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Preface

This dissertation presents my research work on audio processing technologies in the Gradu-
ate School of Osaka University and at the Tokyo Research Laboratory of IBM Japan. The
dissertation is organized as follows:

Chapter 1, the introduction of the dissertation, clarifies the purposes by providing back-
ground and summarizing the trends of the relevant technical fields.

Chapter 2 outlines the two audio processing technologies, text-to-speech synthesis and au-
dio watermarking, that we focus on in the dissertation. Based on various usage scenarios
involving these technologies in which they are used as components of larger systems, we illus-
trate the requirements for the technologies. In addition, we clarify the characteristics of our
approach to the problems by comparing it with the related work in the research areas.

Chapter 3 describes a totally trainable text-to-speech (TTS) system, every component
of which can be automatically built from human speech alone. Although total trainability
is a difficult challenge, training all of the components from speech is expected to improve
the naturalness of the synthetic voices as well as to reduce the building costs. Since the
training of the TTS components requires various kinds of linguistic and acoustic information
in addition to the speech itself, the system incrementally collects the information by combining
acoustic processing and linguistic processing. For collection of the orthographic and phonemic
transcriptions, the accuracies of multiple configurations for automatic speech recognition are
compared. The most likely part-of-speech sequences for the recognized spellings and phonemes
are calculated by a text processing module. For prosodic labels, which are important for
reproduction of the speaker’s characteristics, the labeling accuracy is improved by combining
acoustic and linguistic models, using speaker-dependent and speaker-independent models. The
accuracies of the sub-modules of the system were examined by experiments.

Chapter 4 describes a robust audio watermarking algorithm that preserves the naturalness
of the sound while making it possible to detect the watermark even after the sound quality is
degraded. Since conventional time-domain spread spectrum watermarking algorithms require
strict synchronization of the watermark signal, their robustness against attacks that displace
the watermark signal was problematic. Therefore, we introduced a robust audio watermarking
method that has advantages in both robustness and acoustic quality by modifying the magni-
tudes of the sound according to a two-dimensional pseudo-random array (PRA) defined in the
time-frequency domain of the sound. In addition, the use of multiple stretched PRAs in the
detection algorithm further improves the robustness against geometric distortions of the sound
without requiring too much additional computational time. The communication capacity of
the algorithm is also analyzed in the last part of the chapter.

Chapter 5 extends the applications of the audio watermarking algorithm to a broader
range of situations, while conventional audio watermarking research assumes limited uses of
digital audio data. First, we show that the algorithm described in Chapter 4 can be applied
to compressed audio and that the embedded information can be detected whether or not the
watermarked audio data is compressed. Second, we describe multiple composition methods



for real-time watermark embedding for analogue audio and live performances played in audi-
toriums, and we point out their merits and flaws. Sonic watermarking, which is one of the
composition methods, is a method that can embed watermarks into the sound in the air by
making the watermark sound enter the air from the speaker and mixing it with the host sound
in the air. The experimental results are shown to examine the effectiveness of the methods.

Chapter 6 presents the conclusions of the dissertation.
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Chapter 1

Introduction

Sound is a natural and indispensable media for human beings. It provides great benefits for
human communication, perception of the environment, and cultural activities. As all kinds
of information are increasingly handled with on computers and via computer networks, sound
is no exception. We are increasingly coming to use various digitized sounds with electronic
equipment these days. Unlike transaction data that is specifically designed for computer
handling, the value of digital multimedia data is not realized until that data is perceived by
humans. Digital audio data must enter the air to be appreciated as audio data.

However, even when the sound of audio data reaches our ears, we cannot perceive every-
thing in the sound. Audio data generally has high redundancy, and there is a large gap between
the amount of audio data and the information we can perceive in the sound. At the same time,
human ears are very sensitive to some kinds of peculiarity or unnaturalness in a sound. It is
still not very clear what characteristics in the redundant data of sounds are essential to human
perception. For these reasons, computer handling of audio data still continues to be a difficult
task.

Some problems are caused by the fact that computer handling of audio data is still difficult
even though sound is a natural and important information media for people to use in various
communication channels in day-to-day situations. Although many procedures and systems are
increasingly automated, the slow pace of automation of the sound-related human-computer
interface sometimes results in situations where the transfer of audio data at the interface is
mediated by human operators. One example is radio broadcast monitoring where human
operators have to listen to on-air music to make reports on which songs are played. The
slow automation of the interface is a bottleneck for the automation of the entire system and
diminishes the benefits of the systems.

Therefore, the purpose of our research is to develop audio processing technologies that
enable automatic exchanges of audio data between the computer world and the real world,
while preserving the naturalness of the sound and the naturalness of the human-computer
interaction that use sound.

There are various audio processing technologies for the human-computer interfaces. The
audio processing technologies relevant to the production of sounds for presentation to people
include text-to-speech synthesis, speech production, audio watermark embedding, steganogra-
phy, synthesis of the sounds of musical instruments, algorithmic composition, audio rendering,
and the decoders for compression technologies. The audio processing technologies relevant
to reception, recognition and analysis of sounds human produced include automatic speech
recognition, automatic prosody labeling, emotion recognition, speaker recognition, audio wa-
termark detection, steganalysis, fingerprinting, sound source separation, automatic scoring,
and encoders for compression technologies.

1



2 CHAPTER 1. INTRODUCTION

Among these technologies, we focus on text-to-speech synthesis and audio watermarking.
Although these are different technologies, they have common characteristics that both use
signal processing and stochastic methods to preserve the naturalness of the sounds. In addition,
both are currently a focus of attention for research and are in high demand for applications
as explained by the trends of relevant technical fields summarized here.

The explosive expansion of information that is provided as text is increasing the demands
for text-to-speech synthesis in recent years. With the rapid progress of communication tech-
nologies, we are concurrently seeing diversification of the means to access information. We can
access various kinds of online information wherever we are with mobile electronic devices such
as cellular phones, personal digital assistants (PDAs), car information systems, etc. However,
in situations where we use these mobile devices when we are not at a desk, we are typically
unable to devote our hands and eyes exclusively to these devices. To make the interfaces of the
devices easier to use, there are increasing demands for multi-modal interfaces that allow the
use of speech as well as text and graphics. Meanwhile, from the perspective of the companies
providing people with the information, we see the growing importance of customer relationship
management due to increasing information access by the customers and tightening competi-
tion among the companies. With the growth of the awareness of the companies’ brand image,
the appearance of the customer-related systems such as call centers, information desks and
websites is increasing in importance. Since the pressure for cost reductions is intensifying at
the same time, call center automation is expected to help with these problems. For these
reasons, natural and pleasing text-to-speech synthesis appropriate to represent a brand image
is desired.

Regarding the trends surrounding audio watermarking, the last several years included a
violent transitional period in the music industry. Before this, the sales of records and Compact
Disks (CDs) were the major and stable source of earnings for the industry. However, since
the ways people enjoy music are changing drastically due to the Internet and compression
technologies such as MPEG1 Audio Layer 3 (MP3) and MPEG2 Advanced Audio Coding
(AAC), the music industry is being subjected to strong pressures to change their business
models. The industry is trying to find ways to make their businesses flexible enough to respond
to the situation changes while maintaining stable sources of revenue. For example, new services
such as Internet music distribution, musical ring tones for cellular phones, subscription-based
music download services, and certification that websites comply with the copyrights of the
content are being introduced with the aid of various technologies. Digital watermarking can
embed information such as the copyright information, use condition information, or even
information about the purchaser of the content into the content itself. With these kinds of
information, we can build systems that automatically monitor or control the content usage,
and we can develop more flexible business models since we do not need to bill before the use
of the content. For these reasons, audio watermarking is an important technology for the
industry.

With these strong demands for applications, we perform research on audio processing
technologies, focusing on text-to-speech synthesis and audio watermarking. The ultimate goal
of our research is to allow people to use natural sound-based human-computer interfaces. We
think it is most important for this purpose to preserve the naturalness of the sound and the
naturalness of the human-computer interaction. This is because, no matter what convenience
such technologies offer, people will not willingly use these technologies if the acoustic quality
is not satisfactory. At the same time, there is a trade-off among the acoustic quality and
the other characteristics such as the performance, development costs, and robustness of these
technologies. Hence, we cannot focus exclusively on the acoustic naturalness. We need to
improve the trade-off balance points by considering these characteristics in a comprehensive
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manner to achieve high and practical acoustic quality. Therefore, we are following an approach
that builds the technologies from the ground up by reviewing the demands of the applications.
This is also a practical approach emphasizing the utility of the applications.

According to this approach, the dissertation is organized as follows. In Chapter 2, after
describing some basic concepts of the audio processing technologies, we introduce various appli-
cation systems of the technologies. Based on usage scenarios of these systems, we illustrate the
requirements for the technologies. In addition, we clarify the characteristics of our approaches
to the problems by comparing them with the related work in these research areas. Chapter
3 discusses a framework of text-to-speech synthesis systems. Some sub-modules necessary for
the framework are also presented. Chapter 4 describes a new robust audio watermarking algo-
rithm. Theoretical and experimental analysis of the method is given. Chapter 5 extends the
applications of the audio watermarking algorithm to a broader range of situations. Chapter 6
concludes this dissertation and gives the future work.





Chapter 2

Requirements for Audio Processing
Technologies

In this chapter, we first describe some basic concepts of each of the audio processing technolo-
gies we focus on in this dissertation, the technologies of text-to-speech synthesis (TTS) and
audio watermarking. We introduce various systems that use these audio processing technolo-
gies as components. Based on usage scenarios of these systems, we illustrate the requirements
for the technologies. Then we choose some of the requirements we particularly focus on in the
dissertation. In the last part of the chapter, we clarify the characteristics of our approaches
to the problems by comparing them with the related work in these research areas.

2.1 Systems Using Text-to-Speech Synthesis

Text-to-speech (TTS) Synthesis is a technology that converts natural language text into speech.
A TTS system usually consists of three major components (Fig. 2.1): (1) a text processing
module, (2) a prosody prediction module, and (3) a speech signal generation module. The text
processing module analyzes the input text by using a stochastic language model or heuristic

Synthetic Voice

Text

Prosody

Text Processing

Prosody Prediction

Text-to-Speech Synthesis

Phonemes, Part-of-Speech Label, 
Prosodic Labels, etc.

Speech Signal
Generation

Acoustic Model
or Segment DB

Language Model
or Rules

Prosody Model
or Rules

Figure 2.1: The runtime process flow of a text-to-speech synthesis (TTS) system.
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Figure 2.2: The training process flow of (a) a language model or (b) language rules.
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Figure 2.3: The training process flow of prosody models and a segment DB.

language rules to output linguistic information such as phonemes, part-of-speech (POS) data,
prosodic labels, etc. The prosody prediction module predicts the target prosody that the
output synthetic voice should have. The module uses stochastic prosody models or heuristic
prosody rules. Prosody refers to the suprasegmental features such as fundamental frequencies
(F0), energy, and timing of spoken language. The last component, the speech signal generation
module, synthesizes the synthetic voice by referring to the target prosody and the linguistic
information. In the case of concatenative TTS systems, the module concatenates speech
segments stored in the speech segment database (DB).

The stochastic models and the heuristic rules have to be prepared in advance of the runtime
synthesis. If the text processing module uses a stochastic language model, the model must
be trained by using a text corpus (Fig. 2.2(a)). A text corpus is a large collection of text
with linguistic annotation labels such as POS labels, boundary labels, prosodic labels, etc.
These types of annotation labels are usually prepared manually by human labelers. If the text
processing module is not based on stochastic processing, then heuristic language rules have to
be prepared (Fig. 2.2(b)). The design and maintenance of the rules also require manual effort.

Prosody models, and an acoustic model or a speech segment DB are prepared based on a
speech corpus, a large collection of human speech with linguistic annotation labels (Fig. 2.3).
These types of annotation labels are also prepared manually by human labelers. The human
speech is collected by recording the voices of a particular speaker. If the speaker has not
been determined in advance, we should carefully choose a speaker whose voice is suitable
for building a TTS voice. A speaker is suitable when (1) the person’s voice is pleasant and
intelligible for people to listen to, (2) the person can sustain the same speaking style for long
recording sessions, and (3) the person’s voice has good characteristics when encoded by the
TTS technology. However, in some cases, it is necessary to train the models with an existing
speech DB from a designated speaker. An example of such a case is when a company is using
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Figure 2.4: A simple computer telephony integration (CTI) system.

an old system with the recorded voice of a speaker and wants to replace that system with a
new system using synthetic voices based on the same speaker. In such cases, a capability for
authentic reproduction of an original speaker is desirable.

Our work is aimed at the following application systems using TTS:

• Computer telephony integration systems

• Voice browser systems

• Telematics systems

In the following sections, we describe these systems to illustrate the requirements that the
systems require for their TTS components.

2.1.1 Computer telephony integration systems

In a simple computer telephony integration (CTI) system (Fig. 2.4), TTS enables confirmation
of the operations. In such a system, a human operator is attending to each of the callers (end
users). Each caller asks the operator to carry out an operation. When the operator types in
the operation’s data into the computer, the TTS system synthesizes a synthetic voice reading
out the operation’s data for confirmation. Both the operator and the caller can confirm the
results of an operation by listening to the synthetic voices. The text to be synthesized is
generated by simple rules based on the content of the operation.

Alternately, after the operator types in the operation’s data and initiates speech synthesis,
the operator can switch to another caller for more efficient use of the operator’s time. The
first caller listens to the synthetic voice to confirm the operation. If the first caller is satisfied
with the results of the operation, then the caller can terminate the call. Otherwise, the caller
can request assistance, perhaps by pushing a button, so that an operator will return to help
fix the pending operation.

In a more complicated fully automatic interactive voice response (IVR) system (Fig. 2.5),
TTS could be used to read out just the proper names or all of the information transmitted from
the system to the caller. Since there is basically no operator attending the caller, the caller’s
speech must be recognized by using automatic speech recognition (ASR) technology. Based on
the recognition results, the system automatically carries out the operations. Information such
as the recognition results of the ASR, the confirmations of the operations, and the results of
the operations have to be given to the callers verbally. When the information is in the form
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Figure 2.5: An interactive voice response (IVR) system.

of fixed phrases or when the information can be chosen from a list of prepared choices, it is
common to play back recorded human voices. However, if the information includes arbitrary
proper names, or if the list of responses is too long to allow preparing corresponding recorded
voices, the information has to be read out with synthetic voices. In addition, while recorded
voices have very good acoustic quality, it is expensive to record additional phrases when new
phrases have to be added to a list of fixed phrases. In that respect, synthesizing new phrases
with TTS is easy. For such reasons, a system needs to interleave recorded voices and synthetic
voices.

These systems require the synthetic voices to have characteristics such as (1) intelligibility
when heard through phone lines, (2) sounding natural and pleasant so that the callers are
willing to continue listening during the session, (3) a proper tone for representing the com-
pany that is using the system, (4) an appropriate speaking style for the content of the spoken
sentences, and (5) compatibility with the recorded voices when the synthetic voices are in-
terleaved with recording. In addition, the following characteristics are desirable for the TTS
components: (1) low computational requirements so that multiple TTS processes can run on
the same IVR server in parallel, and (2) convenience when building a new TTS voice with a
speaker that the company has already been using for the recorded voice.

2.1.2 Voice browser systems

A voice browser is a computer program that enables people with visual impairments to browse
webpages by listening to synthetic voices reading out the pages. The end user usually controls
the Web browsing by using the keyboard (Fig. 2.6). The system downloads webpages from
the Internet according to the user’s commands. Then the system converts each of the pages
to sentences, and each of the sentences are read by the TTS component. Since webpages are
usually not designed to be read aloud, the generation of sentences and synthetic voices that
are easy to understand is not a simple task. In addition, while it is easy for sighted people
to skip around webpages, if people with visual impairments have to listen to synthetic voices
read a webpage from the top to the bottom, it can be very time consuming. Hence, real-time
reading speed control and commands for skipping parts of the page are important features to
enable non-visual access to webpages. Switching between different synthetic voices is a useful
technique to make some parts of the webpage stand out, such as hyperlinks or itemized lists.

This kind of systems requires the TTS components to have (1) a crisp and clear enunciation
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for better intelligibility, (2) real-time controls, (3) easy installation for people with visual
impairments, and (4) support for switching multiple synthetic voices.

2.1.3 Telematics systems

An in-vehicle telematics system is a vehicle information system that provides the driver with
various information from the outside world. Because it is dangerous for drivers to look at
the display of a telematics system, it is desirable that drivers can control such a system by
speaking to it and that the system gives the driver all of the information verbally.

In a fully voice-enabled telematics system (Fig. 2.7), the automatic speech recognition
(ASR) component of the system recognizes the commands spoken by the driver. The system
decides on the required action such as setting the destination to a specified location, playing
the radio, or changing the temperature setting of the air conditioner. The system should
also download information by connecting to the Internet using wireless communications. The
system generates sentences to be read out to return to the driver the results of the operations.
In addition, even without a driver’s direct command, when the system detects certain events
such as approaching a turning point or receiving new traffic information, the system needs
to report that information verbally. It is common that this kind of systems be equipped
with a database (DB) of recorded voices reading the names of intersections, place names,
and frequently used phrases. If the sentence to be read includes such prerecorded phrases,



10 CHAPTER 2. REQUIREMENTS FOR AUDIO PROCESSING TECHNOLOGIES

Table 2.1: Requirements for text-to-speech synthesis. We want to address the requirements
written in italic with this dissertation.

Requirements CTI Browser Telematics
Intelligibility (clearness)

√ √ √
Naturalness (pleasantness)

√ √
Proper tone (elegance)

√ √
Appropriate speaking style

√
Compatibility with recorded voices

√ √
Limited computational resource

√ √
Easy building of a new voice

√ √ √
Real-time controls

√
Easy installation

√
Multiple voices

√

the system retrieves the recorded voices from the DB. When the sentence contains variable
information not in the DB, the TTS component reads that information. The driver listens to
the interleaved voices of the recorded voices and the synthetic voices.

Although the requirements of this kind of system are similar to the requirements of com-
puter telephony integration systems, a peculiarity of telematics systems is that imposing a
cognitive load on the driver in the act of driving could be very dangerous. Intelligibility and
naturalness of the synthetic voices so that the driver need not ask again even when the spoken
words are uncommon proper names is important. Another peculiarity of telematics systems is
that cars are not equipped with full-function personal computers (PCs). Telematics systems
must run on embedded computer systems, which have limited memory resources and compu-
tational power. Since TTS components are not a core function of these systems, the amount
of available resources for the TTS components are further limited. At the same time, cars
are supposed to give drivers a feeling of luxury. The synthetic voices should also have high
quality appropriate for a high quality luxury environment. For example, while a sampling
rate of 8 kHz is usually used for computer telephony integration systems, a high sampling rate
of 22 kHz is desirable to make synthetic voices appropriate for high fidelity audio systems in
luxurious cars. While the quality of synthetic voices is crucial as contributing to the appear-
ance of the entire system, the importance of the TTS components is not well recognized, both
during development and for the runtime of the entire system. Such problems make difficult
the development of TTS components for telematics systems.

2.1.4 Requirements for text-to-speech synthesis

To develop a TTS technology that is attractive for owners of these kinds of systems, in this
dissertation we focus on the following requirements for the TTS components of the application
systems (also shown in Table 2.1):

1. Acoustic quality and accurate reproduction of the speaker’s voice
Although it is easy for end users listen to synthetic voices for a short time, it is difficult
to make end users willingly keep listening to synthetic voices, which is a requirement of
the target systems. It is necessary for TTS to generate synthetic voices that are natural
and pleasant sounding, as though a living person were speaking.

2. Rapid and accurate training of stochastic models



2.2. SYSTEMS USING AUDIO WATERMARKING 11

Watermark Embedding Watermark Detection

Host Signal

Watermark Signal (WS)

Watermarked
     Signal

Key

Pseudo Random Sequence(PRS)

Message

Message

PRS Generation

WS Generation

WS Addition

Message Extraction

Existence Test

PRS

PRS Generation

WM exists or not

Figure 2.8: The process flow of audio watermarking embedding and detection.

If building a new TTS voice set requires expensive manual work by skilled developers,
building a different TTS voice for each of the systems would be impossible. Automatic
and rapid training of stochastic models is necessary to let TTS be widely used in various
systems.

Training accurate stochastic models is also important for acoustic quality, since accurate repro-
duction of pitch accents is crucial for natural Japanese. Hence, the focus of this dissertation
is on the training stage of the models. In Section 2.3, we show what has been done with
conventional approaches and what the remaining problems are.

2.2 Systems Using Audio Watermarking

Audio watermarking is a technology that allows a user of the technology to embed information
into audio data by slightly modifying the data with watermark embedding software. The
information embedded in the audio data can be detected with watermark detection software.
Fig. 2.8 illustrates basic concepts of audio watermarking. The audio data with which the audio
watermarking used is called a host signal (HS) or host data. The information to be embedded
into the HS is a message. An example of a message could be copyright information about the
HS. A secret key is used for watermark embedding. Only when the same secret key is available
can the message be detected by the watermark detection software. The key is used to generate
a pseudo random sequence (PRS). The message is encoded in a watermark signal (WS) based
on the PRS. In the last process of watermark embedding, the WS is added to the HS, making
a watermarked signal or a watermarked host signal (WHS). The watermark detection software
detects the message in the watermarked signal. First, the PRS is generated from the secret
key. By using the PRS, whether or not the signal is watermarked can be determined (with an
Existence Test). If the signal appears to be watermarked, the message is extracted from the
signal by using the PRS (Message Extraction).

We aim at the following application systems using audio watermarking:

• Pirated copy search systems

• Internet music distribution systems

• Broadcast music management systems
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Figure 2.9: A pirated copy search system.

We describe these systems to illustrate the requirements that the systems impose for the audio
watermarking components in the following sections.

2.2.1 Pirated copy search systems

In these systems, audio watermarking enables automatic searching for pirated audio files ille-
gally made available on the Internet (Fig. 2.9). To make this possible, when audio Compact
Discs (CDs) are produced at recording companies, copyright information for the audio content
is embedded into the audio data. The watermarked audio CDs are distributed to CD retail
shops in just the same manner as used for nomal audio CDs. End users buy the CDs from
the retail shops. If the acoustic quality of the watermarked audio CDs is exactly the same as
the unwatermarked audio CDs and if the watemarked CDs can be played in exactly the same
manner as the unwatermarked audio CDs, the recording companies need not even publicize
that the CDs are watermarked. The end users can enjoy the CDs with conventional audio
equipment. The end users can even copy the CDs to analogue tapes, to their PCs, or to
digital audio players. However, if the end users make the watermarked audio files available on
websites or via peer-to-peer (P2P) software platforms, they will be detected and warned.

Copyright management organizations or the recording companies themselves can run In-
ternet crawling software that searches for audio files on the Internet. By detecting audio
watermarks from such audio files, the organization can know that pirated audio files have
been made available illegally. Based on the copyright information detected in the audio wa-
termark and the information about the location where the files are found, the organization
can determine what action to take against the piracy, such as sending a warning, filing a
complaint with the police, or beginning legal proceedings. Alternately, even without actually
using these responses, simply announcing that audio CDs from the recording company have
been watermarked will have a psychological deterrence effect against piracy.

The Japanese Society for Rights of Authors, Composers and Publishers (JASRAC) con-
ducted a series of feasibility studies of audio watermarking from 1999 to 2002 targeting these
kinds of systems. In 2000 and 2001, JASRAC conducted evaluation tests of audio watermark
technologies provided by multiple technology providers [33, 34]. The STEP tests required
the technologies to be used to watermark two kinds of information and then evaluated them
for robustness and acoustic quality. The watermarked information was (1) 2-bit copy control
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Table 2.2: Robustness requirements for the STEP test conducted by JASRAC.

Testing Item Overview of Processing Involved
D/A, A/D transition Digital → Analog → Digital
Altered number of channels Stereo (2ch) → mono
Down sampling 44.1kHz/16bit/2ch → 16kHz/16bit/2ch
Amplitude compression 44.1kHz/16bit/2ch → 44.1kHz/8bit/2ch
Time and pitch compression Time compression / decompression: ±10%

and decompression Pitch shift compression / decompression: ±10%
Linear data compression MPEG1 Audio Layer 3 (MP3): 128kbps

MPEG2 Advanced Audio Coding (AAC): 128kbps
ATRAC: Version 4.5
ATRAC3: 105kbps
RealAudio: ISDN
Windows Media Audio: ISDN

Non-linear data compression FM (FM multiple broadcast,
terrestrial hertzian TV broadcast)

AM (AM broadcast)
PCM (Satellite TV broadcast:

communications satellite, broadcasting satellite)
Characteristic transformation FM (FM multiple broadcast,

of frequency response terrestrial hertzian TV broadcast)
AM (AM broadcast)
PCM (Satellite TV broadcast:

communications satellite, broadcasting satellite)
Noise White noise: S/N: - 40dB

information which should be detected from any 15-second portion of the watermarked audio
files, and (2) 72-bit copyright management information which should be detected from any
30-second portion. For robustness, the test items listed in Table 2.2 were used. To test the
acoustic quality of the proposed technologies, professional acoustic engineers called Golden
Ears and Silver Ears evaluated the acoustic quality by listening to the watermarked audio
files in a recording studio environment.

The amount of the copyright management information, 72 bits, is a number apparently
intended to cover the international standard codes for this kind of information, such as the
International Standard Recording Code (ISRC) and the International Standard Work Code
(ISWC). An example of an ISRC is “JP-AA0-01-23456” (Fig. 2.10). The “JP” of the example
is a two-character country code, which is describable with 12 bits. “AA0” is a three-character
alphanumeric registrant code, uniquely identifying the organization which registered the code.
This part can be described with 18 bits. The “01” is the last two digits of the year of
registration, using 7 bits. The “23456” is a unique 5-digit number identifying the particular
sound recording, which can be uniquely represented in 17 bits. Hence, the ISRC can be
encoded with 54 bits and 72 bits is sufficient information for such copyright information.

The most crucial factor for this kind of systems is the psychological resistance of the end
users and the sound engineers against watermarked audio. Regardless of whether or not the
watermarked audio is distinguishable from unwatermarked audio by human ears, some people
show an irrational and strong resistance to allowing audio watermarking to alter the original



14 CHAPTER 2. REQUIREMENTS FOR AUDIO PROCESSING TECHNOLOGIES

23456
Country Code

Registrant Code

Year Code
Recording Number

01AA0JP - - -

Figure 2.10: An example of International Standard Recording Code (ISRC).

audio signals. Historically, the acoustic quality of early audio watermarking technologies was
not satisfactory. However, since the acoustic quality of an audio watermarking technology
is heavily dependent on the watermark embedding method, rejecting all audio watermarking
technology does not make sense. We need to change the attitudes of people against audio
watermarking by demonstrating the quality of audio watermarking technologies.

In this use scenario, the important requirements of the audio watermarking include (1)
the acoustic quality of the watermarked audio CDs should be the same as the original CDs,
(2) the detection performance should allow for exhaustive Internet crawling, (3) robustness
against casual editing or malicious attacks on the watermarked audio files, (4) a data payload
enough large to carry the copyright information, (5) security against malicious attacks, and
(6) the reliability of detected information.

2.2.2 Internet music distribution systems

In Internet music distribution systems (Fig. 2.11) in which an Internet music stores sell and
distribute digital audio files to end users, audio watermarking allows not only detection of the
copyright information of the audio files but also allows for the identification of malicious end
users and for the direct prohibition of piracy.

First, a music store embeds the watermark into the audio files before storing the files in
a music database (DB). The information embedded as the audio watermark is information
identifying each audio file, such as the copyright information or usage condition information
of the file. When an end user purchases a copy of an audio file, another type of watermark is
embedded into the copy on the fly. This time, information that is dependent on the purchase
can be embedded. For example, the identification (ID) number of the purchase or the end user
can be embedded. Then the audio file is encrypted and sent to the client PC of the end user.
The end user uses the proper audio player software designed for this music distribution system.
The client software stores the downloaded encrypted audio file to a local music DB. When the
end user wants to play the audio file, the encrypted audio file is decrypted for playback.
Simultaneously, the client software automatically detects and checks the audio watermark
regarding the usage conditions. If the usage of the audio file is not allowed by the usage
conditions specified by the detected audio watermark, the client software stops the decryption
and playback. Although this usage control mechanism can prohibit casual piracy, there is a
method to bypass watermark detection. The end user could obtain an un-encrypted version
of the audio file by playing the audio file, transmitting the audio signal through an analogue
audio cable, and digitally recording the audio signal. After obtaining the un-encrypted version,
the end user could play the un-encrypted file by using a standard digital audio player without
watermark detection. However, even in this case, the watermark can still impose some risk
on the malicious end user committing piracy. That is because the user ID information is still
embedded in the audio file. If the audio file is found by the Internet crawling software used by
the copyright management organization, the end user can be identified by detecting the audio
watermark in the audio file.

In this use scenario, in addition to the requirements of Section 2.2.1, the important re-
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Figure 2.11: An Internet music distribution system.

quirements of audio watermarking include: (1) coexistence of multiple watermark messages,
(2) embedding performance that allows watermarks to be embedded on the fly, and (3) water-
mark embedding for compressed audio files. The reason for the last requirement is that the
compressed audio files are frequently used for Internet music distribution.

2.2.3 Broadcast music management systems

A broadcast music management system is a system that supplies radio broadcast stations
with digital audio files and monitors usage of the audio files by the stations (Fig. 2.12). Audio
watermarking enables automatic monitoring of the broadcast music, or, in other words, auto-
matic generation of cue sheets by the system. A cue sheet is a report that describes the date,
time, and duration of the broadcast music titles from a radio station.

In the system, the audio files are stored in a music DB owned by the music distribution
service provider. The copyright information for the audio files is already watermarked in
the audio files. The radio stations that are subscribing to the music distribution service can
download audio files from the music DB. When a radio station requests to download an audio
file, a watermark specifying which radio station is embedded into the copy of the audio file. The
file is encrypted and sent to the local music DB of a client PC at the radio station. The radio
station can use audio files stored in the local music DB. Engineers at the radio station can edit,
play, and broadcast the audio files in the exactly same manner as standard audio files. When an
audio file is transmitted over the air, the copyright management organization can automatically
know which audio file is being broadcast by detecting the audio watermark. The copyright
management organization owns monitoring sites equipped with monitoring equipment. The
monitoring equipment includes a radio tuner, real-time watermark detection software, and a
content information DB. The radio tuner is tuned to receive the broadcast from a radio station.
The audio stream of the radio station is continuously fed to the real-time watermark detection
software using analogue-to-digital conversion. The watermark detection software detects the
watermark in real time and finds the copyright information and the station information. A
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Figure 2.12: A broadcast monitoring system.

cue-sheet can be automatically generated based on the detected information for the radio
station to which the radio tuner is tuned. This type of automatically generated cue-sheets
will allow the copyright management organization to accurately charge royalties based on the
actual usage of the audio files. Because accurate charging prevents overcharging as well as
incorrect charges, the system is also beneficial to the radio stations. In addition, the copyright
of live performances can also be covered by the system using real-time watermark embedding
of the copyright information and station information.

In this scenario, the important requirements for the audio watermarking include (1) acous-
tic quality appropriate for broadcast use, (2) robustness against analogue radio broadcast
effects, (3) robustness against time expansion and compression performed to adjust the dura-
tion of a song, (4) real-time watermark embedding for live performances, and (5) reliability
of the real-time watermark embedding system that the engineers of radio stations can use
without fear of broadcasting incidents.

2.2.4 Requirements for audio watermarking

For audio watermarking to become widely used, we want to focus on the following requirements
in this dissertation among the requirements for audio watermarking in application systems
(also shown in Table 2.3):

1. Acoustic quality
Audio watermarking will not be widely used as long as people refuse watermark em-
bedding software that alters the audio data, however robust the audio watermark is.
Therefore, it is important to address the psychological resistance of people by develop-
ing transparent audio watermarking technologies.

2. Robustness
For audio watermarking to be a useful tool for copyright management, audio watermark
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Table 2.3: Requirements for audio watermarking. We want to address the requirements written
in italic with this dissertation.

Pirate search Internet Broadcast
Requirements distribution monitoring
Acoustic quality

√ √ √
Robustness against:
casual editing

√ √ √
malicious attacks

√ √
analogue radio

√
duration adjustment

√
Security against malicious attacks

√ √
Reliability of detection

√ √
Reliability of real-time embedding

√
Embedding performance

√ √
Data payload

√ √ √
Multiple watermark messages

√ √
Compressed Audio

√

should survive commonly used audio processing. However, in addition to malicious
attacks, there are various types of audio processing in the scenarios described above that
can erase or damage audio watermarks.

3. Practical utility
Although audio watermarking is an interesting technology, it is not widely used. Research
to expand the range of applications is also necessary to promote the adoption of audio
watermarking.

Since there is a trade-off among acoustic quality, robustness, and data payload, we need to
develop an algorithm that achieves a high level trade-off. In the following section, we show
which problems have been solved by conventional approaches and what the remaining problems
are.

2.3 Related Work

2.3.1 Related work for text-to-speech synthesis

Major approaches for TTS Major research approaches for TTS can be roughly classified
into two categories: hidden Markov model-based (HMM-based) synthesis [77, 83] and concate-
native synthesis [19, 28, 27]. HMM-based synthesis methods use HMMs for modeling voices
and speaking patterns in a similar way to automatic speech recognition (ASR). The runtime
process of HMM-based synthesis estimates the best sequence of parameter values by using
the HMMs. The chosen parameter values are basically the likeliest values with respect to the
models. The last stage of the method generates synthetic voices with the estimated parameter
values. The method has the advantage in generating synthetic voices with stably good quality.
One of the drawbacks of the method is that the synthetic voices tend to sound buzzy because
of the characteristics of the filter used for voice generation. Another drawback is that the
synthetic voices have a flat tone because they are generated based on the likeliest values of the
parameters, which are from the mean values of many voices.
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Concatenative text-to-speech (CTTS) synthesis is an approach that generates synthetic
voices by concatenating speech segments of human voices. Prior to the runtime process, the
training process of CTTS builds a speech segment database (DB) by separating recorded hu-
man voices into speech segments by aligning phonemic labels. The approach has an advantage
in its high quality when synthesizing text that is similar to the text recorded in the speech DB.
For example, the quality of a synthetic voice speaking a fixed phrase that is stored in the DB
will be as perfect as the original human voice. However, a drawback of the approach is the un-
stable acoustic quality when synthesizing text that is too different from the recorded text. In
addition, the approach requires a larger speech corpus for training models and building a DB
compared to HMM-based synthesis. Both HMM-based synthesis and CTTS have drawbacks
and advantages. The approach we deal with in this dissertation is the CTTS approach.

Automatic building of a new voice There is a requirement for TTS to generate new
voices automatically without manual intervention. Except for the text processing module, the
automatic generation of a new voice is possible even with conventional systems [19, 28, 27].
However, most conventional research work on trainable concatenative TTS systems assumes
orthographic transcription of the speech. A typical procedure for building a new voice for
this kind of research is as follows. The first step is the use of a text processing module for
analyzing the orthographic transcription to obtain linguistic information including a phonemic
transcription [28]. The method proposed by [19] alternately chooses the acoustically most
likely pronunciations for each of the words in the orthographic transcription. Then the forced
alignment mode of the ASR finds the phonemic alignment points that separate the speech
into speech segments. The speech segments are classified by a decision tree considering the
phonemic contexts of the segments and stored in the segment DB. The last step of building a
new voice is training prosody models based on training data that is combination of the linguistic
information, the alignment points, and the fundamental frequency (F0) values. The runtime
process of the method generates synthetic voices by concatenating speech segments selected
from the segment DB by referring to the target prosody predicted with the prosody models. A
possible problem with the building procedure is that it requires an orthographic transcription.
In some cases, we cannot assume that a correct orthographic transcription is available, since the
reading script may have been lost leaving only the recordings or because the narrator might not
read the script accurately. Another possible problem is that the speaker does not necessarily
speak as the text processing module predicts. The prosody of the speaker can be different
from the prosodic labels predicted by the text processing module. Even the pronunciations
(phonemic labels) of the speaker may be different from the pronunciations predicted by the
text processing module. For reasons such as these, the training of the prosody models and the
segment DB with the linguistic information output by the text processing module may be less
than fully accurate. Therefore, we are working towards a totally trainable TTS system taking
advantage of [20]. In the framework, all of the linguistic and acoustic information that is
necessary for training all of the stochastic TTS modules can be obtained almost automatically
from the speech alone.

Problematic segment detection Unlike the approaches [19, 28, 27] based on the ortho-
graphic transcription, the method proposed by Adell et al. [2] automatically transcribes the
speech by using ASR. When ASR is used to transcribe the speech, recognition errors cause
incorrect phonemic labels. In addition, even if the phonemic labels are correctly given, align-
ment errors sometimes occur resulting in displaced phonemic labels. We call speech segments
with these types of errors problematic speech segments. If the runtime process of the CTTS
uses problematic speech segments for concatenation, the resulting synthetic voices will sound
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completely different, which is a critical error for the TTS. Therefore, it is necessary to auto-
matically detect problematic speech segments and remove them from the segment DB. Most
research [19, 40, 38] in this field uses duration-related features. The reason is that unusually
short or unusually long units are most likely mislabeled. These duration-based approaches
tend to improve the detection of problematic segments at the expense of precision. However,
we think the precision is also important for large CTTS systems. This is because falsely labeled
problematic segments dispersed in the original speech hinder the extraction of contiguous seg-
ments, but the longer segments are especially useful to make a synthetic voice of high quality.
To improve both the detection rate and the precision, we use both duration-related features
and acoustic likelihoods in combination.

Automatic Prosody Labeling Automatic prosodic labeling is a necessary and important
component for automatic building of a new voice. An early project by Wightman et al. [81] is a
foundation of this research area. This work calculated the likelihood of a prosodic label by using
a decision tree based on various acoustic features. It also proposed using a Viterbi algorithm to
obtain a consistent sequence of labels. After a report by Conkie et al. [14] proved that linguistic
information can improve the accuracy of the labels, most research work on English prosody
labeling started using linguistic information. That research also used Bayesian decisions to
combine the acoustic models and linguistic models. Chen et al. [12] and Ananthakrishnan et
al. [3] also proposed methods to combine an acoustic model and a linguistic model. A recent
work by Lai et al. [42] reported an accuracy of 94.1% for English stress detection by using a
hierarchical approach in the first stage of which linguistic information was used to distinguish
between content words and function words. These projects reported POS was effective as
linguistic information. The reason why the rather simple use of POS is effective for English
stress detection is in the characteristics of the stress of English words. For English, only the
syllable with the lexical primary stress in a word normally has the possibility of being stressed
among the all of the syllables of the word. Hence, the task requires only word-level judgment
on whether or not the word has a stressed syllable.

However, Japanese mora accent determination requires syllable-level judgment. We cannot
expect POS to be as useful as in the case of English. For example, the information that the
POS of the word is a noun does not give any hint on whether the accent of its third mora is
low or high. Because of the characteristics of Japanese, linguistic information has not been
used for prosody labeling research for Japanese. In the research on Japanese, Nakai et al. [46]
proposed a prosodic phrase (PP) boundary detection method in which the input F0 contours
were matched against F0 contour templates. The method proposed by Hirose et al. [25] can
simultaneously estimate the PP boundaries and the accent types of the PPs by recognizing
the input F0 contours as concatenations of PPs by using HMMs. However, the recognition
capability was limited to 4-mora PPs. Although the works by Iwano et al. [32] and Hirose et
al. [26] extended that method to PPs with other numbers of morae, they did not distinguish
between the accent types apart from the accent types 0 and 1. The F measure of the PP
boundary detection of their methods was 0.80. Emoto et al. [21] reported a method having the
capability of distinguishing among all of the accent types by modeling the F0 contour including
the unvoiced portions with multi-space probability distribution HMMs (MSD-HMMs). They
achieved an accent type accuracy of 66.1% based on a training corpus with 450 sentences.
The method proposed by Campbell [11] can detect the PP boundaries and the accent types
simultaneously by searching for the prosodic label sequence resulting in the best match of
a synthetic voice to the input speech. The method relies on linguistic knowledge that the
developer of the text processing module of the TTS system embedded in the module. The
method can recognize only accent sequences in a candidate list generated by the text processing
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module.
For these reasons, we use an approach that uses not only POS but also linguistic probabil-

ities for each word. The method improves the accuracy of labeling by the combinatorial use
of multiple different models including acoustic models and linguistic models.

2.3.2 Related work for audio watermarking

Basic watermarking algorithm An early watermarking research report [9] introduced
several audio watermarking approaches including echo hiding and spread spectrum. Among
these, time-domain spread spectrum (SS) is a well-known approach that can achieve robust-
ness against audio compression such as MPEG1 Layer 3 [29]. While the method of this kind
proposed by Swanson et al. [10, 63] required access to the host signal for watermark detec-
tion, Bassia et al. [7] proposed a time-domain SS method that enables blind detection, which
means it can detect watermark without that access. An advantage of the research work by
Swanson et al. was that it took perceptual masking [84] into consideration to make the audio
watermarks inaudible. They took two types of perceptual masking effects into consideration.
The first type is temporal masking effects where a stronger masker signal makes a temporally
neighboring weaker signal inaudible. The second type is frequency masking effects where a
stronger masker frequency component makes a weaker frequency component whose frequency
is close to the frequency of the masker inaudible. Among these effects, frequency masking
effects are more important for audio watermark embedding. One possible problem with the
method of Swanson et al. was that, since the method was a time-domain SS method, the
use of the frequency masking effects was not straightforward. The method used those effects
by designing a filter simulating masking effects for each analysis frame. Differing from their
method, we use frequency-domain embedding for more straightforward use of a psychoacoustic
model.

Another problem of time-domain SS is that it requires exact sample-wise synchronization
of a pseudo-random sequence (PRS) for watermark detection. That makes it difficult to insure
robustness against pitch shifting, wow-and-flutter, and random sample cropping, since Wu [82]
pointed out that a random sample cropping attack can efficiently interfere with a watermark
detection process. The brief explanation of why they cause serious damage to audio watermarks
is that they are geometric distortions of the audio signal. When these processing steps are
performed on the content, the displacement between the embedded PRS and the detection
PRS makes it difficult for the detector to properly synchronize the PRSs. For instance, a
random stretching attack, which is a superset of a random sample cropping attack, randomly
duplicates or deletes some portions of the content, and as a consequence the beginnings of
the embedded PRSs are randomly shifted, and the lengths of the embedded PRSs are also
changed randomly. In this way, random stretching and wow-and-flutter cause a mismatch of
the PRSs with respect to time. Pitch shifting and wow-and-flutter causes mismatches with
respect to frequency, too. These processing steps change the frequency of the embedded PRS
and prevent it from matching the frequency of the detection PRS.

The effects of these processing steps are similar to the effects of geometric distortions on
an image watermark, which has been receiving more and more attention recently. When an
image is rotated, translated, or scaled, the mis-synchronization of the PRSs becomes a similar
problem. Although one of the possible methods to deal with the distortion is an exhaustive
search for the original shape of the image, that requires excessive computational time. A
promising approach is using characteristics that are invariant to distortions. Similarly, it
is desirable for audio watermarking methods to be insensitive to distortions. To make this
work with respect to the distortions along the time axis, a promising approach is embedding
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in magnitudes taking advantage of the shift-invariance characteristics of the magnitudes in
the Fourier domain [22, 82, 24, 79]. This approach is also used for image watermarking
techniques [58, 41, 43]. For insensitivity to the distortions along the frequency axis, while the
method [76] achieved robustness against pitch shifting by searching for five additional sinusoids,
we aim at achieving some robustness against pitch shifting without a synchronization signal.
For this purpose, we choose to modify the magnitudes of all of the frequency bins in a subband
according to one pseudo-random number assigned to the subband, instead of modifying each
frequency component independently [4].

To effectively realize these ideas, we use a two-dimensional pseudo-random array (PRA) in
the time-frequency plane of the content. The embedding algorithm modifies the magnitudes
of segmented areas in the plane according to the PRA and the detection algorithm correlates
the PRA and the magnitudes of the content. The two-dimensional array allows the use of a
longer array, which makes the watermark robust against time-fluctuation caused by duplicate
or missing audio samples. This is because loss in some portions of the array can be recovered
using other portions. The watermark robustness against pitch-shifted content can be estimated
based on the amount of the segmented areas that can maintain the correspondence between
the detection PRA and the watermark signal embedded in the content.

Further robustness against geometric distortion Making basic watermarking algo-
rithms robust against geometric distortions has limits. We need to use additional means
to make algorithms able to survive excessive geometric distortions. An audio watermarking
method [36, 37, 35] that is similar to our approach solved the problem by performing multiple
correlation tests. One possible problem with the multiple correlation tests is that they may
increase the false alarm rate. This is because, if watermark is searched for by calculating cor-
relation values for multiple times, this searching step increases the chance of correlation values
calculated from unwatermarked audio content accidentally going beyond the predetermined
threshold. We need a method that enables watermark detection from excessively distorted au-
dio content while preserving the false alarm rate. Therefore, we take an approach that chooses
one correlation based on the strength of a synchronization signal. Because the strength of the
synchronization signal and that of the message signal are independent, the false alarm rate is
kept low.

Data capacity analysis A watermarking algorithm will not be practically useful if the
size of the data payload is too small, even if it achieves high acoustic quality and strong
robustness. The requirements for data payload is expressed in two forms: (1) to embed as
much as information as possible into audio content within a limited length, or (2) to shorten
the necessary length of the audio content for embedding a certain amount of information.
Although it is generally possible to increase the size of the data payload by using stronger
watermarking signals, this approach degrades the acoustic quality. If we try to embed too
much information in a short piece of audio with too weak a watermark signal, we will not be
able to provide sufficient robustness. Recently, there is increasing demand to quantify this
relationship to be able to estimate the data capacity of watermarks [6, 15, 61, 5]. This kind
of research work considers watermarking as communication where host signals are treated as
additive noise disturbing the communication. However, the main target of this kind of research
has been image watermarking. We need to theoretically analyze the data capacity of our audio
watermarking algorithms.

Watermarking for compressed audio When we think about practical usability of audio
watermarking, we are seeing compressed music becoming more and more popular in recent
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years. However, possibly because uncompressed digital audio is still used for standard audio
CDs, little watermarking research has been done for compressed audio compared to uncom-
pressed audio, although there has been a lot of watermarking research for JPEG-compressed
images and MPEG-compressed video. With the increasing popularity of compressed music,
there is naturally a demand for watermarking compressed audio. In other words, it should be
possible to embed and detect an audio watermark in compressed audio. In addition, robustness
against compression, decompression, and re-compression is desired. However, it is difficult to
handle compressed audio for watermarking because the quantization and the coding used for
the compression technologies allow less freedom for manipulation.

Dittmann et al. [18] proposed a watermarking method for MPEG-1 Audio Layer 2 (MP2) [29].
The method embeds an audio watermark by changing the patterns of the scale factors, and
it has the good feature of a large data payload capacity. Koukopoulos et al. [39] proposed a
security improvement for this method. Steinebach [62] proposed another improvement of the
method in which the capacity was optimized by making decisions based on the majority of
even or odd scale factors. Since the main goals of these research projects involved authenti-
cation and annotation, robustness against decompression was not considered. Although the
method proposed by Qiao et al. [57] applies a spread spectrum technique to the scale factors
or quantized coefficients of MP2, its robustness is not described in the paper. Neubauer et
al. [51, 52, 53, 54] proposed robust audio watermarking methods for compressed audio. One of
the main characteristics of their compatible family of audio watermarking methods is that the
watermark can be detected in the uncompressed domain whether the watermark was embed-
ded when the content was compressed in MPEG-1 Layer 3 (MP3) or MPEG-2 Advanced Audio
Coding (AAC) [30], or when the content was uncompressed. This convenient characteristic
makes it unnecessary to decompress and re-compress a compressed audio file for watermark
embedding. Watermark embedding in a compressed audio file is performed as follows. The
method prepares an audio watermark signal in the time domain, and converts it to the repre-
sentation used in the target compression technology. To change the values of the audio, the
method recovers the coefficients representing the host signal by dequantization and decoding.
Then the prepared audio watermark signal is added to the coefficients in the domain. Then
the modified coefficients are quantized and encoded in the bitstream. Watermark detection is
done by correlating the watermark signal and the audio signal in the time domain after de-
compression (if needed). Cheng et al. [13] proposed a robust audio watermarking method for
AAC. Its embedding algorithm sorts the recovered coefficients, and modifies the differences be-
tween neighboring pairs of the sorted coefficients. Although robustness against decompression
and re-compression is reported in the paper, the detection also requires knowing the original
sequencing of the sorted coefficients. Unlike these research approaches, we aim at robust blind
watermark detection in both the compressed domain and the uncompressed domain regardless
of the original domain where the watermark embedding was done.

Real-time watermark embedding If we think about the yet larger picture of the practical
utility of audio watermarking, we need to reconsider the applications for which audio water-
marking can be useful. A digital audio watermark has been proposed as a means to identify
the owner or distributor of digital audio data [8, 23, 10, 63]. Proposed applications of audio
watermark are copyright management, annotation, authentication, broadcast monitoring, and
tamper-proofing [23]. Of the various applications, the primary driving forces for audio wa-
termarking research have been copy control of digital music and searching for illegally copied
music [60, 34]. In these usages, it is natural to consider that an original music sample, which
is the target of watermark embedding, exists as a file stored digitally on a computer. For
creating a watermarked Digital Versatile Disc (DVD) Audio disc, when most of the creation
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process including recording, mixing, mastering, etc. is finished, copying the finished song to a
computer and embedding an audio watermark in the music files on the computer is possible. In
the scenario of Secure Digital Music Initiative (SDMI), an audio watermark may be embedded
in a music file prepared for Internet distribution.

Although it is true that these purposes have greatly encouraged audio watermarking re-
search to date, audio watermarking is not a technology useful only for digitally stored music.
Of course, music is performed, created, stored, and listened to in many different ways, and
it is much more common that music is not stored as a digital file on a computer. When ap-
plying audio watermarking technology in various musical environments, real-time watermark
embedding is a preferred approach. For example, in music mastering studios, by embedding
a watermark in real time in a sound being played, the watermarked sound could be instantly
checked without saving it as a file on a computer. For broadcasting of a watermarked sound, it
would become possible to embed a watermark in real time and instantly broadcast the sound
of a live performance being performed in a studio, or the voice of a newscaster or the voices
of participants in a talk show.

Since real-time watermark embedding is a new concept, we can think about various possi-
ble methods for combining real-time watermark embedding. Each of them, having particular
drawbacks and advantages, can in a different way extend the range of audio watermark ap-
plications. For example, a real-time embedding method we named Sonic Watermarking could
be used for prevention of bootleg recordings of live performances. Bootleg recordings are ille-
gal music files that have been recorded in auditoriums by unethical audience members using
portable recording devices. For movies, applications of video watermarking to the digital cin-
ema have been gathering increasing attention recently [17, 80]. One of the purposes is to
prevent a camcording attack, which is a recording of the movie made at a theatre. However,
neither digital watermarking, encryption, nor streaming can be used in live performances, so
there has been no efficient means to protect the copyrights of live performances in the Internet
era. Sonic watermarking, a totally new application of audio watermarking, can be used for this
purpose. Since watermark embedding has to be performed in a very different way compared
to conventional methods, we need new evaluation methods for the acoustic quality.

2.4 Concluding Remarks

In this chapter, after we described some basic concepts of the audio processing technologies,
we introduced some systems using the technologies at which our work is aimed. The systems
for TTS were computer telephony integration systems, voice browser systems, and telematics
systems. The systems for audio watermarking were pirated copy search systems, Internet
music distribution systems, and broadcast music monitoring systems. We described the role
of the technologies in the systems by clarifying the relationship with the other components.
This allowed us listing of the requirements for the technologies. Then we chose some of the
requirements we particularly focus on in the dissertation. Acoustic quality was chosen at the
top of the requirement both for TTS and audio watermarking. No matter what convenience
the technologies offer, people will not widely use those technologies if the acoustic quality is
not satisfactory. Because training of accurate stochastic models is important for the acoustic
quality of TTS and because manual preparation of training corpora is expensive, we focused
our work on TTS to accurate and automatic training of the stochastic models. For improving
the acoustic quality of audio watermarking, we need to elevate the level of the trade-off among
the acoustic quality, robustness, and data capacity of the watermarking algorithm.

From such a kind of perspective, we surveyed the related work in these research areas and
clarified the characteristics of our approaches to the problems. The primary characteristic
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of our approach to TTS is in the design of our TTS system, every component of which,
including the text processing module, can be automatically built from a speech corpus. We
can expect the system can well reproduce the particular quality of the original speaker by
making all the components based on the speaker’s speech. For this purpose, we need an
accurate automatic prosody labeling method and an accurate problematic segment detection
method. Combinatorial use of linguistic features and acoustic features, and duration features
and acoustic features is a key of our approach. The audio watermarking approach of us is
characterized by the watermark embedding algorithm in the frequency domain by modifying
the magnitudes of audio content referring to a psychoacoustic model and a two-dimensional
pseudo-random array. This makes the watermark inaudible to human ears, and insensitive to
distortions. The wide range of applications such as compressed audio and live performances
is another characteristic of our research.



Chapter 3

Totally Trainable Text-to-Speech
System

In this chapter, we describe a totally trainable text-to-speech (TTS) system, every component
of which can be automatically built from human speech alone. Although total trainability is
a difficult challenge, training all of the components from speech is expected to improve the
naturalness of the synthetic voices as well as to reduce the building costs. The system will
enable us to use various synthetic voices in a greater diversity of day-to-day situations. Since
the training of the TTS components requires various kinds of linguistic and acoustic infor-
mation in addition to the speech itself, we introduce a framework that incrementally collects
the information by combining acoustic processing and linguistic processing. For collection of
the orthographic and phonemic transcriptions, the accuracies of multiple configurations for
automatic speech recognition are compared. The most likely part-of-speech sequences for the
recognized spellings and phonemes are calculated by a text processing module. For prosodic
labels, which are important for reproduction of the speaker’s characteristics, the labeling ac-
curacy is improved by combining acoustic and linguistic models, using speaker-dependent and
speaker-independent models. We show the accuracies of the sub-modules of the system ex-
amined by experiments. The results of the subjective listening tests to assess the overall
quality of the synthetic voices are also shown.This chapter is related to the work published in
[55, 71, 72, 45, 73, 70].

3.1 Framework of Totally Trainable Text-to-Speech System

In this section, we describe the framework of a totally trainable TTS system [55], named T4S,
every component of which, including the text processing module, can be automatically built
from a speech corpus. The system is based on the trainable TTS engine described in [20]. The
system incrementally collects the information by combining acoustic processing and linguistic
processing. The sub-modules used for the system are also described in the section, except
that especially important sub-modules, automatic prosody labeling and problematic segment
detection, are described in the Section 3.2 and Section 3.3, respectively.

3.1.1 The T4S framework

(a) Brief overview of T4S

The process flow of the system is briefly illustrated in Fig. 3.1. The right side of the figure is the
runtime process of the system, which is carried out in the same manner as conventional TTS
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Figure 3.1: The system configuration of the T4S framework.

systems (Fig. 2.1) except that T4S uses a stochastic language model for the text processing
module. As the research on text processing modules of TTS systems is behind the other
areas of the TTS research, it is still common to use rule-based text processing modules in the
society. By introducing the stochastic text processing module to the system, all of the major
components of the system now become automatically trainable. The left side of the figure
illustrates the training process. All of the stochastic models are trained based on an annotated
speech corpus. For training the text processing module, we can additionally complement the
corpus with a speaker-independent text corpus shown in the parentheses at the upper part of
the figure. In this case, the speaker-independent text corpus should be adapted to the speaker
of the speech corpus. The annotated speech corpus is automatically generated from the speech
database (DB) by various recognition technologies instead of prepared by manual labors. The
language model of the text processing module based on the speaker-independent text module
can be used to augment the performance of some of the recognition technologies. The speech
DB is a collection of the recorded voices of a human speaker.

(b) The training process

The training process consists of several steps to obtain acoustic information and linguistic
information from the speech. The acoustic information is primarily Glottal Closure Instances
(GCIs) and phonemic alignments. The linguistic information includes the orthographic tran-
scriptions (spellings), the phonemic transcription (phonemes), the part-of-speech (POS) labels,
and the prosodic labels. The process flow of the proposed framework is as follows (also shown
in the shaded area of Fig. 3.2):

1. Obtain recorded speech
We do not assume that a correct orthographic transcription is available, since the reading
script could be lost leaving only the recordings.

2. GCI detection
A wavelet-based tool is used to detect GCIs.
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Figure 3.2: The detailed process flow of the T4S framework. GCI and POS stand for Glottal
Closure Instance and Part-Of-Speech, respectively.

3. ASR and initial phonemic segmentation
After ASR transcribes the speech, the forced alignment mode of the ASR finds phonemic
alignment points.

4. POS tagging
A text processing module calculates the most likely POS sequence for the recognized spellings
and phonemes.

5. Automatic prosody labeling (Section 3.2)
This step annotates prosodic labels into the speech.

6. Final phonemic segmentation, segment clustering and prosody model training
The conventional methods [20] do these processes based on the estimated values of linguistic
and acoustic information.

7. Automatic problematic segment detection (Section 3.3)
Errors in transcription and segmentation must be automatically detected and removed from
the candidate list of speech segments available for speech synthesis.

8. Speech Synthesis
We use a conventional TTS engine [20] in the runtime.

3.1.2 Sub-modules of T4S

We describe some sub-modules in the proposed framework and report experimental results
using the sub-modules.

(a) Text processing module

The text processing module of a TTS system is the runtime module that estimates phonemes
and accents for inputted text. The accuracy of the estimation is critical for generating intel-
ligible and natural synthetic voices. As the acoustic quality of TTS systems has been greatly
improved, the poor accuracy of phonemes and accents predicted by rule-based text processing
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modules is becoming a major issue of the TTS research. The rules of a rule-based text process-
ing module have to be maintained by costly manual labor of skilled developers. In addition,
the rule-based approach has limitations in the scalability and the ease of domain adaptation,

To tackle these problems, we introduced a stochastic text processing module [44] to T4S.
The stochastic-based approach has advantages in the ease of adaptation to specific domains or
speakers. The n-gram-based module simultaneously solves word segmentation1, grapheme-to-
phoneme conversion, homograph disambiguation, and accent generation. We define the unit of
the n-grammodel φ as a quadruplet of spelling of a word w, its POS p, its phoneme sequence
ηs, and its accent sequence αs, that is φ = 〈w, p, ηs, αs〉. The module obtains the likeliest
sequence φmax of quadruplets for the inputted text by the following equation:

φmax = argmax
φ

P (φ). (3.1)

The probability of a quadruplet sequence Φ = (φ[0], φ[1], ..., φ[Nw − 1]) is calculated by mul-
tiplication of the probabilities of the components:

P (Φ) =
Nw−1∏

i=0

P (φ[i]|φ[i−Nh], .., φ[i− 2], φ[i− 1]), (3.2)

where Nw is the assumed number of words in the text and Nh is the predetermined length
of the word history used for the probability calculation. For example, the value of Nh is 1
for a bigram model. It was shown by Nagano et al. [44] that the accuracy of the stochastic
text processing module trained based on a text corpus with approximately 10,000 sentences is
better than that of a rule-based module.

(b) Automatic speech recognition

In the training process of T4S, automatic speech recognition (ASR) is used to obtain the
spellings and the phonemes of the speech. We compared the accuracies of the following tran-
scription methods. Note that these accuracies are heavily dependent on the designs of the
dictionaries and the language models.

R1 The orthographic transcription is available. The text processing module of the TTS
system converts it to the phonemic transcription [28].

R2 The orthographic transcription is available. The text processing module of the TTS
system splits the script into words. The acoustically most likely pronunciation of each of the
words is chosen from a pronunciation dictionary [19].

R3 The orthographic transcription is unavailable. ASR with a speaker-independent acoustic
model transcribes the spellings and phonemes based on the acoustic likelihood. This is our
proposed method. We used the spellings of the reading script for training the language model
in the experiments, because ASR generally requires a language model trained for the domain
of the speech.

We conducted experiments using a speech corpus of 5,376 sentences recorded by an adult
female. We manually prepared a test corpus of 200 sentences out of the whole corpus and
measured the phoneme accuracies of the methods. The phoneme error rates of R1, R2, and

1Word segmentation is a procedure to separate text into words. The procedure is necessary for languages
whose text is not separated by spaces.
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R3 were 0.779%, 1.66%, and 0.997%, respectively. Although orthographic transcription was
not used, the results showed that R3 was able to achieve accuracy close to that of R1. The
reason the accuracy of R2 was poor is that it is susceptible to inadequate entries or extraneous
entries in the pronunciation dictionary and that it leaves the word context out of consideration.

(c) POS tagging

The POS labels of the speech were obtained, based on the recognized spelling and phonemes,
by using a similar technique to the stochastic text processing module [44]. The most likely
POS sequence P for the given spelling sequence (W) and phoneme sequence (H) is the one
that maximizes the posterior probability P (P|W,H) in the following equation:

P (P|W,H) =
P (W,P,H)∑

∀P
P (W,P,H)

, (3.3)

where the summation of the denominator is used for all of the possible POS sequences for W
and H. The joint probability can be calculated as the product of the n-gram probabilities:

P (W,P,H)

=
Nw−1∏

i=0

P (w[i], p[i], ηs[i]|w[0], p[0], ηs[0], .., w[i− 1], p[i− 1], ηs[i− 1]), (3.4)

where Nw is the number of words, and w[i], p[i], and ηs[i] are the spelling, the POS, and the
phonemes of the i-th word, respectively. The n-gram probability is calculated from the n-gram
frequency in the speaker-independent text corpus.

We conducted an experiment to examine the accuracy of the POS tagging for automatically
recognized spellings and phonemes. We measured the POS accuracy for the words as units
for the same 200 sentences, and the word error rate (WER) was 4.55%. When we used the
text processing modules with the correct orthographic transcription for comparison, the WER
was 4.16%. Hence, the proposed method without the orthographic transcription was able
to achieve the same accuracy as with the orthographic transcription. In contrast, when the
POSs for words were simply looked up in the pronunciation dictionary, the WER was 43.2%.
Therefore, we can see simple lookup does not work well. This is because there are some words
with different POSs but sharing the same spelling and phonemes, because we are using short
word units.

(d) Prosody models

The prosody models generate target prosody of the synthetic voice by using decision trees based
on linguistic information estimated by the text processing module in the runtime process of
TTS. The target prosody consists of the duration, the fundamental frequency (F0), and the
energy of the phonemes. While the conventional system trained the prosody models based on
the output of the text processing module, we train the prosody models based on the annotated
speech corpus that is generated from the speech DB by using recognition technologies. This
resolved inconsistency between the prosodic labels and the actual speech. Consequently, we
were able to improve the prediction accuracy of the prosody models.

(e) Segment DB

The segment DB stores the speech segments by classifying the segments using decision trees.
The decision trees are trained based on the information gathered by the recognition technolo-
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Table 3.1: The results of the subjective listening tests. The numbers are Mean Opinion Score
(MOS) values.

Human Voice Synthetic Voice
In-domain 4.9 4.1
Out-of-domain 4.8 3.2

gies. The conventional system used only the phonemic context of each phoneme as the input
features for the decision trees. Since the automatic prosody labeling algorithm enabled more
accurate labeling, we added the mora accent label to the input features so that the context of
the accents is taken into consideration for segment selection.

3.1.3 Results of subjective listening tests

We conducted a subjective listening test to evaluate the overall quality of synthetic voices
of T4S. Although the system is designed for automatic generation of a new voice, since
accumulation of slight errors in the sub-modules results in non-ignorable errors in the synthetic
voices, we built the system by manually fixing the training data as needed. The system
was built based on a speech DB containing 8,851-sentence for a female professional speaker.
Eighteen subjects rated, in five levels, the quality of the synthetic voices by comparing them
with recorded human voices. We used text that was not included in the speech DB. The means
of the results were calculated for each of in-domain text and out-of-domain text (Table 3.1).
In-domain text is text in a domain for which a considerable number of sentences are recorded
in the speech DB. Car navigation and weather forecast are the domains used for this category.
Out-of-domain text is text in a domain for which there is no recorded voices in the DB.

The results showed that the system was able to generate synthetic voices with a quite high
quality for in-domain text. However, the acoustic quality for out-of-domain text certainly has
a room to improve.

(a) Discussion

We introduced the T4S framework, every component of which can be automatically built from
a speech corpus. We showed the experimental results for the accuracy of the sub-modules.
Description of especially important sub-modules, automatic prosody labeling and problematic
segment detection, will be given in the following sections. The acoustic quality of the synthetic
voices by the system was evaluated by the subjective listening tests although totally automatic
generation was not used for the system. The results revealed that there was a room for
improvement in the acoustic quality for out-of-domain text. The inadequate score for out-
of-domain text was caused by inaccurate pitch contours and discontinuity at concatenation
points. We need to improve the spectral continuity calculation algorithm and the segment
search algorithm. We have not established a method for speaker adaptation of the language
model for the text processing module. When this is done and we achieve a certain level of
accuracies for the sub-modules, the overall effectiveness of the framework should be evaluated.
Quality of reproduction of the speaker’s speaking style by the system should also be assessed.

3.2 Automatic Prosody Labeling

Automatic prosody labeling is a task to automatically annotate prosodic labels such as syllable
stresses or break indices into the speech corpus. Since errors in the prosodic labels can lead
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Figure 3.3: An example of Japanese utterance. POS stands for Part-Of-Speech. F0 is funda-
mental frequency of the speech. PP stands for Prosodic Phrase.

to incorrect prosody estimation and unnatural synthetic sound, the accuracy of the labels
is a key factor for text-to-speech (TTS) systems. In particular, mora accent labels that are
pitch-related prosodic labels are very important for Japanese, since Japanese is a pitch-accent
language and Japanese people have a particularly keen sense of pitch accents.

For Japanese, we need prosodic phrase (PP) boundary information and mora accent se-
quences as prosodic labels for speech corpora. An example of a Japanese utterance is shown
in Fig. 3.3. The utterance is a part of a spoken sentence. The upper part of the figure shows
the spoken words and the smoothed fundamental frequency (F0) contour, which we assume
we can use for the automatic labeling. The lower part of the figure shows the PP boundary
information and the mora accent sequence information that is to be automatically labeled. Al-
though mora accent is important in Japanese speech, since differences in mora accents subtly
change the physical features of the speech, accurate labeling is a difficult task.

In this chapter, we describe an automatic prosody labeling method having the following
advantages:

• The combinatorial use of multiple different models including acoustic models and lin-
guistic models improves the accuracy of labeling.

• A speaker-independent language model based on a speaker-independent text corpus rep-
resents knowledge about the possible correct accentuations in Japanese.

• Use of the text corpus reduces the required size of the speaker-dependent speech corpus
(which is costly and time consuming to create).

• Searching for the best sequences of prosodic labels by using the Viterbi algorithm while
considering the effects of the history of the labels improves the consistency of the labels.

3.2.1 Prosodic structure and accents of Japanese

Before introducing the proposed method, we describe the prosodic structure of Japanese and
the goal of the proposed automatic accent labeling method in this section. We also give the
reason why automatic labeling of Japanese is a difficult task.
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(a) Prosodic structure

We rely on the prosodic structure of Japanese as illustrated in Fig. 3.4. That is, a sentence
utterance consists of intonational phrases (IPs), which are separated by periods of silence. An
IP consists of prosodic phrases (PPs). A PP is a group of words that are uttered in a prosodic
combination. As shown in Fig. 3.5, the accent type of an Nm-mora PP can be either one of
the accent type 0 up to the accent type (Nm− 1) 2. The phonemes in a word are grouped into
morae. A mora consists of one or zero consonants and a vowel, and is a phonetic unit similar
to a syllable. The first goal of the proposed method is to automatically detect the boundaries
of the PPs in speech.

(b) Mora accents

The pitch accents of standard Japanese have two values, high (H) or low (L), so each mora
is H or L3. The other goal of the proposed method is to automatically determine the accent of
each mora in the speech. Although there are 2Nm possible pitch patterns for a word with Nm

morae, only certain patterns are actually used in Japanese (also shown in Fig. 3.5).

Accent type 0 Uniformly H, except for the first mora, which is L.

Accent type 1 Uniformly L, except for the first mora, which is H.

Accent type n (2 ≤ n < m) It starts L and immediately transitions to H. The remaining
m − 1 morae start H and end L, with only one transition. The number of H morae is
n− 1. There are m− 1− 1 = m− 2 possible locations for the second transition.

Counting all of the possibilities, the grand total is m possible patterns. Every Japanese word
has one of only a few correct accent types, and they can be looked up in a good Japanese

2We do not need to consider the accent type m of PPs since the accent type 0 has the same accent sequence.
3We ignore secondary accent nuclei.
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dictionary. The accent type for “Kyouto” (“Kyoto” in English) is the accent type 1 (H,L,L).
When words are uttered in a longer PP, the accent sequences of the words can change according
to the context. The accent sequence of “Kyouto” is changed into (L,H,H) when it is in the PP
“Kyouto tawa- wa” (“Kyoto tower is”). The accent sequence of a longer PP must still be one
of the accent types listed above. The accent type of the second PP in Fig. 3.3 is the accent
type 3 (L,H,H,L,L). There are rules for forming a PP and for accent change, which Sagisaka
et al. analyzed in [59]. An incorrectly formed PP or an incorrectly accented sequence causes
listeners to misunderstand the context and syntactic structure of a text.

(c) Arbitrariness

While there are correct accent types, there is still some arbitrariness in the sequencing of
accents. This is because (1) There are words with more than one correct type of accent; (2)
Ambiguity in the meaning of a compound word can cause ambiguity in the form of the PP
forming; and (3) The form of the PP is partly dependent on the speaking style and personality
of the speaker. For example, when a sentence is spoken quickly, rises and falls in the accents
tend to be omitted. In addition, paralinguistic information carried by the utterance affects
the accent sequence. For example, when emphasis is put on a word, rises and falls in the
neighboring words sometimes disappear to make the emphasized word stand out.

For these reasons, we cannot determine the accents of the spoken sentence only from the
spoken text. We need to acoustically analyze the speech, although we can use the known
constraints on accent sequences in Japanese.

In addition, automatic labeling of Japanese mora accents is a more difficult task than for
English syllable stress in a way. For English, only the syllable with the lexical primary stress
of a word normally has the possibility of being stressed among the all of the syllables of the
word. Hence, the task requires only word-level judgment on whether or not the word has
a stressed syllable. This is one of the reasons the part-of-speech (POS, which is word-level
information) is useful for automatic labeling. However, Japanese mora accent determination
requires syllable-level judgment. We cannot expect POS to be as useful as in the case of
English. For example, the information that the POS of the word is a noun does not give any
hint on whether the accent of its third mora is L or H.

3.2.2 Automatic prosody labeling using multiple models

To make it possible to accurately label Japanese prosodic labels, we discuss a method that
uses multiple models in combination as described below.

(a) Main ideas

We split the labeling problem into two layers: (1) prosodic phrase (PP) boundary detection
problem and (2) accent determination problem, and address these in this order. We use an
acoustic model and a linguistic model in combination in each layer to achieve high accuracy.
As there are two models for each of the two layers, there are four different stochastic models
for the whole problem (Table 3.2). Training corpora are necessary for training these stochastic
models. We use a speaker-dependent speech corpus for training three models among the
four. This is because it is difficult to remove speaker dependency from acoustic features
and because we believe PP formation is dependent on the speaker and the speaking style.
However, it is desirable to minimize the required size of the corpus, since preparation of this
type of corpora is costly. Hence, we employ a speaker-independent text corpus for training
the linguistic accent model (bottom right of Table 3.2). By using not only POSs but also the
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Table 3.2: Four models used in the proposed method. PPB stands for Prosodic Phrase Bound-
ary.

Acoustic model Liguistic model
PPB Speaker-dependent Speaker-dependent
detection GMM Decision tree
Accent Speaker-dependent Speaker-independent
determination Decision tree, GMM n-gram
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Figure 3.6: The process flow of the automatic prosody labeling method.

spellings of the words in the corpus, the corpus can serve as a rich information source about the
possible correct accentuations in Japanese that are not dependent on the individual speakers.
Use of the spellings for the linguistic accent model requires use of the large text corpus for
training. Otherwise, for example, if we only use the small speaker-dependent speech corpus,
the prediction capability of the model will be very poor because of the sparseness of the training
data. For that reason, we use the large speaker-independent text corpus. In addition, a text
corpus is easier to gather than a speech corpus and a speaker-independent corpus is easier to
gather than a speaker-dependent corpus.

The process flow of the method is illustrated in Fig. 3.6. The minimum requirements for
the method are a set of speech recordings and the corresponding text. As preprocessing for
the method, glottal closure instance (GCI) detection, phonetic alignment, and morphological
analysis are required. Smoothed F0 contours are calculated from the GCIs. The alignments
of the phonemes are found by using an automatic speech recognition (ASR) based phoneme
alignment tool. Sentence utterances are separated into IPs at the pause positions. A mor-
phological analyzer [44] analyzes the word boundaries and the POS of each word. After these
preprocessing procedures, PP boundary detection (Section (b)) is performed to separate each
of the IPs into PPs. The accent type of each of the PPs is determined last (Section (c)).

(b) Prosodic phrase boundary detection

The objective in this layer is to determine the PP boundaries among all of the word boundaries
in the given IP. The IP boundaries are excluded from the candidate list for the PP boundaries.
We let the word sequence of the IP Ψ = (ψ[0]ψ[1]..ψ[Nw−1]), where ψ[i] denotes the i-th word
of the IP and Nw is the number of words in the IP. Be = (be[0]be[1]..be[Nw − 1]) is a sequence
of the locations of the PP boundaries, where be[i] = 1 denotes the presence of a PP boundary
just after ψ[i]. The other possible value of be[i] is 0, used if there is no PP boundary at that
location. An example of the word sequence Ψ and the PP boundary sequence Be is shown in
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Fig. 3.3. While be[13] = 1 means that there is a PP boundary just after the word ψ[13] (“wa”),
be[12] = 0 means that there is no PP boundary just after the word ψ[12] (“fuyu”). The reason
be[17] is labeled ‘-’ is that the word boundary just after the word ψ[17] is excluded from the
candidate list since ψ[17] is the last word of the sentence and is actually an IP boundary.

V = (v[0]v[1]..v[Nw−1]) is a sequence of the acoustic feature vectors observed at the word
boundaries. The objective of PP boundary detection can be restated as a search for the Be

that maximizes the posterior probability for given Ψ and V by using Bayes’ Theorem.

Bemax = argmax
Be

P (Be|Ψ,V) (3.5)

= argmax
Be

P (V|Ψ,Be)P (Be|Ψ)
P (V|Ψ)

(3.6)

= argmax
Be

P (V|Ψ,Be)P (Be|Ψ), (3.7)

where ’argmax’ is the operator that returns the value of the argument that maximizes the
following term. P (V|Ψ) in Eq. (3.6) can be ignored when we only want to find Bemax.
P (V|Ψ,Be) can be obtained by using the acoustic boundary model, while P (Be|Ψ) is a lin-
guistic probability calculated by using the linguistic boundary model. Since the presence of a
PP boundary at a word boundary has an effect on the neighboring word boundaries, we search
for Bemax by using the Viterbi algorithm.

Acoustic boundary model We ignore Ψ in P (V|Ψ,Be) and approximate its value by a
purely acoustic probability P (V|Be) focusing on the presence of the boundary. In addition,
ignoring the effect of the neighborhood, we approximate the possibility of the sequence by the
product of the possibilities of the elements as follows.

P (V|Be) '
Nw−1∏

i=0

P (v[i]|be[i]). (3.8)

P (v[i]|be[i]) is calculated by using multivariate Gaussian Mixture Models (GMMs) trained by
using the training corpus.

The feature vector, v[i], is a three dimensional vector whose components are (1) the change
of the logarithmic fundamental frequency (F0) in the preceding mora, (2) the logarithmic F0
gradient in the following mora (g2 illustrated in Fig. 3.7), and (3) the change of the logarithmic
F0 gradient at the point (g2 − g1 in the figure). As shown in the figure, a minimum point
near the word boundary and maximum points in the neighboring morae are searched for when
calculating these features.

Although we tried to improve the accuracy of the model by adding duration-related and
energy-related features to the feature vector, those kinds of features were ineffective. The



36 CHAPTER 3. TOTALLY TRAINABLE TEXT-TO-SPEECH SYSTEM

End point

Mora boundary

Change

Current mora

Gradient

Logarithmic F0

t
Beginning point

Figure 3.8: Features for the acoustic accent model.

features we tried include the durations of the preceding mora and the following mora, the
ratio of the durations, the logarithmic RMS (Root Mean Square) amplitudes of the same
morae, and the difference of the amplitudes.

Linguistic boundary model The linguistic probability is calculated by using the following
equations.

P (Be|Ψ) = P (be[0], .., be[Nw − 1]|Ψ) (3.9)

= P (be[0]|Ψ)
Nw−2∏

i=1

P (be[i]|be[0], .., be[i− 1], Ψ) (3.10)

' P (be[0]|ψ[0], ψ[1])
Nw−2∏

i=1

P (be[i]|be[i− 1], ψ[i], ψ[i + 1]) . (3.11)

The conditional probability P (be[i]|be[i − 1], ψ[i], ψ[i + 1]) is calculated from a decision tree
trained by using the training corpus. The reason for the approximation in the equation is that
we found that be[i− 1] and the information on the nearest words (ψ[i] and ψ[i + 1]) were the
only important factors. The POS is used for the information about a word.

(c) Accent determination

The objective in this layer is to determine the accent sequence, A = (α[0]α[1]..α[Nm − 1]),
for the given PP, where α[i] has a value of H or L. A PP must have one of the accent types
illustrated in the Fig. 3.5. Since the scope of this section is limited to the PP, we can use
Ψ = (ψ[0]ψ[1]..ψ[Nw − 1]) as the word sequence of the PP and V = (v[0]v[1]..v[Nm − 1]) as
the sequence of the acoustic feature vectors without risk of confusion. The value of Nw is the
number of words in the PP, and Nm =

∑Nw−1
i=0 Nm[i] is the total number of morae in the PP,

where Nm[i] denotes the number of morae in the word ψ[i]. The objective can be restated as

Amax = argmax
A

P (A|Ψ,V) (3.12)

= argmax
A

P (V|Ψ,A)P (A|Ψ)
P (V|Ψ)

(3.13)

= argmax
A

P (V|Ψ,A)P (A|Ψ), (3.14)

where P (V|Ψ) in Eq. (3.13) is ignored again. P (V|Ψ,A) and P (A|Ψ) are calculated by using
the acoustic model and the linguistic model of this layer, respectively. We can obtain Amax

by simply evaluating P (V|Ψ,A)P (A|Ψ) for all of the cases of A, since we assume only m
possible sequences for A.
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Acoustic accent model We approximate P (V|Ψ,A) using the multiplication of P (v[i]|Ψ,A)s
calculated by using a decision tree trained with the training corpus. A multivariate GMM is
trained for each of the leaves of the tree. The components of the feature vector v[i] are (1)
the normalized logarithmic F0 at the beginning of the current mora, (2) the normalized log-
arithmic F0 change in the current mora, and (3) the logarithmic F0 gradient in the current
mora (Fig. 3.8). We again approximate the possibility of the sequence by the product of the
possibilities of the elements assuming the independence of the elements as follows.

P (V|Ψ,A) '
Nm−1∏

i=0

P (v[i]|Ψ,A) (3.15)

'
Nm−1∏

i=0

P (v[i]|α[i− 1], α[i], Nm, i, (Nm − i)). (3.16)

For Ψ and A, the necessary input variables for the tree are the accents of the previous mora
(α[i− 1]) and the current mora (α[i]), the number of morae in the PP (Nm), and the distance
to the beginning of the PP (i), and the distance to the end of the PP (Nm − i).

The normalized logarithmic F0 (L̃0) is the logarithmic F0 normalized to fall in the range
of [0, 1] according to

L̃0 =
L0− L0min

L0max − L0min
, (3.17)

where L0min and L0max are the minimum and maximum logarithmic F0s in the PP, respec-
tively.

Linguistic accent model The linguistic probability P (A|Ψ) is obtained by employing a
similar technique to the stochastic accent estimator [44]. P (A|Ψ), which is the probability of
Ψ given one of the m possible accent sequences, is calculated by the following normalization
of the joint probability of A and Ψ:

P (A|Ψ) =
P (A, Ψ)∑

∀A
P (A,Ψ)

, (3.18)

where the summation of the denominator is used for all of the m possible accent sequences.
The joint probability can be calculated as the product of the n-gram probabilities:

P (A,Ψ)

=
Nw−1∏

i=0

P (αs[i], Ψ[i]|αs[0], .., αs[i− 1], Ψ[0], .., Ψ[i− 1]), (3.19)

where αs[i], which is a part of A, is the accent sequence of the i-th word. In other words, if the
indices of the first and last mora of the word Ψ[i] are j and k, respectively, αs[i] is (α[j], ..., α[k]).
The meaning of Eq. (3.19) can be roughly explained as approximating the probability of the
accent sequence of the whole PP by the product of the probabilities of the constituent word
accents. The n-gram probability P (αs[i],Ψ[i]|αs[0], .., αs[i − 1],Ψ[0], ..,Ψ[i − 1]) is calculated
from the n-gram frequency in the large speaker-independent text corpus. Note that a small
constant probability is also given to unknown accent sequences. An example of the word
sequence Ψ, the possible accent sequences A, and the calculated probabilities P (A,Ψ) and
P (A|Ψ) is shown in Table 3.3.
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Table 3.3: An example of the input (Ψ,A) and the output (P (A|Ψ)) of the linguistic accent
model. A = (L, H, H, L, L) is the most likely linguistic sequence.

i 14 15 16 17
過ご せ な い

Ψ Dosi Jodo Jodo Gobi
su,go se na i P (A, Ψ) P (A|Ψ)
L,H H H H 2.95e-14 0.315
H,L L L L 3.76e-32 4.02e-19

A L,H L L L 3.38e-22 3.61e-09
L,H H L L 3.80e-14 0.406
L,H H H L 2.60e-14 0.278

Table 3.4: Statistics of the test corpus.

# of sentences 100
# of intonational phrases 377
# of prosodic phrases 686
# of words 1,813
# of morae 3,342
# of morae with an H accent 1,729 (51.7%)

3.2.3 Experimental results

We conducted experiments to evaluate the performance of the proposed method. In the
experiments, we compared different combinations of the components of the method.

(a) Corpus

The speech corpus we used in the experiments is a reading of excerpts of the ATR 503-sentence
text corpus [1]. We used different 100 sentences each for training the speaker-dependent
models and for testing. Each sentence in the corpus was segmented into words and each
word was manually annotated with its POS, its phoneme sequence, its accent sequence, and
its PP boundaries. The sentences were separated into IPs at the positions of the manually
labeled pauses with any length. For training the linguistic accent model, we used a speaker-
independent text corpus of 28,351 sentences, including newspaper articles, TV news, telephone
conversations, and other sources. The test sentences were excluded from the text corpus.

The speech data was recorded by an adult female using a laryngograph and a microphone.
The F0 contours were obtained by smoothing the pitch mark periods obtained from the laryn-
gograph. We used a Gaussian filter with σ2 = 0.00375. The statistics of the test corpus are
shown in Table 3.4. The mora length of the PPs in the corpus was between 1 and 13. Approx-
imately 90% of the PPs contained 7 morae or less. Since every accent type for 1- to 7-mora
PPs was found in the corpus, we considered the corpus had enough variety of accent types.
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(b) Compared methods

We compared the following three combinations for PP boundary detection. The combinations
are also shown in Table 3.5.

BA, BL and BAL The PP boundaries are detected by using either one or both of the acous-
tic and linguistic boundary models. BAL is our new proposed method for PP boundary
detection.

We compared the following nine combinations for accent determination.

BN-TA, BN-TL and BN-TAL The mora accents were determined by using either one or
both of the acoustic and linguistic accent models with a single-layer approach. In other
words, there was no PP boundary detection. The accent sequences of the PPs were
determined from all of the possible combinations. BN-TL is actually an approach to
use the text processing component of the TTS system for accent determination, except
that it is confining the output phonemes and POSs to the correct ones. If we assume that
the output of the component is always one of the correct accentuations in the language,
then the disagreement of this output and the test corpus with a speaker’s actual speech
reveals the arbitrary properties of the language or the speaking habits of the speaker.

BC-TA, BC-TL and BC-TAL For manually given correct PP boundaries, the mora accents
were determined by using either one or both of the acoustic and linguistic accent models.
The performance numbers of these methods can be viewed as the upper bounds of the
accent determination algorithms alone, since the influences of the errors in PP boundary
detection were eliminated from the numbers.

BAL-TA, BAL-TL and BAL-TAL Based on the PP boundaries detected by BAL, the
mora accents were determined by using either one or both of the acoustic and linguistic
accent models. BAL-TAL is our new proposed method.

(c) Results

The results of the PP boundary detection are shown in the upper part of Table 3.5. The
accuracy is shown in precision, recall, and the F measure, which are calculated as follows:
when the number of boundaries in the test corpus is Na, the number of automatically detected
boundaries is Nd, and the number of correctly detected boundaries is Ns, then the precision is
Ns/Nd, the recall is Ns/Na, and the F measure is 2 precision · recall/(precision + recall). In
another way of measuring performance, the accuracy of determining if each word boundary is
a PP boundary or not was 93.7% for BAL. Note that the IP boundaries were ignored in the
calculations of these values.

We can see that using both the acoustic and linguistic models (BAL) produced the best
results. The poor precision of the acoustic model (BA) is an intrinsic problem of this model.
This is because the acoustic features observed at a non-PP-boundary word boundary next to
a real PP boundary are sometimes very similar to those observed at the real PP boundary,
especially when the word sandwiched between these boundaries is very short. For example,
postpositionals such as “wa”, “ga”, and “o” have only one mora.

The results of accent determination are shown in the lower part of Table 3.5. The three
numbers for performance are the accuracy numbers measured by PPs, by words, or by morae
as units, respectively. When calculating the PP accuracy, a PP is counted as correct only if
the accents are correctly determined for all of the morae.
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Table 3.5: The experimental results of the compared combinations. PPB stands for Prosodic
Phrase Boundary. A and L stand for acoustic, and linguistic, respectively. While the perfor-
mance numbers for PPB detection are precision, recall, and the F measure, those for accent
determination are PP accuracy, word accuracy, and mora accuracy (%).

PPB Accent Performance
BA A 0.552/0.887/0.657
BL L - 0.693/0.896/0.781
BAL A,L 0.821/0.906/0.862
BN-TA A 25.7/48.6/62.4
BN-TL Not used L 62.0/79.1/85.5
BN-TAL A,L 40.0/60.9/69.7
BC-TA A 57.0/77.4/84.5
BC-TL Correct L 75.8/87.4/89.7
BC-TAL A,L 84.1/91.8/94.6
BAL-TA A 56.2/76.4/84.1
BAL-TL A,L L 68.9/83.4/87.8
BAL-TAL A,L 77.6/88.4/92.7

Again, the combination of the acoustic and linguistic models showed the best performance
(BAL-TAL > BAL-TL and BAL-TA, and BC-TAL > BC-TL and BC-TA). In addition,
we can see the effectiveness of the proposed layered approach by comparing the result of the
proposed method (BAL-TAL) and that of the non-layered approach (BN-TAL). Although
the errors in PP boundary detection resulted in a 1.9-point decrease for accent determination
accuracy (BAL-TAL < BC-TAL), the combined result is still over 90% and is better than
the other approaches, the text-only processing (BN-TL) and the non-layered approach (BN-
TAL).

(d) Discussion

In this section, we discussed an automatic prosody labeling method by combining acoustic
and linguistic models, and speaker-dependent and speaker-independent models. The method
showed 92.7% mora accuracy, which was higher than that of the previous work, based on a
speaker-dependent training corpus containing only 100 sentences. We showed that the n-gram
linguistic model that also uses the spelling of the words can serve as a rich information source
about the possible correct accentuations in Japanese, while linguistic information had not been
used for prosody labeling research for Japanese probably because word-level POS information
was not sufficient in Japanese. The reason we reduced the required size of a speaker-dependent
speech corpus using a large speaker-independent text corpus was that a text corpus is easier
to gather than a speech corpus and a speaker-independent corpus is easier to gather than a
speaker-dependent corpus. If we could measure the cost of gathering a corpus by price or time,
the effectiveness of our method would be clearer.

To use both the speaker-dependent models and the speaker-independent models, the de-
composition of the problem into two layers was inevitable. If we could simultaneously estimate
the boundaries and the accents in some way, higher total accuracy might be achieved. The
method proposed by Campbell [11] can detect the PP boundaries and the accent types simulta-
neously by searching for the prosodic label sequence that results in a synthetic voice matching
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the input speech best. Although the accuracy of the method was good, the method implicitly
uses a linguistic knowledge embedded in the text processing module. Hence, the method can
recognize only accent sequences in a candidate list generated by the text processing module.
In addition, the method cannot be used for speakers whose F0 contour does not resemble the
F0 contour of the synthetic voice.

It could be true that our method oversimplifies some aspects of the problem. Future work
includes the following research items for more elaborate modeling. While our method takes
the relationship among neighboring components into consideration for linguistic models, the
acoustic models are based on naive Bayes models assuming mutual independency of the acous-
tic feature vectors. Furthermore, the acoustic boundary model ignores the effect of preceding
prosodic phrase boundaries. It is possible that use of these currently ignored relationships
improves the accuracy. Instead of the current simple handling of mora accents with L and
H, modeling H morae in the accent type 0 and H morae in the other accent types differently
may also improve the accuracy of the models. Enlarging the modeling unit from a mora to
a prosodic phrase would have a similar effect. However, this would require a larger training
corpus to model various types of prosodic phrases. Our handling of accent nuclei and phrase
boundaries was also simple. Consideration of secondary accent nuclei and levels of phrase
boundaries may contribute to more accurate models. In addition, such kind of more elabo-
rate modeling would be useful especially for syntax analysis and emotion recognition. Soft
decision of mora accents instead of hard classification of mora accents into L and H could be
natural and useful for emotion recognition. By these research items, the accuracy of automatic
prosody labeling will be further improved. The improved prosodic labels would make it easier
to reproduce the speaker’s speaking style more accurately with less manual efforts. By using
more accurate modeling and speaker adaptation of the text processing module, recognition
and reproduction of dialects such as Kansai accents may become possible.

3.3 Automatic Problematic Segment Detection

This step automatically detects problematic speech segments that should be removed from the
segment DB.

3.3.1 Problematic segment detection based on likelihood metrics

The key features of the proposed method are:

• The method uses both acoustic metrics and duration-related metrics as clues to detect
problematic segments.

• The acoustic metric of a segment indicates the acoustic reliability of the phonemic align-
ment. When a phonemic label is assigned to speech segments that are actually different
phonemes, the acoustic likelihood should have a small value.

• The duration metric of a segment indicates properness of the duration of the segment.
This works because unusually long or unusually short speech segments tend to accompany
transcription errors or segmentation errors.

Although acoustic likelihood metrics are a straightforward measure for the reliability of the
phonemic alignments, the existence of alignment errors and recognition errors indicates that
use of acoustic likelihood metrics alone cannot solve the problem since these tools are actually
based on acoustic likelihoods. On the other hand, as these tools do not use duration-related
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features in general, there is a good possibility that introduction of duration-related features
improves the detection accuracy.

(a) Acoustic likelihood metrics

The acoustic likelihood metric mc[i] for the i-th segment is calculated referring to the acoustic
model by the forced alignment mode of the ASR. The acoustic model is trained by the following
steps:

1. A 13-dimensional cepstrum vector that consists of the energy of the frame and 12 cep-
strums is calculated for each of GCIs of a speech.

2. By analyzing the neighboring cepstrums, dynamic features of the cepstrum vector are
calculated.

3. A 39-dimensional vector is constructed by combining the cepstrum vector and the dy-
namic features.

4. A decision tree is built for each phoneme identification to predict the vector. The phone-
mic context of each phoneme is used as the input feature of the tree.

5. A multi-variate GMM is trained for each of the leaves to model the 39-dimensional
vectors in the leaf.

The acoustic likelihood metric for a speech segment is calculated as follows:

1. The leaf is obtained by traversing the decision tree with the phonemic context of the
segment.

2. For each of the GCIs in the segment, the 39-dimensional vector is calculated.

3. The acoustic logarithmic likelihood of the vector is calculated by referring to the GMM
for the leaf.

4. The acoustic likelihood metric mc[i] is calculated as the mean of the acoustic logarithmic
likelihoods for all the GCIs in the segments.

(b) Duration likelihood metrics

The value md[i] of the duration likelihood metric for the i-th segment is calculated with the
following steps:

1. Build a decision tree that predicts the duration of each phoneme [20]. The input features
of the tree are the identity, the position, voicing of the phoneme, the POS of the word,
the type of the sentence, etc.

2. Model the distribution of the phoneme durations in each leaf of the tree as Gaussian
distributions.

3. Calculate the likelihood of the duration of each phoneme.

4. Remove the phoneme durations whose likelihood is below some threshold.

5. Model the distribution of the remaining phoneme durations again.
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6. Calculate the logarithmic likelihood of the duration of each of the phonemes including
the removed ones.

7. Take the mean of the likelihood in the neighborhood and let this average metric be md[i].

In this way, it is possible to calculate the likelihood metrics of the durations without being
affected by the irregular durations of the problematic segments.

(c) Viterbi search

After the acoustic likelihood metric R = (mc[0], .., mc[Ns−1]) and the duration likelihood met-
ric D = (md[0], ..,md[Ns− 1]) are observed for all the segments in the speech, it is determined
whether each of the segments is problematic or not. We define a variable eg[i] for i-th speech
segment to indicate whether it is problematic (eg[i] = 0) or not (eg[i] = 1). Since problematic
segments tend to occur in consecutive groups, we define the sequence Eg = (eg[0], .., eg[Ns−1])
of eg[i]s and simultaneously calculate the values of Eg by considering the n-gram probability
P (eg[i]|eg[0], .., eg[i−1]), where Ns is the number of speech segments in the speech. A segment
goodness sequence Eg = (eg[0], .., eg[Ns − 1]) that maximizes the posterior probability in the
following equation is searched for by using the Viterbi algorithm.

Egmax = argmax
Eg

P (Eg|R,D) (3.20)

= argmax
Eg

P (R,D|Eg)P (Eg) (3.21)

'
Ns−1∏

i=0

P (mc[i],md[i]|eg[i])
Ns−1∏

i=0

P (eg[i]|eg[0], .., eg[i− 2]), (3.22)

where P (R,D) is ignored in Eq. (3.21). Equation (3.22) approximates the possibility of the
sequence by the product of the possibilities of the elements.

3.3.2 Experimental results

We make a training corpus by manually labeling the segment goodness Eg of the speech
segments. Then P (mc[i],md[i]|eg[i]) is modeled by a multivariate GMM for each eg[i] = 0 and
eg[i] = 1. Although the n-gram probability P (eg[i]|eg[0], .., eg[i−1]) also can be trained by using
the training corpus, we found that manually changed values resulted in better performance,
so we used manually determined values of P (eg[i] = 0|eg[i − 1] = 1) = 0.0001 and P (eg[i] =
1|eg[i− 1] = 0) = 0.15.

In the experiments, we used 100 sentences each for training and testing. The test corpus
includes 17,202 speech segments in total. There were 324 problematic segments that were
found in 46 parts of the speech in the test corpus. The precision, recall, and the F measure
of the proposed method were 0.298, 0.452, and 0.359. Although this was not good enough for
some purposes, it was still better than the cases where either R or D was not used (0.288 and
0.331 respectively). When P (eg[i]|eg[0], .., eg[i− 1]) is not used, the F measure was 0.150.

(a) Discussion

Conventional duration-based approaches tend to improve the detection of problematic seg-
ments at the expense of precision. Unlike these approaches, since we think the precision is also
important for large CTTS systems, we combined the acoustic likelihood metrics, mc[i], and
duration likelihood metrics, md[i], and achieved a relatively high F measure. However, the
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performance was still not very high. This was related to false positives. Sometimes the acous-
tic likelihood metrics or the duration likelihood metrics have erroneously high values when
there are only a few substitutions of the recognized phonemes. Modeling alignment errors
and recognition errors differently may have a good effect on the likelihood metrics. Explicit
handling of alignment displacement amounts is also necessary for more precise modeling of
problematic segments.

3.4 Concluding Remarks

In this chapter, we introduced a totally trainable text-to-speech (TTS) system, every compo-
nent of which can be automatically built from human speech alone. We showed the procedure
to incrementally collect the necessary linguistic and acoustic information from the speech by
combining acoustic processing and linguistic processing. We described concrete means for all
of the necessary sub-modules.

The accuracies of the sub-modules were examined by the experiments. By comparing the
word error rates (WERs) of some transcription methods, it was shown that TTS voice gen-
eration using automatic speech recognition (ASR) without the transcription is at a practical
level compared to the conventional TTS voice generation using transcriptions. The automatic
prosody labeling algorithm achieved an F measure of 0.862 for prosodic phrase boundary de-
tection by using the linguistic information (POS) with acoustic features, which was better than
the results reported in previous research. For the accent determination problem of Japanese,
which was a difficult task in which truly syllable-level judgment is required, we achieved 92.7%
mora accuracy by using an n-gram linguistic model, including the spelling of the words. The
required size of a speaker-dependent speech corpus was reduced to 100 sentences by using a
speaker-independent text corpus. The overall quality of the synthetic voices was evaluated by
the subjective listening tests. We can see from the results that the quality of the synthetic
voices for in-domain text was assessed to be greater than 4.0 in the five-level subjective tests
and approached the quality of the recorded human voices.

Although we were able to verify the validity of the framework, there remain some challenges
for totally automatic generation of a new TTS voice. Preparation of a small training corpus
for training the sub-modules was still necessary. Since accumulation of slight errors in the sub-
modules results in non-ignorable errors in the generated TTS voice, we need to improve the
accuracies of the sub-modules. The acoustic quality for out-of-domain text was assessed to be
far worse than the acoustic quality for in-domain text. Further improvement of the algorithm
is required to achieve higher acoustic quality especially for out-of-domain text. Although we
have tested this approach only for Japanese, we believe our approach could also be effective for
other languages including English. Since all the major components of the system are trainable,
we can expect the system is easily applied to other languages or other Japanese accents.



Chapter 4

Robust Audio Watermarking
Algorithm

In this chapter, we describe a robust audio watermarking algorithm that preserves the natu-
ralness of the sound while making it possible to detect the watermark even after the sound
quality is degraded. Since conventional time-domain spread spectrum watermarking algo-
rithms require strict synchronization of the watermark signal, their robustness against attacks
that displace the watermark signal was problematic. Therefore, we introduce a robust audio
watermarking method that has advantages in both robustness and acoustic quality by modify-
ing the magnitudes of the sound according to a two-dimensional pseudo-random array (PRA)
defined in the time-frequency domain of the sound. In addition, the use of multiple stretched
PRAs in the detection algorithm further improves the robustness against geometric distortions
of the sound without requiring too much additional computational time. The communication
capacity of the algorithm is also analyzed in the last part of the chapter. This chapter is
related to the work published in [75, 74, 64, 67].

4.1 Audio Watermarking Algorithm Using a Two-Dimensional
Pseudo-Random Array

In this section, we describe a multiple-bit audio watermarking method which is robust against
geometric distortions of audio. For example, a 64-bit message can be detected in a 30-second
music sample and survive random stretching, wow-and-flutter, and pitch shifting as well as
MPEG compression, additive noise, echo, and digital-analog conversions. A psychoacoustic
model calculates the amount of inaudible modification for watermark embedding and hence
assures high acoustic quality. The detection algorithm does not need to refer to the original
content.

The main ideas of the method can be briefly summarized as follows:

• The frequency-domain embedding algorithm uses a psychoacoustic model in a straight-
forward way. It modifies the magnitudes of the audio content by the amounts that the
psychoacoustic model estimated human ears cannot distinguish.

• The embedding algorithm modifies the magnitudes of segmented areas in the time-
frequency plane of the content, according to a two-dimensional pseudo-random array
(PRA), while the detection algorithm correlates the magnitudes with the PRA. The
two-dimensional array makes the watermark robust against cropping because, even when
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Figure 4.1: A pattern block has a two-dimensional area in the time-frequency plane and
conveys a short message.

some portions of the content are heavily degraded, other portions of the content can
match the PRA and contribute to watermark detection.

• The magnitude modification through overlap-and-add enables detection even from dis-
placed detection windows. This is because magnitudes are less influenced than phases
by fluctuations of the analysis windows caused by random cropping,

• Wider bandwidths at higher frequencies keep the correspondence of the embedded and
detection PRA even for pitch-shifted content.

After the basic concepts for the method are described in Section 4.1.1, the algorithms
for watermark embedding and detection are presented in Section 4.1.2 and Section 4.1.3,
respectively. Theoretical and experimental analysis of the method is given in Section 4.1.4.

4.1.1 Basic concepts

Multiple-bit embedding This method can embed a multiple-bit message. For an instance,
a 64-bit message is embedded in the robustness tests described in Section 4.1.4. The embedding
algorithm should repeat the message and apply error-correcting/detection codings to it, and
must add several bits to indicate the beginning of the message. The error-correcting/detection
codings used in Section 4.1.4 can be found in [56]. After the codings, the multiple-bit message
is divided into short messages, which are embedded separately.

Pattern blocks A short message is embedded in a pattern block, which is defined as a two-
dimensional segmented area in the time-frequency plane of the content. The time-frequency
plane is a two dimensional array constructed from the sequence of power spectrums calculated
using short-term Discrete Fourier Transforms (DFTs). Figure 4.1 illustrates four consecu-
tive pattern blocks in the time-frequency plane. The background image of the figure is a
spectrogram of a music sample.

A pattern block is further divided into BW and BH tiles in rows and columns, respectively.
Hence, the total number of tiles in a pattern block, BA, is given by BH × BW . We call BW

tiles in row a subband. A tile is the primitive for magnitude modification and contains several
frequency components of four consecutive DFT frames. The BA tiles in a pattern block share
a synchronization signal and Nb bits (Fig. 4.2(a)). In the figure, BH and BW are 6 and 4,
respectively. The synchronization signal is needed so the detection process can search for
the beginning of a pattern block. It will be explained in Section 4.1.3 why this search is
not computationally expensive. Hereafter, the subscript ’S’ is used for the synchronization
signal. One bit is encoded in WB tiles, and WS tiles are used for the synchronization signal.
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tiles assigned for the synchronization signal.

Therefore we can write BA = WB ×Nb + WS . The relationship of the frequency components,
the subbands, and the tiles is shown in Fig. 4.10.

Pseudo-random arrays (PRA) A pseudo-random number corresponds to a tile. The
embedding algorithm slightly modifies the magnitude of a tile according to the pseudo-random
number assigned to the tile, and the detection algorithm correlates the magnitudes of tiles with
the pseudo-random numbers. Therefore the position and value of the pseudo-random array
(PRA) is a sort of secret key that must be shared by the embedder and the detector. We
denote the two-dimensional pseudo-random array (PRA) by ωF . A component, ωF [t, b], of
the array is the pseudo random number for the tile at (t, b) and has a value of +1 or −1. The
set of the tile positions assigned for the j-th bit is L[j], whose size is WB. A tile position is
denoted as (t, b), which means the tile is in the t-th column and in the b-th subband. The set of
the tile positions assigned for the synchronization signal is Ls, whose size is WS . Figure 4.2(a)
illustrates a pattern block with four bits and a synchronization signal, and (b) is an example
of ωF assigned for the fourth bit of (a).

Using a two-dimensional pseudo-random array, the method is robust against time fluctua-
tion caused by duplicated or missing audio samples. This is because the loss in some portions
of the array can be recovered by from other portions. The duration of a pattern block is
an important factor for the robustness of the method. That will be shown in Section 4.1.4.
Another advantage of the two-dimensional array is security. Varying the modification pattern
of the magnitudes from frame to frame makes it difficult for crackers to analyze the secret
pseudo-random array.

DFT frames and modulus operator A tile has four frames of Discrete Fourier Trans-
form (DFT) each of which overlaps the adjacent frames by a half window (Fig. 4.2(c)). The
relationship of the tiles and the frames are shown in Fig. 4.3. A more concrete example is
shown in 4.4, where the length N of a frame is 1,024 samples. In the figure, the double-circled
embedding frames are the beginnings of the tiles. The signs in the circles are examples of the
signs used in a subband for each of the frames. The four frames in a tile are given a modulus
operator, which is one element of a predefined sequence,

Cm[f ] =

{
+1 (f ≤ 1 ( mod 4))
−1 otherwise

. (4.1)

The f -th element of the sequence corresponds to the f -th frame of the four frames in a tile.
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The embedding algorithm increases or decreases the magnitudes of a frame according to
the sign of the pseudo-random value multiplied by the modulus operator. In other words, if
the pseudo-random value assigned to a tile is positive, the embedding algorithm increases the
magnitudes of frequencies of the former two frames in the tile and decreases those of the latter
two frames. In this sense, we can say that we are using pattern blocks that have 4BW DFT
frames in total. Figure 4.5 is another illustration of the block shown in Fig. 4.2. In this figure,
frames and the corresponding PRAs multiplied by the modulus operators are shown.

On the other hand, the detection algorithm calculates the difference of magnitudes of a
frame and the next non-overlapping frame per tile and correlates the differences with the PRA.
Hence, the pattern block regarding detection can be illustrated as Fig. 4.6.

The reason for using modulus operators is that since the magnitudes of adjacent frames
have similar values in most cases, so this subtraction weakens the influence of the host signal on
the detected watermark strength while it increases the effect of the watermark signal, because
the opposite signs are embedded into the adjacent frames due to the modulus operator, Cmf .
This idea is similar to Tsang’s magnitude subtraction in video watermarking [78].

Subtraction pairs As described above, the detection algorithm calculates the difference of
the magnitudes in a frame, f , and the next non-overlapping frame, f + 2. We call such a pair
of two frames a subtraction pair. It can be said that the synchronization process selects a set
of subtraction pairs by choosing the first frame of a pattern block that gives the maximum
synchronization strength. When a set of subtraction pairs are selected, the magnitudes and
watermark strengths calculated from the other set of subtraction pairs that overlap the first
subtraction pairs by a half window are discarded (Fig. 4.7(a)). The signs in the circles are the
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Figure 4.7: On the left side of the figure are an illustration of original embedding frames
and two examples of displaced detection frames. The illustrations on the right side are (1)
magnitude changes introduced by watermark embedding and (2) magnitude changes that are
expected to be observed at the displaced detection frames of the examples on the left side.

magnitude changes expected for those frames. The double-circled frames are the first frames
of the selected pairs. By having two set of subtraction pairs, one of which is selected and the
other is discarded, even when the detection frames are displaced from the original embedding
frames, the magnitude modification introduced by the watermark embedding can be observed
strongly from either set of pairs. Figure 4.7(b) is an illustration of the magnitude changes



50 CHAPTER 4. ROBUST AUDIO WATERMARKING ALGORITHM

1

10

100

1000

10000

100000

0 100 200 300 400 500

Input
OutputInput

Output

1

10

100

1000

10000

100000

0 100 200 300 400 500
Frequency index

M
ag

ni
tu

de
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observed for the detection frames illustrated in Fig. 4.7(a). The solid line and the dashed lines
are the magnitude changes made from the original embedding frames drawn in Fig. 4.7(a).
The circles on the lines are the magnitude changes expected for the detection frames in the
selected pairs. The triangles are the magnitude changes observed for the frames in the other
set of pairs. Those will be discarded because the magnitude changes are less prominent in
those frames.

Psychoacoustic model The embedding algorithm uses a psychoacoustic model for each
frame to determine the magnitudes of the watermark signal. Among auditory masking ef-
fects [84], we use only simultaneous frequency masking effects for the model. Simultaneous
frequency masking effects are the effects that a stronger masker frequency component makes a
weaker frequency component whose frequency is close to the frequency of the masker inaudible.
By using the psychoacoustic model, the masking effect at each frequency can be calculated
as summation of the individual masking effects by other frequencies to the frequency. The
obtained masking effects can be used as a reference of the magnitude change that human ears
cannot notice. An example of the input and output of the psychoacoustic model used in the
tests in Section 4.1.4 is shown in Fig. 4.8.

Although there are threshold in quiet effects and temporal masking effects for human audi-
tory systems besides frequency masking effects, the use of these effects is not effective in case
of audio watermarking. threshold in quiet effects are the effects that human ears cannot notice
sounds below a threshold even when there is no masking sound. The value of the threshold is
dependent on the frequency. The reason we cannot use these effects for audio watermarking is
the following: If the embedder utilizes threshold in quiet and embeds a small watermark signal
under the threshold in a silent region, and then if the listener increases the volume of the
amplifier or the headphone, the small sound is no longer below the threshold and becomes au-
dible. As for temporal masking effects, though utilization of these effects may lead to accurate
calculation of inaudible magnitudes, the effects are less than those of simultaneous masking.
However, it is important to exceptionally treat attacks of sound where the energy of the host
signal rapidly increase. This is because pre-echo effects tend to occur in these regions as both
Fourier transforms and psychoacoustic model cannot perform accurate analysis in these re-
gions. Therefore, it is preferable to skip embedding watermark in these regions by detecting
attacks.
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4.1.2 Embedding algorithm

The embedding algorithm calculates a watermark signal in the frequency domain, converts it
to the time domain using an inverse DFT (IDFT) and adds it into the host signal (Fig. 4.9).
The magnitudes of the watermark signal are calculated using the psychoacoustic model.

Whether magnitudes of the host signal are increased or decreased is decided by a pseudo-
random array and the bits to be embedded. The embedding algorithm uses the same phases
as the phases of the host signal for constructing the watermark signal to avoid introducing
unnecessary phase changes.

Step 1 Overlapping frames
This step extracts DFT frames. A frame consists of N consecutive PCM samples and
overlaps the adjacent frames by a half window. We denote the N PCM samples for the
f -th frame as x[f, n] (0 ≤ n < N).

Step 2 Windowing DFT
The complex frequency components cc[f, k] (0 ≤ k < N/2) are obtained by the DFT
analysis of the PCM samples x[f, n] multiplied by a windowing function fwin(n). cc[f, k]
is the k-th complex frequency component of the f -th frame.

cc[f, k] = DFT [x[f, n]fwin(n)] . (4.2)

The amplitude ca[f, k], the phase cφ[f, k], the real component cr[f, k], the imaginary
component ci[f, k] of the frequency component are calculated by the following equations.

ca[f, k] = |cc[f, k]| , (4.3)
cφ[f, k] = arg (cc[f, k]) , (4.4)
cr[f, k] = Re [cc[f, k]] , (4.5)
ci[f, k] = Im [cc[f, k]] . (4.6)
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Step 3 Calculation of inaudible modification amount
Then the algorithm calculates the inaudible level of the magnitude modification by using
a psychoacoustic model based on the complex spectrum. We indicate this amount of the
k-th frequency of the f -th frame in a pattern block by ap[f, k]. We use this amount for
the magnitude in the k-th frequency component of the watermark signal.

Step 4 Watermark sign determination
This step calculates the signs that determine whether to increase or decrease the mag-
nitudes of the host signal in each of the tiles. stile[t, b] is the sign for the b-th subband
in the t-th column of the pattern block. The tile includes four DFT frames whose frame
index f is in the range of 4t ≤ f < 4(t + 1). Let the tile is assigned for the j-th bit.
That is, (t, b) ∈ Lj . If the sign sbin[f, k] calculated based on these values is positive,
the k-th amplitude frequency component of the f -th frame is increased. Otherwise, the
amplitude is decreased.

sbin[f, k] = Cm[f ]stile[t, b] (4.7)
= Cm[f ](2m[j]− 1)ωF [t, b], (4.8)

where Cm[f ] is the modulus operator.

In the tiles where the calculated sign, stile[t, b], is positive, the phase of the HS, cφ[f, k],
is used for the phase in the f -th frequency bin of the WS, while we assume the k-th
frequency is in the b-th subband. In the tiles with a negative sign, the opposite phase
−cφ[f, k] is used.

Step 5 Watermark signal generation
This step calculates the complex frequency components of the watermark signal. We
use the phases cφ of the host signal as the phases of the watermark signal. We use the
amplitudes ap of the output of the psychoacoustic model as the absolute amplitudes of the
watermark signal. While the watermark signal is generated to increase the amplitude of
the host signal in the tiles where the sign stile[t, b] is positive. Where stile[t, b] is negative,
the phase of the watermark signal is exactly the opposite of that of the host signal in the
tile. That results in decreasing the magnitude of the host signal in the tile(Fig. 4.11).
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Figure 4.11: The watermark signal in the frequency domain. The watermark signal modifies
the magnitude of the host signal in the frequency domain.
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zc[f, k] is the k-th complex frequency component of the WS in the f -th frame (Fig. 4.11).

zc[f, k] = sbin[f, k]ap[f, k] exp
(
cφ[f, k]

√−1
)

, (4.9)

where the frequency index k is included in the b-th subband (kmin[b] ≤ k ≤ kmax[b]).

Step 6 IDFT, windowing and overlap-and-add (OLA)
The watermark signal in the time domain is obtained by transforming these values using
IDFTs. To avoid generating clicking sounds at the borders of adjacent IDFT frames, the
watermark signal is multiplied by a windowing function and overlapped with the adjacent
frames after each IDFT. The first half (0 ≤ n < N

2 ) of a frame is overlapped with the
latter half of the previous frame, while the second half (N

2 ≤ n < N) is overlapped with
the first half of the next frame (Fig. 4.12).

ωT f [f, n] = fwin(n)IDFT [zc[f, k], ] , (4.10)

ωT [f, n] = ωT f

[
f − 1, n +

N

2

]
+ ωT f [f, n]

(
0 ≤ n <

N

2

)
, (4.11)

ωT [f, n] = ωT f [f, n] + ωT f

[
f + 1, n− N

2

] (
N

2
≤ n < N

)
. (4.12)



54 CHAPTER 4. ROBUST AUDIO WATERMARKING ALGORITHM

PCM

Message

Normalization
   (2,3,4)

Windowing
    & DFT (1)

Block
 Synchronization (5)

Watermark
  Decision (7)

Message
  Extraction (8)

a d[f,k] u d[f,b]

Bit Detection (6)s max y [j]

WM exists or not

PRS

Figure 4.13: The process flow of the watermark detection algorithm. The numbers in the
parentheses correspond to the step numbers in the description.

Step 7 Watermark signal addition
Finally, the watermarked PCM samples are obtained as the summation of the host signal
and the watermark signal in the time domain.

x′[f, n] = x[f, n] + ωT [f, n]. (4.13)

4.1.3 Detection algorithm

The detection algorithm calculates the magnitudes for all tiles of the content and correlates
them with the pseudo-random array (PRA) by applying the following steps (See Fig. 4.13)):

Step 1 Windowing DFT
The magnitude ca[f, k] of the k-th frequency in the f -th frame of a pattern block of the
content is calculated by the DFT analysis of a frame of the host signal. A frame consists
of N consecutive PCM samples and overlaps the adjacent frames by a half window. The
samples should be multiplied with a windowing function such as a sine window before
the DFT.

Step 2 Normalization
The magnitudes are then normalized by the mean of the magnitudes in the frame so
that contributions of all frames to the watermark strength are equal. A normalized
logarithmic magnitude is

c̃a[f, k] = log




ca[f, k]

1
N/2

N/2−1∑

k=0

ca[f, k]




. (4.14)

Step 3 Magnitude of tile
The magnitude of a tile located at the b-th subband of the f -th frame in the block is
calculated as

u[f, b] =

kmax[b]∑

k=kmin[b]

c̃a[f, k]

FH [b]
, (4.15)

where kmin[b] and kmax[b] are the lowest and highest frequency indices in the b-th sub-
band, respectively. FH [b] = kmax[b]−kmin[b]+1 is the number of frequency components
in the tile.
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Step 4 Tile value
The difference between the magnitudes of a tile and the next non-overlapping frame is
taken as

ud[f, b] = u[f, b]− u[f + 2, b]. (4.16)

This subtraction increases of the effect of the watermark signal taking advantage of the
modulus operator.

Step 5 Pattern block synchronization
Because there is a possibility that the content has been trimmed before detection, the
start of the content is not necessarily the beginning of a pattern block. Therefore, the
beginning of a pattern block has to be located. We call this procedure pattern block
synchronization.

Note that the minimum step of the search is a frame, which is much larger than a
PCM sample. If a search is required for all samples, it would be very computationally
expensive. However, pattern block synchronization requires only 4BW calculations of
synchronization strength, and additional DFTs are unnecessary because the search is
after the DFTs.

First, a synchronization strength, S[s], is calculated for each frame based on the assump-
tion that the s-th frame is the beginning of the pattern block. The frame that gives the
maximum synchronization strength is accepted as the beginning of the pattern block.
The S[s] is calculated as the normalized correlation of the PRA and the magnitude
differences:

S[s] =

∑

∀(t,b)∈Ls

ωF [t, b](ud[4t− s, b]− ud[s])

√ ∑

∀(t,b)∈Ls

{ωF [t, b](ud[4t− s, b]− ud[s])}2
, (4.17)

where
ud[s] =

1
WS

∑

∀(t,b)∈Ls

ud[4t− s, b], (4.18)

and ωF [t, b] is the pseudo-random number corresponding to the tile at b-th subband in the
t-th column of the pattern block. If the content is unwatermarked, the expected value of
ωF [t, b](ud[4t−s]−ud[s]) is zero and the denominator of Eq. (4.17) should be the sample
standard deviation serving as an approximation of the standard deviation. Hence, due
to the Central Limit Theorem, the distribution of Eq. (4.17) can be approximated by a
standard Gaussian distribution. That is true, even though the host signal is not Gaussian
noise, because the usage of the pseudo random number ωF [t, b] and the normalization
make ωF [t, b](ud[4t− s, b]− ud[s]) independently and identically distributed (i.i.d.).

Synchronization strengths are calculated with s from 0 up to 4BW −1, because a pattern
block has BW tiles in row and a tile contains 4 frames. The position s maximizing the
synchronization strength is chosen as

smax =
4BW−1

argmax
s=0

S[s]. (4.19)

Assuming that several consecutive pattern blocks have synchronization positions that
are separated by the same number of frames, then the successful synchronization rate
can be improved. This linear assumption method searches for synchronization positions
for consecutive NLA pattern blocks at the same time by searching the number of frames
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in a pattern block, dl, and the synchronization position for the first pattern block, smax.
The multiple pattern block synchronization strength is given by

S[dl, s] =
1

NLA

NLA−1∑

q=0

S[q × dl + s]. (4.20)

If the pitch of the content is known not to have been shifted, d must be within 4BW ,
and a search for dl is not necessary. Similarly, if the content has not been trimmed, smax

must be 0. The dlmax and smax satisfying the following equation:

(dlmax, smax) =
dlupper

argmax
dl=dllower

4BW−1
argmax

s=0
S[dl, s], (4.21)

give the synchronization positions for the blocks, where dllower is the shortest possible
length of a block, and dlupper the longest possible. The resulting synchronization position
for the q-th block is q × dlmax + smax.

In a case where the true synchronization positions for consecutive pattern blocks are
shifted, choosing a local maximum value of Ss within a few neighboring frames improves
the reliability of synchronization. We call this procedure local adjustment.

Step 6 Bit detection
Bit strengths, y[j], are calculated at the obtained synchronization position.

y[j] =

∑

∀(t,b)∈L[j]

ωF [t, b](ud[4t− smax, b]− ud[smax])

√ ∑

∀(t,b)∈L[j]

{ωF [t, b](ud[4t− smax, b]− ud[smax])}2
. (4.22)

ωF [t, b] is the pseudo-random number for the tile at (t, b). L[j] is the set of tile positions
assigned for the j-th tile. The sign of y[j] indicates the value of the j-th bit in the pattern
block.

rj =

{
1 (y[j] ≥ 0)
0 (y[j] < 0)

. (4.23)

Note that the distribution of bit strengths, y[j], for unwatermarked content can be also
approximated by a standard Gaussian distribution.

Step 7 Watermark decision
The decision on whether the content has been watermarked or not is made at this
stage using y[j]. The null (H0) and the alternative (H1) hypothesis are that there is
no watermark and that there is a watermark, respectively. In our case, since both
the watermark signal and the host signal are unknown, it is difficult to calculate the
likelihood ratio. Accordingly, we have chosen a hypothesis test described below as a
practical method that makes it possible to set a constant false alarm rate. Under H0,
because y[j] asymptotically follows the standard Gaussian distribution, the sum of the
squares of y[j], ya =

∑Nb
j=1 y[j]2, asymptotically follows a central chi-square distribution

with Nb degrees of freedom, where Nb is the number of bits detected within a predefined
length of the content. On the other hand, under H1, the distribution of ya becomes
a non-central chi-square distribution and the expected value of ya should be a large
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value regardless of the actual watermark signal embedded in the content. Therefore, the
decision can be made by comparing ya with a predetermined threshold Twm.

if




Nb−1∑

j=0

y[j]2 ≥ Twm


 then the content is watermarked. (4.24)

The advantages of this test are (a) flexibility for setting a constant false alarm rate,
(b) applicability to an unknown watermark signal, and (c) good performance against
non-Gaussian noise.

Furthermore, when the number of bits that is weaker than a predetermined threshold,
Twk, exceeds a certain number, Twb, the detector should not output a message:

if ( ‖ { j | |y[j]| < Twk } ‖> Twb ) then no output, (4.25)

where ‖ X ‖ is the number of the components in the set X. This is because it is likely
that there are too many bit errors to recover using error-correcting codes. The thresholds
should be determined considering the capability of the error-correcting code.

Step 8 Reconstruction of the multiple-bit message
Finally, the multiple-bit message is reconstructed from the detected bits. Error correction
and detection should also be performed at this stage.

4.1.4 Theoretical and experimental analysis

Theoretical and experimental analysis of the robustness of the method is shown using an
experimental system. We also discuss the crucial parameters for robustness.

(a) Parameter design

We implemented the method in a software system that can embed and detect a 64-bit mes-
sage in 30-second pieces of music. The message is encoded in 254 bits by adding 7 Cyclic
Redundancy Check (CRC) parity bits, using a Bose-Chaudhuri-Hocquenghem (BCH(127, 71,
15)) code, and repeated twice. Each pattern block has 4 bits embedded, and the block has 30
columns and 9 rows of tiles. The bandwidths of the 30 frequency subbands are described in
Section (c). 150 tiles out of the 270 tiles are assigned for the synchronization signal, 30 tiles
for a bit. For the pattern block synchronization, 7 consecutive blocks are used for the linear
assumption method. For the local adjustment, the four neighboring frames are evaluated.
The length of a DFT frame is 1,024 samples. A sine window is used for windowing the DFT
frames. The thresholds for deciding whether the content is watermarked or not are set so that
the false alarm error ratio is under 10−6.

Three pieces of music were used for the analysis: a violin sonata by Bach, a symphony
by Debussy, and a female jazz vocalist with strings and a piano. All signals are sampled
at a frequency of 44.1 kHz, and each piece is 100 seconds long. The resulting Signal-to-
Noise ratio from watermark embedding was 35.0 dB on average. When JASRAC, CISAC,
and BIEM conducted evaluation tests of audio watermarking technologies in STEP2000 [33]
and STEP2001 [34], we submitted embedders that embed 74 bits within 30 seconds using
psychoacoustic models almost identical to the psychoacoustic model used for this section’s
experiment. In the result, they certified the acoustic quality of the watermarked content
through ABX tests by golden ears. The only major difference between the models used for
STEP and the model used for this section is that, in the STEP version attacks of the sound
were automatically detected using another algorithm and were left unwatermarked for acoustic
quality.
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Figure 4.14: Magnitude change observed at displaced DFT frames.

(b) Effect of magnitude modification

One of the important characteristics of the method is modifying magnitudes that are inde-
pendent of phases. Because magnitudes are less influenced than phases by displacement of
the analysis windows, the watermark can be detected even after cropping. Although the shift-
invariance characteristics of the magnitudes of the DFT are well-known, we show the practical
effectiveness of the effect for audio watermarking in this section.

Figure 4.14 shows an experimental result of the magnitude modification by watermark
embedding. The abscissa is the number of samples by which the observing DFT window
is displaced, and the ordinate is the mean of the magnitude change before and after the
watermark embedding. The arrows and signs above the graph indicate the original DFT
windows used for watermark embedding. It can be seen that the modified magnitudes can
be observed even at intermediate DFT frames between adjacent original embedding frames
to which the same sign is embedded by the modulus operators. When the detection frames
are located between the adjacent original embedding frames to which the different signs are
embedded, the modified magnitudes cannot be effectively observed. However, in that case, the
other sequence of frames which are overlapping with the ineffective frames by a half window
and located between the original embedding frames to which the same sign is embedded , will
give a strong detection strength (See Fig. 4.7).

Figure 4.15 shows the mean of the detected bit strength1, y[j], for the displacement from
0 up to 512 samples, which is the interval between two consecutive DFT frames. The mean
drops slightly but remains sufficiently high up to 512 samples of displacement. Note that the
next frame will be selected for more than 255 samples of displacement by the pattern block
synchronization process. This data is the reason the detection algorithm does not need a
sample-by-sample exhaustive search for the original DFT frames used for embedding.

(c) Bandwidth

The design of the pattern blocks is crucial for robustness. When the content is transformed
in some way, the shapes of the blocks are frequently changed. When the pitch of the content
is shifted upward, the duration of a block becomes shorter and the frequencies of the block
become higher. When wow-and-flutter affects the content, the duration and the height of
the blocks becomes different. In these cases, the detector cannot synchronize the pseudo-
random array to the blocks that were embedded in the content, and the detected watermark

1To obtain a meaningful mean, 1 is embedded for all watermark bits.
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Figure 4.15: Averaged watermark strength detected from displaced DFT frames. The worst
displacement is 256-sample which is the half of the interval of adjacent frames.
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Figure 4.16: Design of pattern blocks. The broken and solid squares illustrate the shapes of
the pattern blocks before and after pitch shifting, respectively. The hatched area maintains
the correspondence of the embedded PRA and the detection PRA.

strength consequently decreases. In order for detection succeed in spite of these sorts of signal
transformations, pattern blocks must have a shape that maintains the correspondence between
the embedded watermark signal and the pseudo-random array.

The first design parameter for a pattern block is the bandwidth for the tiles. When the
pitch of the content is shifted by a rate rp, the lowest frequency, kmin[b], and the highest
frequency, kmax[b], of the b-th subband become rpkmin[b] and rpkmax[b], respectively, and
hence frequency components over kmax[b] no longer contribute to the subband. Therefore the
contribution of the subband becomes 〈kmax[b]− rpkmin[b]〉/FH [b] times the original contribu-

tion, where 〈x〉 is 0 if x is smaller than 0, otherwise x. With rb[b] = kmax[b]

kmin[b]
, the degradation

rate can be expressed by

〈kmax[b]− rpkmin[b]〉
kmax[b]− kmin[b]

=
〈rb[b]− rp〉
rb[b]− 1

, (4.26)

which is independent of kmin[b]. For this reason, by using the same rb value for all rb[b], the
contributions of all subbands degrades at the same rate, which is better than allowing some
subbands to degrade more rapidly than other strong subbands. This idea is basically same as
constant spacing in the log frequency domain, but that leads to bands that are too narrow at
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lower frequencies and bands that are too wide at higher frequencies and results in too few bands
in total. Hence, we do not simplify the bandwidth design by introducing the log frequency
domain. The dotted lines of Fig. 4.16(a) illustrates tiles with a common rb value, and the solid
line is the shape of the tiles after the pitch of the content has been shifted. The hatched area
of the figure is the area maintaining the correspondence and hence still contributing to the
detected watermark strength. On the other hand, (b) illustrates another pattern block where
every subband has the same bandwidth. The hatched areas at high frequencies are smaller
than at low frequencies.

The detected watermark strengths, y[j], are proportional to the hatched areas, which
decreases as the pitch-shifting rate, rp, increases. We call the decreasing rate of the hatched
area the correspondence rate. The correspondence rate in the case of Fig. 4.16(a) or (b) can
be estimated by the following simple geometrical calculation:

rd(rp) =
BH∑

b=1

BW∑

t=1

〈kmax[b]− rpkmin[b]〉
kmax[b]− kmin[b]

〈
t

rp
− (t− 1)

〉
. (4.27)

The reason for the proportionality is that the numerator of Eq. (4.22) is proportional to the
maintained correspondence between ωF [t, b] and the pseudo-random array embedded in the
ud[f, b]s while the denominator of y[j] is basically independent of the correspondence.

Note that the actual correspondence to be found by the pattern block synchronization
process is expected to be Fig. 4.16(c) instead of Fig. 4.16(b). This is because Fig. 4.16(c), where
the centers of the original and shifted pattern blocks match, maximizes the hatched area and
the synchronization process finds the position that maximizes this area. The correspondence
rate in that case is estimated by

rd(rp) =
BH∑

b=1

2
BW /2∑

t=1

〈kmax[b]− rp[b]〉
kmax[b]− kmin[b]

〈
t

rp
− (t− 1)

〉
. (4.28)
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Figure 4.18: The watermark strength detected from pitch-shifted content for subbands with
different bandwidths.

A robustness test was conducted using three types of subbands shown in Fig. 4.17. Every
subband in the linear subbands shown in Fig. 4.17(b) has the same width of 10 frequency bins.
The nonlinear subbands have wider bandwidths in higher frequencies per the following rule: (1)
the lowest subband begins at the 10th bin; and (2) the bandwidth is the smallest integer with
rb[b] larger than rbmin, but not less than 3 bins. The value of rbmin is 0.1 for the nonlinear wide
subbands (NWS) shown in Fig. 4.17(c), and 0.08 for the nonlinear narrow subbands (NNS)
shown in Fig. 4.17(d). While linear and NWS have 30 subbands, NNS is given 34 subbands so
that it contains approximately the same number of frequency bins. Figure 4.17(a) shows the
relationships of subband numbers versus frequencies for the three designs.

Figure 4.18(a) shows experimental results on the degradation of the average detected bit
strengths for these subband designs. Pitch shifting is performed using linear interpolation
without anti-alias filtering. Linear subbands mark stronger watermark strengths for the con-
tent just after embedding but degrade more rapidly than nonlinear subbands. NWS shows
even more robustness than NNS. Figure 4.18(b) shows the same experiment differently. The
abscissa is the correspondence rate calculated by Eq. (4.28). It can be seen that the detected
watermark strengths are proportional with the correspondence rate as long as the rate is high
enough. We believe the influence of the modulus operators, which have opposite values for a
frame and for the second frame after the frame, is the reason that the strengths are lower than
expected when the pitch-shifting rate is high.

(d) Duration of pattern block

The duration of a pattern block, BW , is another important parameter. To clarify its influence
on the robustness, we implemented four systems using different values of BW 7, 9, 11, and 13,
and examined the degradation of the watermark strength from pitch shifting (Fig. 4.19). The
number of tiles for a bit (WB) is 24, 30, 36 and 42, respectively. Figure 4.19(a) shows that
larger BW results in stronger watermark strengths for the content just after embedding. The
strength is proportional to the square root of the number of tiles for a bit (Fig. 4.19(c)), as is
theoretically expected. The reason is that the numerator of Eq. (4.22) increases proportionally
with the number of tiles, while the denominator increases proportionally with the square root
of the number of tiles, and hence the mean of y[j] increases proportionally with the square
root.

Furthermore, Figure 4.19(a) shows that larger pattern block duration does not result in
better robustness for high pitch-shifting rates. This can be explained as follows: for detecting
highly pitch-shifted content using large BW , mismatches between the original and shifted tiles
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Figure 4.19: The watermark strength detected from pitch-shifted content for different duration
of blocks. (c) shows that the original watermark strength increases proportionally with the
square root of the number of tiles.

accumulate over the longer duration, so tiles at both ends of the pattern block do not contribute
to the watermark detection. Also the effect of the modulus operators occurs earlier. On the
other hand, too small a value of BW leads to a risk of missing a whole pattern block. The
duration of pattern blocks should be set considering what sort of degradations the system must
be robust against. The relationship of the correspondence rate and the watermark strengths
is shown again in Fig. 4.19(b).

(e) Robustness

We tested the robustness of the method against various transformations (Table 4.1). The
table shows (1) the means and (2) the variances of the detected watermark strength, (3)
the bit error rates (BER), and (4) the rates at which the correct 64-bit message is detected.
The watermark strength data for (1), (2) and (3) are taken after the accumulation of twice-
repeated codes before the BCH decoding. Hence, the bit errors seen in Table 4.1 can be
recovered by the BCH decoding or detected by the CRC parity check. Although a bit error
was counted when the accumulated watermark strength is smaller than zero, because the
detection algorithm does not output the extracted message if there are too many bits weaker
than the threshold (Eq. (4.25)), this incorrect message would normally be eliminated. For the
statistical experiment, ten 100-second music samples were used. Since the message is expected
to be detected three times in a 100-second music sample, 100% in Table 4.1 indicates 30 correct
detections of the message from the ten samples. In the table, Original watermark means no
transformation is performed on the content after watermark embedding. Wow-and-flutter is a
combination of two consecutive transformations: (1) wow is a computer simulation of a 0.707%
variation of playback speed with a 5 Hz cycle time; and (2) flutter is a computer simulation
of 0.707% variation of playback speed at a random modulation frequency up to 250 Hz. Echo
50 msec 0.3 is echoing with maximum delay 50 msec and feedback coefficient 0.5. Random
stretching is a transformation that modifies the length of the content to the target length
by omitting or inserting a random number of samples from 50 up to 500. Random sample
cropping can be considered as random stretching with the target length smaller than 100%.
MiniDisc & DAAD is a combination of recording on a MiniDisc using ATRAC 292 kbps, a
digital-to-analog conversion (D/A), and an analog-to-digital conversion (A/D). DAAD & DAT
& DAAD is a combination of D/A, A/D, recording on a DAT tape, D/A, and A/D. ATRAC3
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Table 4.1: The means and variances of the detected watermark strength, the bit error rates
(BER), and the rates by which the correct 64-bit message is detected. Note that all bit errors
were corrected or detected, and hence no wrong message was extracted from the content.

Processing Mean Variance BER Correct detection
Original watermark 4.23 0.54 0 100%
Wow-and-flutter 3.77 0.66 0.00026 100%
Echo 50m sec 0.3 3.74 0.79 0.00026 100%
MiniDisc & DAAD 3.71 0.67 0.00026 100%
DAAD & DAT & DAAD 3.70 0.77 0.00026 100%
Pitch shifting +2% 3.33 0.78 0.001302 100%
Pitch shifting -2% 3.35 0.80 0.001563 100%
ATRAC3 132kbps & DAAD 2.87 0.78 0.001563 97%
Random stretching +2% 3.39 0.87 0.001823 100%
Noise -40dB 3.49 1.02 0.002083 97%
Random stretching -2% 3.37 0.81 0.002344 100%
Random stretching -4% 2.77 0.92 0.005208 100%
Random stretching +4% 2.88 0.95 0.005729 100%
Echo 100m sec 0.5 2.90 1.02 0.00625 97%
MP3 96kbps 2.48 0.85 0.008333 100%
ATRAC3 105kbps & DAAD 2.54 0.92 0.009896 93%
Pitch shifting +4% 2.25 0.90 0.013021 90%
Pitch shifting -4% 2.32 1.00 0.017448 83%
Noise -30dB 2.51 1.39 0.030208 87%

132 kbps (105 kbps) & DAAD is a combination of encoding by ATRAC3 132 kbps (105 kbps),
playback on a SONY MemoryStick Walkman, and recording on a PC.

Correct detection rates over 80% were seen for every one of the tested degradations. The
error correction and detection algorithm and the counting of weak bits (Eq. (4.25)) successfully
avoided detection of a wrong message.

(f) Discussion

We presented a watermarking method that can embed a 64-bit message onto a 30-second
music sample. The method was robust against shift and fluctuation with respect to time and
frequency of the audio content. The robustness was achieved mainly through a two-dimensional
pseudo-random array, magnitude modification, and nonlinear subbands.

The method modifies the magnitudes of segmented areas in the time-frequency plane of the
content according to a two-dimensional pseudo-random array assigned to the areas. Windowing
and overlapping were used before and after the DFTs in order to avoid generating clicking
sounds at the borders of adjacent DFT frames. It was shown that the effect of the magnitude
modification by the embedding algorithm was observable by the detection algorithm with
displaced DFT windows. This made the method robust against random cropping without
computationally expensive searching for the embedding DFT windows.

It was shown that the correspondence between the embedded watermark and the pseudo-
random array used for detection played an important role in determining the detected water-
mark strength. The watermark strength detected from pitch-shifted content was successfully
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estimated by a simple calculation of the area maintaining the correspondence. To keep the
correspondence rate high, it was better to design subbands having wider bandwidths for higher
frequencies.

The duration of the pseudo-random array was also important. The duration can be length-
ened so that the loss in some portions of the array can be recovered by the other portions.
Actually the watermark strengths increased proportionally with the square root of the length
of the array. However it was shown that too long a duration was not effective for robustness
against transformations that change the length of the content. We tested the robustness of
the method against wow-and-flutter, echo, noise addition, MP3 compression, ATRAC3 com-
pression, MiniDisc recording, random cropping, pitch shifting, digital-to-analog and analog-
to-digital conversion.

4.2 Improving Robustness against Geometric Distortion

The robust audio watermarking algorithm introduced in the previous section is robust against
pitch shifting and random stretching to some extent. However, it is still difficult for the method
to survive excessive geometric distortions. In this section, we explain a modification to the
detection algorithm to improve the robustness against excessive distortion. The key features
of the modified algorithm are;

• The modified method uses multiple pseudo-random arrays each of which is stretched
assuming a certain amount of distortion. When the watermarked audio content is ge-
ometrically distorted, watermark can be detected by the pseudo-random array that is
stretched in a similar way to the geometric distortion of the audio content.

• A pseudo-random array is chosen from the multiple arrays by the strength of a syn-
chronization signal. Because the strength of the synchronization signal and that of the
message signal are independent, the false alarm rate is preserved.

• Because the same synchronization signal, which was necessary for the original detection
algorithm to search the head of the message, is used for the scale selection, this method
does not decrease the data payload.

• Since most of the detection process for the multiple arrays is shared, the additional
computational cost is limited.

4.2.1 Detection using stretched patterns

In the experiment, we used a software system that can embed and detect a 64-bit message
in 30-second pieces of music. Its details and parameters that are not explained below are
same as explained in Section 4.1. All the following graphs are experimental results using ten
100-second music samples. The watermark strength data plotted in the figures or shown in
the table are measured after the accumulation of doubly-encoded watermarks. Pitch shifting
is performed using linear interpolation without anti-alias filtering. Random stretching2 is a
transformation that changes the length of the total content to a different length by omitting
or inserting a random number of sample blocks from 50 up to 500 samples per block.

When the content is distorted by pitch shifting or random stretching, the time and fre-
quency location of the embedded tiles are displaced. Accordingly, our idea for improving

2Random sample cropping can be considered as random stretching with the target length smaller than 100%.
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Figure 4.20: Pattern block stretched with respect to time.
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Figure 4.21: Pattern block stretched with respect to frequency.

robustness is to detect watermark using multiple patterns each of which is stretched in ad-
vance assuming a certain amount of distortion. As for random stretching, because it changes
the length of the content, watermark is expected to be detectable using a pattern that is also
stretched with respect to time(Fig. 4.20). The watermark strength using the pattern that is
stretched at the rate of rt is calculated by

y[j] =

∑

∀(t,b)∈L

ωF [t, b](ud [b4rtt + 0.5c, b]− ud)

√ ∑

∀(t,b)∈L

{ωF [t, b](ud [b4rtt + 0.5c, b]− ud)}2
. (4.29)

To detect watermark from a sample whose pitch is shifted at the rate of rf , we corre-
spondingly shift the subbands (Fig. 4.21) as kmin[b]′ = rfkmin[b] and kmax[b]′ = rfkmax[b].
Moreover, since linear pitch shifting changes the duration of the block as well as its frequency,
we also stretch the pattern using Eq. (4.29).

In this way, we define a stretched detector, D(rt, rf ), which matches best to a time ex-
pansion rate, rt, and a pitch shifting rate, rf . Figure 4.22 and Figure 4.23 show mean wa-
termark strengths detected by D(0.90, 1.00), D(0.935, 1.07), D(1.00, 1.00), D(1.075, 0.93), and
D(1.10, 1.00) from distorted content. While the strength detected by the regular detector,
D(1.00, 1.00), decreases as the content is severely distorted, the stretched detectors have their
maximum strengths approximately at their assumed distortion rates.

4.2.2 Experimental results

These experiments indicate that if several stretched detectors detect watermark in the music
sample using differently stretched patterns in parallel, and an appropriate stretched detector
is selected, we can detect watermark even from an excessively distorted music sample by some
of the stretched detectors. In this way, the detection flow becomes as shown in Fig. 4.24.
The selection of a stretched detector is done approximately every 30 seconds based on the



66 CHAPTER 4. ROBUST AUDIO WATERMARKING ALGORITHM

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

90 95 100 105 110100 105 11090 95

0

1.0

2.0

3.0

4.0

Time expansion rate [%]

D
et

ec
te

d 
S

tr
en

gt
h

D(1.0,1.0)
D(1.1,1.0)
D(0.9,1.0)

Figure 4.22: Mean strengths detected from randomly stretched samples.
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Figure 4.23: Mean strengths detected from pitch-shifted samples.
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Figure 4.24: Detection flow with three stretched detectors.

accumulated synchronization strength,

A(i) =
1√
Nb30

Nb30∑

q=1

S(i)[q], (4.30)

where i is the index of stretched detectors, n is the index of synchronization signals detected
in the 30-second period, and Nb30 is the number of synchronization signals detected in the
period. After the stretched detector that gives the maximum A(i) is selected, the watermark
strengths detected from the stretched detector are used for the message reconstruction.

The mean of A(i) detected from five stretched detectors are shown in Fig. 4.25 and Fig. 4.26.
It can be seen in Fig. 4.26 that, for example, D(1.08, 0.93) is selected for the pitch-shifting
rate ranging from 90% up to 96%.
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Figure 4.25: Mean accumulated sync. strength detected from randomly stretched music sam-
ples.
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Figure 4.26: Mean accumulated sync. strength detected from pitch-shifted music samples.
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Figure 4.27: Mean strength and bit error rate (BER) for randomly stretched samples.

Consequently, the mean strengths by the selected stretched detectors become as shown in
Fig. 4.27 and Fig. 4.28, and are enough high for every degree of tested distortion. Correspond-
ing bit error rates are also shown in the figures.

Table 4.2 shows (1) the means of the detected strengths, (2) the bit error rates (BER)
which are plotted in Fig. 4.27 and Fig. 4.28, and (3) the correct detection rates (CDR) at
which correct 64-bit message was detected. CDR over 80% was seen for every one of the
tested degradation. The error correction and detection algorithm and the counting of weak
bits successfully avoided detection of an incorrect message.
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Figure 4.28: Mean strength and BER for pitch-shifted samples.

Table 4.2: The means of the detected strengths (µ), the bit error rates (BER), and the correct
detection rates (CDR).

Processing µ BER CDR
Original watermark 4.17 0.000 100%
Pitch shifting -10% 2.61 0.008 96%
Pitch shifting -8% 3.56 0.001 100%
Pitch shifting -6% 3.25 0.000 100%
Pitch shifting -4% 2.29 0.013 90%
Pitch shifting -2% 3.27 0.002 100%
Pitch shifting +2% 3.25 0.001 100%
Pitch shifting +4% 2.85 0.005 100%
Pitch shifting +6% 3.59 0.001 100%
Pitch shifting +8% 3.49 0.001 100%
Pitch shifting +10% 2.71 0.005 100%
Random stretching -10% 2.06 0.067 83%
Random stretching -8% 2.25 0.027 87%
Random stretching -6% 2.27 0.018 87%
Random stretching -4% 2.72 0.005 100%
Random stretching -2% 3.30 0.003 100%
Random stretching +2% 3.32 0.002 100%
Random stretching +4% 2.82 0.006 100%
Random stretching +6% 2.48 0.012 93%
Random stretching +8% 2.49 0.015 93%
Random stretching +10% 2.38 0.026 87%

4.2.3 Performance

We also measured the detection speed using a personal computer (PC) with 600 MHz Pentium
III running Windows NT. While, when the detector uses only a regular detector, detection
takes 7.72% of the length of the content, when the detector uses five stretched detectors, it is
performed within 8.96% of the length of the content. That is only 16% increase for four more
stretched detectors. This is because the Fourier transform and calculation of the normalized
magnitudes take most of the processing time, and the stretched detectors can share this part
of calculation. Therefore, using stretched detectors in a detector is much faster than simply
using multiple detectors.
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We improved robustness of the basic watermarking algorithm by using multiple stretched
pattern blocks. With the improvement, robustness against pitch shifting and random stretch-
ing up to ±10% was achieved with only 16% additional computational time.

4.3 Capacity Analysis

In this section, we analyze the communication capacity of the algorithm described in Section 4.1
under the condition where additive noise is overlapped. The communication capacity of audio
watermarking is the amount of data payload that can be embedded into audio content while
preserving acoustic naturalness and keeping robustness against distortions. Robustness against
additive noise is a simplest but practical requirement necessary for automatic monitoring of
broadcast music. The capacity analysis is done by taking into consideration the characteristic
of natural audio signal having more energy in lower frequencies.

In the following sections, after simplified formulation of watermark detection is introduced,
a watermark-signal-to-noise ratio (WMSNR) is defined in Section 4.3.1. Then the relation-
ship between WMSNR and the communication capacity is derived. When additive noise is
overlapped, WMSNR for the content degrades. The degradation of WMSNR against additive
noise is theoretically estimated in Section 4.3.2. The validity of the estimation is verified by
experimental results in Section 4.3.3. By examining the experimental results, the communi-
cation capacity of the algorithm is analyzed. Section 4.3.4 is an appendix section for detailed
equations for the derivation of WMSNR.

4.3.1 Relationship between watermark SNR and capacity

Preparation In preparation for deriving the relationship, we simplify watermark detection
equations. First, we approximate Eq. (4.14) by c̃a[f, k] = log ca[f, k]. This is because normal-
ization by the average magnitude of the frame does not have much practical effects as long
as logarithmic magnitudes are used. Then, we rewrite Eq. (4.15) by the following equation
assuming that every subband has the same number FH of coefficients.

u[f, b] =
kmax[b]∑

k=kmin[b]

c̃a[f, k]. (4.31)

The tile value ud[f, b] is calculated by Eq. (4.16). The detected bit strength is calculated as
the simply correlation between the pseudo-random sequence and the tile values.

y[j] =
∑

∀(t,b)∈L[j]

ωF [t, b]ud[f, b], (4.32)

in which we simplified Eq.(4.22) by omitting the denominator. This does not affect the es-
timated communication capacity because the denominator was originally used to control the
variance of the bit strength and because we instead factor the variance into the calculation
by considering the variance of the bit strength. In addition, ud in the original equation is
approximated by 0. f is an index of a frame included in the t-th column of the block. For
example, 4t can be used as f if we assume the synchronization position is at the 0-th frame.

Although the following calculations are not necessary for the detection steps, we define
some additional variables for later use. r[f, k] is multiplication of a pseudo-random number
and a normalized magnitude coefficient. h[t, k] is the difference between the multiplication
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values for adjacent frames.

r[f, k] = ωF [t, b]c̃a[f, k], (4.33)
h[t, k] = r[f, k]− r[f + 2, k], (4.34)

where k is in the b-th subband (kmin[b] ≤ k ≤ kmax[b]). By applying Eq.(4.31) and Eq.(4.16)
to Eq. (4.32), we can derive the following relationship.

y[j] =
∑

∀(t,b)∈L[j]

ωF [t, b]ud[f, b] (4.35)

=
∑

∀(t,b)∈L[j]

ωF [t, b](u[f, b]− u[f + 2, b]) (4.36)

=
∑

∀(t,b)∈L[j]

ωF [t, b]




kmax[b]∑

k=kmin[b]

c̃a[f, k]−
kmax[b]∑

k=kmin[b]

c̃a[f + 2, k]


 (4.37)

=
∑

∀(t,b)∈L[j]

kmax[b]∑

k=kmin[b]

(r[f, k]− r[f + 2, k]) (4.38)

=
∑

∀(t,b)∈L[j]

kmax[b]∑

k=kmin[b]

h[t, k], (4.39)

where the number of accumulated h[t, k]s is WBFH .

Derivation of the relationship We assume the bit strength y follows a Gaussian distribu-
tion with the mean E[Y ] and the variance Var[Y ]. Then, the probability of a bit error can be
restated as the probability of the tail of the distribution cross the origin, Q(

√
E[Y ]2/Var[Y ]),

where Q(x) is the cumulative distribution function defined by the following equation,

Q(x) =
∫ ∞

x

1√
2π

e−t2/2dt. (4.40)

E[Y ]2/Var[Y ] is a important parameter that determines the capacity of communication through
watermark. We name the parameter a watermark signal-to-noise ratio (WMSNR),

WMSNRB =
E[Y ]2

Var[Y ]
. (4.41)

By Eq. (4.39), we can derive E[Y ] = WBFHE[H] and Var[Y ] = WBFHVar[H]. Hence,
Eq. (4.41) can be rewritten as

WMSNRB = WBFH
E[H]2

Var[H]
. (4.42)

We define WMSNR per frequency component by

WMSNRC =
E[H]2

Var[H]
. (4.43)

Shimizu compared some watermark embedding methods and communication methods in [61]
to estimate a communication capacity that can be achieved under a defined level of degradation
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with an error rate below a predefined threshold. For example, the probability PM of error that
a wrong codeword is decoded for Direct Sequence Spread Spectrum (DSSS) without coding
can be estimated with the following equation.

PM = 1− (1− Pb)R ≈ RPb (4.44)

= RQ




√
2

S

N

W

R


 , (4.45)

where R, Pb, and W are the communication capacity, the bit error rate, and the bandwidth,
respectively. We can obtain the communication capacity R with a predefined error rate PM for
a certain S/N by solving the equation adversely. Note that the S/N in the Shimizu’s equation
corresponds to our WMSNRC defined in Eq. (4.43) 3. In the following section, by calculating
the WMSNR for each level of degradation, we estimate the communication capacity by using
the Shimizu’s theory.

4.3.2 Estimation of watermark SNR

In this section, we derive an equation that estimates the WMSNR for a given level of degra-
dation of the content. With the estimated WMSNR, we can estimate the communication
capacity as well by using Eq. (4.45) or similar equations for other communication methods.
Before deriving the WMSNR estimation equation, we describe our assumptions and some
losses we particularly take into consideration.

(a) Assumptions

Assumption on the host signal We assume the host signal locally follows a Gaussian
distribution while the variance of the distribution is different depending on the portions of
the host signal. In other words, from a local point of view, the real components cr[k] and
the imaginary components ci[k] of the host signal mutually independently follows a Gaussian
distribution with the mean 0 and the variance σ2

r . In addition, we assume the amplitude
frequency components of a frame (f) and a next non-overlapping frame (f+2) have correlation.
These assumptions are based on the fact that musical signals sustain a similar stochastic
characteristic for a certain length of time. However, from a global point of view, different
portions of the content have different values of σ2

r and the distribution of σ2
r is dependent on

the genre of the content.

Assumption of simple psychoacoustic model We assume the use of a simplest psychoa-
coustic model that determines the magnitude of the watermark signal in proportion to the
magnitude of the host signal as ap[f, k] = βca[f, k], where β is a constant value. Assuming
this model, the purpose of the embedding algorithm is restated as modifying the magnitudes
as determined by the following equation:

ca
′[f, k] = ca[f, k] + s[f, b]ap[f, k] (4.46)

= (1 + s[f, b]β) ca[f, k], (4.47)

where k is include in the b-th subband (kmin[b] ≤ k ≤ kmax[b]). This operation also multiplies
both the real component cr[f, k] and the imaginary component ci[f, k] by (1 + s[f, b]β) and
makes cr

′[f, k] and ci
′[f, k].

3In the Shimizu’s equation, S/N is defined as S
N

=
µ2

s

σ2
s+σ2

N

, where µs and σ2
s +σ2

N in the equation correspond

to E[H] and Var[H] of Eq. (4.43), respectively.



72 CHAPTER 4. ROBUST AUDIO WATERMARKING ALGORITHM

Of course, more complex psychoacoustic model taking masking effects into consideration
should be used in practice. However, it is very difficult to analyze the communication capacity
considering the masking effects since the magnitudes of the frequency components mutually
affect the magnitudes of the watermark signals at different frequencies. In addition, there is
no commonly used standard psychoacoustic model. These are the reason we use the simplest
psychoacoustic model for analysis.

Assumption on degradation We assume as a model of degradation that a Gaussian noise
signal is added to each of the real components and the imaginary components of the water-
marked signal by

cr
′′[f, k] = cr

′[f, k] + νF,r[f, k], (4.48)
ci
′′[f, k] = ci

′[f, k] + νF,i[f, k], (4.49)

where cr
′′[f, k] is the k-th real component of the watermarked and degraded signal for f -

th frame. We assume the noise signal νF,r[k] follows a Gaussian distribution, N(0, σ2
ν). In

addition, we assume that there is no correlation between the noise signals of a frame and the
noise signal of the neighboring frames and that there is no correlation between the magnitudes
of the host signal and the magnitudes of the noise signal. We assume the same thing for the
imaginary component ci

′′.

(b) Loss by the windowing function

Although the embedding algorithm is intended to increase or decrease the host signal by the
watermark signal whose magnitude is β times of that of the host signal, the actual change
of the magnitude is diminished by the use of the windowing function. However, this loss is
unavoidable because the windowing function is necessity to make detection possible even when
the detection DFT frames are displaced from the original embedding DFT frames.

Observable change of magnitudes The watermark signal is multiplied by the windowing
function when the step 6 of embedding performs inverse DFTs (IDFTs) and when the step 1
of detection performs DFTs. By these processes of mulutiplication of the windowing function,
the change of magnitudes observed by the detection algorithm is approximately only 3

4β even
though the magnitudes are changed by the rate of β. We denote the coefficient 3

4 as γ.

Increase of variances by the windowing function If c̃a[f, k]s in a same subband in
Eq. (4.15) are mutually independent, the mean and the variance of u[f, b] will respectively
become FH -times of those of c̃a[f, k]. However, the use of a windowing function for observation
of the magnitudes causes correlation between the neighboring magnitudes and results in larger
values for the variance of u. We found by simulation using MATLAB4 that the correlation
coefficient of the adjacent logarithmic magnitude components has a value of ρB ≈ 0.159 when
a sine window is used for the windowing function, even though the host signal is a Gaussian
signal. This effect makes the variance of u,

(
1 + 2FH−1

FH
ρB

)
= 1.28 times. We denote the value

1.28 as ξ.

(c) Estimation of WMSNR

In the following section, we first make an equation to estimate WMSNR in a local region where
we can consider the standard deviation σr of the host signal constant. Then, based on the

4A numerical computing environment developed by MathWorks.
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equation, we make a global estimation equation of WMSNR that takes the distribution of σr

into consideration.

Estimation of local WMSNR Without limiting the generality of the discussion, we can
confine the discussion to the j-th bit whose value mj is 1. According to Eq. (4.7), the sign
s[f, b] for the first two frames of each tile equals to the pseudo-random number ωF [t, b]. We
hereafter abbreviate the suffix [t, k] in Eq. (4.39) by i. Instead, we distinguish the f -th frame
and the (f + 2)-th frame by using the suffices 1 and 2, respectively. The number of frequency
components to be summed is WBFH . Based on these definitions, Eq. (4.39) can be expressed
by

y[j] =
WBFH−1∑

i=0

h[i] =
WBFH−1∑

i=0

(r1[i]− r2[i]) (4.50)

=
WBFH−1∑

i=0

ωF [i](log ca1[i]− log ca2[i]). (4.51)

Furthermore, we can derive the following equation as shown in Section 4.3.4.

E[H] =
1
2

log

{
(1 + γβ)2 + d2

(1− γβ)2 + d2

}
, (4.52)

Var[H] ≈ 2× 0.411(1− ρL). (4.53)

The loss γ by the windowing function is taken into consideration. Note that d = σν/σr. ρL

is the correlation coefficient of the logarithmic magnitudes, log ca1 and log ca2, of adjoining
frames. If the host signal is music, ρL has a non-zero value. We can estimate WMSNRC by
using this to Eq. (4.43) and factoring the increase of the variance by the windowing function
into the calculation.

WMSNRC =
E[H]2

ξVar[H]
(4.54)

≈
log

{
(1+γβ)2+d2

(1−γβ)2+d2

}

4× 0.411ξ(1− ρL)
. (4.55)

We can see the use of the correlation coefficient ρL, by taking differences of adjoining frames,
increases WMSNRC by a factor 1

1−ρL
.

Estimation of global WMSNR The local estimation of WMSNR derived in the previous
section is not practically useful since it assumes the host signal follows a unique distribution.
Contrarily, the distribution of the host signal differs for each audio content. Since degrada-
tion of watermark begins at portions of the audio content whose magnitudes are small, the
difference of the distribution has a substantial impact on the watermark robustness. To take
the distribution difference into consideration, we investigate the probability density function,
Pv(σr), of the standard deviation, σr, of the magnitude coefficients of each audio content.
Using Pv(σr), we estimate the global WMSNRC for the whole audio content by

WMSNRC

=

{∫ ∞

0
Pv(σr)

√
E[H]2

V ar[H]
dσr

}2

. (4.56)
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Figure 4.29: Experimental results of
√

WMSNRC estimation. The lines except the line for
Estimated are experimentally observed results.

4.3.3 Experimental results

In this section, we first compare the estimated WMSNR and the experimentally observed
WMSNR for the cases without additive noise to verify the estimation equation. Then we
conduct a similar comparison for WMSNR after noise addition. We draw a conclusion in the
last part of the section.

(a) Parameter values

We used ten pieces of monaural host signals for the experiments; three pieces from each of
orchestral music, pop music, and solo instruments (piano, violin, and harpsichord) and one
piece of white noise. All of the signals were sampled at a frequency of 44.1 kHz and with a
bit resolution of 16 bits, and each piece is 100 seconds long. The distribution of the standard
deviations of magnitudes was investigated for each of the four genres. The lowest frequency
kmin[1] for the lowest subband was set to the 10-th frequency component. The number of
subbands BH was 24, which corresponds to the range from 400 Hz to 11 kHz. Each of the
24 subbands was given FH = 10 frequency components. The length BW of a pattern block
was set to 10. Since we used the whole block for a bit Nb = 1, the number of tiles for a bit
was WB = BW BH = 240，WBFH = 2, 400. With the length of a DFT frame N = 1, 024, the
length of a block corresponds also to N/2× 4×BW = 20, 480 samples ≈ 0.464 seconds.

(b) WMSNR without noise addition

We compared the estimated values (Eq.(4.54)) and the experimentally observed values of
WMSNRC just after embedding without noise addition in Fig. 4.29, whose horizontal axis and
vertical axis are β and square roots of WMSNRC , respectively. The graph legends are sorted
in descending order. The estimated values are calculated assuming that the host signal is a
Gaussian noise and that the magnitude components are distributed in a Rayleigh distribution
with the correlation coefficient ρL 0. No additive noise is added (σν = 0).

(c) WMSNR after noise addition

We also compared the estimated values (Eq.(4.56)) and the experimentally observed values
of WMSNRC after noise addition. We used the probability density functions (Fig. 4.30) that
we obtained by actually investigating the test audio content for Pv(σr) of Eq. (4.56). The
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Figure 4.30: Local distributions of magnitudes for each genre.

Figure 4.31: Estimated and observed
√

WMSNRC against changing global host-signal-to-
additive-noise ratio(HNR).

horizontal axis of the graph is normalized by the average energy calculated for entire samples
in each genre.

The energy of additive noise was controlled to be constant for each of the test audio files
and to be in a fixed ratio compared to the average energy of the audio file. In other words,
additive noise that results in a certain amount of signal to noise ratio (host signal to additive
noise ratio) was added. This is done simulating analogue transmission such as television
transmission and radio transmission. The host signal to additive noise ratio (HNR) when σν

is added can be expressed in the following equation:

HNR = 10 log10

∫ ∞

0
Pv(σr)

(
σr

σν

)2

dσr. (4.57)

Figure 4.31 shows the estimated values and the experimentally observed values of
√

WMSNRC

against various values of HNR[dB]. 30 of the horizontal axis means that the energy of the
additive noise signal is -30 dB compared to the energy of the host signal. The data plotted at
the right edge of the figure are values before noise addition. β = 0.1 was used for watermark
embedding.

(d) Discussion
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Figure 4.32: Watermark capacity with the bandwidth 155,039 and the error rate 1e-5.

Validity of estimation We can see the validity of the estimated WMSNR just after wa-
termark embedding in Fig. 4.29. Change of WMSNR by additive noise is also successfully
estimated (Fig. 4.31). Although the estimated values for pop music was somewhat different
from the observed values, this is caused by the error of the estimated WMSNRC just after
watermark embedding. We can consider the degradation process is estimated well.

Watermark capacity We can calculate the capacity of audio watermark based on the
experimental results as follows; Since there were W = WBFH = 2, 400 frequency coefficients
for each pattern block whose length is 2NBW samples (≈ 0.464 seconds), the number of
frequency components that are available for detecting watermark from 30-second monaural
music is 155,039 5. We can obtain the relationship (Fig. 4.32) between signal-to-noise ratio
(SNR) and capacity by redrawing the Shimizu’s graph with the bandwidth 155,039. While the
vertical axis of the figure is the communication capacity with the error rate 10−5, the horizontal
axis is

√
WMSNRC . According to Fig. 4.31, when additive noise with the HNR 20dB is added,√

WMSNRC for pop music and orchestral music was approximately 0.1 and 0.05, respectively.
By reading these values in Fig. 4.32, we can see that the maximum communication capacity
is approximately 400 and 100, respectively. These are the numbers for watermark embedded
with β = 0.1 into 30-second audio pieces.

Dependency on music genres The fact that the robustness and the communication ca-
pacity are heavily dependent on the genre of the host signal is attributable to the different
distributions of frequency components. Orchestral music and solo instruments have a wide
dynamic range of magnitudes. Audio watermark embedded in low-energy portions degrades
easily with small quantity of additive noise, while embedding a strong watermark in these
portions should be avoided because the low-energy host signal in these portions cannot mask
the strong watermark. For these reasons, watermarking orchestral music or solo instruments
is more difficult than watermarking pop music.

4.3.4 Derivation of watermark SNR

In this section, Eq. (4.52) is derived. Based on Eq. (4.47) and Eq. (4.48), the real components
after watermark embedding and noise addition can be expressed as cr

′′[i] = (1+ωF [i]β)cr[i]+
νF,r[i]. Since the distributions of cr[i] and νF,r[i] are N(0, σr) and N(0, σν), respectively, the
distribution of cr

′′[i] becomes a Gaussian distribution N(0, (1 + ωF [i]β)2σ2
r + σ2

ν). The same
5(30× 44100)/(N/2× 4×Bw)×W = 155, 039.0625.
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thing can be said to the imaginary components. In general we can say that, when stochastic
variables x and y independently follow a Gaussian distribution N(0, σ2), the mean and the
variance of z = log

√
x2 + y2 is 0.0580 + log σ and 0.411, respectively. This is calculated by

numerical integral with Mathematica, which is a mathematical software system developed by
Wolfram Research. Because of the results of the above-mentioned numerical integral, we can
know the mean and the variance of log ca

′′[i] are 0.0580+log
√

(1 + ωF [i]β)2σ2
r + σ2

ν and 0.411,
respectively. Based on these values, E[H] and Var[H] can be obtained by

E[H] = E[ωF [i](log ca
′′
1[i]− log ca

′′
2[i])] (4.58)

=
1
2

{(
+1×E[log ca

′′
+ − log ca

′′
−]

)
+

(−1×E[log ca
′′
− − log ca

′′
+]

)}
(4.59)

= E[log ca
′′
+ − log ca

′′
−] (4.60)

= log
√

(1 + β)2σ2
r + σ2

ν − log
√

(1− β)2σ2
r + σ2

ν (4.61)

= log
√

(1 + β)2σ2
r + σ2

ν√
(1− β)2σ2

r + σ2
ν

(4.62)

=
1
2

log
(1 + β)2 +

(
σν
σr

)2

(1− β)2 +
(

σν
σr

)2 . (4.63)

The transformation from Eq. (4.58) to Eq. (4.59) separated terms of +1 and terms of −1 by
considering the fact that ωF consists of the same number of +1s and −1s. ca+ and ca− are
magnitudes the s for which is positive and negative, respectively.

E[H2] = E[ωF [i]2(log ca
′′
1[i]− log ca

′′
2[i])

2] (4.64)
= E[(log ca

′′
+ − log ca

′′
−)2] (4.65)

= E[(log ca
′′
+)2 + (log ca

′′
−)2 − 2 log ca

′′
+ log ca

′′
−]

≈ (0.411 + E[log ca
′′
+]2) + (0.411 + E[log ca

′′
−]2)

−2(E[log ca
′′
+]E[log ca

′′
−] + ρL

√
Var[log ca

′′
+]Var[log ca

′′−]) (4.66)

= 2× 0.411(1− ρL) + (E[log ca
′′
+]−E[log ca

′′
−])2, (4.67)

Var[H] = E[H2]−E[H]2 (4.68)
≈ 2× 0.411(1− ρL). (4.69)

The transformation from Eq. (4.64) to Eq. (4.65) is not dependent on the value of the pseudo-
random number. This is because either ca

′′
1[i] or ca

′′
2[i] must be ca

′′
+ and the other one must be

ca
′′−.

4.4 Concluding Remarks

We presented a watermarking method that can embed a 64-bit message onto a 30-second
music sample. The method was robust against shift and fluctuation with respect to time and
frequency of the audio content. The robustness was achieved mainly through a two-dimensional
pseudo-random array, magnitude modification, and nonlinear subbands.

The method modifies the magnitudes of segmented areas in the time-frequency plane of
the content according to a two-dimensional pseudo-random array assigned to the areas. Win-
dowing and overlapping were used before and after the Discrete Fourier Transforms (DFTs)
in order to avoid generating clicking sounds at the borders of adjacent DFT frames. It was
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shown that the effect of the magnitude modification by the embedding algorithm was ob-
servable by the detection algorithm with displaced DFT windows. This makes the method
robust against random cropping without computationally expensive searching for the embed-
ding DFT windows. Furthermore, we improved robustness of the algorithm by using multiple
stretched pattern blocks. With the improvement, robustness against pitch shifting and random
stretching up to ±10% was achieved with only 16% additional computational time.

We tested the robustness of the method against wow-and-flutter, echo, noise addition,
MPEG1 Audio Layer 3 (MP3) compression, ATRAC3 compression, MiniDisc recording, ran-
dom cropping, pitch shifting, digital-to-analog and analog-to-digital conversion. Although we
do not have results of formal subjective listening tests to present in this chapter, the robustness
experiments were performed with the watermark signal level 35dB lower than the level of the
host signal, which was the level virtually indistinguishable to human ears. The acoustic quality
of the method was verified also through a number of subjective listening tests. In the tests,
professional sound engineers and audio equipment critics carefully listened to watermarked
audio samples.

The last part of this chapter theoretically formulated the communication capacity of the
algorithm under the condition where additive noise is overlapped. It was revealed that the
different distributions of magnitudes depending on the genre of audio content caused different
robustness against the additive noise.

Further improvement of the algorithm is required to achieve better robustness against
excessive distortions and to shorten the duration of content required to carry a message.



Chapter 5

Applications of Robust Audio
Watermarking

We extend the applications of the audio watermarking algorithm to a broader range of situa-
tions in this chapter, while conventional audio watermarking research assumes limited uses of
digital audio data. First, we show that the algorithm described in Chapter 4 can be applied
to compressed audio and that the embedded information can be detected whether or not the
watermarked audio data is compressed. Second, we describe multiple composition methods
for real-time watermark embedding for analogue audio and live performances played in audi-
toriums, and we point out their merits and flaws. Sonic watermarking, which is one of the
composition methods, is a method that can embed watermarks into the sound in the air by
making the watermark sound enter the air from the speaker and mixing it with the host sound
in the air. In the last part of the chapter, we carefully consider the application model and the
possible problems of sonic watermarking and report the experimental results. This chapter is
related to the work published in [65, 47, 66, 69, 68, 49, 48, 50].

5.1 Audio Watermarking for MPEG AAC Audio

The main purpose of this section is to show the basic algorithm described in Section 4 can be
applied to compressed audio to enable blind watermark detection in AAC1-compressed audio
content even when the content has been compressed after the watermark was embedded in
the uncompressed domain. The whole target of this section is illustrated in Fig. 5.1. That
will allow watermark detection in both the compressed domain and the uncompressed domain
regardless of the original domain where the watermark embedding was done. The most difficult
challenge among the paths considered in the figure is watermark detection in the compressed
domain when the content is first watermarked in the compressed domain, then decompressed to
the uncompressed domain, and finally compressed again. This is because the Modified Discrete
Cosine Transform (MDCT) frames used for the second compression are not necessarily identical
to the original MDCT frames of the first compressed audio. They may be displaced because of
editing such as trimming that was performed after the embedding and the decompression before
the compression and the detection (Fig. 5.2). A two-dimensional pseudo-random pattern of
the basic algorithm is also effective for solving the problem. Detection can be performed with
neither reference to the host signal nor any side information other than the MDCT coefficients.
However, to enable detection in the compressed domain, the data payload and the acoustic
quality are sacrificed to some extent. The data payload of the method is much less than the

1MPEG2 Advanced Audio Coding.
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OrgPCM
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Embedding
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WMDetAAC

WMDetPCM
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Uncompressed Domain

AAC-compressed Domain
AACEncAACDec

OrgAAC

(Editing)

Figure 5.1: The goal of this section is to enable watermark detection in both the compressed
domain and the uncompressed domain regardless of the original domain where the watermark
embedding was done. The abbreviation are described in Table 5.1.

2048 4096 6144 8192 [sample]0

Trim

AACEnc

AACDec

Original
 AAC file

New
 AAC file

Trimmed

New displaced MDCT frames

Original MDCT frames

Figure 5.2: When an AAC file is decompressed and compressed again, the MDCT frames may
be displaced because of the editing such as trimming.

methods of Neubauer et al. [51, 52, 53, 54]. The acoustic quality of the proposed method has
not been tested.

After the key ideas for the method are described in Section 5.1.1, the rest of the section
covers the changes necessary for the basic algorithm. The experimental results of magnitude
modification and observation demonstrate the effect of the regularity in the pseudo-random
pattern in Section 5.1.2. The robustness of the audio watermark embedded in the uncom-
pressed domain or in the AAC-compressed domain is tested in Section 5.1.3.

5.1.1 Algorithms for AAC-compressed content

In this section, after the basic ideas of the method are described, we present the changes
necessary for the basic algorithm. The main ideas of the method can be briefly summarized
as follows:

• The uncompressed domain watermarking algorithms overlap the Discrete Fourier Trans-
form (DFT) frames with the adjacent frames by a half window just as the MDCT frames
of AAC do.

• The statistical non-uniformity of the magnitudes of the content, which has been intro-
duced by the watermark embedding, can be observed from either the DFT coefficients
calculated from an uncompressed version of the content or from the MDCT coefficients
recovered from an AAC-compressed version of the content.

• The statistical non-uniformity can be introduced into the host signal by modifying either
the DFT coefficients or the absolute values of the MDCT coefficients.
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Figure 5.3: Frames used for embedding. The double-circled embedding frames are the begin-
nings of the tiles. The signs in the circles are examples of the signs used in a subband for each
of the frames.

Table 5.1: Description of the abbreviations used in the figures. When a number is used with
the abbreviations, it means the bitrate per a monaural channel used for AAC compression.

Abbreviation Meanings
OrgPCM Original unwatermarked uncompressed audio file
OrgAAC Original unwatermarked AAC-compressed audio file
MagMdfyPCM Magnitude modification in the uncompressed domain
MagMdfyAAC Magnitude modification in the AAC-compressed domain
MagObsvPCM Observation of the magnitude change in the uncompressed domain
MagObsvAAC Observation of the magnitude change in the AAC-compressed domain
Trim Trimming of the beginning part of the audio file. Various lengths

of trimming are tested.
AACEnc AAC encoding.

A bitrate of 48, 64, or 96 kbps per a monaural channel is used.
AACDec AAC decoding
WMEmbPCM Watermark embedding in the uncompressed domain
WMDetPCM Watermark detection in the uncompressed domain
WMEmbAAC Watermark embedding in the AAC-compressed domain
WMDetAAC Watermark detection in the AAC-compressed domain

(a) Basic concepts

The watermark embedding and detection algorithms for the uncompressed domain examined
in this section are basically the same as the basic algorithms, only with different values of
the parameters such as the length of the DFT frames, the watermark embedding strength,
the length of the codeword, etc. The watermark embedding and detection algorithms for the
compressed domain are modified versions of the basic algorithms for the uncompressed domain.
We describe the algorithms below.

Overlapping frames We show Fig. 4.4 here again (Fig. 5.3) to explain the relationship
with the frames and magnitude modification by the watermark embedding. A tile consists of
four consecutive frames of either DFTs or MDCTs. In each four adjacent frames, the opposite
signs are used for the first two frames and the last two frames of the four frames. Each of
the frames overlaps the adjacent frames by a half window. In the figure, the double-circled
embedding frames are the beginnings of the tiles. The signs in the circles are examples of the
signs used in a subband for each of the frames.
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Figure 5.4: The process flow of the AAC watermark embedding algorithm.

Magnitude modification The embedding algorithm introduces non-uniformity of the mag-
nitude distribution of the content in the frequency domain. When watermark embedding is
performed for uncompressed content, the magnitudes of the complex DFT coefficients cal-
culated by the short-term DFTs are increased or decreased according to the pseudo-random
number. When embedding is performed for AAC-compressed content, the absolute values of
the MDCT coefficients recovered from the bitstream are increased or decreased instead.

The detection algorithm calculates watermark detection strengths by correlating the mag-
nitudes of the content and the pseudo-random numbers. While the watermark detection
algorithm for uncompressed content uses the magnitudes of the complex DFT coefficients, the
watermark detection algorithm for AAC-compressed content uses the absolute values of the
recovered MDCT coefficients.

Watermark embedding in the AAC-compressed domain The watermark embedding
algorithm for AAC-compressed content is illustrated in Fig. 5.4. The algorithm first decodes
the quantized MDCT coefficients, cm,q[f, k], of the k-th frequency bin in the f -th frame of
a pattern block of the content. The non-uniformities of the magnitudes are introduced by
adding ∆cm,q to cm,q. In the last step, the modified quantized MDCT coefficients, cm,q

′,
are encoded using the original Huffman codebooks and the original scale factors. Hence, re-
quantization of the modified coefficients is not necessary. However, in order to determine how
many coefficients are to be modified, an inverse quantizer, Q−1, has to be applied to obtain
the MDCT coefficients, cm, before the watermark calculation process.

cm[f, k] = Q−1(cm,q[f, k]), (5.1)
ca[f, k] = |cm[f, k]|, (5.2)

cm,q
′[f, k] = cm,q[f, k] + ∆cm,q[f, k]. (5.3)

The value of ∆cm,q[f, k] is determined by the following simple rule, without using a psychoa-
coustic model. The total magnitude, u[f, b], of the b-th subband in the f -th frame of a pattern
block is calculated in each subband. The target value for the total magnitude after the modifi-
cation is calculated as (1+stile[t, b]β)u[f, b], while β is the degree of modification. The value of
0.1 was used in the experiments described below. From the lowest bin of the subband, whether
or not cm,q[f, k] should be modified is examined. If modifying cm,q[f, k] makes the total mag-
nitude of the subband closer to the target total magnitude, then it is modified. When there is
no coefficient that satisfies the condition, or when the number of modified coefficients in the
subband reaches a predefined limit, the modification calculation is finished. The limit numbers
used for 48, 64, and 96 kbps-encoded monaural AAC content are 2, 4, and 8, respectively.
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When increasing the magnitudes, the quantized coefficients are skipped if they already have
the maximum absolute value of the codebook. Similarly, the zero coefficients are skipped when
decreasing the magnitudes. The algorithm leaves the EIGHT SHORT SEQUENCE [30] frames
unchanged, but modifies the LONG START SEQUENCE and LONG STOP SEQUENCE
frames in the same way as the
ONLY LONG SEQUENCE frames. Although utilizing a psychoacoustic model to control the
watermark signal is desirable, it was not used in these experiments because it was difficult to
adjust the quantized magnitudes according to the model’s excessively detailed output.

Watermark detection in the AAC-compressed domain In the watermark detection
algorithm in the AAC-compressed domain, after the quantized MDCT coefficients are decoded,
an inverse quantizer is applied to them. The absolute values of the recovered MDCT coefficients
are used for at,f . When there is an EIGHT SHORT SEQUENCE frame, the MDCT coefficients
of the next frame are copied instead. The other types of sequences are handled in the same way.
To allow for the calculation of logarithms, the value of 1 was given to the MDCT coefficients
whose values were zero.

5.1.2 Magnitude modification experiments

In this section, it is shown that the magnitude changes made in either the uncompressed
domain or the AAC-compressed domain can be observed in both of these . The abbreviations
used in these figures are explained in Table 5.1.

In the test, magnitude modification is performed in either the uncompressed domain or the
AAC-compressed domain. The magnitudes of the frequency coefficients are modified by the
following simple rule without a key or a message. In the even subbands, the magnitudes are
increased in the first two frames, decreased in the next two frames, and increased in the next
two frames, and so on. In the odd subbands, the opposite signs are used. When observing the
magnitude modification, the magnitudes of the modified content are compared to the content
that is not modified. The logarithms of the magnitude summations of the even subbands are
calculated, and the differences of the logarithms with and without magnitude modification are
calculated. Then the mean of the differences is determined. In most cases, the frames used for
the magnitude observation are displaced by trimming the beginning of the modified content2.

(a) Magnitude modification in the uncompressed domain

In this test, the magnitudes of each of the frequency bins are modified by ±10% using short-
term DFTs in the uncompressed domain (MagMdfyPCM in Fig. 5.5). The magnitude change
is observed in the uncompressed domain just after trimming (E1a), in the compressed domain
after AAC compression (E1c), or in the uncompressed domain after decompression of the
AAC encoded content (E1b). More precisely, MagObsvAAC compares the logarithms of the
summation of the absolute values of the recovered MDCT coefficients in the even subbands of
the content that has been modified, trimmed, and compressed and those of the content that
has been trimmed by the same length, and compressed.

The results are shown in Fig. 5.6. The horizontal axis of Fig. 5.6 is the number of trimming
samples, that is, the displacement of the observation frames to the original modification frames.
The vertical axis is the mean of the logarithmic magnitude difference. The graph (E1a) in
Fig. 5.6 is the magnitude change observed in the uncompressed domain just after trimming,

2To observe the effect of magnitude modification in isolation, the unmodified content is also trimmed by the
same length before the comparison.
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Figure 5.5: Settings of a preliminary experiment where the magnitude of a content is modified
in the uncompressed domain and the magnitude change is observed in both of the compressed
domain and the uncompressed domain.
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Figure 5.6: Experimental results of observation of magnitude change made in the uncompressed
domain.

and it corresponds to the path (E1a) in Fig. 5.5. The graph (E1b) is the magnitude change
observed in the uncompressed domain after AAC compression with a bitrate of 48 kbps per
channel and decompression, and it corresponds to the path (E1b) in Fig. 5.5. The two graphs
of (E1c), both of which correspond to (E1c) of Fig. 5.5, are observed in the compressed domain
after compression with a bitrate of 96 and 48 kbps per channel, respectively. It can be seen that
the magnitude change can be observed even in the observation frames in a different domain
that are not exactly the same as the modification frames.

(b) Magnitude modification in the AAC-compressed domain

The total magnitudes of the subbands are modified by ±10% in the AAC-compressed domain
(MagMdfyAAC in Fig. 5.7) using the rule described in Section (a). The results are shown in
Fig. 5.8. The magnitude changes are observed in the compressed domain just after the modi-
fication (E2c), in the uncompressed domain after decompression (E2a), or in the compressed
domain after re-compression (E2b). The magnitude modifications were done to an AAC file
whose bit rate is 96 kbps per channel. The bitrates used for re-compression in the case of
(E2b) were 96 and 48, respectively. It can be seen that magnitude modification is possible
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Figure 5.7: Settings of a preliminary experiment where the magnitude of a content is mod-
ified in the AAC-compressed domain and the magnitude change is observed in both of the
compressed domain and the uncompressed domain.
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Figure 5.8: Experimental results of observation of magnitude change made in the AAC-
compressed domain.

also in the compressed domain.

5.1.3 Results of robustness tests

In this section, the robustness of the watermarking method against AAC compression, de-
compression, and re-compression is shown. Nine pieces of monaural music such as pop music,
orchestral music, and solo instruments were used for the robustness tests. All of the signals
were sampled at a frequency of 44.1 kHz and with a bit resolution of 16 bits, and each piece
was 100 seconds long.

(a) Implementation

We implemented methods that can embed 64-bit messages in 30-second pieces of music. The
message is encoded in 448 bits by adding 8 Cyclic Redundancy Check (CRC) parity bits, using
Turbo Coding, and repeating it twice. Each pattern block has 12 bits and a synchronization
signal embedded, and the block has 28 columns and 8 rows of tiles. Each of the 28 frequency
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Figure 5.9: Settings of the robust test where watermark embedding was performed in the
uncompressed domain.
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Figure 5.10: Robustness of watermark embedded in the uncompressed domain.

subbands is given an equal bandwidth of 20 frequency bins. The frequency of the highest
bin used is 12.5 kHz. The length of a DFT frame is 2,048 samples, which is as long as the
MDCT frames used for AAC compression. In the tests, no additional tools defined in the AAC
specification [30] were used (such as temporal noise shaping (TNS) or prediction).

At the time of detection, while 32 tiles out of the 224 tiles are dedicated for the local
adjustment of the pattern block synchronization, the tiles assigned for the bits are also used for
the global synchronization. For the global synchronization, it was assumed that 7 consecutive
blocks would always have consistent synchronization positions. The false alarm error ratio
is theoretically under 10−5 based on the threshold of the square means of the detected bit
strengths. Another threshold on the estimated watermark signal-to-noise ratio (SNR) is set to
keep the code word error ratio under 10−5. The reasons to use both thresholds are described
in Ref.[61]

We measured the correct detection rates (CDRs) and the mean of the watermark strengths,
X, at which the correct 64-bit messages were detected. The error correction and detection
algorithm successfully avoided detection of an incorrect message.

(b) Robustness of watermark embedded in the uncompressed domain

The watermark was embedded in the uncompressed domain (WMEmbPCM in Fig. 5.9). The
root mean square power of the watermark signal was on average 23.9 dB lower than that of the
host signal. Watermark detection was done in the uncompressed domain just after trimming
(E3a), in the compressed domain after AAC compression (E3c), or in the uncompressed domain
after decompression of the AAC encoded content (E3b).

The experimental results are shown in Fig. 5.10. The horizontal axis of the graphs is the
number of trimming samples. Because the synchronization process chooses the best frame
in the detection frames, and that the interval between a frame and the next frame is 1,024
samples, the trimming of more than 1,024 samples was not tested. While the vertical axis
of the left graph is the CDRs, that of the right graph is the average watermark strength. A
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Figure 5.11: Settings of the robustness experiments where watermark embedding was per-
formed in the AAC-compressed domain.
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Figure 5.12: Robustness of watermark embedded in the AAC-compressed domain.

bitrate of 48 kbps per channel was used for the compression. CDRs over 80% were seen for
every tested trimming length and every tested path.

(c) Robustness of watermark embedded in the AAC-compressed domain

Tthe watermark was embedded in the AAC-compressed domain (WMEmbAAC in Fig. 5.11).
The root mean square powers of the watermark signal for 48, 64, and 96 kbps per channel AAC
audio were on average 19.3, 22.0, and 26.6 dB lower than that of the host signal, respectively.
The SNR of AAC compression by the AAC encoder used for the experiment was 18.1, 23.4,
and 29.9 dB for these bitrates, respectively. Watermark detection was done in the compressed
domain just after embedding (E4c), in the uncompressed domain after decompression (E4a),
and in the compressed domain after re-compression (E4b).

The experimental results are shown in Figures 5.12 to 5.14. In Fig. 5.12, while watermark
embedding was done for AAC files compressed with a bitrate of 48 kbps per channel, detection
was done in the uncompressed domain (E4a) and the uncompressed domain (E4b) and (E4c).
Because trimming finer than 1,024 samples is impossible for AAC compressed files, the result
of (E4c) is constant. A bitrate of 48 kbps per channel was again used for re-compression of
the decoded audio files for (E4b) of the figure. CDRs for detection in the re-compressed audio
files were 60-80%. The reason the peaks of the CDRs are at different trimming lengths is not
yet clear. It is possibly because the AAC encoder might insert some samples at the beginning
of the audio file to be encoded in order to preserve audio quality.

Fig. 5.13 and Fig. 5.14 show the results of compressed-domain detection after re-compression
for various cases. The original compression bitrates for Fig. 5.13 and 5.14 were 96 and 48 kbps,
respectively, while detection was performed at the bitrates of 48, 64, and 96 kbps. For the
96 kbps-compressed AAC embedding, the effect of the detection bitrate can be seen more
prominently.

We showed the basic algorithm described in Section 4 can be used as watermarking methods
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Figure 5.13: Detection of watermark embedded in AAC files with a bitrate of 96 kbps per
channel after the files are decompressed, trimmed and compressed again (E4b of Fig. 5.12).
48, 64, or 96 kbps was used for re-compression.
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Figure 5.14: Detection of watermark embedded in AAC files with a bitrate of 48 kbps per
channel after the files are decompressed, trimmed and compressed again (E4b of Fig. 5.12).
48, 64, or 96 kbps was used for re-compression.

for the AAC-compressed domain and the uncompressed domain. Experimental results showed
that the watermark embedded in an uncompressed audio file was successfully detected in the
AAC-compressed domain after the file is compressed and that the watermark embedded in an
AAC file was able to be detected after the file was decompressed, trimmed, and compressed
again.

5.2 Audio Watermarking for Live Performance

Until this point, we have been dealing with audio watermarking as a tool for copy control
of digital music. However, audio watermarking is not a technology useful only for digitally
stored music. Music is performed, created, stored, and listened to in many different ways,
and it is much more common that music is not stored as a digital file on a computer. When
applying audio watermarking technology in various musical environments, real-time watermark
embedding is a preferred approach. For example, in music mastering studios, by embedding
a watermark in real time in a sound being played, the watermarked sound could be instantly
checked without saving it as a file on a computer. For broadcasting of a watermarked sound, it
would become possible to embed a watermark in real time and instantly broadcast the sound
of a live performance being performed in a studio, or the voice of a newscaster or a talk show.

It is not difficult to perform watermark embedding faster than playback using current
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Figure 5.15: C1: Naive Composition Method: A mixture of a host signal (HS) and a watermark
signal (WS) is calculated for a short HS stored in a recording buffer, and then is played back
from a playback buffer.

Figure 5.16: C2: Analogue Watermarking: The computer outputs only the WS. Mixing is
performed at a trusted conventional analogue mixer outside of the computer. Control of the
volume of the WS is much easier.

audio watermarking technologies and computers. However, there are other problems besides
the known problems for file embedding. In this section, we classify several composition methods
for real-time watermark embedding, and point out problems that occur with the composition
methods, discuss a real-time embedding method, and report the results of some experiments.

5.2.1 Real-time watermark embedding for live performance

In this section, we describe several system compositions for real-time embedding, and point
out their merits and flaws.

(a) C1: Naive Composition

Most watermarking algorithms are designed to be given a host signal (HS) and to produce a
signal that is mixture of the HS and a watermark signal (WS). The most naive composition
method by simply applying an algorithm of this kind to real-time embedding is illustrated in
Fig. 5.15. In this composition method, a HS with a certain length is stored in a recording
buffer. The stored HS is given to the watermark embedding process where a mixture of the
HS and a WS is calculated. The mixture is then stored in a playback buffer and played at the
proper time. Any audio watermarking algorithm can be used for real-time embedding with
this composition method as long as it runs faster than the playback.

However, there are two drawbacks with this composition method. The first drawback is the
inevitable delay of the HS (and the WS). The recording buffer and the playback buffer must
have some length so that the mixed signal can be played steadily. If the buffers are longer,
stability of playback increases at the expense of the delay of the HS. The second drawback
is risk of interrupting of the playback. When a problem blocks the real-time watermark
embedder, playback of not only the WS but the HS stops. This would make a big problem for
a live broadcast of a watermarked signal.
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Figure 5.17: C3: Sonic Watermarking: The WS sound and the HS sound enter the air from
separate speakers. Both sounds mix in the air and form a watermarked sound so that the
embedded message could be detected from a recorded sound.

Figure 5.18: C4a: Noise Recording: The background noise of the environment is recorded
using a microphone and mixed with the host signal so that the frequency masking effect of the
noise can be also taken into account.

(b) C2: Analogue Watermarking

To solve the problem of C1, another composition method illustrated in Fig. 5.16 mixes the HS
and the WS outside the computer using a trusted conventional analogue mixer after the WS
is converted to an analogue signal. The computer, a real-time watermark generator, should
be designed to output only the watermark signal. The reason that the computer needs to be
fed the HS is that it utilizes the HS for calculating the frequency masking effect[84] of the
HS. This composition does not introduce additional delay for the HS. If a problem affects the
computer, while generation of the WS would stop, the broadcast of the HS is still secure. In
addition, it is very easy for a sound engineer to control the volume of a WS using a familiar
mixer. This would make it easy for sound engineers to use a watermark embedder.

That the WS is delayed relative to the HS because of the buffers and the watermark
calculation can be a problem of this composition method.

(c) C3: Sonic Watermarking

Because both the HS and the WS are sounds, it is possible to mix them in the air (Fig. 5.17).
In this composition method, a real-time watermark generator the same as the one used in C2
outputs the WS, and the WS enters the air from a speaker. The WS sound and the HS sound
mix in the air and make a watermarked sound.

This composition method will be useful for live concerts in which electronic instruments
are used. In concerts of popular music, because the sounds of the instruments and the vocals
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Figure 5.19: C4b: Noise Prediction: If the background noise is known to be stationary, its
frequency masking effect can be predicted without recording during the performance.

are electronically captured and amplified, it would be easy to snatch the sound signal and
feed it to a watermark generator just before amplification for the speakers. Using watermark
embedding by this composition method, it would be possible to find bootleg recordings on
the Internet, that is, illegal music files that have been recorded in concert halls by unethical
audience members using recording devices.

This composition method also has the same potential problem of the delay of the WS
relative to the HS. Another problem of this composition method is that background noises
made by sources besides the musical instruments become disturbing factors for watermark
detection. Such sounds include voices and clapping by audience members, reverberations of
the hall, and rustling noises made by hands touching the recording device.

(d) C4: Sonic Watermarking with Sampling

A method to make a watermark detectable even when there is a loud background noise is to
also make use of the frequency masking effect of the noise. Figure 5.18 illustrates a composition
method, C4a, where background noises are recorded using a microphone, added to the host
signal played by musical instruments, and finally input to a real-time watermark generator.
When there is a loud background noise, the WS also increases, and hence detection of the
embedded message would be easier. However, there may be several problems in the recording
of background noises. It is impossible to record noises that are made near scattered record-
ing devices. Recoding only the background noise while excluding the sound of the musical
instruments is also difficult.

If the background noise of the environment is known to be stationary, recording of the
noise during the performance is not necessary. The watermark generator can predict the
frequency masking effect of the noise as long as its power spectrums are analyzed prior to the
performance (Fig. 5.19). Because this composition method, C4b, does not follow the dynamic
changes of the noise, the successful rate of detection of embedded message will be lower than
for C4a. For both C4a and C4b, the actual masking effects of each audience member depend
on their locations. Arrangements using multiple speakers will be better. When using multiple
speakers, it is also necessary to consider their mutual interference.

A composition method, C4c, illustrated in Fig. 5.20 is the only composition method that
can be applied to musical instruments that do not use electronic amplification. The only
difference in C4a is that sounds of the instruments together with the background noises are
also recorded by a microphone for the watermark calculation. For mixing in the air, we
believe that it does not matter whether the HS sound is electronically amplified or acoustic.
This composition method can dynamically respond to changing background noises.
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Figure 5.20: C4c: Host Signal Recording: When the musical instruments do not use elec-
tronic amplification, their sound together with the background noises should be recorded by
a microphone for watermark calculation.

Figure 5.21: A watermark signal (WS) is delayed relative to a host signal (HS) because of
recording buffers, watermark calculation, and playback buffers.

5.2.2 Problems of real-time watermark embedding

As long as the composition method C1 is chosen for real-time embedding, there is no problem
in applying the previous method. In that case, nothing is different from handling files stored
on a computer. However, applying to compositions methods C2 to C4 results in an inevitable
delay of the watermark signal (WS) relative to the host signal (HS) which causes a serious
problem.

The delay is caused by the recording buffers, playback buffers, and WS calculation (Fig. 5.21).
Although the length of the playback buffers and the recording buffers can be reduced using
ASIO3 software and hardware, it is impossible to reduce them to zero. A total of 128 sam-
ples for each buffer is required for stable real-time embedding for our experiment4. The WS
calculation causes two kinds of delay. The first is that it is necessary to store one Discrete
Fourier Transform (DFT) frame of the HS to calculate its power spectrums. The second is the
elapsed time for the WS calculation. The watermark calculation takes approximately 10% of
the playback time in our experiment. For example, if the length of a DFT frame is 512 samples,
the elapsed time for the WS calculation corresponds approximately to playback time for 51.2

3ASIO is the Steinberg Audio Stream Input/Output architecture for low latency high performance audio
handling.

4We used a Mobile Pentium III 1.13 GHz notebook computer with a docking station equipped with a
LynxOne sound card by Lynx Studio Technology.
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Figure 5.22: The host signal and the watermark signal for (a) the previous method and for
(b) the proposed method.

Figure 5.23: Mean of detected watermark strengths from mixtures of a watermark signal (WS)
and a host signal (HS) for the previous method (a) and the new method (b). The WS is delayed
by Nd samples relative to the HS. A delay as small as eight samples ruins detection.

samples. Hence, using 512-sample DFT frames, the total delay is 128+128+512+51.2 = 819.2
samples, which is about 18.5 ms for 44.1 kHz sampling.

This delay makes perfect synchronization of the WS and the HS impossible. The em-
bedding algorithm of the previous method embeds the watermark by modifying amplitudes
in the frequency domain while preserving the phases (Fig. 5.22a). When the watermark sig-
nal is delayed by at least 18.5 ms, since the phase of the HS drastically changes during the
delay, the phases of the HS and the WS become almost independent. Accordingly, decreas-
ing the amplitudes in the tiles where negative pseudo-random numbers are assigned becomes
impossible.

Figure 5.23(a) is the result of an experiment where we calculated a WS for a HS using the
previous method, delayed the WS by Nd samples, overlapped it with the HS, and observed the
watermark strengths detected from the mixture. The horizontal axis of the figure is the given
delay, Nd. The vertical axis is the mean of detected watermark strengths. The distribution
of the strengths for unwatermarked content can be regarded as a normal distribution whose
variance is 1.14. The reason the variance for unwatermarked content is not unity is that,
since the detected strengths for bits are also used for the synchronization, the positions with
large strengths are selected in the searching process. It can be seen that as small a delay as
eight samples (approximately 0.02 ms) made detection impossible. Consequently, the previous
algorithm cannot be used for compositions methods C2 to C4.

5.2.3 Modified algorithms for real-time watermark embedding

We altered the embedding algorithm describe in Section 4 as described below so that modi-
fication of amplitudes is possible under the situation where the watermark signal is delayed
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relative to the host signal.
The only change is to make the values of the magnitudes za[f, k] of the WS zero for the tiles

with a negative sign (Fig. 5.22b2). This is because it is impossible to decrease the magnitudes
of the HS. As for the tiles with a positive sign, the magnitudes and the phases of the WS are
given as in the previous method. However, because of the delay, to give the WS the same
phases as the HS has almost the same effect as giving the WS a random phase (Fig. 5.22b1).

This change makes the power distribution of the content non-uniform, and hence makes
detection possible. However, because the efficiency of amplitude modification is much worse
than in the previous algorithm, a decrease of the detected watermark strength is inevitable.
It is necessary to use a stronger watermark signal than the previous method uses.

Note that the alteration is only for embedding, and that the same previous detection
algorithm can detect the watermark from the content whether the previous algorithm or the
altered algorithm is used for watermarking.

5.2.4 Experimental results

In this section, we report results of experiments applying the new method to the real-time
embedding composition methods C2 to C4.

(a) Implementation

We implemented the method in a software system that can embed and detect 64-bit messages in
30-second pieces of music. The message is encoded in 448 bits by adding 8 Cyclic Redundancy
Check (CRC) parity bits, using Turbo Coding, and repeating it twice. Each pattern block has
3 bits and a synchronization signal embedded, and the block has 24 columns and 8 rows of
tiles. Each of the 24 frequency subbands is given an equal bandwidth of 6 frequency bins. The
frequency of the highest bin used is 12.7 kHz. While 48 tiles out of the 192 tiles are dedicated
for the local adjustment of the pattern block synchronization, the tiles assigned for bits are
also used for the global synchronization. For the global synchronization, It is assumed that
16 consecutive blocks have consistent synchronization positions. The length of a DFT frame
is 512 samples to shorten the delay. The false alarm error ratio is theoretically controlled to
be under 10−5 by the threshold of the square means of the detected bit strengths. Another
threshold on the estimated watermark signal-to-noise ratio (SNR) is set to keep the code word
error ratio under 10−5. The reason to use double thresholds is described in Ref.[61]. Nine
pieces of monaural music from pop music, orchestral music, and solo instruments were used
for the analysis. All of the signals were sampled at a frequency of 44.1 kHz and with a bit
resolution of 16 bits, and each piece is 100 seconds long.

(b) Psychoacoustic model

The ISO-MPEG 1 Audio Psychoacoustic Model 2 for Layer III [29] is used as the basis of the
psychoacoustic calculation for the experiments with some alterations.

• An absolute threshold was not used for these experiments. We believe this is not suitable
for practical watermarking because it originally depends on the listening volume and is
too small in the frequencies used for watermarking.

• A local minimum of masking values within each frequency subband was used for all fre-
quency bins in the subband. Not only excessively changing the WS magnitudes does not
contribute to the watermark strength but it causes lower acoustic quality by increasing
the WS without effect.
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Figure 5.24: An experimental system for testing C3 and C4b was set up in a soundproof room
where a 30 dB(A) background noise was heared when nothing was played by the speakers.

• A 512-sample frame, 256-sample IBLEN, and a sine window were used for the DFT for
the psychoacoustic analysis to reduce the computational cost.

It is known that postmasking stays as high as simultaneous masking for a 5 ms delay and
that it starts an almost exponential decay with a time constant of 10 ms after the first 5 ms
[84]. Hence, a shorter DFT frame is expected to result in better acoustic quality because of
the shorter delay. However, the poor frequency resolution caused by a too short DFT frame
reduces the detected watermark strength. This is the reason a 512-sample DFT frame was
selected for the implementation.

Based on the psychoacoustic model, the root mean square power of the WS is 20.4 dB
lower than that of the HS on average. Although we have not conducted systematic testing of
the acoustic quality of the method, we noticed that the watermarked songs tend to sound a
little hoarse. We think that one reason for the hoarseness is the fast switching of the WS in
short DFT frames.

(c) Experiment of Analog Watermarking (C2)

Figure 5.23(b) is the result of the same experiment as in Fig. 5.23(a) using the new method.
It can be seen that the detected watermark strength of this method with a delay of the WS is
greater than in the previous method.

A test of analogue watermarking was conducted. The WS was mixed with the HS with
a delay of around 830 samples by using an analogue mixer. The mixed analogue signal was
converted to a digital signal using a sound card in a notebook personal computer (PC) to
detect the watermark. The Analogue Watermarking row of Table 5.2 shows the mean of the
detected watermark strengths and the correct detection rate for the message.

(d) Experiment of Sonic Watermarking (C3)

The system illustrated in Fig. 5.24 was set up in a soundproof room for experiments with
sonic watermarking. Although the room was soundproofed, a 30 dB(A)5 background noise
was observed when nothing was played by the speakers. Two speakers with a built-in amplifier
were placed next to each other to play the HS and the WS, respectively. The playback volumes
of the speakers were set at the levels playing the same signal with the same sound level. The
mixed sound of the HS and the WS was captured by a microphone and sent to the sound card
of the notebook PC where the signal was converted to a digital signal to detect the watermark.
The distance between the speakers and the microphone was 3 m. When a loud popular music
song was played using the speakers, the sound level was from 70 dB(A) to 75 dB(A) at the
position of the microphone.

5dB(A) is a unit for the A-weighted sound level[16].
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Figure 5.25: Mean of detected watermark strengths after echo addition. The horizontal axis is
the value of a maximum delay. Neither sonic watermarking nor analogue conversion was not
used.

The results of the experiment are shown in the Sonic Watermarking column of Table 5.2.
The reason the detected strengths for solos and orchestras are too small to stably detect the
messages is because the solo instrumental music and orchestral music have wider dynamic
ranges than popular music does, and they contain more low volume portions. In particular, a
solo performance of a piano has most of its power in its low frequencies, but almost no power
in its middle and high frequencies. Because of the existence of the 30 dB(A) virtually white
background noise, the host signal to noise ratio in those portions became too low to detect
the watermark. This is the same problem described in Section (c) about background noises
including voices and applause from the audience.

It is likely that the echo of the room will cause a detection problem in practical situations.
The means of watermark strengths detected after echo addition are shown in Fig. 5.25. The
horizontal axis is the value of a maximum delay used for echo addition. The value of 0.5
was used for the feedback coefficient for echo addition. Although the strengths were greatly
decreased, correct messages were detected from every one of the tested degradations. Neither
sonic watermarking nor analogue conversion was not used for this test.

(e) Experiment of Microphone Recording (C4)

Composition methods C4a to C4c are expected to be more robust in an environment with
background noises. To implement these composition methods, a calibration step is necessary
between an amplitude digitally represented in the software and the corresponding actual sound
played from the speakers. Without the calibration, it is impossible to generate the WS to be
masked by the frequency masking effect of the sounds in the air. Calibration can be done by
playing a known reference sound containing several pure tones at various frequencies, recording
on the computer with a microphone the sound coming from the speakers, and calculating the
ratio of the amplitudes of the played sounds to those of the recorded sounds.

We selected the composition method C4b to investigate the effect of utilizing the masking
effect of the background noise, because the background noise of our experimental room can be
considered to be stationary.

The background noise when no music was being played was recorded by the microphone.
The power spectrums were calculated using a DFT and stored on the computer after mul-
tiplying by the calibration ratios. When real-time watermark generation is in progress, the
stored power spectrums of the background noise are added to the power spectrums of the host
signal for calculation of the frequency masking. The result of the experiment is shown in the
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Table 5.2: The means of detected watermark strengths (Mean) and the rates (CDR) by which
the correct 64-bit message was detected.

Pop Music Orchestra Solo
Mean CDR Mean CDR Mean CDR

File Watermarking 2.93 100.0% 3.37 100.0% 3.34 100.0%
Analogue Watermarking 3.82 100.0% 3.09 100.0% 2.51 100.0%
Sonic Watermarking 3.49 100.0% 1.46 66.7% 1.21 66.7%
Sonic Watermarking with Sampling 3.56 100.0% 1.97 100.0% 1.80 100.0%

Sonic Watermarking with Sampling row of Table 5.2. It can be seen that the correct detection
rates for the solos and the orchestras were improved. When nothing or quiet music was being
played, we could hear the sound of the WS coming out of the speaker. However, the reason
we could hear the noise was mainly because we could localize the source of the noise at the
speaker, and the noise itself was not unpleasant.

In this section we described several composition methods for real-time audio watermark
embedding, one of which was sonic watermarking to mix the host signal and the watermark
signal in the air. To solve a problem found in applying the basic algorithm to the composition,
we slightly altered the embedding algorithm. Because the change is only for embedding, the
same detection algorithm can be used for content watermarked by the previous method and
content watermarked by the new method. The successful results of the experiments showed the
possibility of the compositions methods. Since sonic watermarking is particularily a new and
challenging application of audio watermarking, we further discuss the application scenarios in
detail and report results of additional experiments in the next section.

5.3 Sonic Watermarking

We introduced Sonic Watermarking in the previous section. This composition method mixes
the sound of the watermark signal (WS) and the host sound in the air so that the watermark can
be detected from a recording of the mixed sound. The method will allow searching for bootleg
recordings on the Internet, that is, illegal music files that have been recorded in auditoriums by
unethical audience members using portable recording devices. The recordings are sometimes
burned on audio Compact Discs (CDs) and even sold at shops, or distributed via the Internet.
Countermeasures such as examining the audience members’ personal belongings at auditorium
entrances have been used for decades to cope with this problem. The ease of distribution in
the broadband Internet has increased the problem of bootleg recordings.

In this section, we carefully consider the application model and the possible problems
of sonic watermarking and report the results of intensive robustness tests and a MUSHRA6

subjective listening test which we performed to investigate the effects of critical factors of sonic
watermarking, such as the delay and the distance between the sound sources of the host signal
(HS) and the WS. In Section 5.3.1, we describe the usage scenario of sonic watermarking.
Some possible problems limiting use of sonic watermarking are listed in Section 5.3.2. In
Section 5.3.3, we describe a watermarking algorithm that is designed to solve some of the
problems. The robustness of the algorithm is shown by experimental results in Section 5.3.4.
The acoustic quality of the algorithm is assessed by a subjective listening test described in
Section 5.3.5.

6MUltiple Stimulus with Hidden Reference and Anchors [31].
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Figure 5.27: The lifecycle of a bootleg recording with sonic watermarks. While broken lines
with arrowheads indicate sonic propagation, solid lines indicate wired analog transmissions or
digital file transfers.

5.3.1 Usage scenario of sonic watermarking

In sonic watermarking, the watermark sound generated by a watermark generator is mixed with
the host sound in the air (Fig. 5.3.1). A watermark generator is a device that is equipped with
a microphone, a speaker, and a computer. The host sound is captured using the microphone,
the computer calculates the WS, and the WS enters the air from the speaker. The reason
that the computer needs to be fed the host sound is to calculate the frequency masking effect
[84] of the host sound. The lifecycle of a bootleg recording containing sonic watermarks
is illustrated in Fig. 5.27. While broken lines with arrowheads indicate sonic propagation,
the solid lines indicate wired analog transmissions or digital file transfers. For example, the
unethical audience member may compress the bootleg recording as an MPEG1 Audio Layer 3
(MP3[29]) file and upload it to the Internet. They may attack the sonic watermarking before
compression. The recording device may be an analog cassette tape recorder, a MP3 recorder,
a Mini-Disc recorder, etc.

Note that sonic watermarking is not necessary in live performances where the sound of
the musical instruments and the performers are mixed and amplified using analog electronic
devices. Analog watermarking [66] can be used instead.
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5.3.2 Problems of sonic watermarking

In this section, we classify the possible problems that may limit the use of sonic watermarking
into three major categories: (1) real-time embedding, (2) robustness, and (3) acoustic quality.
Although all of the other problems of digital audio watermarking are also problems of sonic
watermarking, they are not listed here.

(a) Problems related to real-time embedding

The major problems related to real-time embedding are the performance of the watermark
embedding process and the delay of the WS.

1. Performance
Watermark embedding faster than real-time is the minimum condition for sonic water-
marking. The computational load of the watermark generator must be kept low enough
for stable real-time production of the WS. A watermark embedding algorithm faster than
real-time was also reported by Ref. [53].

2. Delay
Even when the watermark generator works in real-time, the watermark sound will be
delayed relative to the host sound. We will discuss the problems of robustness and
acoustic quality caused by the delay in later sections.

The delay consists of a pre-recording delay and a delay inside the watermark generator.
The pre-recording delay is the time required for the sound to propagate from the source
of the host sound to the microphone of the watermark generator. For example, when
the distance is 5 m, the pre-recording delay will be approximately 15 ms.

The delay inside the watermark generator is caused by the recording buffers, playback
buffers, and WS calculations (Fig. 5.21). Although the length of the playback buffers
and the recording buffers can be reduced using technologies such as ASIO7 software and
hardware, it is impossible to reduce them to zero. The WS calculation causes two kinds
of delay. The first is that it is necessary to store a Discrete Fourier Transform (DFT)
frame of the HS to calculate its power spectrums. The second is the elapsed time for the
WS calculation.

(b) Robustness

Possible causes interfering with successful detection can be roughly categorized into (1) dete-
riorations after recording, and (2) deteriorations before and during recording by the unethical
audience member. After recording, the unethical audience member may try to delete the
watermark from the bootleg recording. The possible attacks include compression, analog con-
version, trimming, pitch shifting, random sample cropping, etc. As for deteriorations before
and during recording, the following items have to be considered:

1. Delay of the watermark signal
When the WS is delayed the phase of the HS drastically changes during the delay, so the
phases of the HS and the WS become almost independent. Watermarking algorithms
assuming perfect synchronization of the phases suffer serious damage from the delay.

7ASIO is the Steinberg Audio Stream Input/Output architecture for low latency high performance audio
handling.
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2. Reverberations
Reverberations of the auditorium must be mixed into the host sound and the watermark
sound.

3. Noises made by audience
Noises made by sources other than the musical instruments become disturbing factors
for watermark detection. Such sounds include voices and applause from audience mem-
bers, and rustling noises made by hands touching the recording device. If microphones
directed towards the audience record the loud noise of the audience, and if the water-
mark generator utilizes the masking effect of the audience noise as well, detection of
the watermark will be easier. However, since it is impossible to record noises that are
made near widely scattered portable recording devices, the noise inevitably interferes
with watermark detection.

4. Multiple watermark generators
In some cases, arrangements using multiple watermark generators would be better to
reflect the actual masking effects of each audience member. When using multiple water-
mark generators, it would be also necessary to consider their mutual interference.

(c) Acoustic quality

There are several factors that may make the acoustic quality of sonic watermarking worse than
that of digital audio watermarking.

1. Strength of the watermark signal
Because the efficiency of watermark embedding is worse and more severe deterioration
is expected in the sound than for digital audio watermarking, the WS must be relatively
louder than a digital audio watermark. This results in lower acoustic quality.

2. Delay of the watermark signal
An example would be when the host sound includes a drumbeat that abruptly diminishes,
and the delayed watermark sound stands out from the host sound and results in worse
acoustic quality. There is a postmasking effect that occurs after the masker diminishes
[84]. For the first 5 ms after the masker diminishes, the amount of the postmasking effect
is as high as simultaneous masking. After the 5 ms it starts an almost exponential decay
with a time constant of 10 ms. Therefore, if the delay of the watermark sound is short
enough, the postmasking effect is expected to mask the watermark sound. However, the
longer the delay, the more the host sound changes, and the weaker the masking from the
postmasking effect.

3. Differences of the masker
The HS captured by the microphone of the watermark generator is different from the
host sound that the audience listens to. Hence, the masking effect calculated by the
generator will also be different from the actual masking effect as heard by the audience.

4. Different locations of the sound sources
While the sources of the host sound may be spread around the auditorium stage, the
sources of the watermark sound must be limited to a few locations, even if multiple
watermark generators are used. The difference in the direction and the distance of the
sources of the watermark sound and the host sound from each audience member will
have a negative effect on the acoustic quality.
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Figure 5.28: Examples of the watermark signal and the corresponding host signal for (a) a
popular song and (b) a trumpet solo.

5.3.3 Implementation of sonic watermarking

We used the same algorithms described in Section 5.2.3 for the experiments. We implemented
a watermark generator that can generate sonic watermarks in real-time and a detector that
can detect 64-bit messages in 30-second pieces of music A Pentium IV 2.2 GHz Windows
XP personal computer (PC) equipped with a Sound Blaster Audigy Platinum sound card by
Creative Technology, Ltd. was used for the platform. The message is encoded in 448 bits by
adding 8 Cyclic Redundancy Check (CRC) parity bits, using Turbo Coding, and repeating it
twice. Each pattern block has 3 bits and a synchronization signal embedded, and the block
has 24 columns and 8 rows of tiles. Each of the 24 frequency subbands is given an equal
bandwidth of 6 frequency bins. The frequency of the highest bin used is 12.7 kHz. The length
of a DFT frame is 512 samples to shorten the delay. Based on the psychoacoustic model, the
root mean square power of the WS is 23.0 dB lower than that of the HS on average. Examples
of watermark signals generated for a popular song and a trumpet solo are shown in Fig. 5.28.

At the time of detection, while 48 tiles out of the 192 tiles are dedicated for the local
adjustment of the pattern block synchronization, the tiles assigned for the bits are also used for
the global synchronization. For the global synchronization, It is assumed that 16 consecutive
blocks have consistent synchronization positions. The false alarm error ratio is theoretically
under 10−5 based on the threshold of the square means of the detected bit strengths. Another
threshold on the estimated watermark signal-to-noise ratio (SNR) is set to keep the code word
error ratio under 10−5. The reasons to use both thresholds are described in Ref.[61].

Delay The delay of the WS was approximately 17.8 ms in total. The details are as follows.
A total of 128 samples for both the playback buffer and the recording buffer were required
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Table 5.3: The number and the durations of the test samples used for the robustness tests.
Category # of samples Duration
Popular Music 20 92 min
Orchestral Music 13 112 min
Instrumental Solos 76 120 min

for stable real-time watermark generation. The length of a DFT frame was 512 samples.
The watermark calculation process took approximately 3.1% of the playback time. Since the
length of a DFT frame was 512 samples, the elapsed time for the WS calculation corresponds
approximately to the playback time for 16 samples. Hence, the total delay was 128 + 128 +
512 + 16 = 784 samples, which was about 17.8 ms for 44.1 kHz sampling.

5.3.4 Results of robustness tests

We tested the robustness of the algorithm against transformations that are important for the
lifecycle of sonic watermarking: sonic propagation, echo addition, noise addition, and MP3
compression. The results of the tests were collected for three categories: (a) popular music, (b)
orchestral music, and (c) instrumental solos. The numbers of test samples and the duration
for each category are listed in Table 5.3. The test samples of instrumental solos included 59
samples of performance of single instruments from SQAM8. All of the signals were monaural
and sampled at a frequency of 44.1 kHz and with a bit resolution of 16 bits. Since it has been
shown in Ref. [66] that real-time sonic watermarking using the proposed algorithm is feasible,
we did not use real-time watermarking for the tests. We calculated the WS off-line, and added
them to or played them simultaneously with the HS.

(a) Results

We measured the correct detection rates (CDRs) at which the correct 64-bit messages were
detected. The error correction and detection algorithm successfully avoided detection of an
incorrect message.

Robustness against MP3 compression Table 5.4 shows the results for sonic watermark-
ing and MP3 compression. “Digital WM” means that the WS was digitally added to the HS
with a delay of 20 ms. “Sonic WM” means that the sound of the WS was mixed with the host
sound in the air and recorded by a microphone. We used the same experimental equipment as
used for sd20 of the listening test. For the “Original watermark”, the watermark was detected
immediately after watermark embedding as described above. For “MP3”, the watermarked
signal was compressed in a MP3 file with the specified bit rate for a monaural channel and
then decompressed before watermark detection. For popular music and orchestral music, cor-
rect watermarks were detected from over 95% of detection windows after sonic watermarking
and MP3 compression. The reason the CDRs for instrumental solos were low is that the test
samples included many sections that are almost silent or at a quite low volume, and the wa-
termarks in those sections were easily destroyed by the background noise of the room and by
the MP3 compression. We observed a 28 dB(A)9 background noise in the soundproof room
when nothing was played by the speakers.

8Sound Quality Assessment Material disc produced by the European Broadcasting Union for subjective tests.
9dB(A) is a unit for the A-weighted sound level [16].
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Table 5.4: The correct detection rates (CDRs) at which the correct 64-bit messages were
detected. Watermark embedding was performed by digital addition (Digital WM) or sonic
watermarking (Sonic WM). Detection was done immediately after embedding or after MP3
compression and decompression.

Popular Music Digital WM Sonic WM
Original watermark 100% 96%
MP3 64 kbps 100% 96%
MP3 48 kbps 100% 95%
Orchestral Music Digital WM Sonic WM
Original watermark 100% 99%
MP3 64 kbps 100% 99%
MP3 48 kbps 100% 97%
Instrumental Solos Digital WM Sonic WM
Original watermark 99% 60%
MP3 64 kbps 97% 53%
MP3 48 kbps 66% 37%
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Figure 5.29: The correct detection rates (CDRs) after sonic watermarking and echo addition.
The leftmost points are the rates immediately after sonic watermarking.

Robustness against echo addition Figure 5.29 shows the CDRs after sonic watermarking
and echo addition. Echoing was done digitally on a computer with a feedback coefficient of
0.5. The horizontal axis of the figure is the value of the maximum delay used for echo addition.
Although the CDRs for the instrumental solos were low because of sonic watermarking, it can
be seen that echo addition interferes very little with watermark detection.

Robustness against noise addition Figure 5.30 shows the CDRs after sonic watermarking
and noise addition. White Gaussian noises with an average noise-to-signal ratio shown in the
horizontal axis of the figure were digitally added to the recordings. For popular music, the
CDRs remained high up to -20 dB of noise addition. In contrast, the CDRs for orchestral
music dropped after noise addition above -35 dB. This is because orchestral music has wider
dynamic ranges than popular music does, and contains more low volume sections. Those quiet
sections degrade more quickly than loud sections do when the additive noise has a comparable
signal level. Although it has been shown in Ref. [66] that correct detection rate for quiet



104 CHAPTER 5. APPLICATIONS OF ROBUST AUDIO WATERMARKING

0

20

40

60

80

100

Additional Noise Level [dB]

C
or

re
ct

 D
et

ec
tio

n 
R

at
e 

[%
]

Popular Music

Orchestral Music

Instrumental Solos

-40 -35 -30 -25 -20

Figure 5.30: The CDRs after sonic watermarking and noise addition. The leftmost points are
the rates immediately after sonic watermarking.

sections can be improved, at the sacrifice of acoustic quality, by utilizing the masking effect
of the background noise, the robustness against noise when the masking effect is not used by
the watermark generator is still an open problem.

5.3.5 Results of subjective listening tests

The evaluation of the subjective audio quality of the algorithm was done by a MUSHRA [31]
listening test. The effects of two factors that can be considered to be particularly important
for the use of sonic watermarking are also investigated. Those are (1) the delay of the WS
relative to the HS, and (2) the angle between the sound sources of the WS and the HS (as
measured from the listener’s location).

The test samples were monaural excerpts from popular music, orchestral music, and in-
strumental solos as described in Table 5.5. The mean duration of the samples was 12.3 sec. All
of the test signals were sampled at a frequency of 44.1 kHz and with a bit resolution of 16 bits.
All of them were upsampled to 48 kHz before the test to adjust to the listening equipment.
Although most of the 18 subjects were inexperienced listeners, there were training sessions in
advance of the test in which they were exposed to the full range and nature of all of the test
signals. To give anchors for comparison, the subjects were also required to assess the audio
quality of hidden references (hr)10, 7 kHz low-pass filtered samples (al7), and samples which
had been compressed in MP3 files with a bit rate of 48 kbps (am48) or 64 kbps (am64) for a
monaural channel using the Fraunhofer codec of MUSICMATCH Jukebox 7.20. The references
(r), the hidden references, and the anchors were played by the speaker SP1 (Fig. 5.31). The
other test signals (Table 5.6) were as described below:

sd10 Sonic watermark with a delay of 10 ms
While the HS completely identical to the reference was played from SP1, a WS that had
been computed in advance based on the HS was simultaneously played from another
speaker, SP2, with a delay of 10 ms. SP2 was offset from the direction of SP1 by 4.3◦.
The subjects listened to the mixed sound of the HS and the WS.

sd20 Sonic watermark with a delay of 20 ms
The same WS used for sd10 was played from SP2 with a delay of 20 ms, which is close
to the delay of our implementation.

10Although the test signals of the hidden references were identical to the reference signals, the subjects were
required to assess their quality without knowing which were which.
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Table 5.5: The test samples for the listening tests.
Sample Duration Category Description
is1 8 sec Solo Castanets
is2 10 sec Solo Glockenspiel
is3 12 sec Solo Guitar
is4 14 sec Solo Trumpet
io1 15 sec Orchestra Soloists and orchestra
io2 12 sec Orchestra Wind ensemble
ip1 16 sec Popular Eddie Rabbitt
ip2 13 sec Popular Michael Jackson
ip3 12 sec Popular Mai Kuraki
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Figure 5.31: The listening environment for the MUSHRA subjective listening tests. Three
speakers, SP2 to SP4, were at offsets from the direction of SP1 by 4.3◦, 15◦, and 30◦, respec-
tively.

sd40 Sonic watermark with a delay of 40 ms
The WS was played from SP2 with a delay of 40 ms.

sa15 Sonic watermark with an angle of 15◦

The WS was played from another speaker, SP3, with a delay of 20 ms. SP3 was offset
15◦ from SP1.

sa30 Sonic watermark with an angle of 30◦

The WS was played from another speaker, SP4, with a delay of 20 ms. SP4 was offset
30◦ from SP1.

(a) Results

The mean and 95% confidence interval of the subjective acoustic quality of the test signals
are shown in Fig. 5.32. The quality of sonic watermarks with a delay equal to or less than
20 ms was assessed in the range of excellent quality. Although the WSs were not inaudible,
the acoustic quality for most of the test samples can be considered to be good enough for the
realistic use.

Effect of the delay The relationship of the quality and the delay is shown in Fig. 5.33.
Most subjects could notice acoustic impairments in sd40 and reduced its score to Good quality.
Especially in the case of Castanets (Fig. 5.34), the watermark sound with a large delay could be
heard as additional small castanets. A similar effect also occurred for drumbeats and cymbals
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Table 5.6: The test signals for the listening tests; SP1 to SP4 are the speakers illustrated in
Fig. 5.31. Monaural signals simultaneously played from the speakers are listed in this table.
The abbreviations are explained in Table 5.7.

Signal SP1 SP2 SP3 SP4
r REF – – –
hr REF – – –
am64 MP364 – – –
am48 MP348 – – –
al7 LP7 – – –
sd10 REF WD10 – –
sd20 REF WD20 – –
sd40 REF WD40 – –
sa15 REF – WD20 –
sa30 REF – – WD20

Table 5.7: Description of the abbreviations used in Table 5.6.
Abbrev. Description
REF Reference monaural signal
MP364 Compressed signal using MP3 64 kbps
MP348 Compressed signal using MP3 48 kbps
LP7 7 kHz low-pass filtered signal
WD10 Watermark signal with 10 ms delay
WD20 Watermark signal with 20 ms delay
WD40 Watermark signal with 40 ms delay
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Figure 5.32: The mean and 95% confidence interval of the subjective acoustic quality of the
test signals for all subjects. The test signals are described in Table 5.6.

in the popular music (Fig. 5.35). In those cases, the subjects perceived increased noisiness at
the higher frequencies. For the test samples in which long notes were hold for some seconds
(Fig. 5.36), the effect of the delay was low. In general, the quality difference between sd10
and sd20 was assessed to be small, and subjects sometimes gave sd20 better evaluations than
sd10.
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Figure 5.34: The subjective acoustic quality of the instrumental solo test sample is1, Castanets.
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Figure 5.35: The subjective acoustic quality of the popular music test sample ip3, Mai Kuraki.
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Figure 5.36: The subjective acoustic quality of the orchestral music test sample io2, Wind
ensemble.

Effect of the sound source direction The relationship of the quality and the sound source
direction is shown in Fig. 5.37. The effect was so large that sa30 was assessed in the range
of Fair. When the WS was played from SP4, subjects noticed the difference by perceiving a
weak stereo effect. However, in the case of sd20, even though the WS was played from SP2 in
addition to the HS from SP1, subjects perceived the mixed sound as a monaural sound. The
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Figure 5.37: The relationship between the offset angle of the sound sources and the subjective
acoustic quality.

effect was particularly prominent for the test samples for which the effect of the delay was
distinguishable. Although the situation would be more complicated with multiple sources of
the host sound for the realistic use of sonic watermarking, the experimental results suggest the
sound source of the WS should be placed as close to the source of the host sound as possible.

In this section, we classified the possible problems that may limit the use of sonic water-
marking. The subjective acoustic quality of the algorithm was assessed in the range of excellent
quality by the MUSHRA listening test. We assessed the effect of the delay of the watermark
signal on the quality, and found that 20 ms was enough short to sustain excellent quality. The
effect of the direction of the sound sources of the watermark signal and the host signal was
so large that special attention should be paid to the placement of the sound sources when
using sonic watermarking. The experimental results of robustness were dependent on the type
of the music samples. For popular music, the watermark was quite robust, so that correct
messages were detected from over 90% of the detection windows even when noise addition,
echo addition, or MP3 compression was performed after sonic watermarking. However, in the
case of instrument solos, since the watermarks for low volume sections were easily degraded
by the background noise, the correct detection rate after sonic watermarking was only 60%.

5.4 Concluding Remarks

In this chapter, we showed that the audio watermarking algorithm described in the previous
chapter can be applied to broad range of applications. First, we showed the algorithm was
applicable to compressed audio in the MPEG2 Advanced Audio Coding (AAC) format. This
was possible because the algorithm relies only on the magnitudes of the audio. Experimental
results showed that the watermark embedded in an uncompressed audio file was successfully
detected in the AAC-compressed domain after the file is compressed and that the watermark
embedded in an AAC file was able to be detected after the file was decompressed, trimmed,
and compressed again.

Although we have not mentioned in the dissertation, the basic algorithm is also applicable
to broadcast music monitoring. Precise determination of the start time and the finish time of
each playback is required for broadcast music monitoring. We also showed, in [47], that this
is also possible with the basic algorithm by sliding the detection time range little by little and
detecting watermark from each of the time ranges.

As a natural extension of broadcast music monitoring, there are needs for real-time water-



5.4. CONCLUDING REMARKS 109

marking of live broadcast. In response to this kind of needs, we introduced various composition
methods for real-time audio watermark embedding and showed how they can extend the range
of applications of audio watermarks. In a composition method named Analog Watermarking,
a trusted conventional analog mixer is used to mix the host signal (HS) and the watermark
signal (WS) after the WS is generated by a computer and converted to an analog signal.

We also introduced the idea of sonic watermarking that mixes the sound of the watermark
signal and the host sound in the air to detect bootleg recordings. The possible problems that
may limit the use of sonic watermarking were classified. We discussed an audio watermarking
algorithm suitable for sonic watermarking. The subjective acoustic quality of the algorithm
was assessed in the range of excellent quality by the MUSHRA listening test. The experimental
results of robustness were dependent on the type of the music samples. For popular music,
the watermark was quite robust, so that correct messages were detected from over 90% of the
detection windows even when noise addition, echo addition, or MPEG1 Audio Layer 3 (MP3)
compression was performed after sonic watermarking. However, in the case of instrument
solos, since the watermarks for low volume sections were easily degraded by the background
noise, the correct detection rate after sonic watermarking was only 60%.

Furthermore, by using the robustness of the basic algorithm against sound propagation,
we also showed in [50, 48] that it is possible to determine the recording location of bootleg
recordings. This is achieved by embedding a different watermark signal into each of the
multiple channels of the host signal.

However, there are still large problems to solve with these methods. When the basic
algorithm is applied to compressed audio or sound in the air, the robustness and acoustic
quality are worse compared to the previous embedding method. Although the acoustic quality
of sonic watermarking was assessed in the range of excellent quality, we can see from the
experimental results that human ears was able to distinguish the sonic-watermarked sound
from the original sound. Further improvement of the algorithm is required to achieve better
robustness and higher acoustic quality especially when it is applied to compressed audio or
sound in the air.





Chapter 6

Conclusion

Although many procedures and systems are increasingly automated, the slow automation of
the sound-based human-computer interface is a bottleneck for the automation of entire sys-
tems and diminishes the benefits of those systems. Therefore, we are aiming to develop audio
processing technologies that enable automatic exchanges of audio data between the computers
and the real world, while preserving the naturalness of the sound and the naturalness of the
human-computer interactions that use sound. Among various audio processing technologies,
we focused on speech synthesis and audio watermarking, since both are currently focuses of
attention for research and are in high demand for applications. We introduced some applica-
tion systems using these technologies in Chapter 2 to clarify the requirements for the audio
processing technologies. By describing the roles of the technologies in the systems, the impor-
tance of the acoustic quality of the technologies was reaffirmed. No matter what convenience
such technologies offer, people will not willingly use these technologies if the acoustic quality
is not satisfactory.

Because the training of accurate stochastic models is important for the acoustic quality of
text-to-speech (TTS), we focused our TTS work on accurate and automatic training of the
stochastic models. For this purpose, we introduced, in Chapter 3, a totally trainable TTS
system, every component of which can be automatically built from human speech alone. In
this system, the necessary linguistic and acoustic information was incrementally collected by
combining acoustic processing and linguistic processing. As a sub-module of the system, the
automatic prosody labeling algorithm achieved an F measure of 0.862 for prosodic phrase
boundary detection by using the linguistic information for part-of-speech (POS) with acoustic
features, which was better than the results reported in previous research. For the accent
determination problem of Japanese, we achieved 92.7% mora accuracy by using an n-gram
linguistic model, including the spelling of the words. The overall quality of the synthetic voices
was evaluated by subjective listening tests. It was seen from the results that the quality of the
synthetic voices for in-domain text was over 4.0 out of a possible score of 5 in the subjective
tests and approached the quality of recorded human voices. However, the acoustic quality for
out-of-domain text was assessed to be far worse than the acoustic quality for in-domain text.

For improving the acoustic quality of audio watermarking, we need to improve the trade-
off balance points among the acoustic quality, robustness, and data payload of the water-
marking algorithms. Therefore, we presented a robust audio watermarking method using a
two-dimensional pseudo-random array in Chapter 4. We tested the robustness of the method
against various kinds of audio processing. The correct detection rates (CDRs) for 96 kpbs
MPEG1 Audio Layer 3 (MP3) compression, 100-msec echo addition, and -30dB noise addition
were 100%, 97%, and 87%, respectively. In addition, by detecting with multiple stretched
patterns, the CDRs for -10% pitch shifting, +10 pitch shifting, -10% random stretching, and
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+10% random stretching were 100%, 100%, 83%, and 87%, respectively. Although we do not
have any results of formal subjective listening tests to present in this dissertation, the robust-
ness experiments were performed with the watermark signal level 35dB lower than the level of
the host signal, which is a level that is virtually indistinguishable to human ears. The acoustic
quality of the method was verified also through a number of informal subjective listening tests.
In these tests, professional sound engineers and audio equipment experts listened carefully to
watermarked audio samples. The theoretical communication capacities of the algorithm un-
der conditions with additive noise were formulated. The maximum communication capacity
for pop music and orchestral music per 30-second excerpts was approximately 400 bits and
100 bits, respectively. The reason why the communication capacity differs for each genre of
audio content is that the different distributions of the magnitudes caused different degrees of
robustness against additive noise.

Chapter 5 discussed the audio watermarking algorithm can be applied to a broad range
of applications. The first application area was compressed audio. We aimed to allow water-
mark detection in both the compressed domain and the uncompressed domain regardless of
the original domain where the watermark embedding was done. When the watermark was
embedded in the uncompressed domain, CDRs over 80% were seen for every test case. The
most difficult challenge was watermark detection in the compressed domain when the content
was first watermarked in the compressed domain, then decompressed to the uncompressed
domain, and finally compressed again. The CDRs for detection in the re-compressed audio
files were 60-80%. The second application area was for live performances. We introduced the
various composition methods for real-time audio watermark embedding and showed how they
can extend the range of applications of audio watermarking. We also introduced the idea of
sonic watermarking that mixes the sound of the watermark signal and the host sound in the
air to detect bootleg recordings. The subjective acoustic quality of the algorithm was assessed
in the range of excellent quality by the MUSHRA listening test. For popular music, the water-
mark was quite robust, so that correct messages were detected from over 90% of the detection
windows even when MP3 compression was performed after sonic watermarking. However, in
the case of instrumental solos, since the watermarks for quiet passages were easily degraded
by the background noise, the correct detection rate after sonic watermarking was only 60%.

Reviewing these results, we can see that the research results described in this dissertation
were achieved based upon a few initial important core ideas and other research items flowed
naturally from the core ideas. It is worth identifying the core ideas to consolidate the insights
into the problems. Our core idea for text-to-speech synthesis was stochastic text processing.
Compared to the automatic speech recognition research area, the use of stochastic language
models was delayed in the conventional TTS research. It had been common to use rule-based
text processing modules that could not handle the speaker dependencies of pronunciations
and prosodic labels. The introduction of the stochastic text processing made all of the major
modules of the TTS system trainable, and enabled us to design the T4S framework. The
text processing module was also effective for accuracy improvements of the sub-modules of
the framework, the POS tagging and the automatic prosody labeling components, and it
resulted in a better final acoustic quality. In addition, since it became possible to make the
text processing module speaker-dependent, the reproduction of pronunciations and prosodic
labels of a specific speaker was possible. The most important core idea for audio watermarking
was to modify magnitude differences based on a two-dimensional pseudo-random array in the
frequency domain, while the previously standard audio watermarking approach was to embed
a phrase-dependent watermark in the time domain exploiting human audio insensitivity to
phase changes. Our new approach provided a high degree of control of the acoustic quality in
the frequency domain by direct use of a psychoacoustic model. The watermark embedding in
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magnitude differences makes watermarks that are less subject to the transfer characteristics
of the systems in which the watermarked audio is transferred. Since this allowed us to cover
various systems and formats as the objectives of audio watermarking, we were able to naturally
think of new applications and the associated improvements. If the initial core ideas had been
in the wrong direction or had not been essentially significant, we would not have been able
to extend these research projects. In addition, we should not forget that the demands of the
markets were the driving forces both for the core ideas and for the extended research items.

While we were able to achieve the target levels of acoustic quality, accuracy, and robustness
for some input and use cases, there remain cases of text or music where we could not achieve
the target levels. For example, the results of the subjective listening tests of synthetic voices
showed that, while the score for in-domain text was over 4.0, the score for out-of-domain
text was worse than the acoustic quality for in-domain text. The degradation of the sound
by sonic watermarking was also noticeable in some cases. Further improvement is certainly
required for these applications. To improve the acoustic quality of the synthetic voices for
out-of-domain text, we need to further improve the accuracy of each of the sub-modules of
the T4S framework. The use of more global features may be effective for this objective.
Distinguishing between primary accents and secondary accents will refine the accent models.
Since methods for unsupervised training have been proposed in the research area of automatic
speech recognition (ASR), it is desirable that these methods be applied to the T4S framework.
Regarding audio watermarking, a problem when applying the algorithms to sonic watermarking
is that the algorithms cannot effectively modify the magnitudes of the audio content when the
watermark signal is delayed relative to the host signal. An improved technique to address
this problem is necessary. We hope research in this direction will soon enable more natural
human-computer interactions using sound.
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