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Preface

The nonadiabatic transitions at level crossing play an essential role in various dynamical
aspects of quantum systems. In condensed matter, a typical example is the nonradiative
transitions of the strongly-coupled localized centers in solids. The dynamical processes
in condensed systems are, in many cases, subject to the perturbation by the elementary
excitations in surrounding media, which will generally modurate the transition rate at
the crossing. This effect is known as the effect of quantum dissipation. In this work,
a comprehensive investigation of the dynamics of the nonadiabatic transitions of a level-
crossing system with quantum dissipation has been carried out for the two-level system
coupled with a system of phonons. Calculations based upon the Landau-Zener model tell
us that the transition dynamics is characterized by the competition between the energy
fluctuation and the energy dissipation. Calculations for the potential crossing system have
made clear the transition dynamics after the electronic excitation, which is governed by
the motion of wave packet of phonons.

A part of the numerical calculations was performed by using NEC SX-4 supercomputer
at the Computation Center, Osaka University. Workstations in Yoshida laboratory were
also used for numerical calculations. I am very grateful to the administrators for the
continuous and devotional support of the computer system.

The preliminary study of this work was started in the autumn of 1994, as my master
thesis at Tohoku University. Since this very early stage of the study, Professor Yosuke
Kayanuma of Osaka Prefecture University has continuously supported me with helpfull
discussions, advice, and encouragement. I would like to express sincere gratitude for his
kindness.

Also, I would like to express sincere gratitude to Professor Hiroshi Katayama-Yoshida,
for his continuous encouragement, advice, and fruitful discussions throughout this study. I
thank gratefully all the staffs and the colleagues on Yoshida laboratory.

A part of this work, the result of the calculations for the Landau-Zener model coupled
with the system of phonons, has already been published in Phys. Rev. B 57 , 13099(1998).

January 19, 1999
Hiroyuki NAKAYAMA
e-mail : nakayama@cmp.sanken.osaka-u.ac.jp
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Chapter 1

Introduction

1.1 What is level-crossing?

The nonadiabatic transition at a level crossing is a fundamental process that plays a crucial
role in various aspects of the dynamical evolution of quantum systems in various fields. We
can refer to a number of examples both in physics and in chemistry, but the best known may
be the atomic inelastic collisions with charge transfer [1} (for example, A+ B — A* + B,
where A denotes alkali atom and B halogen) . The potential energy surface of the ionized
state and that of the neutral-charged covalent state, as a function of the separation R
cross at a certain internuclear separation R, (see Figure 1.1). In case of the scattering
problem, the separation R is time-dependent. If the two atoms have enough kinetic energy
to approach each other within the crossing separation R, transition to the ionized state is
induced dynamically and nonadiabatically. The Born-Oppenheimer approximation breaks
down around the avoided crossing of the potential curves associated with each charge
state, and the nonadiabatic transition around the potential-crossing region through the
off-diagonal matrix element is primarily important in determining the branching ratio to
respective scattering channels. '

In general, we can define level-crossing as the dynamical phenomena in which more than
two electronic energy levels approach and cross in accordance to the motion of a heavy
degree of freedom and then the transition to another level is induced nonadiabatically.
Landau and Zener derived a useful formula for the nonadiabatic transition rate [2], under
the condition that the transition is induced only within the neighborhood of the potential-
crossings where one can regard the crossing velocity of the energy levels v and off-diagonal
matrix element J as constant, that is,

Prz =1 —exp[—2nJ?/ hv|]. (1.1)

Since the discovery of the celebrated Landau-Zener formula in 1932, continuous effort
has been devoted to elaborating the theoretical treatment [3].

1
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U(R) .
b, A + B-

R

Figure 1.1: Potential surfaces of a diatomic molecule as a function of separation R.

1.2 Examples of the level-crossing system

The femtosecond transition-state spectroscopy using laser-induced fluorescence technique
has made clear the dynamical motion of R(t) as a wave packet motion on the potential
surface. An elegant experiment for Nal molecule indicates the successive nonadiabatic
transitions around the crossing region of the adiabatic potentials induced by the motion of
the wave packet in excited state [4].

Also, in astrophysics, problem of the sun neutrino loss generated by the nuclear fu-
sion reactions can be explained as a kind of the nonadiabatic transition induced by level-
crossings between the neutrinos with different flavor (ve,vy,1,). Definite experimental
evidence for this so-called Mikheyev-Smirnov-Wolfenstein (MSW) mechanism was discov-
ered very recently [5].

In condensed matter, a typical example would be the nonradiative transitions in the
strongly coupled localized electron-phonon system in solids. The radiationless transitions
of color centers in ionic crystals [6, 7], or the nonradiative capture of deep impurities in
semiconductor [8] are included in this category. In this case, the level crossing is defined
in the configuration coordinate space instead of in the real space, and the nonradiative
transition occurs during the lattice relaxation as the wave packet passes the crossing point
of the adiabatic potentials. The analysis of the transition dynamics by referring to the
Landau-Zener formula has been done by several authors [8, 9, 10, 11]. Inelastic scattering
of atoms on metal surfaces [12] is another example which is well-understood according to
Landau-Zener formula. A sort of chemical reaction at the surface of crystals [13] and in the
solvent [14] can be classified in this category, in which the nonadiabaticity of the process
must be taken into account. It is pointed out that an analogous nonadiabatic level crossing
is relevant in some nuclear reactions [15]. A slightly different version of the same problem
can be found in the area of magnetic resonance [16] and in nonlinear optics [17]. By changing
the applied magnetic fields or the electric fields, one can attain a level crossing between the
two discrete levels. The so-called adiabatic rapid passage or its optical analogue has been
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analyzed in the framework equivalent to the Landau-Zener formula [18]. With relation
to adiabatic demagnetization, the quantum dynamics of a coupled spin system under a
time-dependent magnetic field has been studied as a kind of nonadiabatic level-crossing
system [19].

1.3 Level-crossing system in condensed matter

1.3.1 What are the problems?

In contrast to the case of atomic collisions, the dynamical processes in condensed systems
are, in many cases, subject to the perturbation by the elementary excitations in surround-
ing media that have infinite degrees of freedom. The coupling with the surrounding media
will generally modulate the transition rate at level crossings. This effect is known as the
effect of quantum dissipation. Moreover, in some systems, the electronic levels that cross
is continuous and make band, which can also modulate the transition rate. Although this
effect might take a crucial role in dynamical processes in semiconductor defect systems [8],
it is not discussed in this study. Attention is focused on the effect of quantum dissipa-
tion, because the effect of quantum dissipation is an essential nature in condensed matter
physics which appears in most of the systems and I am much interested in investigating
the transition process under the influence of quantum dissipation.

It should be emphasized here that the concept of quantum dissipation should be under-
stood from two distinct viewpoints. One is the dissipation of energy and the other is the
fluctuation of energy, or in other words, the dissipation of the phase memory. The relative
magnitudes of the effects of these are connected to each other through the fluctuation-
dissipation theorem.

1.3.2 Analytical works

One of the standpoints to investigate the effects of quantum dissipation, the dissipation
and fluctuation of the energy, is to take the time-dependent model of Zener coupled with
a bath of many mode phonons. Although it may seem artificial to assume an explicit time
dependence for diabatic energies at the crossing event, this model is useful to get insight into
the essential dynamics of the nonadiabatic transitions at a single crossing event, and it is
called a standard model. The effect of the environmental perturbation in the level-crossing
problem has been investigated by several authors within the standard model [20, 21, 22, 23].
From the theoretical point of view, this problem gives an interesting time-dependent version
of the quantum tunneling with dissipation [24, 25].

Kayanuma [21] investigated the effect of the phase relaxation on the transition proba-
bility by reducing the standard model to a stochastic model at high temperature. He has
shown that the existence of the phase relaxation generally increases the apparent nona-
diabaticity, and obtained a closed formula of the transition rate in the limit of strong
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dephasing, that is,

Psp = % (1 — exp[—4nJ? /hlv!]) , (1.2)

which shows an incoherent or a diffusionlike transfer. Also he calculated the probability
of the dynamical nonradiative transition in strongly-coupled electron-phonon system [11].
He has shown that in the case that the semiclassical condition is satisfied, the dynamical
transition rate at the potential-curve crossing is given by the Landau-Zener formula, be-
cause the associated energy levels cross so rapidly that the quantum dissipation does not
affect the transition rate. Sumi [10] has also derived the same result for the transition rate
between two localized electronic states.

Leggett and his coworkers [25] have established the formalism by use of influence-
functional method based on path-integral approach in their study on quantum tunneling
problem with dissipation. They started from the “spin-boson” Hamiltonian

1 1 1 1 o Dk2
= —§hAaz + 2692 + 5209z ; Crzy + ; <2mkwkxk + m , (1.3)
where o, and o, denote Pauli spin matrices. They obtained analytical expression of the
decay rate from metastable state for various cases. Above all, non-biased case of € = 0 is
fully examined. They showed that even the qualitative behavior of the dissipative system
is sensitive to the low-frequency behavior of the spectral function J (w) defined as

T 2
Jw) =23 Ce
k

MW
and tunneling processes shows exponential relaxations or damped oscillations, which are
determined also by the dimensionless dissipation constant or temperature.

Ao and Rammer [23] developed an extensive analysis for the original standard model
and obtained analytical expressions of the transition rate for some extreme cases of the
parameter value, by using Leggett’s method for the time-dependent model. A remarkable
conclusion is that the effect of the environmental perturbation on the transition rate dis-
appears at low temperatures and transition rate is given by the Landau-Zener formula, in
the case that the system starts from the lower branch in the initial state. This assertion is
not consistent with the previous result of the analytical study in the same model [22], and
it was required to settle the inconsistency in a clear form.

0w — wg) (1.4)

1.3.3 Numerical works

The standard model based on Landau-Zener theory is the most suitable way to analyze the
transion dynamics as a single crossing event, if the degree of freedom, which modulates the
electronic levels, is heavy enough and the levels can be assumed to be an explicit function
of time. In actual situations, however, the energy levels aren’t an explicit function of time,
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because the degree of freedom itself is fluctuating and is not a well-defined parameter. It
can not be allowed to treat the degree of freedom as a semi-classical variable, so one have to
treat the motion of the degree of freedom on the potential surfaces quantum-mechanically
as the motion of a wave packet. Furthermore, in some systems, the electronic system is
so strongly coupled with the surrounding media that the modulation of the energy itself is
caused by this coupling. The strongly coupled localized electron-phonon system in solids
mentioned above is such example. In order to analyze the dynamical phenomena of such
systems, the whole process must be treated as an autonomous evolution.

Since analysis based upon Landau-Zener formula have been done mostly in the lit-
erature, it has been awaited to develop an efficient and reliable technique of numerical
calculation for the dynamical processes of the realistic system. Several researchers tried
to tackle the problem [20, 26, 27, 28] with various methods, however, useful calculational
method has not been yet established.

Tsukada. [20] did a numerical calculation of the transition dynamics of absorbates for a
semiclassical version of the standard model by utilizing the stochastic-trajectory method.
It has been clearly shown in this work that, because the back-transfer effect, the energy
relaxation dramatically modifies the transition rate in the case that the system initially
occupies the upper level. The validity of the approximation adopted to derive the force
term in the stochastic equation is, however, not always justified since the environmental
oscillators are assumed as being driven by a common force irrespective of the electronic
subspace.

Tully [26] developed a numerical calculation method based on stochastic-trajectory
method, by considering stochastic jump process to another electronic levels. In this method,
the system can jump to another levels by a finite probability. At each calculational step, the
transition probabilities to another levels are calculated, and stochastically decided whether
the system makes a transition or not. The force term in the stochastic equation of motion
is calculated consistently from the electronic state the system is in. Photodissociation
dynamics of Ar clusters has been simulated by using this method [27] and obtained good
agreement with the experiment. In order to calculate physical quantity with high accuracy,
however, we need the averaging over many stochastic paths, and this method would not
be suitable for calculations of the dynamics in solid systems where it takes too much
computational costs to calculate excited states.

Tanimura et al. [28] deduced the quantum Fokker-Plank equation for the system with a
bath of Gaussian-Markovian noise, and calculated the motion of the wave packet in Wigner
representation for the system of molecules with Morse potentials. The optical absorption
spectrum and the femtosecond pump-probe spectrum are calculated as well. However,
care must be taken when one treat the dynamics of the system at low temperature in this
approach.

Finally, damping hyperoperator technique is widely utilized to describe the quantum
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damping of photon fields [29]. It was also applied to the calculation of the second-order
optical spectrum of a localized electron-phonon system [30]. Murao and coworkers [31]
developed an elegant formalism to solve the equation of motion for the density matrix
with a damping term and carried out numerical calculations of transition dynamics of a
level-crossing system. This calculation method is the best way to investigate qualitative
behavior of the dynamics of the quantum system, which shows a wide variety, although
this technique has a difficulty in application to the transition dynamics of actual systems,
because the potential curvature of actual systems are, strictly speaking, not harmonic.
The state-vector Monte Carlo, and the quantum-state diffusion method are classified into
stochastic versions of this method and gave the same results as that of usual damping
hyperoperator method [32].

1.4 Aim of the thesis

The aim of the thesis is:

1. to make a comprehensive investigation of the level-crossing problem in condensed
matter as an elementary process within the framework of the standard model,

2. to get the complete knowledge about the role of the quantum dissipation in nonadi-
abatic transition processes at level-crossings,

3. to clarify whole transition dynamics of the potential-crossing system, and finally,
4. to get complete understandings about the mechanism of the nonadiabatic process.

Both analytical and numerical calculation are performed from the standard Hamilto-
nian. In next chapter 2, the model is presented with some remarks about the physical
parameters. Analytical method using the formal perturbation expansion series, and nu-
merical method utilizing damping hyperoperator technique are briefly presented in chapter
3.

Chapter 4 is devoted to the analytical investigations of the nonadiabatic transition at
the level-crossing of a Landau-Zener type as an elementary process, but the results are
useful to consider the nonadiabatic transition of the potential-crossing system, in which
the whole process must be treated dynamically. Closed expressions of the transition rate,
some of which have been obtained previously, are derived in a unified way. Specifically,
a formula is obtained that covers the limit of the strong phase-relaxation, bridging the
high-temperature, weak-coupling limit and the low-temperature, strong-coupling limit.

Chapter 5 is devoted to the numerical results of the dynamical evolution of level-crossing
system of a Landau-Zener type. The numerical calculations have made clear what is going
on in the electronic system during the level crossing under the influence of the quantum
dissipation through the time-dependent behavior of reduced density matrix. In the extreme
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cases of the parameter values, the results of the analytical formulas are ascertained. In
addition, a peculiar feature of the damping hyperoperator technique as a tool for such a
calculation is revealed and critically examined.

The nonadiabatic transition processes of the potential-crossing system, and its applica-
tion to realistic system is presented in chapter 6. It has been shown that the nonadiabatic
transition goes on in two steps. First, the transition is induced dynamically during the
lattice relaxation process as the phonon wave packet passes the crossing point. Then, the
transition from the relaxed excited state follows statically by thermal excitation or quan-
tum tunneling. The transition probability in the dynamical stage has been investigated
quantitatively. As typical examples of the actual system, the shallow-to-deep transition
dynamics of DX-center and the nonradiative transition process of F-center are calculated
and discussed.

Concluding remarks are given in chapter 7. Finally in appendix, the derivation of the
interaction mode, which is used to introduce the damping hyperoperator, and the derivation
of the damping hyperoperator for the two-level system are noted.



Chapter 2

Model

2.1 Hamiltonian

Consider the energy levels of the two electronic states |1) and |2). The system initially
exists in |1) makes a transition to |2) through a off-diagonal matrix element around the
crossing. Throughout this study, transition is defined for diabatic basis set |1) and [2).
Also h =1 is adopted. The whole system is assumed as being subject to the perturbation
by the elementary excitations in surrounding medium represented by phonons.

The prototype Hamiltonian to discuss transition dynamics is as follows:

Hr(t) = Hq(t) + H,, + Hj, (2.1)
where
mw = (% ) %
Hyn = D wibglty, (2.3)
k
Hry = Zakwk(bk-i-bkf) ( (51) _O% ) . (2.4)
k

He(t) is a Hamiltonian for the electronic system with a constant off-diagonal matrix element
J. €1(t) , €2(t) are the energy of the electronic states that approach and cross each other in
accordance with the motion of a heavy degree of freedom or by the external modulation,
and are assumed to have an explicit functionality of time. Hpp, is a Hamiltonian for the
phonon system, by, (b') is annihilation (creation) operator for the k-th normal mode with
energy wi. Hy is a Hamiltonian for the interaction between the electronic system and the
phonon system, and oy is the linear coupling constant with the k-th mode.

In this study, we choose €;(t) and e2(t) in two limiting but interesting cases and discuss
the dynamics of the system.
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Case 1: Let us consider the transition dynamics at a level crossing with quantum
dissipation as an elementary process, by extending Zener’s model. €;(¢f) and e3(¢) are
chosen such that Hy is the same as the Landau-Zener model,

1 1
€(t) = E'vt, e(t) = —§vt, (2.5)

where v is the velocity of the change of the energy difference. The level-crossing scheme of
original Landau-Zener model is shown in Figure 2.1. This model is referred as the standard
model in previous chapter, and will be discussed analytically in Chapter 4, and numerically
in Chapter 5.

As initial condition, it is assumed that at ¢ — oo, the total system is represented by
the density matrix p; given by

pi = [1){1]p1, (2.6)
where p; represents the phonon equilibrium in the subspace |1), namely,

_ _exp(=H/ksT)
L= Ty fexp(—Hy /k5T)]

(2.7)
with

Hy=Hgy+ % S o (b + i) (2.8)
: k
The probability P that the electronic system exists in |2) at ¢ — oo is calculated. Note
that the transition rate depends also on the sign of v unlike the original Landau-Zener
model. The transition rate for v > 0 means the transition rate from the lower initial state
to the another state, which becomes lower after the crossing. And that for v < 0 means the
transition rate from the higher initial state to the another state, which becomes higher after
the crossing. The transition rate will be modified by the existence of the energy dissipation
so that the transition rate to the lower state gets larger probability.
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Figure 2.2: The potential crossing system. The potential energies as a function of the
representative phonon mode Q cross each other at Q@ = g.. Once the system is excited to
[1) to |2), the nonradiative transition is induced dynamically during the relaxation process
as the wave packet passes around the potential-crossing region.

Case 2: In order to investigate the whole transition dynamics as an autonomous system,
we simply set €;(t) and e2(t) to constant,

e1(t) = e, et) =€, e —e =Ac. (2.9)

This model is a very useful model that represents a potential-crossing system (see Figure
2.2), and is essentially same as that of Leggett et al; only operators by and b;' are replaced
with classical variables 7 in their model. They calculated the decay rate from the sta-
tionary state (relaxed state) by the quantum tunneling [24, 25), however, the dynamical
transition process also needs to be considered when the system is initially in excited state.
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Once the system is excited to higher state, the nonadiabatic transition will be induced dy-
namically during the lattice relaxation process around the potential-crossing region. The
transition by the quantum tunneling will occur after the lattice relaxation process.
Suppose |1) corresponds to the ground state and [2) the excited state, and consider
the case that the system is optically excited from |1) to [2). Under the Franck-Condon
principle, the density matrix that represents the total system is initially given by

pi = [2){2]p1 . (2:10)

p1 does not represent the equilibrium state of the electron-phonon system in the subspace
12), so the system starts to relax to the new equilibrium state in the subspace |2). During
this process, the nonadiabatic transition to the ground state |1) will be induced when the
phonon wave packet passes the crossing region of two potential curves. This process is
well known as the nonradiative transition process in solids and is discussed in chapter 6.
The probability P that the system undergoes nonradiative transition from |1} to |2) is
calculated. ‘

2.2 The electron-phonon system

Because of the Gaussian character of the linear electron-phonon interaction, the dynamics
of the quantum dissipation can be completely specified by the spectral-density function
¢(w) defined by

Sw) = 51; /_Z(W(t)W(O))Oeiwtdt

= > a’w® [(nk +1)6(w — wi) + ngd(w + wi)] (2.11)
k
where
W =3 oxwilbe + bx'), W(t) = exp(iHpnt) W exp(—iHpnt), (2.12)
k
= 1 1 . 1 1tv
and ng = o (on/kaT) <1 ° In the above equation, < >0 is the average over the density

matrix pg = exp(—th/kBT)/Tr lexp(—Hpn/kBT)] .
The relaxation energy AFE is given by

AE = /_ * ) ldw, (2.13)

which is half of the Stokes shift for the optical transition.
The amplitude of the energy fluctuation D is given by

p?= /_ c: $(w)dw . (2.14)
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We define the dimensionless coupling constant S by
S = z ak2 (2.15)
k

and the representative phonon energy @ by
AE = S&. (2.16)

The transition dynamics under the influence of quantum dissipation is insensitive to the
detailed functional form of ¢(w) but is characterized by the parameters @, S, AE, D and
kgT . It should be noted that AE and D are related to each other through the Einstein
relation,

D? ~ 2kgT*AE, (2.17)

where, recovering h, T* = (h&/2kp) coth(h@/2kpT) is the effective temperature. There-
fore, the effect of the energy fluctuation becomes dominant while the energy dissipation
can be neglected in the limit of weak coupling and high temperature,

AE -0, kT — oo with D finite. (2.18)

This is the case described well by the stochastic model [21]. On the other hand, in the
limit of strong coupling and low temperature, the effect of the energy relaxation as well
becomes important since in this limit,

@<« D~VSo < AE. (2.19)

The stochastic fluctuation of the energy difference generally leads to the phase relaxation.
In the case that D/@ > 1, the relative-phase memory is completely lost within a short
time of order of 7,5 ~ D~!}(« @~!) . For D/& < 1, the phase relaxation is incomplete.
This is a feature of the linear coupling model and is connected with the presence of a sharp
zero-phonon line in the optical-transition spectrum.

The generating function for the electron-phonon system is defined as

t s
Gl = / ds / as' (W (s)W ()
0o Jo 0
o0 .
= / dwd(w) [(1 —e W2 _ itw—l] (2.20)
-
— lp2e
= +2D 4
Note that the Fourier transformation of G(t)
o
I(E) = L / dt e{E-e)t=G(t) (2.21)
27 oo

gives the optical spectrum for the idealized system without off-diagonal interaction J. ¢ is
the Franck-Condon energy for the idealized system.
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The time constant 7e, of the relaxation of the energy is given by 7en =~ 771, where
is the width of ¢(w) at low temperature. In most cases, 7 is roughly the same order of
magnitude as @ itself. The time constants 7, and 7e, should be compared with the time
interval 7i; within which the system exists in the transition region. Since the off-diagonal
coupling works for the energy difference of order of or less than J, 7, is given by,

Tir = J/|v] (2.22)

in the case of the transition of Landau-Zener. The transition process is characterized by
the degree of coherence, which is measured by the ratio of 7,4 and 7, , as is shown in
Chapter 4.



Chapter 3

Methodology

3.1 Analytical method

3.1.1 Formal perturbation expansion

The time evolution of the total system obeys the Liouville equation for density matrix,

229 (70, o0)], (3.1)

which is, in practice, not solvable. The density matrix p(t) at time ¢ is formally given by

p(t) = exp, [—i /_tooHT(T)dT] Pi €xXp_ [-i—i /_tooHT('r')d'r'] (3.2)

where exp, (exp_) means the time-ordered exponential with increasing time toward left
(right), defined by

exp, [—-i /_t ooH (T)d’T]

1+ (—i) [wdnH(ﬁ)
+ (=i [ an ["anHE)HE)

t L2 Tn—
+ (—i) / dry / dry--- [ dr H(m)H(rs)--- H(rs)
—00 -0 —00

ey

t

T Tn—
dr / “dry - / draH(r)H(r3) - - H(ry)
o0 -0 —00

n=0 -
= g(—i)n /-toodn fgia .. r:_:iTnH(Tn) - H(r)H(m),
exp_ [-l-i -/—tooH(T)dT} = io('i—i)n /_togﬁ /::gTz ces —T;'ldTnH(Tn) -~ H(r)H(my).

The probability p(t) that the system initially exists in |1) and make a transition to |2) in
time ¢ is given as

14
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p(t) = Tr(2|p(¥)2) t
= Tr(2|exp, [—i /_tooHT(T)dT} 0i €Xp_ [-l—i /_OOHT(T’)dT’] 2)

= Tr(2exp, [——z’ [ ;HT(T)dT] I1)p1(1] exp_ [+i /_t wHT(T')dT'} 12)

= <{exp_ [+z‘ /_;HT(T')dT'] }1’2 {exp+ [—i /_tooHT(T)d'r] }2’1>1 , (3-3)

in which {---}; ; means that the (¢,) component should be taken and (- - -); indicates the
expectation value over the equilibrium phonon in the subspace |1) ,

(-+), =Tr{p1--} (34)

The probability p(t) can be expanded in a power series of J to infinite orders, namely,
oo
p(t) = =3 (=) "L™() (3.5)
n=1

In some extreme situations, we can calculate the perturbation terms L(™ for each n and
sum over, then we can obtain useful formulas for the transition rate, which are discussed
in the next chapter.

3.2 Numerical method

3.2.1 The interaction mode

First, we introduce interaction mode B by the unitary transformation of normal mode
phonon b

N N
B=73 Usibe, B'= Upibit. (3.6)
k=1 k=1
The interaction mode was first proposed by Toyozawa and Inoue for the Jahn-Teller sys-
tem [33]. In a little different form, it was also introduced by O’Brien [34]. The essential
point of the interaction mode is that one can construct, out of a tremendous number of
normal modes, a small number of modes that bear all of the relaxation energy within the
relevant electronic subspace as components of the system. The rest of the modes span a
basis set of the orthogonal complement of the interaction mode, which can be regarded as
the reservoir.
The reservoir modes R; are defined as

N N
Rj:ZU;,kbk’ RjT:EU‘gkka7 .7=1a2’7N_1 (37)
k=1 k=1
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The condition that the interaction mode carries all of the relaxation energy requires
Uo,k = ak/a , (3.8)

with o = Y, o4?(= S). The transformation coefficients U;x(j = 1,2,---,N — 1) are
uniquely defined so that R; lie in the orthogonal complement of B and are mutually or-
thogonal. The detailed procedure to determine the coefficients U} x is shown in Appendix
A

The total Hamiltonian of the system is eventually rewritten to,

Hr(t) = Hgys(t)+ Vsys + Hr+ Vi, (3.9)
Hgys(t) = ( e1(t) + SDBlfBl » +(‘)D 5,18, ) , (3.10)
Voys = ( 3 'g ) ; (3.11)
Hp = ZQjRj*Rj ( (1) 2 ) : | (3.12)
J .
Z Bi(B1'R; + BiR;") 0
e S B(BIR, + BaRy) | (319
J
where
31§B+%, stB—g. (3.14)

@ is the energy of the interaction mode given by
2
&= Zwkl Uox ] : (3.15)
k

and B; is the coupling constant between the interaction mode and the reservoir modes,

Bi =Y wilUUo - (3.16)
k

It should be noted that the above definition correctly guarantees the relaxation of the
interaction mode to the lowest state within the respective electronic subspace. It has been
shown that the concept of the interaction mode is extended in a unique way to generic
n-level systems coupled linearly with boson fields [35].

3.2.2 Damping hyperoperator method

The damping operator for the interaction mode coupled with the two-level system is in-
troduced by extending the well-known procedure, which is shown in Appendix B. The
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equation of motion for the total density matrix in the interaction representation is solved
for a short time interval by the perturbation expansion to first order with respect to Viys
and to second order with respect to Vg. The variables for the reservoir modes are then
eliminated by taking the trace over the subspace of the reserviour modes R. Under the as-
sumption that the thermal equilibrium of R is undisturbed by the interaction and that the
spectrum of R is wide enough to guarantee the Markovian approximation, we can obtain
the reduced equation of motion for the density matrix of the system. In the Schrodinger
picture, it reads

2?%@ = [Hsys(t) + Vsys 3 pR(t)] +- PR, (3'17)
where
pr(t) = Trr p(t) (3.18)

means the reduced density matrix in which the information of the reserviour is eliminated
by taking trace over R.
I’ is a hyperoperator defined for the 2x2 density matrix

_ [ ;1 P12
_ [ P op, 3.19
PR ( P21 P22 ) ( )
as
Fiao11 Ti2p12
S B 3.20
PR ( T21p21 To2p22 (3-20)
with

Lijpij = w(A+1) (2Bipi,ijf — B{'Bip; ; — pi,ijfBj)
+ K7 (2B1;Tpi,ij - BiBiTpi’j - Pi,ijij) . (3.21)

In the above equation, « is the effective coupling constant with the reservior modes and is
taken as a free parameter, although the above equations are derived under rather restricted
conditions on the spectrum of the reserviour modes. 7 means the thermal occupation
number for the interaction mode phonon of energy @, that is,

1

n= P ke =1 (3.22)
The energy relaxation time 7., is given by
Ten ~ I‘&—l . (3.23)

Equation (3.17) is transformed into a set of simultaneous differential equations for the
coefficients of the number state representation of the interaction mode, by expanding p; g
as

M
pii(t) = Y Cij(n,m;t)n)(m]. (3.24)

n,m=0
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and solved numerically. M, the highest phonon state needed for the calculation, depends on
the electron-phonon coupling parameter S and temperature. In typical case of the strongly-
coupled electron-phonon system, over 200 phonon states must be taken into account and
the number of total basis states needed for the calculation exceeds 80,000.



Chapter 4

The Landau-Zener Problem 1.
Analytical Investigations

4.1 Formalism by generating function

In this chapter, we calculate the transition rate under the influence of quantum dissipation
P, within the framework of Landau and Zener. The transition rate P is defined as

P = p(c0)

- {fon o) fon o))

1
And we define the transition rate for v > 0 as P, and that for v < 0 as P_. P, is the
transition rate from the lower inititial branch to the lower branch, P_ from the higher
initial branch to the higher branch.
In order to calculate the transition rate, we first divide the time-ordered exponentials
into the diagonal part Hy and the off-diagonal part Vsys for the electronic system. By using
Feynman’s disentangling theorem

exp, [—-i /_tooHT(T)dT] = exp, —z /t (Ho(T) + Viys) dr]

-0

= exp, -z /_;Ho(r)dr] - exp, [—i /:jfsys(r)df]

exp_ [+i /_t ooHT('r)dT] = exp_ T-H' /_t ojgys(r)d'r] - exp_ [+i /_t ooHO(T)dT}

where

0 —'2'1)7’

Hi(r) 0
( 0 H) ) ’ (42)

19

1
Hy(r) = (2UT 9 >+th+H1
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Veys(7) €xp- [""i [_ ;HO(TI)dT’] Vsysexpy [—i /_ ;Ho(Tl)d'r’]
o] 1] el [

+ exp i+i /_ ;Hz(f')df'] - exp [-i /_ ; Hl(f')df'} |z>(1|) . (43)

(2,1) and (1,2) component in Eq. (4.1) is rewritten as
o ]
{exp_,_ [—z/ Hp(r')dr' }
-0 1)2:1
o} 0 .
= (2|lexp, [—~z/ Ho(T)dT] - eXp, [—z/ Vsys(v-)d'r] [1)
—00 -0

= exp [—i /_ Zﬂz(f)df] - (2] exp, [—i /_ Z&ys(r)df] ny,  (44)

{exp_ [-}-i /_ZHT(T')dT'] }1’2

= (1l]exp, [+z’ /_o:o%ys(f)dr] |2) - exp [+i /_ZHz(T)dTJ . (4.5)

The time ordered exponentials in Eq.(4.4) and Eq.(4.5) are expanded. The perturbation
terms of even order for f/sys vanish when (2,1) component is taken,

(2| exp,. [—i /_Zﬁys(T)d’f] 1)

e om—1 o) 00 o)
= (=2)*™ / d’/’l/ dry--- | dmem—1
—00 T1

m=1 2m-—2
(2| Vays(Tam—1)|1)(1] -~ -- [1){1| Vays(72)[2){2] Viys (1) (1) (4.6)
e oo 00 00
= Z (—iJ)zm_l / dn / drg--- dTom—1
m=1 —00 71 T2m—-2

T2m~1 T2m -1
exp [+z/ Hg('r)d'rJ - exp [——z/ Hl(*r)d'rJ X oo
—00 T2m-2
T2 1
X exp [—i Hg(T)d'r] exp [—-i / Hl(T)dT] . (4.7)
T -0
(1,2) component can be calculated in the same way, that is,
3 w‘.'
(1] exp,, [-H, / Vsys(‘r)d'r] 12)
-0

e oo T{ Tém—z
= 3 (+iJ)m-1 / o] / arj / ars
m=1 - -

—00

. T‘Sm—l ' 1] . 1’é‘m—l ’ ’
exp |+¢ Hi(m")dr'| - exp | —1 , Hy(™dr'| x ---

- T2m—2



4.1. FORMALISM BY GENERATING FUNCTION 21

7,I ,rl
X exp [—z/ ?Hl('r')dv"} exp [—z/ le(T’)dT'J . (4.8)
T{ —00
From Eq. (4.7) and Eq. (4.8), we obtain
oo n o0 o0 oo
P = - Z Z(—J2)n/ dTl/ dTQ"’ d7'2m—1
n=1m=1 - m Tam—2
o0 T2m T2n—1
/ dT2m/ d7'2m+1"'/ dron F(T1,72,%*+ , Ton) - (4.9)
—0o0 ) —00

Note that p; and Hy(7) commute. The integrand F (7,72, -+, 72,) in Eq. (4.9) is given as
follows :

T; T2n
F(T1,725 3 Tan) = <exp [—2/ 1Hl(T)dT] - exp [—z’ ’ Hg(T)dT]
T2n T2n-1
-+ exp [—i 3Hl(7')d7'] - exp [——z/ 2Hg(r)d'rJ >1 . (4.10)
T2 T

The diagrammatic representation of Eq. (4.10) is shown in Figure 4.1 as a double-path
propagator for the density matrix. The upper side of the diagram represents the motion of
the ket vector in Hilbert space, and the downer side represents that of the bra vector. The
system makes a transition at each vertex {1, 73, -, 7on} from |1) ((1|) to |2) ({2|) or vice
versa. The system is driven by H; (in the region by solid line) or by H> (in the region by
dotted line), according to which electronic state the system is in.

In Figure 4.1, the system propagator for the system starts from the density matrix py;.
At time 7; it makes a transition to po; and switches to p;; at time 75. At time interval
between 73 and 73, the system propagates by pi, and by poe between 73 and 77, by po;
between 77 and 74, by p11 between 74 and 75, by p9; between 75 and 7. Finally, after time
T, the system propagates by poo.

LTy T3 T4 _T5
o NN e
T8~ ~T7 ~Te

Figure 4.1: The double-path Feynmann diagram for n = 4, m = 3. In the limit of large
amplitude fluctuation, time vertices encircled by the ellipses must be paired off (see next
section).
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We shift the origin of the phonons and the origin of the energy so that

by + %ak — by, ka + %ak — bkt, (4.11)
then
1
Hl(T) — E’UT + Zwkkabk
k
1
= gur + Hpy,, (4.12)

1
Hy(r) — —5vT+ > wibibr — D~ aw(br + bt + 2_ o
k k k

= —%UT+S&)+th—W. (4.13)

Equation (4.10) remains in the same form and can be divided into electronic part and
phonon part, that is,

-7:(7-17 T2, 77-271) = eiE(Tl ’72’."’7-2")7)(71’ T2y T2n) ’ . (414)
where the electronic part £(y, 72, -, Tep) is written as
v v v
Erymy e mn) = =5 = h) + G~ rhsy) =4 U(e = 1)
~S&(Ton — Top—1+-+ -+ 72— 71)
v 2n ] 2n .
= 3 D (1Y -S> (-1);. (4.15)
=1 i=1

The phonon part P(71, 73, - -, Top) is rewritten to, after a rather complicated mathematics,
that is,

P11, 72y, Ton) = <e—inh(n—Tzn) - e~ H{Hpn=W)(T2n~T2n—1) | o=iHph(T2n-1—Tan-2) .
... g—iHpn(rs=T2) | e—z’(th—W)(n—n)> (4.16)
1
2n i—1 o
= exp ZZ(_1)1+JG(Ti_Tj) , (4.17)
i=2 j=1

where G(7) is the generating function defined by Eq. (2.20).

Finally, we can write down the general perturbation terms of n-th order, and the formal
expression for the transition rate P, at a Landau-Zener crossing with quantum dissipation,
is described as follows :

00
P = -3 (=JH)rL™, (4.18)
n=1
n [’ 00 o)
L(n) = Z/ dTldeg--- d’TQm_]_
m=17Y T1 Tom—2

<] Tom T2n—1
/ dTom | dTomi1 / dron F(T1,72,++,T2n), (4.19)
bl e o] —00 bl e o]



4.2. RAPID PASSAGE LIMIT 23

2n 2n
F(r1,79,-+,Ton) = exp —22( 1)/ 7‘ —zS’wZ( )JT]
j=1 j=1
2n i—1
+ Y 3 ()G - 1) - (4.20)
=2 j=1

4.2 Rapid passage limit

The first result in this study is that the lowest-order term of P coincides with that of the
Landau-Zener formula irrespective of the phonon coupling, since

W = [T [ U2 — 2 — iS5 (1 — 1) — Gl —
LY = dry [ dryexp liz(12® —1*) —iS@(re — 1) — G2 — 1)

/oodp/ do exp [tvop — iSwo — G(o)]
—00 ~—~00

27
= ETI (4.21)

where new variables are introduced, u = (11 + 72)/2 and 0 = 75 — 71 . This means that in
the rapid passage limit of J2/|v| < 1, the transition rate is not affected by the quantum
dissipation and given by the Landau-Zener formula,

P ~ Pz
2nJ?
= —|5—|—-+O(J4). (4.22)

4.3 Large amplitude fluctuation limit

4.3.1 Pairing-off theorem

It is difficult to evaluate the multiple integrals for general terms, however, the meaning of
formula becomes clear in the limit of large amplitude D/@ > 1, namely in the limit of
strong coupling or high temperature. The following theorem is primary important for the
analysis of the dynamical process in this limit.

Pairing-off theorem. Out of all the configurations of the time vertices that appear in the
diagrams shown in Figure 4.1, only those make nonvanishing contributions to the integral
in Eq. (4.19), in which 2n vertices make pairs with intrapair distance less than D~! except
for special cases in which an even number of vertices not less than four make groups with
mutual distance less than (@D)!/2 .



24 CHAPTER 4. LANDAU-ZENER PROBLEM I. ANALYTICAL INVESTIGATIONS

Proof. In order to prove the theorem, we divide the exponent of Eq. (4.20) into the
real part R(7y,72,--- ,72,) and the imaginary part Z(71, 72, -+ ,Ton). The real part

2n i—1
R(T1,72,- - ,Tan) = Re | Y > (-1)™MG(r; — 75) (4.23)
1=2 j=1
originates from the fluctuation of the energy. We observe that R(7y, 72, ,7T2n) can be
rewritten as
1 roo 2n . ?
R(r1,72,0+ 372n) = = / dud(w)w? x |3 (~1)7ewm (4.24)
Note that R(71, 72, -+ ,72,) is a nonpositive definite quantity. Since
oo
/ dwd(w)w? ~ D?/a? > 1, (4.25)
-0
R(71,72,-** ,Ton) becomes negative with a large absolute value unless the following condi-
tion is satisfied:
2n o
S (-1Ye | <@/D. (4.26)
J=1

Since the integral with respect to w runs over the interval of order 7, the above condition is
satisfied in the limit D/& — oo only when 2n vertices are paired off, namely, a time vertex
with even suffix coincides with a time vertex with odd suffix to be canceled out as shown
in Figure 4.1. By expanding the expression 3-2%,(—1)’e™" in a power series around the
paired-off configuration, the theorem is immediately proved.

The pairing-off property of the strongly coupled localized electron-phonon system has
been described by Kusunoki [9] in a less clear way. Sumi correctly stated the pairing-off
ansatz in his study of the nonradiative process in solids [10]. The pairing-off theorem plays
an essential role in understanding the dual character of the Raman scattering and the
luminescence in the second-order optical process of the strongly coupled electron-phonon
system [36).

The above theorem provides a mathematical basis for the noninteracting blip approz-
imation, which is widely used in the study of the dynamics of the spin-boson system. In
its lowest order, the noninteracting blip approximation requires us to simply drop all the
terms G(7; — 7;) that extend over different pairs [25]. By this approximation, the memory
of the boson system about the previous history is instantly lost at each blip. In order to
correctly describe the energy relaxation, which is important in the strong-coupling limit,
the history must be taken into account as the interaction between blips.

The pairing-off theorem is a consequence of the ultrafast phase relaxation in the large-
amplitude fluctuation limit. As can be seen from Figure 4.1, the density matrix propagates
almost always in the diagonal form in this limit.
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If one notices that

2n i-1 2n .
ZZ( 1) Z+J (i—7) = Z(—I)JTJ"
1=2j=1 j=1

the imaginary part Z(ry, 72, -+ ,T2p) of the exponent of Eq. (4.20) can be rewritten as

I(leT2a"',T2n) = —’Uz l)J 7
2n 1—1
/ x 3 (~1)¥ sinw(r; — 7). (4.27)
=2 j=1

We classify the paired configuration into two groups: the vertical pairs and the hori-
zontal pairs. The vertical pairs lies across the upper and the lower propagator like pairs
(73,78), (77, 74), and (75, T¢) in Figure 4.1. The horizontal pair lies within the upper or lower
propagator like (71, 72). Denote the pairs as (7a,,7a,) , (Tag, Tag) »* = » (TAgn_1» TAz,) @S they
are ordered from left toward right, where we take \g,,_1=o0dd and A2, =even. Introduce a
set of new variables as

Hm = (T/\2m + TA2m—1)/2 ? Om = TAZm - 7-/\2m—1 * (4‘28)

Then in the limit of D /@ > 1, the saddle-point method can be applied to the evaluation of
the multiple time-ordered integrals by expanding R(71,72, - ,72n) and (711,72, ** , Ton)
to the lowest order in 0,,. The real part can be readily approximated as

R(r1, 72, ,Tan) ~ ——/ dw(w) x ZZcosw(up Kg) - OpOyg - (4.29)
p=1g=1

On the other hand, the imaginary part can be evaluated by an elementary but somewhat
tedious counting-up of the diagram and by some exercise of trigonometry as

n
I(Tl, T2y0 0, T2n) ~ E Eg()q)(p'vu/-‘vz’ te ,/J'vq; /Jp)ap 3 (430)
p=1

Where E( )(“l”lll’ uvz, oo ’”‘Uq; #p) is given by
ES (iuy, biug, = togi Hip) = bty + (~1)7 5@
g . oo
+2 Z (=1)7 x / dw@ cosw(pp — j) . (4.31)
j:l -0

In the above equation, iy, , fy,, -, py, are the times for the vertical pairs that lie to the

left of pup in Figure 4.1. For the case that there is no vertical pair before Kp, E(q) should
read as E,(,O) = vpp — S@.
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Although the derivation is somewhat complicated, the meaning of the above formula is
obvious. The energy E,(,Q) is nothing but the negative value of the Franck-Condon energy
measured from |1) to |2) for the phonon wave packet, which has following history; it starts
from the equilibrium distribution in the subspace |1), makes a vertical transition to the
adiabatic potential surface of [2) at time u,,, is driven by the Hamiltonian within the
subspace |2) until the time u,, at which it jumps again to the adiabatic potential surface of
|1), and so on. For g even, the packet lies on the adiabatic potential surface in |1) and for
g odd, in |2). Therefore, it can be said that the vertical pair correspond to the transition
while the horizontal pair corresponds to the polarization. At each time the system make
a transition, the equilibrium point of the phonon system shifts from left to right and vice
versa. Such a situation may be visualized by the configuration coordinate diagram for the
interaction mode, as shown in Figure 4.2.

So far, we have not considered the time duration 7, within which the system exists in
the transition region. The time 7y, is a measure of the time interval for which the multiple-
integral of Eq. (4.19) converges. On the other hand, the pairing-off theorem tells us that
the contribution from the integral over o, for each pair is restricted within the time interval
lop| < Tph(~ D71!) in the order of magnitude. The transition associated with each pair
becomes a real transition only in the case that the phase relaxation time is far less than
the transition time, namely, Tpn < Tt

/ 2) /|2) \ | K \n
x> |
N — P W S5 S/
(a) (b) (c) (d) (e)

Figure 4.2: The schematic time evolution of the configuration coordinate diagram for the
level crossing with energy dissipation. The time evolution is from (a) to (e) in the case
v > 0 and from (e) to (a) in the case v < 0.

4.3.2 Coherent limit of fast passage

Here, we consider the case that the velocity |v| is so large that the condition 7pp > i, is sat-
isfied. In this case, the real part R(71, 72, ,T2n) given in Eq. (4.29) can be approximated
as .
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R(TI’T% te a7-2n) = _%Dz (i Xn:GPUQ)
2n 2
- lp {z (_1)1'71-} . (432

since |pp — pg| < 77! for all p and q. Likewise, the imaginary part can be approximated
simply as

1 2n .
I(11, 72, * ,Ton) = EUZ (-1)’72. (4.33)
Jj=1
Equation (4.32) means that the fluctuation of the energy behaves as a static Gaussian dis-
tribution of the energy for a very short time interval. In fact, the effect of R(71, 72, , Ton)
can be eliminated by applying the identity _
D2 X2 1 0 q2
- = —— X 4.34

exp[ 5 } ’_27(-1)/.0'3“@[ 5pz WX | (4.34)

for X = 2?21 (1) 7j. The integrand of Eq. (4.20) then becomes
1 o v ; q 2 q?
_— =S (=) -2) - L. 4.
= [ daewp {’2];( 1 (r-2) - oL (4.35)

The change of integral variables from 7; to 7; = 7; — g/v does slightly change the integral
domain by ¢g/v, however, this effect can be neglected when the upper and the lower bound
for 7; integral are [—o0,00], or, in the case that the condition D/jv] < 1/@ is satisfied
because the dominant contribution to the integral of Eq. (4.35) comes from the region
lg| < D. By interchanging the order of the integration over g and 7, we obtain the desired
result.

The integrand of the perturbation terms are then rewritten as,

2n
.U i
}-(7—177-27 Y 7'2n) = €xp [7‘_2- Z (_1)JT_72] ’ (436)
j=1
this is, nothing but the perturbation expression of original Zener’s model for the transition
rate. The evaluation of all the perturbation terms results in the Landau-Zener formula,

1 /2n\"
o 1(2m ,
L n!(lvl) , (4.37)
P=Prz=1-exp[-2n7%/]o] . (4.38)

The argument here is the essence of the proof of the applicabity of the Landau-Zener formula
to the nonradiative hot transitions in the strongly coupled localized electron-phonon system
with a potential crossing [11).



28 CHAPTER 4. LANDAU-ZENER PROBLEM I. ANALYTICAL INVESTIGATIONS

4.3.3 Incoherent limit of slow passage

Next, we turn to the limit of slow passage, 7ir > 7pn. In this case, the coherence is
interrupted every moment in the relatively long time interval 7, and the vertical pairs in
Figure 4.1 can be interpreted as representing real transitions. The system makes multiple
transitions between |1) and |2) while relaxing toward the equilibrium state within the
respective electronic subspace. Therefore, the probability P would be depend on the relative
length of 7, and 7en. Useful expressions for P can be obtained in the case that a little
Stronger condition

Tir > Ten (4.39)
is satisfied. In this case, R(71,72, - ,T2on) can be approximated as
1 n
R(Tl) T2y " ,Tgn) = —-~2‘D2 Z O'z y (440)
p=1
since the cross terms vanish because of the dephasing,
o0
/ dwd(w)w™t cosw(py, — pg) ~ 0, (4.41)
-0
for general configurations of u, and pg with |pp—pg| ~ O(7en). The variables of integration
are changed from (71,72, - ,7on) to (B1,H2, -, Hn,01, O2,---,0p). We assign a set of
signatures (£1,&2,---,&,) to each diagram corresponding to a serial time ordering, where
€m = +1if 7, _, < oy, and & = =1 if 7y, < Ti,,_,- For example, (£1,&2,€3,84) =

(+1,—1,—1,+1) in the case of time ordering in Figure 4.1. Then, the following lemma can
be proved by an elementary counting up of the diagram.

Lemma 1. In the total set of possible time ordering that appears in the 2n-th order terms
of the perturbation expansion, every set (1,2, :-,&n) with §, = +1 for p = 1,2,---,n
appear 2”71 times.

Since the integral over o, converges for |o,| < Tpp, the restriction on the integral domain
for pp can be safely relaxed as —oo < p; < pp £ -+ < pp < 00. On the other hand, the
integral domain of o, can be extended to —oco < o, < oo for the vertical pairs and to
0 < 0p < 00 or —00 < gp < 0 for the horizontal pairs.

First, we calculate P for the case that the energy dissipation is negligible, Sw — 0,
while the condition D/@ > 1 is still satisfied. This corresponds to the high-temperature

limit with small coupling. The imaginary part Z(71,72,- - ,72,) can be written as
n
1(7137-2,"' 7T2n) = vz#papa (4.42)
r=1

and because of the above lemma, we find
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@ = 91 [Tau [due [ dn - [do [Ty [T
L = 2 duy | dus dpin doy | doo dop
-0 Jum -1 - J-oo —00

= 1
X exp [z Z (v,upap — §D2ag)

p=1

22 [%an [do exp [ivpo — 10%2] 1"
= — {/_oo,u/—ooaexp[w,ua-—i a]}
11 (4r\"
= suli) (8

Inserting the above result into Eq. (4.18), we obtain,

P=Psp= % (1 - exp [-4m72/}0]]) . (4.44)

This formula has been derived by Kayanuma [21] with a slightly different argument for the
stochastic model. It should be noted that

Psp — 2xJ%/|v| for J?/|v| = 0, (4.45)
as is consistent with the previous argument, and
Psp — % for J2/|v] —» oo. (4.46)

This means that the strong decoherence reduces the whole transition process to diffusionlike
so that the system exists with even probability in both states, after the slow passage.

Next, we consider the effect of the energy dissipation for general values of AE. Accord-
ing to the pairing-off theorem, we obtain

SO0 oo [ o] o> o0 [ o]
L™ = Z/ duy [ dus--- dun-/ d01/ dO’z"'/ don,
- J—oco o0 e —00

H1 Hn—1 -

n

. 1 =
t Z E1(Jq) (/"'vn Hug sy Hogs Np)op - §D2 Z 012)] ’ (447)
p=1 p=1

X exp

where the summation ), runs over all of the possible configurations of the vertical pairs.
The integration over o, gives

oo o] oo n
L(n) = Z/ d;u'l dlj'2 e / d/l'n H K(,u/'vnu‘vz? e Hu’vq; Au‘p) ’ (448)
c VT (5} Ha-1 5=
where
2
vV {EI(ﬂ) (uv1 s Hugs * s Hugs ll'p)}

K(l‘vx s Hugs®*°y Hag; #p) = exp |— (4.49)

D 2D?
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Equation (4.48) indicates that the probability P is determined by the successive incoher-
ent transitions of the wave packets of phonons, which are subject to sudden shift of the
equilibrium position while undergoing the relaxed oscillation.

In the cases of slow-passage limit, we can approximate the Frank-Condon energy
E'éq) (Kv1s tvgs -+ Hhugs p) by its asymtonic value

EQ® = vp, + (-1)78o (4.50)

for |pp — pj| > Ten, since the variables p, are distributed sparsely in the integral domain
of order of 7¢;. This means that the phonon system relaxes to the equilibrium cofigura-
tion immediately after the transition so that each transition event occurs always from the
bottoms of the adiabatic potentials of the respective electronic subspace. The equilibrium
configuration at time y, depends on the number g of the vertical pairs before Lp-

K(tvys Bogs** s togs Bp) in Eq. (4.49) is then rewritten as

V2 (S@ — vuy)?
K(pons pogy s bugi p) = 5= exp | —=——m7 2| = F_(up)
= 2nF(S& — vpp) for g =even, (4.51)
or
V2 (S@ + vpp)?
K(Hvl,ﬂvza“‘,#vq;ﬂp) = -b—exp "—2-5% = F+(Mp)
= 2nF(S@ + vpp) for ¢g=o0dd, (4.52)
where the quantity
_ 1 o0 . D2 2 )
F(E)= oy /_ogt exp [—zEt — —2—-t J (4.53)

means a line-shape function which is related to the optical absorption intensity of the
system for virtual photon with energy zero. The integrand of Eq. (4.48) is given as a sum
of all the possible combinations of the terms, like F_(u1)F_(u2)Fy(u3)--- F-(un). Note
that the first component is always F_(u;). Again, an inspection leads to the following
lemma.

Lemma 2. In the total set of possible diagrams that appear in the 2nth order terms of
the perturbation expansion, all the combinations of Fj,(uz)Fj,(u3)--- F;, (pn) with j, =
+ (p=2,3,---,n) appear once.

Then, L™ is given by

0 ) oo L
20 = [“dur [ [7 dunP-(ur) x TT 15 (o) + F- (i)} - (45)
—o0 H1 Hn—1 m=2
Since the integral is unchanged against the permutations of (ug2, 3, -, n), we obtain

0 0 n—1
L™ = (n_l ol /_ogNlF—(Nl)' [/mduz {Fs(p2) +F—(H2)}] - (4.55)
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By inserting this into Eq. (4.18), we obtain

P=J /_sz—(m)'exp [—J2 ozuz {F4 (p2) +F—(#2)}] . (4.56)

b1

This is a central result of this section.
In the case of weak coupling and high temperature, we can put Fy(u) = F_(u) =
2 F(vp) with F(vu) = (1/27D) exp[—v2u?/2D?] and get

o0

o0
P = 27rJ2/ dui F(vuy) - exp [~47rJ2/du2F(v,u2)]
-0 m

= % (1 —exp [—47r.]2/|'u|]) , (4.57)

which recovers the formula (4.44). The identity

exp [/abdtf(t)J = 1+/abdtf(t)exp [/tdef(T)} . (4.58)

has been used in deriving the above result.

In the limit of strong coupling at low temperature, we set D — +/S@. It should be noted
that F. (x) and F_(u) have nonvanishing values only at around y = —S@/v and u = S@/v,
respectively. The value of P strongly depends on the sign of v. We denote the value of
P for v > 0 (v < 0) as Py (P-) hereafter. In the case v > 0, Fi () in the exponent of
Eq. (4.56) can be neglected since the contribution from y; integration is limited at around
w1 ~ S@/v. Then, we obtain

o0 o
P, = Jz/ dpr F_(p1) - exp [—szdﬂzF-(uz)}
-00

H1

= 1—exp [—27rJ2/v] =Prs. (4.59)

On the other hand, in the case v < 0, both F (1) and F_(u) must be considered. However,
the nonvanishing domains of F; (1) and F_(u) are separated each other and the contribu-
tion of the integral over y; comes from p; ~ S@/v < 0, while the main contribution of the
integral for F.(u) over g comes from ps ~ —S@/v > 0. We can safely extend the lower
limit of the integration for F. (u) over us to —oo. Namely,

2 [* 2 [ 2 [*
P. =7 / dui F_(p1) - exp [—J dusF_(p2) — J / du2F+(u2)]
—00 F73% -0
= {1 — exp [—271’J2/|'v|]} - exp[—27wJ?|v]]
= Prz(1-Prz). (4-60)

Ao and Rammer [23] first pointed out that, at zero temperature, the transition rate becomes
identical with the Landau-Zener formula in spite of the dissipation. This is correct provided
that the speed of passage is slow enough and the crossing occurs from the lower-energy side.
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For intermediate values of v, P, deviates to Prz to increase the apparent nonadiabaticity,
as will be shown in the next chapter. It is a little surprising that P, becomes identical with
Prz both in the limit of rapid passage as shown in Eq. (4.38) and in the slow passage as
shown in Eq. (4.59). The reason is, however, quite different between the two cases. Since
the original Landau-Zener formula is derived for the coherent process, it may be said that
the formula (4.59) obtained for the incoherent limit is a result of coincidence [23]. In the
case of v < 0, the sequential application of Pz leads to Eq. (4.60) as a whole transition
rate. The level crossing effectively occurs twice in this case, first at ¢ = —S@/|v| and next
at t = S@/|v| as shown in Figure 4.2.

Note the fact that P; (P-) can be obtained as the value of p(t) at t — oo, which obeys
the rate equation,

0]

- JEF_(0)(t) — J2F+(t) {1 - 5()} , 5(0) =0. (4.61)

If one notes that F; and F_ are interchanged by the change of the sign of v, a useful
relation is obtained from Eq. (4.56) as

(e <]

Pe+Po = I [Td {Fi(u) + F- ()} exp [—ﬂ /u dpin {Fy () + F_ ()}
= 1-exp[-4nJ%/pv|| = 2Psp. (4.62)

For sufficiently large J2/|v|, this behaves as Py + P_ = 1, which means the transition rate
is not affected by the initial state from which the system undergoes level-crossing. The
transition rate can be determined just by the final state, namely, the transition rate to the
lower branch is given by Prz ~ 1, and that to the higher branch by 1 — Py 7.
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4.4 General cases

The general behavior for the transition rate is made clear by numerical calculations, in
next chapter. The transition rate has a tendency to decrease under the existence of energy
fluctuation. It can be said that the effect of phase relaxation increases nonadiabacity. In the
limit of the energy fluctuation alone, it is possible to treat the environmental perturbation
as a Gaussian stochastic fluctuation of the energy levels with the amplitude D and the
decay constant of the correlation of order of 4. It has been shown that, as a function of the
speed of the passage, there is an optimum value of v that maximizes the transition rate,
and P tends to Psp(~ 1/2) in the limit of slow passage [21].

On the other hand, the transition rate to the lower branch has a tendency to decrease,
and that to the upper branch has a tendency to increase under the energy dissipation, so
the transition rate depends on the sign of v. In general, the transition rate from the lower
branch P, is bounded as Psp < P, < Ppz for a fixed value of J2/|v].

4.5 Summary

The transition rate for the Landau-Zener problem with dissipation is analytically investi-
gated by the formal perturbation expansion series with respect to the off-diagonal matrix
element. Closed expressions of the transition rate are derived for various limiting situations
in a unified way. The formulas derived are listed as follows:

1. Generally, (in the rapid passage limit J2/|v| < 1),

Py =P =L 4 0(J4) ~ Pz

2. Coherence limit 7, < 7pp,

P,=P_=Pp,.

3. Decoherence limit 75, < 7ir and Tir > Ten s

o0 00
P= 27r.]2/ du1 F(S@ —vuy) X exp [—27rJ2/ dpo {F(S® + vpe) + F(S® —vug)}| .
—00 M1
P, =P_=Psp for § — 0 with D = finite.
P, =Pz, P. = Prz(1 - Prz) for §>»1and T =0.

where 7o = 1/D, 7 = J/|v|, F(E) is a line-shape function for optical excitation for virtual
photon with energy zero.



Chapter 5

The Landau-Zener Problem I1.
Numerical Results

In this chapter, we show the numerical results for the transition rate of Landau-Zener
model with dissipation. The probability p(t) that the system exists in |2) at time ¢ under
the condition it starts from |1) at a remote past is calculated. The notations p,(t) and
p—(t) are used in order to specify the sign of v; p, () for v > 0 and p_(t) for v < 0. Also
we define the transition rate P, and P_ as p.(t) and p_(t) at t — +o0, respectively. In
the presentation of the results, we adopt the dimensionless parameters normalized by @;
J=J/@, b =v/a? &k =k/@, T =kgT/®,and D = D/a.

5.1 Strong-coupling limit at zero temperature

5.1.1 Time evolution of the transition rate

First we show the results in strong-coupling limit at zero temperature, namely, S > 1 and
T = 0. In this limit , the criterion of large amplitude fluctuation D = /S(2r + 1) > 1 is
satisfied in any parameter values of {j , U, K, Cf’}, even at zero temperature, so we can check
the validity of formulas for the transition rate in the coherent limit and in the incoherent
limit.

In Figure 5.1, examples of the calculated p, (¢) are shown for fixed values of S = 10.0,
J = 0.5, and & = 0.2 at zero temperature with ¥ as a parameter. In Figure 5.2 is also
shown p_(t) for the same parameter values as in Figure 5.1, but for the negative sign of v.
The behaviors of p. (t) and p_(t) are very similar in the rapid passage case, || = 25.0 for
example, and P, and P_, defined as Py = lim; o0 p+(t), P- = limy_,00 p—(t) agree with
the Landau-Zener formula P, = P_ = Pz fairly well. This is the case of the coherent
transition given by Eq. (4.38). As |#| becomes smaller, the difference between p (t) and
p—(t) becomes evident. The behavior of p_(t) clearly shows the back-transfer effect.

34
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Figure 5.1: The time-dependent probability p, (t) in the zero temperature, strong-coupling
case with v > 0 that system exists in |2) for the initial condition that it starts from |1) at

remote past.
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Figure 5.2: The time-dependent probability p_(t) in the zero temperature, strong-coupling
case with v < 0 that system exists in |2) for the initial condition that it starts from |1) at
remote past.
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One of the remarkable results is that in the case of slow passage, the relation p, (t) +
p_(t) = 1(~ 2Psp) holds for ¢t > 0 for the same value of |¥|, as can be seen from the
comparison of the curves for || = 0.25. This means the branching ratio to the upper and
the lower state after the crossing does not depend on the initial condition whether the
system starts from the upper branch or the lower branch, as if it forgets the history from
which it came.

5.1.2 Check for the formulas

In order to check the formulas obtained in previous capter, the results of P; (circle) and
P_ (diamond) are plotted in Figure 5.3 against 1/|3| for a fixed value of the adiabaticity
parameter J2/|v| = 0.2 at zero temperature with S = 10.0 and £ = 0.2. The transition
rate should be P, = P_ = Pz at the rapid passage limit 1/|5| = 0, or P = Pz, P_ =
Ppz(1 — Prz) at the slow passage limit 1/|5| — oco. The values of Prz and Prz(1 — Prz)
are also shown in the figure. In the limit of rapid passage, 1/|0| — 0, the process becomes
coherent so P, = P. = Ppz holds true as described earlier. As the speed of passage
decreases, both P, and P_ deviates from Ppz to lower values by the same amount. This
increase of nonadiabaticity is due to the phase relaxation. As |v| decreases further, P takes
a minimum value at an intermediate value of 1/|v| and then increases again to approach to
Py z in the limit of slow passage, consistently with formula. On the other hand, P_ decreases
dramatically from Prz to Prz(1—Prz) as |v| is decreased. The small discrepancies between
the calculated results and the prediction by formulas in the limit 1/|5] — oo are due to
the peculiar character of the damping hyperoperator and will be investigated later. We
also note a dip in P_ as a function of 1/|%| at around 1/{5| ~ 0.1. This is interpreted as
reflecting the dynamical motion of the wave packet in the configuration coordinate space
of the interaction mode. The wave packet that has transfered to the potential curve |2)
at the first crossing shown in Figure 4.2 undergoes a damping oscillation around the new
equilibrium point. For 1/|3| ~ 0.1, the crossing point of the two potential curves moves
down in synchronization with this motion so that the transition rate form a dip at around
1/|5] ~ 0.1 because of the nearly adiabatic back transfer.
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Figure 5.3: The transition rate P, (circle) and P_ (diamond) as a function of 1/|%| for a
fixed value of J2/|v| in the zero-temperature, strong-coupling case. The predicted values
by the formulas Prz, and Prz(1 — Prz) are shown by the dotted lines.
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Figure 5.4: The transition rate P, (circle) and P_ (diamond) as a function of J?/|v| in
the zero-temperature, strong-coupling case for fixed values of &, J and S. The values of

(P++P_)/2 is also plotted by triangles. The prediction by the formulas P;z, Pz(1—Prz)
are shown by the dashed lines.

In Figure 5.4, the transition rates P, and P_ are plotted for a fixed value of J = 0.5
against J2/[v| with T = 0, § = 10, and % = 0.2. The value of (P+ + P-)/2 is also plotted
by triangles. The values of Prz, Prz(1 — Prz), and Psp are shown by dashed lines. For
J?/|v| not greater than 0.25, P, and P_ agree with the formula Pyz and Prz(1 — Prz)
respectively, fairly well. The discrepancy which becomes salient for J2/|v| > 0.5 is again
attributed to the special character of the damping hyperoperator. It is remarkable that the
formula (P, + P_)/2 = Psp given in Eq. (4.62) works quite well all through the parameter
region.

The dependence on S of P, and P_ at zero temperature is shown in Figure 5.5 for a
fixed value of J = 0.5 in the case of slow passage, |#| = 1.25. It is remarkable that P, is
essentially independent of S and is given by Prz. On the contrary, P_ is reduced strongly
by the coupling with phonons even in the weak-coupling region.
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Figure 5.5: The transition rate P, (circle) and P_ (diamond) as a function of § in the
zero-temperature, slow passage case for fixed values of J, 7, and K. The values of P;z,
Prz(1 — Prz) are shown by the dotted lines.

5.1.3 Roots of the discrepancy

Now, we discuss the origin of the discrepancy between the formulas given in the previous
chapter and the numerical results. It is essentially the difference in the short-time behavior
of the correlation function between the original model given by Egs. (2.1)-(2.4) and the
reduced model given by Egs. (3.17)-(3.21). In order to see this, an analysis by the formal
perturbation expansion series of the solution of Eq. (3.17) was performed parallel to that
given in Chapter 4. The formal solution of Eq. (3.17) for the initial value gg is written as

6) = EBxp, [i [ areen)] o (5.1
with

L(t) = Lo(t) + L, (5.2)
where the hyperoperator L£o(t) and £’ are defined by

['O(t)ﬁ = [Hsys(t)7 [)]+zI‘[), (53)
L5 = [Vagss ). (54)
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and Exp, [-- -] now represents the time-ordered exponential for the hyperoperators. By an
analogous procedure given in Chapter 4, j(¢) is expanded in a formal power series of £ as

Exp, [—i /_togTﬁ(T)] po = Exp, [—i /_togiTﬁo(T)}

<> i [

dr, / ry e / AL ()L (Taet) -~ L(T)B0,  (5.5)
n=0 -0 -0 -0

where L'(7) is the interaction representation of £'. The expectation value of the above
term is obtained after a somewhat complicated calculation by using the properties of the
damping operator I'. We arrive at the expression of the transition rate P,

o0
P=-% (-JH"[™ (5.6)
n=1
where £(® is given by the same form as given in Eq. (4.20) except that the function G(t)
is replaced by G(t) given by
G(t) = —iSat + §(1 — e~i@t=sltly (5.7)

at zero temperature. Note that G(t) mimics the behavior of G(t) fairly well, but, in the
limit ¢ — 0, it behaves as

G(t) = Sklt| + g(az — K2)t2, (5.8)
for S>> 1. This should be contrasted with the limiting value of G(t)
G(t) ~ §‘2t2 ) (5.9)

Consequently, the line-shape function Fy (1) becomes

Fi(p) = ‘/:20 exp [-i(SC) + vu)o — G’(a)]
2 Sk /°° 1 . [_(Swztvp—a:)z]

D" ) 22+ (SR)E P 2D*? (5.10)
with D*? = S(@? — x2?), namely, the convolution of a Gaussian function with a Lorentzian
function of width Sk. This is a consequence of the Markovian approximation assumed in
the derivation of Egs. (3.17)-(3.21). Since Fi(u) has a Lorentzian tail for g+ S@/v| >
D*/lv| unlike F4(u), the transition region is not confined well around the crossing times
p ~ £8&/|v|. This off-resonant transition causes the deviation of P from the formulas.
In fact, the hump before the steplike increase and the gradual decrease after it, seen
in Figure 5.1 for the case ¥ = 0.25, for example, corresponds to this effect. In order to
ascertain this point, P, has been calculated as a function of J2/|v| for several parameter
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values of #. In Figure 5.6, the calculated results are shown with the value of formula in
which Fj (u) is replaced by Fii(u). The agreement is almost perfect.

This analysis indicates that the simulation of the nonadiabatic processes by the damping
operator technique is useful, but one must take care about the spurious effect peculiar to
this method.

In Figure 5.7, numerical results of P, in the limit of large amplitude fluctuation are
shown, by changing the set of parameters (S, T') for the fixed value of D? = §(27 + 1) (=
10.0) from the low temperature, strong-coupling limit to the high temperature, weak-
coupling limit. The prediction of the general formula with replacement Fi(u) — Fi(w)
is shown by dotted lines. The agreement is good, which indicates the correctness of the
analysis in Chapter 4. The deviation from P, = Prz in the limit T=0Iis again due to
the Lorentzian tail of the line-shape function. If the line-shape function F. (1) has only a

Gaussian tail, P, should coincide with Prz in this limit. See how the functional form of

the transition rate changes from Prz to Psp as the temperature increases.
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Figure 5.6: The & dependence of P, as a function of J2/|v|. The prediction by the formula
with replacement Fy(u) — Fi(u) is shown by dotted lines.
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Figure 5.7: The transition rate P, as a function of J%/|v| for the case of strong decoherence.
The parameter D is fixed as D? = 10 and the temperature 7 is varied from 0 to 5 with
corresponding change of S. The prediction by the formula with replacement Fi(u) —
Fy(p) is shown by dotted lines.

5.2 high temperature, weak coupling limit

In Figure 5.8, an example of numerical result for high temperature, weak coupling limit is
shown for p. (t) and p_(t) with parameter values T = 10.0, D = 1.0, J = 0.5, # = 0.2, and
|| = 1.0 . In this case, the transition rate is almost independent of the sign of v but is
strongly reduced from the value of Ppz. In Figure 5.9, the dependence on the adiabaticity
parameter J2/|v| of Py and P_ is shown for the two parameter values of D, with other
parameters fixed as J = 0.5, & = 0.2. The coupling constant S and the temperature 7" are
chosen so that the condition of the fluctuation dominance is satisfied; S = 0.0499, 7 = 10.0
for D = 1.0 and S = 0.0249, T = 5.0 for D = 0.5. This figure should be directly related
with the results of the stochastic model [2i] As noted in Sec. 4.4, P is generally bounded
as Psp < P < Pz except for small deviations, takes a maximum value at an intermediate
value of |v] because of the tradeoff between the influence of the phase relaxation, which
increases the nonadiabaticity, and the slowness of the passage, which favors the adiabaticity.
It is shown that P tends to Psp in the limit D — oo.
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Figure 5.8: The time-dependent probability p.(t) (solid line) and p_(t) (dashed line) in
the case of high temperature, weak coupling.
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Figure 5.9: The transition rate P, (circle) and P_ (diamond) in the case of high tempera-
ture, weak coupling. The results for D = 0.5 and D = 1.0 are shown by the solid and open
symbols, respectively.
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5.3 Summary

Numerical calculations are performed for the transition rate for the Landau-Zener problem
with dissipation, by utilizing the damping hyperoperator technique. The overall features
of the time evolution of the level-crossing system are clarified. The analytical formulas
obtained in previous chapter are ascertained, except for the deviation which are salient in
the slow passage limit. The reason of the discrepancy is due to the Markoffian nature of the
damping hyperoperator, which indicates that the simulation of the nonadiabatic processes
by the damping operator technique is useful, but one must take care about the spurious
effect.



Chapter 6

Application to the
potential-crossing system

In this chapter, we discuss the dynamics of potential crossing system, shown in Figure 2.2.
The time evolution of the transition rate that the system undergoes nonradiative transition
from excited state |2) to ground state |1) after the electronic excitation at time ¢t = 0 is
calculated. The transition rate is given by, in this situation,

pt) = <{exp [+iHrt]}y, {exp [—iHTt]}1,2> ; (6-1)

X

where (- - -), means the expectation value over the phonon distribution in excited state py,
namely,

(- =Tr{px -~} . (6.2)

pPx is considered as

px = exp [— (H1 — 3 kbt + bkf)) /kBT} / Trexp[~{--}/k5T] - (6.3)
k

In the case of ideal white-pulse optical excitation, 6y =0 .
Numerical calculations are performed by using Eqs. (3.17)-(3.21). The initial state of
reduced density matrix is then chosen to the coherent state for the interaction mode, as

pr(0) = exp [~@(By' ~ 6)(By ~ &)/k5T| [Trexp[—{-}/ksT] . (6.4)

Dimensionless parameters J = J/@, & = k/@, T = kpT/®, and D = D/& are used for
numerical calculations.

It should be noted here that Egs. (3.17)-(3.21) may not guarantee the system to relax to
the thermal equilibrium of the total electron-phonon system. The hyperoperator makes the
system relax to the thermal equiriblium state of phonons in each electron subspace, however,

46
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the state is not the thermal equilibrium state of total electron-phonon system described by
the Hamiltonian Hr with non-zero off-diagonal matrix element J. For significantly large
J, this calculation method may not reproduce correct dynamics in long-time scale. Since
we are interested in the dynamical behavior of the system in short-time scale, attention
is focused on the short-time dynamics of the system after electronic excitation and the
dynamics in the long-time scale is not discussed in this study.

6.1 Considerations
for the weakly-coupled electron-phonon system

In the situation of weak electron-phonon coupling, S < 1, time evolution of the transition
rate shows damping oscillation, which originates from the phase coherence between two
levels. If no electron-phonon coupling exists in the system, the transition rate will show
simply oscillating behavior, that is,

p(t) = 4J? sin? VAE + 4J2t
Ae? +4J? 2 '
In Figure 6.1, the numerical results of the time evolution of the transition rate p(t) in
this limit at zero temperature are shown with different damping parameter &. The time
evolution of the system shows damping oscillation by the existence of phase relaxation.

Also we should notice in Figure 6.1 that, in some time intervals, the transition rate
becomes larger than -A—e‘é_—{%g = 0.5. This may be considered as the effect of the energy
dissipation which slightly remains for small S.

In Figure 6.2, the time evolution of the transition rate p(t) is shown with different
temperature. With increasing temperature, D, the amplitude of the energy fluctuation
given by D = /(27 + 1)5 increases and the transition process changes from coherent
transition to incoherent transition. At high temperature the transition dynamics shows
incoherent behavior, then the oscillation of the transition rate, which is associated with
phase coherence between the two states, vanishes rapidly and the transition rate evolutes
almost exponentially.

(6.5)
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Figure 6.1: Dynamical evolution of the transition rate at white-pulse optical excitation for
the parameters Ae/w = 0.2, J =0.1, § =0.25, T = 0, and % = 0.5 (solid line) or & = 0.2

(dashed line), and for the pure two-level system (dotted line).
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Figure 6.2: Dynamical evolution of the transition rate at white-pulse optical excitation for
the parameters Ae/@w = 0.2, J =0.1, § = 0.25, and < = 0.5 with different temperatures.
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6.2 Considerations
for the strongly-coupled electron-phonon system

6.2.1 Two aspects of the transition process

In the situation of S > 1, transition process can be classified into two distinct processes,
namely, dynamical hot transition and statical tunneling. Time evolution of transition rate
p(t) after white-pulse excitation clearly show these processes in Figure 6.3. The transi-
tion rate increases exponentially after stair-like increase. This result reflects the lattice
relaxation process from the electronically excited state.

When the system is electronically excited, a wave packet of phonons begins to relax
toward a new equilibrium configuration. The nonadiabatic transition is induced dynami-
cally during the lattice relaxation process, if the wave packet passes around the potential
crossing region (see Figure 2.2). The stair-like increase of the transition rate indicates this
process clearly. After the wave packet relaxes to the new equilibrium, transition is induced
only by the quantum tunneling. The exponential behavior of the transition rate indicates
this process.

In the case that the damping constant for the relaxation of the energy & is small,
the wave packet of phonons can pass the crossing region more than once. Then multiple
dynamical transitions will be induced nonadiabatically. Result for & = 0.05 in Figure 6.3
(solid line) clearly shows this multiple dyhamical transitions. On the other hand, in the
case for larger damping constant & = 0.25, the wave packet relaxes to the new equilibrium
so rapidly that the center of the wave packet can not pass the crossing region. In this case
the contribution of the dynamical transition to the transition rate is small, but not zero
because the tail of the wave packet can pass the crossing region.

One can calculate the motion of the wave packet damped by the hyperoperator, from the
consideration of single-level system. The expectation value of dimensionless displacement
defined by the operator Q = (B + B,1)/2 is, for example, approximately given by

Q) =T {Q-p} = (6 - a)e ™ cosat (6.6)

In the case of the potential configuration in Figure 6.3, @ = 5 and § = 0. The crossing is
at Qx = 3.0. :

The increase of the transition rate by dynamical transitions in each stair are, as for the
first crossing event, given analytically by the Landau-Zener formula [11]. The analytical
expression for the time-dependent transition rate defined by Eq. (6.1) is obtained by formal
perturbation series expansion, that is,

o0

p(t) ==Y (=J)"LM(1), (6.7)

n=1
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Figure 6.3: Time evolution of the transition rate for typical strongly-coupled electron-
phonon systems at zero temperature after white-pulse optical excitation. The other pa-
rameters are, S = 25, Ae/@ = 55.0, and J = 0.8.

n t t
L(")(t) = Z/dﬁ/de'“
m=1 0 T1

Xf(Tl,Tz,---,Tgn), (68)

t Tom Tan-1
drom-1 /0 dTom A dFom41 " A dron

T2m-2

F(r1,72,-++,Ton) = exp l:z Z (-1)? {(Ae - Sw)T; + 22 ook — 0) sinwkrj}
k

2n i-1
+ZZ(—1)1+‘7G(7’1' —7'_7') . (69)
i=2 j=1
Since the real part of the exponent R(7y,7o,- -, 7o) is same as Eq. (4.24) and is a non-

positive definite quantity in the limit of S>> 1, we can evaluate the integral by the saddle
point method. The contribution to the integral comes from a small region around the
points where the imaginary part of the exponent Z(71,7s,---,7on) is stationary and the
real part R(71, 72, +,Ton) is mazimum, otherwise the integrand undergoes a destructive
oscillation or the absolute value of the integrand itself damp drastically.

The condition to determine the saddle point reads, eventually,

5 Z(11, 72, " Ton) = (—l)jEj('rlel, T, +++,Tj—1) =0,for j=1,2,---,2n.

07;
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Ej(7j|m1, T2, - -+, 7j—1) means physically the Franck-Condon energy from |2) to |1) at a time
7; for the wave packet [11], which has the following history: it is excited on the potential
curve of |2) at t = 0 and slides down along the potential curve like a classical particle, make
a vertical transition to |1) at 7; and then moves along the potential curve |1), and again
make a transition to |2) at 7o and so on, until the final transition at time Tj-1 -

Thus the main contribution of the integral comes at around the time region where the
wave packet passes through the potential crossing. The integral is evaluated by expanding
the exponent up to the second order with respect to z; = 7; — ¢; and we obtain

n t—1y v 2n - D2 2n ) 2
L) = Z dry - - - dmop - €xp i5 Z (—=1)z5 — - Z (-1Y=; (6.10)
i=1 j=1

m=1Y"4

where v(~ S®?) is the velocity of change for Franck-Condon energy at the crossing. The
right hand side of Eq. (6.10) can be eliminated from the discussion about the transition rate
at the coherent passage in Sec. 4.3.2, if the condition D/|v| « 1/@ is satisfied. Then we can
obtain the Landau-Zener formula, after safely extending the boundary of the integration to
(—00,00) for |v| > @? and for t well separated from the crossing time. The transition rate
after the second and the third crossing are also described by the Landau-Zener formula,
however, the discussion is more complicated.

The transition rate at the static stage is calculated as follows. We choose the lattice
relaxed excited state as initial density matrix p, at ¢ = 0, and discuss the time evolution.
By simply setting dx = a4, the perturbation term of first order in Eq. (6.8) is written as

L@ = [ dr, / dryeHS0=80)(r=n)=Glrs=r:) (6.11)
0 0

Note that the integrand is a function of 7, — 71. Introducing new variables u = (11 + 72)/2
and 0 = 72 — 71 and converting the integral domain, the derivative of Eq. (6.11) is written
as follows;

iL(l) (t) = /tdo.e-—i(Sa‘u—Ae)a—G(a)
dt —t

~ 2rF(So—Ae¢) for t>1/D, (6.12)

where F(E) is defined as Eq. (4.53), the line-shape function meaning the optical transition
rate by virtual photon with energy zero. From Eq. (6.12), we obtain

%p(t) = 2nJ?F(S@ — Ae) + O(J%)
= 2nJ2F(S@ — Ae)(1 — p(0)) + O(J%), (6.13)

which shows an exponential decay. The decay rate from |2) to |1) per unit time is given by
2nJ2F(S@ — Ae).
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To be more precisely, the transition process from |{1) to |2) should be taken into account
as an inverse process. In this case Eq. (6.13) would be rewritten as,

%p(t) ~ =20 J2F(S@ + Ae)p(t) + 2 J2F(S@ — Ae)(1 — p(t)) + O(J*). (6.14)

The first term of right hand side of Eq. (6.14) indicates the transition process from |1) to
|2), the second term indicates the transition process from [2) to [1).
We should notice that, the transition rate F(S® + A¢) and F(S@ — Ae€) are rewritten

as
F(S6—A¢) = ——ae o FaH (6.15)
VarnSkpT* ’
_Ex+Al¢
F(So+ Ae) = \/4_71'1T37’:e kBT (6.16)

where E, is the height of the potential barrier measured from |2) to [1), Ex 4+ Ae is that
from [1) to |2). _

The transition rate at static stage calculated by damping hyperoperator is, however,
becomes too large and not consistent to Eq. (6.14). As is discussed in Sec. 5.1.3, in
the system that are driven by the damping hyperoperator, the line-shape function F(E)
becomes no more a Gaussian function that reproduce the actual dynamics, it becomes a
Gaussian function with Lorentzian tail. This causes overestimation of off-resonant transfer
and leads to the not-realistic transition rate at the static stage.

Finally, the transition rate at the dynamical stage Pp can be evaluated from the asymp-
totic behavior at the static stage. The transition rate at the static stage is approximated
as

p(t) ~ p(c0) + (Pp — p(oo))e™ ¢, (6.17)

where p(oo) can set to 1 in usual situations. We define the transition rate at the dynam-
ical stage Pp by this equation, and use this quantity to discuss quantitative behavior of
dynamical transition.
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6.2.2 Quantitative analysis of the dynamical nonradiative transition

In this section, we discuss the transition probability at the dynamical stage quantitatively.
First, numerical results for the dynamical evolution of transition rate at zero temperature
are plotted with J as a parameter. The other parameters were chosen to S = 25, § = —1,
Ae/w = 55.0, and & = 0.05 for Figure 6.5, & = 0.1 for Figure 6.6. With increasing the
off-diagonal matrix element J, transition dynamics changes from diabatic to adiabatic. For
small J, the wave packet stays mainly in |2), makes a transition to [1) at each crossing
event. This is diabatic case, shown in the figures for the parameter value J = 0.8. For
large J, the wave packet moves mainly between |2) and the upper branch of |1), makes a
transition to the lower branch at each crossing event. This is adiabatic case shown in the
figures for the parameter value J = 4.0, where the dynamical evolution of the transition
rate shows effective back-transfer.

It is convenient to define the times when the potential crossing event occurs, as ¢, 1,1,
t2, which is described in detail in Figure 6.4. The first crossing event occurs at ¢ = ¢;, then
a part of the wave packet makes a transition to |1) and swing back and passes the crossing
point at ¢ = #;;, or, the wave packet which has stayed in |2) after the crossing event at
t = t; swing back and passes the crossing point at ¢ = ¢5. The main contribution of the
transition rate comes, in diabatic case, from the crossing event at ¢, and ¢, and at ¢; and
t1,1 in adiabatic case. Also we define the transition rate after the crossing event at ¢; as
P,att1) as P ,, and at ¢ as P,,.

In Figure 6.7, the transition rate P, P, ,, P;,, and Pp, which were estimated from the
data for the dynamical evolution of the transition rate, are plotted against J for parameters
§ =25, = —1,A¢/® = 55.0, and & = 0.05. The predicted values from the Landau-Zener
formula are also shown by dashed line as for the transition rate at the first crossing event,
B, . For small J less than 2.0, P, is given approximately by the Landau-Zener formula,
which is also shown in the figure.

t=t11 t =t

Figure 6.4: The crossing events of the wave packet that will occur after the electronic
excitation in 0 < ¢t < 27/@.
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Figure 6.5: The dynamical behavior of the transition rate at the crossing. The parameters
are, S =25, § = —1, Ae/& = 55.0, & = 0.05. J is shown in the figure. With increasing J,
there occurs effective back transfer at t =1 ;.
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Figure 6.6: The dynamical behavior of the transition rate at the crossing. The parameters
are, S = 25, § = —1, Ae/® = 55.0, & = 0.1. J is shown in the figure. With increasing J,
there occurs back transfer at ¢ = ¢;;. However, the effect of the back transfer is weakened
by the damping, as compared with the cases of £ = 0.05.
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Figure 6.7: The transition rate P, (circle), P;, ; (diamond), P;, (triangle), and Pp (box)
as a function of J. The predicted value for P;, by the Landau-Zener formula is also shown
by dashed lines. The other parameters are, S = 25, § = —1, A¢/@ = 55.0, and & = 0.05.
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Figure 6.8: The transition rate B, (circle), P, , (diamond), P;, (triangle), and Pp (box)

as a function of J. The predicted value for B, by the Landau-Zener formula is also shown
by dashed lines. The other parameters are, S = 25, § = —1, Ae¢/@ = 55.0, and & = 0.1.
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The deviation of Py, from the Landau-Zener formula, which is salient in a region J>20
would be due to the crossover between the crossing event at t = ¢; and at ¢ = t1,1- In the
case that the crossing events at ¢; and at ¢;; are not well separated, the crossing event
at £1,1 starts before the crossing event at ¢; has been completed, then the transition rate
P, considered to be underestimated. (In a sense, there is a difficulty in defining P;, and
P, ,, here, B, has been defined as the maximum value of the first hump, and P, , as the
minimum of the next dip for time-dependent transition rate. )

For small J, the change of the transition rate after the crossing event at ¢; ; is negligibly
small and P, coincides P, which is shown by the result for J = 0.8. As J increases,
the effect of back transfer becomes significant and the transition rate P, , decreases, gets
smaller than F;,. After the crossing event at t;, the transition rate increases again and
recovers to the value P,. The difference between P, and P, , is, however, decreases as J
increases. The data for J = 6.0 show almost adiabatic transfer, while the data for J = 0.8
show almost diabatic transfer.

In Figure 6.8 shows another calculated results of the transition rates P, Py 1, Py,
and Pp against J, the parameters used are same as that used in Figure 6.8, except for
a larger damping parameter & = 0.1. Note that the transition rate P,, is slightly larger
than %— If we evaluate the transition rate at each crossing event by Landau-Zener formula,
with no effect of damping considered, then the transition rate P, is simply estimated by
Py, = 2Ppz(1 — Prz), which can not take larger value than . So, this can be considered
as the effect of dissipation.

The transition rate P;,, P, ., P, and Pp are shown in Figure 6.9 with change of the
position 4, as a function of the initial energy of the wave packet E; measured from the
bottom of the potential of |2). The other parameters are, S = 25, Ae/& = 55.0,J = 2.0,
and K = 0.05. For the initial energy F; smaller than 12.25 (& > 3.5), the center of the
phonon wave packet in the excited state can not pass the crossing point no more. In this
case P; and F, ; are not well-defined probability for the crossing, only P;, can be defined
as a transition rate at ¢ = 27/ after the first damping oscillation of the wave packet. Note
that the transition rate P;, as a function of E;/& has a maximum value at E; =1225@.
This fact means the transition rate P;, takes its maximum value, which is larger than 1/2,
in the situation that the wave packet of phonons swing back just around the crossing point
of the potentials.

Another calculated results of the transition rates Py, ,R, ,, B,, and Pp, as a function
of the initial energy of the wave packet E; are shown in Figure 6.10, the parameters used
are same as that used in Figure 6.9, except for a larger damping parameter & = 0.1. In
this figure, Pp is clearly shown to take larger values than %, due to the effect of dissipation
at the crossing.
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Figure 6.9: The transition rate Py, (circle), P, , (diamond), P, (triangle), and Pp (box) as
a function of th~e initial energy E; measured from the minimum of the potential, at S = 25,
Ae/w = 55.0, J = 2.0, and % = 0.05.
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Figure 6.10: The transition rate P, (circle), P;, , (diamond), P, (triangle), and Pp (box)
as a function of the initial energy E; measured from the minimum of the potential, at
S =25, Ae/w = 55.0, J = 2.0, and % = 0.1.
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6.3 Application to real systems

6.3.1 DX-Center

DX-center is one of the well-known defect in doped Al,Ga;_xAs semiconductor alloy sys-
tem, which shows the persistent photoconductivity (PPC) and the large lattice relaxation
energy after optical excitation. It appears with the increase of the AlAs mole fraction x
over the critical value x = 0.22. The origin and the structure of the DX-center had been a
riddle (X of DX-center historically meant “unknown” [37]) until the DX-center was discov-
ered in doped GaAs with the application of the hydrostatic pressure [38] and it was turned
out that the DX-center is nothing but the substitutional donor. From the ab-initio calcula-
tion 39, 40], it has been shown that the DX-center is a negatively charged center and has a
bistability between the shallow donor state (d° + e) and the deep DX state (DX™), for the
displacement of donor atom toward [111] direction. When the system is excited optically,
a conversion from the DX state to the donor state is induced, that causes PPC. However,
PPC vanishes at high temperature because a conversion from the donor state to the DX
state is induced by thermal excitation (see Figure 6.11). The efficiency of the conversion
and the stability of the shallow donor state against the relaxation to the deep DX state are
controlled by the nonradiative transition.

The transition dynamics of the DX-center is understood by considering the nonradiative
process induced by an off-diagonal interaction around the crossing region of two potential
curves. Here, we apply the theory to the system of DX-center and clarify the transition
dynamics.

There was a controversy on the origin of the large optical excitation energy which
indicates large lattice relaxation energy. Several researchers could not believe that the donor
atom can displace so large and they persisted in the small lattice relaxation (SLR) model.

Figure 6.11: The potential configuration for the DX-center. Two possible configurations
had been considered; (a) LLR model, (b) SLR model.
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The large lattice relaxation (LLR) model and the SLR model give the same experimental
data [41] for the activation energy for electron emmision from the DX state Eprrs and
electron capture to the DX state Ec4p and thermal ionization Erp, except for the optical
excitation energy Eopr (see Figure 6.11 of the potential configuration). Now, the LLR
model is fully accepted, and the system of DX-center is revealed to be a typical example
of the system that the large atomic displacement is induced by electronic excitation.

The difference on the transition dynamics based on the SLR and the LLR model is,
however, very distinct. From the discussion of previous section, calculated transition rate
shows damping oscillation for the SLR case (see Sec. 6.1), or stair-like increase for the LLR
case (see Sec. 6.2.1). These can be clearly distinguished if an elegant experimental method
is developed to investigate the time evolution of the transition rate.

Figure 6.12 shows the calculated result [43] in LLR configuration for the time evolution
of the probability that the system undergoes nonradiative transition to the DX state, after
optical (white-pulse) excitation from the DX state to the donor state. The parameters were
chosen so as to fit the adiabatic potential curve calculated by ab-initio total energy calcu-
lation [40]. The adiabatic potentials which should be compared with our model are that
for the on-center neutral state and that for the strongly displaced negatively charged state.
The potential curves were approximated by the harmonic potentials with the curvatures
estimated at the equilibrium position. The difference in the curvature of the potentials is
also neglected. Eventually, @ is adjusted so as to reproduce the experimental optical ioniza-
tion energy 1.3eV [42]. Thus we set @ ~ 12.7meV, Ae = 0.03¢V, S = 100. Although these
approximation is rather crude, it is sufficient to discuss the dynamics semi-quantitatively.
The magnitude of J was estimated by the energy at the crossing point Ey and the ex-
perimental capture barrier energy Ecap. From the fact that the off-diagonal interaction
opens the energy gap of order J around crossing region, namely, Ex — Ecap ~ J, we set
J ~0.02eV for Ec4p = 0.28¢V. k = 0.1 is chosen as an reasonable value.

The transition process is classified into the dynamical transition and the statical tran-
sition, as is discussed in Sec. 6.2.1. Experimentally, the existence of PPC means that the
nonradiative transition probability in static stage is quite small at moderate temperatures.
Therefore, it can be concluded that the nonradiative transition in the actual cases of DX-
centers is determined by the transition probability in the dynamical stage. The transition
probability in this process governs the quantum yield of the optical conversion from the
DX to the shallow donor state and can be estimated experimentally.

The temperature dependence of the transition probability in the static stage can be
also calculated in the same way. The probability shows exponential decay, however, the
decay rate calculated by the damping hyperoperator method tends to be too large and the
calculated result is not reflect the actual system of DX-center.
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Figure 6.12: The time-dependent nonradiative transition rate to DX~ state from dy + e
state after the optical excitation to dy + e, at zero temperature.

6.3.2 F-Center

F-center is one of the color centers in ionic crystals. An electron is trapped by the electronic
field generated by the anion vacancy and makes a hydrogen-like energy levels. At the excita-
tion by visible light, the system of F-center shows intense optical absorption corresponding
to 1s — 2p transition, and its absorption spectrum shows broad band structure due to
the strong electron-phonon coupling. In spite of the intense absorption spectrum, however,
some of the F-centers do not show luminescence. For example, the luminescence was ob-
served in K halides, but not observed in Li halides. This occurrence or non-occurrence of
luminescence has been considered to be directly related to the nonradiative processes with
multi-phonon emission.

The possibility of the dynamical nonradiative transition has been suggested [6] since the
nonradiative transition rate from the relaxed excited state was shown to be negligibly small
at low temperatures. Dexter, Klick and Russel proposed a mechanism for the dynamical
nonradiative process associated with the potential configuration of two electronic states, the
ground state and the excited state, that if the energy of a wave packet generated optically
in excited state is higher than that of the crossing point of the potentials, transition to the-
ground state can occur during the lattice relaxation process when the wave packet passes
through the potential crossing region. This is called the DKR mechanism for the lumi-
nescence quenching. Bartram and Stoneham [7] analyzed the experimental data of various
F-centers to check the validity of the DKR mechanism and showed that the occurrence or
non-occurrence of luminescence can be, in actual systems, qualitatively determined by the
position of the potential crossing point and the excited state in the potential configuration
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space.
According to Bartram and Stoneham, the criterion for the occurrence of luminescence
is given by the condition, '
S© 1
Az ——x< - 6.18
Ae+ So 47 (6.18)

where A is the ratio of lattice relaxation energy to optical absorption energy.

Here, we do a quantitative check for the validity of the DKR mechanism by numerical
calculations, by changing the position of the excited state § in the configuration coordinate.
In actual system of F-centers, the electron-phonon coupling constant S is large quantity
S > 1 and off-diagonal interaction is of order of @, so parameters are chosen to S =
40, J = 2.0 as reasonable value. The position of the potential crossing is chosen to so that
the potential energy at the crossing measured from the bottom of the potential is half of
that of optically excited state at the ideal white-pulse excitation (see Figure 6.13(b) for
details). In this configuration, A is calculated to 0.2929.

First, time-dependent transition rate is shown for & = 0.05 with changing the position
of the excited state in Figure 6.13. The transition dynamics is classified into dynamical
transition process and statical transition process. The transition rate from the initial state
which is labeled as E shows only the statical tunneling process, because initial state is
already in the relaxed excited state. However, the transition rate in the static stage is too
large due to the reasons mentioned in Sec. 6.2.1 and does not reflect the actual system.
The time evolutions of the transition rate should be flat in the static stage.

Note that the result of the transition rate from the initial state labeled as C, which
means the phonon wave packet starts the damping oscillation initially with the same energy
as the crossing point, gives the probability of nonradiative transition rate of nearly a third.

The quantum efficiency of the luminescence after optical excitation of energy ¢ will be
then proportional to np, defined as

nr(€) o< (1 — Pp)I(e) (6.19)

where I(¢) is the optical absorption function for photon energy ¢, given by

I(e) = — 5 (6.20)
Vv2rD
In Figure 6.14, quantum efficiency for radiative transition 1— Pp is plotted as a function
of optical excitation energy. The optical absorption spectrum, I (¢) is also plotted for the
reference. The result shows good tendency, as compared with the experimental data for
the F-center in KI crystal [44].
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Figure 6.13: (a)The time-dependent transition rate for the nonradiative process at zero
temperature. The parameters are chosen so as to reflect the actual cases of F-center, and
labels 4,B,--- in the figure correspond to the initial configuration of the excited state,
which are described in (b).
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Figure 6.14: The quantum efficiency for radiative transition of typical F-center, as a func-
tion of optical excitation energy. The optical absorption spectrum is also shown for refer-
ence. Numerical calculations were performed for the parameters, S = 40, Ae/@ = 96.569,
J = 2.0, and % = 0.05 or 0.02 at zero temperature.

6.4 Summary

Numerical calculations were performed to clarify the transition dynamics of the potential
crossing system after the electronic excitation. In the weakly-coupled electron-phonon
system, time-evolution of the transition probability shows oscillating behavior, which is
originated from the phase coherence between two levels. In the strongly-coupled electron-
phonon system, the transition dynamics of the system is classified in two aspects, namely,
dynamical hot transition and statical tunneling. The dynamical evolution of the transition
rate of the system shows at first stair-like behavior, reflecting the motion of the phonon wave
packet in excited state which passes through the crossing region during the lattice relaxation
process. After the lattice relaxation process, the dynamical evolution of the transition rate
of the system shows exponential behavior, reflecting the quantum tunneling process from
the relaxed excited state. The tunneling rate at the static stage becomes, however, too
large due to the characteristics of the numerical method using damping hyperoperator.
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The dynamical transition rate at each crossing event is investigated quantitatively. In
general cases, the transition rate at the first crossing is given by Landau-Zener formula.
In the case that the phonon wave packet passes relatively slowly around the potential
crossing, the transition rate deviates from the Landau-Zener formula. In special cases the
transition rate after the first damping oscillation becomes larger than 1/2 due to the effect
of dissipation.

Also, the theory was applied for the transition dynamics of the DX-center, and the
nonradiative transition of F-center.



Chapter 7

Concluding Remarks

In this work, transition dynamics at a level crossing with dissipation has been clarified
theoretically, both by analytical consideration and by numerical calculation. Calculations
based upon the Landau-Zener model and for autonomous potential crossing system have
been performed.

From the analytical consideration for thie Landau-Zener model with dissipative environ-
ment, it has been shown that two extreme situations occur with respect to the ratio of the
transition time 7, and the phase relaxation time 7,p, namely, the essential coherent case
with 7t < 7pp and the incoherent case with 7y 3> 7pn. The latter case is further classified
into two, in accordance with the magnitude of the energy relaxation, namely, the strong-
coupling limit at zero temperature and the weak-coupling high-temperature limit. A closed
expression of the transition rate that covers the incoherent limit has been obtained. These
results have been ascertained by numerical simulation for the time-dependent transition
rate, by applying the damping operator technique to the interaction mode.

From the calculations of autonomous potential crossing system, it has been shown that
the dynamics of nonadiabatic transition of the system after the electronic excitation is
classified in two aspects, namely, dynamical hot transition induced by the motion of the
wave packet through the potential crossing region, and statical quantum tunneling, which
shows exponential decay of the transition rate. The transition dynamics of the system in
the dynamical stage has been studied quantitatively with relation to the motion of the
wave packet. The transition dynamics of the actual system, F-center and DX-center, has
been discussed. In cases that electronic energy in excited state is higher than that at
the potential crossing point and the wave packet can pass around the potential crossing
several times or more, successive nonradiative hot transition is induced and the transition
rate can be dramatically enhanced. This multiple transition may play a crucial role in the
nonradiative process of F-center.

It may be said that the Landau-Zener formula has a kind of stability against the dissipa-
tive perturbation. It is unaltered in the limit of the rapid passage, or the slow modulation
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limit, as shown in Eq.(4.22) and Eq.(4.38). It is also valid to describe the transition rate in
the limit of slow passage at low temperature, namely, the rapid modulation limit, as shown
in Eq.(4.59). This stability is most clearly exhibited in Figure 5.4. It is also applicable to
the nonadiabatic transition rate at the potential crossing. The reason why the Landau-
Zener formula is valid for the dynamical hot transition rate for the potential-curve crossing
system is, that the wave packet of phonon passes the crossing region so rapidly that the
modulation is in the slow limit as described in the derivation of Eq.(4.38). In the case that
the wave packet passes slowly and swing back just around the potential crossing region,
the transition rate deviates from the Landau-Zener formula, as is shown in Sec. 6.2.2 by
numerical calculation.

The special character of the damping hyperoperator, which is common in the hyperop-
erator with the form shown in Eq.(3.21), has been revealed. Numerical calculations with
this type of damping hyperoperator tends to overestimate the off-resonant transition. This
spurious effect leads to the overestimation of transition rate from relaxed excited state, or
smaller transition rate to the lower branch in the slow passage limit. In order to discuss
whole transition dynamics quantitatively and explain various experimental data, we need
to improve the calculation method, which is left for the future work. Or we may need
to develop an other numerical calculation method which is efficient and applicable to real
dynamical system. This would be the final goal.



Appendix A

The interaction mode

In localized centers of crystals, the excess electron generally couples with many modes
of phonons with different frequencies. If this coupling is strong enough, it may give rise
to a large relaxation of the electronic energy, or even a lowering of local symmetry by
the Jahn-Teller effect. The interaction mode, proposed first by Toyozawa and Inoue [33]
and quantum-mechanically by O’Brien [34], is useful to discuss the dynamical properties
in such systems. The interaction mode is defined uniquely by linear combination of the
normal mode phonons, as a mode which carries all the relaxation energy. Moreover, the
interaction mode can be regarded as being coupled with the reservoir of the rest modes. The
system relaxes toward the thermal equilibrium via phonon emission or absorption through
a bilinear term between the interaction mode and the reservior modes, that is well suited
for the theoretical treatment by the damping-hyperoperator formalism. Also, the concept
of the interaction mode can be extended to multilevel electron-phonon system [35].
We start with the Hamiltonian

H o= Hi[I)(1] +Ha[2)(2, (A1)
Hi = e+ wblby, (A2)
k
Ho = e+ Zwkabk - E oywi (b + b};) (A.3)
k k

# is equivalent to the Hamiltonian H,; in Eq. (2.2) without J, after the shift of the origin
for the phonons and the energy. The interaction mode B and the reservoir modes R; can
be obtained by unitary transformation of the normal modes, defined by

N N
B=3) Upbe , B'=3 Upbl, (A4)
k=1 k=1
N N
Ri=>Upbe , RI= Uy, j=1,2,---,N-1,, (A.5)
k=1 k=1
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and the inverse transformation to the normal modes by is given by

N-1 N-1
b =UokB+ Y UjxR;, bl =U3 B'+ Y URL. (A.6)
J=1 j=1

#, and H; are calculated by inserting Eq. (A.6) into Eqs. (A.1) - (A.3). If we pick up the
terms including only B or B!, they are

N
Hi o= 3| Vos [wrBB+---, (A.7)
k=1 )

N N
Hy = Z ' Uo k. lzkaTB - Z arwg(Ug kB + UJ,kBT) -
k=1 k=1

N 2
= _AE+(Z‘U0"°| wk> (BT—a*) (B—a)+---, (A.8)
k=1
where AE is a relaxation energy in the subspace of B, given by
N 2 4N 5
AE =Y oxwpUps > ’ Uo,k ‘ Wk, (A.9)
k=1 k=1
and
N N 9
o= Z akwka,k Z l UO,k ‘ Wi . (A].O)
k=1 k=1

We choose the coefficients Uop,x so that the relaxation energy AE is maximized in this
direction. From the condition

OAE (

N N
2
_3U* = Qrwg - — o E ak’wk’Ug’kl . wka,k) / E 1 UO,k I wk(= 0) , (A.ll)
0,k k=1

k'=1

and the unitary condition 3, UsxUok = 1, we can obtain

N
UO,k, = ak/ ai = ak/a, (A.12)
Jk:l

N
AE = ) ofw=5o, (A.13)
k=1
N
@ = Z aiwk/az’, =8, (A.14)
k=1

The coefficients Ujx for the reservoir modes are chosen so that the cross term such
as R;Rj’ vanishes in ), wkb};bk. Since this is equivalent to diagonalize 3" wkb,tbk in the
subspace orthogonal to the interaction mode B, the problem comes down to the problem to
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re-choose the principle axes e; for the ellipsoid ), wka:% =1 in N-dimensional hyperplane,
under the constraints

D eok-er=0, where ey ="Upy. (A.15)
%

The coefficients Uj; can be determined, as the values of z; at which the function
F({zx}) = ) wrzizi is extremized, under the constraints

N N
SlelP=1, Y zUi,=0. (A.16)
k=1 k=1
Since
9 N N N
oy {Z wklz*krzk/ - A Z z*k::ck: — M Z z*kon,k/} =0 (A.17)
T =1 k=1 k=1

where A and p are used as Lagrange multipliers, we obtain
WEZTk — )\a:k - [LUO,k =0 y (A.18)

then

Ty = Uok - (A.19)

wk—)\

From Eq. (A.16) and Eq. (A.18), we can obtain

N
A= Z wkx;xk ) (A.20)
k=1

and from Eq. (A.16) and Eq. (A.19), we can obtain

N

7
g::lwk_)\‘ Uo k

2
| =0. (A.21)
Equation (A.21) has N — 1 number of solutions for \. We define ; as the solution of

Eq. (A.21), which lies in the region w; < Q; < wj4; for j = 1,2,---, N — 1. Then the
coefficients Uj x are

Ujk =

o Vo (A.22)

where u is determined by the condition ¥, Uj*, +Ujx = 1. Eventually, we obtain

- Uk N Ul
Uik = 5— o; / \j > =) (A23)

k=1
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After the whole transformation, H; and H2 in Eq. (A.2) and Eq. (A.3) are rewritten
down to

N-1 N-1
H1 = e+@B'B+ Y ORIR;+ Y B;(B'R; + BR)), (A.24)
j=1 J=1
N-1
Hy = e~ AE+a(B'-o)(B-a)+ Y QRIR,
j=1
N-1
+Y 8;{(B' - o)R; + (B- )R]}, (A.25)
e

where 3;, the linear coupling constant between the interaction mode and the j-th reservoir
mode, is written as

N
Bi =Y wUlkUo - (A.26)
k=1



Appendix B

Damping hyperoperator

The damping operator for the interaction mode coupled with the two-level system can be
derived by extending the well-known procedure [29]. The equation of motion for the system
driven by the Hamiltonian (3.9)-(3.13) is

%~ iHr, A0
= [Heys(t) + Veys + Hr+ VR, p(t)], (B.1)

where p(t) is a density matrix for the system. The expectation value of an arbitrary
operator A can be calculated as

(A()) = TY[4 - p(2)]- (B2)

In actual cases, A is a function of the interaction mode B, Bt only. The information of the
reservoir can be then eliminated by taking trace over the reservoir, that is,

(A())

Trs [4 - Trrlp(t)]] |
= Trs[4-pr(t)] , (B.3)
where pg is called reduced density matrix. Now we go back to Eq. (B.1). In interaction

representation, it reads

o _
o _

where

[Veys(t) + Vr(2),  x(t)] (B-4)

p(t) = exp, [—i /  dr(Hays(r) + HR)] x(2) exp._ [—H’ / " dr(Haps(r) + HR)] . (B5)

Vigs(t) = exp_ [+i / t d’rHsys(T)] Vays XD, [—i / thHsys(T)] , (B.6)
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Vr(t) = exp_ [+i /t dr(Hsys(T) + HR)] Vrexp, [—i /t dr(Hgys(T) + Hp)
_ [ Gt()B, + G(#)B] 0
- ( 0 1 Gl(t)By + G(t)B} ) (B-7)
G(t) =) B~ WrR;, Gl(t) =) Be @ WtR]. (B.8)
J J

Equation (B.4) is solved formally, as
X(®) = x(0) = =i [ dr{Vi(r), x(1)] = [ drlVa(r), x(7)]. (B9)
and put this in the right hand side of Eq. (B.4), we obtain
X = [Vape(t), x(0)] + [Va(0), x(0)]
= [Vas(t), X1+ [Va(®), x0)] = [ drlVa(®), [Vaw(r), x(7)]
=i [ ar{Va(t), [Va(r), x()]). (B.10)

The perturbation terms of first order with respect to Vgys and second order with respect to
Vg are taken into account. Since the perturbation terms of first order with respect to Vg
vanish when trace is taken over the reservoir subspace, from Eq. (B.10), we obtain

i%" = [Vays(t), xr(t)] - ,-/Ot dr - Teg[Vr(t), [VR(T), x(7)]], (B.11)
where
xr(t) = Trrx(t) (B.12)

is a reduced density matrix in the interaction representation. The relation between xr and
Pr is obtained from Eq. (B.5), that is,

t t
pr(t) = Trrp(t) = exp, [“i/o d‘THsys(T)] xr(t)exp_ [-}-z’/o dTHsys(T)] . (B.13)
Because the system of the reservior is initially in thermal equilibrium,

p(0) = x(0) = pr(0) - fo(R), fo(R) ox e~ Hr/keT (B.14)

and, if the coupling between the system and the reservoir is weak enough, we can assume
that the thermal equilibrium of the reservoir R is not disturbed by this coupling. This is
called the weak-coupling approximation. It is assumed that

x(t) = xr()fo(R) for all ¢. (B.15)
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XR is expanded for the electron subspace, as

_ [ x11() x12(8)
xa(t) = ( x2,1(t)  x2.2(t) ) (B.16)

Xi,j includes the information for the interaction mode only. The integrand in Eq.(B.11)
can then be calculated, for example,

{TeRIVR@Va(r)x(n)1}, |
=Ter [(G()B] + G1(1)B1) (G(1)B] + G'(n)B1) xa(r) fo(R)]
= (G(t)G'(1))B}B, + (6'1)G(r))B1BY. (B.17)

where {---}, | means that the (1,1) component is taken for electron subspace, and (---)
means the thermal average is taken for the reservoir. (G(t)Gf(7)) and (Gt (t)G(r)) is given
by

(Gf(t)a(7)> = > B @)=l R,)
J

= Y Bin gD = (¢~ 1), (B.18)
;

(G6H(r))

D B (n; + 1) U0 = k_(r —3), (B.19)
J

where n; = = ’:EBT o and K, (K-) means physically the absorption (emission) of the
e _
interaction mode phonon from (to) the reservoir.
If the spectrum of the reservoir, defined by

B2 w) =3 676w — ) (B.20)
7

is wide enough to guarantee the Markovian approximation, X and K_ are approximated
as

Kat-r) = [ Zdwﬂz(w)n(w)ei(w—ﬁ)(t—f)

~ 2mnf%(w)d(t — 1), (B.21)
Kor=t) = [ dwof() () +1) o)
~ 2r(A+1)F%(@)d(r —t). (B.22)

After the evaluation of all the terms that appear in the integrand in Eq.(B.11) under this
approximation, the damping hyperoperator can be obtained, which has the form

- “dr - Tea[Va(®), [Va(r), x()]] =T xa(t), (B.23)
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Fyixie Tiexae
T-xg=[ AXLL 112X12 ) B.24
XR ( I21x2,1 T22x2,2 ( )

Tijxes = #(A+1)(2Bixi;B;' - Bi'Bixs; — x:3B;'B;)
+ K7 (2Bz'TXi,ij - BiBiTXi,j - Xi,ijBjT) ) (B.25)

with damping constant K ~ 73%(®). Back to the Schrédinger picture, we finally obtain
Egs. (3.17)-(3.21).
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