
Title Formal Description Language and Middleware for
Managing Communication among Mobile Terminals

Author(s) 梅津, 高朗

Citation 大阪大学, 2005, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2147

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Formal Description Language and Middleware

for Managing Communication

among Mobile Terminals

Takaaki Umedu

December, 2004

Abstract

Recently, since parsonal mobile terminals are becoming powerful and popular,
requirements for distributed cooperative applications on such devices are also
becoming larger. New kinds of applications such as network meeting systems,
data sharing systems on ad hoc networks and support tools for forming mobile
communities have been proposed. However designing and implementing such
mobile distributed applications cause various problems that cannot be solved
easily by using existing techniques.

In this thesis, first, we have proposed a formal description language for
specifying distributed cooperative applications in mobile ad-hoc environments
and a middleware based on this language. We define a new language called
LOTOS/M which enables dynamic establishment of multi-way synchronization
channels among multiple agents (processes running on mobile hosts) on ad hoc
networks, and show how it can be applied for designing wireless mobile appli-
cations. In LOTOS/M, a system specification is given by a set of independent
agents. When a pair of agents is in a state capable of communicating with each
other, a synchronization relation on a given gate (channel) list can dynamically
be assigned to them by a new facility of LOTOS/M: (i) advertisement for a
synchronization peer on a gate list and (ii) participation in the advertised syn-
chronization. The synchronization relation on the same gate list can also be
assigned to multiple agents to establish a multi-way synchronization channel
incrementally so that the agents can exchange data through the channel. When
an agent goes in a state incapable of communication, a synchronization relation
assigned to the agent is canceled and it can run independently of the others. By
describing some examples, we have confirmed that typical wireless mobile sys-
tems can easily be specified in LOTOS/M, and that they can be implemented
efficiently with our LOTOS/M to Java compiler.

We also propose a Java-based middleware based on LOTOS/M. The pro-
posed middleware provides facilities for establishing multi-way synchronization
channels among multiple agents (processes executed in mobile hosts) based on
their locations. So, we can easily handle multicast data distribution and mutual
exclusion in communication among agents by using multi-way synchronization.
Using the middleware, it is shown that we can easily develop a simple video
conferencing application on a wireless network where only one of participants
can transmit his/her video data to the others exclusively. Through some exper-
iments on IEEE 802.11b wireless LAN, we have confirmed that the proposed

1

middleware provides practically good performance in each channel establish-
ment, time for each synchronization execution, and data transfer rate.

Next, we have proposed a decomposition technique of Java programs for
mobile terminals that cannot handle learger applications because of their limited
resources. For a given application program that exceeds their resource limits, we
propose a method for partitioning it into two module sets where we assume that
only a part of modules of the given application is assigned to a mobile terminal
and the rest of modules are running on its proxy server, and that the mobile
terminal invokes the modules on the server using remote method invocation.
It is desirable that we can minimize the total amount of communication, delay
time and power consumption between the mobile terminal and its server (here,
we call the total amount as the total cost).

In this research, we propose a technique for dividing a given Java program
with multiple modules into the two modules using Simulated Annealing (SA)
considering the minimization of the total cost. In the proposed technique, first,
a given Java program is repeatedly simulated on a single machine, and we collect
the statistics information about (1) the communication amount between each
pair of two modules and (2) the consumed CPU time of each module when
the given program is executed. We have developed a tool for this information
gathering. Then, we give the resource limitation of the mobile terminal such as
the memory size and an objective function that shows what total cost should
be minimized. Under those constraints, our tool divides a given Java program
into the two module sets where the value of the objective function is minimized
using SA. We have applied our technique to some application programs and
examined its usefulness by evaluating their total costs.

Lastly, we have studied about an efficient deadlock detection method for
distributed cooperative applications executed on unspecified number of termi-
nals. We introduce a formal model for designing distributed cooperative systems
(concurrent systems) with symmetries and propose an efficient deadlock detec-
tion method on this model. In our method, we describe a specification of a
system by a set of coloured Petri-nets and synchronization among them. Each
coloured Petri-net is either the specification of a participant’s behavior or the
constraint about the temporal ordering of multiple participants’ behavior. For
this specification, if given constraints are inconsistent with each other, the total
system enters a deadlock state. In general, the reachability analysis for such
systems may cause the state explosion problem depending on the size of the
system. However, there are a lot of cases that multiple participants carry out
the same behavior in distributed cooperative systems such as network meeting.
In such symmetric specifications, by merging equivalent states in a given spec-
ification, we can reduce the cost necessary for the reachability analysis. Here,
we propose an efficient reachability analysis method using symmetries. We have
also developed a verification tool based on the method and shown the usefulness
of the method using some examples.

2

List of Major Publications

Papers Corresponding to Thesis

1. Takaaki Umedu, Hirozumi Yamaguch, Keiichi Yasumoto, Akio Nakata,
Teruo Higashino : Constraint-Oriented Model for Specifying Distributed
Cooperative Systems and Efficient Deadlock Detection Using Symme-
tries, Journal of Information Processing Society of Japan, Vol. 42, No.12,
pp.3054-3062 (Dec. 2001). (In Japanese).

2. Takaaki Umedu, Hirozumi Yamaguchi, Keiichi Yasumoto, Akio Nakata
and Teruo Higashino : Constraint-Oriented Model for Describing Dis-
tributed Cooperative Systems and Efficient Verification Using Symme-
tries, International Journal of Computer and Information Science, Vol. 3,
No. 2, pp. 125-136 (Jun. 2002).

3. Keiichi Yasumoto, Takaaki Umedu, Hirozumi Yamaguchi, Akio Nakata
and Teruo Higashino : Protocol Animation based on Event-driven Visual-
ization Scenarios in Real-time LOTOS, Computer Networks, Vol.40, No.5,
pp. 639-663 (Dec. 2002).

4. Takaaki Umedu, Keiichi Yasumoto, Akio Nakata and Teruo Higashino :
Middleware for Supporting Dynamic Establishment of Multi-way Synchro-
nization Channels, Journal of Information Processing Society of Japan,
Vol.45, No.11 (Nov. 2004) (In Japanese) (to appear).

International Conferences Corresponding to The-

sis

1. Takaaki Umedu, Hirozumi Yamaguchi, Keiichi Yasumoto and Teruo Hi-
gashino : Protocol Synthesis from SMIL-Based Scenarios and Its Imple-
mentation in Distributed Environment, Proceedings of IEEE 15th Inter-
national Conference on Information Networking (ICOIN-15), pp 163-170,
(Jan. 2001).

2. Takaaki Umedu, Hirozumi Yamaguchi, Keiichi Yasumoto, Akio Nakata
and Teruo Higashino : A Constraint-Oriented Design Method for Dis-

3

tributed Cooperative Systems and Efficient Deadlock Detection Using
Symmetries, Proceedings of 2001 Software Engineering, Artificial Intelli-
gence, Networking & Parallel/Distributed Computing (SNPD’01), pp 584-
591, (Aug. 2001).

3. Takaaki Umedu, Yoshiki Terashima, Keiichi Yasumoto, Akio Nakata, Teruo
Higashino and Kenichi Taniguchi: A Language for Describing Wireless
Mobile Applications with Dynamic Establishment of Multi-way Synchro-
nization Channels, Proceedings of International Symposium of Formal
Methods Europe(FME2002), pp.607-624 (Jul. 2002).

4. Takaaki Umedu, Keiichi Yasumoto, Akio Nakata, Hirozumi Yamaguchi
and Teruo Higashino: Middleware for Synchronous Group Communication
in Wireless Ad Hoc Networks, Proceedings of the IASTED International
Conference on Communications and Computer Networks (CCN2002), pp.
48-53 (Nov. 2002).

5. Takaaki Umedu, Shigeharu Urata, Akio Nakata and Teruo Higashino :
Automatic Decomposition of Java Program for Implementation on Mo-
bile Terminals, Proceedings of 19th IEEE International Conference on
Advanced Information Networking and Applications (AINA2005) (Jun.
2005) (to appear).

Other Related Papers

1. Keiichi Yasumoto, Akio Nakata, Yoshiki Terashima, Takaaki Umedu, Teruo
Higashino and Kennichi Taniguchi : A Language for Wireless Mobile
Applications with Dynamic Establishment of Multi-way Synchronization
Channels, Computer Software - Japan Society for Software Science and
Technology (JSSST) Journal , Vol.19, No.2, pp.35-46 (Mar. 2002) (In
Japanese).

2. Kouji Nishigaki, Keiichi Yasumoto, Takaaki Umedu, Teruo Higashino and
Minoru Ito : Middleware for Cellular Phones Providing Group Forma-
tion Based on Context and Group Communication Facility, International
Journal of Computer and Information Science, Vol.45, No.12 (Dec. 2004)
(In Japanese) (to appear).

3. Thilmee M. Baduge, Akihito Hiromori, Takaaki Umedu, Hirozumi Yam-
aguchi and Teruo Higashino : A Decentralized Protocol MODE for Mini-
mum Delay Spanning Trees on Overlay Networks, Journal of Information
Processing Society of Japan, Vol.46, No.2 (Feb. 2005) (In Japanese) (to
appear).

Other Related International Conferences

1. Kouji Nishigaki, Keiichi Yasumoto, Takaaki Umedu, Teruo Higashino and

4

Minoru Ito: Middleware Providing Dynamic Group Communication Fa-
cility for Cellular Phone Applications, Proceedings of the 2004 IEEE In-
ternational Conference on Mobile Data Management (MDM 2004), p.170
(Jan. 2004).

2. Kouji Nishigaki, Keiichi Yasumoto, Takaaki Umedu, Teruo Higashino, Mi-
noru Ito: Middleware Providing Dynamic Group Communication Facility
for Cellular Phone Applications, Proceedings of 24th International Con-
ference on Distributed Computing Systems Workshops - W3: IWSAWC
(ICDCSW’04), pp. 434-437 (Jan. 2004).

3. Masashi Saito, Mayuko Funai, Takaaki Umedu and Teruo Higashino :
Inter-vehicle Ad-hoc Communication Protocol for Acquiring Local Traf-
fic Information, Proceedings of 11th World Congress on ITS, CD-ROM,
4066.pdf (Oct. 2004).

4. Masashi Saito, Jun Tsukamoto, Takaaki Umedu, Teruo Higashino : Eval-
uation of Inter-Vehicle Ad-hoc Communication Protocol, Proceedings of
19th IEEE International Conference on Advanced Information Network-
ing and Applications (AINA2005) (Jun. 2005) (to appear).

5

Contents

1 Introduction 10
1.1 A Formal Description Language for Mobile Ad-Hoc Environments 11
1.2 A Middleware Providing Multi-way Synchronization Method in

Ad-Hoc Environments . 11
1.3 Automatic Decomposition of Java Program for Mobile Terminals 12
1.4 An Efficient Deadlock Detection Method Using Symmetries for

Distributed Applications . 13

2 A Formal Description Language for Mobile Ad-Hoc Environ-
ments 15
2.1 Introduction . 15
2.2 LOTOS and its Applicability to Mobile Systems 17

2.2.1 Outline of LOTOS . 17
2.2.2 Problems for Describing Mobile Systems in LOTOS . . . 18

2.3 Proposal of LOTOS/M . 18
2.3.1 Definition of LOTOS/M 18
2.3.2 Semantics of LOTOS/M 22

2.4 Describing Wireless Mobile Systems in LOTOS/M 26
2.4.1 Location Aware System 26
2.4.2 Routing in Wireless Ad Hoc Networks 28

2.5 Implementation of LOTOS/M
Specifications and Experimental Results 29
2.5.1 LOTOS/M Compiler . 29
2.5.2 Experimental Results . 31

2.6 Conclusion . 31

3 A Middleware Providing Multi-way Synchronization Method
in Ad-Hoc Environments 33
3.1 Introduction . 33

3.1.1 Related Work . 35
3.2 Proposed Middleware for Mobile Applications 36

3.2.1 Multi-way Synchronization 36
3.2.2 Proposed Middleware and its Facility 37

3.3 An Example Mobile Application 41

6

3.4 Implementation . 43
3.4.1 How to Implement Multi-way Synchronization

Among Agents . 43
3.4.2 Implementation of Communication in Underlying

Networks . 49
3.5 Experimental Results . 49
3.6 Conclusion . 51

4 Automatic Decomposition of Java Program for Mobile Termi-
nals 53
4.1 Introduction . 53
4.2 Outline of Proposed Technique 55

4.2.1 Restrictions for Target Applications 55
4.2.2 Assumption for Target Environment 56

4.3 Estimation Method of Statistical Information for Optimal Division 56
4.3.1 Statistical Information and Optimizing Parameters 56
4.3.2 Insertion of Measurement Codes 58

4.4 Formulation of Module Assignment Problem 59
4.5 Optimizing the Assignment of Modules 61

4.5.1 SA Based Assignment Algorithm 61
4.6 Example Applications . 62

4.6.1 Ex1: Randomly Generated Modules 62
4.6.2 Ex2: an Existing Application 63

4.7 Conclusion . 65

5 An Efficient Deadlock Detection Method Using Symmetries for
Distributed Applications 66
5.1 Introduction . 66
5.2 Specification of Distributed Cooperative

Systems in Proposed Model . 68
5.2.1 Petri Net and Coloured Petri Net 68
5.2.2 CPN Specification in Constraint-Oriented Style 69
5.2.3 Example Specification . 70

5.3 Reachability Analysis . 71
5.3.1 Derivation of Single CPN from CPN Specification in Constraint-

Oriented Style . 71
5.3.2 Reachability Analysis with OS Graph 73
5.3.3 Sufficient Condition of Symmetries 74
5.3.4 Further Reduction of CPN and Omitting Colour Informa-

tion . 75
5.3.5 Reachability Analysis System 76
5.3.6 Experimental Result . 76

5.4 Conclusion and Future Work . 77

6 Conclusion 78

7

List of Figures

2.1 Dynamic change of agent combinations capable of communication 17
2.2 Assignment/cancellation of the synchronization relation among

agents . 21
2.3 Example of a location aware system 26

3.1 Multi-cast communication and exclusive control 37
3.2 Dynamic change of agent tuples capable of communication 37
3.3 Assignment/cancellation of the synchronization relation among

agents when they approach/leave into/from a radio range 39
3.4 Example Java program . 42
3.5 Snapshot of a sample application 43
3.6 How to implement the channel establishment 44
3.7 How to evaluate executable events in multi-way synchronization . 45
3.8 Check of physical connection among agents by polling signals . . 46
3.9 Reconstruction of the synchronization tree 47
3.10 Structure of trees . 50
3.11 Average transfer rate(bps) . 51
3.12 Average number of synchronization per second 52

4.1 Remote method invocation . 57
4.2 Interaction among modules and CPU time spent by modules in

an example application . 64

5.1 Firing of transition in CPN . 68
5.2 CPN specification of simple network meeting system in constraint

oriented style . 70
5.3 Specification of total system derived from Fig.2 72
5.4 Transformed specification of total system 72

8

List of Tables

2.1 Extended syntax and informal semantics 19
2.2 Structured operational semantics for LOTOS/M 23
2.3 Applying inference rules when agents combine 25
2.4 Applying inference rules when agents are isolated 25
2.5 Example specification of a location aware system 27
2.6 Example specification of a path finding protocol based on Dy-

namic Source Routing . 30

3.1 Main classes of our middleware library 48
3.2 Average transfer rate for each data length per synchronization . 51
3.3 Average number of synchronization per second for each data

length per synchronization . 52

4.1 Amount of communication between server and clients 63
4.2 Result of division for the example application 65

5.1 Description of synchronization . 70
5.2 Experimental result . 76

9

Chapter 1

Introduction

Recently, since parsonal mobile terminals are becoming powerful and popular,
requirements for distributed cooperative applications on such devices are also
becoming larger. It is hoped that new kinds of applications such as network
meeting systems, data sharing systems on ad hoc networks and support tools
for forming mobile communities will change our world. However designing and
implementing such mobile distributed applications cause various problems that
cannot be solved easily by using existing techniques. At first, for such appli-
cations, (1) we cannot fix the number of terminals where the application will
execute and how those mobile terminals will connect with each other before
execution. In such applications, terminals also connect with and disconnect
from each other more often than in the applications for wired environments.
In an application such that unspecified number of people who happen to come
together will cooperate with each other in ad-hoc wireless environment, the
number of users (i.e. the number of terminals) will be changed dynamically
according to movements of users. Also the communication channels may often
be disconnected by communication errors in wireless environments. Next, (2)
available resources in handheld devices are limited and the charges for cellular
phones often depends on the amount of communication. So we must implement
applications for these environments with considering such conditions. Lastly,
(3) since a large number of terminals cooperate with eath others, we must take
care to avoid deadlocks caused by inconsistent specification.

So, we have proposed (1) a formal description language for specifying dis-
tributed cooperative applications in mobile ad-hoc environments [1] and a mid-
dleware based on this language [2]. Also we have proposed (2) a decomposition
technique of Java programs that derives optimized assignments of modules for
servers and mobile terminals as good as possible in a sense of the given metrics
under the given restrictions [3]. Finally, we have studied about (4) an efficient
deadlock detection method for distributed cooperative applications executed on
unspecified number of terminals [4].

10

1.1 A Formal Description Language for Mobile
Ad-Hoc Environments

LOTOS [5] is one of the formal specification languages for communication proto-
cols. In LOTOS, we can specify multi-way synchronization which enables several
parallel processes to execute events synchronously. With multi-way synchroniza-
tion, we can easily handle complicated mechanisms such as broadcast/multi-cast
communication and mutual exclusion for accessing resources in distributed sys-
tems. It also allows us to describe systems incrementally as a main behavior
and a set of behavioral constraints (called the constraint oriented style [6, 7]).
So, multi-way synchronization seems useful to design and develop wireless mo-
bile systems. However, standard LOTOS does not have the facility for dynamic
channel establishment among processes.

On the other hand, in π calculus [8] which is a process algebra including
a dynamic channel allocation mechanism between processes, and in M-LOTOS
[9, 10] which is an extension of LOTOS introducing the above mechanism of
π calculus, dynamic channel establishment among processes can be specified.
However, multi-way synchronization cannot be specified among processes.

We propose a new language called LOTOS/M which enables dynamic es-
tablishment of multi-way synchronization channels among multiple agents (pro-
cesses running on mobile hosts) on ad hoc networks, and show how it can be
applied to designing wireless mobile applications. LOTOS/M enables dynamic
establishment of channels for multi-way synchronization among multiple mobile
processes.

In LOTOS/M, a system specification is given by a set of independent agents.
When a pair of agents is in a state capable of communicating with each other,
a synchronization relation on a given gate (channel) list can dynamically be
assigned to them by a new facility of LOTOS/M: (i) advertisement for a syn-
chronization peer on a gate list and (ii) participation in the advertised synchro-
nization. The synchronization relation on the same gate list can also be assigned
to multiple agents to establish a multi-way synchronization channel incremen-
tally so that the agents can exchange data through the channel. When an agent
goes in a state incapable of communication, a synchronization relation assigned
to the agent is canceled and it can run independently of the others. By describ-
ing some examples, we have confirmed that typical wireless mobile systems can
easily be specified in LOTOS/M, and that they can be implemented efficiently
with our LOTOS/M to Java compiler.

This research is detailed in chapter 2.

1.2 A Middleware Providing Multi-way Synchro-

nization Method in Ad-Hoc Environments

We propose a Java-based middleware for group communication in wireless ad
hoc networks. The proposed middleware provides the facilities defined in LO-

11

TOS/M for establishing multi-way synchronization channels among multiple
agents (processes executed in mobile hosts) based on their locations. Through
multi-way synchronization channels, agents can execute events on the same
channel synchronously to exchange data. So, we can easily handle multicast
data distribution and mutual exclusion in communication among agents.

To implement multi-way synchronization mechanism, it is important to man-
age the information about member agents in each agent group and the synchro-
nization relations assigned among the member agents to calculate what events
can be executed synchronously among those agents. For the purpose, we repre-
sent the synchronization relations assigned to an agent group as a binary tree
where each intermediate node corresponds to a binary synchronization relation
and each leaf node does an agent, and let the agents keeps the latest tree infor-
mation in a distributed manner so that events executed synchronously among
the agents can be calculated based on the tree. When an agent (or a sub-agent
group) goes in a state incapable of communicating with the other agents of an
agent group, the synchronization tree is reconstructed so that the remaining
agent group can proceed without the isolated agent. We have implemented
a polling mechanism to detect whether each agent has gone into such a state
incapable of communication or not.

Using the middleware, it is shown that we can easily develop a simple video
conferencing application on a wireless network where only one of participants
can transmit his/her video data to the others exclusively. Through some exper-
iments on IEEE 802.11b wireless LAN, we have confirmed that the proposed
middleware provides practically good performance in each channel establish-
ment, time for each synchronization execution, and data transfer rate.

This research is detailed in chapter 3.

1.3 Automatic Decomposition of Java Program

for Mobile Terminals

To implement distributed application on mobile terminals, there exist other
problems such as resource limitation. Here, for a given application program
that exceeds their resource limits, we propose a method for partitioning it into
two module sets where we assume that only a part of modules of a given ap-
plication is assigned on a mobile terminal and the rest of modules are running
on its proxy server, and that the mobile terminal invokes the modules on the
server using remote method invocation. It is desirable that we can minimize the
total amount of communication, delay time and power consumption between
the mobile terminal and its server (here, we call the total amount as the total
cost). In this research, we propose a technique for dividing a given Java pro-
gram with multiple modules into the two modules using Simulated Annealing
(SA) considering the minimization of the total cost.

To derive such a division, the statistical data about the amount and number
of communication among modules are needed. For statistical performance eval-

12

uation, there are many studies based on analysis of source codes such as studies
of slicing of parallel Java programs [11, 12]. However, here for simplicity of
discussion, we use a simulation based performance evaluation technique. In our
technique, additional codes for performance evaluation are inserted to the given
source code automatically. The codes are inserted to be called before all the
method invocations and record the amount and number of communication be-
tween two modules (classes). The statistical performance data can be collected
by executing the modified code repeatedly with considering various situations.

In this way, we collect the statistics information about (1) the communication
amount between each pair of two modules and (2) the consumed CPU time of
each module when the give program is executed. We have developed a tool for
this information gathering. Then, we give the resource limitation of the mobile
terminal such as the memory size and an objective function that shows what
total cost should be minimized. Under those constraints, our tool divides a
given Java program into the two module sets where the value of the objective
function is minimized. Here, we have proven that this division problem is NP-
hard. Since in general the optimized solution cannot be derived in practical
time, we use an SA algorithm that is one of representative heuristic algorithms,
to get an approximated solution.

We have applied our technique to some application programs and examined
its usefulness by evaluating their total costs.

This research is detailed in chapter 4.

1.4 An Efficient Deadlock Detection Method Us-
ing Symmetries for Distributed Applications

We introduce a formal model for designing distributed cooperative systems (con-
current systems) with symmetries and propose an efficient deadlock detection
method on this model. In our method, we describe a specification of a system
by a set of coloured Petri-nets and synchronization among them based on the
constraint oriented style [7]. Each coloured Petri-net is either the specification
of a participant’s behavior or the constraint about the temporal ordering of
multiple participants’ behavior. For this specification, if given constraints are
inconsistent with each other, the total system enters a deadlock state. In gen-
eral, the reachability analysis for such systems may cause the state explosion
problem depending on the size of the system.

In order to reduce the verification costs, Ref. [13] proposes techniques to
merge equivalent states into one and make a reduced size’s reachability graph
called OS graph [14] from the original reachability graph. Ref. [15, 16] propose
another kind of efficient reachability analysis techniques using symbolic reacha-
bility graph. Ref. [17, 18] use invariants for reducing the verification costs. Ref.
[19, 20] use stochastic Petri-nets, and Ref. [21] uses compositional high level
Petri-nets for efficient reachability analysis.

However, in distributed cooperative systems, there are a lot of cases that

13

multiple participants carry out essentially the same behavior and they do not
cause different results for reachability analysis. For example, in a simple network
meeting system where only one of multiple participants can be a speaker at
each moment, the number of the participants does not affect the reachability
analysis of the system specification, since the behavior of those participants can
be regarded as the same, i.e., the specification has symmetries.

Here, we propose an efficient reachability analysis method using symmetries.
We have also developed a verification tool based on the method and shown the
usefulness of the method using some examples.

This research is detailed in chapter 5.

14

Chapter 2

A Formal Description
Language for Mobile
Ad-Hoc Environments

2.1 Introduction

Owing to recent maturity of wireless transmission technologies and popularity
of personal mobile devices (e.g., cellular phones, PDA, etc), wireless mobile
applications are becoming more and more important. Various applications have
been proposed, for example, location aware systems [22] in ubiquitous networks,
virtual meeting on ad hoc networks [23], and so on.

Such wireless mobile applications need dynamic communication facilities
with which channels are dynamically allocated between mobile hosts and they
can communicate via the channels when they happen to meet in a common
radio range (communication area). Therefore, languages and tools for design
and implementation of mobile applications which have dynamic communication
facilities are desired.

LOTOS [5] is one of the formal specification languages for communication
protocols, which has the powerful operators such as choice, parallel and inter-
ruption among multiple processes. With the parallel operators, we can specify
multi-way synchronization which enables several parallel processes to execute
the specified events synchronously to exchange data. With multi-way synchro-
nization, we can easily handle complicated mechanisms such as broadcast/multi-
cast communication and mutual exclusion for accessing resources in distributed
systems. It also allows us to describe systems incrementally as a main behavior
and a set of behavioral constraints (called the constraint oriented style [6, 7]).
So, multi-way synchronization seems useful to design and develop wireless mo-
bile systems.

However, standard LOTOS does not have the facility for dynamic channel

15

establishment among processes when those processes are in a state capable of
communicating with each other (e.g., by approaching in a common radio range).
Since mobile systems require such dynamic communication, it is difficult to
apply LOTOS to design and implement such systems.

On the other hand, in π calculus [8] which is a process algebra including
a dynamic channel allocation mechanism between processes, and in M-LOTOS
[9, 10] which is an extension of LOTOS introducing the above mechanism of
π calculus, dynamic channel establishment among processes can be specified.
However, multi-way synchronization cannot be specified among processes.

In this paper, we propose a new language called LOTOS/M which enables
dynamic establishment of channels for multi-way synchronization among multi-
ple mobile processes. In LOTOS/M, a system specification is given by a set of
independent multiple agents (processes running on mobile hosts).

When a pair of agents is in a state capable of communicating with each
other, a synchronization relation on a given gate (channel) list can dynamically
be assigned to them by a new facility of LOTOS/M: (i) advertisement for a
synchronization peer with a gate list and (ii) participation in the advertised
synchronization. The pair of combined agents (agents with synchronization re-
lation) is regarded as a single agent, and thus can combine with another agent
on a gate list. The synchronization relation on the same gate list can also be
assigned to multiple agents to enable multi-way synchronization. The group of
combined agents is called the agent group, and its member agents can commu-
nicate with each other by multi-way synchronization until the synchronization
relation is canceled. When an agent (or a sub agent group) goes in a state
incapable of communication, the synchronization relation assigned to the agent
is canceled and it can run independently of the others.

In LOTOS/M, the agents in an agent group form a binary tree (called the
synchronization tree) where each node corresponds to the synchronization op-
erator of LOTOS or an agent itself. This property makes it easy to implement
specifications based on the existing techniques of our standard LOTOS compiler
[24]. The current version of our LOTOS/M compiler generates from a given
LOTOS/M specification, multiple Java programs which run on corresponding
mobile hosts. We assume that data types and functions specified in LOTOS/M
specifications are available as the corresponding Java methods. So, our compiler
provides only a mechanism to invoke those methods. Thus, our compiler can
be used as a tool for developing concurrent Java programs with a multi-way
synchronization mechanism.

In the following Sect. 2.2, we outline the LOTOS language and problems to
describe mobile systems in it. In Sect. 2.3, we define LOTOS/M language and
give its formal semantics. In Sect. 2.4, we describe typical mobile applications
in the proposed language to show applicability of LOTOS/M. Sect. 2.5 outlines
our implementation technique. Finally, Sect. 2.6 concludes the this chapter.

16

� � � � � � � � � � 	

� � � � � � � � � � � �

	 �

 � � � 	
 � � � � � � � � � �

 � � � � � �
 � � � � � � � � 	

 �

� � � � � � � � � �
 � � � � �
 � � �

 � � � � � � �
 � � � � � � � � 	

 �

� � � � � � � � � �
 � � � � �
 � � �

� � � � � � � � � � 	 � � � � � � � � � � 	

 �
 �

 �

 �

 �

Figure 2.1: Dynamic change of agent combinations capable of communication

2.2 LOTOS and its Applicability to Mobile Sys-

tems

2.2.1 Outline of LOTOS

LOTOS [5] is a formal description language for communication protocols and
distributed systems, which has been standardized by ISO. In LOTOS, a system
specification can be described by a parallel composition of several (sequential)
processes. The behavior of each process is described by a behavior expression,
which specifies execution sequences of events (actions observable to the external
environment), internal events (unobservable actions), and process invocations.
Here, an event is an interaction (input/output of data) between a process and
an external environment, which occurs at an interaction point called a gate.

To specify the ordering of execution, the operators such as action prefix
(a; B), choice (B1[]B2), parallel (B1|[G]|B2) 1, interleaving (B1|||B2), disabling
(B1[> B2) (B2 can interrupt B1) and sequential composition (B1 >> B2)
(B2 starts when B1 successfully terminates) are specified at each pair of sub-
expressions. Especially, using the parallel operator, we can specify multi-way
synchronization, that is, multiple (possibly more than two) processes executing
events on the same gate simultaneously and exchanging data at the gates. In
addition, we can restrict the execution of B by a boolean expression guard by
denoting “[guard]− > B”. Also, we can create new gates gl used only in B by
denoting “hide gl in B”.

By specifying multi-way synchronization among multiple nodes of a dis-
tributed system, we can easily describe systems with complicated mechanism
such as broadcasting/multicasting and/or mutual exclusion 2 for accessing re-
sources [24]. Moreover, it is known that using multi-way synchronization, some
facilities such as step-by-step addition of behavioral constraints among nodes
by the constraint-oriented specification style [6, 7] are available. Therefore, it is
also desirable to use multi-way synchronization among agents of mobile systems.

1Hereafter, we say that in B1|[G]|B2, a synchronization relation on gate list G is assigned
between B1 and B2.

2Sometimes two-way synchronization may be enough, e.g., R|[G]|(C1|||C2|||...|||Cn)

17

2.2.2 Problems for Describing Mobile Systems in LOTOS

In a wireless mobile system, as shown in Fig.2.1, combinations of agents capable
of communicating with each other dynamically change since they move around.
Thus, to describe such a system in LOTOS, the following problems arise.

(1) There is no facility to allocate channels to a combination of agents only
when they are in a state capable of direct communication (e.g., when they
are in a common radio range).

(2) There exist a lot of possible combinations of agents, depending on their
locations, on the number of agents participating in the same multi-way
synchronization, or so on. In LOTOS, basically we must describe all of
such combinations of agents statically in a behavior expression.

In [25], a mobile telephony system including roaming services is described
in LOTOS. However, the system is restricted to use only one-to-one communi-
cations between mobile hosts and base stations, and solve the above problem
partly by dynamically exchanging IDs of each mobile host and each base station.

To solve the problem essentially, we think that we need a language support to
dynamically assign among any combination of agents a synchronization relation
for multi-way synchronization though which the agents can communicate by
executing events synchronously.

2.3 Proposal of LOTOS/M

In order to solve the problems in the previous section, we propose a new language
called LOTOS/M suitable to describe wireless mobile applications.

2.3.1 Definition of LOTOS/M

We show new constructs and their informal semantics of LOTOS/M in Table 2.1.
In LOTOS/M, the entire mobile system is given as a set of independent agents
A := A1 | A2 | ... | An where each Ai does not know how to communicate
with other agents. We define the operational semantics of A1 | A2 | ... | An

(also denoted by |{A1, ..., An}) as follows (Act is the set of all events used in
A1, ..., An).

Ai
a−→ A′

i, a ∈ Act ∪ {sync, disc}
|{A1, ..., An} a−→ |{A1, ..., A

′
i, ..., An}

The behavior expression of each agent Ai is specified with a new construct
“agent ... endagent” where the expression includes only operators of standard
LOTOS and “sync ... endsync” (i.e., “|” cannot be used).
Channel establishment In order to allocate channels (assign a synchro-
nization relation) between a pair of agents only when they can physically com-
municate with each other, LOTOS/M provides the following special actions:

18

Table 2.1: Extended syntax and informal semantics

Syntax Semantics

A1 | A2 | ... | An Parallel execution of n agents
A1, ..., An independently of each
other.

agent A[G](E) := B endagent Definition of the behavior expres-
sion of agent A.

sync !G : sid IO Guard in B endsync Advertisement for a synchroniza-
tion peer with gatelist G and def-
inition of behavior expression B to
be executed after the peer agent has
been found.

sync ?H : sid IO Guard in B endsync Acceptance for an advertisement
and definition of behavior expres-
sion B to be executed after the ac-
ceptance has been approved.

disc!sid; B Disconnection of a channel (cancel-
lation of a synchronization relation)
established with ID = sid and def-
inition of behavior expression B to
be executed after the disconnection.

g!P ; ... |[g]|sid g?Q : process; ... Exchange of a process name among
agents.

(i) an advertisement for a synchronization peer (sync !G : sid IO Guard in
B1 endsync) and (ii) participation in a synchronization advertisement (sync
?H : sid IO Guard in B2 endsync).

Here, G and H denote gate lists, “: sid” represents a variable for keeping the
ID for the synchronization relation between agents and is used for active can-
cellation of the synchronization relation with disc!sid action. “IO” represents
a list of input and output parameters (e.g., !E1?x1?x2), and “Guard” is the
boolean expression denoted by [f(c1, c2, ...x1, x2, ...)] where constants c1, c2, ...
and parameters x1, x2, ... in IO may be used. IO and Guard are used to restrict
only specific agents to be combined. “IO” and “Guard” may be omitted.

If the following conditions hold for a pair of agents, then a synchronization
relation on a given gate list G is assigned between the agents (we also say that
the two agents are combined (or joined) on gate list G).

• one agent A1 is ready to execute the sync action “B1:=sync !G : IO1
Guard1 in B1′ endsync” (called host agent) and the other agent A2

can execute “B2:=sync ?H : sid IO2 Guard2 in B2′ endsync” (called
participant agent).

• the numbers of gates in G and H are the same.

• the numbers of parameters in IO1 and IO2 are the same, and each pair

19

of the corresponding parameters consist of an input (?x) and an output
(!E) where their types must match.

• both of Guard1 and Guard2 hold after assigning the value of each output
parameter to the corresponding variable of the input parameter (e.g., when
the parameters are ?x and !E, the value of expression E is assigned to
variable x).

• the two agents are in a state capable of communicating with each other
physically3.

The succeeding behavior is equivalent to A1[B1′/B1] |[G]|sid A2[B2′[G/H]/
B2]. Here, |[G]|sid is the new operator called ad hoc parallel operator which is
equivalent to |[G]| except that its operands can be separated by disc!sid action.
A[B′/B] is the entire behavior expression of agent A obtained by replacing sub-
behavior expression B with B′, and B2[G/H] is a behavior expression obtained
by replacing every gate in H appearing in B2 with the corresponding gate in
G.

Also, note that G must be created with hide operator of LOTOS (or G may
be the gate list received from another agent by sync?G) before used in sync!G.
Also, in sync?H , H must not be included in environment gates of the agent
(e.g., interaction points to the user).

The combined agents are treated as one agent and called the agent group.
Each agent group can be combined incrementally with another agent by execut-
ing sync !G (or sync ?H) action. As an example, Fig. 2.2 illustrates that the
following three agents are combined in a step-by-step manner.

A1 | A2 | A3

where

A1:= sync !{g} in g; stop endsync

A2:= sync ?{h} in

sync !{h} in h; stop endsync

endsync

A3:= sync ?{f} in f; stop endsync

(Here, disc action is omitted).

Channel disconnection Each agent group can be separated into several
agents/agent groups by executing active/passive disconnection. We define the
effect of disconnection to internal behavior of each agent as follows.

(1) active disconnection By executing disc!sid action, each agent can dis-
connect the specified channel (synchronization relation) spontaneously.
This is called active disconnection. When an agent goes into a state in-
capable of communication, e.g., by moving out of a common radio range,
we think that active disconnection is executed by the agent.

3In LOTOS/M, whether each agent is currently able to communicate with another agent
is treated as an implementation matter. As a process algebra treating location information
to check capability of direct communication, for example, [26] is proposed.

20

� � � � �

� � � �

� � � � �

� � � � � �

� � � � �

� � � � �

� � � � � �

� � � � �

� �

� �

� � � � �

� � � � � � � � � � 	 � � � � �
 � �

� � � � � � � � � � 	 � � � �
 �

 �

� � � � � �

 �

� � � � � �

 �

� � � � � �

 �

�

� � � � � �

�

 �

 �

�

 �

 �

�

Figure 2.2: Assignment/cancellation of the synchronization relation among
agents

(2) passive disconnection When an agent executes disc!sid, pdisc!sid is exe-
cuted at each member agent in its agent group to inform about the channel
disconnection. This is called passive disconnection.

(3) synchronization of channel disconnection disc!sid and pdisc!sid must
be executed synchronously among agents.

In each agent’s behavior expression B, we can describe an appropriate pro-
cessing after each channel disconnection, as an exception handling process when
the corresponding disc!sid or pdisc!sid is executed. Below, we show an example
where the behavior stops by disc!sid but continues by pdisc!sid.

sync ?G:sid in

(B’

||| pdisc!sid; exit

)

[>

disc!sid; exit

endsync

(Here, we omit exception description by passive disconnections with IDs other than sid).

Exchange of processes as data values As shown in Table 2.1, in LO-
TOS/M, process names can also be treated as data-type like higher-order π
calculus [27]. And thus it is possible to describe systems where mobile hosts
dynamically download programs. In LOTOS/M, only process names are ex-
changed between agents (therefore semantics extension is not needed). We as-
sume that the agent which has received a process name can invoke the process

21

(that is, each agent can obtain the behavior expression of the received process).
How to exchange the behavior expression of a process is left as an implemen-
tation matter (it can easily be implemented in Java language). The example
applications using these features are shown in Sect. 2.4.

2.3.2 Semantics of LOTOS/M

Here, we define the semantics of extended constructs, sync action and disc
(pdisc) action as follows. We also define a structured operational semantics in
Table 2.2 to provide a precise formal definition of the semantics.

• Identifier sid is issued for each execution of a sync action so that disc
action with the issued sid can cancel the assigned synchronization relation.

• When an agent A executes disc!sid action, the operand of the ad hoc par-
allel operator with ID = sid (the sub-agent group including A) leaves
from the entire agent group and the separated two agents run indepen-
dently. At the time, the corresponding synchronization relation is canceled
and the cancellation is informed to all the agents in the agent group.

Combining When there exist a host agent executing sync !G and a partic-
ipant agent executing sync ?X , these two agents are combined and a synchro-
nization relation on G is assigned by the inference rule Agent-Join in Table
2.2. X is a list of formal gate parameters, which are replaced with the actual
gate list G when combined. id is issued for this synchronization relation, which
can be disconnected by the disc action with the same id. Table 2.3 shows how
inference rules are applied when three agents A1, A2 and A3 are combined into
one agent group.
Isolation When an agent executes disc!id, it must be separated from its
agent group (this is called isolation).

Inference rules for agent isolation in Table 2.2 have the following meaning.

• Agent-Leave-1 is the rule for the case when sid matches the ID of the
current ad hoc parallel operator. This rule removes the ad hoc parallel
operator with ID = sid after registering it as an auxiliary term, and makes
the peer agent execute pdisc!sid.

• Agent-Leave-2 is the rule for the case when sid does not match the ID
of the current ad hoc parallel operator. This rule makes the disconnection
request work outside of agent group A1|[G]|sid′A2. This also makes the
peer agent execute pdisc!sid.

• Agent-Leave-3 is the rule which brings the disconnected agent in the
auxiliary term to the upper node in the syntax tree and makes the peer
agent execute pdisc!sid.

• Agent-Leave-4 is the rule which makes the disconnected agent in an
auxiliary term work as an independent agent.

22

Table 2.2: Structured operational semantics for LOTOS/M
Agent-Join

Ai
sync!G−→ A′

i, Aj
sync?X−→ A′

j , G = {g1, ..., gk}, X = {x1, ..., xk}
|{A1, ..., Ak} sync!G−→ (A′

i |[G]|sid A′
j [G/X] | |{A1, ..., Ak} − {Ai, Aj})

Here, Ai (also, Aj) is the behavior expression of each agent/agent group. sync!G and
sync?H can be replaced each other in Ai and Aj . B[G/X] is obtained from B by
replacing each free occurrence of formal gate parameters in X = {x1, ..., xk} used in
the B with the corresponding actual gate parameters in G = {g1, ..., gk}. Since the
semantics of the guard expressions specified in sync action is the same as LOTOS, it
is omitted here.

Agent-Leave-1

A1
disc!sid−→ A′

1, A2
pdisc!sid−→ A′

2

[A1|[G]|sidA2
disc!sid−→ A′

2, A′
1]

Agent-Leave-2

A1
disc!sid−→ A′

1, A2
pdisc!sid−→ A′

2, sid <> sid′

A1|[G]|sid′A2
disc!sid−→ A′

1|[G]|sid′A′
2

Agent-Leave-3

[A1
disc!sid−→ A′

1, A3], A2
pdisc!sid−→ A′

2, sid <> sid′

[A1|[G]|sid′A2
disc!sid−→ A′

1|[G]|sid′A′
2, A3]

Agent-Leave-4

[A
disc!sid−→ A′, A′′]

A
disc!sid−→ A′|A′′

Agent-Leave-5

A1
pdisc!sid−→ A′

1, A2
pdisc!sid−→ A′

2, sid <> sid′

A1|[G]|sid′A2
pdisc!sid−→ A′

1|[G]|sid′A′
2

Here, A,A′, A1, A2, ... represent the behavior expressions of agents/agent groups. The

auxiliary term [A
disc!sid−→ A′, A′′] is the same as the transition relation A

disc!sid−→ A′

except that the extra information A′′ (agent to be isolated) are attached. In Agent-
Leave-1–5, disc and pdisc can be replaced each other in A1 and A2.

23

• Agent-Leave-5 is the rule which represents that A1|[G]|sid′A2 can exe-
cute pdisc!sid only if A1 and A2 can execute pdisc!sid.

Suppose that an agent group (A1|[g]|1A2)|[h]|2A3 is the result after A1 and
A2 have combined on g(sid = 1) and then A1 and A3 have combined on h(sid =
2). In Table 2.4, we show how inference rules are applied when each agent leaves
from the above agent group with different sid.

(1) When A2 is isolated with sid = 1, that is, A2
disc!1−→ A′

2:

Inference rules are applied as shown in Example1 of Table 2.4. As a result,
A2 leaves from the agent group, and pdisc!1 is executed in A1 and A3 so
that they know the active disconnection from A2 with sid = 1.

(2) When A2 is isolated with sid = 2, that is, A2
disc!2−→ A′

2:

Inference rules are applied as shown in Example2 of Table 2.4. As a result,
A2 is separated as a sub-agent group (A1|[g]|1A2) from A3, and A1 and
A3 know the fact by execution of pdisc!2.

(3) When A3 is isolated with sid = 2, that is, A3
disc!2−→ A′

3:

Inference rules are applied as shown in Example3 of Table 2.4. As a
result, A3 is separated from (A1|[g]|1A2), and A1 and A2 know the fact
by execution of pdisc!2.

Note that the semantics in Table 2.2 enables us to construct an LTS from
a given LOTOS/M specification where each node of the LTS corresponds to a
tuple of the current agent behaviors (e.g., A1 | (A2′ |[F]|1 A3′)) and each label
corresponds to an event, sync or disc(pdisc) action.
Reason why the above semantics were chosen

In [28] Groote proved that if the inference rules of a given operational se-
mantics satisfy one of the following conditions, the semantics preserves the con-
gruence relation.

t1
a1−→ y1, t2

a2−→ y2, ...

f(t1, t2, ...)
a−→ t′

t1
a1−→ y1, t2

a2−→ y2, ...

x
a−→ t′

Although rule Agent-Join satisfies the above sufficient condition, rule
Agent-Leave does not. This is because we think that any agent should be
able to leave from its agent group to whatever ad hoc parallel operator (|[G]|id)
it connects. If we modify rule Agent-Leave so that it can be applied only to
the root operator of the syntax tree of the agent group (i.e., the agents can
be separated only in reverse order when they combined), we can construct the
semantics which preserves the congruence relation. However, in actual mobile
applications, we cannot expect in what order agents are leaving from the agent
group, we think that such modification makes no sense. That’s a reason why
the semantics in Table 2.2 were chosen.

24

Table 2.3: Applying inference rules when agents combine
When A1

sync!G−→ A′
1, A2

sync?F−→ A′
2, A3

sync!F−→ A′
3

sync?G−→ A′′
3 ,

A1 | A2 | A3
sync!F :1−→ A1 | (A′

2 |[F]|1 A′
3)

sync!G:2−→ A′
1 |[G]|2 (A′

2 |[F]|1 A′′
3)

Table 2.4: Applying inference rules when agents are isolated
Example1

A2
disc!1−→ A′

2 A1
pdisc!1−→ A′

1

[A1|[g]|1A2
disc!1−→ A′

1, A′
2]

(
Agent-
Leave-1

)

A3
pdisc!1−→ A′

3 1 <> 2

[(A1|[g]|1A2)|[h]|2A3
disc!1−→ (A′

1|[h]|2A′
3), A′

2]

(
Agent-
Leave-3

)

(A1|[g]|1A2)|[h]|2A3
disc!1−→ (A′

1|[h]|2A′
3)|A′

2

(Agent-Leave-4)

Example2

A2
disc!2−→ A′

2 A1
pdisc!2−→ A′

1 2 <> 1

A1|[g]|1A2
disc!2−→ A′

1|[g]|1A′
2

(
Agent-
Leave-2

)

A3
pdisc!2−→ A′

3

[(A1|[g]|1A2)|[h]|2A3
disc!2−→ A′

3, A′
1|[g]|1A′

2]

(
Agent-
Leave-1

)

(A1|[g]|1A2)|[h]|2A3
disc!2−→ A′

3|(A′
1|[g]|1A′

2)

(Agent-Leave-4)

Example3

A3
disc!2−→ A′

3

A1
pdisc!2−→ A′

1 A2
pdisc!2−→ A′

2 2 <> 1

A1|[g]|1A2
pdisc!2−→ A′

1|[g]|1A′
2

(Agent-Leave-5)

[(A1|[g]|1A2)|[h]|2A3
disc!2−→ A′

1|[g]|1A′
2, A′

3]

(Agent-Leave-1)

(A1|[g]|1A2)|[h]|2A3
disc!2−→ (A′

1|[g]|1A′
2)|A′

3

(Agent-Leave-4)

25

�
�

� � � � � � � � � � � � � 	 �

 � �

� �
 � � �

 �

 �

 � �

� �
� �

� �
�

� ! " # $

� ! % & $

' () * + , - . / 0
1) + 2 3 4 * 3 5 6

' () * + , - . / 0
7 8 9 : ; < = 8 > ? @ A B C D E F G H I JK L M N O O L P Q RS

T U

T V

T W

Figure 2.3: Example of a location aware system

2.4 Describing Wireless Mobile Systems in LO-
TOS/M

2.4.1 Location Aware System

In order to develop a location aware system [22], mechanisms (i) for detecting
each agent’s location and (ii) for providing a different service depending on each
location are required. In LOTOS/M, (i) is realized by the dynamic channel
establishment mechanism that a base station (host agent) advertises for a syn-
chronization peer in its radio range and a mobile host responds it. Similarly,
(ii) is easily realized by the process name exchange mechanism so that a mobile
host can download a specific behavior expression from a base station.

An example of a location aware system is depicted in Fig. 2.3. We also show
an example specification in LOTOS/M in Table 2.5.

In the example, there are three base stations S1, S2 and S3 and multi-
ple mobile hosts A1, A2, ..., An. Gates f and g are used as interaction points
between each base station and each agent. In the system, S1 advertises for syn-
chronization peers in its radio range for a while (it is described in sub-process
Service by iterative execution of sync !{f, g} action). After some time elapses
([StartT ime()]− > ...), S1 sends through gate f a program (f!ClientProg) to
the agents which participated in the advertised synchronization (sync ?{h, g}
action in agent A1). Then S1 starts transmitting through gate g information in
several languages in parallel (Transmit[g](JapaneseInfo) ||| ...). Data is trans-
mitted to all participated agents at the same time with the property of multi-
way synchronization. Since each user selects his/her mother language (u?lang),
only information in the specified language are displayed ([Language(data) =
lang]− > ...). When some of the participated agents move out of the radio
range or execute disc, only the agents are isolated (the behavior of agents are
initialized by ...[> (disc!sid; A1[u][]pdisc!sid; A1[u])), and the other agents can

26

Table 2.5: Example specification of a location aware system

specification LocationAware: noexit

behavior

A1 | A2 | ... | S1 | S2 | S3

where

agent A1[u] : exit:= (* A2, A3 are similar *)

sync ?{h,j}:sid in

(h?ClientProg:process; u?lang; ClientProg[j](lang))

[> (disc!sid; A1[u] [] pdisc!sid; A1[u])

endsync

endagent

agent S1 :exit:=

hide f,g in

Service[f,g]

where

process Service[f,g] : exit:=

sync !{f,g}:sid in

[not(StartTime())]− >
(Service[f,g] ||| (disc!sid; exit [] pdisc!sid; exit))

[] [StartTime()] − > f!ClientProg; ProvideInfo[g])

endsync

endproc

process ProvideInfo[g] :noexit:=

Transmit[g](JapaneseInfo)

||| Transmit[g](EnglishInfo)

||| ...

endproc

process ClientProg[g](lang) :noexit:=

g?data;

([Language(data) = lang]; ... (* display information *)

[] [Language(data) <> lang]; exit (* skip information *)

) >> ClientProg[g](lang)

endproc

...

endagent

agent S2 :noexit:=

...

agent S3 :noexit:=

...

endspec

(Here, behavior expressions of processes S2, S3 and Transmit are omitted. Start-

T ime() is an ADT function which becomes true when the service starting time has

come)

27

keep receiving service.
Like this example, by sending/receiving process names, programs can be

down-loaded on demand to each mobile host. It contributes efficient use of
memory in mobile hosts with poor resources. Also, using properties of multi-
way synchronization, we can develop an application where the multiple users
interact with a base station at the same time cooperating with each other (e.g.,
interactive games, quiz competition, and so on).

2.4.2 Routing in Wireless Ad Hoc Networks

In wireless ad hoc networks, each mobile agent can communicate with another
distant agent via some intermediate agents by repeating broadcasting to their
radio ranges. Here, based on Dynamic Source Routing [23], we describe a routing
protocol to find a path from a source agent to a destination agent in wireless ad
hoc networks.

In this protocol, as shown in Fig. 2.6, when an agent (source agent) wants
to obtain a path to a particular agent, it broadcasts a request message to its
radio range. Each agent which has received the request message re-broadcasts
it. In such a way, message flooding is carried out until reaching the destination
agent. The request message includes the path from the source to the current
node (each intermediate agent adds its ID as the last entry of list variable
route record). Since the message includes the complete path from the source
to the destination when it has reached to the destination agent, then it returns
the path information to the source along the reverse direction of the path.

At each stage, each agent executes one of the following action sequences.

(1) at a source node, it inputs the destination agent’s ID (u?dest id) and
broadcasts a request message asking for a path to the destination.

(2) at an intermediate node, it receives the request message and forwards it
by re-broadcasting.

(3) at a destination node, it receives the request message and returns the
complete path information to the source node.

(4) at an intermediate node, it receives the return message and forwards it
towards the source node according to the return path.

(5) at a source node, it receives the return message and provides the obtained
path to its user (u!route).

A message broadcast by an agent (sender) can be described by a multi-way
synchronization between the sender and other agents in its radio range. So,
here, we describe the sender agent to advertise for other agents by executing
sync !{b} repeatedly during a time interval, and to broadcast a message by multi-
way synchronization among agents which has participated in the advertisement.
The above broadcast mechanism can be described as the following LOTOS/M
process.

28

process Broadcast[b](msgtype, dest id, data): exit:=
sync !{b}:sid!msgtype in

[not(TimerExpired())]− >
Broadcast(dest id, msgtype, data) >> disc!sid; exit

[] [TimerExpired()]− > b!msgtype!dest id!data; disc!sid; exit
endsync

endproc

(here, T imerExpired() is an ADT function which becomes true when the preset timer has

expired)

Among the above behavior, in (2), to avoid the message replication, each
agent must forward the message only when the current path attached to the
message does not include itself (not(included(route record, my id))).

In (3), (4) and (5), each intermediate agent must send the path information
only to the next agent in the return path towards the source agent. So, the ID
of the next agent is used as the I/O parameter in sync action so that only the
intended pair of agents can be combined (sync !{b}!Return!last(route record)
and sync ?{a}?msg?id[msg = Return and id = my id]).

The whole description of the agent behavior in LOTOS/M is shown in Table
2.6.

2.5 Implementation of LOTOS/M

Specifications and Experimental Results

2.5.1 LOTOS/M Compiler

We have developed a LOTOS/M compiler where a given LOTOS/M specifica-
tion is implemented as a set of Java programs executed at the corresponding
nodes, respectively. Since we aim at modeling behavior of wireless mobile sys-
tems, only the control part of a given specification is automatically implemented.
We assume that functions used in the specification (which are supposed to be
described in abstract data types in LOTOS [5]) are available as the correspond-
ing “methods” in the given Java class libraries and Java programs generated
by our compiler just invoke the methods appropriately. Here we outline the
basic ideas on how to establish multi-way synchronization channels and execute
events synchronously among mobile agents.
(1) Dynamic establishment of channels As explained in Sect. 2.3, a
multi-way synchronization channel among multiple agents is established incre-
mentally. So, we adopt the following procedure: (i) the host agent broadcasts
a message to advertise for a synchronization peer in its radio range periodically
until receiving a participation message from at least one agent; and (ii) if it has
received the participation messages from multiple agents, it selects one agent
among them and sends the acceptance message only to the selected agent.
(2) Execution of events by multi-way synchronization In order to
calculate what event tuples can be executed synchronously among agents when
those agents request execution of events, we construct the synchronization tree

29

Table 2.6: Example specification of a path finding protocol based on Dynamic
Source Routing

agent DSR[u](my id): noexit:=

hide b in

(

(* (1) sending route request with destination node ID *)

u?dest id:int;

Broadcast(Search,dest id,{my id})
[] (* (2) forwarding route request *)

sync?{a}:sid?msg[msg=Search] in

a!Search?dest id?route record

[(dest id<>my id) and not(included(route record,my id))]);

disc!sid;

Broadcast(Search, dest id, route record+{my id})
[] (* (3) when route request reaches the destination node *)

a!Search?dest id?route record[dest id = my id];

disc!sid;

(sync !{b}:sid2!Return!last(route record) in

b!Return!route record+{my id}!route record; disc!sid2; exit

endsync

)

endsync

[] (* (4) forwarding of route information *)

sync?{a}:sid?msg?id[msg=Return and id=my id] in

a!Return?route?return path

[included(return path,my id) and return path <> my id];

disc!sid;

(sync !b:sid2!Return!last(return path-{my id}) in

b!Return!route!return path-{my id}; disc!sid2; exit

endsync

)

[] (* (5) when the source node receives route info. *)

a!Return?route?return path[return path={my id}];
u!route;

endsync

) >> DSR[u](my id)

endagent

(included(list, item) and last(list) are ADT functions calculating whether item is
included in list or not and returning the last item of list, respectively. Exception
behavior by executing pdisc is omitted.

30

for each agent group. Here the synchronization tree corresponds to the syntax
tree where each intermediate node corresponds to an ad hoc parallel operator
and each leaf node does an agent. To enable communication along the syntax
tree, we let the host agent to be the responsible node where it receives request
messages from the participant agent and evaluates the synchronization condition
for each pair of events requested from the host agent and the participant agent
on given gate list G. Since a responsible node is assigned to each operator node
in the tree, according to standard LOTOS semantics, the executable events
can be calculated by examining conditions at each intermediate node along the
path from the leaves to the root. In [24], we have proposed an implementation
method of standard LOTOS and a compiler where a similar algorithm is used
to check executability of multi-way synchronization. So, the above algorithm
could easily be implemented by extending the algorithm used in our existing
compiler.
(3) Isolation of agents To handle this issue, the mechanisms (1) for
detecting an agent (or a sub-agent group) isolated from the agent group and
for (2) reconstructing the synchronization tree are required. For (1), we have
implemented a mechanism to periodically send a polling signal to members of
the agent group. In (2), there are some complicated cases for reconstructing
the tree: e.g., when an intermediate responsible node has been isolated. For
this case, we have implemented a detection mechanism to save some of children
agents which are still alive (capable of communicating with at least one member
of the agent group).

2.5.2 Experimental Results

With the Java programs generated by our compiler, we have measured (1) time
for a channel establishment, (2) time for executing each event on the established
channel, and (3) data transmission rate on the channel (we used four note PCs
with MMX Pentium 233MHz to Celeron 333MHz on IEEE 802.11b wireless
LAN, 11Mbps).

For (1), it took about 2.6ms for a channel establishment between a pair of
agents. For (2), when the numbers of combined agents is 2 to 4, 60 to 140 events
were executed among agents per second. For (3), the achieved rate was 0.9 to
2.3Mbps when the number of agents is two to four. Since data transmission rates
between two agents when using http and ftp protocols on the same environment
were 692.9 Kbps and 3471.9 Kbps, respectively, we think our compiler generate
efficient code enough for practical use.

2.6 Conclusion

In this chapter, we have proposed a new language called LOTOS/M suitable for
description and implementation of wireless mobile applications.

In LOTOS/M, we can describe dynamic establishment of multi-way synchro-
nization channels among agents so that the agents which happen to meet in a

31

common radio range can dynamically communicate by multi-way synchroniza-
tion. Also, LOTOS/M can naturally handle the case that some of the combined
agents are dynamically isolated (e.g., by leaving from a radio range).

Through some experiments, we have confirmed that our proposed technique
is enough applicable to describe and implement wireless mobile applications.

Since our LOTOS/M compiler generates Java programs, it will be easy to
implement LOTOS/M specifications on cellular phones and PDAs which can
execute Java programs with IEEE802.11 or Bluetooth interfaces (such devices
are already available). As part of future work, we would like to develop more
practical applications such as video conferences on ad hoc networks consisting
of those devices.

32

Chapter 3

A Middleware Providing
Multi-way Synchronization
Method in Ad-Hoc
Environments

3.1 Introduction

In recent years, technologies used in portable mobile devices such as cellular
phones and PDAs have made remarkable progress. Nowadays, these devices
can execute Java programs, communicate with other devices via short distance
wireless channels (e.g., Bluetooth[29] and IEEE802.11), and know its geograph-
ical location by GPS. This background has been encouraging people to focus
on ad hoc networks [23] which consist of multiple mobile hosts where each host
can forward packets to enable long distance communication.

In an ad hoc network, unlike an ordinary communication facility based on
the client-server model in the Internet, we need other kind of communication
facilities such that a mobile host can dynamically search its communication
peers and establish channels with them. In order to share information efficiently
among a number of mobile hosts, it is important to be able to use multi-point
channels which enable multicast distribution of data. Also, for easy handling of
interactions among mobile hosts, mechanisms for synchronization and mutual
exclusion among them are essential.

Among a lot of languages to describe communication protocols and dis-
tributed systems, ISO LOTOS [5] has a multi-point communication facility
called multi-way synchronization. Multi-way synchronization enables several
parallel processes to execute the specified events synchronously so as to ex-
change data values. With multi-way synchronization, we can specify not only
synchronous execution of events but also mutual exclusion such that a speci-

33

fied process synchronizes with only one of the other processes exclusively at each
synchronization time. So, we can easily handle complicated mechanisms such as
broadcast/multi-cast communication and mutual exclusion in distributed sys-
tems with this facility. Moreover, multi-way synchronization also allows us
to describe systems incrementally as a main behavior and a set of behavioral
constraints (called the constraint oriented style [6, 7]). From these reasons,
multi-way synchronization seems useful to design and develop wireless mobile
systems. However, multi-way synchronization in LOTOS does not support dy-
namism in wireless mobile applications such as dynamic join and leave to/from
the current communication channels.

In this chapter, we propose a Java-based middleware that provides facili-
ties for dynamic establishment of multi-way synchronization channels among
multiple mobile hosts in ad hoc networks.

The program of each agent can be described in Java where communication
among agents is specified with the methods of the proposed middleware. In order
to establish of multi-way synchronization channels dynamically, the middleware
provides the following methods which assign a specified synchronization relation
to a pair of agents when they are in a state capable of communicating with each
other: (i) advertisement for a synchronization peer on a channel list (a list of
channel names) and (ii) participation in the advertised synchronization. The
pair of combined agents (agents with synchronization relation) is regarded as a
single agent, and can combine with another agent on another channel list (the
same channels can be used to be shared among more than two agents). The
group of combined agents is called the agent group, and its member agents can
communicate with each other by synchronously executing events on specified
channels until the synchronization relation is canceled. When an agent (or a
sub-agent group) goes in a state incapable of communication with the other
agents of the same agent group, the synchronization relation assigned to the
agent is canceled and it can run independently of the others.

When implementing the above mechanism, it is important to manage the
information about member agents in each agent group and the synchronization
relations assigned among the member agents to calculate what events can be
executed synchronously among those agents. For the purpose, we represent the
synchronization relations assigned to an agent group as a binary tree where each
intermediate node corresponds to a binary synchronization relation and each leaf
node does an agent, and let the agents keeps the latest tree information in a
distributed manner so that events executed synchronously among the agents
can be calculated based on the tree. When an agent (or a sub-agent group)
goes in a state incapable of communicating with the other agents of an agent
group, the synchronization tree is reconstructed so that the remaining agent
group can proceed without the isolated agent. We have implemented a polling
mechanism to detect whether each agent has gone into such a state incapable
of communication or not.

Using the proposed middleware, we have developed a simple video conferenc-
ing application on a wireless network where only one of participants can transmit
his/her video data to the others exclusively. As a result, we have confirmed that

34

such a mobile application with data distribution and mutual exclusion can eas-
ily be developed using the middleware and achieve practical performance. Also,
some experiments on IEEE 802.11b wireless LAN have shown that the overhead
of channel establishment is small enough for practical use. The average data
transfer rate and the time to execute each synchronization are also reasonable
under general conditions.

3.1.1 Related Work

A lot of middleware for mobile applications have been proposed in recent years.
They can be classified into four categories: (1) middleware using peer-to-peer
(P2P) communication facility [30, 31] (2) extensions of existing middleware/
protocols [32, 33, 34, 35], (3) context-aware middleware [19, 36, 37, 38, 39] and
(4) mobile agent based middleware [40, 41, 42].

For category (1), Proem [30] provides components for instant messaging ser-
vices, file sharing and P2P communication. In order to achieve good intercon-
nectivity among different platforms, Proem provides (i) one transport protocol
for connection-less asynchronous communication on ad hoc networks, and (ii)
three higher level protocols for presence announcement of each mobile host, for
file/data sharing, and for community construction.

With respect to multi-casting of data, the proposed communication facility
is similar to P2P. However, our communication facility enables data synchro-
nization and mutual exclusion among agents. It is the main difference.

For category (2), a middleware based on publish/subscribe paradigm (i.e.,
autonomous components interact with event notifications) has been proposed
[32].

The proposed middleware has some similarities in the sense that each agent
subscribes advertisement/participation requests for establishing synchronization
channels, and that the disconnection of the established channel is notified by
the corresponding event. However, the proposed middleware provides not only
subscription/notification but also synchronization, data transfer and mutual
exclusion in a consistent framework.

For category (3), [38] has proposed middleware services for information dis-
semination in mobile wireless networks where each mobile host has its own pref-
erence and the selective information is retrieved from data bases based on the
preference and the location information. Also [37] provides several components
to be used in mobile application developments which provide location-aware
information retrieved from distributed nodes in the Internet.

Our middleware aims at providing communication channels based on multi-
way synchronization among agents on ad hoc networks. We think that informa-
tion retrieval based on location information can be described as applications of
the proposed middleware.

For category (4), SOMA [40] has been proposed as Java-based platform
based on the mobile agent technology. SOMA architecture consists of four
layers. The highest layer is called “mobility middleware” which provides highly
abstract services such as virtual resource management like in CORBA. The next

35

layer called “core services” provides services such as communication, migration,
security and QoS adaptation. The lower layers correspond to JVM and physical
devices, respectively.

SOMA aims at providing high level services, while our middleware aims at
providing primitive communication facilities. This is the main difference. In
our middleware, similarly to mobile agent based middleware, we can let object
code to be transferred between agents using multi-way synchronization. With
the proposed middleware, we think we can develop more functional middleware
like SOMA.

3.2 Proposed Middleware for Mobile Applica-
tions

In this chapter, we propose a communication middleware for mobile applica-
tions in Java that is based on multi-way synchronization of a formal description
language LOTOS [5].

3.2.1 Multi-way Synchronization

In LOTOS, system specifications are described by a parallel composition of
several processes. The processes are constructed with external (input/output)
events that occur at interaction points called gates and internal events. For
example, an output event at gate g is described as g!E where E is the output
data, and an input event at gate g is described as g?x : int where x : int is an
integer variable for input data .

The interaction of processes are specified by synchronization operators
P |[G]|Q where P and Q are processes and G is a list of gates. The processes
combined by synchronization operators synchronously execute the events at the
specified gates where each output value from a process is assigned to all the
input variables in the other processes. Here, the type of the output value must
match the type of the input variables.

When each process includes several alternative events, multiple combinations
of synchronizing events may become executable. In this case, one of them must
be selected non-deterministically. For example, in P |[a]|Q where process P
can execute a!1 or a?x : string and process Q can execute a!”hello” or a?y :
int, combinations of synchronizing events are (i) (a!1, a?y), (ii) (a?x, a!”hello”).
Here, (i) or (ii) is selected nondeterministically. Other combinations such as
(a!1, a!”hello”) are excluded since their types do not match.

Also, in LOTOS, the guard expression can be specified to events like g?x :
int[x > 0]. In this case, this event can synchronize only with the events which
output an integer value greater than zero.

If a pair of two processes is combined by a synchronization operator, the
pair can be regarded as a new process. Such pairs of combined processes can be
combined hierarchically with other processes. Since the hierarchical combination

36

A4 g

A1

A2

A3
h

Figure 3.1: Multi-cast communication and exclusive control

� � � � � � � � � � 	

� � � � � � � � � � � �

	 �

 � � � 	
 � � � � � � � � � �

 � � � � � �
 � � � � � � � � 	

 �

� � � � � � � � � �
 � � � � �
 � � �

 � � � � � � �
 � � � � � � � � 	

 �

� � � � � � � � � �
 � � � � �
 � � �

� � � � � � � � � � 	 � � � � � � � � � � 	

 �
 �

 �

 �

 �

Figure 3.2: Dynamic change of agent tuples capable of communication

of processes enable the synchronization among more than two processes, this
facility is called multi-way synchronization.

For example, assume that four processes A1, ..., A4 are combined by syn-
chronization operators as ((A1|[g]|A2)|[g]|A3)|[g, h]|A4. In this case, since the
events at gate g of these processes are executed synchronously, we can specify
multi-cast data transfer to all processes by the events at gate g. In this spec-
ification, gate g can be regarded as the common gate among these processes
(Fig.3.1). On the other hand, for gate h, process A4 and the entire process
((A1|[g]|A2)|[g]|A3) is specified to synchronize by the events at gate h. Since
the processes A1, A2 and A3 execute the events at gate h independently, only
one of them is selected to synchronize with the process A4 by the events at gate
h as shown in Fig.3.1.

3.2.2 Proposed Middleware and its Facility

In LOTOS, multi-way synchronization is specified with synchronization opera-
tors among pre-defined processes. However, in a wireless mobile environment,
quite numerous agents are running and they move around towards different di-
rections. Thus, peer agents with which each agent can communicate may change
since its communication area as well as other agents’ areas changes as shown
in Fig. 3.2. In order to apply multi-way synchronization to such a system, we
propose facilities to dynamically assign synchronization relations among agents
(which correspond to establishing multi-way synchronization channels) step by
step.

We propose a middleware library for Java language such that Java programs
(agents) running on the corresponding mobile hosts can communicate with each

37

other by multi-way synchronization on dynamically established communication
channels. This library provides two methods for channel establishment (Adver-
tise and Participate), and one method (Disc) for channel disconnection. Also
we have introduced a mechanism which enables exchange of Java object codes
among agents so that each agent can download an object code and execute it
without compiling. We have implemented a base class called Function which
simplifies the procedure consisting of (i) sending object codes as data, (ii) ex-
tracting Java codes from the received data, and (iii) execution of the extracted
codes.

Below, we show the facilities of the above methods in the proposed middle-
ware library.

(A) Channel Establishment

The methods for channel establishment are used in the following form:

sid:= Advertise(G, IO, Guard)
sid:= Participate(H, IO, Guard)

Here, G and H denote a list of channel (gate) names (such as {a,b,c}), “IO”
represents a list of input and output parameters, and “Guard” represents a
boolean expression denoted by [f(c1, c2, ...x1, x2, ...)] where constants c1, c2, ...
and parameters x1, x2, ... in IO may be used. IO and Guard restrict agents
which can participate in a given multi-way synchronization channel. For ex-
ample, if we can use the location information by GPS, we can specify a guard
expression so that only agents whose distances are less than 10m can establish
a channel. “IO” and “Guard” can be empty. These methods return the ID of
the established communication channel. The same value is assigned as IDs to
the pair of agents which have established a channel.

If the following conditions hold for a pair of agents, then a synchronization
relation on gate list G is assigned between the agents (we also say that the two
agents are combined (or joined) on gate list G).

• one agent A1 calls the synchronization method Advertise (G,IO1,
Guard1) (called host agent) and the other agent A2 calls Participate (H,
IO2,Guard2) (called participant agent).

• the numbers of gates in G and H are the same.

• the numbers of parameters in IO1 and IO2 are the same and each pair of
the corresponding parameters consists of an input and an output where
their types match.

• both of Guard1 and Guard2 hold after assigning each output value to the
corresponding variable of the input parameter (e.g., when the input and
output parameters are x and E, respectively, the value of expression E is
assigned to variable x).

38

sid1

sid1

sid2 sid2

sid1

or

(1) (2) (3a) (3b)

Advertise(g)

Participate(h) Advertise(h)

Participate(f)

Figure 3.3: Assignment/cancellation of the synchronization relation among
agents when they approach/leave into/from a radio range

• the two agents are in states capable of communicating with each other
directly (i.e., in a common radio range).

If all of the above conditions hold, a synchronization relation on G is assigned
to A1 and A2 (we say A1 and A2 are combined) and they behave as a single agent
represented by A1|[G]|sid A2[G/H]. Here, |[G]|sid is the new operator called
ad hoc parallel operator which is equivalent to the synchronization operator
of LOTOS except that its operands can be separated by Disc(sid) method.
A2[G/H] represents that gate list H is replaced by G, and that the program
code in A2 referring each gate in H must refer the corresponding gate in G.

The combined agents are treated as a single agent called an agent group.
Each agent group can be combined incrementally with another agent by execut-
ing Advertise (or Participate) method. As an example, Fig. 3.3 illustrates
that three agents are combined in a step-by-step manner. First, (1) two agents
A1 and A2 are combined on gate g with ID= sid1. Then (2) another agent A3 is
approaching to A2 and establishes a channel with ID= sid2. In that situation,
if A1 executes Disc(sid1), (3a) the channel with sid1 will be disconnected and
the agent A1 will be isolated. On the other hand, if A2 executes Disc(sid2),
(3b) the sub-agent group A1|[g]|sid1A2 will leave from the agent group.

(B) Channel Disconnection

Each agent group can be separated into several agents/agent groups by ac-
tive/passive disconnection events.

When an agent calls Disc(sid) method, the channel established with ID=sid
is disconnected (called active disconnection). When a channel is disconnected
(including cases that an agent has gone in a state incapable of communicating
with any other members of the agent group), an exception PDisc(sid) is thrown

39

to all member agents of the agent group (called passive disconnection). This
exception indicates which channel has been disconnected by sid.

(C) Exchange of Processes as Data Values

In Java, since Java codes such as classes and their instances can be regarded as
data, they can be exchanged among different Java programs running on different
hosts. Based on this mechanism, we have implemented a facility to specify such
exchange of object codes simply. With this facility, when a client requires some
functions, it can dynamically download them from servers.

If Java program A wants to execute some object code in a different Java
program B, the following steps are required: (1) retrieve the file including the
specified class (object code); (2) read the file in the internal buffer and transfer
it; (3) receive data and extract the object code from it; and (4) execute the
object code. Here, steps (1) and (2) should be done by Java program A, and
(3) and (4) by B.

To avoid describing the above steps for every object code transfer, in our
middleware library, we have defined a base class Function for exchange of
object codes. We have implemented a mechanism to automatically apply the
above steps to instances of subclasses of Function. Using this mechanism, we
can transfer classes to multiple agents by method Synchronization explained
later.

(D) Execution of Events by Multi-way Synchronization

Class Event is used to transfer data through dynamically established channels.
We set each instance of class Event to hold a gate name, a list of I/O parameters
and guards. When an agent gives an instance of class Event with parameters
to method Synchronize, it is informed of whether these events can be executed
according to the synchronization relations and given guard expressions in the
agent group where the agent belongs. We show an example of a client-server
application below. Here, assignments of parameters to the instances of Event
are omitted.

void Server(){

while(true){

Advertise(G,IO,Guard); //Channel Open

Event = Synchronize(Events); //Sending Data

}

}

void Client(){

if(Participate(G,IO,Guard)){ //Channel Open

while(true){

Event = Synchronize(Events); //Receiving Data

}

}

}

40

In the above example, suppose that one server computer executes method
Server and several client computers execute method Client. The server exe-
cutes method Advertise repeatedly to find clients in a radio range which want
to participate in the agent group. Each client tries to find a server in a radio
range by executing method Participate when it wants to receive some data.
When the server has been found, a channel is established. Since gate list G is
used to establish channels among multiple clients in method Server, when the
server executes an event by method Synchronize, data included in the event
is transferred to all clients at the same time.

A parameter list is represented as an array of type Object (the superclass
of all the classes in Java). For an output parameter, the value itself is stored
in the element. For an input parameter, an instance of class Class (the class
for representing classes) is stored. A guard is stored in an element with class
Function. For each guard, a subclass of class Function is defined by overriding
its method Execute. Guard expressions are transferred to other agents when
synchronization condition is evaluated in Synchronize method.

3.3 An Example Mobile Application

In this section, we show applicability of our middleware by describing a simple
video conferencing application on an ad hoc network.

We assume the following features in the application.

(1) Each user can join the current conference session or leave from the session
anytime it wants.

(2) Due to bandwidth restriction, only one participant can talk at a time. If
several participants want to talk at the same time, one of them must be
selected under the consensus of all participants.

(3) While a participant is talking, his/her live video is transferred and played
back on all of the participant hosts.

For the above (1), each agent executed on a participant host can establish a
multi-way synchronization channel with other agent to form an agent group by
repeatedly executing methods Advertise and Participate of our middleware.
Two gates g and h are used for channel names where ‘g’ is used for exchanging
the control data and gate ‘h’ for the media data.

For (2), we let each participant select a behavior mode Talk or Listen. To
permit only one participant to talk, we use multi-way synchronization on gate g
as follows. If a participant has selected Listen, the agent of the participant ex-
ecutes Synchronize with input event g?id. If a participant has selected Talk,
the agent executes Synchronize with two alternatives consisting of input event
g?id and output event g!ID where ID is the identifier given to the participant.
By definition of multi-way synchronization in Sect. 3.2.1, only one tuple of syn-
chronizing events such that one is g!ID and the others are g?id is selected even

41

Wait for user input

LISTENTALK

Talking
packet=
GetPacket();

Send packet
Synchronize({
Event(’h’,packet)});

Stop talking
Synchronize({
Event(’g’,END)});

Decode
packet=event.GetParam();
Decode(packet);

event.gate==’g’

packet==null event.gate==’h’

id==ID

id!=ID

Advertising thread

Main thread

Listen
event=Synchronize({
Event(’g’,Integer.class)});

Select speaker
Synchronize({
Event(’g’,Integer.class)});

Select speaker
event=Synchronize({
Event(’g’,ID),
Event(’g’,Integer.class)});

id=event.GetParam();

packet!=null

Participate({’g’, ’h’});

Advertise({’g’, ’h’});

Advertise({’g’, ’h’});

Start advertising thread

Figure 3.4: Example Java program

when several participants have selected Talk. Each participant knows whether
his/her request to talk is permitted or not by the return value of Synchronize.

For (3), we use multi-way synchronization on gate h so that the live video
data of the talking participant is transferred to the other participants by exe-
cuting Synchronize with event h!packet at the talking participant and Syn-
chronize with event h?packet at the listening participants.

In Fig. 3.4, we show the flow chart of the example Java program for the above
application. Also, in Fig. 3.5, we show a snapshot when executing this program.
Here, we introduce two new methods for multimedia processing operations: (i)
a method GetPacket that captures the live video of a user as MPEG movie
and packs it into packets (byte arrays) and (ii) a method Decode that decodes
given packets and plays back the movie in a window. In this figure, the code
for manipulating GUI such as construction of windows and buttons is omitted.

First, this program invokes two threads. One thread executes method Ad-
vertise continuously to advertise for participants of the conference session in
its radio range. Another thread executes method Participate to establish a
channel with other agents in the radio range to participate in the session. When

42

Wireless networks

Agent group

(1)Participate (2)Advertise

user4

user1 user2 user3

Figure 3.5: Snapshot of a sample application

channels are established, a synchronization relation of two gates g and h is as-
signed to the pair of agents. After the channel establishment, the operations for
the above (2) and (3) are followed.

As explained above, using facilities of our middleware based on multi-way
synchronization, we can simply describe applications including complicated in-
teractions such as multi-cast with mutual exclusion.

3.4 Implementation

In this section, we focus on how to implement multi-way synchronization among
agents.

3.4.1 How to Implement Multi-way Synchronization
Among Agents

Since agents are combined incrementally, the combined agents (agent group)
and the synchronization relation assigned among them are represented by a
binary tree as shown in Fig. 7 where each intermediate node and each leaf node
correspond to an ad hoc parallel operator and an agent, respectively. We call
such a tree as the synchronization tree, hereafter. Since the synchronization tree
is equivalent to the behavior expression in LOTOS, we can derive what events
can be executed synchronously among agents by evaluating synchronization
condition at each operator node in the tree from the leaf to the root node based
on the technique in [24].

43

� � �
 � 	
 � � � � � � � � � � � �

� � � � �
 � � � � �
 � � �
�
 � 	 � � � � � � � � � � � � �

 � � � � � � � � �
 	 � �

� � � 	 � � � � �
 � � � � � � � �
 � � � �

� � � � � � � �
 � � � � � � � � � � �

� � �
 � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � � �� � � � � �

�

� � � � � � � � � � � � � � �

 �

 �

Figure 3.6: How to implement the channel establishment

How to Implement Method Advertise/Participate

By definition, if a host agent is advertising for a synchronization peer by Ad-
vertise (G,IO1,Guard1), a participant agent wants to participate in it by Par-
ticipate (G,IO2,Guard2), and they can directly communicate with each other,
a synchronization relation on G is assigned between them.

As shown in Fig. 3.6, we adopt the following procedure to check whether
two agents can directly communicate with each other:

(1) the host agent broadcasts a message to advertise for a synchronization
peer in its radio range.

(2) it repeats the same message broadcast periodically until at least one agent
responds to the message for participation.

(3) if it has received the responses from multiple agents, it selects one agent
among them (guard expressions must hold) and sends the acceptance mes-
sage only to the selected agent. After that, we suppose that a synchro-
nization relation has been assigned between those two agents.

(4) the host agent and the selected participant agent keep the information to
set up the synchronization relation between them.

(5) the unselected agents wait another advertisement broadcast from the host
agent (or from the selected participant agent) to participate in the same
agent group.

For the above (4), we let the host agent to be the responsible node where
it receives request messages from the participant agent and evaluates the syn-
chronization condition for each pair of events requested from the host agent
and the participant agent on given gate list G. Here, the responsible node
(the host agent) keeps the gate list whose events must be synchronized and the
other node (the participant agent) keeps the host agent to which it should send
request messages. As shown in Fig. 3.7, when multiple agents are combined
hierarchically, we similarly assign a responsible node to each ad hoc parallel
operator generated by executing method Advertise/Participate. Like this way,
the combined agents keep the synchronization relation specified among them.

44

� � � � �
 �

� � � � � �

� � � � � � �
 �

� � � � � � �
 �

� !

� " # � " �

� " # � $ �

� $ � � " �

� " # � " �

% � & � �
 	 � � �
 � � � 	 � �
 � � � � � � � � � � � � � �
 � � � ' � � � � �

� � � � (� � � � � # � 	 �)

� " � � $ �� $ � � "

� � � � � � � � � � � � � � � � �

% � & � �
 	 � � � � � � � � � � � � � #

 � � � � � �

� � � 	 �) � 	 � � � � � � � � � � � � �

�
 � � � � � � � � (� � � � * � � � � � �

� � � �
 � � � �

 � 	 � � � � � (� � � � �

� � � � � � � �
 � � � � � � � � �)

� � � � �� � � �

� $ �

� " � $ �

� $ �

� � � � �� � � �

� � � � �� � � �

% � & � � � $ � � �
 � � � � 	 �
 �

� # � 	 � �
 � � � � � � �
 � � � � + �
 � �

� � � 	 � � � � �
 � � � �

Figure 3.7: How to evaluate executable events in multi-way synchronization

How to Implement Method Synchronize

Suppose that agents A1, A2, A3 and A4 have been combined on gate g and
the responsible nodes have been assigned as shown in Fig. 3.7. In the figure,
|[g, h]|A2 shows that agent A2 is the responsible node of the operator. Note that
ID of each operator is omitted here. Here, we explain how an executable event
of multi-way synchronization on gate g is calculated using Fig. 3.7. First, when
agent A2 wants to execute event g?y or h!2 by method Synchronize, it sends to
its responsible node (A1) the request message for the events (req({g?y, h!2})).
A1, in turn, evaluates the synchronization condition between the events in the
request message and event g?x which A1 wants to execute. In this case, the
synchronization condition holds between g?x and g?y, and h!2 does not need
synchronization in this node. Thus, A1 sends the request message for those
events (req({g?x, h!2})) to the parent responsible node (i.e., |[g, h]|A2).

A2 receives the request messages from A1 and A3, and it similarly eval-
uates the synchronization condition for the messages. In this case, since
req({g?x, h!2}) and req({g!1, h?z}) are received from A1 and A3, respectively,
a new request message req({g!1, h!2}) is generated and sent to the parent node
(|[g, h]|A1). The responsible node of |[g, h]|A1 receives the request messages
req({g!1, h!2}) and req({g?w}) from A2 and A4, respectively. Since the root
responsible node (A1) does not have a parent node in the synchronization tree,
A1 concludes that event g!1 is executable by multi-way synchronization, and
the calculation result is propagated to the related agents which sent request
messages along the synchronization tree. This result is returned to method

45

% � & � � � � � � � � � � � � � � � � � �
 �
� �

% � & � � � � � � � � � � � � � � � � % � & � � � � � � � � � � � � � 	 � � (� � �

 � � � � � � � � � � � � * � � � � � � � � � � � �

� � � �
 � � � � � ,

 � � �
 � � � � � � � � � � (� � � � � � �
 � � � � � � � � � � � � � �
 � � � � � � � (
 �

Figure 3.8: Check of physical connection among agents by polling signals

Synchronize.
In Fig. 3.7, the responsible nodes are A1, A2 and A1, respectively. If we

can change the responsible node A2 to A1, the message exchanges between
responsible nodes are reduced.

How to Handle Cases When an Agent is Isolated from its Agent
Group

An agent is isolated from the agent group when it leaves from the radio range
of the group (passive isolation) or when an agent intentionally executes method
Disc (active isolation). We define passive isolation of agents as follows.

• when two directly combined agents cannot communicate with each other.

• at a synchronization operator node in the synchronization tree, any pair
of agents from its left child subtree and right child subtree cannot com-
municate.

In this case, we suppose that the agent group whose members cannot com-
municate with its parent node has been isolated (then a corresponding method
Disc is executed).
(1) How to handle agent isolation while calculating an executable
event of multi-way synchronization In general, the combined agents of
an agent group send their request messages at different time from each other.
Therefore, there is a time lag to obtain the result of whether the requested
events can be executed or not after sending the request. In our implementation
method, as shown in Fig. 3.8, we adopt the following procedure to handle agent
isolation while calculating multi-way synchronization:

(1) after calculation of an executable event of multi-way synchronization at
the root node, the root node sends the polling signals to the member
agents (i.e., agents which sent the request messages for the enabled syn-
chronization).

(2) each member agent responds to the polling signal if it receives the signal.

46

� � � % � � � + � � � �) � � � � � &

�
 � � � � � � � � � � �
 � � �

� � � % � � � �) � � � � � &

�
 � � � � � � � � � � �
 � � �

� � � � � � �

� � � � � �

� � � * � � � � �

� � � * � � � � !

� !

� � � � � � �

� � � � � �

� � � * � � � � �

� � � * � � � � !

� !

� � � � � !

� � � * � � � � !

� � � � � � �

� � � � � !

� � � * � � � � !

� � � � � � �

� � � � � !

� � � * � � � � !

� � � * � � � � �

� � � � � !

� � � * � � � � !

� � � * � � � � �

� � � � � � �

� � � � � �

� � � * � � � � �

� � � * � � � � !

� !

� � � � � � �

� � � � � �

� � � * � � � � �

� � � * � � � � !

� !

��

�

�

�

�
�

� � � � � � 	 �

% � & � � � � 	 � � � � - � � � � � �
 � � � � � � � � � � � � � � �

% � & � � � � � 	 �
 � � � � � � � � � �) � � � � � �

% � �
 � (� � � � � � * � � � � �
 � � � � � �
 � � �

� � - � � �
 � � � � � � � � � &

% � & � � � � � 	 � � � � �

 � � � �

� � � � � � 	 �

% � & � � �
 � � � � ! � � � � � 	 � � � � - � � � � � �
 � � � � �

� � � � � � � � � � � % � � � � �
 � (� � � � � � � � � � � &

% � & � ! �
 � (� � � � � � � � � � � �
 � � � � � 	 � � � � �

� � � �) � � � � �

% � & � � � � � � � � � 	 � � � � �

 � � � � � � � � � � �

� � � �) � � � � � � � � � � � � * � � �

�

�

Figure 3.9: Reconstruction of the synchronization tree

(3) only if the root node receives the responses from all of the member agents,
it sends the result. Otherwise, it removes the request messages from the
agents which did not respond. The calculation of an executable event is
carried out from the scratch for the remaining messages and new messages
to be received.

If we assume that agents are never isolated while each agent is waiting to
receive the result after responding to the polling signal, we can guarantee that
multi-way synchronization among agents is correctly implemented even when
agents move around. As shown in Sect. 3.5, the time necessary for the syn-
chronization is less than one second. So we think this assumption could be
reasonable.
(2) re-construction of the synchronization tree caused by agent iso-
lation When an agent is isolated, the synchronization tree must be re-
constructed.
(i) the case when a non-responsible node is isolated Let us suppose that
agent A3 is isolated in Example1 of Fig. 3.9. Agent A2 (responsible node of
|[g, h]|A2) detects A3’s isolation by sending the polling signal. At that time, (1)
A2 need not be responsible to A3 any more, so it should remove the work space
for |[g, h]|A2 in Fig. 3.7, and (2) the sub-tree whose root is |[g]|A1 should be
re-connected to the new parent node (|[g, h]|A4 in Fig. 3.7).

In our implementation, for the above (2), agent A2 (|[g, h]|A2) sends a mes-
sage to A1 (|[g]|A1) in order to change the parent node of |[g]|A1 to agent A4
(|[g, h]|A4) as shown in Example1 of Fig. 3.9.

47

Table 3.1: Main classes of our middleware library
Name Method Function

Agent Agent(Communicator[] base class of all the agents an
communicators); agent class is instantiated with

some Communication objects
int Advertise(char[] chan-
nels);

advertise for an agent joining an
agent group

int Participate(char[] chan-
nels);

participate in an agent group

Event Synchronize(Event[]
events);

synchronize with other agents in
the agent group with a possible
event in the event list

Event Event(char channel, class for defining an event
Object[] parameters); an event is defined by a set of

channels and formal/actual pa-
rameters

Communicator the abstract of communication
functions used by our agents

Communicator-
UDP

an implementation of Commu-
nicator class using UDP/IP

Function base class of the functions
Object Execute(Object []
parameters);

defining a class to send Java
code overriding this method

If A4 and A1 cannot physically communicate with each other, we suppose
that agents of the sub-tree whose root node is |[g]|A1 have been isolated.
(ii) the case when a responsible node is isolated When agent A2 is isolated in
Example2 of Fig. 3.9, A4 and A1 detect A2’s isolation by sending the polling
signal. In this case, |[g]|A1 should be removed and the responsible node of
|[g, h]|A2 should be changed to the one which can communicate with A4.

To do so, in our implementation method, we have each responsible node
keep two sets: one set keeps agent names included in the left-hand sub-tree
and another set does in the right-hand sub-tree. Based on the sets, when a
responsible node is isolated, its parent node broadcasts a message to the agents
included in the corresponding set in order to advertise for a new child node
with the gate list for synchronization (we assume that each node knows the
gate list for synchronization of its child node). In Example2 of Fig. 3.9, A4
(|[g, h]|A4) broadcasts a message to {A1, A3} for changing the responsible node
of |[g, h]|A2, and A1 responds to be a new responsible node. If no agents respond
to the message, we suppose that the whole sub-tree has been isolated.

48

3.4.2 Implementation of Communication in Underlying
Networks

We have defined class Agent that is the base class of all the agents based on
our middleware (Table 3.1). We can design mobile agents simply by defining a
new class extending class Agent and adding required functions to the new class.

The implementation of multi-way synchronization is hidden in class Agent
and designers need not understand how the facility works. We have defined
class Communicator and class Message in our middleware to abstract the
facility of practical communication protocols such as broadcast of messages or
transfer of messages to specified hosts. These abstracted classes construct vir-
tual networks where message exchanges are carried out based on virtual host
IDs. Class Agent works by using such abstracted communication protocols. We
can use our middleware on various networks by implementing a subclass of class
Comunicator using available protocols in the environments.

Here, we have implemented class CommunicatorUDP that is a subclass
of class Communicator in order to examining our library. Class Communica-
tiorUDP is based on UDP/IP to exchange the messages among hosts. This class
assigns the virtual host IDs to actual IP addresses of the hosts and transfers
messages via UDP.

At the present time, the facility of cellular phones are often restricted such
that only http protocol can be used for data communication. However, we can
implement the required facility of our class Communicator in such environments
by using server side programs such as CGIs or Java Servlets that emulate the
broadcast of messages and the transfer of messages to specified hosts. So we
can implement our middleware on such cellular phones. Also we can implement
them on Bluetooth.

We have implemented our middleware such that class Agent of our middle-
ware can manage more than two instances of class Communicator. By using this
facility, we can make gateway servers between different communication proto-
cols by implementing subclasses of class Communicator on these protocols and
giving them to the servers. For example, the agent program on wireless LAN
environments in Sect. 3.3 can communicate only with the other hosts on the
same environment. However if we implement a subclass of class Communicator
for cellular phones based on http and make some server use them with the Com-
municator for the wireless LAN environments, the server enables the seamless
participation to the network meeting for the cellular phones.

3.5 Experimental Results

We have examined the performance of our middleware. Since the time neces-
sary for calculating executable synchronizations depends on the structure of the
synchronization tree. If relatively large size of data is transferred by synchro-
nization, the time also depends on the hop count (longest path length). Here,
we have measured the time for two cases : (a) the case of most efficient tree and

49

|[g,h]|A1

|[g,h]|A1

|[g,h]|A1

A1 A2 A3 A4

A1

A2 A3 A4

|[g,h]|A4

|[g,h]|A3

|[g,h]|A2

A1 A2 A3 A4

A1

A2

A3

A4

(a)Most efficient tree (b)Least efficient tree

Figure 3.10: Structure of trees

(b) the case of least efficient tree (Fig.3.10). In our experiment, we used 4 nodes
of mobile hosts corresponding to PCs with MMX Pentium 230MHz to Celeron
333MHz on a wireless LAN (IEEE 802.11b) environment where the maximum
data transfer rate is 11Mbps.

At first, we have measured the time for each channel establishment. The
consumed time was less than 300 ms for each channel establishment, indepen-
dently of the number of hosts in the agent group. Since each two nodes on a
wireless LAN can communicate directly with each other, the time required for
each channel establishment is converged to a fixed value even when the num-
ber of agents increases. In an environment where each pair of nodes cannot
communicate directly with each other, the time for a channel establishment will
increase as the number of agents increases. However, this overhead seems small
and can be ignored for practical applications.

Next, we have examined the performance of synchronization on the estab-
lished communication channels. For this purpose, we have measured the average
data transfer rate and the average number of synchronizations executed in one
second for some different data sizes (since other information such as gate names
and guards is transferred with given data parameters, the indicated data size is
smaller than the actual size of transferred data).

The results are shown in Fig.3.11 and Table 3.2. We have measured the
average data transfer rate on the same environment by other protocols. The
data transfer rate was 692.9Kbps by http and 3471.9Kbps by ftp. From these
results, our middleware can transfer data at a reasonable speed when we select
appropriate data size to be transferred at once.

50

0

512

1024

1536

2048

2560

3072

3584

4096

0 5120 10240 15360

K
B

its
 /

S
ec

on
ds

Data length(bytes) / Synchronization

2 nodes(1 hop to sync.)

3 nodes(1 hops to sync.)

4 nodes(1 hops to sync.)

0

512

1024

1536

2048

2560

3072

0 5120 10240 15360

K
B

its
 /

S
ec

on
ds

Data length(bytes) / Synchronization

2 nodes(2 hops to sync.)

3 nodes(4 hops to sync.)

4 nodes(6 hops to sync.)

(a)Most efficient tree (b)Least efficient tree

Figure 3.11: Average transfer rate(bps)

Table 3.2: Average transfer rate for each data length per synchronization
Data length Average data transfer rate(Kbps)
per sync. (a)Most efficient tree (b)Least efficient tree
(Bytes) 2 nodes 3 nodes 4 nodes 2 nodes 3 nodes 4 nodes

0† 0.0 0.0 0.0 0.0 0.0 0.0
1024 794.8 504.4 336.8 476.6 271.4 161.2
5120 1826.7 1062.6 716.7 1022.5 554.1 350.7

10240 2205.9 1249.2 824.4 1182.0 641.5 411.4
15360 2355.3 1312.4 899.9 1242.5 668.4 427.9

† : synchronize without data

Next, we have measured how many times synchronization can be executed
in a second. The result is shown in Fig. 3.12 and Table 3.3. We think this result
is practical enough for developing mobile applications on ad hoc networks.

3.6 Conclusion

In this chapter, we have proposed a Java-based middleware for supporting in-
teractions among agents in wireless ad hoc networks based on multi-way syn-
chronization of LOTOS. With our middleware, as explained in Sect. 3.3, we
can easily handle group communication such as multicast data distribution and
mutual exclusion among multiple agents by the methods of the middleware
for dynamically establishing multi-way synchronization channels. Also, we can
treat the case that some agents in an agent group are isolated by leaving from
the common radio range.

In our implementation method, we manage membership information of each
agent group as a binary tree based on LOTOS semantics, we could easily im-
plement multi-way synchronization among agents by keeping the latest tree and
collecting/processing request messages from agents along the tree based on the

51

0

20

40

60

80

100

120

140

160

0 5120 10240 15360

#S
yn

ch
ro

ni
za

tio
n

/ S
ec

on
ds

Data length(bytes) / Synchronization

2 nodes(1 hop to sync.)

3 nodes(1 hops to sync.)

4 nodes(1 hops to sync.)

0

20

40

60

80

100

120

0 5120 10240 15360

#S
yn

c.
 /

S
ec

on
ds

Data length(bytes) / Synchronization

2 nodes(2 hops to sync.)

3 nodes(4 hops to sync.)

4 nodes(6 hops to sync.)

(a)Most efficient tree (b)Least efficient tree

Figure 3.12: Average number of synchronization per second

Table 3.3: Average number of synchronization per second for each data length
per synchronization

Data length Average number of sync. per sec.
per sync. Most efficient tree Least efficient tree
(Bytes) 2 nodes 3 nodes 4 nodes 2 nodes 3 nodes 4 nodes

0† 145.6 90.4 60.8 106.1 57.5 35.0
1024 99.4 63.1 42.1 59.6 33.9 20.2
5120 45.7 26.6 17.9 25.6 13.9 8.8

10240 27.6 15.6 10.3 14.8 8.0 5.1
15360 19.6 10.9 7.5 10.4 5.6 3.6

† : synchronize without data

technique in [24]. Through some experiments, we have confirmed that our pro-
posed technique is enough applicable to describe and implement wireless mobile
applications.

52

Chapter 4

Automatic Decomposition
of Java Program for Mobile
Terminals

4.1 Introduction

Recently, handheld terminals such as mobile phones or PDAs have become very
popular. And many additional functions have been given to such devices. Es-
pecially, since many mobile phones that equip Java Virtual Machine have ap-
peared, the requirement for the applications running on mobile phones has been
becoming larger. However, because of the limitations such as available mem-
ory size and processing power, not so many applications can be executed on
such handheld devices. On the other hand, remote method invocation facilities
such as Java RMI [43] and HORB [44] and distribution methods to execute Java
programs in distributed environments by using such facilities have been studied.

In this chapter, we propose a distribution method where given applications
will be executed in mobile terminals virtually by using remote method invo-
cation. In case that a given application is too large to be executed on mobile
terminals, only a part of the application (e.g. the user interface and frequently
invoked modules), can be executed. So in our approach, only a part of the
application that includes its user interface is executed on a mobile terminal and
large sized modules that cannot be executed in the mobile terminal are executed
on its proxy server. The two parts communicate each other by using remote
method invocation and the whole system is executed as the same as the original
application running on a single machine. In this case, the division is required
to satisfy the limitation of mobile terminals and moreover it is better that the
division satisfies the requirements from its user’s environment. For example, if
we use a cellular phone and if we must pay money for communication between
the cellular phone and its proxy server depending on the amount of communica-

53

tion, the user would require to reduce the amount of communication in order to
save money. On the other hand, the decrease of communication delay might be
most important for real-time applications if we use mobile terminals with free
wireless LAN services. Keeping the consumption of battery as low as possible
is also important. So in this chapter, we propose a method for obtaining the
division that is as good as possible in a sense of the given metrics under the
given restrictions.

To derive such a division, the statistical data about the amount and number
of communication among modules are needed. For remote method invocation
in Java, many studies are done such as a study of measurement and optimiza-
tion [45], studies of measurement and scheduling for improvement of real-time
systems [46, 47] or a study of efficient implementation of RMI [48]. However,
these studies are based on the measurement of performance of distributed ap-
plications in practical environments. So, it is difficult to apply those techniques
to divide applications that are not specified as programs running on distributed
environments.

For statistical performance evaluation, there are many studies based on anal-
ysis of source codes such as studies of slicing of parallel Java programs [11, 12].
However, here for simplicity of discussion, we use a simulation based perfor-
mance evaluation technique. In our technique, additional codes for performance
evaluation are inserted to the given source code automatically. The codes are
inserted to be called before all the method invocations and record the amount
and number of communication between two modules (classes). The statistical
performance data can be collected by executing the modified code repeatedly
with considering various situations.

Then a division is derived where it satisfies all the restrictions such as the
memory size and it is optimized under the given metrics. Here, we have proven
that this division problem is NP-hard. Since in general the optimized solution
cannot be derived in practical time, we use a heuristic algorithm to get an
approximated solution. To solve such NP-hard problems, there are many studies
for approximation such as Min-Cut method [49] proposed by Kernighan and Lin,
its advanced method [50] and a combination of Min-Cut based graph division
algorithm and GA (generic algorithm) [51]. Moreover, SA(Simulated Annealing)
[52], liner-time heuristic division method [53] and other methods are proposed.
In our technique, we use SA based method because it is known that relatively
good solutions can be derived in reasonable computation time.

We have developed a performance evaluation tool and division tool based
on SA. Then we have applied our method to some example applications by
some dividing metrics. By this evaluation, we have checked our method can
reduce calculation time extremely by compared with brute force method and
the derived division can be as good as the optimized answer by searching widely.

In the following Sect. 4.2, we give the outline of the proposed technique.
In Sect. 4.3, we explain how we can collect the statical information about
communication between each pair of two modules. In Sect. 4.4, we define
the module assignment problem formally and prove it as NP-hard. In Sect.
4.5, we propose a division technique using SA. In Sect. 4.6, in order to show

54

the applicability of our technique, we describe typical mobile applications and
divide their programs into two sets of modules. Finally, Sect. 4.7 concludes the
chapter.

4.2 Outline of Proposed Technique

In our proposed technique, a given application is divided into two parts where
each class is assigned to either server side modules or client side modules. These
two parts of modules communicate with each other so that their behavior is the
same as the given application.

4.2.1 Restrictions for Target Applications

Here, we give some restrictions for the target applications.

• The source codes of the target application are available.

• All the interactions between classes are done by method invocation.

• All the parameter variables are simple data structure that can be passed
by value.

• After each method invocation, the called class never keeps the reference
to parameter variables of the invocation.

At first, since in our method performance evaluation is done by modifying
source codes, the source codes of the target application must be available. If
a part of source codes of some classes is not available, these classes are not
cared in division and they are placed on both the server side and client side (the
source codes of the standard library are not needed since these classes are always
available on both sides without explicitly assigned). Secondly, in our method, all
the classes of target applications must interact with each other only by method
invocation. If some shared variables are used for interaction, they must be
replaced by access methods of private variables before applying our method.
Thirdly, all the parameters must be passed as if they were passed by value. The
special objects such as the objects with connections to the environments like
sockets objects must have neither parameters or return values. This restriction
is placed in order to measure the amount of communication correctly. Lastly, the
references to parameter variables must not be kept after the method invocation
because of the same reason as the third restriction. Even in the case that some
classes keep the references to parameter variables, our method can be applied by
defining wrapper classes for these classes that hide such complicated interactions
into them.

55

4.2.2 Assumption for Target Environment

In our technique, the divided two parts interact with each other by using Java
RMI, in target environment. RMI must be available between the server side
modules and client side modules in both directions.

Now in many environments of mobile phones RMI is not supported and only
pull type communication from terminals is served. However, push type com-
munication from servers is defined in WAP2.0, which is the next generation of
handheld communication device standard. So by using such services to simu-
late RMI, our technique can be applied. On the other hand, even in the current
generation of cellular phones, push type communication from the server side
can be available by using short mail services provided in some cellular phone
environments such as C-mail service of ezplus provided by KDDI Japan. So by
using such services as triggers, RMI can be simulated in these environments.

4.3 Estimation Method of Statistical Informa-
tion for Optimal Division

In our method, we collect statistical data to divide given applications by sim-
ulation. By inserting special codes to given source nodes of applications that
collect statistical information, and then by executing the inserted codes, the
simulation is carried out.

4.3.1 Statistical Information and Optimizing Parameters

At first, we define the target of optimization as follows.

• amount of communication

• communication delay

• power consumption in handheld devices

Here, we assume each parameter is estimated as follows. The amount of
communication is evaluated by measuring the communication between modules.
The communication delay is approximated by the number of method invocation,
since the delay is mainly caused by the overhead of remote method invocation.
We assume the power consumption is in proportion to the amount of codes on
handheld devices. So we estimate the power consumption by the duration that
the modules are executed in handheld devices. Moreover, since the handheld
devices often has much less power than servers, we can make the divided ap-
plication faster by assigning the modules consuming much time into the server
side. In our technique, the optimization process is based on an objective func-
tion that is constructed as the weighted summation of these three parameters
in order to get various optimized division according as we need. The weight
should be decided according to characteristics of the target environment such

56

Figure 4.1: Remote method invocation

as relation between available time and usage of wireless connection determined
by capacity of the battery [54].

Hereafter, we show our evaluation method.

Estimation of the Amount of Communication

Assume that there are two classes as shown in Fig. 4.1, and they are placed on
different machines where all interactions are done by remote method invocation.
In this paper, we use the summation of size of data exchanged by these remote
method invocations through the execution of the application as the total amount
of communication. Since the target of our method is standalone Java applica-
tions, we must estimate it by assuming that all methods are invoked through
remote method invocation and by measuring the amount of data exchanged by
method invocations.

Here we define the amount of communication of a remote method invocation
as data size of parameter values + data size of the return value + overhead
of remote method invocation. For example, by assuming that the overhead
of remote method invocation costs 20 bytes and a method is called with two
integer typed parameters (4 bytes for each value) and returns one long typed
value (8 bytes), the amount of communication for this method invocation comes
to 4+4+8+20 = 3 bytes. Since the actual amount of communication is slightly
different in each execution of application, we must use the averaged data after
executing the application many times with practical usage.

Estimation of Communication Delay

In our technique, we assume that communication delay is mainly caused by the
overhead of communication and estimate it by the number of remote method
invocations simply. In practice, since the communication delay depends on the
data size and their transmission speed, we must coordinate the weight of the
amount of communication and the number of remote method invocations.

57

Estimation of Time Spent by Each Module

In order to estimate the power consumption of a class, we measure the time
spent by the methods of that class. Here we use a simple method to measure
them to implement easily. The additional codes for the measurement record the
current time before each method invocation and the duration from the recorded
time and the time when the invocation is ended. It is considered as the time
spent by the method invocation (If other methods are called from that method,
the time spent by them is taken away). In this method, we assume that there
is no other large load on the environment for measurement, and the target
application is not multi-threaded. If we cannot assume such a condition, we
must measure them by using more detailed profiling tools such as Extensible
Java Profiler [55].

4.3.2 Insertion of Measurement Codes

In our method, to measure the above three profiles, the measurement codes are
inserted to the given application automatically as follows.

1. Define a class that holds the recorded information and write down after
the execution. This class consists of the following elements.

• A data array to hold the recorded information.

• Some methods to measure and record the statistical information.

• A method to output the result.

2. Insert the statement to call the measurement method before each method
invocation.

3. Insert the statement to call the method that outputs the result at the end
of the target application.

class Main {
public static void main(String args[]) {

:
Result.AddData(CLASS_Main, CLASS_Sub1,

RMI_OVERHEAD+4); // Inserted
sub1.method1(x);
Result.AddData(CLASS_Main, CLASS_Sub2,

RMI_OVERHEAD+8); // Inserted
sub2.method2(y);

:
}

}

class Sub1 {
public void method1(int a) {

:
}

}

class Sub2 {
public void method2(long a) {

:

58

}
}

// class for measurement
class Result {
public static final int RMI_OVERHEAD = 20;
public static final int CLASS_Main = 0;
public static final int CLASS_Sub1 = 1;
public static final int CLASS_Sub2 = 2;
public static final int NUM_CLASSES = 3;
// amount of communication
private static int T[][] = new int[NUM_CLASSES][NUM_CLASSES];
// number of method invocation
private static int C[][] = new int[NUM_CLASSES][NUM_CLASSES];
// time spent by each class
private static long Q[] = new long[NUM_CLASSES];
// the class that currently executing method belongs to
private static int CurrentClass = CLASS_Main;
// the time when currently executing method was invoked
private static long InvokedTime = System.currentTimeMillis();
public static void AddData(int from, int to, int size) {
T[from][to] += size;
C[from][to] ++;
long CurrentTime = System.currentTimeMillis();
Q[from] = CurrentTime - InvokedTime;
InvokedTime = CurrentTime;
}

}

In the above example program, we assume that the overhead of RMI is 20
bytes to calculate the amount of communication. A constant is defined for
each class. The exchanged data size and the number of method invocations are
recorded in two dimensional arrays T and C, respectively. Those two dimen-
sional arrays are reffered by a pair of a caller class and a callee class. The time
spent by each class is recorded in array Q.

4.4 Formulation of Module Assignment Prob-
lem

We have formulated our module assignment problem as follows.

input:

• a set of modules M = {m1, ..., mn}
• the memory size of each module S : M �→ N

• available memory on the client side mc ∈ N

• modules explicitly assigned to the server side or client side MS, MC ⊂ M

• the amount of communication between modules T : M × M �→ N

• the number of method invocations between modules C : M × M �→ N

• the time spent by each module Q : M �→ N

59

• the weights for the optimization parameters K1, K2, K3 ∈ N

output:

• a pair of assignments Ms and Mc that satisfy the following restriction and
minimize the value of the objective function (here, Ms and Mc denote the
server side modules and client side modules, respectively).

restriction:

• Ms ∪ Mc = M, Ms ∩ Mc = ∅
•

∑
m∈M1

S(m) ≤ mc

objective function:

F (Ms, Mc) = K1

∑
m1∈Ms,m2∈Mc

T (m1, m2) + K2

∑
m1∈Ms,m2∈Mc

C(m1, m2) + K3

∑
m∈Mc

Q(m)

Here, we assume that T (m1, m2) denotes the sum of the ammounts of com-
munication from m1 to m2 and that for the reverse direction, and that the
weight K1 is given for the sum. If we prefer to give different weights for the
both directions, we can do so. C(m1, m2) also denotes the sum of the numbers
of method invocations from m1 to m2 and those from m2 to m1. Here, K1, K2

and K3 denote the weights for the amount of communication, the number of
method invocations and the CPU time spent in the client side, respectively. We
can optimize the amount of communication, communication delay and power
consumption by adjusting the values of K1, K2 and K3.

Here, we discuss about the computational complexity for this module assign-
ment problem. Since a graph partitioning problem dividing a given set of ver-
texes V = v1, ..., v2n of G = (V, E) into two sets V1 and V2(|V1| = |V2| = n, V1 ∪
V2 = V, V1∩V2 = ∅) by minimizing the cut W (V1, V2) =

∑
v1∈V1,v2∈V2,(v1,v2)∈E 1

is known as a NP-hard problem [56]. Here, by reducing this graph partitioning
problem to our module assignment problem polynomially, we prove that our
module assignment problem is also NP-hard.
proof: Any graph partitioning problem can be reduced to the module assign-
ment problem as follows.

• M = V ∪ {vc}
• ∀v ∈ M : S(v) = 1

• mc = |V |/2 + 1

• {vc} ∈ Mc

• T (v1, v2) =

⎧⎨
⎩

1 ((v1, v2) ∈ E)
|E| + 1 (v1 = vc or v2 = vc)
0 (otherwise)

60

• K1 = 1, K2 = 0, K3 = 0, and all the other parameters are set to 0 or ∅.
For the given cost function W (V1, V2) of the graph partitioning problem, we
define the objective function of our module assignment problem as F (Ms, Mc) =
|Ms| × (|E| + 1) + W (V1, V2) where Ms = V1 and Mc = V2 ∪ {vc} hold. For
any division of G = (V, E), the cost W holds W (V1, V2) ≤ |E|. Therefore, for
any two divisions {Ms1, Mc1} and {Ms2, Mc2}, |Ms1| < |Ms2| ⇒ F (Ms1, Mc1) <
F (Ms2, Mc2) holds. So the optimal result Ms of our module assignment problem
always minimizes the size of |Ms|. Also, the number of elements in |Ms| holds
|Ms| = |M | − mc = |V |/2 because at most |V |/2 vertexes can be assigend to
Mc. In this case, since the value of the objective function holds F (Ms, Mc) =
(|V |/2)× (|E|+ 1) + W (Ms, Mc − {vc}), the optimized division must minimize
W (Ms, Mc − {vc}). So we can get the optimized division of G = (V, E) from
the optimized assignment. Since this reduction can be done in polynomial time,
our module assignment problem is proved as NP-hard.

4.5 Optimizing the Assignment of Modules

Since this module assignment problem is NP-hard, we cannot the optimized
result in practical time. So we use a heuristic algorithm to get approximate
results. Here, we use a SA (Simulated Annealing) based method.

In SA based methods, candidate results are repeatedly improved in order to
obtain the optimized result. A neighbor of the current candidate is selected as
the new candidate randomly and if the new candidate is better than the current
one, the current candidate is replaced by the new candidate. Also even if the
new candidate is worse than the current one, the replacement occurs in some
probability. The probability starts with a large value and is decreased mildly.
It is known that by making the decrement very mild and trying enough times,
relatively good results can be obtained.

4.5.1 SA Based Assignment Algorithm

In our method, we construct the optimization algorithm as follows.

1. set the initial temperature T0 and give the initial candidate.

2. repeat the following processes for the specified times (hereafter this repe-
tition number is called as the loop number).

(a) generate a new candidate D′ from the current candidate D.

(b) calculate the difference between the values of the objective functions
for the current candidate F (D) and the new candidate F (D′) as
∆C = F (D′) − F (D).

(c) if the value of the objective function is smaller than all the candidates
already checked, record the candidate D′ and its minimum value.

(d) if ∆C < 0, replace the current candidate by the new candidate D′.

61

(e) otherwise, replace the current candidate by the new one in probability
exp(−∆C/T).

3. decrease the temperature T as follows and continue from (2).
Tk+1 = k Tk (k : cooling coefficient)

4. if the temperature T comes to Tfin, output the best candidate as the
result and end this process.

Here, we have tried the following two methods for giving the initial candi-
dates.

• (SA1): The modules are assigned to the client side in order of the time
that the modules are invoked until the memory space is exhausted. All
the left modules that cannot be assigned to the client side are assigned to
the server side.

• (SA2): The modules are assigned to the client side in order of the amount
of communication to the modules explicitly assigned to the client side.

Also the candidates are generated as follows.

• A module is selected.

• If the module has been assigned to the client side, the module is moved
to the server side.

• If the module has been assigned to the server side, the module is moved to
the client side where if the new assignment does not satisfy the memory
restriction, the movement is cancelled and another module is selected as
a new candidate.

• The above processes are carried out repeatedly.

4.6 Example Applications

We have implemented and evaluated our method by applying it to some example
applications.

4.6.1 Ex1: Randomly Generated Modules

At first, we have applied our technique to some randomly generated problems.

• available memory on client side: 120.0KB

• number of modules

– 30, 50

62

Table 4.1: Amount of communication between server and clients
(1) 30 modules

of loops 10 50 100 150

SA1
265KB
(0.06s)

136KB
(0.28s)

136KB
(0.57s)

98KB
(0.85s)

SA2
170KB
(0.06s)

130KB
(0.29s)

104KB
(0.56s)

104KB
(0.85s)

brute force 98KB(200.54s)

(2) 50 modules

of loops 10 100 1000 2000

SA1
339KB
(0.14s)

278KB
(1.41s)

240KB
(14.14s)

213KB
(28.29s)

SA2
276KB
(0.14s)

276KB
(1.42s)

253KB
(14.13s)

213KB
(28.31s)

brute force —(—)

• size of modules

– randomly generated at most 30.0KB.

• initial assignment

– following two assignments (SA1) and (SA2)

• amount of communication

– randomly generated

The results are shown in Table 4.1. Each table shows the amount of commu-
nication between the server and client where the numbers shown in the paren-
theses are time spent for calculation.

From the above results, we can say that by using SA based method we
can obtain enough good results as an approximation for large sized problems
that cannot be solved by the round robin method. And it is shown that enough
large counts of loops are needed to derive good results close to the optimal ones.
(SA2) can derive rather good results if the counts of loops are small, however,
almost the same results can be derived by (SA1) and (SA2) if the counts of
loops are large.

4.6.2 Ex2: an Existing Application

We have chosen an existing Java application for editing pictures. This applica-
tion consists of 68 classes where the average size of classes is about 5 KB. At
the first, we have collected our statistical information for this application. The

63

(1) Exchanged data between mod-
ules

(2) Number of method invocations
between modules

(3) CPU time spent by modules

Figure 4.2: Interaction among modules and CPU time spent by modules in an
example application

results are shown in Fig.4.2. Each graph shows (1) the amount of communica-
tion and (2) the number of method invocation between each pair of two classes
(the pairs that never communicate with each other are omitted in these graphs)
and (3) CPU time spent by each module.

Then, we have applied our module assignment algorithm to the application
based on the above information. Here we have decided the parameters of SA as
follows from the results of some examinations.

• initial temperature : T0 = 400.0

• final temperature : Tfin = 1.0

• cooling coefficient : k = 0.95

To evaluate the usefulness of our technique, we have evaluated in some condi-
tions by changing the optimization parameters K1, K2, K3 and available memory
on the client. The results are shown in Table 4.2. The first column shows the
result of optimization for the amount of communication where only parameter
K1 is used while K2 and K3 are ignored. In this case, the amount of commu-
nication is significantly decreased by increasing the client’s memory size. The
second column shows the result of optimization for the number of method invo-
cations in the same way. In this case, the number of method invocation between
the client side modules and the sever side modules are decreased. The last col-
umn shows the result of optimization of power consumption. In this case, the
increment of available memory causes the decrement of the CPU time spent in
the client side.

64

Table 4.2: Result of division for the example application
memory of amount of number of CPU time

client comm. method of client
(KB) (bytes) invocation (ms)

K1 = 1, K2 = 0, K3 = 0
45 234014 4162 134199
50 18566 873 687890
55 2870 104 709080
60 2242 73 709080

K1 = 0, K2 = 1, K3 = 0
45 234014 4162 134199
50 18958 908 687900
55 3594 136 755907
60 3462 108 691717

K1 = 0, K2 = 0, K3 = 1
45 238198 4297 363280
50 236322 4236 378151
55 236090 4230 378151
60 235294 4218 378151

From these results, we can say our technique is useful for designing practical
applications running on mobile terminals.

4.7 Conclusion

In this chapter, we have developed a tool for gathering statistical information of
Java programs and proposed a module assignment technique where the amount
of communication between the server side and client side, elapsed time or power
consumption on handheld devices are minimized. We also have applied our
technique to some examples and obtained useful results in reasonable time.

As our future work, we are planning to apply our technique to various ap-
plications. We also would like to find more effective approximation algorithms.

65

Chapter 5

An Efficient Deadlock
Detection Method Using
Symmetries for Distributed
Applications

5.1 Introduction

According to the progress of high-speed networks in recent years, many dis-
tributed cooperative systems such as network meeting, remote lecturing and
distributed multimedia authoring have been developed. In such distributed co-
operative systems, the number of participants is often changed, and various
constraints are added depending on the number of participants and network
environment. However, if given constraints are inconsistent with each other,
there may not exist executable behavior satisfying all the constraints, i.e., the
given system may enter a deadlock state. In order to develop high reliable
distributed systems, in this paper, we propose a model for specifying such a
distributed cooperative system with unspecific number of participants and an
efficient reachability analysis method for detecting the deadlocks in the model.

To specify such distributed cooperative systems simply and hierarchically,
we use a constraint-oriented style, which is close to the description styles in
[57, 7]. Such a constraint-oriented style is also used in the formal specification
language LOTOS [5]. In the proposed constraint-oriented style, we describe a
specification of a distributed cooperative system (concurrent system) as (A) a
set of coloured Petri-nets and (B) synchronization among them. Each Petri-
net describes either (A-1) each participant’s behavior or (A-2) the temporal
ordering of multiple participants’ actions and/or constraints among those par-
ticipants. Here, we call the above (A-1) and (A-2) descriptions as a behavior
net and a constraint net, respectively. In a behavior net, each participant’s

66

behavior is specified independently of other participants’ behavior. Many and
unspecific participants’ behavior can be specified as a coloured Petri-net with
multiple coloured tokens if those participants’ behavior is essentially the same.
In constraint nets, mutual exclusion among behavior nets and/or constraints
as the total system can be specified. In the description of synchronization in
the above (B), by letting an action in a behavior net and the same action in a
constraint net be executed simultaneously, we can make the temporal ordering
of the actions in behavior nets satisfy all the given constraints. Moreover, we
can specify not only one-to-one synchronization but also n-to-k synchronization
where arbitrary k processes in given n processes satisfying the constraints can
synchronize with each other.

If we use this model to describe the specification of a total system, by chang-
ing the constraint nets, we can easily modify the total behavior of the system.
However, the system may have the possibility to reach a deadlock state if we
specify inconsistent constraints simultaneously. Since general reachability anal-
ysis techniques for coloured Petri-nets can detect such deadlocks if the number
of states is finite, we impose a restriction on our model that limits the number
of reachable states to finite. But if we use such techniques simply the cost for
the verification still becomes large and the state explosion problem may occur.

In order to reduce the verification costs, Ref. [13] propose techniques to
merge equivalent states into one and make a reduced size’s reachability graph
called OS graph [14] from the original reachability graph. Ref. [15, 16] propose
another kind of efficient reachability analysis techniques using symbolic reacha-
bility graph. Ref. [17, 18] use invariants for reducing the verification costs. Ref.
[19, 20] use stochastic Petri-nets, and Ref. [21] uses compositional high level
Petri-nets for efficient reachability analysis.

There have not been proposed general techniques for finding equivalence
relation between two reachable states mechanically from given specifications.
However, in distributed cooperative systems, there are a lot of cases that multi-
ple participants carry out essentially the same behavior and they do not cause
different results for reachability analysis. For example, in a simple network
meeting system where only one of multiple participants can be a speaker at
each moment, the number of the participants does not affect the reachability
analysis of the system specification, since the behavior of those participants can
be regarded as the same, i.e., the specification has symmetries.

Here, we propose an efficient reachability analysis method where equivalence
relation between two reachable states is found mechanically from a given specifi-
cation by using the information about the symmetries. Moreover, we can reduce
the number of reachable states, by some reduction rules based on the symme-
tries applied for CPN before reachablity analysis. We have also developed a
verification tool and shown the usefulness of the method using some examples
of network meeting systems.

The following Sect. 5.2 explains our constraint-oriented model and the de-
tails of coloured Petri-nets. Sect. 5.3 describes the reachability analysis method
using symmetries. The experimental results are also given. Sect. 5.4 concludes
this chapter.

67

b

P2

x != y

t P3

a a
 a

P1

P2

x != y

t

a a a
 b b

P3

P1

a

1y

3x + 2y
2x

1y

3x + 2y
2x

Figure 5.1: Firing of transition in CPN

5.2 Specification of Distributed Cooperative
Systems in Proposed Model

5.2.1 Petri Net and Coloured Petri Net

A Petri-net (PN in short) is a weighted directed graph that consists of two types
of nodes, places and transitions. Each directed edge a between a place and a
transition is called an arc where an integer called weight (denoted as W (a)) is
associated. Each place may have tokens, and an assignment of tokens to places
is called a marking. A marking m assigns m(p) tokens to place p. A transition
t may fire iff each its input place p of t connected by an arc a has W (a) tokens.
If t fires, W (a) tokens are taken from each input place p, and W (a′) tokens are
added to each output place p′ of t connected by an arc a′.

A coloured Petri-net (CPN in short) is a high level Petri net[58] where each
token has a value. The values are distinguished by types called colours. The
colours are, for example, integers, real numbers and characters. A colour is
associated with each token of CPN, The weight W (a) of an arc a in CPN is a
multi-set of binding variables. And the assignment of tokens m(p) represented
by a marking m to a place p is also a multi-set of tokens. Here, a multi-set
is a set that may include more than one identical element. For each binding
variable, a colour is associated and a token with the same colour can be assigned
to the binding variable. Hereafter, an assignment of a multi-set of tokens to a
multi-set of binding variables is simply called a binding. For each transition t, a
boolean function of binding variables that appear in the weights of the incoming
arcs of t is associated and called a guard.

A transition t may fire iff (i) each input place p of t connected by an arc a
has a multi-set of tokens that can be assigned to W (a) and (ii) the value of the
guard of t on this binding is true. If t fires, the multi-set of tokens are taken from
each input place p of t, and the multi-set of tokens W (a′) that are determined
by each binding to W (a) are added to each output place p′ of t connected by
an arc a′. Note that the binding variables in the weight W (a′) of each outgoing
arc a′ must appear in at least one of the weights of the incoming arcs of t.

Fig. 5.1 shows an example. Suppose that x and y are binding variables and a
and b are values of the same colours as x and y, respectively. kx+hy represents
a multi-set of x and y where the numbers of x and y are k and h, respectively.
In this case, since a binding [x = a, y = b] satisfies the guard “x! =y”(x �= y) of
t true, t can fire on this binding. If t fires, tokens a and b are taken from places
P1 and P2 respectively, and the multi-set of tokens 3a + 2b is added to place

68

P3.

5.2.2 CPN Specification in Constraint-Oriented Style

CPN is a suitable model to describe specifications of distributed cooperative
systems. This is mainly because the same behavior of participants (e.g. the
behavior of students in remote lecturing), can be described as a single net
where each coloured token represents an individual participant. However, for
the efficient design of distributed cooperative systems where the temporal or-
dering of actions of participants should be specified, we introduce the concept
of constraint-oriented style into CPN.

A specification of a distributed cooperative system written in CPN in con-
straint-oriented style consists of a set of behavior nets, a set of constraint nets
and synchronization. Each behavior net includes tokens that represent partic-
ipants. Each constraint net specifies the temporal ordering of transitions in
behavior nets. Each synchronization associates each transition of a constraint
net with one of the transitions in behavior nets. For each synchronization, a
boolean function of binding variables of the two transitions can be specified as
a guard.

The CPN specification of n participants’ system (for simplicity, participants
are denoted as integers 1..n hereafter) with k different types of behavior (k ≤ n)
consists of k behavior nets, h constraint nets (h ≥ 0) and l synchronization
(l ≥ 0). We assume that the specification must be described in the following
style.

• Hereafter, each behavior net is denoted as BNi (1 ≤ i ≤ k). BNi contains
a set of tokens ti of the colour “person”, an enumerative type with elements
1..n. Here (a) ∪1≤j≤ktj = {1..n} and tj ∩ tj′ = ∅ must hold, (b) the set
of existing tokens in BNj is always equals to tj . These indicate that each
token in BNi represents a participant. Moreover, each transition of BNi

has guard “true”.

• Hereafter, each constraint net is denoted as CNj (1 ≤ j ≤ h). The colours
allowed to use in constraint nets are “person”, the limited number of in-
tegers and “e”, which represents an empty colour (tokens that have no
value). Here, considering the need for specifying “arbitrary number of
participants”, we introduce a new colour “variant” for the binding vari-
ables of constraint nets. A binding variable of this colour is a special
variable where any multi-set of tokens can be assigned. Each CNj must
be bounded. Moreover, each transition of CNj has guard “true”.

• Hereafter, each synchronization is denoted as syncx (1 ≤ x ≤ l). For each
syncx that associates tv of CNj with tu of BNi, a boolean function of
binding variables used in the weights of the incoming arcs of tu or tv can
be specified as a guard. Here, we introduce a special function #(v) of
binding variable v of colour “variant”. This function returns the number
of tokens that are assigned to v.

69

P2a P2bQUESTION_START QUESTION_ENDP1a P1b
PRESENT_START PRESENT_END

P3a
P3b

PRESENT_START QUESTION_START

P3c P3d

QUESTION_END

PRESENT_END

q e

P4a

P4b
QUESTION_START

PRESENT_END

sync1 sync4 sync2 sync3
sync6 sync5

Presenter Audiences

Constraint1 Constraint2

 #(V1)+#(V2)
 =3

y=z

BN1

CN2

BN2

CN1

P1

A1

A2 A3

A2 A3

A1

y y y yx x x x

A1+A2
 +A3

A1+A2+A3 z z
zz

V1+V2

V2

V1

e e

q eq e

Figure 5.2: CPN specification of simple network meeting system in constraint
oriented style

Behavior Net Constraint Net
Net Transition Net Transition

Guard

sync1 BN1 PRESENT START CN1 PRESENT START true
sync2 BN2 QUESTION START CN1 QUESTION START y = z
sync3 BN2 QUESTION END CN1 QUESTION END true
sync4 BN1 PRESENT END CN1 PRESENT END #(V 1)+

#(V 2) = 3
sync5 BN2 QUESTION START CN2 QUESTION START true
sync6 BN1 PRESENT END CN2 PRESENT END true

Table 5.1: Description of synchronization

5.2.3 Example Specification

Fig. 5.2 and Table 5.1 shows an example specification of a simple network
meeting system written in CPN in this style, where one presenter and three
audiences participate in the meeting. BN1 and BN2 are behavior nets that
represent the behavior of the presenter and the audiences, respectively. CN1

and CN2 are constraint nets. Six synchronization with guards sync1, .. and
sync6 are specified in Table 5.1 and represented as arrows in Fig. 5.2.

In BN1, two actions “PRESENT START” (start presentation) and “PRES-
ENT END” (end presentation) are specified for the presenter. In BN2, two ac-
tions “QUESTION START” (start a question) and “QUESTION END” (end a
question) are specified for the three audiences. x and y are binding variables
of colour “person”. For these behavior nets, the two constraint nets and syn-
chronization specify the temporal ordering of their actions. They represent the
following constraints.

(i) Questions must not be started before the presentation is started.

(ii) Each audience may ask a question only once before the presentation is
stopped.

(iii) q questions must be asked before the presentation is stopped.

The constraint (i) is represented by CN1 and two synchronization sync1 and
sync2. In sync1, two transitions “PRESENT START” of BN1 and CN1 syn-
chronize, and in sync2, two transitions “QUESTION START” of BN2 and CN1

70

synchronize. According to CN1, “QUESTION START” cannot be executed
without the presence of tokens of colour “person” in place P3b of CN1. Those
tokens are produced by the firing of “PRESENT START”. Therefore, “QUES-
TION START” cannot fire before the firing of “PRESENT START”.

The constraint (ii) is represented by CN1 and three synchronization sync2,
sync3 and sync4. In order to execute “PRESENT END”, the value of the
guard of sync4 must be true. The guard includes two binding variables V 1 and
V 2 of colour “variant” where any multi-set of tokens can be assigned. Here,
each token in place P3b represents an audience who has not asked a question
yet. On the other hand, each token in place P3d represents an audience who
has already asked a question by firing of “QUESTION START” and “QUES-
TION END”. These tokens are removed if “PRESENT END” fires because the
guard of sync4 “#(V 1)+ #(V 2) = 3” needs all the three tokens in P3b and P3d

to be assigned to V 1 and V 2. This means that each audience who has already
asked a question is never allowed to ask a question once again before the firing
of “PRESENT END”.

The constraint (iii) is represented by CN2 and synchronization sync5 and
sync6. By each firing of “QUESTION START” in CN2, token “e” is produced
in place P4b. The tokens in place P4b represent the number of questions that
have been asked after the presentation has been started. In order to end the
presentation by the firing of “PRESENT END”, there must be q tokens of “e”
in P4b.

In Sect. 5.3, we explain how a specification described in this model is trans-
formed into a pure CPN where the reachability analysis can be performed. The
state space reduction by using the symmetries of CPN is also explained.

5.3 Reachability Analysis

In our model, since we specify a system specification as a set of behavior nets,
constraint nets and synchronization among them, the total system may include
deadlock states due to some constraints inconsistent with each other. Generally
we can check whether a system includes a deadlock state or not by construct-
ing the reachability graph of the system. Here, we adopt a policy to check the
deadlock-free property or liveness property of a given system by constructing an
occurrence graph[14], which is known as a kind of abstraction of the reachabil-
ity graph. To construct an occurrence graph, we transform a given specification
(consisting of several CPNs and synchronization among them) into the equiv-
alent single CPN. Then for the derived CPN, we construct the corresponding
occurrence graph so that the number of nodes in the graph is reduced using
symmetries.

5.3.1 Derivation of Single CPN from CPN Specification
in Constraint-Oriented Style

The proposed transformation technique is as follows.

71

A1 A2
 A3

P2a p2b
QUESTION_START

y=z

QUESTION_END

P1

P1a P1b

PRESENT_START

PRESENT_END

A1 A1
 A3

P3a

P3b P3c P3d

q e

P4a
P4b

V2

x
q e

q e
x

V1+V2

y y y y

x

A1+A2
 +A3

A1+A2+A3

x

z z
z ze e

V1

Figure 5.3: Specification of total system derived from Fig.2

(i) Each pair of transitions in a constraint net and a behavior net that are
specified to synchronize is merged into a single transition. If a guard is
specified in the synchronization, the guard should be added as the guard
function of the transition (Fig.5.3).

(ii) Each transition with variant type variables is replaced by a set of transi-
tions without those variables (Fig.5.4). This replacement is carried out as
follows.

(a) Enumerate the possible bindings for the variant type variables, where
each binding satisfies the specified guard functions.

(b) For each possible binding, generate a new transition with appropriate
tokens and variables for the binding.

QUESTION_START
y=z

QUESTION_END

P1

P1a

P1bSTART

PRESENT_END11

A1 A2
 A3

P3a P3b P3c P3d

q e

P4a

P4b

PRESENT_END21

PRESENT_END31

PRESENT_END41

P2a
A1 A2
 A3 P2b

x x
x

x

x

x

x

x

x1+x2
 +x3

x1+x2
 +x3

x1+x2
 +x3

x1

x1+ x2

x3

x2+ x3

x1 + x2 + x3

A1+A2+A3

A1+A2+A3

x1 + x2 + x3

x1+x2+x3

x

x

z z z
z

e

e

q e

q e
q e

q e q e

q e

q e

q e

y y
y

y

Figure 5.4: Transformed specification of total system

To make sure that (a) is always possible, we suppose that the number of
possible bindings for each variant type variable is finite. Fig.5.4 shows the

72

CPN derived from the specification in Fig.5.2. As an example, the transitions
PRESENT END1 ,.., PRESENT END4 in Fig.5.4 are derived by applying the
step (ii). These transitions are generated from the combination of transitions
PRESENT END of BN1 and CN1 in Fig.5.2 where the variant type variables of
PRESENT END of CN1 are replaced by the variables x1,..,x3. From the guard
“#(V 1) + #(V 2) = 3”, the possible bindings of V 1 and V 2 are the follow-
ing four patterns: {(#(V 1), #(V 2))} = {(0, 1), (1, 2), (2, 1), (3, 0)}. Transitions
PRESENT END1 ,.., PRESENT END4 correspond to those patterns, respec-
tively. For example, variable V 1 in PRESENT END2 is replaced by variable x3
and variable V 2 is replaced by x1 + x2 as a result of the binding. In this way, a
set of concurrent finite CPNs including variant type variables are transformed
into a single finite CPN.

5.3.2 Reachability Analysis with OS Graph

Let us suppose that a network conferencing system consisting of a chairman, k
presenters and n audiences is modeled as a set of k + n + 1 CPNs in general.
In this case, if we strictly distinguish the k + n + 1 types of tokens from each
other, a quite large occurrence graph (reachability graph) will be derived from
the given specification.

However, if we allow any audience to ask a question in a given system speci-
fication, we can regard that the global state transition of the system is the same
whoever asks a question. In such a case, we need not distinguish each individ-
ual audience from the others in constructing the occurrence graph. Instead, we
can construct the corresponding OS graph (occurrence graph with symmetries)
where the number of possible states is reduced using symmetries, and carry out
the reachability analysis efficiently. The OS graph is a reachability graph where
each node corresponds to an equivalent class of states classified depending on
the given symmetries. Since in the OS graph, a node can represent multiple
states, the size of reachability graph can be reduced and we can efficiently carry
out the reachability analysis.

The occurrence graph is defined as a pair (M, A). M = {m1, .., mn} is the
set of all possible markings and A ⊆ M ×M represents a state transition. Here
(mi, mj) ∈ A holds if and only if marking mj is reachable by the firing of one
transition from marking mi. The OS graph is a graph where the number of
states is reduced by unifying “equivalent” states into a single state. For a given
equivalence relation E, the OS graph is represented as a pair (M,A), where
M is a family of sets of equivalent markings and A is a set of state transitions
on M. Hereafter, [m] denotes the set of markings that are equivalent with m.
M = {[m1], .., [mm]} is a family of sets of equivalent markings calculated by
classifying M by E. A is defined such that

∀mi, mj : (mi, mj) ∈ A → ([mi], [mj]) ∈ A (5.1)

Here, if the following condition holds, it is known that (M,A) is a deadlock free

73

OS graph if and only if the original occurrence graph is deadlock free[14].

([mi], [mj]) ∈ A
→ ∀m′

i ∈ [mi] : ∃m′
j ∈ [mj] : (m′

i, m
′
j) ∈ A (5.2)

Intuitive Proof : From the condition (5.1), if mj is reachable from mi in
the graph (M, A), [mj] is also reachable from [mi] in the graph (M,A). From
the condition (5.2), if [mj] is reachable from [mi] in the graph (M,A), for any
marking m′

i ∈ [mi], there exists a marking m′
j ∈ [mj] where m′

j is reachable
from m′

i.

5.3.3 Sufficient Condition of Symmetries

There are no general methods for finding an equivalence relation satisfying the
above (1) and (2) automatically. Here, we would like to give a sufficient condition
for finding such an equivalence relation automatically. Here, we consider a set of
symmetric tokens. The word “a set S of symmetric tokens” means that for the
initial marking, weight and guard in a given specification, either the following
(i) or (ii) holds;

(i) any colour of tokens contained in S is not specified.

(ii) all the colours of tokens contained in S are specified.

For example, for the specification in Fig.5.2, let S denote the set of tokens
{A1, A2, A3}. In Fig.5.2, the initial marking contains either all elements in S
or no elements in S. For each weight and guard, the same property holds. So,
S = {A1, A2, A3} can be regarded as a set of symmetric tokens.

For a given CPN specification in constraint-oriented style, by checking all
initial marking, weights and guards step-by-step, we can extract the sets of
tokens appeared in the initial marking, weights and guards. For each set of
tokens, we can mechanically check whether either the above (i) or (ii) holds.
Then, we can mechanically find a set of symmetric tokens for a given CPN
specification if there exists such a set.

Hereafter, we will propose a method to generate an equivalence relation
E satisfying the above conditions (1) and (2) mechanically from the derived
set of symmetric tokens. Note that for a set S of symmetric tokens such as
S = {A1, A2, A3}, let p1 and p2 denote two different lists containing all the
tokens in S (for example, p1 = [A1, A2, A3] and p2 = [A2, A1, A3]). Then, we
say that p1 is a permutation of p2, vise versa.

Here, for a given set S of symmetric tokens, let us consider a relation E
between two reachable markings mi and m′

i where m′
i is obtained from mi

by replacing S in mi with a permutation of S and vise versa. For example,
for the set of symmetric tokens S = {A1, A2, A3} in Fig. 5.2, two reachable
markings mi = (∅, P1, A2+A3, A1, A2+A3, A1, ∅, 2e, e) and m′

i = (∅, P1, A1+
A3, A2, A1+A3, A2, ∅, 2e, e) satisfy the relation E since m′

i is obtained from mi

by replacing [A1, A2, A3] in mi with one of its permutations [A2, A1, A3] and
vise versa. In our method, this relation E is an equivalence relation.

74

Intuitively this is clear because all the symmetric tokens move in the same
way and make no difference between two markings mi and m′

i where a token
proceeds in mi and one of its symmetric tokens proceeds in m′

i. The sketch of
proof is given as follows.

Assume that two reachable markings mi and m′
i satisfy the relation E based

on the set S of symmetric tokens, where m′
i is obtained by replacing S in mi

with one of its permutations (this permutation is denoted as p hereafter). Also
assume a marking mj reachable from mi by the firing of a transition T on a
binding B. Here, since the tokens of S are symmetric, those tokens in binding
B can be replaced with the permutation p, and this replacement makes a new
binding B′. Obviously, since m′

i is obtained by the same permutation p, there
exists a state transition from m′

i to a marking m′
j by the firing of the same

transition T on binding B′. Then we can say that mj and m′
j satisfy the relation

E by the same permutation p, since permutation p replaces the tokens of S in
mj that are in each input (or output) place of T with the ones in the same input
(or output) place in m′

j . Consequently, for every marking m′
i ∈ [mi], there exist

a marking m′
j ∈ [mj] and a state transition from m′

i to m′
j ((m′

i, m
′
j) ∈ A).

Therefore, the sufficient condition for equivalence relation in Sect 5.3.2 holds.
Now we can say that since the two markings mi = (∅, P1, A2+A3, A1, A2+

A3, A1, ∅, 2e, e) and m′
i = (∅, P1, A1 + A3, A2, A1 + A3, A2, ∅, 2e, e) in Fig.5.2

satisfy the above equivalence relation E, they are merged in the corresponding
OS graph.

5.3.4 Further Reduction of CPN and Omitting Colour In-
formation

In our method, we use the following techniques for reducing the size of CPNs
so that the reachability analysis can be efficiently carried out.

• A consecutive sequence of transitions is transformed into one transition.
The transitions that will obviously fire sequentially and are not specified
to synchronize with other CPNs are replaced by one transition.

• If there are consecutive transitions t1, t2 in a net and consecutive tran-
sition t′1, t

′
2 in another net, and if t1 and t2 synchronize with t′1 and t′2,

respectively, then the two synchronization relation can be merged into one
synchronization.

• The synchronization guard checking the colours of tokens can be deleted
if the guard is always true in checking the condition of firing for any
reachable marking and there is no more synchronization that is specified
with guard in a given specification.

• The colour information of a set of tokens can be omitted, if the colours of
these tokens are never checked anywhere. To do so, we introduce a new
token that represents all of the tokens belonging to the set, and replace
the existing tokens by the new token.

75

Table 5.2: Experimental result

(i) Occurrence Graph (ii) OS Graph (iii) OS Graph
(Omit Colour Info.)

Audi- # # Time # # Time # # Time
ence Nodes Arcs (sec.) Nodes Arcs (sec.) Nodes Arcs (sec.)

3 28 61 1 11 14 1 11 14 1
4 66 177 1 11 14 1 11 14 1
5 132 451 1 11 14 1 11 14 1
6 234 1333 7 11 14 3 11 14 1
7 380 6063 212 11 14 586 11 14 1

15 11 14 3
16 11 14 11
17 11 14 17

For example, in Fig.5.2 the synchronization 2 and 3 are sequential and their
guards are the same. So, each QUESTION START and QUESTION END can
be combined into one transition T . As a result, a set of tokens {A1, A2, A3}
is obviously always placed on the input place of the transition T of BN2. And
other tokens except tokens A1, A2 and A3 are never placed on the input place
of transition T of CN1. So, if a token is on the place of CN1, this token
must be also placed on the place of BN2 and the guard y = z holds. And
since no other synchronization between BN2 and CN1 is specified, this guard of
synchronization can be deleted. As a result, since there is no specification that
distinguishes tokens A1, A2 and A3, they can be regarded as the same token.
So we can replaces them by a new token A for reachability analysis.

5.3.5 Reachability Analysis System

In order to evaluate our method, we have developed a system to derive a single
CPN from a given specification consisting of behavior nets, constraint nets and
synchronization. This system derives a single CPN by coupling the transitions of
the behavior nets and constraint nets specified to synchronize for some specific
cases. And then it reduces the size of CPN by picking up the symmetric tokens
and by omitting the colour information needless to distinguish. Then we check
the deadlock-free property with a general formal model checker for CPN.

5.3.6 Experimental Result

We have used a tool to design and simulate Petri-nets called Design/CPN[59]
in our reachability analysis system. We have measured the time to examine the
deadlock-free property of the example of Fig.5.2. For this example, we have
checked the example as changing the number of audiences and the number of
questions. Table 5.2 shows the results. In this table, the size of the reachability
graph and the time consumed for the calculation are shown for the following
three cases: (i) the case of generating occurrence graph without considering

76

symmetries; (ii) the case of making the OS graph by using symmetries; and (iii)
the case of making the OS graph after omitting some colour information. In
case (ii), the size of the graph is very small compared with case (i), while the
consumed time may increase due to calculation of symmetries. In case (iii), the
consumed time is substantially reduced, especially in large specifications.

5.4 Conclusion and Future Work

We have proposed a constraint-oriented model for developing distributed coop-
erative systems with symmetries. In our model, we describe the specification
of a system by a set of coloured Petri-nets and synchronization among them.
A specification of each node is described independently and the interactions
among them are specified using constraints and synchronization among them.

We have also proposed a method for efficient reachability analysis for this
model. In our method, the symmetries are automatically detected from a given
specification and the reachability analysis is quickly carried out by making an
OS graph using the symmetries. We have adopted this method for an example,
and we can reduce the size of reachability graphs and the required time for
reachability analysis.

To extend this model so that we can specify time constraints and to develop
a method of efficient reachability analysis for such a model are our future work.

77

Chapter 6

Conclusion

In this paper, we have proposed a new language called LOTOS/M suitable for
description and implementation of wireless mobile applications.

In LOTOS/M, we can describe dynamic establishment of multi-way synchro-
nization channels among agents so that the agents which happen to meet in a
common radio range can dynamically communicate by multi-way synchroniza-
tion. Also, LOTOS/M can naturally handle the case that some of the combined
agents are dynamically isolated (e.g., by leaving from a radio range).

We also have proposed a Java-based middleware for supporting interactions
among agents in wireless ad hoc networks based on LOTOS/M. With our mid-
dleware, we can easily handle group communication such as multicast data
distribution and mutual exclusion among multiple agents by the methods of the
middleware for dynamically establishing multi-way synchronization channels.
Also, we can treat the case that some agents in an agent group are isolated by
leaving from the common radio range.

In our implementation method, since we manage membership information of
each agent group as a binary tree based on LOTOS semantics, we could easily
implement multi-way synchronization among agents by keeping the latest tree
and collecting/processing request messages from agents along the tree based
on the technique in [24]. Through some experiments, we have confirmed that
our proposed technique is enough applicable to describe and implement wireless
mobile applications.

Next, we have developed a tool for gathering statistical information of Java
programs and proposed a module assignment technique where the amount of
communication between the server side and client side, elapsed time or power
consumption on handheld devices are minimized. We also have applied our
technique to some examples and obtained useful results in reasonable time.

Lastly, we have proposed a constraint-oriented model for developing dis-
tributed cooperative systems with symmetries. In our model, we describe the
specification of a system by a set of coloured Petri-nets and synchronization
among them. A specification of each node is described independently and the
interactions among them are specified using constraints and synchronization

78

among them.
We have also proposed a method for efficient reachability analysis for this

model. In our method, the symmetries are automatically detected from a given
specification and the reachability analysis is quickly carried out by making an
OS graph using the symmetries. We have adopted this method for an example,
and we can reduce the size of reachability graphs and the required time for
reachability analysis.

Now we are studying about more efficient formal description language for
modeling ad-hoc mobile applications based on LOTOS. In this language, each
dynamically established multi-way synchronization channel and process can hold
more information about its role in the application. So the special processes such
as processes specifying constraints can be explicitly distinguished and handled
in different ways from the other processes. We think we can describe distributed
cooperative systems in ad-hoc environments by using constraint oriented style
more directly in this language.

We are planning to evaluate if this language is useful and to implement a
compiler. For this purpose, we will develop a simulator of mobile environments
with ad-hoc networks and a language for describing movements of nodes such
as persons and cars. In this simulator, we will specify not only the behavior
of an application but also how how each node moves by using this language.
Then the simulator will simulate the nodes’ movements and specified network
application cooperating with some ad-hoc network simulator. By using this
simulator, we think we can evaluate languages, middleware and applications
for mobile ad-hoc networks with behavior of them in nearer environments to
practical environments.

79

Acknowledgement

This work could not be achieved without support of many individuals.
First, I would like to thank my supervisor Professor Teruo Higashino of

Osaka University, for his continuous support, encouragement and guidance of
the work.

I am very grateful to Professor Makoto Imase and Professor Hirotaka Nakano
of Osaka University for their invaluable comments and useful suggestions con-
cerning this thesis.

Many of the courses in Osaka University that I have taken during my gradu-
ate career have been helpful to write this thesis. I would like to acknowledge the
guidance of Professors Toru Fujiwara, Toshinobu Kashiwabara, Toru Kikuno,
Masaharu Imai, Masayuki Murata, Hideo Matsuda, Kenichi Taniguchi, Kenichi
Hagihara, Katsurou Inoue, Toshimitsu Masuzawa, Hideo Miyahara, Shinichi
Tamura, Akihiro Hashimoto and Nobuki Tokura.

I would like to express my thanks to Professor Minoru Ito of Nara Institute
of Science and Technology, who has provided many valuable comments.

I would like to thank Professor Nobuo Funabiki of Okayama University for
his valuable comments and discussions.

I am very grateful to Associate Professor Akio Nakata of Osaka University,
Associate Professor Keiichi Yasumoto of Nara Institute of Science and Tech-
nology and Associate Professor Junji Kitamichi of Aizu University for their
insightful and constructive comments.

I wish to thank Research Associate Toshiaki Yoshioka and Hirozumi Yam-
aguchi of Osaka University for their helpful comments.

At last, I would like to thank all the members of Higashino Laboratory of
Osaka University for their helpful advice.

80

Bibliography

[1] Umedu T., Terashima Y., Yasumoto K., Nakata A., Higashino T. and
Taniguchi K. : A Language for Describing Wireless Mobile Applica-
tions with Dynamic Establishment of Multi-way Synchronization Chan-
nels, Proceedings of International Symposium of Formal Methods Eu-
rope(FME2002), pp.607-624 (Jul. 2002).

[2] Umedu T., Yasumoto K., Nakata A., Yamaguchi H. and Higashino T. :
Middleware for Synchronous Group Communication in Wireless Ad Hoc
Networks, Proceedings of the IASTED International Conference on Com-
munications and Computer Networks (CCN2002), pp. 48-53 (Nov. 2002).

[3] Umedu T., Urata S., Nakata A. and Higashino T. : Automatic Decomposi-
tion of Java Program for Implementation on Mobile Terminals, Proceedings
of 19th IEEE International Conference on Advanced Information Network-
ing and Applications (AINA2005) (Jun. 2005). (to appear)

[4] Umedu T., Yamaguchi H., Yasumoto K., Nakata A. and Higashino T. :
Constraint-Oriented Model for Describing Distributed Cooperative Sys-
tems and Efficient Verification Using Symmetries, International Journal
of Computer and Information Science, Vol. 3, No. 2, pp. 125-136 (Jun.
2002).

[5] ISO : Information Processing System, Open Systems Interconnection,
LOTOS—A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour, ISO 8807 (1989).

[6] Bolognesi T. : Toward Constraint-Object-Oriented Development, IEEE
Transactions on Software Engineering, Vol. 26, No. 7, pp. 594 – 616 (2000).

[7] Vissers C. A., Scollo G. and Sinderen M. v. : Architecture and Specification
Style in Formal Descriptions of Distributed Systems, Proceedings 8th In-
ternational Symposium on Protocol Specification, Testing, and Verification
(PSTV-VIII), pp. 189–204 (1988).

[8] Milner R., Parrow J., Walker D. : A Calculus of Mobile Processes: Parts I
& II, Information and Computation No. 100, pp. 1– 77 (1992).

81

[9] Fevrier, A., Najm, E., Leduc, G. and Leonard, L. : Compositional Specifi-
cation of ODP Binding Objects, Proceedings of 6th IFIP/ ICCC Conference
(1996).

[10] Najm E., Stefani J. B. and Fevrier A. : Towards a Mobile LOTOS, Pro-
ceedings of 8th IFIP International Conference on Formal Description Tech-
niques (FORTE’95) (1995).

[11] Zhao J. : Slicing Concurrent Java Programs, Proceedings of 7th Interna-
tional Workshop on Program Comprehension, pp. 126–133 (1999).

[12] Zhao J. : Multithreaded Dependence Graphs for Concurrent Java Program,
Proceedings of 1999 International Symposium on Software Engineering for
Parallel and Distributed Systems, pp. 13–23 (1999).

[13] Jorgensen J. B. and Kristensen L. M.: Computer Aided Verification of
Lamport’s Fast Mutual Exclusion Algorithm Using Colored Petri Nets and
Occurrence Graphs with Symmetries, IEEE Transactions on Parallel and
Distributed Systems, Vol. 10, No. 7, pp.714–722 (1999).

[14] Jensen K. : Coloured Petri Nets, EATCS Monographs in Theoretical Com-
puter Science Vol. 2., Springer-Verlag (1997).

[15] Hameurlain N. and Sibertin-Blanc C. : Finite Symbolic Reachability
Graphs for High-Level Petri Nets, Proceedings of 4th Asia-Pacific Software
Engineering and International Computer Science Conference (APSEC ’97
/ ICSC ’97), pp. 150–159 (1997).

[16] Cortadella J. : Combining Structural and Symbolic Methods for the Ver-
ification of Concurrent Systems, Proceedings of International Conference
on Application of Concurrency to System Design (CSD ’98), pp. 152–157
(1998).

[17] Miyamoto T. and Kumagai S. : Calculating Place Capacity for Petri Nets
Using Unfoldings, Proceedings of International Conference on Application
of Concurrency to System Design (CSD ’98), pp. 143–151 (1998).

[18] Nakamura M., Kakuda Y. and Kikuno T. : Analyzing Non-determinism
in Telecommunication Services Using P-invariant of Petri-Net Model, Pro-
ceedings of INFOCOM ’97, pp.1253–1259 (1997).

[19] Capra L., Franceschinis G., Dutheillet C. and Ilie J. M. : Towards Per-
formance Analysis with Partially Symmetrical SWN, Proceedings of 7th
International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pp. 148–155 (1998).

[20] Gaeta R. : Efficient Discrete-Event Simulation of Colored Petri Nets, IEEE
Transactions on Software Engineering, Vol. 22, No. 9, pp. 629–639 (1996).

82

[21] Grahlmann B. and Fleischhack H. : Towards Compositional Verification
of SDL Systems, Proceedings of 31st Hawaii International Conference on
System Sciences (HICSS’98), pp. 404–414 (1998).

[22] Hodes T. D., Katz R. H., Schreiber E. S. and Rowe L. : Composable Ad-hoc
Mobile Services for Universal Interaction, Proceedings of Mobile Computing
and Networking(MOBICOM’97) (1997).

[23] Johnson D. B., Maltz D. A., Hu Y. C. and Jetcheva J. G. : The Dy-
namic Source Routing Protocol for Mobile Ad Hoc Networks, IETF In-
ternet Draft, http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr04.txt
(2000).

[24] Yasumoto K., Higashino T. and Taniguchi K. : A compiler to implement
LOTOS specifications in distributed environments, Computer Networks,
Vol. 36, No.2-3, pp. 291–310 (2001).

[25] Tuok R., Logrippo L. : Formal Specification and Use Case Generation
for a Mobile Telephony System, Computer Networks, Vol. 30, No. 11, pp.
1045-1063 (1998).

[26] Ando T., Takahashi K., Kato Y. and Shiratori N. : A Concurrent Calculus
with Geographical Constraints, IEICE Transactions on Fundamentals, Vol.
E81-A, No. 4, pp. 547–555 (1998).

[27] Sangiorgi D. : From π-calculus to Higher-Order π-calculus — and
back, Proceedings of Theory and Practice of Software Development (TAP-
SOFT’93), Lecture Notes in Computer Science Vol. 668, pp. 151 – 166
(1993).

[28] Groote J. F. : Transition System Specification with Negative Premises,
Theoretical Computer Science, Vol.118, No.2, pp.263-299 (1993).

[29] The Official Bluetooth Website, http://www.bluetooth.com.

[30] Kortuem G. : Proem: A Peer-to-Peer Computing Platform for Mobile Ad-
hoc Networks in [60].

[31] Migliardi M. : Mobile Interfaces to Metacomputing and Collaboration Sys-
tems in [60].

[32] Cugola G. and Nitto E. D. : Using a Publish/Subscribe Middleware to
Support Mobile Computing in [60].

[33] Jung D. G., Paek K. J. and Kim T. Y. : Design of MOBILE MOM: Message
Oriented Middleware Service for Mobile Computing, Proceedings of 1999
International Workshops on Parallel Processing (ICPP-99) (1999).

83

[34] Reinstorf T., Ruggaber R., Seitz J. and Zitterbart M. : A WAP-Based Ses-
sion Layer Supporting Distributed Applications in Nomadic Environments,
Proceedings of 2001 IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), pp.56–76 (2001).

[35] Sow D. M., Banavar G., Davis II J. S., Sussman J. and Rwebangira M. R. :
Preparing the Edge of the Network for Pervasive Content Delivery in [60].

[36] Ebling M. R., Hunt G. D. H. and Lei H. : Issues for Context Services for
Pervasive Computing in [60].

[37] Grace P. and Blair G. S. : Integrating Middleware Paradigms to Support
a Mobile Sport News Application in [60].

[38] Jacobsen H. A. : Middleware Services for Selective and Location-based
Information Dissemination in Mobile Wireless Networks in [60].

[39] Meier R., Killijian M. O., Cunningham R. and Cahill V. : Towards Prox-
imity Group Communication in [60].

[40] Bellavista, P., Corradi, A. and Stefanelli, C. : Protection and Interoper-
ability for Mobile Agents: A Secure and Open Programming Environment,
IEEE Transactions on Communication, May 2000, pp. 961–972 (2000).

[41] Bellavista, P. and Stefanelli, C. : Mobile Agent Middleware for Mobile
Computing, IEEE Computer, pp. 73–81 (2001).

[42] Lange D. B. and Chang D. T. : IBM Aglets Workbench - Programming
Mobile Agents in Java, IBM Corp. White Paper, http://www.ibm.co.jp
/trl/aglets (1996).

[43] Grosso W. : Java RMI, O’Reilly & Associates, Inc. (2002).

[44] HORB Open : http://www.horbopen.org/ (2001).

[45] Matjaz B. J., Ivan R., Marjan H., Alan P. S. and Simon N. : Java 2
Distributed Object Models Performance Analysis, Comparison and Op-
timization, Proceedings of 7th International Conference on Parallel and
Distributed Systems (ICPADS’00), pp. 239–246 (2000).

[46] Kalogeraki V., Melliar-Smith P. M. and Moser L. E. : Using Multiple
Feedback Loops for Object Profiling, Scheduling and Migration in Soft
Real-Time Distributed Object Systems, Proceedings of 2nd IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing,
pp. 291–300 (1999).

[47] Flores A. P., Nacul A., Silva L., Netto J., Pereira C. E. and Bacellar L.
: Quantitative Evaluation of Distributed Object-Oriented Programming
Environments for Real-Time Applications, Proceedings of 2nd IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing,
pp. 133–138 (1999).

84

[48] Kono K. and Masuda T. : Efficient RMI, Dynamic Specialization of Object
Serialization, Proceedings of 20th International Conference on Distributed
Computing Systems (ICDCS 2000), pp. 308–315 (2000).

[49] Kernighan B. W. and Lin S. : An Efficient Heuristic Procedure for Parti-
tioning Graphs, Bell Systems Technical Journal, Vol.49, No.2, pp. 291–307
(1970).

[50] Krishnamurthy B. : An Improved Min-Cut Algorithm for Partitioning
VLSI Networks, IEEE Transactions on Computers, Vol.33, No.5, pp. 438–
446 (1984).

[51] Bui T. N. and Moon B. R. : Generic Algorithm and Graph Partitioning,
IEEE Transactions on Computers, Vol.45, No.7, pp. 841–855 (1996).

[52] Johnson D. S., Aragin C., McGeoch L., and Schevon C. : Optimization
by Simulated Annealing, An Experimental Evaluation, Part1, Graph Par-
titioning, Operations Research, Vol.37, pp. 865–892 (1987).

[53] Fiduccia C. M. and Mattheyses R. M. : A Linear-Time Heuristic for Im-
proving Network Partitions, Proceedings of 19th Design Automation Con-
ference, pp. 175–181 (1982).

[54] Shenoy P. and Radkov P. : Proxy-assisted Power-friendly Streaming to
Mobile Devices, Proceedings of the 2003 Multimedia Computing and Net-
working Conference (MMCN), pp. 177-191 (2003).

[55] Sebastien Vauclair : Extensible Java Profiler,
http://ejp.sourceforge.net/

[56] Garey M. R. and Johnson D. S. : Computers and Intractability: A Guide
to the Theory of NP-completeness, Freeman (1979).

[57] Bolognesi T. : Toward Constraint-Object Oriented Development, IEEE
Transactions on Software Engineering, Vol. 26, No. 7, pp. 594 – 616 (2000).

[58] Jensen K. and Rozenberg G. (eds.) : High-level Petri Nets. Theory and
Application, Springer-Verlag (1991).

[59] CPN group at the University of Aarhus, Denmark : Design/CPN, Ver.
4.0.4, http://www.daimi.aau.dk/designCPN/

[60] Advanced Topic Workshop Middleware for Mobile Computing, In
association with IFIP/ACM Middleware 2001 Conference, URL:
http://http://www.cs.arizona.edu/mmc/ (2001).

85

