; current carrying channels. The transmission of the electrons from

Jj—th probe to the i—th probe is denoted by T;. The probability T;; represents for



coming back to the i—th probe. The current flowing from the i~k probe (1,) is

represented by;
Ii=(26/h)(Nilui_ZTij:uj) (i=1,2,~,n), (6)
j

( 2 T; = N;, for charge conservation. )
j

where n is the number of the probes. In Fig. 6(b), schematic view of the four—
terminal resistance at QH regime is shown. In the figure, two edge channels are
written, for simplicity. The notation R(ij,kl) shows the four terminal resistance
where the current flows from probe i to j, and the voltage difference between
probe k and 1 is measured. The four terminal resistance R(ij,kl) can be calculated
as R(ij,kl)=(u, — 4, ) / el by solving Eq.(6). Owing to the symmetry of
T;[B]=T;[-B], the reciprocity of the resistance R(ij,kl)[B] = R(kl,ij)[-B] is
obtained, which states exchanging of the current and voltage probes and field
reversing is equivalent. The edge channel picture can be applied to the
Landauer-Biittiker formula®1%1. The edge currents circle around the sample

edge, and connect the adjacent probes without scattering.

2.3 Contact probe

In Fig. 7, the schematic illustration of the interface region between 2DES and
probe is shown. The contact probe consists of the electron reserver and the
disordered region at the interface of the 2DES region®. Suppose that the n edge
currents with the chemical potential 4, (i=0,1,n-1) come into a probe with the
transmission probability T, , and the current I is externally injected to the probe.

The chemical potential of the contact probe (electron reserver) p_ is written as'3;

I=(23/h)z[Ti(/‘c_ﬂi)]a (7



thus

m =z (T/T) p + (0/ 2¢T) 1, (8)

The chemical potential of the emitting edge currents u'; are also shown;

= SLTY DRy Ly + (1D 29T, ©)

T=3T;= 3T}, (10)
i i

T, + ZRjFl and T', + ZRiJ:l , (11)
j ]

R;; is the reflectivity of which the i—th edge current, incoming to the probe, is
reflected to the outgoing j-th edge current (see Fig. 7). T, (T ) is the incoming
(outgoing) probability between the channels and probe, respectively. The contact
resistance of the probe R_ can be written as’3;
R, =[@T)-1](h/2ne?). (12)
In the ideal probe, the total transmission T=n ; the R, becomes zero. In the real
contact probe, the transmission probability of each channel is less than unity, the
total transmission probability T is smaller than n.

In this thesis, the experimental results are analyzed by the Landauer—Biittiker
formula, for the nonlocal resistance, longitudinal resistance, and the properties of

the probes.
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Fig. 3. (a) Schematic representation of the energy levels in 2DES at high magnetic fields.
The current carrying states exist at the cross point of the Fermi level E;, and extended
Landau levels. In this figure, the edge state (marked open and closed circle) and bulk
state (hatched region) coexist. (b) The classical view of the edge current. The electrons

move along the sample edge with skipping orbit. Closed circles are scatteres.
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Fig. 4. The chemical potential of the edge currents at QHE regime. (a) The chemical
potential of the edge current at the left (right) side is x4, () when the current I flows.
(b) The energy level of the Landau level. The horizontal axis corresponds to the direction

of the sample width (broken line in (a)).
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(a) L{i 1 \T_@_a:ll
2

G=1/V=2e2/h

(b))

G=2e2t/h

Fig. 5. (a) The dissipation-less one dimensional conductor. Note that the conductivity is
2¢%/h . (b) The backscattering is represented with a barrier whose transmission

probability is ¢ .
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( a ) The Landauer—-Biittiker formula

L=(e/h)[Njw—- D Ty
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I L

T 15
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R(14.23) = V/I= (per— 3 )/ €1

Fig. 6. (a) The Landauer—Biittiker formula with multi-terminal geometry. The total
current I; through the i—th probe is determined by the outgoing electrons through the N,
channels and incoming electrons from the probes with the transmission probability of Tl.j.
(b) The electronic transport by edge channels are shown. Two edge channels connect the

adjacent probes. The direction of the current is determined by the magnetic fields.
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Fig. 7. The model of the disordered contact probe. T, ( Rij ) is a transmission probability

(reflectivity) of the edge current to the probe.
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3 Experimental Procedure
3.1 Sample preparation
3.1.1 GaAs/AlGaAs heterostructures

The multi-terminal wires were prepared from modulation doped GaAs /
Al,_ Ga As (x=~0.3) heterostructure wafers. In Fig. 8, a schematic cross sectional
view of the wafers is shown. The GaAs and AlGaAs layers are grown by the
molecular beam epitaxy technic (MBE) on a semi-insulating GaAs substrate. The
two-dimensional electron system is formed at the GaAs/AlGaAs interface (Fig.
8), because the band-bending, due to the charge transfer from Si-doped AlGaAs
layer to the GaAs layer, acts as a confining potential of electrons. The Si donors
doped AlGaAs layer and 2DES are spatially separated by the undoped AlGaAs
spacer layer. The two-dimensional electron gas has high electron mobility,
because the electron scattering by impurities is decreased at low temperatures, and

the interface between GaAs and AlGaAs layers is flat in an atomic scale.
3.1.2 GaAs/AlGaAs mesoscopic size wires

The mesoscopic size (=um) samples were fabricated by using an electron beam
lithography and Ar—ion dry etching technic. The detail of the processes is as
follows; (see Fig. 9(a))

(1) As grown GaAs/AlGaAs wafer was cleaved to a 5x5 mm square piece
and rinsed in trichloroethylene.
(2) Electron beam sensitive resist, PMMA (polymethylmethacrylate) was

coated on the sample. Six percent solution of PMMA was dropped to

14



the sample spinning at 8000 rpm and then the sample was dried in air
at 170 °C for 2 hours. The thickness of the PMMA resist was typically
300 nm.

(3) The resist was exposed with 50 keV electron beam using a JEOL NSF-1
electron beam lithography system at Research Center for Extreme
Materials, in Osaka university. After direct writing by the electron beam,
the sample was drop into developer (methylisobutylketone diluted 1/3
with isopropylalcohol).

(4) Aluminum was evaporated a thickness =100 nm, and then Al on the resist was
removed by a liftoff technic. Then residual Al acted as an etching musk.

(5) The ohmic contact areas were also covered with photo-resist of NNR752
by photolithography (described below).

(6) The partially aluminum masked sample was exposed to 1 keV accelerated
Ar-ion shower for 5 min. A shallow-mesa etching was used to avoid a
damage to the narrow channels. The etching depth did not reach the 2DES
layer. The electrons below the shallow etched region were fully depleted.

(7) After these processes, the ohmic contacts were formed by metal

deposition and alloying. The details are described below (c)-(e).

3.1.3 GaAs/AlGaAs macroscopic size wires,
ohmic contact and Schottky gate

A macroscopic size (=mm) samples were fabricated by photolithography (see

Fig. 9(b)). The wafer was prepared in the same way of (1);

(a) The negative photo—-resist NNR752 was spin coated on the sample at
5000 rpm. The resist was dried at 90 °C for 5 min. By using photo-

mask and aligner system, UV light was exposed. After developing,

15



the resist became the mask for an etching.

(b) The sample was dipped into an etching solution for 2 min. The enchant
consists of the mixture H,PO,: H,0,: H,0 = 1:1:30 at room temperatures.
The etching rate of this etchant is about 150 nm/min. After etching,
the resist was removed. |

(©) To form the ohmic contacts, the positive photo-resist AZ1350 was
covered on the sample (spin coating 5000 rpm, baked 70 °C/10 min.).
After UV exposure thorough the mask and developing, the areas except
for contact region was covered with the resist.

(d) The contact metals were deposited by successive evaporation of
Au-Ge(12%) alloy, Ni, and Au in the base pressure ~2x10~¢ Torr.

The thickness was 100, 25, and 100 nm respectively. The resist was
removed with metal on the resist.

(e) The sample was annealed at 470 °C for 4 minutes to alloy the contact
metals in the forming gas (Ar 90%, H, 10%). In this way, the contact

resistance was typically below 100 €.

Since the electrical transport properties are very much influenced by the
properties of the contacts in the quantum Hall condition, the process of making
contacts, material selection and annealing conditions, are very important. Details

are discussed in chapter 4.2.

(f) When Schottky gates were formed on the sample, the sample surface was
slightly etched with conc. HCI solution to remove an oxide layer.
The same process (c) and (d) were repeated. At the metal evaporation,
instead of the contact metal, the gate material of Au or Au-Al or Au-Ti

was used.

16



3.1.4 Si-MOS FET

Si-MOS FETs were fabricated at NTT applied electronic laboratories. By
using conventional photolithography and ion implantation processes, three Hall
devices A, B and C of Si-MOS structures with two pairs of Hall probes were
obtained. The SiO, layer of the samples A and B was made by thermal annealing
in diluted O, gas, and made by using A1r/O, sputtering!* for sample C. The
sputtering method has an advantage that the sample is free from high temperature

annealing. Details are shown in section 4.3.2.
3.2 Electron beam lithography

The photo—mask plate was made by direct electron beam lithography and wet
chemical etching. In this study, many masks were needed to change the sample
structures. To fabricate the masks easily, a function of electron beam lithography

was added to JEOL JSM-6400 scanning electron microscope (SEM) as follows;

- An electric gun with LaB cathode was used to obtain high intensity
electron beam and small spot size.

- A turbo—-molecular pump was used to get an oil free system.

- Beam blanking device (BBD) was installed to control the electron exposure
to the sample.

- Beam scanning and blanking was externally controlled by the personal

computer, and the control software was made.

This lithography system, shown in Fig. 10, enabled us to fabricate both
mesoscopic (=100 nm) size and large mask (=5 mm) size sample. Since the

sample could be changed quickly (=1 min.), the turn around time was much

17



shorter than that of the conventional electron beam exposure systems. In addition,

the performance as an electron microscope was also improved.
3.3 Electron transport measurement system

The magneto-resistance up to 8 T, at temperatures below 4.2 K was studied by
using superconducting magnet (SCM) and *He refrigerator. The diagram of the
system is shown in Fig. 11. The cryostat and SCM were cooled by liquid “He.
Temperatures 4.2 — 1.8 K were obtained to evacuate the helium gas above the
liquid “He by a rotary pump. Connecting the cryostat to the *He gas handling
system, shown in Fig. 12, the 3He gas was liquefied, and the sample was immersed
in the liquid *He. The sample was cooled below 0.5 K by pumping out the *He
with sealed rotary pump. This 3He refrigerator system has the following

advantages:

- Easy to change a sample because of the top-loading type.

- No blockage accident has happened, since the system has no 1 K pot or
capillaries.

- Temperatures below 0.5 K can be held for long time (more than one day),

though the system is one~shot type refrigerator.

The sample was set in the center of the magnet, and the direction of the fields
was perpendicular to the sample surface. The electrons in the edge states flow
clockwise along the sample edge normally. A calibrated carbon resistor for
thermometer and a GaAs light emitting diode (LED, A=950 nm) were installed
near the sample. The current level at the resistance measurement was 30 pA ~ 100
HA. For low level measurement, the coaxial cables and shielded cables were used

to avoid noise. The ground (earth) connection was carefully done, not to make

18



ground loops which would be a noise source. The cryostat and pump lines (*He
gas handling system, and pump line from liquid He dewar) were electrically
isolated to eliminate the electrical noise.

For the resistance measurement, a programmable current source (Keithley 220)
as an ac current (operating at 15 Hz) source, and a high sensitive lock—in amplifier
(EG&G-PAR 5210) for voltage measurement were used. These instruments have
high output and input impedance (>10™ Q, >108 Q respectively). They are still
adequate to be uSed, even when the contact resistance of the samples exceeds 1
MQ. To apply the gate voltage, a programmable voltage source (Keithley 230)
was also used. For the measurement for the mesoscopic size samples and the
thermometry, an automatic ac resistance bridge (RV Elektroniikka AVS-46)
operating at 15 Hz was also used. In Fig. 13, the block diagram of the resistance
measurement system is shown. To measure a capacitance, a ultra—precision
capacitance bridge (Andeen—Hagerling 2500A) with voltage source for applying
dc bias was used. This capacitance bridge is an 'actual bridge' that the
measurement is not affected by the stray capacitance between a sample and the
ground. Since the wiring in the cryostat should be thermally anchored well, the
stray capacitance is quite large, the precise measurement is difficult without the

'actual bridge'.
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Results and Discussion
4.1 Mesoscopic system

4.1.1 Quantum Hall effect and nonlocal resistance

in mesoscopic size samples.

Three multi-terminal wires (sample A-C) of mesoscopic size were fabricated

from the wafers of modulation doped GaAs/AlGaAs heterostructures. The details
of the samples are shown in Table 1. Just before the resistance measurement, the
wire was illuminated by a GaAs light emitting diode (LED) to increase the carrier
concentration by the persistent photoconductivity. Then the effective width of
the wire increased due to a reduction of the depletion region extending from the
side wall. An excitation current level for the resistance measurement was limited
to 30 nA or 100 nA to avoid the heating effect. The longitudinal resistance Rp)
and Hall resistance (Ry,) of the sample A at 0.5 K are shown in Fig. 14(a), where
the schematic view of the samples are shown in the inset. In the low field regime
(B< 0.5 T), alarge negative magneto—resistance in the longitudinal resistance, a
quenching of the Hall resistance, and a last Hall plateau®® are observed. These
phenomena have been interpreted as a ballistic transport in the mesoscopic wires!s.
In the high field region, the QHE plateaus and the practically zero resistance of R
appear. The Hall plateaus due to the spin splitting (filling factor of the Landau
level v=3) are not clearly resolved, compared to that in the macroscopic size
sample which is made from the same wafer. Since the spatial expansion of the
edge current is comparable to the wire width, the edge state in the opposite side is
mixed. That is, the back scattering of the edge current becomes significant, and a
breakdown of the quantum Hall effect occurs. Further discussion will be given in

section 4.2.8.
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The nonlocal resistance at several separation length AL measured in the sample
A is shown in Fig. 14(b). The nonlocal resistance shows some peaks similar to
usual SAH oscillations, and the minimum plateaus are observed when the Hall
resistance is quantized at high magnetic fields. The nonlocal resistance is almost
zero at low field region. Generally, the peak amplitudes of the oscillation decrease
with increasing AL. In the cases that the extra probes are contained between the
current and voltage probes, the amplitudes of the oscillations are much reduced.
- In the geometry with the separation length AL=7 um, the oscillations almost
vanish, where two pairs of the probes are contained. The similar behavior are

observed in other samples B and C.
4.1.2 Model of the electric transport in a quantum Hall condition

To understand the nonlocal resistance McEuen et al.® proposed a model which
treated the current carrying edge and bulk channels independently. In this model,
the N—th ( N=1 ) Landau level coincides with Fermi energy. The (N-1) edge
channels belonging to the fully occupied Landau levels, and the bulk channel of
the topmost (N-¢4) Landau level are considered. The electrons in the edge
channels are carried from probe to probe without scattering, and the conductance
of each channel is e€*h. The electrons in the bulk channel can be backscattered ,
because the bulk current is carried through the extended states in the sample. The
conductance of the bulk channel is represented by a barrier in each segment in the
sample (see Fig. 15). The transmission probability of j—h barrier t; is expressed
by using resistivity of the bulk (N-z4) channel p®, the length and width of the

segment as

=1+ () o> (LWL (j=1105) (13)
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Each current channel is assumed to obey the Landauer-Biittiker formula® with the
ideal probes. The scattering between edge and bulk channel is neglected. The
assumption is justified at low temperatures in high magnetic fields, since the
spatial separation between bulk and edge channels are large enough not to interact

each other!!. The total current I flowing from probes 2 to 3 by m edge channels

and by a bulk channel is expressed as

I = (el ) m (=) + 8 (out) - 8 (im) ] = 0 , (14)
1= (el ) m (=) + 8 (out) - b (im) ] = 1, (15)
1= (el ) m (ug) + 5 (out) = 8 () ] = -1, (16)
and '

I,= (el ) m (u,~t;) + % (out) ~ 2 (in) ] = 0, a7

where u; is the chemical potential of j—th probes, and u J’?(in) and u J’?(out) are the
chemical potentials of the bulk channels coming in and out of the j—¢4 barrier.

They are expressed as

8 (in) = (out) a8)
pb (n) = (1-t5) ub (out) + 548 (out) | 19)
w3 (in) =43 (out) 0)
pb(in) = (1-t,) ub (out) + £, 4% (out) , 21)
and

pu? (out) =g, £+ (1=t ) u? (in), (j=1t04) . (22)

The number of edge channels m = 2n, where n is the Landau index number ( n=0,
1,2... ). When the spin—degeneracy is considered, e/h should be replaced by 2e/h

and the number of the edge channels m=n. The nonlocal resistance R(23,14) is
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derived analytically as

R(23,14) = (u,~u, )/ Ie
=(e/h)mt tyryr t, E/(A+B+C), (23)

where |
A=mr,D[t,t,(t;+mr,)+mt,E],
B=m(t,+mr )rytyr t, F , |
C=(m+t)t,[{mE+(1-r,r5)t,}

{mE+(1-ryr;)t,}-t,t,r; D],
D=mE+t,t, , E=1-r,r,rs , F=mE+t,(1-ryr;),

and r;=1-1¢, (j=1t05) .

In this model, there is one parameter p® that shows the backscattering of the
bulk current. If the topmost Landau extended level is not occupied (i.e. quantum
Hall plateau is observed), the parameters are p®=ce and all t;=0, and then the
nonlocal resistance R(23,14)=0. When the topmost (bulk) Landau extended level
is fully occupied, parameters are p°=0 and t=1, then the bulk channel acts in
similar to the edge channels and R(23,14)=0. Note that the nonlocal resistance
appears when the bulk and edge currents coexists. The nonlocal resistance only
appears when the Hall resistance is not quantized and the longitudinal resistance is
not zero, that is, the bulk current exists. The brief description of the nonlocal
resistance is shown in Fig. 16. For simplicity, one edge current and a bulk current
are considered. The chemical potential of the voltage probes is determined by the
chemical potential of the incoming currents (electrons). Both currents, emerging
from the voltage probe, have an equal chemical potential 4, that is the chemical
potential of the probe. The bulk electrons can be backscattered and the bulk

chemical potential changes, but that of the edge current is conserved. The
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chemical potential u_, of the next voltage probe is determined by the chemical
potential of incoming edge and bulk currents, and then the voltage difference
appears among the voltage probes.

The peak amplitude of the nonlocal resistance depends on the sample geometry
(L;/W, ) and the number of edge channels, but it is not influenced by p®.
Particularly, the transport properties are also influenced by the segment, where the
nominal current would not flow. McEuen et al. pointed out that the four—
terminal resistance, measured in high-mobility two—dimensional system at
quantum Hall conditions, have a nonlocal behaviorS. The resistivity tensor is not
necessary to understand the observed resistance. To test the validity of the model
in the mesoscopic wires, the calculated value and the measured amplitude of the

nonlocal resistance are compared in the next section.
4.1.3 The amplitude of the nonlocal SdH oscillations

The solid lines in Fig. 17 are the calculated peak amplitudes of the nonlocal
resistance for varying separation geometry AL/W ( L /W, in the model. see Fig.
15) for spin split Landau level n=11 (the up-spin peak of the n=1 level) and for
Landau level n=4 which spin degeneracy is considered. The corresponding
experimental peak values of nonlocal resistance are also plotted in Fig. 17 for
three samples (A, B and C) in the cases where no extra probes exist between the
current and voltage probes. The AL/W was measured by the SEM micrographs.
The conduction width reduction by the presence of the depletion layer at the side
wall is neglected in this analysis. When AL/W is small, the experimental
amplitude is larger than that of the calculated value. It is suggested in section
4.2.7 that the observed resistance is influenced by the extra probes, though they
are not in between the voltage and current probes. A role of probes will be

discussed in the next section. The experimental results, obtained from three

29



samples with different width and length, scale with AL/W and agree well with
those of the calculated values as a whole. The sample C was made from a
different wafer. The present model seems to reasonably explain the nonlocal
resistance of all the sample. The nonlocal peak values at Landau number n>>4 at
low magnetic fields are smaller than the calculated ones. Since the scattering
between the edge and bulk channels are significant due to smaller Landau splitting
at Jow magnetic fields, the nonlocal resistance is reduced below the predicted

value from the model in which the scattering is neglected.
4.1.4 Role of the probes

Based on the previous model, the chemical potential of the edge currents are
mixed up with'that of the bulk current at the probes. The nonlocal resistance
R(45,76) and R(45,32), where the separation length AL is equal to 2 ym, is shown
in Fig. 18. The peaks amplitude of the nonlocal resistance R(45,76) are several
times as great as that of R(45,32), as shown in Fig. 18(a). As the edge electrons,
which is emitted from the current probe 5, apparently circle around via probe
6—7—>8—1—>2—3, the chemical potential of the edge current is mixed up with
that of the bulk current at each probe. Thus the chemical potential of probes
successively approaches to the value of the bulk current. In result, the potential
difference between the serial probes becomes smaller. The relation R(45,76) >>
R(45,32) signifies that the difference of the chemical potential between probe 7-6
is much greater than that of the probe 3-2. The schematic explanation is shown in
Fig. 19. The chemical potential of the probes equilibrate with the 'bulk' one shown
by the broken line in Fig. 19, the difference (u,-u, ) is larger than (u,-u, ).
When the magnetic field direction reversed, the direction of the edge current is
also reversed, and R(45,32) becomes much larger than that of R(45,76), as shown

in Fig. 18(b). A suppression of the nonlocal resistance oscillations in the presence
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of the extra probes within the AL (Fig.14(b)), is also understood by the mixing
(equilibration) at the extra probes.

In Fig. 17, there is some discrepancy between experimental and calculated
value, when AL/W is small. In this resistance measurement, the extra probes exist
in the pathway of the edge currents between voltage probes, as the probe 2 in Fig.
19. The potential difference Becomes larger by the existence of the extra probes.
In Fig. 19, the difference (u,-u, ) is larger than (u#;~pm, ). The model of the
calculation does not include the effect of extra probes, and the observed resistance
is influenced by the extra probes, though they are not between the voltage and

current probes.

Table 1. The device parameters of the sample A - C at 1.5 K.

sample carrier density mobility wire width
(cm™) (cm?Vs) (pm )
sample A 3.2x1011 1.4x10° 0.48
sample B 3.1x101 3.4x10° 0.57
sample C 3.0x101 6.8x10° 0.67
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Fig. 14(a). Longitudinal resistance R(14,85) and Hall resistance R(14,36) of sample A at
0.5 K. At the low magnetic fields, a large negative resistance is observed due to the
ballistic transport and magnetically reduction of backscattering in narrow wire. The SdH
oscillation and quantum Hall plateaus are observed at high magnetic fields.

(b) Nonlocal SdH oscillation of sample A with various AL. The marks "*" ("**")
denote the existence of one (two) pair of extra probes between AL range. The extra
probes suppress the nonlocal SdH oscillation. A peak with AL=1 um near zero field is

caused by a electron focussing effect.
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Fig. 17. Calculated (solid lines) and experimental amplitude of nonlocal SdH oscillation
with Landau number n=1% and n=4 vs. AL/W, where AL is separation length and W is
the wire width shown in the inset. In the calculation of n=4, the spin—degeneracy is taken

into account.
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Fig. 18. Nonlocal SdH oscillation of sample A. The current flows from 4 to 5, and

voltage is measured at the probes 7-6 and probes 3-2. At the forward magnetic fields,
R(45,76)>> R(45,32) (a). At reverse magnetic fields, the relation also inverted (b).
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Fig. 19. Schematic illustration of the chemical potential of the probes when the nonlocal
SdH oscillation is observed. One edge current and bulk current is considered for
simplicity. The chemical potential of the bulk current is assumed to be ( u,~,)/2=p,
near the probes 1-3. The chemical potential of the j—th probe s which is separated
from the nominal current path, is determined by the chemical potential of incoming edge
current y=,_, and bulk current 4, as p=(u;_,+p4)/2. The difference (,uj_l—pcj) is reduced

when j increases, that is ,the edge current path through probes.
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4.2 Macroscopic system

4.2.1 Quantum Hall effect and nonlocal quantum conduction

in macroscopic size samples

In macroscopic size (order of several hundred microns) samples, which were
madc of the high mobility GaAs/AlGaAs hctcrostructurcs, Kanc et al.s reported
that the resistivity in high magnetic fields was affected by the sample geometry
and measuring current level. They explained that these phenomena were due to
the existence of current carrying edge states. In this section, the results of
resistance measurements in the order of millimeter size samples are discussed.
Particularly, the nonlocal resistance is studied and analyzed with the model
proposed by McEuen®.

The millimeter size Hall bar shaped GaAs/AlGaAs wire, whose width was 20
p#m, made by UV lithography and wet chemical etching technic. Schematic view
of the sample is shown in Fig.20(a). The resistance measurement was made at 0.5
K with current 0.3 4A. The electron mobility and carrier concentration of the
sample is 1.3x10° cm?/Vs and 3.4x10'" cm™2 respectively. The Hall resistance
(Ry), longitudinal resistance (R;) and nonlocal resistance (R, ), where the
separation length between current and voltage probes (see Fig. 2. in chapter 1) is
0.5 mm, is shown in Fig. 20(b). The QHE plateaus in the Ry, clearly appear, and
R; =0 at the filling factor v= 2 ~ 8 are also observed. Though the peak amplitude
of the SAH oscillation is expected to become larger with increasing magnetic fields
(e.g. peaks due to low index Landau level), the observed peaks of R, is much
reduced from the value estimated by the conductivity tensor which was calculated
by the self consistent Born approximation theory?. The nonlocal resistance Ry
shows peaks at the magnetic fields that the R, shows peaks, and both resistance

shows minima (zero) at the QHE plateaus regime. Note that the peak values of
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R, are much less (=1/100) than those of the R| peaks. At low magnetic ficlds B
< 2T, the R, is almost zero. The observed peaks of the Ry, and reduction of R,
SdH peaks are understood by the model®, in which both edge and bulk channels
were considered (discussed in section 4.1.2). The existence of both edge and bulk
channels, and adiabatic conduction of the edge current should be needed to
observe the nonlocal resistance. The appearance of the nonlocal oscillations in

Ry, at the scparation length AL=0.5 mm suggcsts that the cquilibration of the
chemical potential between edge and bulk currents may be suppressed during the

conduction more than 0.5 mm.

The peak amplitudes of the nonlocal resistance at Landau levels n=1% and n=4
were calculated by the model. The spin degeneracy was considered at the n=4
Landau level, since the spin splitting was not observed in the R;. The calculated
amplitude and experimental results of Ry, , where AL=0.5 and 1 mm (. e. AL/W =
25 and 50 respectively), are shown in Fig. 21. The calculated value shows good
agreement with experimental amplitude of Ry, for n=1%. But the observed
amplitude at n=4 is much smaller than the calculated value. The discrepancy may
be attributed to the reduction of the nonequilibrium distribution of the chemical
potential between edge and bulk currents for long separation length AL at low
magnetic fields, which is neglected in the model. When the energy difference of
the Landau level is small, the spatial separation between edge and bulk channels is
also small. Since the scattering among channels occurs and the reduction of the
nonequilibrium distribution of the chemical potential becomes significant at low

magnetic fields, the nonlocal resistance is reduced.

The current dependence of the same R, and Ry, with Fig. 20 is shown in Fig.
22. At the current up to 5 uA, the quantum Hall plateaus and zero resistance in R

still appear, and QHE breakdown do not occur. With increasing current, the
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longitudinal resistance increases at high magnetic fields, but no change is observed
at low magnetic fields B< 1 T. In contrast with R, behavior, the nonlocal
resistance is reduced at high magnetic fields. The magnetic field (=1 T), where
the current dependence in the R, appears, is in good agreement with that, where
the R, oscillation appears. The SdH oscillations of R,, measured with low
current, are much reduced from the value expected from the conductivity o,, and
o,, at the high magnetic fields. The reduction is explained as the edge currents
connect between the probes without a dissipation, that is, the effect of short circuit
due to the edge currents reduces the R .

The current dependence is understood as follows. The relaxation rate of the
nonequilibrium chemical potential distribution among bulk and edge currents
increases with the extent of the difference of the chemical potential among
currents'’. With increasing current, the chemical potential difference between
bulk and edge currents increases in the sample, and the significant reduction of the
nonequilibrium distribution occurs among currents. So, the nonlocal features, the
appearance of Ry; and the reduction of SdH oscillation in R; due to the existence

of the edge current, are suppressed with increasing current.

The carrier concentration dependence of R; and Ry, is shown in Fig. 23. The
carrier was increased by using the persistent photo—conductivity by LED
illuminaﬁon. With increasing carrier concentrations, the peaks of R; become
larger and the Ry is suppressed, though the mobility of the sample is enhanced.
These phenomena suggest that when the sample is illuminated, the depletion
region at the sample edge contracts, the spatial profile of the confinement potential
of 2DES changes the edge and bulk channels to be close (see Fig. 24). Since the
interaction (scattering) between bulk and edge channels becomes remarkable, the
nonlocal features due to the edge current is extinguished with increasing carrier

concentrations. The details will be discussed in section 4.2.8.
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Fig. 20. (a) Schematic view of the sample. (b) Hall resistance Ry, longitudinal resistance

R, and nonlocal resistance Ry at 0.5 K with current 0.3 uA.
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Fig. 24. Schematic illustration of the separation between edge and bulk states. When the

sample was illuminated, the profile of the confinement potential changed and both edge

and bulk state close together.
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4.2.2 An influence of the non-ideal probe on the transport

The resistances using the probe (1) of the same sample shown in Fig. 20
exhibited anomalous behavior at high magnetic fields. The contact resistances of
all the probes were lower than 50 Q at low magnetic fields. But at magnetic fields
more than 3 T, only the resistance of the probe (1) became very high (=100 kQ).
In Fig. 25, the resistance measured at 1.7 K by using the probe (1) is shown. The
three terminal resistance R(18,12) represents mainly contact resistance at the QHE
plateau regime at high magnetic fields. It is found that the R, shows negative
value even at relatively low magnetic fields and R, shows negativé value at high

magnetic region.

In the conduction model using the analysis of the nonlocal resistance®, the
probes are assumed to be ideal, whose contact resistance is zero. To understand
the observed negative resistance however, non-ideal properties of the probes
should be considered by taking into account transmission probabilities of the
electrons in each channel to the probe. The schematic description for the negative
resistance is shown in Fig. 26. For simplicity, two edge channels are considered.
The chemical potential of the edge current emitted from the current probe (2) are
defined as u, (outer channel) and 4, (inner channel). The electrons in the
channels, flowing along the sample edge without equilibration, go into the voltage
probe (3) with the transmission probabilities T, and T,. The chemical potential of
the probe (3) = 4, is given by an average of the chemical potential of incoming
currents with the weight T,. If the next voltage probe (4) is ideal, the voltage
difference between probes (3) and (4) becomes (T,~T)(p;—1,)/2(T+T,) as shown
in Fig. 26. The voltage difference becomes negative, when (T,-T)(u,~p,)< 0 .
Usually, the transmission probability of the channel of the lower index Landau

level is larger than that of the higher index Landau level, i.e. T,=2T,and y; = u,.
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So, the resistance should be positive or zero. But, using the probe (2), whose
contact resistance is very high (wrong), as a current probe, there is a possibility
that the reversal relation of p,=u, occurs due to possible anomalous transmission
from the probe (2) to each channels. When T,>T, the negative resistance appears.

Note that the probe (2) in Fig. 26 is non-ideal instead of the probe (1) in Fig. 25.

Above model treats only edge currents, but it can be extended to the regime,
where the bulk current coexists. This situation is represented by writing a bulk
current for the inner edge current. The negative resistance clearly appears at the
magnetic fields, where the bulk current exists as shown in Fig. 25. At the QHE
plateau regime, the nonlocal resistance is almost zero. These phenomena are
understood as follows. The equilibration of the chemical potential among edge
currents is much significant compared to that between edge and bulk currents,
since the spatial separation among edge channels is very small'® as shown in Fig.
27. At the QHE plateau regime, the chemical potential difference produced at the
non-ideal probe u,>u, is nearly eliminated before going into the next probe. So.

equilibration of the chemical potential (1,~u,) reduces the negative resistance.

The current dependence of the three terminal resistance (contact resistance of
the probe (1)) and Ry, is shown in Fig. 28. With increasing current, the contact
resistance is reduced and extent of the negative R, becomes smaller. At the
current 5 uA, the Ry; shows positive value, and is suppressed with further
increasing current. It is suggested that the extent of nonequilibrium chemical
potential distribution among channels is reduced, and the total transmission
probability to edge channels from the probe (1) in Figs.25 or 28 increases (T;~1

for all i) with increasing current.

The negative Ry; becomes positive when the magnetic field direction is

46



reversed as shown in Fig. 29(a) B®. At the reverse magnetic fields, the direction
of the edge current is also reversed. The positive Ry, is observed, because the
anomalous distribution of the chemical potential caused by the probe (1) is much

reduced at the next probe after longer journey.

When the current and voltage probes are exchanged as shown in Fig. 29(b), the
negative resistance appears at the opposite direction of magnetic fields. The
profile of the resistance is noisy at the high magnetic fields, because of the high
contact resistance of the voltage probe (1). In this case, the current probe (2) is
ordinary, thus 4, =u,, but the transmission probability of the voltage probe (1) is a
non-ideal one (Ty<<T,). In the reversed magnetic field (Fig29(b), B®), the
chemical potential difference u, >, is detected by the extraordinary voltage probe
(1) and the R becomes negative. It is found that the reciprocity relations of the
resistance!” are valid even in the sample with a non—ideal probe, because the
exchange of the current and voltage probes, and reversing of the magnetic field
direction are equivalent. The Landauer-Biittiker formalism is available to explain

the transport properties using non-ideal probes.
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Fig. 25. (a) Three terminal resistance, (b) longitudinal resistance, and (c) nonlocal
resistance using the non—ideal probe (1). The peak contact resistance estimated from (a)

was =100 k€2, and then R, and R; showed negative value.
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50



RESISTANCE (kQ)

OO OO

' 5HA _

- ——T0uE
L M

0 o 4 6 8

MAGNETIC FIELD (T)

o o o O

RESISTANCE

| 1uA‘
W
B B® 20Q I—
N BT R R
2 4 6 8

MAGNETIC FIELD (T)

Fig. 28. Current dependence of (a) three terminal resistance, which shows the contact

resistance of the probe (1), and (b) nonlocal resistance R, . With increasing current,

contact resistance was drastically reduced, and the negative R, became to be positive.
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Fig. 29. The nonlocal resistance for forward and reverse magnetic fields, with the

exchanged current and voltage probes.
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4.2.3 Artificially fabricated non-ideal probe

In section 4.2.2, the observed negative resistance, caused by the probe whose
contact resistance was happened to be very high, was explained by taking account
of the selective transmission to the edge and bulk channels from the probe. In this
section, the influence of the high contact resistance probe on the quantum

conduction was investigated using artificially fabricated non—ideal’ probes!®.

Samples were made from a wafer with modulation-doped GaAs/Alx'Gal_xAs
(x=0.27) heterostructure with carrier density of 3.2x10'! cm™2? and mobility of
6.6x10° cm?/Vs at 1.7 K. The probes were made by alloying AuGe/Ni/Au layers.
The surface of all the contact region (Fig. 30(a)) was damaged by slight etching
(50 nm) before evaporating the contact metals, and alloyed at 430 °C (Fig. 30(c)).
The schematic view of the sample is shown in Fig. 31. The contact resistances
become high, because the carrier density of 2DES near the electrodes decreases

due to the effect of the shallow etching, as shown by a dotted line in Fig. 31(b).

The longitudinal resistance R(32,41) and current dependent nonlocal resistance
R(12,43) are shown in Fig. 32(a). The average contact resistance of four probes is
40 kQ, and the resistance of the probe(3) becomes exceedingly higher with
increasing magnetic fields (100 k€ at B=~6 T). The nonlocal resistance R(12,43)
measured with low current (I< 1 4A) shows negative value at high magnetic fields,
while the longitudinal resistance R(32,41) shows positive value. The nonlocal
resistance may be much more influenced by the properties of the probes than the
longitudinal resistance is, since a large voltage drop in the nominal current path
due to the bulk current does not affect the nonlocal resistance'®. With increasing
current, the negative resistance becomes smaller, and the resistance turns into

positive value at I=5 yA. For comparison, the resistance measured in another
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sample, whose probes were fabricated without damag'ed etching process, are also
shown in Fig. 32(b). The contact resistance of all probes is as low as 200 Q or

less. Both nonlocal resistance and longitudinal resistance are positive value.

The negative resistance will appear in the situation that; the current probe
produces the nonequilibrium distribution among the chemical potential of the edge
and/or bulk currents. The chemical potential of edge currents is conserved from
probe to probe, the transmission probabilities of the edge currents to the voltage
probe are not even® (see section 4.2.2, Fig. 26). The observed negative resistance
of R(12,43) in Fig. 32(a) at the quantum Hall plateau regime can be understood as

‘the current probe (2) produces the nonequilibrium edge currents, and the next
voltage probe (3) has anomalous transmission for the incoming edge currents.
With increasing currents, the extent of the nonequilibrium of the edge currents

decreases and the anomalous negative resistance disappears.

It is demonstrated that the negative nonlocal resistance appears due to the non—
ideal probe. The high contact resistance probe is apt to have an anomalous
transmission probability to edge and bulk channels. The fabrication process of the
probes is very much important to make a ‘good probe’ for electron transport

measurement, such as the precision measurements of QHE.
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Fig. 30. Schematic illustration of the fabrication process of the non—ideal probes. The
hatched region corresponds to contact probes. (a) The surface of all the contact region
was etched 50 nm. (b) The metals were evaporated successively. The thickness of the
materials were 100 nm of AuGe(Ge 12 at.%), 30 nm of Ni, and 50 nm of Au respectively.
(c) Alloying. The carrier density of 2DES near the probes, shown by a dotted area, was
decreased by the effect of the shallow etching.
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Fig. 31. (a) The view of the sample. The hatched region corresponds to contact probes.
The electrons in the edge channels flow probes 1—>2-—>3—>4—>1. (b) Cross sectional
view of the contact probe region. The contact resistance became high, because the carrier
density of 2DES near the electrodes, shown by a dotted line, was decreased by the effect
of the shallow etching. The average contact resistance of four probes was 40 kQ, and the
resistance of the probe(3) became higher with increasing magnetic fields (100 kQ at B=6
T).
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Fig. 32. (a) Current dependence of nonlocal resistance R(12,43) and longitudinal
resistance R(32,41) at 1.7 K. The nonlocal resistance shows negative value at B>4 T,
while the longitudinal resistance has ordinary profile. With increasing currents, the
negative resistance became smaller, and the resistance turned into positive value at I=5
uA. (b) Nonlocal resistance R(12,43) and longitudinal resistance R(14,23) for another
sample of the same shape, but its probes havé been made without etching process. The
contact resistance of the probes are about 200 €. Both nonlocal resistance and

longitudinal resistance were positive value.
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4.2.4 Gate controlled probe (1)
Wedge shaped gate controlled Corbino-like probe

In the previous sections 4.2.2 and 4.2.3, the observed negative resistance,
measured with four—terminal geometry, was explained by the properties of the
non-ideal probe, which showed selective transmission to the channels belonging
to the higher index Landau levels. When such a probe is used as a current probe,
it makes the anomalous (inverse) distribution of the chemical potential of the
current to each channel. By using the non-ideal probe as a voltage probe, the
chemical potential of the probe should be different from the average value of the
incoming channels (see section 4.2.2, Fig. 26). In this section, the resistance
measurement using the probe, whose transmission probability of the channels are

controlled by a ‘wedge shaped gate’, is discussed.

In Fig. 33(a), the illustration of the sample is shown. The probe (1) is isolated
60 um from the sample edge, and surrounded by the 2DES like a Corbino
geometry. At the probe (1), the transmission probability to the inner-edge
(belonging to higher index Landau level) channel is larger than that of the outer—
edge channels is (see Fig. 33(b)), since the outer-edge current is much spatially
isolated from the probe (1) than that of the inner—edge current. The amount of the
transmission is very small at the QH plateau regime!®!°. The wedge shaped gate
was added‘on the 2DES region closely to the probe (1). The separation between
the gate and probe was 0.5 um. The carriers are depleted under the gate with
biasing negative voltage. With increasing negative gate voltage, the edge currents
can enter the probe (1), as shown in Fig. 33(c), since the depletion region extends
under the gate. Note that the bulk channel, extending in the sample, is connected
to the probe (1). The probe (1) acts as an ordinary probe for the bulk channel, but

the edge channels are isolated from the probe. The extent of isolation can be
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controlled by the wedge gate. The contact resistance of all probes was less than
100 €2 at B=0, thus, they were ‘ordinary’ probes. The measurements was made
after brief illumination by LED to improve the uniformity of 2DES, at temperature
1.7 K, with current 0.1 uA. The carrier concentration and mobility is N=

2.8x10' cm2, u=5.0x105 cm?Vs respectively.

The gate voltage V, dependence of two-terminal resistance R(16,16) at B=5.7
T (filling factor v=2, two edge channel exist) is shown in Fig. 34. The resistance
shows a plateau of R(16,16)=12.9 kQ (=h/2¢?) at V,<-2.8 V. With decreasing
negative gate voltage, the resistance increases. The two-terminal resistance at a
QH plateau is the sum of the contact resistance and Hall resistance!®'”. The
observed plateau at V,<-2.8 V is understood as the transmission probability of
the edge current to the probe (1) becomes unity, since the contact resistance of the
probes (=100 Q) is low enough. A part of the edge current, particularly the
outer—edge current, is not able to enter the probe (1) at V,>-2.8 V. The gate
voltage of this wedge shaped gate affects the width of remained 2DES region
between the gate and probe (1). The spatial separation between two edge channels
is so small that the plateau at R=25.8 kQ (=h/e?), which shows only one edge

current entering the probe, is not clearly resolved.

The resistance of nonlocal Ry (51.42) and longitudinal R, (36.21) geometries
with gate voltage +0.2 V and -3.5 V are shown ianig. 35. The positive gate
voltage +0.2 V is needed to equalize the carrier concentrations of 2DES and under
the gate, and to minimize the transmission of the edge current to the probe. At
V,=+0.2'V, both R, and R; become negative at the same magnetic fields, where
the transmission probability to the probe is very low. Note that if the other probe,
(4) for Ry and (6) for R, would be perfectly' ideal probe, the negative resistance

never be observed (see section 4.3.2). The observed negative resistance is one of
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the evidence that the ordinary probes even have the non-equal transmission
probability of incoming channels, which is T>T, (i<j, i and j are belonging Landau
index of the channel). At V,=-3.5V, all channels are connected to the probe (1),
the ordinary profile of both Ry; and R, are observed. It is demonstrated that the
anomalous selective transmission of channels can be realized with gate controlled

Corbino-like probe, and negative resistance appears due to the non-ideal probe.
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Fig. 33. (a) Schematic illustration of the sample with the probe controlled by the wedge
shaped gate. The hatched region corresponds to alloyed contact probes. The probe (1) is
isolated 60 um from the sample edge. (b) The transmission of the edge current is very
small when the edge current can go through under the gate. The extent of transmission
of inner edge current is larger than that of the outer-edge current. (c) Expanded view of

the probe (1) and the gate. The edge current transmission can be controlled by the gate.
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Fig. 34. The gate voltage V, vs. two—terminal resistance R(16,16) at v=2 (B=5.7 T).
With reducing the gate voltage, the transmission probability of the edge current increase.
The quantized resistance (h/2e?) appears at V,<-2.8V, that is, two edge channels can

enter the probe (1).
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negative resistance was observed at the magnetic fields in which the edge current
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was obtained on the whole range.
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4.2.5 Gate controlled probe (2)

Estimation of the energy equilibration length of edge current

In section 4.2.4, the negative resistance was reproduced by the gate controlled
probe, but the transmission probability of edge channel was not separately
determined. As shown in Fig. 36, a Corbino-like probe (1) controlled by Schottky
gate (G,), and a voltage probe (2) with a gate (G,) as a detector of chemical
potential distribution were used to investigate the anomalous distribution of the
chemical potential of the channels and its equilibration. The probe (1) is isolated
from the sample edge by 40 um, and surrounded by the 2DES like a Corbino
geometry. At the probe (1), with reducing gate voltage of G,, the edge channel,
belonging to the higher index Landau level can not go thorough under the gate,
and go into the probe (see Fig. 36(b) and (c)). When the carrier is fully depleted
under the gate, all edge channels are connected to the probe (1). In this way, this
type of 'controlled non—ideal probe' can tune the transmission of the edge current
by using the energy difference of the Landau levels?®. The gate near the voltage
probe (G,) was used as a detector of the chemical potential distribution among
channels. The measurements was made after brief illumination by LED, at 0.5 K,
with current 0.1 uA. The carrier concentration and mobility are N =3.3x10'! cm~

2, u=6.2x10° cm?/Vs respectively.

The two—terminal resistance R(16,16) at the gate voltage of G;; V,=+0.1V, is
shown in Fig. 37(a). When the peaks v= 2 and 3 were observed, the transmission
of edge channels to the probe (1) was suppressed. In the gate voltage dependence
of R(16,16), when the filling factor of the bulk state is v= 2, 3 and 4, plateaus of
the quantized resistance clearly appeared. In this way, the transmission of edge
channels to the probe (1) was controlled one by one.

The sketch of probe (1), used as a current probe, at the filling factor v=2 is
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shown in Fig. 38. The chemical potential of two edge currents coming to the
probe (1) is assumed to be 4,. The outer—edge current (see Fig. 38) goes through
under the gate and is not changed its chemical potential, while the inner-edge
current can enter the probe, at which the transmission probability of ¢ (0< ¢< 1).
By using the Landauer—Biittiker formalism, the chemical potential of the probe (1)

U, becomes

HPo=Hythl/te, (24)

where I is the current. Note that, the chemical potential u, of the inner—edge
current emitted from the probe (1) is expressed as u,=u, + hl/e , and is independent
of the transmission probability ¢. After passing the probe (1), the anomalous
chemical potential difference between inner and outer edge current is made, that is
M,—#y= hl/e. The extent of the difference of chemical potential is detected by
using the Schottky gate?! at next voltage probe (2).

The nonlocal resistance R(51,42), measured at the gate voltage (V,, V), is
shown in Fig. 39. When V= ~0.5 V and V ,=+0.1 V, as shown in curve (a), the
ordinary profile of the Ry, is observed, since the transmission probability of all
edge currents is about unity. As shown in (b) and (c), at V,=+0.1 V and the
fields that the bulk current exists, negative resistance is observed due to the very
small transmission of edge currents to the probe (1). The resistance also becomes
negative at the QH plateau regime (v=2 and 4), as shown % in the figure. The
amplitude of negative resistance at V,,= -0.24 V becomes larger (where only
outer—edge channel is connected to the probe at v=2) than that of the case Vo=
+0.1 V, since the chemical potential of outer-edge current is selectively detected
by the voltage probe (2). The effect of the non-equal chemical potential
distribution among channels is enhanced. At V= —0.2 V (only inner-edge

channel is connected to the probe (1) at v=2), the negative resistance is observed

65



as shown in (d) and (¢). But the negative resistance disappears at QH plateau
regime. It has been mentioned that the chemical potential difference between
- inner and outer edge current is expressed as u,—u,= hl/e , which is independent of
the transmission probability z. The extent of negative resistance shows that the
larger chemical potential difference exists at V= +0.1 V (t=0).

. The schematic illustration for explanation of the chemical potential difference
of two edge currents at v=2, is shown in Fig. 40, which is corresponding to the

results in Fig. 39(a) - (c).

* (@) (Vg5 Vi,)=(-0.5V, +0.1 V): Since all edge currents are connected to the
probe (1), and the chemical potential of both edge current is equal to each other

(4,) and the nonlocal resistance becomes zero.

*(b) (Vg Vi, )=(+0.1 V, +0.1 V): The transmission of the edge channel is very
small at the probe (1) and an inverse distribution of chemical potential among
channels appears (4, 4,). Since the chemical potential difference is equilibrated
during conduction from the probe (1) to probe (2), the chemical potential of each
current becomes ¢/ and ¢'; just before the probe (2). The chemical potential of the
probe (2) is written by using the transmission probability of each channel T, and
T, as;

o= (Top'y +Top' )/ (Ty+T)). (25)

The chemical potential difference of edge currents incoming to the probe (4)
should be reduced. The chemical potential of the probe (4) is written as

U=y + #';) /2, and then the observed resistance is given by;

(o =t ) €= (fg =1y X Ty =T, ) /26K Ty + T, ). (26)
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In this case at V,=+0.1V, both edge currents are connected to the probe (2).
The observed negative resistance suggests that there is difference of the

transmission probability as 1= T> T, in the ‘ordinary’ probes.

* () (Vg5 Vor)=(+0.1 V, =0.24 V): The negative resistance is larger than that of
(b). According to Eq.(26), the extent of negative resistance is determined by the
product of (u'y - ¢',) and (T — T,). In this case, T,=0 at V,,=-0.24 V. Thus (T, -
T,) becomes nearly unity =1, the negative resistance is enhanced. It is confirmed
that the inverse distribution 4 < #'; exists and it does not equilibrate even for

millimeter distance.

The Hall resistance R;;(51.62), at the same condition of the gate voltage as in
Fig. 39, is shown in Fig. 41. At the condition (b) and (c), the anomaly of the Hall
plateau at v=2 is clearly observed. The deviation of the Hall resistance from the
quantized value is (b) -170 Q and (c) -400 €2, which are nearly equal to the
negative resistance observed in the nonlocal resistance (see Fig. 39(b),(c)). The
observed deviation is understood by similar explanation for negative nonlocal |
resistance, mentioned above. The extent of chemical potential equilibration
among edge channels by the probe is estimated from the Landauer-Biittiker
formalism®'%13, The detail of the calculation? is shown in appendix 1. The
transmission probability to the probe (2) is estimated as T/T;= 2.4 . If T, is
assumed to be unity, the calculated T +T, = 1.4 is much lower than the estimated
value T+T,~ 2 from the contact resistance of the probe (2). The discrepancy is
attributed to the chemical potential equilibration under the gate G,. It is suggested
that when the negative bias is applied to the gate (in the case of (c)), the
confinement potential of the 2DES near the gate changes, and the chemical
potentials between inner and outer edge channels are well equilibrated. The ratio

of Ty/T, is overestimated by the effect of the equilibration under the gate. The
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effect of the confinement potential on chemical potential equilibrium will be
discussed in section 4.2.8.

The equilibration length L, of the chemical potential of edge currents is defined
as the length where the difference of the chemical potential is reduced to that of
1/e. The calculated L, as shown in appendix 1, is 700 um. But it may be
overestimated by the following reason. When V,=+0.1V, the transmission
probability of the edge current to the probe (1) is very small, #=0.03 is estimated
from the observed R(16,16) in Fig. 37(a) and Eq.(24). The chemical potential of
the probe (1) becomes very high value (>70 meV estimated by Eq.(24)), which
exceeds several times as large as the energy separation of Landau levels at v=2.
The current is supplied to the edge channels around the probe (1), not only near
the gate G,, since the breakdown of the QHE occurs due to the large electrostatic
potential of the probe (1). Then the probe (1) supplies current to the edge channels
by using the bulk state. The chemical potential difference among the channels

becomes larger than the estimated value from the Landauer-Biittiker formalism?2,

To reinvestigate the equilibration length L, of the inverse chemical potential
distribution of edge channels, the sample geometry is modified as shown in Fig.
42. 'The control gate G, and voltage probe (7) with a gate G, as a detector of the
chemical potential distribution, were placed. The separation between G, and G is
60 um. The carrier concentration and mobility is N =3.4x10'! cm™2, u=5.9x105
cm?/Vs at 0.5 K respectively.

The gate voltage V;, dependence of the resistance R(51,67) at B=6.5 T (filling
factor v=2, two edge channel exist) is shown in Fig. 43. At V= -0.4V, all edge
channels are connected to the current probe (1). The chemical potential of emitted
edge current is the same value as that of the probe (1). The observed resistance is
independent of V, and shows quantized resistance (h/2e’= 12.9 kQ) as shown

schematically in Fig.44(a).
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At the V, = —0.08 V, only inner edge current comes into the probe (1), the outer
edge current goes through under the gate G,. The resistance R(51,67) shows
minimum at V;,=—0.07 V, where the inner edge channel is reflected by the G,
and it should be zero if the equilibration is absent. In this case, from the deviation
from the quantized value at V;;= +0.2 V and V,= ~0.07 V, the property of the
probe T/T,= 1.08 and L =96 um is obtained. If T, is assumed to be unity, the
calculated T +T,= 1.93 shows good agreement with the estimated value 1.97 from
the contact resistance measurement at v=2. The obtained L is comparable to the
equilibration length of the normal (non-inverse) nonequilibrium distribution
reported by Miiller et al. . With decreasing V , below ~0.07 V, it is predicted
from the Landauer-Biittiker formula that the observed resistance is constant until
the G, completely cut off the edge current, since the chemical potential of the
probe (7) becomes same value of outer edge current. But at V= -0.08 V, the
resistance increases with reducing V,. It is suggested that the mixing among
channels is significant, at the gate voltage near its pinch off value, since the spatial

separation of the channel is close?.

In summary, the reciprocal symmetry is observed in the measurement with the
non-ideal probe. The Landauer-Biittiker formula is valid to explain the transport
property of 2DES using the non-ideal probes. By using the Landauer-Biittiker
formula, the energy equilibration length of the edge currents L, is estimated. At
v=2, L,=96 um is obtained by using the probe whose transmission of the channels
is artificially controlled by the gate. But the ambiguity of the estimated L,

remains, because the equilibrium by the gate is neglected.
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Fig. 36. (a) Schematic illustration of the sample with the probe controlled by the
Schottky gate. The hatched region corresponds to alloyed contact probes. The probe (1)
is isolated 40 um from the sample edge. (b) Expanded view of the probe (1) and the
gate. The edge current transmission can be controlled by the gate. The transmission of
the outer—edge current is very small when the edge current can go through under the gate.
The extent of transmission of inner edge current is larger than that of the outer—edge
current. (¢(1)-c(3)) Schematic illustration of the Schottky gate. With reducing gate
bias, the edge current becomes to be reflected at the gate (c(2),c(3)). Vv is the filling

factor under the gate.
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Fig. 37. (a) The two-terminal resistance R(16,16) at V= +0.1 V. Large peaks of

R(16,16) are observed at the quantum Hall plateau regime. (b) The gate voltage Vg, Vs

R(16,16) at several magnetic fields, at which the filling factor v=2, 3 and 4. The plateaus

are clearly observed. The transmission of the edge channels are controlled one by one.
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Fig. 38. Expanded view of the probe (1) and the gate. The transmission probability of
the inner—edge current to the probe (1) is denoted by z. In the case that the total current

I is flowing through the probe (1), the chemical potential of the probe (4,,) and emitted

inner—edge current (u,) are shown.

72



1 l i
| Ry (51.42) T=0.5K

o [@) Va1 Ve =(0.5v.0.1v) [\

—(b) (0.1V,0.1V)

~(c) (0.1V,-0.24V)

RESISTANCE
o

~(d) (-0.2V,0.1V

12000

1 ] 1 ] 1 |

o [(8) (-0.2V,-0.24) \/ .

0 2 4 6
MAGNETIC FIELD (T)

Fig.39. The nonlocal resistance R(51,42) at various sets of the gate voltage (V

(a) All the edge channels are connected to the probe (1), the ordinary profile appears. In

the cases (b) - (¢), the negative resistance due to the inverse chemical potential

distribution of the edge currents is observed. Especially, the negative resistance at the

quantum Hall plateau regime (shown %) is observed in the (b) and (c).
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Fig. 41. The Hall resistance R(51,62) at three sets of the gate voltage (V,, Vo) (@) All
the edge channels are connected to the probe (1), the ordinary profile appears. In the
cases (b) and (c), the anomaly due to the inverse chemical potential distribution of the

edge currents is observed in the Hall plateau, as shown ?.
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Fig. 42. Schematic illustration of the sample with the current probe control gate (G,) and

the detector probe (7) with a gate (G,). The separation between G, and G, is 60 um.
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Fig. 43. The gate voltage V,;, vs. R(51,67) at v=2 (B=6.5 T). (a) all edge channels are
connected to the probe (1). (b) Only inner edge current enter the probe (1). The gate

voltage, marked  (V;,=-0.08 V), only outer edge channel can enter the voltage probe

7).
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4.2.6 Contribution of the edge and bulk current to the

nonlocal resistance

In previous sections 4.1.1 — 4.2.1, the nonlocal SdH oscillations, observed in the
mesoscopic size” and even macroscopic size®?* samples are discussed. The origin
of the nonlocal resistance is interpreted by mixing of the edge channels and bulk
channel at the probes®24. When the nonlocal resistance shows SdH peaks, the
Fermi energy level intersects with a Landau level in the sample, and both edge
channels and bulk channel coexist at the Fermi level. The model proposed by
McEuen et al.® explains the nonlocal SdH oscillations qualitatively by using the
Landauer—Biittiker formula. The scattering of bulk electrons is represented by the
transmission probability at each segment. Details are described in section 4.1.1.
In order to observe the nonlocal SdH oscillations, it is necessary that both edge
and bulk channels should exist and connect to the probes in 2DES, and the
chemical potentials of the edge and bulk currents do not equilibrate completely at
least over the nonlocal separation length AL. In this section, the magneto—
resistance of a macroscopic size GaAs/AlGaAs wire with Schottky gates is
discussed. The gate voltage dependence of the nonlocal resistance, where the gate
lies across on the nonlocal path, is investigated to study the role of the edge and

bulk currents®.

A multi terminal wire with four Schottky gates?® was fabricated as shown in
Fig. 45. The contact resistance at probes is typically 100 €2. The direction of the
magnetic fields is denoted in Fig. 45, where the electrons in edge channels circle
around clockwise. The measurement was made after the brief illumination by a
LED light to increase the carrier density as N_ = 3.3x10!! cm™. The mobility u is
6.0x105 cm%Vs at 4.2 K. In this experiment, only G, was used, and other gates

G,, G, and G, were biased at +0.1 V to compensate for reduction of the carrier
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density under the gate.

The gate voltage V., dependence of the nonlocal SdH oscillations was
measured with the current 0.5 4A at 0.5 K as shown in Fig. 46. With decreasing
V3> the carrier density under the gate area decreased, and the peaks reduéed
before the gate was pinched off. The pinch~off voltage of the G, gate is about
~0.45 V. The spin selective diminishing of the nonlocal resistance is observed at
the Landau number n=1 and 2,. The peaks due to the up—spin state decreased at
first, and then those due to the down—-spin diminished. The peak amplitude of the
nonlocal resistances at the Landau number n=1 vs. gate voltage (V,) is shown in
Fig. 47. The up—spin peak and down-spin peak decreased in different manner,
and completely diminished at about V= 0.1 V. The selective diminishing of
the nonlocal SAH oscillation peaks with different spin can be explained in the
following way. As mentioned before, both edge and bulk current are necessary to
observe the nonlocal SdH oscillations. If the bulk and/or edge currents are cut off
at the gate, the nonlocal resistance can not be observed. With decreasing gate
voltage, E;, crosses the bulk state and the bulk current is cut off at first. In fact, the
diminishing gate voltage of all nonlocal SdH oscillations ( —-0.1 V) is considerably
higher than the pinch-off voltage ( —0.45 V ), at which all current channels
through the gate including the edge currents are blocked. The diminishing of
nonlocal SdH oscillations is due to the cut—off of the bulk current by the gate

voltage.

At the down-spin peak magnetic fields, E intersects with the extended Landau
state of the down~spin. In this case, the down=spin and up-spin states were
overlapped (Fig.48(a)) in 2DES region, since the spin splitting energy in the bulk
GaAs sample, is much smaller than i w_(Landau level separation energy). The

chemical potentials of both states are in equilibrium and the 'bulk current' consists
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of the two states. With decreasing gate voltage, E; comes between two states,
because the spin-splitting is enhanced due to the exchange interactions of
electrons under the gate area (Fig.48(b))?%. Even in such a case (b), the bulk
current can flow under the gate through the up-spin state, and the nonlocal
resistance can be observed. With reducing gate voltage, E;, crosses the up—spin
state under the gate and the bulk current is completely cut off, and then the peak of
the nonlocal resistance diminished (Fig.48(c)).

On the other hand, at the up-spin peak magnetic fields, E; intersects with the
up-spin state and only the up—spin state exists mainly as the 'bulk current' in
2DES region (Fig.48(d)). With decreasing gate voltage, E is below the up—spin
state and the 'bulk current' from the up-spin state can not go through the gate
(Fig.48(e)). The cut—off gate voltage of the up-spin peak is higher than that of the
down-spin peak, since the amount of E reduction to cut the 'bulk current' from
mostly one state (the up-spin state) is smaller than that of two states (the up-spin

and down-spin states).

In summary, the influence of the bulk and edge states on the nonlocal resistance
is investigated by cutting the bulk and edge current at the gate. With decreasing
gate voltage and carrier density under the gate, the SdH oscillation peaks of the
down-spin Landau levels diminish at lower gate voltage than those of the up—-spin
levels. This could be explained as the 'bulk current' corresponding to the down-
spin Landau level peak of the SdH oscillations comes from the overlapping down-
spin and up-spin states, while the up—spin Landau level peak comes from mostly

the up-spin state.
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Fig. 45. Schematic view of the sample. The notation G,(i=1 - 4) and number denotes
Schottky gate and probes, respectively. At denoted magnetic fields, electrons in the edge

channels circulate clockwise along the sample edge.
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Fig. 46. (a) Longitudinal resistance R_(13,64) and Hall resistance ny(13,25). (b)
Nonlocal resistance R(34,25) with various gate voltages (V;). The number denoted n is

Landau index number. Up and down represent the spin state of Landau levels.
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Fig. 47. Peak amplitude of nonlocal resistance of up~-spin state and down-spin state of
Landau level number 1. The diminishing voltage of the down—spin state is smaller than

that of the up-spin state.
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Fig. 48. Schematic cross section of electron energy levels in a magnetic fields parallel to
nonlocal path of 'bulk current'. The broadening of each state is the energy width of
extended zone of Landau level. The hatched region represents occupied down-spin state
and shaded region shows occupied up-spin state. When the Fermi level comes between
these states by applying the gate voltage, the spin splitting is enhanced. Fermi level

intersects with down—spin state in 2DES region (a) — (c), intersects with up-spin state in

2DES region (d) and (e).
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4.2.7 Influence of the extra probe on the quantum transport

In section 4.1.4, the role of a probe was discussed. It was suggested that the
chemical potential of the edge and bulk currents are equilibrated in the probe. The
influence of extra probes on the transport have been examined by cutting the bulk
and edge currents in the extra—terminals by the gate voltage?%2’. These extra
probes have apparently no cffect on the measurement. The same sample section
4.2.6 was used (Fig. 49). The configuration of the measurement was the same as
described in section 4.2.6. The gate voltage —0.5 V was applied to electrically
disconnect the extra probe. The gate was biased at +0.1 V, when the extra probe

was connected.

When the extra probe is disconnected, both normal and nonlocal SdH oscillation
peaks at high magnetic fields are altered as shown in Fig. 49. The influence of
extra probe on the edge and bulk currents is considered as follows?»*”. When the
extra probe is connected, the bulk and edge currents go through the gate, and the
mixing of the edge and the bulk currents occurs in the extra probe, as shown in
Fig. 50(a). Then the chemical potential of the emitting edge and bulk currents is
equilibrated. As a result, the chemical potential of the edge current outgoing from
the probe 4', changes from the incoming one u,, since chemical potential of the
incoming bulk current 4, is not equal to #_. On the other hand, when the extra
probe is disconnected, the bulk and edge currents, incoming to the extra probe, are
reflected at the gate. In this case, the mixing does not occur, and the chemical
potential of edge current does not change, as shown in Fig. 50(b). The SdH
oscillation peaks of the longitudinal resistance should become larger, when the
extra probes between the voltage probes are connected, since the change of
chemical potential of the edge current at the extra probe results in a larger voltage

~ difference. As shown in Fig. 49(a), the peaks of normal SdH oscillations
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R(13,64) become smaller, when the extra probes 2 and/or 5 are disconnected by

the gates G, and/or G,.

The nonlocal SdH oscillations are also affected by the extra probes. As shown
in Fig.50(b), the nonlocal SdH oscillations R(34,26) become smaller when the
extra probe 5 in between the separation path is connected by the gate G,. In the
case that the extra probe is attached to the separation path, this extra probe causes
a larger voltage difference in the separation path. The voltage difference between
the current probes (the two terminal resistance) is hardly affected by the other
probes. Thus the voltage difference between the voltage probes (the nonlocal
resistance) becomes smaller when the extra probe is connected. This is consistent
with the previous experimental result, where the nonlocal SdH oscillations in the
mesoscopic multi-terminal wire diminish greatly, when there exist extra probes in
the separation path?.

On the contrary, the nonlocal SdH oscillations R(34,25), as shown in Fig.50(c),
become larger when the extra probes 1 and 6 between the voltage probes are
connected by the gate G,. These experimental results can be also explained as the
extra probes attached to the path between the voltage probes causes a larger
voltage difference. The nonlocal resistance becomes larger when the extra probes

between the voltage probes are connected.

In summary, it is found that the normal and nonlocal SdH oscillations at high
magnetic fields alter by disconnecting the extra probes electrically. These changes
can be understood by the result that the mixing of edge and bulk currents at the
electrode of the extra probe is interrupted, when the extra probe is disconnected.
The magneto—transport properties of a 2DES at high magnetic fields are governed
by the edge and bulk currents and the effect of all probes linked to the sample

should be considered.
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Fig. 49. Normal and nonlocal SdH oscillations with connecting (con.) and/or
disconnecting (discon.) extra probes by the gates. (a) Normal SdH oscillations. (b) and
(c) Nonlocal SdH oscillations.
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Fig. 50. Influence of an extra probe on the chemical potentials of the edge and bulk
currents. (a) Extra probe is connected, (b) extra probe is disconnected. When the extra

probe is connected, the chemical potential of the edge current changes.
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4.2.8 Nonlocal quantum transport controlled by tunable

confinement potential of 2DES

The electronic transport of the two—dimensional electron system (2DES) in a
quantum Hall regime is understood by considering both edge channels and bulk
channels %11 (sée section 4.1.2). The nonlocal features of the quantum transport,
such as nonlocal SdH oscillations®’, non-scale resistance’, appear when the
adiabatic edge channels and dissipative bulk channels coexist and they are well
decoupled. The extent of decoupling between edge and bulk channels may be
influenced by the profile of the confinement potential of the 2DES. The magneto—
resistance of the GaAs/AlGaAs wires, whose brinks are covered with Schottky
gates, was measured to investigate the influence of the confinement potential of

the 2DES on the quantum transport.

The sample was made of modulation doped GaAs/AlGaAs heterostructure, with
carrier density 3x10' cm2 and mobility 7x10° cm?/Vs at 4.2 K. It was shaped by
photo lithography and wet chemical etching technic. The schematic view of the
sample is shown in Fig. 51. The width of the mesa-etched wire is 120 um, the
edge of the wire is covered with the Schottky gate (G1 — G4 in Fig. 51, made from
Au) of width 20 um, except for the ohmic contact region. The 2DES under the
gates is depleted with the gate voltage lower than the threshold value V= -0.55
V. The extent of the depletion region from the edge of the gate was estimated to
be 0.5 um at V= -2 V from the resistance at the zero field. The effective
confinement potential of the 2DES can be controlled with the applied gate voltage
which is lower than V,,. The magnetoresistance up to 8 T was measured at 0.5 K
with a current 0.3 #A. In this experiment, the same voltage was applied to all

gates G1 - G4, otherwise noticed.
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The nonlocal resistance R(14,23) at different gate voltage is shown in Fig. 52.
In the peaks corresponding to the spin split Landau level n=1, the amplitude of the
up-spin peak changed very little, while that of the down spin peak was much
affected by the gate voltage (see Fig. 52(a)). The peak amplitudes corresponding
to n= 2, became larger with reducing gate voltage. At the low field region (n= 3),
as shown in Fig. 52(b), the down~spin peaks developed with decreasing gate
voltage, while these were almost extinct at V =12V

In Fig. 53, the gate voltage dependence of the longitudinal resistance R(34,21)
is shown. The peak resistance of SdH oscillations was much reduced with
lowering gate voltage. The up-spin peak of n=1 Landau level is not much
changed by the gate voltage, which is similar to the behavior observed in the
nonlocal resistance.

The gate voltage dependence of the longitudinal resistance at the peak of n=4
Landau level is shown in Fig. 54(a). Four dips of the resistance, in the gate
voltage range of V< V<0, were observed when the region under the gate is in
quantum Hall plateau regime, where the bulk states and edge states were separated
spatially by the gate (see Fig. 54(b)). With lowering gate voltage below V., the
longitudinal resistance decreases drastically. By using the model, proposed by
McEuen et al.®, the peak amplitude of the longitudinal resistance can be
calculated. But the model does not contain the equilibration of the chemical
potential among channels, thus the observed longitudinal resistance should be
larger in the case that the equilibration among channels occurs. Since the
separation between bulk and edge channels is large enough to decouple each other
at v=8 dip (V,=0 V) and V,=-2V, the resistance reduces to the value (134 Q), as

is predicted by the model. The detail of the calculation is shown in appendix 2.

The enhancement of the nonlocal magneto-resistance and reduction of the

longitudinal resistance with decreasing gate voltage are understood by considering

91



nonequilibrium conduction and decoupling among edge and bulk states. The
schematic expression of the decoupling is shown in Fig. 55. With reducing gate
voltage, the depleted region of 2DES expands under the gate, the spatial profile of
the effective confinement potential near the Fermi energy becomes gentle, the
edge channels and bulk channels are spatially separated well, and their chemical
potential is not equilibrated. Recently, Chklovskii et al. reported?® the calculation
that the spatial separation between edge and bulk states scales with the width of
the depletion layer that extends under the gate to the boundary of the 2DES. Their
theoretical prediction is qualitatively consistent with our results. In this Schottky-
gated sample, when V<V, the impurities and/or defects due to the sample
fabrication process are well separated (=20 um) from the edge and bulk channels,
they may not affect the mixing among channels, in contrast to the experiment
which is measured in the in—plane-gate sample fabricated by focused-jion-

beam?”.

The nonlocal resistance R(14,23), when one gate voltage (shown G, (i=1-4)in
Fig. 56) is applied -2 V and other gate voltage is -0.4 V, is shown in Fig. 56.
When G, is applied -2 V, the observed amplitude of nonlocal resistance becomes
larger than that in other cases. At V,=-2V, the equilibrium of the chemical
potential among channels are much reduced. On the other hand, a significant
mixing among channels occurs at the V,=-0.4 V. To appear the nonlocal
resistance, the edge current emitted from the current probe, should arrive at the
voltage piobe without equilibration of its chemical potential between the bulk
current. In this measurement, the edge current is transported from the current
probe (1) to the voltage probe (2) along G,. Since the equilibrium of the chemical
potential between bulk and edge currents is reduced at G,= -2V, the nonlocal

resistance R(14,23) is enhanced.
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In summary, the peak amplitudes of nonlocal resistance become larger with
decreasing gate voltage, while the amplitude of the normal SdH oscillations in the
longitudinal resistance is reduced. These phenomena are interpreted in terms of
the enhancement of the decoupling between edge and bulk channels. The
nonequilibrium between edge and bulk currents becomes marked by the gate
induced gentle confinement potential. It is demonstrated that the energy
equilibration length of the current carrying edge states varies with the profile of

the confinement potential.
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Fig. 51. Schematic view of the sample. (a) G, — G, are Schottky gates. The hatched
region (1 — 4) corresponds to ohmic contact. (b) The cross sectional view of the sample
across the channel. The Schottky gates covered 20 um of the sample edge. The 80 um

width of the center of the sample is not covered with gate metal.
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Fig. 52. (a) Gate voltage dependence of the nonlocal resistance R(14,23). Arrows show
the spin state of Landau levels (n). (b) Expanded view of the low-field regime.
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Fig. 54. (a) Longitudinal resistance R(34,21) vs. gate voltage at B=1.6 T. The Landau
level n=4 is occupied as bulk states. (b) Schematic illustration of the confinement

potential of 2DES and Landau levels at Vo< Vi (left) and V < V<0V (right).
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Fig. 55. Schematic representation of the electrostatic confinement potential. Lowering
V,, the depletion region expands from the edge of the gate, the spatial profile of the

potential at E; changes.

98



' r ' — I ' I
R(14.23) T=05K |
l{’)"'
<Z,: G1
< _
2
fﬁ G2
(I —
G3
G4
. L | . | . L
0 1 2 3 4

MAGNETIC FIELD (T)

Fig. 56. Nonlocal resistance R(14,23). One gate Gl; is applied —=2.0 V, and others are
biased at 0.4 V. The gate G,, along the pathway from the current probe (1) to the

voltage probe (2) affect the observed resistance.



4.2.9 Magnetocapacitance and edge state in quantum Hall regime

Magnetocapacitance in a two dimensional electron system (2DES) showed the
quantum oscillations and minima at the quantum Hall plateaus®®-34, There were
two kinds of interpretation about the origin of the quantum oscillations; a 'DOS
(density of states) model' and a 'resistive plate model'. In the DOS model3>%, the
measured capacitance consists of series capacitance of the barrier layer
capacitance between 2DES and the metal gate (C,), and the channel capacitance,
which is proportional to DOS of 2DES at the Fermi level (E;). When E; is in the
localized state between the Landau levels, DOS becomes small and the minima of
measured capacitance would be observed. In the resistive plate model®!, the total
capacitance is determined by the distributed system of C, and the resistive plate
with 0. The minima of the capacitance is due to the minima of o, when E_ is
between the Landau levels. Since the samples with the Corbino geometry are used
in the resistive plate model, there is no influence of the edge channels on the
measured capacitance. In this section, the influence of the edge channels on

magnetocapacitance is discussed.

The samples were made of the GaAs/AlGaAs heterostructure wafers. The
thickness of non-doped AlGaAs, doped AlGaAs and non-doped GaAs cap layer
is 2004, GOOA and 2004, respectively. The carrier density N = 2.8x10! cm™,
and the mobility = 3.7x105 cm?/Vs at 0.5 K, respectively. The Schottky gate was
formed by evaporating Au on the GaAs cap layer. Schematic view of the sample
is shown in Fig. 57(a). The differential capacitance with respect to the gate
voltage between the probe and gate was measured by a capacitance bridge with a
modulation frequency of 1 kHz. After this, differential capacitance was
abbreviated to capacitance and the gate area (S) was defined as the area of 2DES

which is covered with the Schottky gate, as shown hatched region in Fig. 57(a).
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The modulation voltage (1 mV) is so small that further reduction did not influence

the results.

In Fig. 57(b), a typical magnetocapacitance is shown, with the Hall resistance
which was measured in a Hall bar sample made from the same wafer. The
capacitance shows minima at the Hall plateaus. The measured capacitance at zero
magnetic field agrees very much with the calculated value of a two—plate capacitor
(C,) in the measured geometry. The capacitance shown is the corrected one, after
the stray capacitance is subtracted from the measured one, The stray capacitance
(=2 pF) was estimated from the capacitance at the negative gate voltage enough to

deplete 2DES under the gate.

To examine whether the magnetocapacitance is related to the DOS of 2DES as
predicted from the DOS model, the capacitance is measured with various gate
-areas, and same longitudinal edge length of the gated area as shown in Fig. 58.
The capacitance at zero magnetic field is proportional to the gated area, while the
bottom values of capacitances are almost same. In Fig. 59, the bottom values at
various filling factor of the Landau levels v are plotted with respect to the gated
area. This result can not be understood by the DOS model, where the minima of
the capacitance must be proportional to the gate area.

To investigate the origin of the bottom value of magnetocapacitance, the
samples, with different edge lengths and nearly same gate area, are used, as shown
in Fig. 60. The bottom values become larger with the edge length, although the
capacitance at zero magnetic field is nearly same. The slight capacitance
difference at zero field is due to the slight gated area difference. In Fig. 61, the
bottom values at various v are plotted with the edge lengths. The bottom values
are nearly proportional to the edge lengths. The capacitance at the quantum Hall

plateaus (at least its bottom values) is determined by the edge length. From these
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experimental results, it is deduced that the capacitance at the quantum Hall

plateaus is governed by the edge channels.

At an ideal quantum Hall plateau (o,,=0), the bulk state is fully localized and
the electron conduction occurs only through the edge state at Eg. The induced
charge caused by change of v, in 2DES is not supplied to the bulk area but to the
edge state region from the probe. At the quantum Hall plateaus, the effective area
of the capacitor should be reduced from the total gated area to the edge region and
then the capacitance shows minima. By this model, the widths of edge channels
are estimated from the bottom values of the capacitance. The capacitance between

a strip line (whose area is S”) and an infinite metal plate is approximately given as;
C'=me,S§"/2d,, (27)

d, : the thickness of the barrier layer (1000 A in this study),
g, : the effective dielectric constant of the barrier layer

(g,= 12.3 &, in this study).

By substituting the observed bottom values for C* in Eq.(27), the total widths of
edge channels (W(v)) are estimated by assuming that S* = W(v) L., where L, is
the length of the edge channels under the gate. In Table 2, the estimated W(v)
with various filling factor is listed. The width W(v) becomes larger with v. The
estimated W(v) is much larger than the magnetic length (A=( ki / ¢B )2) and the
cyclotron radius (r, = ki (2 7 N)2/¢B) at E. For example, A=110 A and r=160 A
at v=2 in this sample. In a qualitative picture of edge state considering the
screening effect’s, it has been pointed out that the edge state is expressed as the
compressible liquid in 2DES. Chklovskii et al.? calculated the self-consistent

electrostatic potential near the edge and showed that the electrostatic potential and
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the Landau levels become flat in the compressible liquid (the edge state) and the
width of edge state broadens. The total width of edge state(W(v)) is given
approximately as 4 L, v? / (2v+0.5) , where L, is the width of the depletion layer
at the sample boundary. Since L, is estimated as 0.2 - 0.5 um, the calculated
W(v) is an order of microns and comparable to the measured W(v). However, in
this calculation the spin degeneracy effect is not considered. The effect of finite
0, at higher v (lower magnetic fields) should cause the overestimation of W(v) in
Table 2. The more quantitative discussion should be given in future. |
The measured W(v) at Vg=+0.1 V is narrower than that at Vg=0 V, as shown in
Table 2. With increasing Vg, N, in 2DES increases and L, becomes narrower due
to the screening effect. The calculation of Chklovskii et al. showed that W(v) is
proportional to Ly and W(v) decreases with increasing Ng. As shown in section
4.2.8, the nonlocal resistance in a sample surrounded by the Schottky gates
becomes stronger by reducing the gate voltage?3. This is explained by the
enhancement of decoupling of the edge and bulk states due to the increase of L "

This trend is consistent with the present experiment.

In summary, the bottom values of the magnetocapacitance at the quantum Hall
plateaus is not proportional to the gate arca but the edge length. These results can
not be explained by the conventional interpretation of magnetocapacitance , where
the capacitance is directly related to the density of states of a two dimensional
electron system. The bottom values of the magnetocapacitance is decided by the
effective area of edge states, where the carrier can be supplied from the electrode.
From this model, the total width of edge states was estimated, which is much
larger than the magnetic length and the cyclotron radius. This estimated value is
compared with the calculated one from an electrostatic theory considering the
screening effect. The influence of the gate voltage on the edge states was also

examined.
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TABLE 2. Estimated total width of edge states W(Vv) at V=0 and 0.1V.

filling factor(v) 2 4 6 8

09 35 80 21 atVz=0V
W(v) (um)

03 29 48 10 atV,=01V
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Magnetocapacitance and Hall resistance measured from the same wafer.
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4.3 Edge state in Si-MOS FETs
4.3.1 Introduction

The SdH oscillation of the nonlocal resistance was originally observed in the
high mobility GaAs/AlGaAs heterostructure®’ as discussed in the previous
section. This phenomenon is understood by taking account of both edge and bulk
(extended) states. Since the mobility of the Si-MOS FETs is much less (typically
~ 1/100) than that of the GaAs/AlGaAs system, the edge state has not been
investigated in the Si-MOS system. But the observed resistivity 0, and 6,
depended strongly on the sample shape of the Hall bar type, and did not agree with
the value obtained in the Corbino geometry* which is only affected by the
longitudinal conductivity o,_. The phenomena strongly suggest that the current
carrying edge states exist in the Si-MOS FETs at high magnetic fields. To
investigate the edge current in this system, the nonlocal SdH effect has been
studied in three samples with different mobility, and the results of the experiment

will be discussed by taking account of the edge state3S.
4.3.2 Samples

The Hail devices of the Si-MOS structures used for this experiment were 250
pm long, 50 um wide with two pairs of Hall probes, as shown in Fig. 62. Three
samples A, B and C were used. The SiO, layer of the sample A and B was made
by thermal annealing in diluted O, gas, and made by Ar/O, spattering! for the
sample C. The maximum mobility, affected by the condition of the interface
between Si and SiOz, were different each other, as shown in Table 3. The probes
consisted of n* high—doped region and a contact metal (Al). The contact

resistance is below 50 Q at 4.2 K. The measurements were performed at a
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temperature of 0.5 K, otherwise specified. At the nonlocal resistance
measurement, the separation length between the nominal current path and the
voltage probes is 90 um (Fig. 62(b),(c)). In the Landau levels in the Si-MOS
FETs, there are two kinds of degeneracies, due to the spin and valley in the k-
space. The spin—split from n—t# Landau level is denoted by nf or n}. The valley

splitting is also observed at the n<1 Landau levels, but it is not discussed.
4.3.3 Nonlocal conduction through edge channel in Si-MOS FETs

The mﬁgnetic field dependence of the transport properties of the sample A is
shown in Fig. 63. The applied gate voltage is 3.5 V (Ns=3.9x10'1 cm™2
- #=1.25x10* cm?/Vs) and current is 30 nA. The longitudinal resistance R shows
SdH oscillations, and the plateaus at the quantum Hall resistance appear in R
(Fig. 63(b)). The nonlocal resistance Ry, shows peaks at high magnetic fields
which were observed in the GaAs/AlGaAs wires. One might think that the origin
of the Ry; would merely be the ordinary four terminal resistance, which should be
measured by the van der Pauw method. Indeed, a very small value of the R, (=
6 §2) is measured at zero or low magnetic fields (Fig. 63(a)) and it is due to the
relatively large sample width (50 um) as compared with the separation length. But |
the high magnetic field behavior of the R; can not be understood by considering
only the rhacroscopic conductivity tensor. The magnetic field dependence of Ry
and R, is quite different, especially at high magnetic fields as shown in Fig. 63.
The oscillation of R, is caused by the edge and bulk states, as discussed in
section 4.1.3. At low fields, as the energy levels of the edge and bulk states are
close to each other, electron scattering frequently occurs and the nonlocal
resistance Ry, is reduced. Note that the peak heights of the R, shows drastic
growth with increasing magnetic fields, and Ry; is practically zero at the field,

‘where the quantum Hall effect occurs (B=4 T and B=8 T), similar to the result
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obtained in the high mobility GaAs/AlGaAs system®”.

The peak amplitude of the SdH oscillation of R; and R, at Landau levels (11)
and (1] ) for several magnetic fields is shown in Fig. 64 for sample B. At
respective magnetic fields, the gate voltage is so tuned as to show the resistance
peak of the SdH oscillations at the Landau level. The peak value of o, and g,, at
a certain Landau level is independent of the magnetic fields?, and the observed R,
peaks are almost constant for various magnetic fields. Since the scattering rate
among edge and bulk state is inversely proportional to the magnetic fields, the Ry

is suppressed with reduction of magnetic fields.

The gate voltage dependence of Ry; and R, at B=8 T is shown in Fig. 65
(3),(b),(c) for samples A, B and C, where the currents are 30 nA, 0.3 uA, 0.3 uA
respectively. The measured resistance Ry, and R, are not changed by varying
currents 30 nA or 0.3 A both in the sample B and sample C. In all samples, R,
shows SdH oscillations whose amplitude profiles are almost equal to each other,
but the amplitudes of the R, SdH oscillations are quite different amount in
different samples. In the high mobility sample A, the amplitude is about two times
as large as those of other low mobility samples. The SdH oscillations due to the
second Landau levels, which are spin-split and indicated by (21) and (2{), appear
in the gate‘ voltage 10.2 <V,<14.6 V. As shown in Fig. 65(a), peak height ratio
of R, for (21) and (2{) is 1.3:1, but that of the R, is 6.5:1. The same behavior is
observed at other Landau number n=1 and 3. Similar trend is observed in the
sample B and C, but peak heights are Jower than those of the sample A. The effect
due to the spin-splitting Landau level in R, SdH oscillations is more sensitive to
the sample quality than that of the R, (Fig.65). For example, when the energy of
the bulk state (=Ep) coincides with Landau level (21), the topmost edge state is
(11). The energy difference of the Landau levels between the bulk state (21) and
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topmost edge state (1}) is nearly equal to cyclotron energy (Fig.66(a)). The
spatial separation between edge and bulk states is large enough not to interact with
each other. On the contrary, when the E coincides with (2{), the topmost edge
state is (21) and the corresponding energy difference of the Landau levels is the
'Zeeman energy', which is much smaller than the cyclotron energy. In this case,
many of the edge state electrons are scattered to the bulk state which is spatially

close to the edge state, and R, is reduced (Fig.66(b)).

The current dependence of the Ry; and R; of the sample B at B=8 T is shown in
the range 0.3-10 A in Fig. 67. The profiles of the R, change slightly as the
current is increased. On the other hand, the amplitude of the Ry decreases with
increasing current. We have checked that both R; and R; have not been changed
with current changing from 30 nA to 0.3 uA. The current dependence shows a
critical behavior with abrupt decrease of Ry, with increasing current level (Fig.

67).

In Fig. 68, we demonstrate the temperature dependence of the R, and R; of the
sample B at B=8 T and the current 0.3 #A. The peak profiles of both R; and R
does not change between T=0.5 K (solid line) and T=1.8 K (dashed line). At 4.2K
the peak heights of Ry; are reduced about 1/3 compared with those at 0.5K. The
nonlocal SdH effect decreases with increasing temperature before the QHE, as

shown the minimum plateaus of R; =0, disappears.

As the electrons in edge states are scattered and equalized their chemical
“potential are equalized to the bulk state, the nonlocal SdH effect is reduced with
increasing current and/or temperature. These results strongly suggest that the
transport properties of the high quality Si-MOS FETs in the QHE regime are
affected by the edge state. The nonlocal SdH effect is one of the evidences that
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the edge state plays an important role in the Si-MOS FETs at high magnetic fields

and low temperatures.

Table 3: Device parameters of the Si-MOS FETs

sample peak mobility (0.5 K) process of the gate oxide
sample A 1.38x10% (cm?/Vs) thermal annealing
sample B 1.37x10* (cm?/Vs) thermal annealing

sample C 7.3 x103 (cm?/Vs) Ar/O, sputtering
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Fig. 62. Schematic layout of the four-terminal measurements and the samples. (a)
Ordinary longitudinal resistance R;. (b) The nonlocal resistance R, where the voltage

probes are spatially separated from the nominal current path. (c) Schematic view of

samples used in this experiments.
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Fig. 67. The current dependence of the nonlocal resistance R, (a) and longitudinal

resistance R, (b) at T=0.5 K, B=8 T with current 0.3 #A (solid line), 3 A (dashed line),
10uA (dotted line).
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Fig. 68. The temperature dependence of the nonlocal resistance R, (a) and longitudinal
resistance R; (b) at B=8 T with I=0.3 #A. T=0.5 K (solid line), 1.8 K (dashed line), 4.2
K (dotted line).
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5 Concluding Remarks

The quantum transport of two—dimensional electron systems (2DES) in GaAs /
AlGaAs heterostructures and Si-MOS FETs is investigated at high magnetic fields
up to 8 T and low temperatures between 0.5 and 4.2 K.

The mesoscopic size ( =um ) and macroscopic size ( =mm ) multi—terminal
wires are fabricated from a GaAs/AlGaAs heterostructure wafers. The
magnetoresistance shows nonlocal features, such as a geometry dependent
resistivity, an influence of the contact probe on the transport and a current
dependent resistivity. These phenomena can not be explained only by considering
local conductivity o,, and 0,,- The nonlocal features in 2DES are understood as
the edge state and bulk state coexist and act as current carrying channels.

A nonlocal resistance, where the voltage probes are well separated from the
nominal current path, shows peaks similar to usual SdH oscillations. The
appearance of the nonlocal resistance at the separation length AL= 0.5 mm
suggests that the equilibration length of the chemical potential between edge and
bulk currents may be more than 0.5 mm. It is shown that the observed nonlocal
resistance scales with AL/W and agrees with those of the calculated values based
on the Landauer-Biittiker formula. The nonlocal features due to the edge current
is reduced with increasing temperatures, current, and carrier concentrations,
because the interaction (scattering) between bulk and edge channels becomes
stronger.

In the cases that the extra probes are contained between the current and voltage
probes, the nonlocal resistance is much reduced. The extent of the nonlocal

resistance depends on the sample geometry and the number of edge channels.

A negative four-terminal resistance is observed when the property of a probe is
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not ideal. The anomalous transmission probability of the edge and bulk channels
from the probe can cause an inverse population of electrons in the channels when
the probe is used as a current source. By using the probe as a voltage probe, the
chemical potential of the channels are selectively detected. The negative
resistance is understood by considering the property of the non-ideal probe and
non—-equilibrium conduction in the edge and bulk states. The high contact
resistance probe is apt to have an anomalous transmission probability to the edge
and bulk channel, which is smaller for the channels belonging to the lower index
Landau levels. It is emphasized that the fabrication process of the probes is very
much important to make a ‘good probe’ for electron transport measurement, such
as the precision measurements of QHE.

The influence of the property of the probe on the quantum transport is studied
by using the probe whose transmission probability of the in and out going
channels is artificially controlled by the gate. It is demonstrated that the
anomalous selective transmission of channels can be realized with a gate
controlled Corbino-like probe, and negative resistance appears in the 'non-ideal’
probe. The extent of chemical potential equilibration among edge channels by the
probe is estimated based on the Landauer-Biittiker formalism. The reciprocity of
the resistance is observed in the measurement with the non-ideal probe. The
Landauer-Biittiker formula is valid to explain the transport property of 2DES

using the non-ideal probes.

The influence of the bulk and edge states on the nonlocal resistance is
investigated by cutting the bulk and edge current with the gate. The 'bulk current'
corresponding to the down-spin Landau level peak of the SdH oscillations comes
from the overlapping down-spin and up-spin states, while the up—spin Landau
level peak comes from mostly the up-spin state. The influence of the extra probes

on the transport has been examined by cutting the bulk and edge currents in the
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extra—probes by the gate. The electronic transport is actually affected by the
contact probe, since equilibrium of chemical potential among channels occurs in

the probe.

The magneto-resis\tance of the GaAs/AlGaAs wires, whose brinks are covered
with Schottky gates, is measured to investigate the influence of the confinement
potential of the 2DES on the quantum transport. The nonlocal features of the
electronic transport in 2DES is influenced by the confinement potential of 2DES at
the sample edge. It is suggested that the mixing among channels is enhanced,
when the gate voltage about its pinch off value is applied, because the spatial

separation of the channel is closed.

The magnetocapacitance between a metal gate on the sample and 2DES in
GaAs/AlGaAs heterostructure shows minima at the quantum Hall plateau regime.
The bottom values of the magnetocapacitance at the quantum Hall plateaus is not
proportional to the gate area but the edge length. It is found that the minimum
capacitance is governed by the area of the current carrying edge state, and is not
related to the density of states at Fermi level. The width of the edge state is

estimated, and it is much larger than the magnetic length and the cyclotron radius.

In the Si—MOS FETs, the magneto-oscillation of the nonlocal resistance is
observed, and its temperature and current dependence is similar to that observed in
the GaAs/AlGaAs heterostructures. These results strongly suggest that the
transport properties of the high quality Si-MOS FETs in the QHE regime are
affected by the edge state. The nonlocal SdH effect is one of the evidences that
the edge state plays an important role in the Si~-MOS FETs at high magnetic fields

and low temperatures.
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The subjects to be investigated in future are listed as follows;

(1) In the capacitance measurements, the estimated edge width might be affected

by the finite conductivity ¢,,. In order to estimate the edge channel width

more precisely, the effect of the g, should be considered.

(2) More quantitative analysis is needed to understand the nonlocal features of the
quantum transport about the amplitude of the observed resistance, the effect of
extra probes, and the extent of equilibrium of the chemical potential

distribution among channels.
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Appendix 1

The properties of the probe T /T, and equilibration length of the chemical
potential distribution L_, as shown in Fig. 69, is estimated from the Landauer-
Biittiker formalism at v=2. Here, T, and T, is the transmission probability of the
outer and inner edge channels. The chemical potential of edge currents coming
from the probe (6) is denoted by 4. After passing the probe (1), the chemical

potential of the edge current shows an inverse distribution;

Hy (outer edge) , (28)
and
U= Myt hl/e (inner edge) . (29)

They are equilibrated in the conducting path. The chemical potential just before

the probe (2) is;

Y= Hy + (1-m)hl / 2e (outer edge), (30)
M= py — (1-m)hl / 2e (inner edge) . (31)

where m=exp (-X/L,)
X: distance along the sample edge,

L,: equilibration length .
The chemical potential of the probe 2 (4, ) is

py(V s, =+0.1 V) = yo + (1 - am)hl/ 2e, (Fig.41(b)) (32)
a=(T,-T,)/(Ty+T,)

and
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Ho(V==0.24 V) =y, + (1 - m )hl/ 2e, (Fig.41(c)) (33)
Thus the Hall resistance is written as;

() Ry(51,62)= (u, - )/l = (1 - am)h /2e?
at V=01V and Vg,= 0.1V, (34)
(€) Ry(51,62)=(1-m)h/2e> atV =01V and V,=-0.24 V. (35)

That is, the observed deviation of Ry from the quantized value h/2¢? is (b):
oamh/2e? and  (c): mh/2e? respectively. The ratio of these deviation is ¢, the ratio

T,/ T, is obtained by

a=(T,-T,)/(T,+T,)=170 Q /400 Q =0.42
T,/ T, = 2.4

and m is obtained by

m=exp (-X/L,)=(mh/2e*)/(h/2e*)=400Q/12.9 kS,
In this sample geometry, X = 2.54 mm.

Thus the chemical potential equilibrium length L, is estimated as 700 ym.

E
MO =
g XN g f(X) = po(X) = H1(X)
S Y;v N > Edge state y Ax F(X)
M1 fx+aX)=tX)-———"g—
X X+AX ; —> {(X)=f(0)exp(-X"Le)

Fig. 69. Definition of the chemical potential equilibrium length L.
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Appendix 2

Using the model proposed by McEuen et al., the peak amplitude of longitudinal
resistance R; is calculated without adjustable parameter. The Landau index n=4,
thus the number of edge channel m=4, and the spin degeneracy is considered. The

formula explained in section 4.1.2 is modified as;

1= (2e [ R)[m (=) + 8 (out) ~u (im) ] = 1, (36)
L= (2e/h) m (uy=t;) +p (out) — b (in) ] = -1 , (37)
L= (2e /) m (uy=pt,) +p (out) ~ a8 (im) ] = 0, (38)
1= (2¢/h)[ m (u,~ts) +p (out) ~ e (im) ] = 0, (39)

where 4, is the chemical potential of j—th probes, and u ]’?(in) and u j’.’(out) are the
chemical potentials of the bulk channels coming in and out of the j—tA barrier.

They are expressed as

@ (i) =uf (out) , (40)
p5 (n) = (1=t ) u (out) + ¢, % (out) , (41)
5 (in) =5 (out) , (42)
#5 (in) = (1-t5) ub (out) + ¢, 4% (out) , (43)
,uj’.’(out)=yjtj+(1—tj),uj’.’(in), (j=1t04) . (44)

The longitudinal resistance R(12,43) is derived analytically as;

R(12,43) = (p,-p5) / e, (45)

where
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py = {trrs (mtty (1-m)) /[ (t+m) ~t; ~t,tr, Yh1/2e
+ { tym+tyts (mt, (I-m)=t rrsm + (m+t;(1-m)) / (t; +m) }u, ]
[ (mttr,),
py=ryts(hI/2e —mu,)/[t,(¢,+m)],
u,=hl2e(A-B)/(C-D),
A=(mtg,mryrrys )| tqrtt~trrd{m+(1-m)}/(m+t;) ],
B=mrts [ty {m+(1-m)t;} [ (m+t;) - t, (rrrs=1) ],
C=(m+ttmryrrs) [ mt it {m+(1-m)t,}
-m try{m+(1-m)t,} / (m+t;) |,
D =mrt; [ t(m+t)) + mtyry g mi(l-m)t }(m+ty) ~t,r r {m+t,(1-m)} |,
where r;=1-1¢, (j=1t05) .
and  t=[1+(22m)p" (L), (j=1t05)

The ratio of the length and width of each segment L /W, in the sample is
Li/W;=65 (forj=1to4), L;/W;=13.25, respectively. The value of £,

is written as;

tj={1+(1—t5)LjW5/(t5WjL5)}'1 (j=1t0 4). . (46)
Thus, R(12,43) can be expressed with a parameter #;. The peak value of R(12,43)

is searched by sweeping ¢, from O to 1.

The maximum value of R(12,43) at n=4 Landau level is calculated as 134 Q.
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