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Abstract

X-ray diffraction studies have been made on the cross-
sectional structure of the normal Salmonella flagella,
putting special emphasis on the number of constituent
strands. Two approaches have been made: one based upon
moderate-angle equatorial diffractions (12°> 26 23°) and
the other upon small-angle equatorial scatterings (26<¢ 3°).

In the investigation of the moderate-angle diffraction
pattern, validity is examined of the model that the
flagellum consists of annularly arranged strands, of which
each has a cylindrically symmetric structure. Main
features of the pattern can be interpreted by this model.
Obtained results suggest that the flagellum consists of 11
strands, supporting the conclusion of O'Brien and Bennett
(1972) based upon optical diffraction studies of electron
micrographs.

Cylindrically averaged electron density of the cross
section of flagellum is obtained'by means of the Fourier-
Bessel transformation method on the basis of the small-
angle scattering measurements. The density distribution
shows that the average radius of flagellum is about 65 R
and there exist a low density region with radius of about
15 g at the centre of flagellum. The value of average
radius also is favorable for the model thét the flagellum

consists of 11 strands.



Chapter 1. Introduction

Recently structure and function of bacterial flagella
have been intensively studied as reviewed in references.
(1-6) The flagellum is a motile organelle and compries at
least three parts which can be distinguished in the
electron microscope: a basal portion connected with the
cytoplasmic membrane, a proximal hook and the main herical

(7)

filament, according to Abram, Koffler and Vatter. Below
we shall call this main helical portion as flagellum. The
present study has been made on Salmonellé flagella of the
normal type. They are long filamentsv(up to 10 P) of
uniform diameter of about 200 A and helix-shaped with the
wave length of 2.5 »- They consist of protein molecules
called flagellin, which has molecular weight of about
40,000. According to the investigations by electron

(8)

microscope (Kerridge, Horne and Glauert,

(9)

and Lowy and

(10)

Hanson and X-ray diffraction (Champness and Lowy,

(11) (12))’

Champness and Wakabayashi and Mitsui the flagella

are composed of longitudinal rows consisting of
approximately globular flagellin molecules. The rows are

called strands. There have been various proposals on the

(9,13-17) (9)

number of strands. estimated

Lowy and Hanson
it as 7-10 based upon their electron micrographs and
proposed a model consisting of 8 strands which is shown in

Fig.l(a). Recently, however, O'Brien and Bennett(ls)

have
made optical diffraction studies on electron micrographs

and concluded that it is 11 for the straight Salmonella



flagella. On the basis of the same method, Champness(ll)

concluded that it is 8-10 in favor for the conclusion of

(9) (16) (17)

Lowy and Hanson. Finch

and Finch and Klug
studied the superposition patterns of electron micrographs
of a flagellum tilted by 15° intervals about its axis.

They concluded that the number of strands is 11 for

(16,17) (17)

Salmonella flagella and also for other species
(Pseudomonas flurorescens, Bacillus subtilis). On the
basis of small-angle X-ray, Bode et al.(lg) concluded that
the number of the strands is 8~10 from the mass per unit
length of Proteus flagella. According to them, the
flagellin molecules are elongated and the Lowy-Hanson's
model should be modified as shown in Fig.l(b). Hitherto,
however, so much emphasis has not been put on the number of
strands in the X-ray diffraction studies as the optical
diffraction studies of electron micrographs, and more
detailed X-ray studies seem to be needed.

In the present study, cross-sectional structure of
normal Salmonella flagella has been studies, putting
special emphasis on the number oﬁ the constituent strands.
Two approaches have been made: one based upon the moderate-
angle equatorial diffractions (12°220 »3) and the other
upon small-angle equatorial scatterings (260 ¢ 3). 1In the
analysis of the moderate-angle diffraction pattern,
validity is examined of the model that the flagellum
consists of annularly arranged strands, of which each has a

(20-23)

cylindrically symmetric structure. On the basis of



the small-angle scattering measurements, cylindrically
averaged electron density of the cross section of the
flagellum is obtained by means of the Fourier-Bessel
transformation method, which was originally proposed by

(24) (25)

Franklin and Holmes and Fedrov.



Chapter 2. Materials and Methods

§ 2-1. Preparation of flagella

Flagella were obtained from Salmonella strain SJ25,
(26)

of which flagella have normal helical form.
Cultivation of the organisms and the isolation and
purification of flagella were carried out by the method

(8) (27,28),

described by Kerride et al. and Asakura et al.

Salmonella were precultured for 12 hr at 35°C in 150 ml

solution containing 1.5 g peptone and 1.5 g yeast extract
aqd then were cultured in large quantities, for 8 hr at
35°C with airation in a 5 1 medium solution containing 50 g
peptone, 25 g yeast extract, 25 g beef extract, 200 ml
phosphate buffer (1 M, pH 7.8) and 15 g glucose. After
collecting bacterial cells and washing with distilled
water, flagella were isolated by shaking. Collected
flagella were washed with a solution containing 0.15 M NaCl
and 10 mM phosphate buffer (pH 7.0). Obtained flagella
were purified by depolymerization and polymerization
processes.(27'28) Fig.2 and 3 show the flow charts for
preparation and purification of flagella, respectively.
Plate I shows an electron micrograph of Salmonella flagella

used in the present study.

§ 2-2. Preparation of X-ray specimens

Opalescent flagellar pellets of a consistency suitable

for making oriented fibre specimens were obtained from an



aqueous flagellar suspension, containing approximately 3 mg
protein/ml., by ultracentrifugation at about 100,000 g for
1 hr. The oriented fibre specimens were obtained by

allowing a flagellar pellet to dry slowly between two glass

rods.(ll’12'29’3o)

The width of the fibres prepared in
this way was about 0.5 mm. Humidity was controlled by
saturated KNO3 solution in the case of fibre specimens and
relative humidity was about 93 %. Solution specimens were
obtained by dilution of concentrated flagellar solution.
The concentration of a flagellar solution, C, was

determined by the biuret reaction with optical density

measurements.

(mg protein/ml)

Here, f is the optical length (cm) and OD is the optical
density at the wave length of 530 mp. X-ray studies on
solution specimens were carried out in the concentration

range from 5 mg protein/ml to 50 mg protein/ml.

§ 2-3. X-ray methods

Moderate-angle X-ray diffraction patterns
(12°» 26 > 3°) were obtained by the toroidal mirror
(31)

collimating camera with Fuji Medical films. Nickel-
filtered CuKa radiation from Rigaku Denki rotating anode
microfocus generator was used. Diffraction spacings were

calibrated with (NH4)2SO4 powder patterné. The darkness of

the photographs was read with Narumi microphotodensitometer



and the scattering intensities were obtained with
correction of the linearity of the darkness. The
correction was performed by the calibration table relating
the darkness to the exposure time. For smaller angle than
3° X-ray scattering intensities were measured using a
Rigaku Denki small-angle X-ray collimater with line slits
and a proportional counter with a single channel
differential pulse height analyser, monitoring the
fluctuation of a X-ray source by a Geiger-Mlller counter.
Solvent scattering was measured and substracted from
solution scattering. Collimation effects caused by the
line shaped geometry could be eliminated by use of the

(32) which was

Fortran program made by P. W. Schmidt (1967),
kindly supplied by Dr. K. Miyake (Department of Polymer
Science, Hokkaido University). Calculations were carried
out on the NEAC 700 Computer of the Computer Centre of

Osaka University.



Chapter 3. Experimental Results

X-ray diffraction intensities were obtained for three
kinds. One of them was small-angle X-ray scattering of the
flagellar solution. A second was moderate-angle X¥ray
diffraction of the solution and a third was moderate-angle
equatorial X-ray diffraction of the oriented fibre
specimen. Small-angle X-ray scattering experiments were
planned in order to determine the cylindrically averaged
electron density of the flagellum and also in order to
investigate the interference effects between flagella with
varying concentration of flagellar solutions. The
equatorial X-ray diffraction from oriented fibre specimens
was the most important for the present analysis to
determine the arrangement of the strands in a flagellum.
Moderate-angle X-ray diffraction experiments of solutions
were the supplemental ones in order to investigate the
interference effect between flagella in the moderate-angle
region, comparing with the X~ray patterns of fibre

specimens.

§ 3-1. Small-angle X-ray scatterings

In Fig.4, the small-angle X-ray scattering intensity
of flagellar solutions is shown in a logarithmic scale.
The abscissa is the absolute value of reciprocal vector R,
which is related to scattering angle 26, and wave length A

of CuKa radiation, by R=2sin®/A. The X-ray scattering

10



intensities from aqueous solutions are spherically
averaged, so it is necessary to transform them to

cylindrically averaged intensities.(40)

This correction is
performed by multiplying scattering angle. Therefore the
ordinate of Fig.4 is the product of observed intensity and

scattering angle.

§3—2. Moderate-angle X-ray diffractions

For larger scattering angle than 3° (R»1/29.4 A-1

),
Plate (2a) and Plate (2b) show X-ray diffraction patterns
from fibre specimens and aqueous solutions, respectively.
The observed spacings of equatorial diffraction peaks for
each case are listed in Table I. In the X-ray patterns of
aqueous solutions, both equétorial and other layer
reflections are overlapped. The distinction between
equatorial patterns and other layer ones were achieved by
comparison with the diffraction patterns from oriented
fibre specimens. In Table I, other layer reflections are
in brackets. The angular spread of each reflections of
fibre patterns comes from the distribution of the
orientation of the flagella in the specimens. This angular
spread is smearing each reflection. So, the intensity
correction is necessary. The correction was achieved by
multiplying scattering angles, since the angular spread is

increased with linear relation to the scattering angle.

After this correction, the both diffraction intensities are

11



shown in Fig.5, where full line is for fibre specimens and

dotted chain line is for agqueous solutions.

12



Chapter 4. Fundamentals of Analysis

§ 4-1. Theoretical bases on equatorial X-ray diffraction

intensities

The equatorial X-ray diffraction intensity from
oriented fibre specimens is given by the following

. (33)
expression,

I(R) = )| Y;S)n(r)Jn(ZnRr)znrdr‘z. (1)
n

Here, Pn(r) is the Fourier coefficient of the electron
density projected onto (r,¢) plane along z-axis in
cylindrical coordinates, where the z-axis is taken along
the fibre axis. Jn(ZnRr) is the n-th order Bessel
function. The radial component, R, of the reciprocal
vector is related to the scattering angle, 26, and the wave
length of X-ray, A, by the equation, R=2sin®/A. Eq.(l) can
not be solved directly, so itlmust be necessary to

A

approximate them in order to reduce the integrals. One

approximation proposed by Franklin and Holmes(24)

(25)

and

Fedrov is that the fibre under consideration is

approximated to the cylindrical symmetric one. Then, the

diffraction intensity is simplified.
1® = {ffetn)a (ZﬂRr)andr}z - (2)
0 o

and the electron density is obtained directly by the’

inverse Fourier-Bessel transformation.

plx) = I:iJI(R)’JO(Zer)ZRRdR. (3)

The average radius is defined as

13



r = }ry(r)Zerr/{J9(r)Zkrdr\. (4)

The radius of gyration of the cross section R_ is defined
by

R = Sr29(r) -2xrdr/{fp (x) Z?trdr} . (5)

When R is small, the term concerning the O-th order
Bessel function in Eqg. (1) is dominant compared to other
orders because the only O-th order Bessel function has
finite value at R=0 and others go to zero. So the small-
angle X-ray diffraction intensities can be analyzed by
Eq. (2) and Eq.(3) with good approximation.

On the other hand, at the region of larger scattering
angles, it is necessary to consider the angular dependence
of the electron density, that is, other terms of Eqg.(l) can
not be neglected. Another approximation can be developed

(20-23) 14 js that the

as was done by Oster and Riley.
inner structure of fibrous systems is approximated to the
assembly of cylindrical strands. The representation of the
diffraction intensity is also simplified.
2 N N
I(R) = £°(R) 22 X J_(2MRr, .). (6)

Pl o i3

i 3
f2(R) is the molecular scattering intensity of strands and

rij is the distance from the i-th strand to the’'j-th one.

The number of strands in a fibrous system is N. An

Interference function, i(R), can be introduced,(34)
I(R) = NEZ(R)i(R) (7)
. _ 1
i(R) =1+ ¢ hH I, (2MRx ) (8)

i%]

14



A radial distribution function,(35)

p(r), is obtained with
the Fourier-Bessel transformation from the interference
function,
p(r) = JuE(R)Jo(Zer)ZERdR (9)
0

Putting Eq. (8) to Eq.(9), then

p(r) = 6(r) + L 2 S(r-r

). (10)
N ix

ij
Here, §(r)= [J_(2fRr)2RRAR,

and 6(r'-rij)g J;JO (2erij)J0 (2RRr) 2”RAR.

Both &(r) and 8(r—rij) are Dirac's &-functions in two
dimensional space (r,¢). So the radial distribution
function, p(r), has sharp peaks at the positions
corresponding to the lengths of the distances between
strands. The first term in Eq. (0 is usually omitted.(34)
Because it is a self-evident peak and any informations from
it can not be available for the analysis of the arrangement
of the strands composing the systems under conéideration.

Then, the Fourier-Bessel transformation is achieved against

i(R)-1 and Eq. (8) is rewritten followingly,
[ ]
p'(x) = [ (i(r) - 1)J_ (2%Rr) 22RAR. (11)
0
§ 4-2. Empirical method to determine molecular scattering
factors and interference functions

In order to determine the radial distribution

function, it is necessary to know the molecular scattering

15



intensity of the strands. When strands are composed from
protein molecules, as bacterial flagella, the calculations
of the molecular scattering intensities are impossible at
present. Because protein molecules generally have complex
inner structures. Therefore it is demanded to develope the
appropriate method to choose the molecular scattering
intensities. We propose the empirical method to estimate
them, based on the properties of interference functions for
2-dimensional arrays and also general features of scattering
intensities of protein.

The most important property of the interference
function for the present case is that interference
functions oscillate around unity as a whole and the
oscillations are damping toward the limitting value, that
is, unity, with R going to infinite. This property is
obvious from Eq. (8). The second term of Eq.(é) is the sum
of the 0O-th order Bessel functions, which are the functions
of oscillation with damping to zero. The damping
oscillation of the interference function is sufficient at
large reciprocal region.

On the other hand, concerning molecular scattering
intensities of proteins, it is well known that the
molecular scattering intensities of protein molecules

oo
usually have a smooth peak positioned at about 1/10 A l.

(36-38)  Arndt ana Riley(36)

observed spherically averaged
intensity curves from many kinds of protein molecules in

the dried amorphous state. They showed that the intensity

16



curves fall into only three essentially different types,
called 4, p and ¥, and these have scattering maxima near
the reciprocal length of 1/10 i_l. They attributed these
peaks to the packings of polypeptide chains in protein
molecules. The position of these peaks and relatiﬁe
intensities rather varies, characteristic to individual
proteins. But this is the most prominent property of the
molecular scattering intensity of the protein molecules in
the moderate-angle region.

According to Eg.(7), diffraction intensities are
represented by the product of interference functions and
molecular scattering intensities. So, it is expected that
the diffraction intensities have the profile of damping
oscillation around the curves which have a smooth peak near
1/10 K—l. This profile can be seen actually in the |
diffraction intensity obtained for Salmonella flagella (see
below). Inversely, it could be proposed that the molecular
scattering intensity is determined by the procedure of
smoothing of the oscillation of the observed diffraction
intensity. Then the interference function can be obtained
with dividing the observed diffréction intensity by this
estimated molecular scattering intensity. Consequently,
obtained interference function has the profile of the
damping oscillation around unity. The procedure of
smoothing is rather arbitrary. But the uncertainty is not
severe since the positions of peaks of finally obtained

radial distribution functions are not affected (see

17



Appendix I). From the standing point of the methodological
generality, we averaged two smooth curves, one of which is
linked the portions of the peaks of diffraction intensity
curve and another is linked the portions of the bottoms.
The errors introduced by this empirical method and

utilities were examined in Appendix I and II.

8§ 4-3. Effects of positional fluctuations

There may be some distortions or positional
fluctuations in the arrangement of the strands in a system.
The distortion of the arrangement is assumed to Gaussian
distribution function.

B2

g(r) = B exp(-8%r?) (12)

Here, B is related to the standard deviation, €, of the
distortion of the arrangement, as B=1/V2€. Then, the
interference function is modulated as follows,
2
i(R) =1 + {exp k—%}zz)}i}_&_ Z.Jo(anrij) (13)
B ixj

So, the mean decay toward unity of the interference
function is attributed to two factors, one of which is the
damping oscillation of Bessel functions and another is the
Gaussian decay by the distortion. The oscillating terms by

-3
Bessel functions decay with R 2, approximately.(39)

The
additive exponential term guenches the amplitude of the

N ,
interference function than R t rule. By plotting absolute

18



value of R%(i(R)-l) versus R2 on logarithmic scale, it is
possible to estimate the standard deviation of the
distortion from the slope of these plottings. But if the
strands in a fibrous system deviate from cylindrical
symmetry, there apears other damping factor due to
asymmetry (sée Appendix II). Therefore, the standard
deviations obtained by these plottings are mean values of
the superposition of the distortion and asymmetry, which we

shall call equivalent standard deviation.

19



Chapter 5. Analysis of Small-Angle X-Ray Data

The radius of gyration of the cross section of the flagella
Rq' given by Eq. (5), is related to the initial slope tan «

(41)

of the Guinier plot, which is illustrated in Fig.6.

Rq = 0.342vVtan «

In Fig.6 small concentration dependence of the scattering
curves had been eleiminated by extrapolation to zero
concentration. The ordinate is also the product of
scattering intensities and scattering angle as mentioned in
Cﬁapter 4., From Fig.6 we have Rq=68 i. Using the radius
of gyration of cross section hollow cylinder models were
examined. The inner and outer radius, ry and Ty of the

hollow cylinders are related to the radius of gyration,

R .(19)
q

2 2
Rq = (rl + r2) /2.

If the ratio of the inner to outer radius, rl/rz, is
determined, ry and r, are calculated. rl/r2 was determined
from the ratio of the scattering intensity at the origin to
the intensity at the 1lst subsidary peak of R=0.009 i-l.
The peak value at the oriéin could be obtained by the
extrapolation of the scattering curve of Fig.6 to zero.
The ratio of it to the peak value of the lst subsidary one

was about 40. This value was compared with the values of

theoretical curves calculated for full and hollow cylinders

20



varying the ratio of .inner to outer radius of hollow

cylinders.(33)

As a result, it corresponded to the hollow
cylinder with the ratio of inner to outer radius, rl/rz, of

0.16. From both Rq and ri/rz, ry and r. were obtained as,

2

(<]
r1 = 15 A,

and

-]

r2 = 95 A,

The average radius of this hollow cylinder could be
calculated by Eq.(4) and was 65 A.

From the total intensity curve of Fig.4, the
cylindrically averaged electron density was obtained using
the inverse Fourier-Bessel transformation, Eqg.(3). The
results are shown in Fig.7, here the phases of each
scattering peaks were assumed as (+,-,+) in (a) and (+,-,-)
in (b) for the principal peak at the origin and two
subsidary peaks. 1In this integral, the third peak of which
spacing is 1/47 gﬂwas omitted. Because it was made clear
that this reflection is originated from the first layer
line, judging from X-ray patterns of oriented fibre
specimens. Other phase combinations may be also possible
but the present combinations were consistent with moderate-
angle X-ray diffraction studies. Obtained electron density
shows that Salmonella flagella have the outer radius of
about 100 i with low electron density core at the centre of
radius of about 15 A. And there exists the maximum of the

electron density near the radius of 50 R. The average

21



radius was calculated and was 6545 A. These agree with the

hollow cylinder model, which is mentioned above.

22



Chapter 6. Analysis of Moderate-Angle Equatorial X-Ray Data
§ 6-1. Effects of interference between flagella

Before the calculations, it must be necessary to
identify the origins of each reflections, that is, which
the reflections originate from the intra-flagellum or
inter~flagella interference, since the equatorial
reflections which are originate from the intra-flagellum
interference are only needed to elucidate the lateral
structure in the flagellum.

In the experiments of X-ray diffraction of flagellar
solutions, the interference effect between flagella can be
eliminated by dilution of solutions. So, the change of the
profile of the diffraction intensities was examined by
varying the concentration of the solution. Consequently,
in the concentration range from 5 mg/ml to 50 mg/ml, there
was no change in profiles for the scattering angle larger
than 0.5°. From this fact, the interference effect between
flagella can be neglected against these regions for
solution patterns.

The interference effect between flagella of the
equatorial patterns from the fibre specimens were
investigated from the comparison with diffraction patterns
from aqueous solutions, and from the experiments of changes

of humidity. Comparing diffraction patterns from fibre

23



specimens and solutions, most of spacings of the equatorial
reflections of fibre patterns corresponded to those of
solutions (see Table I). The relative intensities of each
reflection for both cases are rather different (see Fig.5)
but the differences are unavoidable because of the facts
that the diffraction patterns from solutions contain both
equatorial and other layer reflections. On the othér hand,
when the fibre specimens were allowed to dry in vacuum from
relative humidity of 94 %, the profile of small-angle
equatorial patterns were very different from those of
solution but moderate-angle equatorial reflections (26 2 3°)
remained. Only the spacings decreased about 1-3 % than the
case of the relative humidity of 94 %, as was observed by

(11) and Burge and Draper(42). Considering

Champness
together, the interference effects seem to be also negligible
in the case of the fibre specimens for the region of the

scattering angle larger than 3°.

§ 6-2. cCalculation of the radial distribution function

Moderafe—angle equatorial X-ray diffraction patterns
from oriented fibre specimens were analyzed quantitatively
using a radial distribution function as mentioned above.

In order to apply this method, three steps are necessary.
The first step is the determination of the molecular
scattering intensity of the strands composing the flagellum

and the second step is the calculation of the interference

24



function. The last step is the calculation of the radial
distribution function from the interference function by the
Fourier-~Bessel transformation.

The molecular scattering intensity, fz(R), was
determined by the above mentioned empirical method. 1In
Fig.8, the obtained molecular scattering intensity of the
strands are shown. Here, the full line is the observed
intensity and dotted chain line is the molecular scattering
intensity of the strand, obtained by averaging two smooth
curves shown as dotted lines.

The interference function, i(R), in Eq. (7) was
calculated by dividing observed intensity curve by the
estimated molecular scattering intensity of the strand.

The result is shown in Fig.9. The obtained interference
function has the profile of the oscillation with damping
toward unity as mentioned. The average decay toward unity
is fast. The fast decay is attributed to two factors, one
of which is concerned to the distortion in the'position of
the strands in a flagellum, as mentioned above. Another is
due to the asymmetry of the strands (see Appendix II). The
equivalent standard deviation under Gaussian approximation
can be estimated from the mean decay of log(lRl/z(i(R)—l)l),
versus R2, which is shown in Fig.l1l0. As a result, it was
3~4 i.

At the third step, the radial distribution function,
p' (r) given by Eq.(1ll), was calculated from the

interference function. Fig.ll shows the radial

25



distribution function calculated from the interference
function shown in Fig.9. In this calculation, ripples due
to terminated integral of Eq.(ll) were smeared by the

artificial temperature factor.(43)

The termination errors
is originated from slow conversion of Bessel function in
Eq.(11). Hence, the ripple can be eliminated by
multiplying the attenuation factor to Jo(2uRr). Usually
the attenuation factor is taken a form of exp(—const.sz),
as temperature factors in X-ray crystallography, so-called
artificial femperature factor. There exist several peaks
at radial vector lengths of 11X, 243, 35.5a, 508, 703, 853,
98% and 1253. Among these péaks, four peaks are especially
clear. fhey are at 35.5%, 70%, 98% and 125%, as seen in
Fig.1ll. Heréafter, these four peaks are called clear peaks
and othér peaks, positioned at ll%, 24%, 503 and 85% are

called as sub-peaks.

§ 6-~3. Number of strands and théir arrangement

The positions of the peaks of the radial distribution
function correspond to distances between the strands in a
flagellum. The relative arrangement of the strands is
examined, based on the radial distribution function,
particularly paying attentions to the radial distances of
clear peaks at 35.5&, 70%, 98% and 125X. Other peaks
called sub-peaks are assumed to be caused by asymmetries of
strénds as described in Appendix II. In the clear peaks,

o
the distance of 35.5A seems to correspond to the nearest

26



neighbour distance .between strands in a flagellum. The
geometrical construction of the arrangement of strands in a
flagellum was done using this nearest neighbour distance as
following procedure: At first, a strand was fixed at the
origin of a space and the second one was put on a point
separated from the origin with the distance of 35.53.

Then, the position of the third one was determined from the
intersecting point of the two circles, one of which was
centred at the origin and the radius of 703 and another of
which was centred at the position of the second strand with
radius of 35.53 and so on. From these geometrical
construction, the possibility of the arrangement of the
strands was restricted to the annular array in a flagellum.
The number of the strands of the annular array could be
equal or greater than 1l1.

Further examinations were achieved with comparing the
obtained radial distribution function and calculated ones
for several annular arrays. 1In Fig.l2, only positions of
the peaks for each one are shown. The calculations were
with fixing the nearest neighbour distance at 35.53. The
abscissa is the number of the strands of annular models.
Circles indicate the positions of the peaks of the
calculated radial distribution function. Horizontal full
lines and dashed lines indicate the positions of clear
peaks of Fig.1ll and breadth for each peak, respectively.
The agreement between them is well sufficient when the

number of the strands is greater than or equal to 11,

27



For these models, we calculated the moderate-angle
equatorial diffraction intensity using the estimated
molecular scattering intensity of strands of Fig.8. In the
calculations, the damping factor was considered according
to Eq. (13), estimated as above. Fig.l1l3 shows calculated
intensities for 8, 11 and 13 strands models of the nearest
neighbour distance of 35.5 R with the equivalent standard
deviation of 4 R. By virtue of the equivalent standard
deviation, there are some discrepancies between observed
and calculated intensities for each case in the region that
R»0.1 a"1. This may be due to the deviation from the
cylindrical strand approximation (see Appendix II).
However, the peak positions of the observed diffraction
intensity coincide with those of the 11 strands model as a
whole. Further, the discrepancy factor for the
interference function was calculated according to the
following.

flig® - il ar
) fi(®ar

A

Here, iN(R) is the interference function of the N strands
annular array, and i(R) is same as shown in Fig.9. The
results of the calculations are illustrated in Fig.l4,
which shows that the best fit is obtained surely for the 11
strand model. At last, the calculated intensity for the 11
strands model with the equivalent standard deviation of 3 i

are indicated in Fig.l5.
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Chapter 7. Discussion

As discussed above, a normal Salmonella flagellum
seems to consist of 11 longitudinal strands separated by
distance of 35.5 g.' This implies that the centres of
strands are situated on a cylinder of which radius ro is
given by 2rosin(n/1l)=35.5 i. The value of ry obtained is
63 i. The distance between the centres of neighbouring
flagellin molecules on one strand is 51.9 i according to

Wakabayashi,(44)

who estimated it from meridional
diffraction patterns of normal Salmonella flagella.
Fig.16 shows the side view of flagella as a summary of the
above-mentioned results. The circles stand for flagellin
molecules. Here, the radius of the circles has no exact
physical meaning through they were drawn as a/2, whereas
their centres has definite meaning. The structure is
characterized by the parameters a, b and } as shown in
Fig.1l6, which can be determined by geometrical
consideration and are 46 i, 51.9 R and 128°, respectively.
Fig.1l7 shows the top view of a flagellum. In Chapter
5 we determined the electron density 9(r) of flagellum and
the average, inner and outer radii r, ry and r, on the
basis of small-angle scattering data. The radii ry and r,
were defined referring to the unifdrm density model. These
radii also are shown in Fig.l17. It should be noticed that
the obtained r is nearly equal to L As mentioned above,

the radius of the circles representing each flagellin

molecules has no exact meaning. Thus the curve 9(r) seems
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to give a picture which is closer to the reality concerning
the cylindrically averaged density distribution. This
9(r), along with the inner and outer radii ry and Ty
suggests that the thickness of a flagellum is larger than
the nearest neighbour distance of flagellin molecules and
that an actual flagellin molecule has a shape elongated

radially as discussed by Bode et al.(lg)

Also Fig.1l6
suggests that the monomers has a shape elongated along the
flagellar axis. Effects of the deviation of monomer shape
from the spherical symmetry in the projected plane on the
moderate-angle diffraction pattern are examined for
symplified models in Appendix II. The conclusion is that
the deviation does not affect the positions of the centres
of gravity of monomers determined referring to the main
peaks oh the radial distribution functions, if the
deviation is moderate. This seems to be our case because
numerically we have obtained the relation ?asro.

l.(lg)

Bode et a studied the small-angle scatterings

from Proteus flagella and obtained the following values of

2
-— (-]
average radius r calculated by us for their model is 50 A.

-] -] o
structural parameters: Rq=56 A, rl=15 A, r.=73 A. The

These may be compared with our results on Salmonella
flagella: R =68 A, r,=15 A, r,=95 A, T=65 A. Therefore,
the Salmonella flagella are thicker than the Proteus
flagella.

In conclusion, our X-ray studies shows that the number

of longitudinal strands in a flagellum of Salmonella strain
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8J25 is most possibly 11 in agreement with the conclusions

(16) (17)

of Finch and Finch and Klug and O'Brien and

(15) (45)

Bennett. Recently Furuya in this laboratory made
electron microscopic studies of Salmonella flagella by
means of a computer-processed Fourier transform method and

obtained results favorable to our conclusion.

31



(1)

(2)

(3)

(4)

(5)

Chapter 8. Summary

Small~angle X-ray scatterings of a solution of flagella
of Salmonella strain SJ25 were measured for scattering
angle, 0.2°€ 26 £ 3°. Intensity measurements were made
by the counter method in the range of the concentration
of solution, 5~ 50 mg protein/ml.

Moderate-angle equatorial diffraction patterns from
oriented fibre specimens were recorded by the film
method using the toroid optics. Diffraction
intensities on the equator were measured with the
densitometer for scattering angle, 3°¢ 20 { 12°.

In the same moderate-angle, 3°¢ 26 12°, diffraction
intensities were obtained for aqueous solution.
Comparing fibre patterns with solution patterns, it was
concluded that the effects of interference between
flagella in the fibre specimen can be neglected.

From small-angle X-ray data, the electron density
distribution of the cross-section were obtained, as
shown in Fig.7. The average radius was calculated from
the electron density as 65 g. The structural
parameters of a hollow cylinder model for the cross-
section were obtained: the radius of gyration as 68 R
and the inner and outer radius as 15 i and 95 i.

In studies on the moderate-angle equatorial
diffractions, an approximate method was proposed, in
which the intensity is expressed by the product of the

molecular scattering intensity of each strand and the
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(6)

(7)

(8)

(9)

interference function of the assembly of the strands in
a flagellum. The validity of this approximation were
examined by model calculations in Appendices.

Applying this approximate method, the radial
distribution function of strands in a flagellum was
determined. It proved that the centre-to-centre
distance between the nearest strands in a flagellum is
35.5 i and the number of the strands is equal to or
greater than 11.

For several models having different number of strands,
the equatorial diffraction intensities were calculated
using the empirically determined molecular scattering
intensity of the strand, and examined which model gives
the best fit. The discrepancy factor for the
interference function of the models were also
calculated. Obtained results suggested that the number
of strands is 11, supporting the conclusion of Finch,(16)
(17)

Finch and Klug and O'Brien and Bennett (15) based upon

the electron microscopy.

The radius of 11 strands model determined as 63 i is in
good agreement with the average radius 65 i obtained
from small~angle X-ray studies, indicating that both
approaches based upon the small- and moderate-angle X-
ray scatterings are reasonablly reliable.

Results of both small- and moderate-anglé studies
suggest that the shape of the flagellin molecule

considerably deviates from a spherical symmetry in
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accordance with the conclusion of Bode et al (19)
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APPENDIX I. Ambiguities of the Empirical Method

When the fibrous system consists of same kinds of
structural units (strands), assuming the cylindrical

symmetry of the strands, equatorial X-ray diffraction

intensity, I(R), is represented as follows.(33)
2 .
I(R) = Nf“(R)1i(R), (al)
iR) =1+% 7 3 (27Rr..) . (A2)
N 1% (o] ij

Here, N is the number of the strands in a fibrous system,
fz(R) ié a molecular scattering intensity of a strand and
i(R) is the interference function for the arrangement of
the strands. rij is the distance between the i-th strand
to the j-th one and JO(ZRRrij) is the O-th order Bessel
function. A radial distribution function, p(r), is

calculated from i(R) by the Fourier-Bessel transformation.

p (r) Ii(R)Jo(2nRr)2anR, (23)

orx

p' (x) I(i(R) - 1)J_ (27Rr) 2ARdR. (A4)

In p'(r), the peak at the origin is omitted, as usual.(34)
In order to calculate p(r) or p'(r), it is necessary to
extract i(R) from I(R) in Eq. (Al).

We proposed the method to determine the molecular
scattering intensity and the interference function from the
observed diffraction intensity, that is to say, the

molecular scattering intensity was obtained by smoothing
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the oscillation of the intensity curves. Consequently, the
interference function obtained by this method must be
oscillate around unity. This empirical method is based on
the general properties of the interference functions and
molecular scattering intensity of protein: (1) The
interference functions oscillate around unity and damp
toward it as a whole, and (2) the molecular scattering
intensity of protein molecules has a smooth peak near the
reciprocal vector length of 1/10 A"~. Fig.Al shows the
interference functions for three typical arrays for the
case of 6 strands. The abscissa is reduced reciprocal
vector length, u=27Ra, here a is the nearest neighbour
distance between strands.

However, the property of the damping oscillation
around unity breaks down at small reciprocal region, so
that the systematic errors may be introduced to the
interference function at these regions. Now we discuss the
effects of the erroneous interference functionloriginated
to the deviation from the damping oscillation property.

The interference function obtained by the empirical
method, i mp(R), can be represented by the product of true

e

interference function, i(R), and the error function, w(R),
lemp(R) = 1(R)+w(R). (A5)

The effect of the systematic errors on the radial
distribution function were investigated by comparison with

radial distribution functions obtained from i (R) and
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iemp(R). The error -function was put as follows, since the
errors due to the deviation from damping oscillation around

unity become large when R goes to zero.

w(R)

2
A(R - Ro) + 1, R(RO,
(a6)

\

1 ’ R)Roc

About many values for parameters of A and Ro’ the effects
were examined systematically. For example, these are shown

in Fig.A2 and Fig.A3. 1In Fig.A2, the interference function

)+

which containes the systematic errors are shown; (
true interference function for the annular array of 6
strands; (— + —), u_=12, A=1/u’=1/144; (— — —),

uo=12, A=-1/144. The abscissa is reduced reciprocal vector
length. Fig.A3 shows the radial distribution functions
obtained from these interference function, respectively.
The abscissa is reduced radial distance, x=r/a, here r is
the radial distance and a is the nearest néighbour
distance. The annular array with 6 strands has three kinds
of inter-strands distances, that is, a, V3a, 2a. These
values correspond to x=1, V3, 2, respectively. These peaks
are shown in Fig.A3. It is shown that the systematic
errors take no effects on the peak positions of the radial
distribution functions. They affects only on the base line
with slowly changed manner. These effects are cqmmonly
observed until for rather large values of u, up to 60, and
also for other arrays and the number of strands. From this

fact it could be concluded that it is not severe, so long
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as the positions of the peaks of radial distribution

functions are considered.
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APPENDIX II. Effects. of the Asymmetry of Strands

We have assumed that the strands composing fibrous
systems have cylindrical symmetry. Eq.(Al) and Eq. (A2) is
derived under this assumption. Actually, there must be
some deviations from the cylindrical symmetry in the
structure of the strands. In this Appendix, the effects of
the asymmetry of the strands on the radial distribution
function are discusSed. The theoretical treatment of the
asymmetry is difficult. So, in order to invéstigate the
effecté of the asymmetry, the strands are considered to be
composed from two sub-strands, which have cylindrical
symmetry. The sub-strands are separated with the distinct
distance, 6, with each other (splitting atom

approximation). Then, the intensity formula are rewritten,

NE'Z(R)[L + = & 28 J_(2mRr,

I(R) = )] (A7)
2 x,1 4,3 ijkl

N

iR) =1+ 3% kZl lZJ 3o (22Rx 5y 1) (A8)

Here, f'2(R) is the scattering intensity of the

substrands. The suffix (i,j) is refered to the strands and
the suffix (k,1l) is refered to the sub-strands in a strand.
If the splitting distance, §, is small, Eq. (A7) can be

rewritten for small R,

5 2Jo(2nR€)
I(R)leZf' (R) [1+3_ (27R®) ]}{LHJ (SERE) NZJ (27RT . j)} (A9)
i3
zN{Zf‘Z(R) [1+Jo(27cRs)]}{1+—Z J_(22RT. j)} (A10)
ixj
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Here, 6, is the mean distance of the order of & and ;ij is
the distance between the centres of strands. The mean
distance, 6, is dependent on the mutual orientation of
asymmetric strands. Egq.(A9) and (Al0) show that the
asymmetry of the strands is negligible at small R and the
molecular scattering intensity of a strand becomes to
cylindrical one, 2£'2(R) (1+3_(2xR8)). And Eq. (A9) also
shows that the another damping factor for the oscillation
of Jo(an?ij) , that is, 2J_(2zR8)/(1+J_(2rR®)), which
depends on the mutual orientation. Strictly speaking, this
is not simple decay function as Gaussian, but damping
oscillation function due to mainly J0(2mR3).

In Fig.A4, the structural model is shown for the case
of two asymmetric strands, which contain two sub-strands
with the splitting distance of one tenth of the inter-
strands distance, 6=f%. The interference function can be
calculated according to Eg. (A8) if the mutual orientation
is given. Fig.A4 also shows the interference function from
the model cited in the figure. The interference function
of sub-strands themselves, 1+Jo(2nR6) is also shown. The
interference function with splitting are oscillating around
the interference function of splitting itself, as mentioned
above. This is true for other two dimensional arrays of
more elements with splitting, if the splitting is rather
small compared to the inter-strand distance. The
additional damping of the oscillation can be seen in

Fig.A4, which is dependent on the mutual orientation, as
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mentioned above.

Thus, when the fibrous systems are composed from
asymmetric strands, the empirical method will give the
similar interference function for the disposition of the
centres of strands for the region, R{ 1/8. Only, the
damping oscillation is faster than the case of the
symmetric strands. The_errors introduced to radial
distribution functions by the empirical method were
examined by model calculations. These are shown in Fig.AS5,
for examples. (a) is the obtained radial distribution
function of the annular array of 6 strands with splitting,
6=a/10 and (b) is of 11 strands with same splitting. The
true positions corresponding to the distances between the
centres of strands are shown with arrows. And the
positiohs of the peaks corresponding to sub-strands are
also shown on the base line. The integration of the
Fourier-Bessel transformation of Eq.(A4) was carried out in
the region, R§1/6. As a result of many systematic
calculations for other cases, it is to say that the each
peak of the modified radial distribution function becomes
broad but the clearly observed péaks well correspond to the
peaks of the distances between centres of strands (arrowed
position). Beside the clearly observed peaks, several
sub-peaks are observed, but some of these sub-peaks are
quite artificial. When the splitting separation of sub-
strands becomes large, the radial distribution functions

become complex and do not give simple peaks. However, when
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the first clearly observed peak corresponding to the
nearest neighbour distance is not splitted, other peaks
which correspond to the distances between centres of
strands are also clearly observed. And the correspondence
between clearly observed peaks and the peaks of the centre-
to-centre distances is good. The artificial sub-peaks may
be originated from 2JO(21R5)/(1+J0(21R8)). This additional
factor is not simple decay function, as mentioned above.
Then, the interference functions obtained by the empirical
method have not the simple damping oscillations.
Conclusively it may be said that the small asymmetry
of the strands causes to broadening of the peaks of radial
distribution function. And the empirical method are
available, so long as the first main peak of the obtained
radial distribution function is not separated, since in
these cases the correspondence is sufficient as mentioned

above.
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Table 1

o]
Spacings (A) of X-ray reflections from Salmonella flagella

Solution Fibre
(Equatorial)
(44.4 )
40.2
28.2 27.8
(25.9 )
(22.7 )
20.0 21.2
15.6 15.1
12.9 12.6
(11.5 ) 11.0
10.4
9.45 9.41
8.56 8.35
7.77 7.47
( 7.28)
6.33 6.58
( 5.82) 5.95




Fig.1l

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Figure Captions

Models of bacterial flagella. (a) Eight
longitudinal strands of spherical subunits close-
packed on the surface of a cylinder, presented by

(9)

Lowy and Hanson. (b) Modified Lowy-Hanson model

built from wedge-shaped sub-units, presented by Bode

et al..(lg)

Flow chart for preparation of Salmonella flagella.

Flow chart of depolymerization-polymerization

process for purification of flagella.

The slit-corrected small-angle equatorial X-ray
scattering curve for Salmonella flagella. The
concentration of the solution is 12 mg protein/ml.
The ordinate is the correqted intensity, that is,

intensity times scattering angle.

Moderate-angle equatorial X-ray diffraction

intensities of flagella. ( ) Data from oriented
fibre specimens; (—— — ——) from aqueous solution

specimens, concentration of 24 mg protein/ml.

Guinier plot of the small-angle equatorial
scattering curve of flagella. The concentration is

6 mg-protein/ml. The ordinate indicates the



Fig.7

Fig.8

Fig.9

Fig.1l0

observed intensity times scattering angle. The full
line corresponds to the radius of gyration of the

[
cross-section of 68 A.

Cylindrically averaged electron density distribution

of Salmonella flagella, obtained by the Fourier-

Bessel transformation method. ( ) the phase
combination of (+,-,-) for the principal peak at the
origin and two subsidary peaks; (— — —) the phase

combination of (+,-,+).

The molecular scattering intensity of the strands in
Salmonella flagella (— — —). The full line is the
observed equatorial diffraction intensity.

Molecular scattering intensity was obtained by

averaging two smooth curves, shown as dotted iines.

The interference function for the arrangement of the
strands in Salmonella flagella. The interference
function is obtained by dividing diffraction
intensity shown in Fig.5 by the molecular scattering

intensity of Fig.9.

The damping profile of the interference function of
Fig.9. The full line corresponds to the equivalent

Q
standard deviation of 3 A.



Fig.ll The radial distribution function of the arrangement
of the strands in Salmonella flagellé. This is
obtained from the interference function of Fig.1l0
by the Fourier-Bessel transformation. The Fourier-

Bessel transformation is carried out against i(R)-1.

Fig.l1l2 Calculated radial distribution function for annular
arrays. The calculation is achieved under the
fixed nearest neighbour distance at 35.5 i. The
abscissa is the number of the strands of annular
models. Circles indicate the positions of the
peaks of the calculated radial distribution
functions and horizontal full lines and dashed
lines indicate the positions of clear peaks of

Fig.ll and the breadth for each peaks.

Fig.1l3 Comparison between calculated diffraction
intensities and observed one. The calculated
intensities are indicated the models of 8, 11, and
13 strands which are annularly arranged with the
nearest neighbour. distance of 35.5 i. These are
calculated using the molecular scattering
intensity of Fig.8 and the equivalent standard

Q
deviation of 4 A.

Fig.1l4 The discrepancy factors for annular models. The

abscissa is the number of the strands of the



annular models. The discrepancy factors are
calculated for the interference function shown in

Fig.9.

Fig.1l5 Calculated diffraction intensity for the 11 strands

model. The equivalent standard deviation is

(o]
considered as 3 A. ( ) calculated intensity;

(— — —) observed intensity.

Fig.1l6 An example of a drawing of the 11 strands model.
The helical symmetry of this diagram is that of 2
turns and 11 residues helix. The surface lattice
is that a=46 R, b=51.9 i and r=128°. Assuming the
spherical sub-units, there appear considerable

vacant spaces between subunits.

Fig.l7 Top views of the 1l strands model shown in Fig.l6.
In the figure, the average radius r and the inner
and outer radii ry and r, are also indicated. The

dotted line is the cylindrically averaged electron

).

density shown in Fig.7 as (



Fig.Al

Fig.A2

Fig.A3

Fig.A4

Fig.AS5

Figure Captions of Appendices

Interference functions for the two dimensional

arrays of 6 strands shown in the figure.

Errorneous interference functions for the annular
array of 6 strands. (— + —) uo=12, A=1/144;
(———) uo=12, A=10/144. The full line is the

true interference function.

Radial distribution functions obtained f£rom the

errorneous interference functions of Fig.A2.

Interference function of the system of two splitted
strands. The splitting distance is one tenth of
the nearest neighbour distance between the
centres of the strands. Mutual orientation of the

strands is shown in the figure.

Radial distribution functions obtained by the
empirical method for annular arrays of splitted
strands. The upper one is for the annular array
with 6 splitted strands and the lower one is for 1l

splitted strands.



Plate 1

Plate 2

Plate Captions

Flagella of Salmonella strain 5J25, an electron
micrograph of reconstituted normal flagella used
in this studies. Flagella are negatively stained

with 1 % uranyl acetate (pH about 4.5). X 340.000.

Moderate~angle X-ray diffraction patterns of
Salmonella flagella. (a) oriented fibre
specimens, effective camera length of 12.3 cm.

(b) aqueous solution specimens, effective camera

length of 12.3 cm.
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Fig. 2

PREPARATION OF FLAGELLA OF SALMONELLA SJ25

Main Culture Medium

7,970g; 15min

1
Supernata%t liquid Precipitate I
(discarded) (cells)

suspended in 2 vols
of distilled water
7,790g; 20min

Supernata%t liquid Preéipitate II
(discarded)
suspended in 2 vols
of distilled water
and shaking 5min
(detachment of flagella)
7,790g; 20min

I ]
Precipitate Supernatant liquid III
(cell bodies) (crude flagella)
(discarded)

17,300g; 15min

{ 1
Precipitate Supernatant liquid 1V
(discarded)
105,000g; 60min

R
Supernata%t liquid Precipitate V
(discarded)
, suspended in 20ml
distilled water
17,300g; 1l5min

I L)
Precipitate Supernatant liquid VI
(discarded)
105,000g; 60min

1
Supernata%t liquid Precipitate VII
(discarded)
suspended in 0.15M NacCl,
10mM phosphate buffer
105,000g; 60min

| - 1
Supernatant liquid Precipitate VIII
(discarded)

suspended in 0.15M NacCl,
10mM phosphate buffer

Purified Flagela




Fig. 3

PURIFICATION OF FLAGELLA

purified Flagella

65°C 5min heating
(depolymerization)

crude Flagellin monomers I

105,000g; 90min

r B
Precipitate Supernatant liquid II
(discarded) (purified Flagellins soln.)

added fragmented Flagella
or conc. di-valent anion
(polymerization at room temp. 5hrs.)

polymerized Flagella ITI

105,000g; 60min

1
Supernatént liquid Precipitate IV
(discarded)
suspended in 0.15M NacCl,
10mM phosphate buffer

sonic vibration 3-5min

fragmented Flagella V

105,000g; 60min

Supernat;;; liquid Precipi%ate Vi
(discarded)
suspended in
0.15M NaCl,
10mM phosphate
buffer

purified Flagella
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