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Abstract

Dynamics of robot manipulators is to be discussed in this dissertation, focusing on inertial
parameters of kinematic chains of the robot manipulators and identification of them for
dynamic modeling. |

There are three problems solved, in this dissertation, concerning the inertial parameters
of the kinematic chains and the identification of them.

o All the values of link inertial parameters ( mass, the product of the mass and the
location of center of mass, and moments of inertia for each link) of a kinematic chain
are redundant to determine its dynamic equations uniquely, hence they can not be
identified independently and some parameters can not be identified completely from
input data and motion data. Then it is important to investigate a minimum set of
inertial parameters whose values can determine the dynamic equations uniquely. Such
a set of inertial parameters is called A base parameter set below. The investigation of
a base parameter set gives many insights into the structure of the dynamic equations.
Each element of a base parameter set is also an identifiable parameter.

o It is needed to establish an efficient identification method of the base parameters.

e The identified parameters are inevitably biased more or less, hence, it may happen
that some sets of the obtained base-parameter values are physically impossible. Such
set of base-parameter values should be avoided.

In Chapter 2, a base parameter set is investigated for each of three types of manipulators.
Then, two identification methods of the base parameters, which have been proposed, are
experimentally examined and compared about some items in Chapter 3. In Chapter 4,
one method is proposed to judge if a set of base-parameter values for a kinematic chain
determines the inertial matrix of the dynamic equations to be positive definite or not for
each configuration of the manipulator. If not, it is physically impossible.

The results obtained in this dissertation would have direct contribution to the identi-
fication problem of the inertial parameters for robot manipulators. Moreover, knowledge
obtained through the detailed examination of the dynamic equations (e.g. redundancy of
the link inertial parameters or physical impossibility of a set of base-parameter values)
would help us to better understanding of the dynamics of robot manipulators.
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Chapter 1
Introduction

How wonderful the motions of animals are ! Human beings can walk and run by very
skillful use of their two legs. Horses, cheetahs, and other animals can run in very sophis-
ticated manners. When they move without any coupling to an external body, e.g. in the
air or in the space, we can observe curious phenomena. Cats, dropped from upside-down
with no angular momentum, change their shape in such a way as to land on their feet.
The other examples are too numerous to mention. It is needless to say that the control
by their brains plays very important role in their wonderful motions. However, the keys
of wonderful motions of the animals might be potentially in the dynamics of their bodies.
Animal body composed of obviously nonrigid members may well be treated as a system of
interconnected rigid bodies when its gross motion is of interest. Such a system which is
composed of rigid bodies, however, in the joints connecting the bodies nonrigid members
such as springs and dampers are allowed will be called multi-body system [1]. Then, we
could find out the keys of wonderful motions in features that are proper to the dynamics
of multi-body systems. Actually, the dynamics of multi-body systems would show features
that are proper to its dynamics, hence reveal to be quite unique. We have had some ev-
idences for its uniqueness through the control of robot manipulators; kinematic chains of
the robot manipulators are examples of multi-body systems. (Here, the robot manipula-
tors are considered to consist of kinematic chains with driving systems and the way they
are used.) The dynamic models (dynamic equations) of the robot manipulators play very
important role in position control and force control. There have been model-based position
controllers proposed for robot manipulators; feedforward control [2] and computed torque
control [3] which are based on joint coordinates, and resolved acceleration position control
[4] which is specified in term of Cartesian coordinates. For force control Cartesian-based
force controllers such as impedance control [5]-[7] and operational space method [8] have
been proposed. Also a unified control scheme of position, force, and impedance has been
proposed [9]. All these control schemes use dynamic models of the robot manipulators
ezplicitly, incorporating them to improve the control. Hence, we need values of parameters
appearing in the dynamic model to use these control schemes. Through identification prob-
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lem of inertial parameters, a fact has been obtained that link inertial parameters (mass,
the product of the mass and the location of center of mass, and moments of inertia of each
link) appear only in the form of linear combinations in the dynamic equations, and the
dynamic equations are linear in the terms of inertial parameters. This phenomenon would
arise in any multi-body system. Taking advantage of that fact adaptive control scheme
for robot manipulators have been proposed [10]-[12]. On the other hands, there has been
learning control for robot manipulators proposed by Arimoto et.al. [13]-[17]. The learning
control scheme does not use dynamic models of the manipulators. The key issues are the
stability and convergence of iterative process to desired trajectory. In the proof of them,
some features of the dynamic equations of robot manipulators play an important role. The
learning control scheme uses the knowledge of the dynamic model, hence we can say it
uses the dynamic model implicitly. Arimoto et.al. have found out what are essential for
learning control i.e., remarkable features of the dynamic equations for robot manipulators.
Thus, the dynamic model of robot manipulators plays very important role when we control
them, and some features which characterize the dynamics of the robot manipulators have
been found out. Hence, it would be worth while to examine the dynamic equations for the
robot manipulators in detail and obtain more knowledge about their dynamics, especially
the features proper to their dynamics. Then we extend the examination of the dynamic
equations to the multi-body systems, thereby we would get to know the keys of wonderful
motions of animals. Some results in this dissertation would be a clue for the goal.

In this dissertation, dynamics of robot manipulators is to be discussed , focusing on
inertial parameters of kinematic chains of the robot manipulators and identification of
them for dynamic modeling. As mentioned above, for the model-based control of a robot
manipulator, it is very crucial to obtain an accurate dynamic model of the manipulator. The
dynamic model of the manipulator consisting of rigid links is described as a set of nonlinear
differential equations involving various constant parameters: kinematic parameters, link
inertial parameters of its kinematic chain, and dynamic parameters of driving systems. If
all the values of these parameters are known, we can determine the dynamic model. Hence,
accurate values of the parameters are required to obtain an accurate dynamic model. The
values of the kinematic parameters can be obtained from design data or by kinematic
calibration. The most practical way to obtain the values of the link inertial parameters
and driving system parameters is to make test motions of the manipulator and to estimate
them from the input data and joint motion data which are taken while the manipulator is
in the test motions.

However, unfortunately, it is impossible to estimate all the link inertial parameter values
from the input data and the joint motion data in general since they are redundant to de-
termine the dynamic model uniquely. This fact has driven us to investigate nonredundant
inertial parameters sufficient to determine the dynamic model uniquely, then, in Chapter
2, we show a base parameter set which is defined to be a minimum set of inertial param-
eters whose values can determine the dynamic model uniquely for each of three types of



manipulators. The investigation of a base parameter set would give us many insights into
the structure of the dynamic equations. The definitions for a base parameter set would be
valid for multi-body systems. We might say that the base parameters are physical existence
in a sense in the dynamics of multi-body systems. Then, they suggest us a new formulation
of dynamics that are suitable to describe the dynamics of the multi-body systems.

The base parameters are also the parameters that can be identified independently from
input data and joint motion data. We describe each element of the base parameter set in
a linear combination of the link inertial parameters directly and completely in closed form,
also we give the exact number of the base parameters.

Next, it would be very important to have a good identification method to obtain the
values of the base parameters for the modeling. Then, in Chapter 3, we experimen-
tally examine to estimate the base parameters for an industrial manipulator applying the
identification methods: “step-by-step method”, “simultaneous method”, and “advanced
simultaneous method”. We compare the methods about the accuracy of estimates. To
evaluate the accuracy of them, we simulate the manipulator motion using the estimates
and compare the simulated trajectories with measured trajectories. We also describe in
detail the contents of the work which is needed to obtain the estimates about each identi-
fication method, and compare them about the amount of labour and consuming time on a
computer.

If we could obtain the true values of the parameters, no problem would happen. However
we are forced to have the estimates biased more or less, and determine the dynamic models
using them. Thereby it may happen that the inertial matrix of the dynamic model is not
always positive definite for arbitrary configuration of the manipulator, though it is the fact
that the inertial matrix is positive definite for arbitrary configuration of the manipulator.
If a set of estimated base-parameter values determines such inertial matrix, it is physically
impossible. Hence, in Chapter 4 we propose a method to judge if a set of base-parameter
values determines the inertial matrix to be positive definite for arbitrary configuration of the
manipulator or not, when we approximately consider the continuous change of each joint
variable of the manipulator as a finite set of discrete points. The method can be executed
on computers. Using this method we can judge if a set of estimated base-parameter values
is “possible” or not. Here,we use “possible” in the sense that the set of base-parameter
values determines the inertial matrix to be always positive definite. We also propose one
method to modify the estimated base-parameter values for the set of them to be at least
“possible” if we judge it is not.

The results in this dissertation would have direct contribution to the identification prob-
lem of the inertial parameters for robot manipulators. Moreover, through the detailed
examination of the dynamic equations we have had a fact that some link inertial parame-
ters appear in the form of linear combinations in dynamic equations. Also we have noticed
that some sets of base-parameter values for the dynamic model are physically impossible.
Some other features of the dynamics of robot manipulators have been found to be quite
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important by several researchers. Those would help us to better understanding of the
dynamics of robot manipulators.



Chapter 2

Base Parameters for the Dynamic
Models of Robot Manipulators

2.1 Introduction

For the model-based control of a robot manipulator, it is very crucial to obtain an
accurate dynamic model of the manipulator {18]. The dynamic model of the manipulator
consisting of rigid links is described as a set of nonlinear differential equations involving
various constant parameters: kinematic parameters(link lengths, twist angles of adjacent
joint axes, and types of joints—rotational or translational), link inertial parameters of its
kinematic chain (mass, the product of the mass and the location of center of mass, and
moments of inertia for the links), and dynamic parameters of driving systems, since the
dynamic model of the manipulator is obtained by means of the combination of the dynamic
equations of motion for the kinematic chain and the dynamic models of the driving systems.
If all the values of these parameters are known, we can determine the dynamic model. The
values of the kinematic parameters can be obtained from design data or by kinematic
calibration. The most practical way to obtain the values of the link inertial parameters
and driving system parameters is to make test motions of the manipulator and to estimate
them from the input data (joint torques or forces) and joint motion data(joint positions,
velocities, and accelerations if needed) which are taken while the manipulator is in the test
motions.

However, unfortunately, it is impossible to estimate all the link inertial parameter values
from the input data and the joint motion data in general since they are redundant to
determine the dynamic model uniquely. Thé redundancy is caused by the fact that relative
motions of two adjacent links are restricted to one degree-of-freedom, and the first link of
the manipulator is connected to fixed base by a joint. It is well recognized that making
clear nonredundant inertial parameters sufficient to determine the dynamic model uniquely
is fundamentally important for the identification of the dynamic model [18]-[23]. Such
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nonredundant inertial parameters can be termed a minimum set of inertial parameters
whose values can determine the dynamic model uniquely. Such a set of inertial parameters
is called a base parameter set for certain reasons to be shown later.

A base parameter set is useful for more efficient and accurate identification of the dynamic
model [18]-[23] since we can reduce the number of the inertial parameter values to be
estimated; the elements of a base parameter set are also the inertial parameters which
can be estimated independently from the input data and joint motion data. To solve the
inverse dynamics problem which is a key procedure in the computed torque control and
the simulation of the manipulator motions, we need all the link inertial parameter values
[24]-[26]). If a base parameter set is made clear, we can show that a certain number of
link inertial parameter values can be always supposed to be 0 or 1 assigning appropriate
values to the rest of the link inertial parameters without contradiction to estimated values
of the inertial parameters in the base parameter set [27]-[29]. Taking advantage of this
result, we can reduce the amount of calculations in the Luh et al. algorithm [24] for inverse
dynamics problem by about 20 % [28]. The same idea will be valid to other algorithm [25],
[26]. Thus, an investigation of the base parameter set is also useful in obtaining efficient
algorithms to solve the inverse dynamics problem. Since the notion of base parameter set is
so fundamental, the study of it must be helpful for a better understanding of the dynamic
models and must give insights to many other problems concerning the dynamic models.

General methods to find a base parameter set has been addressed by several authors.
Khosla [21],[22] and Khalil and Kleinfinger [29] have developed computer-aided methods
by symbolic procedures for Newton-Euler formulation. Gautier and Khalil [31] have ex-
amined a direct determination of a base parameter set for tree structured manipulators by
differentiating the energy function of the manipulator. They have used recursive symbolic
expressions of the inertial parameters. However this method does not give complete closed
form solutions and gives only upper limit of the number of inertial parameters in a base
parameter set. Since the method uses the energy function, it is difficult to see directly the
affections of the inertial parameters in the obtained base parameter set to the manipulator
motions. Sheu and Walker [32] have proposed a method to find out a base parameter set
that can be applied to both general open-loop kinematic chains and closed-loop kinematic
chains. The method is based on a numerical analysis of the possible changes in the energy
contents of the kinematic chain by using sampled motion data. Their method gives a way
of determining which base parameter is more effective on the energy. However the choice of
motion data would be a problem. Ghodoussi and Nakamura [33] have developed a method
to find out a base parameter set for both open and closed kinematic chains, investigating
the dynamic equations of the kinematic chains. Their method also includes numerical anal-
ysis but whole admissible motion set of the kinematic chain is considered in the numerical
analysis. They further have defined the set of the Principal Base Parameters as a set of the
base parameters that are orthogonal to each other and numbered in the order of sensitivity
to joint torque. Kawasaki et al.[34] have given a method to determine a base parameter
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set for tree structured manipulators examining the dynamic equations in Newton-Eular
formulation. Though the method gives the exact number of inertial parameters in a base
parameter set, it uses recursive symbolic expressions of the inertial parameters.

The methods by Khosla, Khalil and Klainfinger, Sheu and Walker, and Ghodoussi and
Nakamura are to be applied to each type of manipulator and réquire long time to execute
when the number of links is increased. The methods give by nature fewer insights about
physical meaning of the inertial parameters in the obtained base parameter set.

On the other hand, we show a base parameter set, every inertial parameter in which is
described in a linear combination of the link inertial parameters directly and completely
in closed form. Also, thereby, we give the exact number of the base parameters that is the
minimum number of inertial parameters whose values can determine the dynamic model
uniquely. The complete closed form expression of base parameters gives many insights
into the physical meaning of the parameters, hence the redundancy of the link inertial
parameters. The method we use to find out a base parameter set is based on a coordinate
free expression of the dynamic equations for kinematic chains, hence it gives many insights
about the structure of the dynamic equations. It is also shown that any base parameter
set can be obtained by a nonsingular linear transformation of all the inertial parameters in
a base parameter set.

To investigate a base parameter set, first of all, in the next section we give some definitions
and properties to discuss the redundancy of the link inertial parameters strictly and to show
exact meaning of base parameter set. A base parameter set is proved to be a base set for
linear vector space of all the identifiable inertial parameters. Several useful results are
derived from this. The definitions and results in this section are valid to any kinematic
chain. Then, in section 3 a base parameter set is shown for general open-loop parallel and
perpendicular manipulators(successive axes of which are parallel or perpendicular) with
rotational joints only. In section 4 the results of section 3 is extended to general open-
loop parallel and perpendicular manipulators with rotational and translational joints. The
results of section 3 and 4 have been extended to general open-loop kinematic chains [35].
However, there are many examples in mechanisms of robot arms or walking machines and
in manipulations by multi-finger hands or multi-arms, where we need to treat closed link
mechanisms. In particular, there is an important class of industrial manipulators that have
closed kinematic chain mechanisms. This mechanism has the advantage that the inertia of
links and gravitational loads can be reduced. Hence, it is important to investigate a base
parameter set for closed-loop kinematic chains. There have been studies to investigate
the base parameter set for such kind of kinematic chains. Based on the same definitions
as in the section 1, Mayeda et al.[36] extended the investigation of a base parameter set
and giving the complete closed-form solutions of it to a planar closed link mechanism
with rotational joints only. They have given the exact number of the base parameters.
Bennis and Khalil [37] have examined a direct method to determine a base parameter
set by differentiating the energy function of manipulators with parallelogram closed-loop.
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They used recursive symbolic expressions of the inertial parameter. However, this method
does not give complete closed-form solutions. They have given only the upper limits of
a number of parameters in a base parameter set. Kawasaki et al.[38] have proposed a
computer-aided method by symbolic procedure to find out a base parameter set for closed
kinematic chains. The methods by Sheu and Walker[32], Ghodoussi and Nakamura [33],
and Kawasaki et al.[38] are applicable to the close-loop kinematic chains, however they
are to be applied to each type of kinematic chains, then they have the same demerits
as mentioned above. Hence, it is very important to extend the results in [36] to general
closed-loop kinematic chains for the purpose of control and getting a better understanding
of the dynamics of the kinematic chains. In section 5 we make a small extension of the
results in [36] to manipulators with a planar parallelogram link mechanism. The results of
the section would cover most of commercially available industrial manipulators with closed
chain mechanisms such as OKURA A930, MITSUBISHI RV-S100A and so on. Finally, in
section 6 a conclusion is given.

2.2 Definition of Base Parameters

We investigate the nonredundant inertial parameters sufficient to determine the dynamic
model uniquely. Hence, we need not consider the dynamic models of driving systems. Then,
we consider only the dynamic equations of the kinematic chains of manipulators and take
them as the dynamic models of the manipulators below in this chapter.

First, describing a structure of the dynamic equations of open-loop kinematic chains, we
make clear the redundancy of the link inertial parameters.

Each rigid link of the kinematic chain has 10 link inertial parameters: the link mass m,
the six independent elements of inertial tensor 1%, I¥, I?, T%¥ TI%% 1Y% and the three
elements of the center of mass vector multiplied by the mass: mr?, mr¥Y, mr?, which
are represented about the coordinate system fixed on the rigid link. Hence, an N degree-
of-freedom manipulator has 10V link inertial parameters. However, all 10N link inertial
parameters are redundant to determine the dynamic equations for the kinematic chain.

As is well known, the dynamic equations of open-loop N degree-of-freedom manipulators
can be represented in the following form:

A | .
= H(0)6 + H(6)0 — 586—0(0H(0)0) + G(0) (2.1)
where 7 =[r; ------ 7n]* is the joint torque and force vector and @ = [0, ------ On]* is the

joint variable vector. The superscript (-)* indicates transposition. H(0) is N x N inertial
term matrix, and G(0) is N-dimensional gravity term vector. gay(OH (6)0) represents

the vector [EP_(OH (6)6) W—(OH (0)6) - Eg;(OH (0)0)]. Hence, it is evident that
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the dynamic equations (2.1) can be determined if and only if each element of H (@) and
G(0) is determined as functions of 8. Here, let g denote the vector whose entries are all
translational joint variables of 8 and 6, the vector whose entries are all rotational joint
variables of 8. Then, we can describe each element of H(6) and G() in the following
form:

T
}_: Py fu(0:r, @) (2.2)

where p,, is a linear combination of the link inertial parameters and fy is a polynomial of g
and trigonometric functions of 6,. (fy is allowed to be a constant function.) The form (2.2)
will be called a function of @ generated by p,, Py, :-- , Pr- These forms are determined if
the values of the kinematic parameters are given. These facts will become evident in later
discussions. Thus, assuming that the values of kinematic parameters are known, if we give
values to all the link inertial parameters, we can determine all the elements of H(6) and
G(0) as functions of 6;, 6,, ... , Oy and hence the dynamic equations (2.1). If two choices
of values to all the link inertial parameters determine some different elements of H(6) or
G(0), different dynamic equations are determined from them, and vice versa.

For the purpose of determining the dynamic equations (2.1) uniquely, the link inertial
parameters are redundant in the sense that same dynamic equations might be determined
even if some link inertial parameters take different values. Therefore, it is unfortunately
impossible to estimate all the link inertial parameter values from link motion and joint
torque or force data. The redundancy is caused by linear dependencies among f1, f2, - -, fr
and also among p;, P2, ‘- , Pr in (2.1). In any kinematic chain similar phenomenon
would arise. For modeling of the manipulator motion and its identification, it is a very
fundamental problem to find nonredundant parameters that are sufficient to determine the
dynamic equations uniquely and can be identified independently from motion and torque
or force data. Any linear combination of the link inertial parameters is defined to be an
inertial parameter as a candidate of nonredundant parameters and will be written in upright
bold face letters. Since the set of all the inertial parameters includes every p,, in (2.1), it
is no use to consider any broader class of parameters as candidates of the nonredundant
parameters. The set of all inertial parameters obviously constitutes a linear vector space.

To investigate the problem we give following definitions and properties.

Definition 2.2.1 An inertial parameter p is called a fundamental parameter if any two
choices of values to all the link inertial parameters, that give different values to p, never
determine same dynamic equations.

A fundamental parameter corresponds to an identifiable parameter from motion data
and joint torque or force data since there exists an appropriate joint torque or force for two
different dynamic equations, which generates different link motions for them.
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Definition 2.2.2 A set F of inertial parameters is said to generate the dynamic equa-
tions if same dynamic equations are always determined by any choices of values to all the
link inertial parameters as long as they give same value to each inertial parameter in F'.

Definition 2.2.3 A set F of linearly independent fundamental parameters that gener-
ates the dynamic equations is called a base parameter set and each fundamental parameter
in F is called a base parameter.

Property 2.2.1 The set of all the fundamental parameters constitutes a linear vector
space, and a base parameter set forms a base set of the linear vector space.

Proof Let p, and p, be fundamental parameters, and let a be a scaler. For different
values of ap; or p, + p,, p; or either p; or p, must take different values. Hence same
dynamic equations can not be determined if ap, or p; + p, takes different values, and
hence, ap, and p; + p, are also fundamental parameters. The set of all the fundamental
parameters constitutes a linear vector space.

Suppose that a base parameter set F' does not form a base set of the linear vector space.
Then, there exists a fundamental parameter p which is linearly independent to the base
parameters in F'. It is easy to find two choices of values to all the link inertial parameters,
that give different values to p and same value to each base parameter in F'. Since p is
a fundamental parameter, these two choices of link inertial parameter values determine
different dynamic equations. This contradicts the definition of base parameter set. [

Property 2.2.2 A base parameter set is a minimum set of inertial parameters, that
can generate the dynamic equations.

Proof Assume that there exists a set F' of inertial parameters that can generate the
dynamic equations and such that the number of the inertial parameters in F is less than
that in a base parameter set. Since F' can not span the linear vector space of all the fun-
damental parameters, there exists a fundamental parameter p that is linearly independent
to the inertial parameters in F'. It is easy to find two choices of link inertial parameter
values that give different values to p and the same value to each inertial parameter in F'.
These two choices of link inertial parameter values determine different dynamic equations
since p is a fundamental parameter. This contradicts the assumption that F' can generate
the dynamic equations. B

From Property 2.2.2, we can regard a base parameter set as the nonredundant param-
eters that are sufficient to determine the dynamic equations. Values of base parameters can
be estimated independently from motion data and torque or force data of the manipulator
since base parameters are fundamental parameters. Property 2.2.1 shows the reason why
we adopt the name of base parameter. Note that once one base parameter set F is found,
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any fundamental parameter is a linear combination of the base parameters in F' and any
other base parameter set can be obtained by a nonsingular linear transformation of all the
base parameters in F'. Thus, the problem to be solved is to find a base parameter set.

2.3 Base Parameters for Manipulators with Rota-
tional Joints Only

In ordinary manipulators, any two adjacent joint axes are parallel or perpendicular. In
this section we consider a general manipulator of this type with N links and assume that
every joint is rotational for simplicity. We show a base parameter set for the manipulators,
describing every base parameter in a linear combination of the link inertial parameters
directly and completely in closed form. Also, thereby, we give the exact number of the
base parameters.

2.3.1 Dynamic Models of the Manipulators

To describe the manipulator motions, we number the links successively from 0 to N. (0
is assigned to the base.) Joint i connects links ¢ — 1 and ¢. We attach a coordinate system
(0;; 4,94, 2;) to each link i in the way shown in Fig.2.3.1. This is similar to Craig’s
convention [39] except that the origin o; of (o;; ¢;,y;, 2;) is chosen to be the intersection
of joint 7 axis and common normal to axes of joints ¢ — 1 and 7. Joint angle 6, is the angle
between x;, , and x; measured around z;. Taking advantage of every joint axis that is
perpendicular to the predecessor, we divide the whole IV links into link clusters as shown in
Fig.2.3.2. More precisely, let o; = 1 and let (2 <)as < a3 < : -+ < ak be link numbers such
that joint o, axis is perpendicular to joint oy —1 axis for 2 < d < K. Define Sy =ay ,—1
for1<d< K —1and fx = N. Then, links oy, ag+1, --- , B constitute link cluster
d where axes of joints ay, ag+1, --- , [y are parallel. K is the number of link clusters
in the manipulator. When link ¢ is included in link cluster d, we define ¢(z) as c(i) = d.

Let m; be the mass of link 4, I ; be the moment of inertia matrix of link ¢ around o;, and
r; and L; be the vectors from o; to the center of mass of link i and o; , respectively. We
consider any vector v and any tensor T are represented about the base coordinate system
(00; o, Yo, 20)- The representations of v and T about (04;¢;, Y4, 2;) are denoted by v
and *T', respectively. zLZ, r; and zI are constant vectors and a constant matrix and will
be denoted by

=[F o g ]! (2:3)
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Fig. 2.3.1 Parallel and Perpendicular Manipulator and its Coordinate Systems



All joints are rotational

Fig. 2.3.2

\
\ﬁ: .

§\

Link Clusters in Parallel and Perpendicular Manipulator

13
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iri = [rj-” rY r¥ ]t (2.4)

o ¢4 TY Iz 1

' = Y ¥ O (2.5)

RS (i
The superscript (-)* denotes the transposition of (-). iLZ- means the length of link 7 and
is assumed to be known. (y; component of *L; is zero when the link coordinate sys-
tems in Fig.2.3.1 are adopted. This simplifies expressions of the base parameters in later
discussions.) As mentioned in preceding section, for each link ¢ we have 10 link inertial
parameters: my, mir“;."”, mirzy, miriz, I;-E, Ig-j, If, I;-ry, Ifz, I:;-/z (m; # 0 is assumed.)

After attaching coordinate systems to links, we have rotation matrices. 3 x 3 matrix
A; = [®; y; z;] represents the orientation of (x;,y;, 2;) about the base coordinate system
and A; = [z; Jy; 7z;] represents rotation of (x;,y;, z;) to (¢;,¥;,2;). Entries of 1A;
are functions of 8;,;, 042, --- , 6; when 7 > j and will be denoted by

[ (A (A (A ]

TA; (A CA)n (A |- (2.6)

| (A (A (PAp)ss |
It is well known that Jv = jAz-iv for any vector v, (YA4;)! = iAj, JA; =7As5A;, and that
cosf; —sinf; O

sinf; cosf; O , if z; is parallel to z;_,;

1A= (27)

0 0 -1 , if z; is perpendicular to z;_,.
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Let us define 6(¢,5) = 0, + 6;, +--- + 0;. It is easily derived that the rotation matrices

have following properties.
Property 2.3.1

(i) Forag <j<i< f; where1 <d< K,

J'Az.

(ii) For as <i < N,

Begy-1 A; =

(iii) When ¢(j) < ¢(4),

jAz.

cosf(j +1,i) —sinf(j+1,i) 0]

sinf(j +1,i) cosf(j+1,7) O

0 0 1]

[ COS 0(ac(,~), Z) — sin H(ac(,-), Z) 0

0 0 -1

i sin H(ac(,-), Z) COS G(ac(i), ’I.) 0

[ (A)u (A _(jAﬂC(-')—l)” ]

(A (Ag))2e —(Apg, )2

| (A (A3 _(jAI’C(i)-l)32 .

(2.8)

(2.9)

(2.10)

Denoting operations of inner product, cross product, and tensor product of two vectors

by -, X ,and ® , respectively, we introduce the following notation:

M;

SR

N
= Y m,
=

= M,

i1 Lg + myr;

N

= ) R;

j=1

(2.11)

(2.12)

(2.13)
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J;, = I+ Mi+1[(Li -L)E-L; ® L;] (2.14)

1-1
Lj; = Y Ls (2.15)

where FE is unit tensor of rank 2. m;, r;, and J; are the moments of order 0, 1 and 2 for

the augmented link [25] of link ¢ around o;, respectively. L j,4 means vector from o; to o;.

Note that m; and all the entries of iRz- and *J ; are inertial parameters.
For the dynamic model of the manipulator, we adopt following simple dynamic equations
in vector-tensor form, which can be derived from the Lagrange equations by elementary

operations:
N N .
6H _O0H(k,5)\; ,
ZH(z 9)0 +ZZ( 590, )0 0 —g-(z; x SR;) =7; (2.16)
j=lk=1 1
fori=1, 2, ... , N, where 7; is torque imposed around joint ¢ axis, g is gravity vector,

and 91- and éi are first and second time derivative of 6,

H(i, j) (ZJs)z]

s=1

= (2.17)
i {2 [2(Ls - SRs)E ~ Ls ® SRS+1 — SRs,, ® Ls|}z;

s=1
z;- [(Lj,i . SRZ')E — Lj,’i ® SRi]zj

for1<j<:< N, and

H(i,j) = H(j,1) (2.18)

for i < j. These dynamic equations can also be derived by Newton-Euler approach. In the
approach, H(i,j) and g - (2; X SR;) would be understood more intuitively.

The dynamic equations (2.16) can be determined if and only if H(3, j) and g-(z; x SR;)
are determined as functions of 6y, 65, --- , Oy for 1 < ¢,7 < N. Evaluating each of them
about an appropriate coordinate system, we can describe them in the following form:

T
> pufu (2.19)
V=1
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where p,, is an inertial parameter and fy is a polynomial of trigonometric functions of 6;
for 1 <i < N. (fy is allowed to be a constant function.) The form (2.19) will be called a
function of @ generated by p;, p,, -+ , pr in later discussions.

2.3.2 A Base Parameter Set

In this subsection we show a base parameter set for the dynamic model (2.16), each base
parameter is described by the link inertial parameters directly and completely in closed
form. First, to describe the base parameters, we introduce the following notation. zRZ- and
O ; are constant vector and matrix, respectively, hence, they will be represented as follows:

‘R; = [RF RY R (2.20)
[ JF 3 3FE

;= |3V 3 3R | (2.21)
IRFEER AR

To simplify descriptions of the base parameters, following inertial parameters are intro-
duced:

( 0, if 1 = By
RZ(G) = { B (2.22)
Z Rf , otherwise
\ j=i+1
( Bei)+1
_ > R, ifi=pfyq andc(i) # K
RZB(1) = { joans (2.23)
0, otherwise
( Beiy+1 y
J? +2[L)*RZ(3)), ifi= B and c(i) # K
ryB) = |2 @ HARRIG), iz ppmddd 2K o
L 0, otherwise

Here we assume that [L]¥ # 0 for 1 < ¢ < 8, — 1. (Removal of this assumption is possible
but makes no sense for practical cases.) Then, a base parameter set is given in the following
theorem.
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Theorem 2.3.1 The following inertial parameters constitute a base parameter set for
the manipulator dynamic model (2.16). For the case that 2, is not parallel to gravity vector

9,

J? +JYB(), R¥, RY-RZB() (2.25)
for 1 <1< N, and

37 -3V +3YB(), IFF - [LIFRZ(i),
(2.26)
7Y +[L?RZB(i), IY* + |L]ZRZB(3)

for a3 < 1 < N. For the case that 2, is parallel to g, delete RY and R%/ — RZB(1) from
the above inertial parameters.

The total number of base parameters in the base parameter set is 7N — 43, if z; is not
parallel to g or 7N — 43, — 2 if 2z, is parallel to g.

We first show the following lemmas necessary for the proof of Theorem 2.3.1.

Lemma 2.3.1 Suppose that H(3, j) or g - (z; X SR;) is described as

U, Uz

Yopufv+ Y pufv (2.27)

V=1 v=U;+1
where p, is an inertial parameter and fy is a polynomial of trigonometric functions of
b, ... , Onfor 1 <v<T.Iffy, fo, ..., fu, are linearly independent functions and
Pu,+1» Py;+2» --- » Py, are fundamental parameters, then p;, p,, ... , py, are also

fundamental parameters.

Proof Assume that some p, such that 1 < a < T is not a fundamental parameter.
Then, we can consider two choices of values to all the link inertial parameters, which give
different values p}, and pZ to p, and determine same dynamic equations. Let p; and p3,
be the values of p, corresponding to the two choices of the link inertial parameter values.

T
Then p}, = p3 for Ty + 1 < v < T and hence (p}, — p3)fa = }fl (p3 — pY)fv must be
v=

v#a
satisfied since py for T} +1 < v < T are fundamental parameters, and the two choices of

the link inertial parameter values determine the same dynamic equations. This contradicts
the condition that f;, ... , fr, are linearly independent since (p} — p3) # 0. [

Lemma 2.3.2 'S R, can be represented by
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T
R;

'SR;= | RY—-RZB(i) | + G (2.28)

| R?+RZ(i) |

for 1 <17 < N where G, is a vector whose entries are functions of 8 generated by Rg and
RY —RZB(s) fori+1<s < N.

. N . }
Proof  'SR; can be described as ¥ *As®Rg, and wth entry of *SR; is given by

5=1
> ((tAs)uiRE + (*As)uRY + (PAs)wsRE) (2.29)
S:?:

w=1,2,3. Since (iAs)w:; = -(iAﬂc(‘)_l)uﬂ for ac(i)+1 < s from Property 2.3.1, we can
deform (2.29) as

Besy N . Bat1
> (*As)wsRE + Y (("As)umRE + (ZAS Jw2RY) — Z ( Aﬂd)w2 > RE)
s=1 S=1 d=c(3) S=ag41
(2.30)
ﬂc(t) .
= 3 (*As)usRE + Z((“As wiRE + (“4s)ua(RY — RZB(s))).
s=1 §=1

We can obtain (2.28) from (2.30) using the fact that (iAi)wt =1if w=t, (iAi)wt =0 if
w # t, and (*Ag)ss =1, (*As)13 =0, and (*Ag)a3 = 0 for ¢ < s < fy;) from Property

2.3.1. B
Lemma 2.3.3
Bei)+1 ]
H(i,5) =JZ+JYBG) + Y (I35 -3{+IYB(s)(4s)%
S=ac(i)+1
(2.31)
ﬁc(;)-{-l .
+2 Y (35 +[LIERZB(s))(*As)n(*As)sz + Ge
s-’ac(t)+1

for 1 < i < N, where G, is a function of 8 generated by J3+JYB(s), R%, and Rg—RZB(s)
for s > i+1, J4°+[L}ZRZB(s) and JE? —[L]ZRZ(s) for s > aeqiy+1, and 3Z-3Y4+IYB(s)
and J57 + [L)ZRZB(s) for s > aciysa-



20 Chapter 2. Base Parameters

Lemma 2.3.4

Be(i)
Hi, fuy) = z([(ﬂz [LIERZ(s)) sin B(as, )
(2.32)

+(ng + [L]ZRZB(s)) cos 8(aciy, s)] + Gs

for ap < @ < N, where G3 is a function of 8 generated by R% and Rg — RZB(s) for
s>iand JZ+JYB(s), 3% - JY + IYB(s), 35Y + [LIZRZB(s), I¥° + [L]ZRZB(s) and
JE% — [LJERZ(s) for s > a(iy+1-

Lemma 2.3.5

H@,j) =H(@,i) + R"”Z[L] cosf(s + 1,1)
N | (2.33)
~(RY - RZB(:)) S [LiEsinf(s +1,i) + Ga

S=3

for aiy < j < 4,1 <1 < N, where G, is a function of @ generated by RY and Rg——RZB(s)
for s > i+ 1.

Lemma 2.3.6 All the H(¢,j) and g - (2; x SR;) for 1 < j <4 < N are functions of 6
generated by the inertial parameters given in Theorem 2.3.1.

The proofs of Lemma 2.3.3, 2.3.4, 2.3.5, and 2.3.6 are given in the Appendix.

( Proof of Theorem 2.3.1) Represent ig as ig = [igz igy 2'gz]‘. Using Lemma
2.3.2and 'z, = e; (e3 = [0 0 1]*) , we can evaluate g - (z; x SR;) about (x;,y;, 2;) as
'g-(z; x"SR;) =R g, - RY —RZB(i)) '9, + G (2.34)
where G is a function of @ generated by R} and RY — RZB(s) for s > i+ 1. It is
easy to show that g, and ’g, are nonzero independent functions of 61, 6z, ... , 6; for
1 < ¢ < N if z; is not parallel to g or for ay < 7 < N if 2, is parallel to g. Therefore, if
RZ and RY — RZB(s) for s > i + 1 are assumed to be fundamental parameters, Rf and
Rzy — RZB(?) are also fundamental parameters by Lemma 2.3.1. When¢:= N, G =0in
(2.34). It can be derived in the same way that R% and R% are fundamental parameters.

By the mathematical induction, it is concluded that R and Rz-/ —RZB(7) are fundamental
parameters for 1 < ¢ < N if z; is not parallel to g or for @y < i < N if z; is parallel to g.
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It is derived from (2.17) and ¥z = e; that H(N,N) = V24,V JyNzy = J%. I is
obviously a fundamental parameter. For arbitrary d such that 2 < d < K, assume that

JZ + JYB(:) (2.35)

for «+ > (; and
IV% + [LPRZB(i), JI¥7 - [LIFRZ() (2.36)
37 -3V +3YBG), I7Y+ [LFRZB() (2.37)

for 1 > a4y are proved to be fundamental parameters. Let F' be the set of all these
fundamental parameters and R%E and Rzy —RZB(3) for ap <i < N.
By Lemma 2.3.4,
H(B4, Ba-1) = (J57 — [L)5, RZ(B4)) sin 0(ca, Ba)
(2.38)
+ (357 + [LI5,RZB(B,)) cos (ca, Ba) + G

where G is a function of 8 generated by fundamental parameters in F'. Since sin 6(cy, 54)
and cos #(aq, B4) are linearly independent functions, it is concluded by Lemma 2.3.1 that
3%% — [L}%Z RZ(Bs) and Jgf + [L]5, RZB(B;) are fundamental parameters. Next, we can
derive by Lemma 2.3.3 that

HB:s—1,6—-1)=3; _,+IYB(Bs—1) + G (2.39)

where G is a function of @ generated by the fundamental parameters in /. By Lemma
2.3.1, J; _, + JYB(8s — 1) is a fundamental parameter. Add these new fundamental
parameters to the set F. Investigating H(%,84-1) and H(z — 1,i — 1) fori = 34— 1, Bg—
2, ... , ag+1 and H(ag,B4—1) in order, we can prove that the inertial parameters in
(2.36) for ag < i < B4 — 1 and the inertial parameters in (2.35) for ag < @ < [y — 2
are fundamental parameters by use of the same arguments as above. Add all these new
fundamental parameters to F'.
Next, it can be shown by Lemma 2.3.3 that

H(Bu-1,Ba-1) =I5, , +IYB(B4_)

Ba
+ 3 (3% - 34 + IYB(5)) (P As)h
Szad

(2.40)

Ba
+2 Y (I5Y + [LIERZB(s)) (%1 As)s1 (P41 As)

-S‘=ad

+ G
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where G is a function of @ generated by the fundamental parameters in F. It is obvious from
Property 2.3 that (P41 Ag)s; = sin 6(ay, 5) and (%-1Ag)3 = cos B(ay, s) for ag < s < f,.
Constant function, sin?#(ag,s) and sin §(aq, s) cos O, s) for ag < s < B4 can be easily
proved to be linearly independent functions. We can conclude by Lemma 2.3.1 that
J g A JYB(f;-1) and the inertial parameters in (2.37) for a4 < i < B4 are fundamental
parameters. Add these new fundamental parameters to F'.

Now, the inertial parameters in (2.35) for ¢ > B4, and the inertial parameters in (2.36)
and (2.37) for ¢+ > o4 have been shown to be fundamental parameters. Using the mathe-
matical induction from d = K to d = 2, we can prove that the inertial parameters in (2.35)
for ¢ > () and the inertial parameters in (2.36) and (2.37) for ¢ > a5 are fundamental
parameters. Add all these fundamental parameters to F.

Next, it is derived by Lemma 2.3.5 that

H(Bi,60—1) =H(B,6) + Rg—1[L]g1—10080B1
(2.41)
~ (RY_, —RZB(4))[L}%_,sinbs, + G

where G is a function of @ generated by RZ and RY — RZB(s) for s > o that are included
in F. From the above arguments and (2.40), H(5,4) is a function of @ generated by the
fundamental parameters in F'. Since cosfs, and sin s, are linearly independent functions
and [L}7 _, # 0 is assumed, RS _; and Rg_l — RZB(f;) are fundamental parameters by
Lemma 2.3.1. Add these fundamental parameters to F. It can be derived by Lemma
2.3.3 that

Hpf-1,6-1)=3;_,+IYB(B-1) + G (2.42)

where G is a function of 8 generated by the fundamental parametersin F'. J [2,1_1+J YB(3,—
1) is obviously a fundamental parameter by Lemma 2.3.1. Add this to F. Investigating
H(i,i—1)and H(i—1,i—1)for: = 3,—1, /12, ..., 2 in order, we can prove by iterative
use of the above argument that Jf +JYB(i) for 1 < i< ;) and Rf and Ri-/ — RZB(q)
for 2 < ¢ < B; are fundamental parameters. In the case that z; is not parallel to g, it has
been already proved that Ry and R?il — RZB(:) for i > 1 are fundamental parameters.
Now, we have proved that all the inertial parameters given in Theorem 2.3.1 are funda-
mental parameters. These inertial parameters are obviously linearly independent since each
of them includes at least one link inertial parameter which does not appear in the others.
We can conclude by Lemma 2.3.6 that these inertial parameters generate the dynamic
equations (2.16). Thus, the set of all the inertial parameters given in Theorem 2.3.1
constitutes a base parameter set. The number of base parameters in this base parameter
set is evident. : 5
From the Theorem 2.3.1 and Property 2.3.11 we can conclude that the minimum
number of the inertial parameters whose values can determine the dynamic model uniquely
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is TN — 4B, (TN — 43, — 2 if 2, is parallel to g). This minimum number can be interpreted
as follows. The mass m; appears alone in neither H(%, j) nor g - (z; x SR;) in the sense of
zeroth order moment since all the joints are rotational. Rf or Ji-/ can always be grouped
with other inertial parameters. The mechanism of the grouping will be shown in the proofs
of Lemmas 2.3, 2,4,and 2.5 in the Appendix. Since the links in the first-link cluster
rotate only around the joint axes parallel to z;, second-order moments except for Jf , do
not appear in the dynamic equations. If z; is parallel to g, R¥ and RY - RZB(1) appears
in neither H(i,j) nor g - (2; x SR;).

H(i,j) relates (9} to 7; and it is a function of @ which represents the attitude of the
manipulator. From the proof of Theorem 2.3.1, we can guess a procedure to estimate
the base parameter values given in Theorem 2.3.1 as well as desirable joint motions and
manipulator attitudes for accurate estimations.

2.3.3 Conclusion

The base parameter set as a minimum set of inertial parameters which can generate
the dynamic model is investigated for a general parallel and perpendicular manipulator
with rotational joints only. This is also regarded as a parametrization of the manipulator
dynamic model. Base parameters can be identified from link motion and joint torque data.
A base parameter set such that every base parameter is described by the link inertial
parameters directly and completely in closed form is given, and the exact number of the
base parameters in the set is also evaluated. Any base parameter set can be obtained from
the base parameter set by a nonsingular linear transformation.

The proof of Theorem 2.3.1 gives good understanding of the relation between the
base parameters and the manipulator motions, which is useful for efficient and accurate
identification of the dynamic model. The notion of base parameter is so fundamental that
it will be helpful for other problems related to the manipulator dynamic models like the
inverse dynamics problem.

2.4 Base Parameters for Manipulators with Rota-
tional and Translational Joints

The manipulators considered in preceding section are assumed to have rotational joints
only. Then, in this section we extend the results of the preceding section to manipulators
with rotational and translational joints. We show a base parameter set for the manipulators,
describing every base parameter in a linear combination of the link inertial parameters
directory and completely in closed form. Also, thereby, we give the exact number of the
base parameters.
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2.4.1 Dynamic Models of the Manipulators

We consider the manipulator that has a open-loop kinematic chain, each link of which
is connected to the predecessor (base for the first link) by a rotational or translational
joint and is called rotational or translational link, respectively. Let N be the number of all
the rotational links in the manipulator. The n-th rotational link from the base is labeled
as (n,0) for 1 < n < N. The base is labeled as (0,0), regarding it as a rotational link.
Base coordinate system (og; Zo, ¥y, Zo) is set arbitrarily, and 2z, is supposed as (0, 0) joint
axis. Let T, be the number of all the translational links between rotational links (7, 0) and
(n+1,0) for 0 < n < N — 1 or succeeding to rotational link (NV,0) for n = N. The t-th
translational link from rotational link (n,0) is labeled as (n,t) for0 <n < N, 1<t < Th.

— N
Thus the total number of links N is Y (1 + T,) — 1. Here we assume that the axes of
n=0

rotational joints (n,0) and (n+ 1, 0) are parallel or perpendicular for 1 < n < N —1. Note
that relation between the direction of the axes of joints (n,0) and (n + 1,0) never change
for whatever displacements along the translational joint axes between the two rotational
joints axes.

To describe manipulator motions, we attach coordinate system (on; €n, ¥n, 2n) to rota-
tional link (n,0) and coordinate system (oy, t; Tp_t,Yn, ¢, Zn, ¢) to translational link (n,t)
in the way shown in Fig. 2.4.1. For translational links, 2y, ¢ is along joint (n,t) axis, and
Ty t and Yn,t are chosen arbitrarily to complete a right-hand coordinate system. The
origin oy, ¢ of (o #;®y t,Yn, t>2n,t) is chosen on joint (n,t) axis arbitrarily. We set a
reference point p;, ¢ on joint (n,t) axis arbitrarily, which is fixed to link (n,t — 1) . The
amount of translation about translational joint (n, t) is considered as the distance g;, ¢ from
Pn,t to op ¢ . For rotational links, setting the position of every translational link (n—1,t)
between rotational links (n — 1,0) and (n,0) on its reference point i.e. p, ;4 =o0p_ ;¢ or
n-1t =0 for 1 <t < Tp_1, we set the origin op, of (on; xn, Yy, 2n) at the intersection
of joint (n,0) axis and the common normal to the axes of joints (n — 1,0) and (n,0) . 2n
direct along joint (n,0) axis. @y, directs along the common normal from joint (n,0) axis to
joint (n + 1,0) axis. yy, is chosen to complete a right-hand coordinate system. Rotational
joint angle 6y, is the angle between x,_; and &y mesured in the right-hand sense about zn.
For0<n <N, 0<t<Tpandt# Ty the vectors from on, t (on if t =0) to Pn,t+1(0n+1
if t = Tp) or to oy 4,; (0n41 if t = Tp) are denoted by Ly, ¢ or Ly, 4, respectively. Note
that L, 4 is a constant vector and the following relations are satisfied:

fn,t = Ln,t +dnti12nty (2.43)
fOIOSnSN7 OStSTn—la
Lpr, = Lpr, (2.44)

for0<n<N-1.



Fig. 2.4.1 Manipulator with Rotational and Translational Joint
and its Coordinate Systems
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For each link (n, ) let my,  be the mass, Iy 4 be the moment of inertia tensor around
the origin oy, ¢ and r;, ¢ be the vector from oy, ¢ to the center of mass.

Since the axes of rotational joints (n,0) and (n + 1,0) are parallel or perpendicular for
1 < n < N —1, showing in Fig. 2.4.2, we can divide the whole manipulator links into
link clusters as follows; Let a(1) =1 and 2 <a(2) < --- < a(K) be numbers such that
joint (a(d),0) axis is perpendicular to joint (a(d) — 1,0) axis for 2 < d < K, and define
b(d)=a(d+1)—1for1 <d< K —1 and b(K) = N. Then all the links from (a(d),0) to
(b(d), Ty(ay) constitute d-th link cluster in which all the rotational joint axes are parallel.
Translational links (0, 1), (0,2),...,(0,T},) are considered to be 0-th link cluster. (d —1)-th
and d-th link clusters are connected by joint (a(d),0). Thus the number of link clusters in
the manipulator is K + 1. When rotational link (n,0) is included in d-th link cluster , we
define k(n) as k(n) = d.

After attaching coordinate systems to links, we have rotation matrices. " Ay ¢ = "z, ¢
"yn.t "2n ] represents the rotation of (zy, ¢, Yn ¢, 2n t) t0 (Tn, Yn, 2n). Each element of
the matrix will be denoted by

[ +HApgn [Apghe [Apghs ]

nAn,tz +[An,t]21 {An,t]22 [An,t]23 . (2-45)

| HAptln [Aptlse [Aptlas |

™Ap ¢ is a constant matrix since relative motions between (n,0) and (n,t) links are only
. . . . t

translational. The matrix 7A; = [ Tz, Yy, Tz ] represents the rotation of (x;,y;, 2;)

to (x;, Y, z;), both coordinate systems are attached to rotational links. Hence, they are

same as the rotation matrices defined in section 3, then each elements of the matrices will

be denoted by same symbols as in the section 3. Let us define 6(i,5) =60; +6;,, +---0;

i+1
for ¢ < j. Then, it can be easily shown that the rotation matrices have following property.

Property 2.4.1
i) For a(d) < ¢ < j < b(d) where 1 <d <K,

[ cosf(i+1,5) —sinf(i+1,5) 0]

'A; = | sin@(i+1,5) cosf(i+1,5) O |. (2.46)

0 0 1|
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Fig. 2.4.2 d-th Link Cluster in the Manipulator
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ii) For a(2) <¢ < N,
[ cosB(a(k(i)),i) —sin(a(k(?)),i) O

b(k(i)-1) A= 0 0 -1 . (2.47)

| sin0(a(k(2)),t) cosf(a(k(i)),i) O
iii) When k(z) < k(j),
[ (iAb(k(j)-—l))lz

(3rd column of Z'Aj) =— (iAb(k(j)—l))22 . (2.48)

(* Aycr(i)-1)32

(n't)Ln,t,nAn,t for 0<n<N,0<t<T,andtypeof 1Ay for 1 <n <N are
obtained from the kinematic parameter values of the manipulator, and they all are assumed
to be known.

We introduce following notation for later argument.

Tn N T;
Mp, ¢ = > mpg + > 3 myy (2.49)

t1=t i=n+1 t1=0

Ryt = my4rpt+Mpg Ly, By p=mp ¢y ¢+Mpg Ly ¢ (2.50)

Jnt = Int+Mpg(Ly ¢t Ly tE— Ly ®Lyp t) (2.51)

My, ¢, Ry ¢, Jp, ¢ are moments of order 0,1,2 for augmented link of link (n,t) around
on, ¢ (on if t = 0), respectively. Moreover we define followings:

Tn Tn
RCn = ) Ry, RCp= )Y Ry, (2.52)
t1=0 t;=0
T. Tw
RCn,t = tZ:tRn’tl, _R—C-n,t = tz:tﬁn’tl (2.53)
1= 1=
N N

SRn, t — RCn, t + SRp41, SRn,t = RCn, tt+ SRp. (2.55)
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T, , T
ZLn, 13) Ly = ZLn, ¢ (2.56)
t=0 t=0

Ly, is the vector from oy, to o1, and Ly, is that when Gn,t =0 for 1<t < Ty Lpis
a constant vector. For (n,t;) and (ng, ;) links we denote (ny,t1) < (ng, t2) if (ny,t;) link
is predecessor to (ng,t3) link i.e. n; < ny or t; < t, when n; = ny. In this case the vector
from oy, ¢, (on, if t1=0)toop,¢(on, if t2=0)is defined as

no—1 ta—1

L(nl,tl)(nLtZ) ZLTh t+ Z Ln + ELTI, R (2'57)

n=n;+1

or,whenqnl,tzofortrklStSTnl, qn,t:Oforn1+1§n§n2—1, 1<t T,
and g, + =0for 1 <t <1y,

Tn] ny—1 ta—1
L(nl,tl)(nz,tz) - ZL’HA t + Z Ln + Z L?’Lz t- (258)
t=t; n=n;+1 t=0
Finally, we define
Tna Ta—1
Jn :ZJn tt+ Z( 2Ly ¢ RCp B
t=0  t=0 ’ (2.59)

‘Ln,t ® RCn,t+1 - RCn,t+1 ® Ln, t)-

When oy, 4 is fixed on py, 4 for all 1 <t < Tpn, Links (n,0),(n,1),...,(n,Ty) can be
considered as a rigid rotational link. It can be proved that Jp is the moment of inertia
tensor of this composite rotational link. To construct a dynamic model of the manipulator,
we adopt Lagrangian formulation. By length but straightforward operations, following
coordinate free expressions for the dynamic equations of manipulator motions are derived:
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(i) For input torque 7 generated in rotational joint (n,0) around the joint axis

™m = ZH1(TL 2)6; +ZEH2 n, (i,1))d; ¢

1=0 t=

l]

=1 j=1

+§:§:i(3H2(n h1)) _ O, (z )4

01‘11, t
i=0 t=1 j=1 (2.60)
yXE 0H,(n,1
35 e,
i=1 j=0 t=1
LN & 0Hy(n, (i,1)  OH(G k), G, t)) -
1=0 t1=1 j=0 t2=1 Jil2
—g-(zn x SRy)

for1<n<N.
(ii) For force fy, ¢ generated in translational joint (n,t) along the joint axis

|

fn,t ZHz(Z (n,))b; +ZEH3 (i, 11), (n,)dy ¢,

i=1 =0 t=1

+Z E(OHQ(z (TL t)) aHl(j,Z))

i=1 j= 2aqn t

+i 2 Z:(aH:,((z tl) (1) _ 0Hz(j, (i,t1)) 5

]ql,t1
i=0 t)=1 j=1 an,t

(2.61)

N T. N T;
Yy Z(BHB((Z 4),(n, 1)) OH3((J, t2), (4, 1))

i=0 t;=1 j=0 tz=1 9i.t, an,t

)qi,tl qj,t2

-Mn,tg " 2n,t

for0<n<N,1<t<Th.
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where

N
Hi(i,5) =2z;- (3 _Jn)z;

n=t
N-1

2 [Z (2Lp - SRn1E — Lp ® SRy — SRy ® Ly))z;

n=:

+2;- [L(j,o)(i,O) ’ SRiE - L(j,O)(i,O) ® SRi]zj

N T,
+2; - [Z an, t(2zn,t . SRn, tF — Zn,t ® SR'IL,t (2.62)
n=i t=1
—SRp 1,1 ® 2pt)lz
i-1 T,
+z;- (D0 ) an, t(zn,t - SRE — 2z, 1 ® SRy)\z;
n=j t=1
N T,
+Z Zan, tMpy ¢
n=i t=1

for j <7 and Hi(i,5) = Hi1(j, %) for i < j, where o, ¢ is a scaler generated from z;, 2;,
and In,t2n,t forj <n<N, 1<t<T, and Ln,t for j <n < N,0<t<T, by vector
operations.

(z; ﬁz) "Zjt ifj <1
[2i X Myt L o)ty + SRt - 258, i<

forI<i<N, 0<j<N, 1<t<T;,

H3((5,11), (4, 12)) = My, 24, - 254, (2.64)

for0 <47 <N, 1<4t4, <T;, 1<t < Tj, (j,tj) < (’i,ti) and H3((i,ti),(j,tj)) =
H;((4,t5), (3, t;)) for (3,¢;) < (4,t;), and g is the gravity vector.

It is obvious that the dynamic equations (2.60),(2.61) can be determined if terms H, (3, 5)
forl1 <i,7 <N, Hy( (j,t)forl<i<N, 0<j<N, 1<t<T;, Hs((t),(J, 1))
for0 <4,j <N, 1<t; <T;,, 1<t <T;, g-(z; xSR;)for1 <i< N and
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M;;9-2;4 for 0 <i< N, 1<t<T, are given as functions of 8, for 1 <n < N and g, ;
for0<n<N, 1<t<T,.

Evaluating each of them about an appropriate coordinate system, we can describe them
in the following form:

U
Zpuf U (2.65)
u=1

where p,, is an inertial parameter and fy is a polynomialof g  for0 <n < N, 1<t <,

and trigonometric function of 0, for 1 <n < N. (fy is allowed to be a constant function.)

The form (2.65) will be called a function of @ and g generated by p,p,,---, py in later
discussions.

2.4.2 A Base Parameter Set

In this subsection we show a base parameter set for the dynamic model (2.60) and (2.61).
To describe the base parameters we introduce the following notation; Since "0 L, is a
constant vector, (™ Ly, is denoted by

MOLp = [ [Ln]® 0 [Ln)? ]*. (2.66)

Since ™D R, 4 is a constant vector, MR, ; =" Al tlnAn,tfz(n’tz)Rn,tg is a constant

vector. (n’t)RCn,t and ™ RCy, are also constant vectors, then they will be denoted by

®HRC,; = [RCE; RCY, RCE,|*

®ORCp = [RCE RCY RCE |" (2.67)
(M.0)Jy, is also a constant matrix, and will be denoted by
[ 35 InY IFF)

g, =| I J¥ IYF |, (2.68)

VA
RSN Cal

To simplify descriptions of the base parameters, following inertial parameters are intro-
duced:



(0, if n=b(d) (1<d<K)

RCZ(n) = < b(k(n))
3" RC?, otherwise

\ i=n+1

[ b(d+1)
Z RC?, ifn=>5(d) (1 <d<K)
RCZB(n) =« i=a(d+1) ’

0, otherwise

Using these we modify some parameters:

Y = 3% 4 [Ln]*RCZB(n)
S A

Jn = Ji7 +[Ln]*RCZ(n)

%% = ¥ 4 [Ln)*RCZB(n)

RCh;| [RCZ,] i 0 .
RCY; | = | RCY, | +™AL; | ~-RCZB(n)
| RCL;| |RCh; | RCZ(n)

RCY = RCY — RCZB(n)

and define
b(k(n)+1)

)= > 3 i/
i=a(k(n)+1)

33

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

we show base parameters using these inertial parameters. Define rotational link number
@ less than a(2) as follows;Q = 0 if 2z, or some z;; is not parallel to gravity vector g. If
Q@ # 0, Q is the minimum number such that zg,; or 2, is not parallel to g or [Lo]® # 0.
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Theorem 2.4.1 The following inertial parameters constitute a base parameter set for
the dynamic model (2.60) and (2.61).

JZ +JY(n) (2.77)
forl<n<N,
RCZ, RC, (2.78)
forQ+1<n<N,
~ I AYz ~T2
E -3 Ivw), §Y, W5 (2.79)
for a(2) <n <N,
M, ; (2.80)
for0<n<N,1<t<Th,
RCp;, RCp;  RCpy (2.81)

E]

for a(2) <n < N, 1<t < Ty, and

P ~ Y
[An,t]32RCn,t - [An,t]BIRCn,t
(2.82)

~_ Z S A ~_ Y ~ Z
RCpt — [An tl33([An t]nRCh ¢ + [Ap ¢]22RCr ¢ + [Ap, ¢]33RChy )

for 1 <n <b(1), 1 <t<T, The parameters in (2.82) are disappeared for (n,t) if and
only if translational joint axis 2y, 4 is parallel to rotational joints axis zp.

For 1 < n < b(1) let Wy, be the number of translational joint axes between zpn and
Zn41, that are parallel to zn . Then the total number B of base parameters in a base

N
parameter set is given as B = By — B, where By = TN — 4 + Ty + 371 + 4 Z Tn and

B; =2Q +4(b(1) — 1) + Z Ty + Z 2Wn. B = By for most general cases, and we can

reduce this by B; which depends on kmematlc structure of the manipulator and relation
between the directions of z; and g.

We give following lemmas for proof of Theorem 2.4.1.



35

Lemma 2.4.1 Suppose that Hi(i,5), Ha(i,(5,t)), Hs((i,t1),(5¢2)), g-(2; X SR;)
or Mi,tg + Z; ¢4 1s described as

U, Us
Zpufu + }: Pufu (2.83)
u=1

u=U1+1

where p,, is an inertial parameter and fy is a polynomial of gptfor0 <n <N, 1<
t < Ty and trigonometric function of Oy, for 1 < n < N. If fi, fo, -, fy, are mutually
independent and py;,, Py, 41, - » Py, are fundamental parameters, then py, for 1 < u < Uy
are fundamental parameters .

Lemma 2.4.2
RC%

(n,O)SRn — RC% + G, (284)

| RC% +RCZ(n) |
for1<n <N,

- T
[ RC, 4

mDSR,;=| RCY; | + G (2.85)

- 2
L RCn,t J
for 0 < n < N,1 <t <T, where G; or G, is a vector whose entries are functions of @
generated by RCY and RCZ forn+1<s<N.

The proofs of Lemma 2.4.1 and 2.4.2 are almost same as those of Lemma 2.3.1 and
2.3.2, respectively, hence we omit them.

(Proof of Theorem 2.4.1) It is evident from (2.64) that H3((n,t),(n,t)) = My
Hence My, ; is a fundamental parameter for 0 <n < N, 1<t < Ty,
Represent ("0g ag Mg = [Pgy Tgy Mg, Since

N T,

SRp=SRn+3) > M;a,24, (2.86)

i=n t=1

using Lemma 2.2.2 and ™%z, =e; (e3=[0 0 1]*), we can evaluate g-(zn X SRp)
about (xn, Yn,2n) as

MO . (M9, x MOTR,) = "gyRCE — g, RCY + @ (2.87)
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where G is a function of @ and q generated by RCf , Rbg forn+1<s < N and Mg,
forn <s< N, 1<t<T,. Itis easily shown that gz and ngy are nonzero mutualfy
independent functions for a(2) < n < N in general case and for 1 < n < N if z; is not
parallel to g. Hence if RCY and Rbg for s > n + 1 are assumed to be fundamental
parameters, RC"}’; and Rb% are fundamental parameters by Lemma 2.2.1 since all My, ¢
are fundamental parameters. For n = N, RC¥, and Rb% can be shown to be fundamental
parameters in the same way. By the mathematical induction it is concluded that RC% and
RAC?,IL are fundamental parameters for a(2) < n < N in general and for 1 <n < N if z; is
not parallel to g.
For n such that n > j, we have

H2(’l’l, (], t)) = Zj’t . (Zn X —S—Rn) (288)

in (2.63). This is same form as g - (25, X SRy) if z;t is regarded as g. By the same

arguments in the above, we conclude that RC}, and Rb% are fundamental parameters for

(1 <)w £ n < N if there exist any Zy_1 ¢t for 1 <t < T,_; which is not parallel to zy.
Consider terms:

i-1 Tn
2120 Y nt(2nt  SRE - 23 ® SRz (2.89)

n=j t=1

in Hy(¢,7). In the case that 1 < j < n < i < b(1), then (i’o)zi = es, (i’o)zj = e3. Denoting
M0zptas ™0z, = B ~]/((™Mz, 4 is a constant vector), we obtain from Property
2.4.1 that

[ acos@(n+1,i) + Bsinf(n + 1,i) ]

(i’o)zn’t = nAé("’O)zn,t = | —asinf(n +1,%) + Bcosf(n +1,3) | . (2.90)

v

Using Lemma 2.4.2 we can easily derive that
q’n,t(z’O)zi ((Z’O)zn,t . (Z’O)SRzE — (Z)O)zn’t ® (l’O)SRi)(l’O)z]‘
= Rqun,t(acosa(n-i- 1,7) + Bsin0(n + 1,1)) (2.91)

+RACi-lqn,t(—a sinf(n + 1,i) + Bcosf(n + 1,7)) + G.
where G is a function of 8 generated by RC% and Rbg fors >+ 1.

qpt(acosf(n + 1,i) + Bsin O(n + 1,1)) (2.92)



and
ant(—asin@(n +1,7) + Beosf(n + 1,1)) (2.93)

are mutually independent functions unless o = 0 and 3 =0, and & = 0 and 8 = 0 are
satisfied if and only if 2, ; is parallel to zn. If 2z, is not parallel to zp, then Zpt s

not parallel to zp4;. We have proved RC} and Rbg are fundamental parameters for
(1 <)w < n < N if there exist any z,,_, ¢ for 1 <t < T,,_; which is not parallel to zy.
Hence, it is shown that the term (2.89) can be generated by fundamental parameters.

For n such that n > 1,

Hy (i, (n, 1)) = [z; x My L gty + SBnt)] - Znt (2.94)

in (2.63). Since we can easily derive that

T, n T
SRn,t = RCn,t +SRpy1 + Z Mn,thn,tlzn,tl + Z ZMs,txqs,tlzs,tla (2.95)
t1=t+1 s=n+1t1=1
we obtain
Hy(3,(n,t)) = -z [zn,t X (RCn,t +SRp1)|+G (2.96)

where G is a function of @ and g generated by Mg 4. Since OSSRy, = WOSR, —
(MO RCy,, it can be shown by using Lemma 2.4.2, that

MOSRp, =0 —RCZB(n) RCZ(n)'+ G’ (2.97)

where G’ is a vector whose entries are functions of 6 generated by RCY and RAcg for
n+1 < s < N. Thus, using (2.74) we obtain

[ RCT; | [ 0]

MORCpt+ ™DSRny = | RCY, | + AL, | -RCZB(n) | +G'

RCZ(n)
(2.98)

= RCn,t + G

Since M)z, + = e3 and ("’t)zi ="Al tiAgleg, it is easily derived that
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Hy(i, (n,1)) = "Ahes- "Ans | ROy, |+G" (2.99)

where G” is a function of @ and g generated by RCZ¥ and RACZ&{ forn+1<s< N and
Mswfori <s <N, 1<w<Ts If2< k() = k(n), then ‘Al e; = e3, hence 3rd
component of nAn’t[—RACIZ’t Rb:;t 0]* is a fundamental parameter by Lemma 2.2.1
since RC% and RAC'g for s > a(2) and Mgq for1 < s < N, 1< w < Ts are fundamental
parameters. If 2 < k(n) = k(i) + 1, it is derived by using Property 2.4.1 that

' Al e; = [sinB(a(k(n)),n) cosB(a(k(n)),n) Of. (2.100)

In this case, since sin@(a(k(n)),n) and cos0(a(k(n)),n) are mutually independent func-
tions, 1st and 2nd components of nAn,t[—RACn,t Ian’t 0]* are fundamental parameters
from the same reasons. Any linear combination of fundamental parameters is a fundamen-
tal parameter . Thus we can conclude that RAC:;t and IfC%’t are fundamental parameters
for a(2) <n <N, 1<t<Tpsince nAn’t is a nonsingular constant matrix. In the case

that 1 = k(i) = k(n), since iAile;; = e, it is derived from (2.99) that

. ~ I ~
Hy(i, (n,t)) = [An,1)2RCh ¢ — [An luBCp s + G". (2.101)

~ I ~
[Ap ¢]32RCp ¢ — [An,t]:nRC%,t is disappeared if and only if [Ay, ¢]32 = 0 and [4, t]s1 = O i.e.
Zp¢ is parallel to zp, (since ™ Ap ¢ is a rotational matrix). If not the case, since RC? and
Rbg for n + 1 < s have been shown to be fundamental parameters, by Lemma 2.2.1 we
can conclude from the same reasons that [An’t]32RC£’t ~ [Ap 4] 31IfC%’t is a fundamental
parameter for 1 <n <b(1), 1 <t <T,.

Next, consider term:

N T,

2 (3.3 ant(2znt - SRy tE — 2,3 ® SRyt — SRyt ® 2,1))2; (2.102)

n=i t=1

in H;(i,7). Evaluating this term about coordinate system (n,t) and using Lemma 2.4.2
we can easily derive that
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o(n,t) zt, t(n,t) SR, E — (n.t) Zpt mbhg R, - mhg Ry (n.t) 2t

[ 2RCZ’t 0 _R?Ci,t ]
(2.103)
= 0 2RC,; -RCY;|+G

i _chfl,t —R?Cf?,/l’t 0

where G is a matrix whose entries are functions of 8 generated by RC% and Rbg for
s>n+1. If n > a(2) and 7 = j = b(k(n) — 1), then,

(M0 z; = M0z, = iAtneg = [sinf(a(k(n)),n) cosb(a(k(n)),n) O]. (2.104)

In this case, using M0z, = Mbz; = T At (W02, we can derive directly from (2.103) that

- 2
Intzi (2znt SRuE — 27,1 @ SRyt — SRyt ® 2pt)z; = RCptf + G (2.105)

where G’ is a function of @ and q generated by RC% and Rbg for s >n+1 and RACZ:,t
and RAC?;’t fors>n, 1<t<T,, and

= 2qn4l([Ap th sinf(a(k(n)), n) + [Ay, ¢l2: cos B(a(k(n)), n))?
(2.106)

+([An,tl12 cos 6(a(k(n)), n) + [Anp ¢z sin 8(a(k(n)), n))’].

We can easily show that f # 0 . It is evident that gy ; in (2.103) does not appear
in other terms of H;(i,i) except the term that is a function of @ and g ganarated by

fundamental parameters Mg 4ys only. Hence, it is concluded by Lemma 2.4.1 that Rbfht
is a fundamental parameter for n > a(2), 1 < t < T, since RCY and Rbg for s >
a(2), RTC;’t and RACZ’t for s > a(2) and Mg for 0 < s < N, 1 <t < Ts are already
shown to be fundamental parameters. If 1 < j <4 < n < b(1), then M0z, = (MO 3. = ¢,
In this case, using ™Dz; = WDz, = TAL te5 and [Ap 4l3 + [Ap gl + [An gl = 1, we
can easily derive that

antzi (2zpt SRy tE— 2,1 ® SRyt — SRy 1 ® Zpt)%i =2pgnt + G (2.107)
where G’ is a function of 8 and q generated by RC? and Rbg for s>n+1, and

~ 2 -~ T ~ Y -2
p =RCp 1 — [Aptlss([An t]laRCpt + [An t]2RCp ¢ + [An ¢]sRCp ). (2.108)
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Since nAn,t is a rotation matrix, p is disappeared if and only if [An’t]gl = [An’t]32 =0

and [Ap ¢]33 = 1 i.e. 2y, is parallel to zn. If not the case, since RC? and Rbg have been
proved to be fundamental parameters, thus, in the same way, we can conclude by Lemma
2.4.1 that p is a fundamental parameter for 1 <n < b(1) and 1 < ¢ < T,,.

The terms of H,(z,7) in the first 3 lines in (2.62) have the same form as the case that
the manipulator has rotational joints only and any two adjacent rotational joint axes are
parallel or perpendicular. This case is treated in preceding section. Using exactly same
arguments and Lemma 2.4.1, we can show that all the parameters in (2.77),(2.78) and
(2.79) are fundamental parameters and they can generate these terms completely. In the
case z; is parallel to g, [Ln]* # 0 was assumed for 1 < n < b(1) — 1 in the preceding
section. It makes no sense to remove the assumption in the preceding section, but not for
the manipulators in this section. Modifying the arguments in the preceding section slightl
we can easily remove the assumption and modify the results concerning RC}, and I{Cn
for 1 < n < b(1) as follows; RCY and lfo}J for n < i < b(1) are fundamental parameters
if [Lp_1]¥ #0.

It has been proved that all the parameters given in Theorem 2.4.1 are fundamental
parameters. Observation of the above arguments shows that these parameters generate
all Hi(i,5), Ha(i,(5,t)), Hs((:,t1),(j,t2)), 9-(2n x SRy) and My 49 - zp¢. It is
evident that these parameters are mutually independent since each of them includes a
link inertial parameter which is not appear in the others. Thus the set of all the inertial
parameters given in the Theorem 2.4.1 constitutes a base parameter set. The number of
base parameters in this base parameter set is evident. . [}

2.4.3 Conclusion

We have shown a base parameter set, which is a minimum set of inertial parameters that
can generate the dynamic models uniquely, for general parallel and perpendicular manipu-
lators with rotational and translational joints. We have described every base parameter in
a linear combination of the link inertial parameters directly and completely in closed form.
Also, we have given the exact number of the base parameters.

Any base parameters can be obtained from these base parameters by nonsingular linear
transformation of them.

The assumption that any pair of two adjacent rotational joint axes is parallel or perpen-
dicular is not restrictive since all existing industrial manipulators satisfy it.

The investigation of a base parameter set and giving the complete closed-form solutions
of it has been extended to general open-loop kinematic chains without essential change of
the results in this section [35].
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2.5 Base Parameters for Manipulators with a Planar
Parallelogram Link Mechanism

In this section, we extend the investigation of a base parameter set and giving the com-
plete closed-form solutions of it to manipulators with a planar parallelogram link mecha-
nism. We also give the exact number of the base parameters. The results of this section
would cover most of commercially available industrial manipulators with closed chain mech-
anisms.

2.5.1 Description of Manipulators

In this section, manipulators with only one planar parallelogram link mechanism are
treated. Also, only revolute joints are considered. As shown in Fig.2.5.1, link 0 is a
stationary pillar. Link ¢ is connected to link ¢ — 1 through joint ¢ for 1 < ¢ < £. Link &
and link ¢ are connected to link £ — 1 through joint £ and joint (, respectively. The axes of
joint £ and joint ¢ coincide with each other. Link £ + 1 is connected to link £ through joint
£+1 and link ( +1 is connected to link ¢ through joint ( +1 and to link £ +1 through joint
¢ + 2. The axes of joints §,£ +1,(,{ + 1, and ¢ + 2 are parallel. Link £ has same length
as that of ( + 1 and link ¢ has same length as the length between joints £ 4+ 2 and ¢ + 2.
Then, links £,£ +1,(,( + 1 form a planar parallelogram. We assume that joint £ and joint
¢ are actuated and joints £ +1,{ + 1, and ¢ + 2 are passive. Finally, link 7 is connected to
link i — 1 through joint ¢ for £ + 2 < i < N where N denotes the last link number.

Suppose that the parallelogram were cut open at joint ¢ + 2, then the kinematic mech-
anisms of the manipulator would have a tree structured open kinematic chain. For open
kinematic chain, it is possible to apply the same method as in the sections 1,2 to assign
and attach a coordinate system (o;; ¢;,y;, 2;) to link i where o; denotes the origin of the
coordinate system. As shown in Fig.2.5.1, we can make o; coincide with o since the axes
of joints £ and ¢ coincide. We can set origins o¢, 0¢41,0¢, 0¢+1 such that they determine a
plane since the axes of joint £, {+1,(,{+1 are parallel and we set a point o¢2 on the axis
of joint ¢ + 2 such that it is in the plane. Let 6, denote the joint angle that is measured
from x;_;-axis to x;-axis about z;-axis for 1 < ¢ < Nori=(+1. 0; is measured from
x¢_1-axis to T-axis about z¢-axis which coincide with z¢-axis. Let a; denote the twist
angle between z;_,-axis and z;-axis about z;_;-axis and let L; denote the vector from o;
to Oi+1-

For each link i let m; denote the mass, I; denote the inertial tensor around o; and r;
denote the vector from o; to the center of mass. Then, *r;, and ZI are a constant vector
and a constant matrix, respectively.

After attaching coordinate systems, we can obtain rotation matrices. Let J A; denote a
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Fig. 2.5.1
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Manipulator with a Planar Parallelogram Link Mechanism
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rotation matrix that represents (x;,y;, z;) with reference to (x;,y;,2;). Then, i‘lAz- is
described as

cosd; —sin#f; 0

’:‘lAi = | sinf;cosa; cosf;cosa; —sina; (2.109)

| siné;sinc; cos 6, sin a; cosaq;

and 7A; (j < i) will be denoted as

[ (A (A (A ]

TA

i=| CAjdn (A (A |- (2.110)

i (in)al (in)sz (in)ss j

Each L; and each element of JA; can be determined from kinematic parameter values
of the manipulator. We assume that all they are known.

2.5.2 Constraints

Fig.2.5.2 depicts the schematic diagram of the planar parallelogram. The planar paral-
lelogram must satisfy two equality constraints:

fa = Oc1 (2.111)
ab = 0<+1 (2.112)

where g and 6 are the angles shown in Fig.2.5.2. From the two equalities, we obtain

sinf; = sin(f; + 0¢41) (2.113)
cosf = cos(f; + 6c41) (2.114)
sind; = -—sin(f¢ + 011+ p) (2.115)
cosf; = —cos(f¢+ Ocy1+ p) (2.116)

where p denotes the angle that is measured from x¢,;-axis to the direction of L., which
is defined as the vector from o2 to 0¢;,. We can consider that two variables of 0., 6.1, 0,
and 6, are independent variables and the rest are functions of the independent variables.
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Fig.2.5.2 Schematic Diagram of the Planar Parallelogram
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2.5.3 Dynamic Models of Manipulators

In this subsection, we derive the dynamic model of the manipulator shown in Fig.2.5.1.
First, we introduce the following notations:

( N
msrs+( Y, mj+m+me)Ls, if 1<s<E-1
j=8+1
Rs =« (2.117)
N
mgrg + Z mjLs, if £€E<s<N
\ 3=S8+1
N
SR, =Y R; (2.118)
j:i
R( =mer; + m<+1L< (2119)
Ry =mereqn (2.120)
( N
Is+ (Y mj+m;+me)[(Ls-Ls)E—Ls®Lg), if 1<s<¢-1
j=S8+1
Js =4 (2.121)
N
Is+ (). my)|(Ls-Ls)E— Ls® Lg], if ¢E<s<N
- Jj=8+1
J( = I( + m(+1[(LC . Lc)E - L( ® Ld (2122)
Jep1 = I (2.123)
-1
Lj;=> Ls (2.124)
5=j

Note that Z.Rz- and *J ; are a constant vector and a constant matrix, respectively.

Next, we consider the manipulator shown in Fig.2.5.1 as two open kinematic chains. As
shown in Fig.2.5.3, we will call the kinematic chain which consists of N links : link 0, link
1, link 2,...... ,link €, link £+ 1, link £+ 2, ...... , and link N | é-chain and we will call
the kinematic chain which consists of (£ + 1) links : link 0, link 1, ...... , link £ — 1, link
¢, and link ¢ + 1, (-chain. Then we define the variable vectors 95 and éC as
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Tree Structured Manipulator



47

t
Oc=[61 - 61 O O - On ], (2.125)

- t
Oo=[01 - Or O Ocur ] (2.126)

The kinetic energy K ¢ of &-chain is described as

K = %ég . H(B)b; (2.127)

where H 6(95) is a positive definite symmetric matrix and (%, j)-th entry of it is described
by coordinate free vector-tensor form as

He(i,§) =z;- [Z} Is)z;

= (2.128)
+ZZ' . [Z {2(L3 . SR3+1)E - Ls ® SR3+1 - SR3+1 ® Ls}]Zj

§=1t
+z; - [(Lj,i -SR;)E — Lj,i ® SRi]zj'

The kinetic energy K, ¢ of (-chain is described as

1-= — =
K¢ =38, -H(80)8 (2.129)

where H C(éC) is also a positive definite symmetric matrix and (Z, j)-th entry of it is
described in the same way as shown just above.

The whole kinetic energy K of the manipulator is obtained by subtracting the kinetic
energy of the common links to {-chain and &-chain from K ¢t K ¢ Defining joint variable

vector 0 as

qt
O=[0, -« 6y i 6 O P O Our P Oz - Oy | (2.130)

we can describe K as

K=_-0-H(0)0 (2.131)
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where H(0) is a (N + 2) x (N + 2) positive definite symmetric matrix and is given as

[ Hy an H§12 Hfl3-

H§21 H{zz Oax2 H§23
H(6) = (2.132)
H<21 O2x2 HC22 O2xp

H§31 H§32 Opx2 Hfss-

where Ogx¢ I8 a ¢ X t zero matrix and p = N — (£ + 1), and H&-j and HCij are block
matrices in H 5(95) and H C(éC) when they are divided as

-H£11 Hflg H§13-
) }E-1
He(6g) = | Hey Hey Hey i '127 (2.133)
| Hey Hegy Heyy |
~ N N
£-1 2 p
H H
(1 ¢ _
Hc(gc): 1 12 i 521
HCzl H€22 (2.134)
N ~~
£-1 2

H, isa (£ - 1) x (£ — 1) matrix, and the (4, j)-th entry of it is described as
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N
Hny(4,5) ==z;- [Z(Js) +J¢+ J(+1]zj
s=i

£-1
+Z7; . [Z{QLS . (SR3+1 + RC + R<+1)E
s=1

—Ls®(SRsi1 + R+ Repy) — (SRs + R+ Rey1) ® Ls}(2.135)

N-1
+> {2Ls-SRs1E — Ls ® SRs;1 — SRs,1 ® Ls}
S=¢

+2L¢ - Ry B — L ® Reyn — Ry ® L]z

+z; - [Lj,i . (SRZ' +R;+ R1)E — Lj,i ®(SR; + R, + RC-H)]zj-

Let U denote the potential energy of the manipulator. Then, we can derive the dynamic
model of the manipulator from Lagrange equations. It is described as

. d .9 1. . o
=W HWO + (W HW)§— —(-6- W 0 :
T=W 0+dt( w)e 60(20 WHW0)+60U (2.136)
t
where 0 = [ 6, - 6 P O i By oo Oy ] whose entries are independent vari-

ables, and 7 is the generalized force vector ( actuated joint torque) corresponding to 6 .
W is (N + 2) x N Jacobian matrix which relates @ with @ as

6=w>o (2.137)

and it is given as
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Eexe Oexp
00cr1 | 06¢i1
Q-vvvr- 0 _5§_ Q-ovv-- 0
3 ¢
W=10-- o[ 0 1 {0 0 (2.138)
08¢cy1 | 00ca
Q--vv-- 0 _327_ 0-+---- 0
¢ ¢
Opx(§+1) prp |
where
0011 _ 41 _
0, ~ 1, —5'2’4_ =1 (2.139)
9011 9041
=1 ?%__ = -1 2.14

which are obtained from (2.113)-(3.2). Ej « s denotes the s x s identity matrix. The
(3,7)-th entry of W*H (@)W will be denoted by H,(3, ;) in the followings.

It is obvious that the dynamic model (3.26) is determined if and only if W*H ()W and
E%U are determined as functions of .

Evaluating each element of them about an appropriate coordinate system, we can de-
scribe them also in the following form:

T
> pyfu (2.141)
v=1

where p,, is an inertial parameter and fy is a polynomial of trigonometric functions of .
(fv is allowed to be a constant function.) This fact would be evident below. The form
(3.15) will also be called a function of @ generated by p,, ps, --- , Pr in later discussions.

2.5.4 A Base Parameter Set

We introduce the following notation to describe a base parameter set. First, *L; is
obviously constant vector, then, it will be denoted by
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L= L o L] (2.142)

iLi denotes the length of the link 7 and is assumed to be known. Next, since we can derive
from (2.113)-(3.2) that

A=Ay
(2.143)
tAcn = Esys
where Ap is a constant matrix which is given as
[ —cosp sinp 0]
Ap=| —sinp cosp 0 |, (2.144)
0 0 1]
we obtain
R, = Ap ‘R (2.145)
‘Repi= YRy (2.146)

Then ¢*1 R, and ¢ R4, are constant vectors since " Ry, is a constant vector. Hence, ¢ R and
‘*1R¢,; are combined, also, "' R, and Ap ‘R, are combined. Entries of the combined
vectors will be denoted by

‘R¢+ ““'Re = [ Ry RY R{ ]t (2.147)

_ _ _ t
“1Re.+ApSRe=|R¢,, RY, RL.|- (2.148)

For consistency, " Ry, will be denoted by

"Rn=|Rj R} R} ] (2.149)

forl<n<&—1orf+2<n< N. Besides of (2.147) and (2.148), entries of **' R, and
¢*1R¢4; will be denoted by
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t
£+1R£+1 = [ R?H R?ﬂ R?ﬂ ]

t
R = [ R’?—l—l R(y+1 R?«z—l ]
which are also needed below.
NJy is also a constant matrix and it will be denoted by
- z
I I

"In=|33Y 35 I

VA
| 352 3 3R

We define

N [
= =2 =2
RZ(n) =R, + Y ( ][ cosa;)R;
Z:‘ﬂ+2 ]=n+2
fori1<n<f-loré+1<n<N,

N 1
= = 2
RZ(&)=R{,+ > (I cosa;)R],

RZ(¢) = 1:l?+1-

Using these we modify some parameters as follows:

~x m z _

Jn =I5 + 2[Lp)? cos an 1 RZ(n)
~y o y z -

Jpn = I3, + 2[Ln)? cos an RZ(n)
jzy = J5Y + [Lp)® sin apy RZ(n)
S Tz x 1
Jn =337 — [Ln)*® cos any  RZ(n)

j%z = J¥% + [Lp)? sin an RZ(n)

ﬁz = RY — sin 0,1 RZ(n)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)
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for 1 <n < Norn=¢(n=C_+1. We remark here that flg = Rg since ag.y = 0.
Moreover we define

ng_H = Rgﬂ — sin g4 o RZ(€ + 1). (2.162)

Let ™Jp, be a matrix whose entries are (2.157)-(2.161) and J3, :

B
"In= |37 3 3. (2.163)
B
Then we obtain from (2.143) and (2.144) that
I =Ap ‘J; A, (2.164)
8T = e (2.165)

Hence, t1J, and ¢J¢4, are constant matrices. Therefore *'J¢y; and Ap ¢J, A}, are
combined, also, ¢J ¢ and ¢ty ¢+1 are combined. Entries of the combined matrices are
denoted by

AT aTY  ATZ A
Jerr Jein Jen

17 ToAL = | 3%V Y 5YZ
I+ Ap CTeA, = | 3.0 I, i (2.166)
T2 YZ Az
L J£+1 J§+1 ‘]§+1 J
[ 2T XY STZ
Jo I I
e+ PIa=| 37 37 3. (2.167)
“TZ Y2 a2
Lo I e

For consistency, entries of n J,, will be denoted by
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F 2T ATY  ATZ T
J
n

"In=|37 3 Y (2.168)

2TZ Yz a2
§ S A

forl1<mn<&—1oré+2<n< N. Moreover, we define

N 1
Iy =3+ 3 (J] cos?a;)d?. (2.169)
1=n+2 j=n+2

Finally, we introduce some more symbols to state a theorem. Let K denote the maximum
link number such that zp is parallel to z; that isay; =--- =ap =0for 1 <n < K. (If
2z, is not parallel to z;, then K = 1.) We define link number @ less than K + 1 as follows;
@ = 0 if z; is not parallel to gravity vector g, otherwise ¢ is the minimum link number
such that zg41 is not parallel to g or [Lg|T # 0.

We give a base parameter set.

Theorem 2.5.1  The following inertial parameters constitute a base parameter set of
the dynamic model (3.26).

3% + sin? any 1 IY (n) (2.170)
for1<n<N,
RZ R (2.171)

forQ+1<n<N,

jf,rl - j% + sin’® o 11 Y (1), jzy’ jzz, j%z + Sin Q11 €OS Ay 1 TY (7) (2.172)

for K+1<n<N,and
[LE]xR?H — cos p[LCJxR:(EH — sin p[LdchyH’

(2.173)
~ Y .
1{Le]* Ry, — sin p|LJPRE,, + cos p[LJ*RE,,

if £ +1< K, otherwise



55

RZC/+1’ [Lel "R,y — cos p[L]"RE,, [Ls]xfigﬂ — sin p[L¢] "R (2.174)

where R?H and ﬁgy_H are deleted if { +1 < K and Q =¢&.

The total number B of base parameters in a base parameter set is given as B = TN —
4K —2Q+3— B, where B; =3if{+1<KandQ=€forB;=1if(+1< K and Q # &,
otherwise it is 0.

Remark: Note that the size of a base parameter set is independent of virtually cut joint
in the parallelogram.

We first show the following lemmas for the proof of the Theorem 2.5.1 , introducing
following notation. Let §(n) be the link number such that 6(n) < n,as = 0 for §(n) +
1<s<mn, and a§(n) # 0. Similarly we define 6_x(n) and 6x(n) for £ = 1,2,... as
8_k(n) = 6(6-(k—1)(n) — 1) regarding 6(n) as éo(n), and §x(n) is the link number such that
n+1<61(n) < ba(n) <--- < 8(n), g, (n) #0for 1 <w <k, and ag =0 for s # 6,(n)
and n < s < éx(n) — 1. It is obvious that §(n) = n when a, # 0. In case K +1 < n, 6(n)
always exists since a4+ # 0.( See Fig.2.5.4)

Lemma 2.5.1 Suppose any entry of W H(8)W or a%U is described as

Uy Uz
Ypufut Y pPufu (2.175)
u=1 u=U1+1

where p,, is an inertial parameter and fy is a polynomial of trigonometric functions of
. If fy for 1 < u < U, are linearly independent functions and p,, for U; +1 < u < U; are
fundamental parameters, then p, for 1 < u < U; are fundamental parameters.

Lemma 2.5.2 z..S'Ri + R, + R, can be represented as

B
(]

'SR; +' Rg+' Repi = | RY + G, (2.176)
| RY + cos o, RZ(3) |

for 1 €1 < N where
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Z5,(n)
T Qs (my * 0

Z(m)
Ay ™ 0

- All joints are rotational

Fig. 2.5.4 Link Number: &n)
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("R+' Ry + G, if €+2<i

Gy=14 'Ry, + G, if i=&41 (2.177)

| G, if 1<¢

where G’ is a vector whose entries are functions of 8 generated by R§ and ﬁg fori+1<
s<N.

Lemma 2.5.3

61(i)—1 R
H.(3,3) = > (J%+sin’as1IY(s))
s=1

62(i)—1

+ Y [sin? 6(6:(3), s) sin® aél(i)(j;: - jg + sin? a5, Y (s))

+25in 0(6,(i), 5) cos (61 (3), 5) sin® g, (i)jiy]

+G3,1 + Gg,z

for1 <i<€-1oré <i< N where G3; is a function of @ generated by j§+sin2 a3+1JY(s)
for 6;(i) < s < N, jﬁz and jgz + sin gy cosa3+1JY(s) for 6:(3) < s < N, ji — jg +
sin? a3+1JY(s) and jiy for 62(i) < s < N, and G3 is as follows:
i)Incaseof £ +1 < K

a) If k <1, G3 is a function of @ generated by R:g and ﬁz fori+1<s<N

b)IféE+1<i<K,

K
Gz =Y [Ls]*Gs + Gsgs (2.179)

8=t

where G is a function of 8 generated by fbﬁ and f{% fors+1<n< N and G33 by R:sv
andf{gforK+2_<_s§N
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£-1 .
G2 = Z[Ls]st +Gs3

S=1

_ wal s - (2.180)
+25in g 41 (—[Le] PR, + sin p[L "Ry — cos p[Le[*RE,,)

+2co0s Og41 ([Le]*RE,, — cos p[L¢J*RYE,, — sin p[LC]"ERgH)

where G is a function of @ generated by Rﬁ and f{z for s+1<n < N and G33 by ng
and R, for £ +2< s < N.

i) In case of K < £
a) If £ + 1 < i,Gs, is a function of @ generated by RS and I-:{z fori+1<s<N

b)If K <6(§) <t<&-1,

¢-1 )
G3 72 = 2 Z [lesz + G3,3

¥y

s=t

_ cal . oy (2.181)
+2sin 041 (—[Le] "Ry, + sinp[Le]* Ry, — cos p[ L] RE,,)
+2 cos 01 ([Le]*RE,, — cos p[LJ*RE,; — sin p|LJ*RY,,)

where G is a function of  generated by ng and R?; for( +2<s<N.
QUK <i<8()-1,
Gs2 = flR?.H
~ y .
+f2([LE]xR5+1 — Sin p[deRich)
(2.182)

+f3([Lel "Ry — cos p[L]"RE,)

+G3,3

where G 3 is a function of 8 generated by R§ and f{g fori+1<s<N.
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d) If1<i<K,

§-1 _
G3 92 = 2 Z[Ls]sz + G3,3

s=1
+ARY,, (2.183)
+f2([Le) "R,y — sin p[LPRE, )
+f3([Le)*RE,, — cos plLJ*RE,,)

where G is a function of @ generated by Rﬁ and f{.:z,jb fors+1<n < N and G;3 by ng

andﬁ?forK—*—ZSsSN.
In c¢) or d) fi, fo, f3 are as follows:

fi= [L{IE A + (CA%)](~25in Beys cos p — 2cos By sin p)

+2(A;)13(¢A;)23(—2sin 041 sin p + 2 cos G41 cos p) }

(2.184)
fa= [(CA9)5s + (FA;)5](—2sin Og11) + 2(°A)13(*A; )23 cos Oy
fa= (A3 + (C4;)35](2 cosBe41) + 2(0A4;)13(° A;) 23 5in B¢
and
Hr(€,6) = 37 +sin? g1 IY (). (2.185)
Lemma 2.5.4
61(1)-1 ~YZ R
Hr(i,6(i) —1) = Y [cos 6(6(3), s) sin 10 (J; +sina;  cosa; , JY (7))
s=t
(2.186)

+ sin 6(6(%), s) sin a&(i)j ::z]

+G41 + Gap2

for K+1 < i < N and i #.£ where G4 is a function of @ generated by J §—+~sin2 a3+1JY(s), R:SK
and f{i’ fori <s <N, jiz and jgz+sinas+1 cos as+1JY(s) for 6,(i) < s < N, jﬁ —jg+
sin? as+1JY(s) and j':y for 6,() < s < N, and G, is as follows:
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i) In case of { + 1 < K, G4, disappears
ii)Incaseof K <¢—1
a) If £ + 2 < ¢,G, disappears

b) If 6(¢) < i < €+1,G4y is a function of O generated by (_[def{gl +sin ,o[Lg]‘ER‘(EJrl
— €OS P[LC]xR:(yH) and ([deR?H — CoS P[Lc]mR(xﬂ — sin P[LC]xR?(lH)

) If K+1<i<8()—1,Gs2 is a function of @ generated by RZC/H,

([LeJ*RY,, — sin p[L]*RE,,), and ([LJRE,, — cos p[L|*RE,,),

and
: sYz A
Hr(€,6(6) —1) = cos8(6(€),€)sin ag(¢) (J? + sin ag41 €08 e 11 JY(E))

. ) ~TZ A2 . 5 N
+sin 0(6(€), ) sin aﬁ(g)Jg +cosag e (J¢ +sin® ag1JY(£))
+[cos 41 ([Le]*RE, | — cos p[LJRE,; — sin p[LJ*RY,,)

. Y : _
— sin fg41 ([LeJ*RY, , — sin plLJ"RE,; + cos p[L]"RY,,)|((©O14¢)F187)
+R¢ ([ Loge)-1,61 2 (O Ag)ss — [ Lagey-1,6)* (O Ag)a)

=Y

+R¢ (Lse)-1,6]Y (O Ag)sz — [*Lae)-1.6] (971 Ag)32)
+G

where G is a function of 8 generated by RY and ﬁy foré+2<s<N.
s s

Lemma 2.5.5
Hr(i,j) = Hr(i,q)

-1
+RY > [Ls)* cosb(s + 1, 1)
$=j
(2.188)

i1
—-R}L‘J > [Ls|*sin (s +1,1)
S=j

+Gs

for 1 < j<i< K and j # &, where G is as follows:
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i) In case of K < £ -~ 1 ,Gs is a function of @ generated by Rﬁ and ﬁ?i fori+1<s<N,
ii)Incaseof E +1 < K
a) If € +2 <1 < K, G5 is a function of @ generated by ng and ﬁg fori+1<s<N,
b)Ifi=¢ori=¢+1and 1< j<E—1,G;5 is a function of @ generated by Rﬁ
and ﬁg for £ +2 < s < N,[LeJ*RE,; — cos p[LJ*RY,, —sin p[L(]‘”R‘?H,
and [def{f+l - SinP[LC]xR?CJH + cos p[Ldmﬁ?H,

c)If1 <j <i<E-1,G; is afunction of O generated by Rg and flg fori+1<s< N,
and

Hr(i,6) =cosf(&+ 1,i)[L€]$R$
—sinb(€ +1,9)[L*RS (2.189)
+Gsa

for £ +2 <7 < K where G5, is a function of 8 generated by RY and ﬁyfor i+1 <s<N.
, s s

Lemma 2.5.6 Hr(i,j) for 1 <i,7 < N is a function of 8 generated by some inertial
parameters given in Theorem 2.5.1

The proof of Lemxmas 2.5.1 is same as that of Lemmas 2.3.1, hence we omit it. The
proofs of Lemmas 2.5.2, 2.5.3, 2.5.4, 2.5.5 and 2.5.6 are given in Appendix.

. . . . . T

(Proof of Theorem 2.5.1) Representing g as ‘g = [’gz tgy Zgz] and using
N

Lemma 2.5.2, we evaluate g - () Rs + R¢ + R¢+1)(= U) about coordinate system

5=1
(0;_1;®i_1,Yi_1» Z5_1)- Then partially differentiating it by 6; and using the relation g =*~!

A’ "1g, we obtain

] . =1 5 &Y
ﬁU = ', RY ', R +G (2.190)

forl<i< Nandi#€+1, and

0 _ -
2= g RE - g R, +G (2.191)

where G is a function of @ generated by Rﬁ and fig fori+1<s< Nif: #'f , for
E+2<s< Nifi=(,and G=0ifi=¢ori= N. It is easy to show that ‘g, and
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z gy are nonzero independent functions of fs for 1 < s < ¢ if z; is not parallel to g. or for
K +1 < s<1if z; is parallel to g. Hence, if I_{“'sv and f{g for i +1 < s < N are assumed
to be fundamental parameters, Rf and f{ij are also fundamental parameters by Lemma
2.5.1. It can be derived in the same way that Rf, and fl}z{, are fundamental parameters.

By mathematical induction, we can conclude that I_{,-x and f{? are fundamental parameters
for 1 < i < N if z, is not parallel to g or for K +1 < ¢ < N if z; is parallel to g.

In the following, we first give a proof in case of K < £. For an arbitrary link number n
such that £ +2 < n < N, assume that

J + sin aHlJY(z') (2.192)
forn+1<i<N,
jfz, jgz +sin¢;_ , cos aiHJY(i) (2.193)
forn+1<i< N, and
N &TY
Jz - J + sin aHlJY(z), J; (2.194)

for 6;(n) < i < N are proved to be fundamental parameters. Let F be the set of these

fundamental parameters and R and Rs for K+1<s< N . From Lemma 2.5.4 we
can derive that

Hr(n,6(n) —1) =sin @g(z) O 05(n) (j%z + sin a4 cos a1 JY (1))
(2.195)
. . ATZ
+sin ag(n) Si 05(n)-]n +G

where G is a function of 8 generated by fundamental parameters in F'. Since o 8(n) #0,
then sin () COS 05(n) and sin o 8(n) sin gé(n) are linearly independent functions. Hence

we can prove by Lemma 2.5.1 that j%z + sin (1) €O aé(n+1)JY(n) and jzz are
fundamental parameters. Next, in case of §(n) < n — 1 we can derive from Lemma 2.5.3
that

Hr(n—1,n-1)=J,_ +sinand¥Y(n-1)+G (2.196)

where G is a function of @ generated by fundamental parameters in F. By Lemma
2.5.1, iz n—1 + sin anJY(n — 1) is proved to be a fundamental parameter. Add these new
fundamental parameters to the set F.
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Investigating Hr (3, 6(n)—1), Hr(i—1,i—1) fori = n,n—1,...,6(n)+1 and Hr(é(n), 6(n)—
1) in order for an n such that 6;(§ +1) < n < N, we can prove that the inertial parameters
in (2.192) for 6(n) <7 < n — 1 and the inertial parameters in (2.193) for é(n) < ¢ < n are
fundamental parameters by use of the argument above. Add all these new fundamental
parameters to F. Next, we can derive from Lemma 2.5.3 that

Hr(6(n) = 1,8(n) = 1) = Jg(n), +sin® a5(,) IY (8(n) — 1)

61(11)—-1 T R "
+ > [sin? ®5(n) sin? 0(8(n), s)(Jg — 3% + sin® @54, IY(s))
s=o(n) (2.197)

+2sin? 5(n) sin 6(6(n), s) cos 8(8(n), S)jiy]

+G

where G is a function of @ generated by fundamental parameters in F'. Since « 8(n) #0,
then sin g,y 7 0. Hence sin® U6 (n) sin? 8(6(n), s) and sin® g () SID. 6(6(n), s) cos B(6(n), s)
for 6(n) < s < 8;(n) — 1 can be easily proved to be linearly independent functions. We
can prove by Lemma 2.5.1 that jg(n)_l + sin? aa(n)JY(é(n) — 1) and the inertial pa-
rameters in (2.194) for 6(n) < ¢ < 6;(n) — 1 are fundamental parameters. Add these new
fundamental parameters to F. Since Vzy = e3, it is derived that Hr(N,N) = j;. jjzv
is a fundamental parameter by Lemma 2.5.1. Using the mathematical induction from
n =N ton = 6(6£ +1) — 1 we can prove that the inertial parameters in (2.192) for
6;(€+1)—1 < i < N, the inertial parameters in (2.193) and (2.194) for 6:(§+1) <i < N
are fundamental parameters. Add these new fundamental parameters to the set F.

Next, using (2.195), (2.196) again, we investigate Hr(i,6(:) — 1), Hr(t — 1,¢ — 1) for
i=6(+1)—1,...,£ + 2 in order, then, since the inertial parameters in (2.192) for
61(6+1) —1 < ¢ < N and the inertial parameters in (2.193) and (2.194) for §;(£ +1) <
i < N have been proved to be fundamental parameters, we can prove that the inertial
parameters in (2.192) for € +1 <7 < 6;(§ + 1) — 2 and the inertial parameters in (2.193)
for € +1 <1< 6,(6+1)—1 are fundamental parameters . Add these new fundamental
parameters to the set F'.

Next, From Lemma 2.5.3, we can derive that

Hr(¢,€) = J¢ +sin® g IY(9). (2.198)

We can prove that it is a fundamental parameter by Lemma 2.5.1. Add it to F. Next,
for an arbitrary n such that 6(¢§) < n < { — 1, we can derive from Lemma 2.5.3 that
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61(n)-1 R R
Hr(n,n) = Y. (35 +sin2anys +IY(n))
S=Nn

. A Y :
+2sin O y1(—[Le) "R,y + sin p|LJ"RE,; — cos p[LC]xR%IH) (2.199)

+2cos f11([Le]PRE,, — cos p[LJ*RY,, — sin p[Lc]xR?gﬂ)
+G

where G is a function of 8 generated by fundamental parameterzs in F. Investigating
Hr(n,n) wht?yn n = £ — 1, we can prove by Lemma 2.5.1 that J,_, + sin® o + JY(€ —
1), (—[Le]*Reyy +sin p[L(]chxH — Cos p[L(]ng+1)’ and ([L£]$R?+1 — COos p[L(]xR:(BH -
sin p[L¢]* Rcyﬂ) are fundamental parameters since sin ¢, and cosf;; are linearly inde-
pendent functions. Add these new fundamental parameters to F. Here, assume that the
inertial parameters in (2.192) for n + 1 < i < £ — 2 are proved to be fundamental parame-
ters. Add these to F. Then for an arbitrary n such that §(¢) < n < & — 2, we can derive
from (2.199) that

Hr(n,n) = jf,, +sin? o1 + IY(R)
(2.200)
+G

v;v‘lzlere Gisa functi9n of @ generated by fundamental parameters in F' , hence we can prove
J;, +sin? a1 + JY(n) to be a fundamental parameter by Lemma 2.5.1. Add it to F.
Using the mathematical induction from n = € — 2 to n = §(£), we can conclude that the
inertial parameters in (2.192) for §(¢) < i < £ — 2 are fundamental parameters. Add these
to F'.

Next, for an arbitrary n such that 6(¢) < n < £+ 1, assume that the inertial parameters
in (2.193) for n+1 < i <€+ 1, and add these to F. Then, from Lemma 2.5.4 we can
derive that

Hr(n,6(n) — 1) = cosf#(6(n),n)sin ¥ () (j%z + 8in @y 41 €08 041 JY(R))
i i o 2.201
+sin 6(6(n), n) sin aé(n)Jn (2:201)

+G
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where G is a function o£ 0 generated by fundamental pararzneters in F. We can prove by
Lemma 2.5.1 that J + sin ay,4) COS an+1JY(n) and Jn are fundamental parameters
because cos #(6(n), n) sin (¢ + 1) and sin #(6(n), n) sin 8(€ + 1) axe linearly independent
functions since sin 8(6+1) # 0. Add these new fundamental parameters to F'. Using the

mathematical induction from n = £ + 1 to n = §(¢) in order, we can conclude that the
inertial parameters in (2.193) for §(¢) <i < £ + 1 are fundamental parameters.
Next, from Lemma 2.5.3 we can derive that

z

Hr(8(6) ~1,6(6) —1) = J5(g)_ + sin’ aé(é)J“Y(a(g) -1)

61(§)~1 ~ R .
+ Y [sin® 6(6(&), s) sin’® aé(g)(.]fg - Jg + sin® a5, JY(s))
§=6(¢)

+2sin 6(8(€), 5) cos B(8(€), ) sin’ oz £)jiy]
(2.202)
—2f1([L£]sz/+1 — sin P[LC]chzﬂ)

+2f5([Le] "R, — cos p[LJ*RE,)
+2f;RY,,

+G

where G is a function of @ generated by fundamental parameters in F. fi, fo, f3 and
(sin? B(6(€), s) sin® a&({)) and (sin 0(6(), 5) cos 8(6(€), s) sin® a¢)) for 6(€) < s < 6;(€) — 1
can be proved to be linearly independent functions since « 5(€) # 0, hence , we can conclude

by Lemma 2.5.1 that JE(O | +sin? a5(0JY(6(§) 1) , the inertial parameters in (2.194)
for 6(¢) <1< 6,(§)—1, and [LE]:”R£+1 —sin p[L¢|*RE, ;, [Le]* R, — cos p[LTRY, joﬂ
are fundamental parameters. Add these new fundamental parameters to F'.

We have proved that the inertial parameters in (2.192) for 6({) —1 < i < N, the inertial
parameters in (2.193) and (2.194) for 6(§) < i < N, ([LE]“’R{H—sm PILERE, L), ([LRE,,—
cos P[LC]:BR(H) R(+1’ (- [deRgﬂ + sin P[L(]chﬂ — Cos P[L(]chﬂ)’ ([Li]xR£+1
cos p[L¢J*RE,; — sin p[L¢]* <+1) , RY and Rl for K +1 < i < N are fundamental
parameters by the argument above.

Next, for an arbitrary n such that K +1 < n < §() — 1, assume that the inertial
parameters in (2.192) for n < i < §(§) — 2, the inertial parameters in (2.193) for n +1 <
i < 6(€) — 1, and the inertial parameters in (2.194) for 6;(n) < ¢ < §(¢) — 1 are proved
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to be fundamental parameters, and add these assumed fundamental parameters to F.
Then, we can derive (2.195) by Lemma 2.5.4 and (2.196),(2.197) by Lemma 2.5.3 .
Hence, by the same argument as we used to prove the inertila parameters in (2.192) for
61(6+1)—1 < i < N, the inertial parameters in (2.193) and (2.194) for 6;({ +1) <i< N
to be fundamental parameters, we can prove that the inertial parameters in (2.192) for
K < i< 6(¢)—2 and the inertila parameters in (2.193) and (2.194) for K+1 <1 < §(¢) -1
are fundamental parameters. Add these fundamental parameters to F'.

Let S be a number such that 1 < S < K, [L;]* =0for1 <i<S—1and [Lg]* # 0. (
S =1 when [L;]¥ # 0 ). For an arbitrary n such that S < n < K, assume that Hr(n,n) is
a function of @ generated by fundamental parameters and Rf and f{ij forn+1<i1<K
are proved to be fundamental parameters . Add these assumed fundamental parameters
to F. Then we can derive from Lemma 2.5.5 that

Hr(n,1) = Hr(n,n)

+R;, nz_:l[Ls]‘r cosf(s+1,n)
= (2.203)

—fln S[Ls]x sin (s + 1, n)
s=1

+G
where G is a function of @ generated by fundamental parameters in F'. Since S < n,
n—1 n—1
then Y [Ls]% cosf(s+1,n) and Y [Ls|® sinf(s + 1,n) are non-zero linearly independent

S=1 S=1
functions. Hence, by Lemma 2.5.1, we can prove Rf and ﬁf are fundamental parameters.
Add these to F'. Next, we can derive from Lemma 2.5.3 that

Hr(n—-1,n-1) = jfl_l +sin? o JY(n — 1)

+2 fj [Ls]*Gs (2.204)

$=n-1
+G

for 2 < n < K where G is a function of 0 generated by fundamental parameters in F, Gs is

a function of @ generated by R? and R? for s+1 <1 < N, then, we can prove by Lemma
~T ~

2.5.1 that J;,_; +sin? apJY(n — 1) is a fundamental parameter. Hence, Hr(n —1,n — 1)
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is a function of @ generated by fundamental parameters. Hr(K, K') has been proved to be

a function of 8 generated by fundamental parameters, and R,-x and ﬁ,y for K+1<i<N
have been proved to be fundamental parameters. Using the mathematical induction from
n = K to S+1, we can conclude that Rf and f{,il for S+1 < i < K and jf+sin2 ai+1JY(i)
for S < ¢ < K — 1 are fundamental parameters. Add these new fundamental parameters
to F'.

Next, for an arbitrary n such that 1 <n < S — 1, assume that jzz + sin’ +1fY(i) for
n+1 <1 < §—1 are fundamental parameters. Add these assumed fundamental parameters
to F. Then we can derive from Lemma 2.5.3 that

Hr(n,n) = jfb + sin? ap 1 JY (n)
(2.205)
+G

where G is a functlon of 6 generated by fundamental parameters in F We can prove by
Lemma 2.5.1 that Jn+sm om413Y(n) is a fundamental parameter. 3% S+sin’ag,,J Y(S)
has been proved to be a fundamental parameter. Using the mathematical induction from
n=S5—1ton =1 we can conclude that jf + sin® aiHJY(z’) for 1 <i <S5 -1 are
fundamental parameters.

R‘? and f{f have been proved to be fundamental parameters for 1 <7 < N when 2, is
not parallel to g , for K +1 < i < N when 2, is parallel to g, and for S+1 < i < N.
Hence, it is obvious that they are fundamental parameters for Q +1 <i < N.

We have proved that the inertial parameters in (2.192) for 1 < 7 < N, the inertial

parameters in (2.193) and (2.194) for K +1 <i < N, RY and 1:1? forQ+1<i<N,

[Le)® R£+1 — sin P[Lc]chﬂ’ [LE]stﬂ — cos p[LC]xR(x+1’ Rgﬂ, (2.206)
and
~ y .
—[Le]* R,y + sin p[LJ*RY,; — cos p[LC]xRE’H,
(2.207)
1[L¢)*RE,; — cos p|LJ*RYE, | — sin p[L*RY,

are fundamental parameters. The fundamental parameters in (2.192) for 1 <7 < N, in
(2.193) and (2.194) for K +1<i < N, and RY and R for Q +1 < i < N are obvi-
ously linearly independent since each of them includes at least one link inertial parameter
that does not appear in the others. Let F’ denote the set of these fundamental parame-
ters. After we add the fundamental parameters (2.206) to F’, we can easily show that the
fundamental parameters in F’ are linearly independent. However, each fundamental pa-
rameter in (2.207) can be obtained as a linear combination of the fundamental parameters
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in (2.206). Therefore, all the elements of F’ are linearly independent fundamental param-
eters in case of K < &. In case of £ + 1 < K, we can prove the inertial parameters shown
in Theorem 2.5.1 are linearly independent fundamental parameters in the same manner
as above. It is obvious from the argument above that 3%[] is a function of @ generated by
some inertial parameters in Theorem 2.5.1, hence, we can conclude with Lemma 2.5.6
that the inertial parameters in Theorem 2.5.1 generate the dynamic model (3.26). Thus,
the set of the inertial parameters in Theorem 2.5.1 constitute a base parameter set. The
number of base parameters is evident. [

2.5.5 Conclusion

A base parameter set has been shown in complete closed form for manipulators with a
planar parallelogram link mechanism. The exact number of base parameters has also been
shown. The size of a base parameter set does not depend on a virtually cut joint in the
planar parallelogram. The extension of the results to manipulators with general closed
chain mechanisms remains. The results of this section would cover most of commercially
available industrial manipulators with closed chain mechanisms.

2.6 Conclusion

The base parameter set which is defined to be a minimum set of inertial parameters
that can generate a dynamic model uniquely was investigated for a general parallel and
perpendicular manipulator with rotational joints only in section 3. The results of section
3 was extended to a general parallel and perpendicular manipulator with rotational and
translational joints in section 4, and also the investigation of the base parameter set was
extended to manipulators with a planar parallelogram link mechanism in section 5. The
results in section 4 coincide with the results in section 3 by deleting the terms concerning
translational links, but such operation would be so complicated that it would be easier
to apply the results in section 3 to a manipulator if it has only rotational joints. Base
parameters are also the inertial parameters which can be identified independently from
link motion data and input data (joint torques or forces). We have given the definitions
and properties concerning the base parameter set and made clear the meaning of the
redundancy of the link inertial parameters. We have described each base parameter by a
linear combination of the link inertial parameters directly and completely in closed form.
We have given the exact number of base parameters in the set. Any base parameter set
can be obtained from this base parameter set by a nonsingular linear transformation. The
results of section 4 have been already extended to a general open-loop kinematic chain [35].
The investigation of base parameter set for a general closed-loop kinematic chain, which is
the final extension of the results in section 5, still remains. The method we took in proofs
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of theorems is very laborious and complicated, especially in proofs of lemmas, hence, the
extension of the investigation of the base parameters to complex kinematic chains would
need another mathematical tool or idea. Through making clear the redundancy of the
link inertial parameters, we have obtained the fact that some link inertial parameters can
only be identified in linear combinations i.e., some link inertial parameters only appear in
the form of linear combinations in the dynamic equations for manipulator. In multi-body
systems, similar phenomenon would arise. Hence, the definitions we have given would be
valid for multi-body systems.
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Chapter 3

Experimental Examination of the
Identification Methods of Base
Parameters

3.1 Introduction

In this chapter, the identification methods of base parameters will be experimentally
examined.

As mentioned in chapter 1, the dynamic model of the manipulator consisting of rigid
links is described as a set of nonlinear differential equations involving various constant
parameters: kinematic parameters, link inertial parameters, and dynamic parameters of
driving systems. If all the values of these parameters are known, we can determine the
dynamic model. Hence, accurate values of the parameters are required to obtain an accurate
dynamic model. The values of the kinematic parameters can be obtained from design data
or by kinematic calibrations. After they are obtained, for the purpose of determining the
dynamic model, it is sufficient for us to obtain the values of base parameters and the
dynamic parameters of the driving systems. The most practical way to obtain them will be
to estimate them from the input data (joint torques or forces ) and link motion data (joint
positions, velocities, and accelerations if needed) which are taken while the manipulator is
in test motions. The identifiability of base parameters from such data has been ensured in
the previous chapter. Then it is very important to develop the identification method that
gives us accurate parameter values. Several authors have proposed identification methods
of the parameters.

Mayeda et al. [40] have first proposed a general systematic identification method of
the parameters. The method consists of 3 types of simple test motions that move 1 or
2 joints simultaneously freezing the rest of the joints, and estimates a small number of
parameter values at a time using the data of a test motion and the formerly estimated
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parameter values. Beginning to estimate the parameter values of the last link, it estimates
parameter values step by step. Thus this method will be called step-by-step method. This
step-by-step method was applied to a 3 degree-of-freedom industrial manipulator [41], and
considerably good estimation of the parameter values have been reported. The method
was also applied to a 6 degree-of-freedom Direct Drive manipulator and the results were
also good [42].

Atokeson et al.[23] written the dynamic model of manipulators as a system of equations
which are linear in terms of the inertial parameters that are identifiable independently.
They have proposed a method to estimate all the parameter values at a time applying the
least squares method to the system of linear equations using the input data and link mo-
tion data that are taken while the manipulator is in the test motion which moves all joints
simultaneously in random enough way. They applied the method to a 3 degree-of-freedom
Direct Drive manipulator. In the estimation, they have made clear the independently iden-
tifiable parameters of the manipulator in a closed form using a computer with a commercial
software. The experimental results showed that good estimates of parameters values were
obtained.

Khosla [21] has independently developed a identification method very similar to the
method proposed by Atokeson et al. Khosla has also developed a computer-aided method
to find out identifiable parameters of manipulators by symbolic procedures for the Newton-
Eular formulation. Working with a 6 degree-of-freedom Direct Drive manipulator, he could
show that the good estimates were obtained by the method.

Kawasaki et al.[43] have also developed a method similar to the methods proposed by
Atokeson et al. and Khosla. Moreover they have proposed to take advantage of the instru-
mental variable method instead of the simple least squares method to avoid inconsistent
estimation which is inevitable when the simple least squares method is applied with con-
taminated data. He applied the method to a 6 degree-of-freedom industrial manipulator .
He has made clear the identifiable parameters of the manipulator by symbolic procedures.
The experimental results showed that good estimates of parameters values were obtained.

The methods proposed by Atokeson et al., Khosla, and Kawasaki et al. are all based
on the dynamic models of manipulators and estimate all the parameter values at a time
using the data sampled while the manipulator is in the test motion that moves all joints
simultaneously in random enough way. Hence they might be able to be grouped into one
method which could be called simultaneous method.

Gautier and Khalil [44] have developed a different identification method which is based
on the energy model of manipulators. From the energy model, they derived a energy
difference equation which is linear in terms of identifiable parameters. They have proposed
a method to estimate all the parameter values at a time applying the least squares method
to the equation, using the input data, joint position data, and joint velocity data which are
taken while the manipulator is in the test motion that moves all joints simultaneously in
random enough way. They have also examined a direct determination of base parameter
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set by differentiating the energy functions of manipulators[31]. They recently applied their
method to a 6 degree-of-freedom industrial manipulator[45] and have shown that good
estimates of the parameter values were obtained.

The identification methods should be examined on validity through experiments. Mayeda
et al. have examined their step-by-step method and Atokeson et al., Khosla, and Kawasaki.
et.al. have examined the simultaneous method through the experiments applying them to
their own manipulators. However, the validity of the identification methods may seriously
depend on type, degree-of-freedom, and driving systems of manipulators. The two identi-
fication methods should be applied to a same manipulator and compared totally through
experiments. Hence, in this chapter, we will experimentally examine the two methods on
validity applying them to a typical industrial manipulator PUMA 560 and compare them.
We will adopt also the instrumental variable method in applying the simultaneous method.
To evaluate the accuracy of the estimates, we will simulate the motion of the manipulator
using the estimates and compare the simulated trajectories with measured trajectories.
As the results, it will be concluded that the step-by-step method is more precise way to
estimate the parameters than the simultaneous method, however the simultaneous method
taking advantage of the instrumental variables method is nearly as precise way as the step-
by-step method. Moreover, we will describe in detail the contents of the work which is
needed to obtain the estimates by each identification method, and compare the methods
about the amount of labour (human involvement) and consuming time on a computer.

As we will show in below, we can obtain a good estimates adopting the instrumental
variable method in the simultaneous method if we choose the instrumental matrix sequence
appropriately. Then, it is very crucial how to choose the instrumental matrix sequence.
Kawasaki et al.[43] used a instrumental model to make it. Their instrumental model is
very simple, however, it is not easy to determine the values of parameters in the model.
Afterwards, Kawasaki[46] proposed to use the dynamic models of manipulators as the
instrumental models, in which all the parameter values that are to bé estimated are needed.
Hence, if we are to use the instrumental variable method with kawasaki’s instrumental
model, we have to obtain in advance a set of parameter values that is appropriate for the
instrumental model. Kawasaki has not given any clear method to obtain it. Then, we will
propose a method to obtain it. Though it is very time consuming, it is very easy.

3.2 PUMA 560 and Its Base Parameter Set

As shown in Fig.3.2.1, PUMA 560 is a 6 degree-of-freedom typical industrial manipu-
lator and all joints are revolute type. To each link i of PUMA 560, a coordinate system
(0;; ;,Y;, %;) is attached in the way shown in Fig.3.2.1. This is our convention adopted
also in chapter 1. Let -y; denote the twist angle between z; , and z; measured around

x;_,. In case of PUMA 560, v; = 0 for t = 1,3 and ; = g for i = 2,4,5,6. Joint variable



Chapter 3. Experimental Examination of the Identification Methods

Xs
Bs 65 Zs5.
7o
=X l" Z6
e,
PP
T O
\ \
Load

Fig. 3.2.1 PUMA 560 with Load and Its Coordinate Systems
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6; is the angle from z; , to &; measured around z;. L; is the vector from o; to o; ;. iLi
denotes the length of link i, and is described as

L= [(F o 1] BRNER)

Then, for PUMA 560, only [L]¥ = 43.2[cm], [L}§ = —15[cm], [L]Z = 43.3[cm] are nonzero
elements.

We attach a load to 6-th link, which is characterized by

Approximate mass:

1.6 [kg]

Approximate location of center of mass with respect to 6-th coordinate system:
t
[ -7 7 11 ] [em]

Approximate moment of inertia matrix around og with respect to 6-th coordinate system:

[ 3.67x 1072 7.59x 1073 1.23x10°2 ]

759 x 1073 3.67x107%2 —1.23x 1072 | [kg-m?|

| 1.23x 1072 —-1.23x 1072 2.87x 1072 |

The 6-th link and the load will be regarded as one link.

Applying the results of section 1 in chapter 2 for this PUMA 560, we obtain following
base parameter set consists of 36 inertial parameters.

J1z = 3% + 3¥ + 3¥ + 2[L)ZRZ,
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J2z=J§,

J2xz = J3% —

R2x = RY,

33z =37 +3Y

I3xz = J3%,

R3x = RY,

Jaz =37 + 3¢

Jaxz = J7%,

R4x = R},

I5z =32 + 3¢

J5xz = JF7,
R5x = RY,
J6z = JZ,

Jéxz = J3?,

Ré6x = RY,

J2(x-y) =37 - 3%,
[LERZ, J2yz =3Y%,

R2y = R{,

, I3(x-y) =% -3¢ + 37,

J3yz = ng,

R3y = R} — RZ,

: Ja(x-y) =37 -3¢ + 3¢,

Jayz = 397 + [L)ZRZ,

R4y = RY — RZ,

: I5(x-y) = 3% - J¢ + 3¢,

J5yz =J§/z,

R5y = RY - RZ,

J6(x-y) =I5 - 3¢,
Jéyz = Jé/z,

Réy = R}ij

The dynamic equations for the kinematic chain of PUMA 560 can be described as

T = H(0)0 + B(6,0)0 + G(9)

J2xy = ng,

J3xy = J;,xy,

Jaxy = ny,

J5xy = ny,

Jéxy = ng,
(32)
(3.3)
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where 7 = [r; --- 7]t is joint torque vector, and @ = [f; --- 06]* is joint angle vector.
H(8), B(6, 0), and G(8) are the inertial matrix, the Coriolis and centrifugal force term
matrix, and gravity term vector, respectively. Each element of these matrices and vector
is a function of @ generated by the base parameters shown above.

3.3 The Driving Systems of PUMA 560

The 6 joints of the manipulator are supplied torques by 6 motors via gear mechanisms.
Let 6,,,; denote the rotation angle of +-th motor and @, = [0y --- Ome)*. Then the joint
angles are related to the motor angles by the gear mechanisms as

0= K6, (3.4)
where
"k, 0 0
0 ky O 0
0 0 ks
K= .
kk 0 0 (3.5)
O ke ks 0
| kea kes ke |

kl = 1.60 x 10_2, kz = 9.26 x 10_3, k3 =1.86 x 10_2
ky = —1.32x 1072, ks=—1.39x 1072, kg = —1.30 x 102

kss =1.80x 107%, kg4 =1.40x107%, kg5 =2.51 x 1073.

The gear mechanism for the last 3 degree-of-freedom of the wrist is sophisticated, and
motors 4,5 and 6 have some interactions.
The dynamic models of the driving systems will be described as

Tini = Tmi — Bifms — biOmi — ¢;59n0m; (3.6)

for 1 < i < 6 where 7,,; is th motor torque, 7'y,; is transmitted torque from i-th
motor to gear mechanism, and h;, b; and ¢; are the moment of inertia, the viscous friction
coefficient and the Coulomb friction coefficient around i-th motor axis, respectively. The
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inertia, the viscous friction and the Coulomb friction of the gear mechanism are supposed
to be concentrated around the motor axes. Let 7'm = [7'm1 -+ 7'mes]*. Then we have

'm = K'r. (3.7)

Combining (3.3),(3.6) and (3.7), we can obtain the dynamic model of PUMA 560. h,
and h, appear in the dynamic model always in the forms of

Jlz + (kl)_zhl, (38)

J2z + (k2)—2h2, (39)

respectively. Therefore we can consider (3.11) and (3.12) as base parameters and abuse
J1z and J2z to denote them, respectively. The parameters h;,b; and c; for 1 < i < 6
except for h; and h, will be called driving system parameters. To determine the dynamic
model of PUMA 560, we have to estimate all the values of the 36 base parameters and the
16 driving system parameters. Those 52 parameters will be called model parameters, and
column vector of the 52 model parameters will be denoted by p.

It is easily shown that all the values of the model parameters can be estimated from
motor torque and motor rotation data [40]. In this manipulators, each motor current and
rotation angle are measurable by an equipment and an encoder, respectively. Thus we can
obtain the motor torque and motor rotation data. -

3.4 Identification by Step-by-step Method

The step-by-step method consists of 3 types of simple test motions, such that we only
need to move one or two joints simultaneously, freezing the rest of the joint. The model
parameters are divided into a certain number of subgroups, and values of model parameters
in each subgroup are estimated from data of the test motions, use being made of formerly
estimated model parameter values.

The extension of this method to general open-loop kinematic chains is given in [47]

3.4.1 Static Test

If the manipulator stands still, the gravity term is written as

7= —9 (2 XGZRj) (3.10)

=t
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where g is the gravity vector. Denoting Z'g by ig = [igx g gy g gz]*, we can easily derive that

T = ingiy - igyRix +G; (3.11)

where G is a term figured out from Rsx and Rsy for i +1 < s < 6. Using (3.11) for
more than two angles of 6;, we can estimate Rix and Riy provided that z; is not parallel
to g. 7; can be obtained from 7,,; using (3.5),(3.7). To avoid the effect of the Coulomb
static friction around motor axis, we change 7,,; gradually and measure T;;n- and 7. at
the instance when 6,,,; begins to move + and — directions, respectively. Then 7,,; is
estimated as 7,,; = (7} . — 7 .)/2.

Performing this test from ¢ = 6 to 2, we can estimate Rsx and Rsy in (3.2). Using the
results obtained here, we can compensate the gravity term in (3.3). Thereby, we omit the

gravity term in later discussions.

3.4.2 Constant Velocity Motion Test

Make +th motor rotate in constant angular velocity, freezing other motors. Then, ne-
glecting off-diagonal element of K since their effects are very small, we can derive from
(3.6) that

Tmi = biémi + cisgnémi. (3.12)

If we realize this motion for more than two angular velocities, it is easy to estimate b; and
¢; from (3.12).

Performing this test for every motor, b; and ¢; for 1 < ¢ < 6 can be estimated. By
compensation, we omit the viscous friction and the Coulomb friction in later discussion.

3.4.3 Accelerated Motion Test

Make an accelerated rotations about 6-th joint freezing the other joint. The motion
equation is described as

(ké J6z + hs)éms = Tme- (313)

From this we can directly estimate (k2 J6z + hg).
Next, make accelerated rotations about 5-th joint for three different f¢s freezing the other
joints. The motion equation about 5-th joint is easily derived as
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[k2 352 + hs + ki sk *he + k2 (J6(x-y) sin® 65 + 2J6xy sin 0 cos 86 )10,,5
(3.14)
= —Tms — kesks Tms.

By solving linear equations obtained from (3.14) for three different fgs, we can estimate
J6(x-y), J6xy and kZ J5z + hs + hlkg 2he.

Next, make an accelerated rotation about 6-th and 5-th joints simultaneously freezing
the other joints. The motion equation about 6-th joint is easily derived as

ke[ks (J6xzsin G + J6yz cosbs) + ke 5 J 6z]§m5
+ (K2 362 + he)fme — kek2]|I6(x-y) sin B cos O + 2T6xy(2 cos? O — 1)]62,5  (3.15)

= Tme-

Since k2J6z + hg, J6(x-y), and J6xy have been already estimated, by solving linear
equations obtained from (3.15) for three different s, we can estimate J6xz, J6yz, and
J6z, and hence hs.

Continuing same kind test motions for the rest of joints, we can estimate all the rested
mode] parameters. 13 test motions are required for PUMA 560 (See Fig. 3.4.1). In this
method, by integrating both sides of the motion equations, we can avoid to use angular
acceleration data. The estimated values of the model parameter by the step-by-step method
are shown in Table 1.

3.5 Identification by Simultaneous Method

Since the model parameters affect linearly to the motor torques, (3.3), (3.6)and (3.7) can
be modified as

™m = $(0,0,0,s¢n0)p (3.16)

where 45(é, 9, 9, sgnb) is 6 x 52 block upper triangular matrix, each element of which is a
function of é, 9, 0. As shown in Fig. 3.5.1, making random enough accelerated rotations
for all the joints simultaneously and using the sampled data, we can estimate p by the least
squares method by use of iterative formula.

The estimated values of the model parmeters are shown in Table 2.

In general, data contain errors which are caused by the dynamics of sensors, noises and
so on. When we estimate the p by the least squares method using such contaminated data,
bias may arise for the estimate[48]. Kawasaki et al.[43],[46] have proposed a method taking
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.
Joint 3

Joint 1

Fig. 3.4.1 The Accelerated Motion Tests for PUMA 560
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Table 1 Model Parameter Values by Step-by-step Method

r Parameter Value " Parameter Value
a 1.42 x 107} J1z 5.31
Cy 1.05 x 101 J2z 7.01
c3 1.24 x 107! J3z 1.11
C4 2.36 x 1072 J4z 4.12 x 1072
cs 1.43 x 1072 J5z 3.81 x 1072
Cs 2.25 x 1072 J6z 482 x 1072
[Nm]
by 8.63 x 10~* J2(x-y) —2.58
by 4.00 x 107* J3(x-y) 2.11 x 107!
by 3.67 x 1074 J4(x-y) 2.41 x 1072
by 5.55 x 10~ J5(x-y) 3.42 x 102
bs 4.27 x 1075 J6(x-y) —3.85 x 1073
be 5.65 x 107°
[Nms]
J2xy 1.05 x 107!
h3 3.12 x 10~* J3xy 2.12 x 1072
hy 2.30 x 1075 Jaxy —7.57 x 1073
hs 3.73 x 107° J5xy 5.63 x 1072
hg 3.16 x 107° Jéxy —3.24 x 1072
[kgm?’]
R2x 7.27 J2xz 1.05
R3x 1.85 x 1071 J3xz —4.85 x 107!
R4x 1.08 x 1072 Jaxz —3.58 x 1072
R5x —1.16 x 1073 J5xz 1.41 x 1072
R6x —9.86 x 1072 J6xz 4.47 x 1072
R2y 5.24 x 1071 J2yz 2.12 x 107!
R3y -2.35 J3yz 3.07 x 1072
R4y —8.60 x 1073 J4yz —1.78 x 1072
R5y —2.65 x 107! J5yz 2.28 x 1072
Réy 1.16 x 107! J6yz —2.08 x 1073
[kgm] [kgm?]
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Table 2 Model Parameter Values by Simultaneous Method

Parameter Value |L Parameter Value
1 1.67 x 1071 Jiz 1.61
cs 1.21 x 107! J2z 5.24
cs 1.25 x 1071 J3z ~7.48 x 107!
Cs 2.89 x 1072 J4z ~2.86 x 1073
Cs 2.19 x 102 J5z —4.44 x 1072
Co 2.35 x 1072 J6z 3.81 x 1073
[Nm]
b, 4.30 x 10~* J2(x-y) 8.20 x 10!
b, 6.22 x 10~* J3(x-y) ~1.94 x 107!
bs 3.10 x 10~* J4(x-y) ~1.71 x 1072
by 1.73 x 10~° J5(x-y) ~2.21 x 1072
bs 2.39 x 10~ J6(x-y) 6.96 x 1073
be 6.15 x 1078
[Nms]
J2xy 3.11 x 102
hs 7.08 x 1074 J3xy 7.25 x 102
I 3.69 x 10~ Jaxy ~2.16 x 1072
hs 492 x 1075 J5xy —4.76 x 1073
he 3.64 x 107° Jéxy 9.99 x 1073
[kgm?]
R2x 8.94 J2xz 1.60 x 1071
R3x —3.86 x 1072 J3xz 2.86 x 1072
R4x 5.63 x 102 Jaxz 1.40 x 10~2
R5x 2.01 x 1072 J5xz —1.38 x 1072
R6x —8.44 x 1072 J6xz 6.91 x 1074
R2y 3.27 x 107! J2yz 3.57 x 1072
R3y —2.86 J3yz 3.93 x 107!
R4y ~3.91 x 1072 Jayz —1.66 x 1072
R5y —2.11 x 107! J5yz —2.60 x 1073
R6y 1.16 x 101 J6yz 8.70 x 1073
[kgm] [kgm?]
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advantage of the instrumental variable method to avoid the bias. Then, we adopt also the
instrumental variable method in the estimation by the simultaneous method. We will call
this method as advanced simultaneous method in the later discussion. We, first, give brief
explanation of the instrumental variable method.

3.5.1 Instrumental Variable Method [48)

We use the discrete time model of (3.16). It can be described by

#m[n] = S[n]p + e[n] (3.17)

where 7, [n] denotes the sampled value of 74, at sample time n, and 8[n], 8[n], 8[n] denote
the sampled values of o, Q, 0, respectively, on the same sample time. @[n] is @ which is
determined by 8[n], 8[n], 8[n]. e[n] is error vector.

We define the following matrix and vectors.

Oy = [$1], 2, -, B[]’ (3.18)
YN = [+t7n[1]7 +m[2]’ T 'f-;n[N]]t (3'19)
en = [el[1],€']2],-- -, el[N]]". (3.20)

Using the data from sample time 1 to sample time N (N > 9), we can obtain following
concatenated form of equation (3.17):

Yv =¥nNP+en. (3.21)

Then, it is possible to estimate the parameter p by weighted least squares method.

Py = (TEW NP N) WA W Ny y (3.22)

where py is the estimated parameter vector using the data from sample time 1 to N, and
W n is a weighted matrix. We can choose the Wy such that
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Wy = 2582, (3.23)

where 2y is same size as W y.
In general, observed value vector ¥y, and matrix ¥y contain noises. We can write them
as follows:

Yy =PNpP" + Uy (3.24)

Uy=UhY+W¥y (3.25)

where ¥ and p* are true value matrix and vector, respectively. ¥, and W, are noise
vector and matrix, respectively. Substituting (3.24) and (3.25) into (3.22), we consider the
probability limit of the sequence py (N= 9 to infinity). Applying the Slutsky’s Theorem,
it is derived under the assumption that £2% ¥y is nonsingular that

. = % : 1 t -1 1: 1 t
plim py =p" +p lim S(2NPN)" -p lim =824y (3.26)
where
vy = -¥Npy + - (3.27)
Hence, if
R G
pA}l_I’I;O N.QNI’N (3.28)
exists and is nonsingular, and
N PP
p}}l_rgo YV—QNVN =0, (3.29)

then, the instrumental variable estimate is a consistent estimate of p*. The matrix sequence
2y (from N=9 to infinity) which satisfies (3.28),(3.29) is called an instrumental matrix
sequence. It is clear that the estimated value is asymptotically unbiased.

3.5.2 Instrumental Matrix Sequence

In the instrumental variable method, we can choose the instrumental matrix sequence
freely as long as it has no correlation to the noise vector vy.
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Since PUMA 560 is equipped only encoders to measure the values about motions, we can
obtain the joint angles with high precision. However we must estimate angular velocity and
angular acceleration data based on the angle data. It is likely that the angular acceleration
data is more contaminated rather than the angle and the angular velocity data. Hence, we
assume followings:

On] = 6*[n) (3.30)
0[n] = 6" [n] (3.31)
0[n] = 0"[n] + O[n]. (3.32)

We assume that é[n] is independent of 6 [n], é[n], and 6[n]. We assume also E [é[n]] =0,
forn =1,2,3,.... The symbols with * denote true values. E[-] denotes expected value of
(-). We finally assume that

Fm[n] = Tip[n]. (3.33)

Then, we make a matrix sequence as follows. First, we estimate o [n] in the way described
in the next subsection. Let §[n] denote the estimated @ [n]. Next, since each element of
$(0,6,0, sgn0) is a function of 8, 6, 0, we can obtain the same size matrix §2[n] as ®[n]

using 8[n], 8[n], and B[n] instead of 0[ ] . Thereby, we obtain a matrix sequence

2y = (241, -, 2'[N]]' (3.34)

for N =9,10,.... If the test motion is not controlled by feedback of trajectory, this matrix
sequence has no correlation to the noise vector vy which are caused only by 0[n] Also,
the test motion is made move all joints simultaneously random enough way.

Using this matrix sequence as an instrumental matrix sequence, we estimate p by iterative
formula.

3.5.3 Instrumental Model
From equations (3.3),(3.4),(3.6) and (3.7), we obtain
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(H + RK™)0
t\—1 [ ty—1 N ~1g (3.35)
=(K") ™m - (BO0+G(0)+(K") (VK 0+ Csgn(K'0)))
where
R = diag[hl, h2, k3, hd, k5, h6] (3.36)
V = diag[bl, b2, b3, b4, b5, b6) (3.37)
C = diag|cl,c2,c3,c4,c5, cb). (3.38)

K is nonsingular. X

Using the equation as an instrumental model, we obtain 8n] by substituting 8[n], 6[n]
and 7m[n| into it.

The instrumental model (3.35) is nothing but the dynamic model of PUMA 560 and it
is same as the instrumental model proposed by Kawasaki[46]. Hence, in advance, we need
a set of the values of the model parameters for the instrumental model. Kawasaki has not
given any method to obtain it. Then, we use the values of the model parameters which
were estimated by the simultaneous method where the least squares method was adopted.

The estimated values of the model parmeters by the advanced simultaneous method are
shown in Table 3.

3.6 Discussion and Comparison of the Identification
Methods

In this section, we will describe in detail the contents of the work which is needed to
obtain the estimates by each identification method, and compare the identification methods
about the amount of labour (human involvement) and consuming time on a computer. We
will also compare them about the accuracy of the estimates. To evaluate the accuracy
of the estimates we will simulate the motion of the manipulator using the estimates and
compare the simulated trajectories with measured trajectories.

First, we will describe in detail the contents of work in the estimation by each identifi-
cation method.

The step-by-step method consists of 3 types of simple test motions, such that we only
need to move one or two joints simultaneously, freezing the rest of the joints. The model
parameters are divided into a certain number of subgroups, and values of model parameters



Table 3 Model Parameter Values by Advanced Simultaneous Method

L Parameter Value || Parameter Value
c1 1.28 x 1071 Jlz 5.56
Co 1.23 x 107! J2z 7.84
Cs3 1.23 x 107! J3z 1.00
C4 2.68 x 1072 Jaz -1.13 x 1072
cs 1.56 x 1072 J5z 5.76 x 1072
Ce 2.02 x 1072 J6z 2.11 x 1072
[Nm]
by 1.09 x 10-3 J2(x-y) ~2.46
b 4.17 x 10 J3(x-y) 7.40 x 107!
b3 4.78 x 1074 J4(x-y) 2.79 x 1073
by 4.01 x 107° J5(x-y) 4.68 x 1072
bs 3.94 x 107 J6(x-y) -1.31 x 1073
bs 8.31 x 1073
[Nms]
J2xy -1.12 x 1072
hs 3.62 x 1074 J3xy 3.78 x 1072
ha 3.74 x 1075 Jaxy 1.11 x 1072
hs 3.22 x 1073 J5xy 6.13 x 10~¢
he 3.75 x 107° Jéxy 1.15 x 1072
[kgm?]
R2x 7.76 J2xz 1.07
R3x 9.60 x 1072 J3xz —8.09 x 1073
Rdx —2.69 x 1072 Jdxz -8.14 x 1073
R5x —3.30 x 1073 J5xz 6.88 x 1074
R6x -1.28 x 1071 J6xz 1.39 x 1072
R2y 3.15 x 1071 J2yz 2.80 x 1072
R3y ~2.23 J3yz -1.75 x 1072
R4y -5.10 x 1073 Jayz —6.92 x 1073
Rb5y —-2.63 x 107! J5yz 2.32 x 1073
R6y 1.41 x 101 Jeyz —1.15 x 1072
[kgm] [kgm?)

89
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in each subgroup are estimated from data of the test motions, use being made of formerly
estimated model parameter values. The test motions are very simple, and it is easy to
understand how the target parameters in the test motion affect motor torques. Hence
programming for data processing is simple and of small size, and we can contrive good
test motions for the estimations. The estimated values of subgrouped parameters in each
motion test are examined by a small size simulation, and we can improve the test motion
and the accuracy of the estimation. On the other hand, this method requires a number
of test motions; 6 static tests, 6 constant velocity motion tests, and 13 accelerated motion
tests in case of PUMA 560. Hence, the step-by-step method requires considerable amount
of labour.

The simultaneous method is simple to understand and requires only one random enough
test motion. Hence, it is easy to execute, however, the programming of data process is
more time consuming than that of the step-by-step method for the high degree-of-freedom
manipulators. The most serious drawback of this method is difficulty of convergence judg-
ment and a huge number of iterative calculations for convergence. In our estimation by
this method, as a test motion, we made the manipulator stand still in a configuration first,
and made the manipulator move by giving a command of torque values to each motor.
The motor current and motor angle data are taken at every 5 ms for each motor while
the manipulator is in the motion. The joint torques are computed from motor currents.
To obtain the joint velocities and accelerations, the joint a;ngles, which are computed from
motor angles, are differentiated and double-differentiated, respectively. Fig.3.6.1 shows the
convergence of model parameters J1z and J5z in iterative calculations when the model
parameters were estimated by simultaneous method and advanced simultaneous method.
In case of PUMA 560, the model parameters are grouped into two categories with respect
to convergence rate. J1z is one of the model parameters which converge fast and have
relatively large values. J5z is one of the model parameters which converge slowly and have
relatively small values. The figure shows that it took about 80000 iterations for J5z to
converge in simultaneous method, and hence about 80000 data points were needed. Also it
took even about 40000 iterations for J1z to converge. Still, a few parameters could not be
convinced to have converged after 120000 iterations. We stopped the estimation process
at this point and obtained the model parameter values as the estimates. It took about 36
hours as total for sun SPARKstation IPC to do 120000 iterative calculations. Thus, the
simultaneous method requires a huge number of data points and a very long time on a
computer for obtaining the estimates.

The advanced simultaneous method is different from the simultaneous method only in
data process. Hence, it is also easy to execute. However, it uses the instrumental variable
method instead of the least squares method, hence, programming for data processing is
more complicated than that of the simultaneous method. Moreover, it is a crucial problem
to choose the instrumental matrix sequence. If we make the instrumental matrix sequence
using the instrumental model, then it is a problem to construct the instrumental model.
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This method also requires a big number of data points. As shown in Fig.3.6.1 it took
about 50000 iterations for J5z to converge and about 30000 iterations for J1z. The other
model parameters also could be judged to have converged after about 80000 iterations.
Hence, the advanced simultaneous method requires a less number of data points than the
simultaneous method, however 80000 data points is still huge. In our estimation by this
method, we used the dynamic model of the manipulator as the instrumental model, hence
we needed a set of model parameter values to construct the instrumental model in advance.
We used the estimates by the simultaneous method for the instrumental model, which is
our proposal. According to our proposal, you could construct the instrumental model very
easily, however it would take a very long time.

Next, we will compare the three identification methods about the accuracy of the es-
timates. To evaluate the accuracy of the estimates we will simulate the motion of the
manipulator using the estimates and compare the simulated trajectories with measured
trajectories. As the motion for the simulation, we made the manipulator stand still in a
configuration first, and made the manipulator move by giving a command of torque values
to each motor. The motor current and motor angle data are taken at every 2 ms for each
motor while the manipulator is in the motion. The joint torques are computed from motor
currents. To obtain the joint velocities, the joint angles, which are computed from motor
angles, are differentiated. The results are shown in Fig.3.6.2 - Fig.3.6.4. We can conclude
from these results that the step-by-step method is more precise way to estimate the model
parameter values than the simultaneous method, and the advanced simultaneous method
is nearly as precise way as the step-by-step method.

The following is a summary of the above.

The step-by-step method is precise way to estimate the model parameters, however, it
requires the most amount of labour among the three methods. The consuming time on a
computer for data process is the shortest. '

The simultaneous method is not so precise way as the other methods. It requires the
least amount of labour among the three methods, however, a huge number of data points
hence a very long time on a computer for obtaining the estimates.

The advanced simultaneous method is as precise way as the step-by-step method. It
requires more amount of labour than the simultaneous method, however a less number of
data points and a shorter time on a computer than the simultaneous method.

Finally, we give some comments on the experimental results.

The convergence rate of model parameters in the simultaneous method and the advanced
simultaneous method depends on test motions. We did not take it into account at all.
Hence, the demerit that the methods require a huge number of data points might be able
to be improved. However, it is difficult to find a good test motion with regard to the
convergence rate[49].

PUMA 560 has only encoders at each joint, hence we can obtain joint angle data with
high precision, however we have to manage to obtain joint angular and joint acceleration
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data using the joint angle data. In our experiment, we obtained them by differentiating and
double-differentiating the joint angles, respectively. Thus, the acceleration data contained
a large amount of noise. It seems to have partially caused the slow convergence and the
inaccuracy of the estimation in the simultaneous method.

PUMA 560 has a very sophisticated gear mechanism to move the 4-th, 5-th, and 6-th
link, and torques are transmitted to it with long rods which may be a little elastic. Those
factors may restrict the accuracy of the estimates, especially those of the 4-th, 5-th, and
6-th link.

Though we had several assumptions to fulfill the conditions to get estimates unbiased in
applying the advanced simultaneous method, the instrumental matrix and the noise vector
in (3.29) may have a correlation in practice, hence, the estimates may be biased. However,
the simulation results show the bias are very small.

Strictly speaking, the origin of 4-th coordinate systems does not coincide with the origin
of 3rd coordinate systems; there is a gap of a few cent meters in the direction of &3. The
simulation results, however, show that the gap can be neglected in the dynamics of PUMA
560.

3.7 Conclusion

We have experimentally examined to estimate the model parameters of PUMA 560 ap-
plying the identification methods: the step-by-step method, the simultaneous method, and
the advanced simultaneous method . To evaluate the accuracy of the estimates, we sim-
ulated the motion of the manipulator using the estimates and compared the simulated
trajectories with measured trajectories. We described in detail the contents of the work
which is needed to obtain the estimates by each identification method, and compared the
identification methods about the amount of labour and consuming time on a computer.

We can conclude as follows. The step-by-step method is precise way to estimate the model
parameters, however, it requires the most amount of labour among the three methods. The
consuming time on a computer for data process is the shortest. The simultaneous method
is not so precise way as the other methods. It requires the least amount of labour among
the three methods, however, a huge number of data points hence a very long time on a
computer for obtaining the estimates. The advanced simultaneous method is as precise
way as the step-by-step method. It requires more amount of labour than the simultaneous
method, however a less number of data points and a shorter time on a computer than the
simultaneous method.

For the advanced simultaneous method, it is a crucial problem to choose a good in-
strumental matrix sequence. If we make the instrumental matrix sequence by using the
instrumental model, it is a problem to construct the instrumental model. We have proposed
one method to obtain a set of parameter values which is needed to the instrumental model
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that has been proposed by Kawasaki. Though the method is considerably time consuming,
it is effective for accurate estimation and there is no difficulty.
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Chapter 4

Physical Impossibility of the Set of
Base-parameter Values

4.1 Introduction

In this chapter, we propose a method to judge if a set of base-parameter values for a
manipulator determines the inertial matrix of its dynamic model to be positive definite or
not. The set of base-parameter values that is judged not to do is physically impossible.

To obtain an accurate dynamic model of a manipulator for the model-based control,
accurate values of the parameters that appear in the dynamic model of the manipulator
are required. Then, it is important to have a good method to obtain the parameter values.
Hence, as far as the base parameters are concerned, we have experimentally examined
the identification methods of them, assuming the values of the kinematic parameters are
known. If we could obtain the true values of the parameters, no problem would happen.
However we are forced to use estimated values to determine the dynamic model. Thereby
it may happen that the inertial matrix of the dynamic model is not always positive definite
for each configuration of the manipulator, though it is the fact that the inertial matrix
is positive definite for each configuration of the manipulator. If a set of base-parameter
values determines such inertial matrix, it is physically impossible and it is needless to
examine the accuracy of the values as far as we use the dynamic model derived under the
assumption that all the links of the manipulator are rigid. The dynamic model that is
determined by such a set of base-parameter values would express nothing in the physical
world. If the manipulator were controlled by using such a set of base-parameter values, a
good performance of the manipulator would not be ensured, and if the manipulator motion
were simulated, the results would not be worth believing. Hence, in this chapter we propose
a method to judge if a set of base-parameter values determines the inertial matrix to be
positive definite for each configuration of the manipulator or not, when we approximately
consider the continuous change of each joint variable of the manipulator as a finite set
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of discrete points. The method can be executed on computers. Using this method we
can judge if a set of estimated base-parameter values is “possible” or not. Here we use
“possible” in the sense that the set of base-parameter values determines the inertial matrix
to be positive definite for each configuration of the manipulator. If a set of base-parameter
values is not “possible”, it is physically impossible. The physical impossibility of a set of
estimated base-parameter values is caused by the biased base-parameter values of the set.
We actually estimate a set of base-parameter values in the presence of a noise on data,
modeling error, and so on, hence, we are forced to have biased base-parameter values more
or less. Then, no estimation method would ensure to give a set of estimated base-parameter
values to be always “possible”. If we unfortunately estimate a set of base-parameter values
not to be “possible”, should we try to estimate again without any strategy ? Otherwise
should we try to develop the ultimate estimation method that gives always “possible” set
of base-parameter values 7 Both would be just laborious and fruitless. Hence we will also
propose one method to modify the estimated base-parameter values for the set of them to
be at least “possible” if we judge it is not. In the modification we will make the best of
the originally estimated base-parameter values. The modification of the estimated base-
parameter values might reduce the accuracy of some values, however, it would be better
that a set of base-parameter values that we use is “possible” than that it is not “possible”,
i.e., physically impossible.

Even if a set of base-parameter values is “possible”, it is not always physically possible,
since being “possible” of a set of base-parameter values only ensures the inertial matrix
which is determined by the set of base-parameter values to be positive definite for each
configuration of the manipulator. Hence the study in this chapter is the first step in the
context of making it clear which set of base-parameter values is physically possible. Actually
there has not been any study about the relationship between a set of base-parameter values
and its physical possibility or impossibility in the dynamic model. It would be important
to make it clear which set of base-parameter values is physically possible.

4.2 Inertial Matrix

The inertial matrix of the dynamic model of a manipulator will be explained briefly.
We consider the manipulator having open-loop kinematic chain with N links and revolute
joints only. Then, the dynamic equations for the kinematic chain is described as

T=H(0)0 + B(0,0)0 +G(9) (4.1)

where 7 = [rg ------ 7n]* is the joint torque vector and @ = [ ------ Ox]* is the joint
variable vector. H(@) is an N x N inertial term matrix, B(0,80) is the Coriolis and
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centrifugal force term matrix, and G(0) is an N-dimensional gravity term vector. The
(,7)-th element of inertial term matrix H (@) will be denoted by H(%,j). Then it is
described as

HG,j) =2 (3 ds)z;

N-1
+z; - {Z [2(Ls . SR5+1)E —Ls®SRs;1 —SRs11 ® Ls]}z]' (4.2)

s=1

+z; - [(Lj,i . SRZ')E — Lj,'i ® SRi]z]'
for1<j<i< N, and

H(i, j) = H(j,1) (4.3)

fori < j. where the notation used in (4.2) is same as that in chapter 2. The equation (4.2) is
quite same as that of the dynamic equations for the parallel and perpendicular manipulators
with rotational joints only which is treated in section 3 of chapter 2. The dynamic equations
that we have derived is a coordinate-free and vector-tensor form, hence, evaluating (4.2)
about an appropriate coordinate system, we have difference between H(i, j) for the parallel
and perpendicular manipulators and H (4, 7) for general open-loop manipulators.

Using the rotation matrices and *z; = [0 0 1]}, we evaluate each H(i,j) about an
appropriate coordinate system, then we can describe it in the following form:

valevf bw(0) (4.4)

where fy,(0) is a polynomial of trigonometric functions of 8; for 1 < ¢ < N. (f3,, is allowed
to be a constant function), and p,,, is a base parameter.

4.3 A Condition for a Set of Base-Parameter Values
to be “possible”

In this section, first, a necessary and sufficient condition for the inertial matrix to be
positive definite will be derived. As shown below, the condition is described as a system of
N inequalities, each of the N inequalities can be described as
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59,55(0) > 0 (45)

where p; is a parameter generated by the base parameter set and f;(@) is a polynomial of
trigonometric functions of §; for 1 < ¢ < N. Each inequality holds for each configuration
of the manipulator. Conversely, based on this fact and assuming all p; as unknowns, we
can obtain the domain of the solutions of n;-tuples:(p;, ..., pn;) for the inequality to hold
for each 8; and for each 1 <4 < N. Then a set of base-parameter values is “possible” if
and only if the n;-tuples that is determined by the set of base-parameter values is in the
domain. The goal of this section is to obtain the domain.

4.3.1 A Condition for the Inertial Matrix to be Positive Definite

In this subsection, we will derive a necessary and sufficient condition for the inertial
matrix to be positive definite using the elements of the inertial matrix. Taking advantage
that the inertial matrix is symmetric, we apply Sylvester’s theorem to the inertial matrix.
Then, the inertial matrix H (@) is positive definite if and only if all the leading principal
minors of it are positive. We have hence a system of N inequalities because we consider
the NV degree-of-freedom manipulator. Since each element of H () is described as shown
in the preceding section and leading principal minors are calculated by only multiplication
of elements and addition and/or subtraction of the products, each of the IV inequalities
can be described as

02_2 pufu(6) >0 (4.6)

where py is a parameter generated by base parameter set and fy(@) is a polynomial of
trigonometric functions of 6; for 1 < i < N. T is the number of the terms of a leading
principal minor that is considered.

We remark here 3 items. First, after calculating a leading principal minor, we can delete
the linear dependency among fi,..., fn and py, ..., pn, thus we can modify (4.6) as

Tm
Y Py fmy(0) >0 (4.7)
V=1

where p,,q, is a parameter generated by base parameter set and f,1(8),.. ., fme(G) are

linearly independent. Secondly, pp,q(v = 1,...,T},) is a parameter that is a sum of products
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of some base parameters, for example, when the leading principal minor is 2nd order, py,q
may be described like pny = (ps1)® — Ps1Ps2 + Po3Ps4 Where Py, Db, Pb3, and ppy are
base parameters. Hence, py,q is continuous on the continuous change of base parameters.
Finally, any f;,(0) is a continuous and bounded function because it is a polynomial of
trigonometric functions.

Consequently, we obtain the following system of IV inequalities as a necessary and suffi-
cient condition for the inertial matrix to be positive definite.

n
Y~ Pmiy, fmiy, (6) >0

V=1

UL
> Pm2yy fm2p,(0) > 0
V9=1

n; (4.8)
Z pmivifmivi(a) > O
V=1
ny
Z pmN'UmeN’UN(o) >0
Un=1
where ppiy, (i=1,---,N,v; = 1,---,n;) is a parameter generated by base parameter set,
and fiig,(0)(¢ = 1,---,N,v; = 1,---,n;) is a polynomial of trigonometric functions of 6;

for 1 << N, besides fri1, fmio,---, Jmin, are linearly independent for 1 <4 < N.

The goal of this section is to show the subset of R™ of which the n;-tuples (pmi1, - - - , Pmin,;)
must be the element when the n;-tuples is determined by a set of base-parameter val-
ues. R™i denotes the vector space consisting of n;-tuples. For the purpose, assuming
Pmil;" "> Pmin,; to be unknowns, we will show the set of the solutions for the inequality

LD
Y Pmiv, fmiv;(8) > 0 to hold for each 6; and for each 1 < i < N.
Vi=1

4.3.2 Approximation of the Inequalities

Each of the N inequalities, derived in the preceding subsection, holds for each #; and
for each 1 < 7 < N. Then we must investigate the inequality when the functions change
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continuously. However, we will approximately consider each function as a finite set of
discrete points for simplicity, thereby we obtain a system of finite linear inequalities instead
of the inequality containing functions. In this subsection we will explain the approximation.

It is sufficient for us to consider the joint variables ; as 0 < §; < 2w foreach1 <i < N,
hence 27 is divided into m pieces and 6; is approximately considered to take these discrete

2
values. If §; takes “"k where k is an integer (0 < k < m), it is denoted by 8;[k]. Thus,
m

6;[0] = 0, ez-[1]= 0[m—2]—27r—2—x2 a[m—l]_%_%“. (4.9)

Then substituting 67 [k1], 09(k2], 03[k3], - -, 0 [kN] into frmiy, (@), we can obtain a real

(kl k2, kN)

value and will denote it by fny Thus we obtain the system of finite linear

inequalities:

0, 0,--,0
Z pmzv,fmz( >0
vi=1

Z pmzv,fmz(o 0r-1) >0

V=1
(4.10)
Z pmz’v,fmz(m, mym) > 0,
Vi=1
approximating the inequality:
L
> Pmiv; fmiv,(8) > 0 (4.11)

Vi=1

If we take m large enough, we can obtain good approximation of (4.11) for each 6; and for
each 1 <7< N.
We introduce some symbols for convenience. vectors p; and f; are defined as

D; = [pmil DPmig - pmini]t (412)
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Fi=fmi1(0) frmiz(0) -+ frin, (O] (4.13)
and vector f} is defined as
£ =m0 iy O o fritar O (4.14)

Then the first inequality in (4.10) can be expressed as f% -p; > 0. In the same way, vector

flh is defined to express the h-th inequality from the top in (4.10), and vector flq is defined
as

I3 = ™™ e ity ™) (4.15)

where ¢ = m". Finally, matrix F; is defined as
Fi=(f; i f1i - i fD. (4.16)
Then the system of finite linear inequalities (4.10) is described as
Fip; > o. (4.17)

Each vector inequality holds for every component individually.

4.3.3 Existence of Solutions

In this subsection we will ensure that the system (4.17) has solutions.
We begin with a lemma concerning the dual systems

A'p>o0 and Az=0,z>0 (4.18)

where
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A=(a; a9 : -+ I ag) (4.19)

is a g-columned matrix with arbitrary real entries, p and & denote vectors. Each vector
inequality and each vector equality holds for every component individually.

Lemma 4.3.1  The system

Ap>o (4.20)

possesses solutions if and only if the system of equations

Arx =0,z >0 (4.21)

possesses only a solution = o.
Proof As a corollary of Tucker’s theorem [50] we can prove the lemma. |

Then, we have the following theorem.

Theorem 4.3.1 The system of finite linear inequalities (4.17) possesses solutions.

Proof We begin with showing that there is one constant function among
fmi1(0)1 fmi2(o)1 e ,fmin,-(a)

foreach 1 <7 < N.

The functions are obtained through calculating the leading principal minor of H (). Let
det Hy denote the r-th order leading principal minor (1 < r < N), then it is also described
as

detHr = Y sgn(o)H(1,0(1))--- H(r,o(r)) (4.22)
oc€S,
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where o denotes a permutation of the index set 1,...,r, S, denotes the set consisting of
all permutations, and sgn(o) denotes the sign of permutation o. Then detHy contains the

r

term produced by [] H(s,s). On the other hand, from (4.2) each (i,)-th entry of inertial
§=1

matrix H () is described as

H(,1)=J¢+G (4.23)

where G is a function of 65 (: + 1 < s < N) generated by base parameters, and Jf is

. T

(3,3)-th element of *J;. Hence, detHr contains the term [[ J% which is not multiplied
s=1

by any function. This term will not be canceled by any other term, we will show it below.

The parameter JZ only appears in H(1,1), hence, if

sgn(a"YH(1,0'(1)) --- H(r,d'(r)) (o' € S;) (4.24)
T

contains the term that cancels [] JZ, then (4.24) must contain H(1,1). Hence, (4.24)
§=1

must contain one of H(2,2), H(2,3),---,H(2,r) except H(2,1), but Jg does not appear

in H(2,s) for 3 < s < r, which we can see through lengthy calculation of H(2,s) for

3 < s < r. Therefore (4.24) must contain H(2,2). By a similar argument, consequently,
r T

(4.24) must coincide with J] H(s,s), hence [] J is not canceled. Then each leading

§=1 $=1
r

principal minor contains the term that include H JZ and that is not multiplied by any
=1
function, hence we can make fnip,(@) to be constant function 1.

Then we have f‘g as
= fy gy U (4.25)
where f,-% for 1 < k < g —1 are real entries. Hence, we can easily show that the system

F,x=0,z>0 (4.26)

has only a solution = o.
By Lemma 4.3.1 the system (4.17) has solutions. )
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4.3.4 A Set of Solutions

In this subsection we will show the set of the solutions of the system
Fip,>o (4.27)

fori =1,---,N. It will be shown as a subset of R™:.
First, we will investigate a subset of solutions of the system

F%pz' ) (4.28)

for i = 1,---, N and will denote it by D;. Secondly, we will investigate a subset of the
solutions of the equality fi-c -p; =0for k =1,---,q, which will be denoted by Si-c . Then
we will get rid of the intersection of D; and the union of Sll, SZZ, ,Sg from D;. We
can ensure that the system (4.27) has solutions except p; = o because we have shown the
existence of the solutions of the system F%pi > o.

We introduce some terms and symbols [50]. Let A be a subset of R™i, then we denote
by A* the set of all y € R™i such that = -y > 0 for each £ € A. The set A is called convex
cone if it satisfies that:

1. A€ A ifAeR,A>0,and = € A

2. z1+x9 € A if £y and ¢ € A.

Let B be a subset of R™i. A set B is said to span a convex cone A if B is a subset of A
and each vector of A can be expressed as a finite linear combination of vectors of B with
non-negative coeflicients. If convex cone A is spanned by a finite set, A is called polyhedral
convex cone.

Let A be a finite subset of R, and A = {ay,---,ap}. We denote by AZ the set consisting
of all vectors y € R™ such that

p
y=3Y Ma; and \;>0 (i=1,...,p). (4.29)

i=1

We can easily see that A< is a convex cone. We can also easily see that A* is a convex
cone if A is a convex cone, then A* is called dual cone of a convex cone A.
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Let A be a convex cone. A is called vertex-convex cone if A does not contain subvector
space of dimension 7 (1 < r < n;).

As we mentioned in subsection 4.3.1, fmiy,(0)( = 1,...,n;) are linearly independent,
hence the rank of the matrix

Fy=(f} if i if) eRM>9, ni<yq (4.30)

is n;, which is the number of the terms of i-th order leading principal minor. Then the

subvector space spanned by {f; ! f% fg} is n;-dimensional. Let €; denote the set

consisting of all indices of fg 1<j<yg):
Q={1, 2, ---, q} (4.31)

and ¢; a subset of §); that satisfies the followings:

1. { fg | J € @i} spans a (n; — 1)-dimensional subspace that will be denoted by W ,;

2. There is 1-dimensional vector y, in the orthogonal complement of W, (= Wél)

such that y,, € ({le, flz, --',f;-l}é)* and non-zero.

Let B; denote the family consisting of all the set ;. B; is a finite set that has at most
29 elements.
We now proceed to a important theorem:

Theorem 4.3.2  The set D; of the solutions of the system
F%pi >0 (4.32)

is equal to the polyhedral vertex-convex cone

{yg; | 0 € B} (4.33)
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Proof  We begin with the following lemma.

Lemma4.3.2 D; ={f;, f, ---,fg}* is equal to the dual cone of { f;, f3, ---,f;.]}l,
that is
q
Proof Each y € {f%, f%, ---,fg}l is described as y = ng/\j, ’\j > 0. Then,
j=1

y - > 0 holds for each & € D;. Hence, if € € D;, then x € ({f%, %, ---,f;-l}é)*, thereby

Conversely, if T € ({f%, %, ---,f;’-l}é)*, then y-x>0 holds for each
Yy € {le', f%, ~--,fg}l. Hence, fg -2 >0 also holds for each j =1,---,4q.
Thereforeif z € ({f}, f%, -+, f7}%)*, thenz € D;, thereby, D; > ({f}, £, -+, FI})".
Consequently, D; = ({f;, f3, - -,fg}é)*. B

Therefore, it is sufficient for us to obtain the dual cone of polyhedral convex cone

{f%7 fza '7.f;1}Z

According to the following theorem:

Minkowsky-Farkas’ Theorem|[50): The dual cone of polyhedral convex cone is poly-
hedral convex cone.

We can see that D; is a polyhedral convex cone, and by Weyl’s Theorem(50], it is shown
that {y,, | i € B;} span D;.

Finally, we will show that D; is polyhedral vertex-convex cone. We begin with following
lemma.

Lemma 4.3.3  The dual cone of { f%, %, e fg} is polyhedral vertex-convex cone if
and only if the rank of the matrix

Fi=(f} iff i if)eRM X4, n<gq (4.35)

is equal to n;.
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2
l?
and r < n;, and denote that subspace by U and the orthogonal complement of U by u-tl.
Then each y € R™ can be described as y = u + v where u € U and v € UL, fy=u+v

is a element of the dual cone of {f}, f3, ---fg}, then

Proof  We assume that the subspace spanned by f%, e fg € R™ is r-dimensional

(w+v)- £ >0 for j=1,---,q (4.36)

That is
u-f{ZO for j=1,---,q (4.37)

because
ve Ul (4.38)

Hence, if (u + v) € ({f%, f%, ---fg}é)*, then u € ({f%, f%, ---fg}é)*. This implies

CF7 0 F TRy 5 S TN

—{fh, 2y nusul, (4.39)

If the dual cone ({ f%, %, f;-l}é)* has a subspace of dimension 1, then the dual cone
has 2 elements b and —b among the elements spanning the dual cone, where b is a basis of

the 1-dimensional subspace. Then b satisfies
b-fl>0and —b-f/ >0 for j=1,---,q. (4.40)

Hence, b - f‘g = 0 holds for j = 1,---,¢. This implies that the 1-dimensional subspace is

involved in U-L. If the dual cone has a subspace of dimension ¢ and 1 < t < r, the subspace
will be shown to be involved in UL in a similar way.

We defined that polyhedral vertex-convex cone does not contain a subspace of dimension
t (t > 1). Then the dual cone is polyhedral vertex-convex cone if and only if ulis empty,
and U7 is empty if and only if the rank of F'; is n,. B
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The rank of F; is n; as we mentioned above, hence by Lemmma 4.3.3 the dual cone is
polyhedral vertex-convex cone. m

Though we can obtain the set of the solutions of the system szz > o by finite calcu-
lations from Theorem 4.3.2, we must examine the set because what we should obtain is
the set of the solutions of the system Fip; > o, not Fip; > o. We will examine the set
below.

The dual cone of { fz, , . _f;]} is the intersection of finitely many halfspaces

q .
N{z R | f] - >0} (4.41)
7j=1

whose boundary hyperplanes are
fzeR™|fl.2=0} (1<j<q) (4.42)
Then let Qg denote the subset of R™ such that
{zeRY| .z >0}, (4.43)
and Sg the hyperplane of R™: such that
{zeR™|fl.z=0}. (4.44)

Because of the reason just mentioned above, we can describe the dual cone as

q . .
= N@]Ush (4.45)

hence, by short calculation, we can obtain

q q
={NaQ }U[{ n @5} NisFNDaIUS! NDy). (4.46)

j=1 k=2
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q .

Therefore, we can see that the dual cone D; is constituted of the interior {ﬂ Qg }, which

j=1
is the subset of the solutions of the system F%pi > o0, and boundary that is union of such
subset of hyperplanes that defined in (4.43). We can easily see that the interior is convex
set.

From the examination above, we also see that the hyperplanes whose subset constitute
the boundary play very important role when we make use of the convex cone. Hence, it
would be worth while to obtain such hyperplanes.

We use the following theorem:

Farkas’ Theorem[50]:  If A is a finite set of vectors, then A** = AZ.

Applying Farkas’ Theorem to { f%, %, e f;-l}, which is a finite set, and taking Lemma

4.3.2 into account, we obtain
{£h, £ fhe=ds 1ot (4.47)

By Theorem 4.3.2, the dual cone of { f%, f%, fg}é is polyhedral vertex-convex

cone that is described as {yy, | ¢: € B,-}l. We will apply Theorem 4.3.2 again.
For the purpose, we number the elements of {y,, | ¢; € B,-}Z, and express them as

{v;, Y3, -, yi} (s < 29). Let Qy, denote the set of all indices of yZ, then Q. =
{1, 2, --- s}, and & a subset of Qy, that satisfies the followings:

1. {y{ | 7 € &} spans a (n; — 1)-dimensional subspace that will be denoted by We;

2. There is 1-dimensional vector v, in the orthogonal complement of Wg, (= WEL)
4] T
such that vg, € ({y;, ¥;, ---,yf}l)* and non-zero.

Let C; denote the family consisting of all the set ;. From Theorem 4.3.2, we obtain
{fh 13 - ={og, 1 e ), (4.48)

hence, we can conclude that each element spanning the convex cone { f%, f%, fg}l
corresponds to one of the elements of {vfi | & € C;} and they would coincide if they
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were normalized. The hyperplanes whose subsets constitute the boundary are the set
{ We | & € C:} because each of them is orthogonal complement of the element which
1]

spans the convex cone {f%, f%, ces fg}l.
We obtained N polyhedral vertex-convex cones and the vectors p; = [Pmi] Pmia - -- pmini]t
fori=1, 2, .-+ , N, each of the vectors corresponds to the cone. Each polyhedral vertex-

convex cone can be obtained by finite calculations. Here, we state the main result of this
section:

A set of base-parameter values is “possible” if and only if each p; that is determined by
the set of base-parameter values exists in the domain that is determined from f;, and the
domain is approzimately the interior of the polyhedral vertez-convex cone corresponding to

F;.

4.4 Modification of Estimated Base-Parameter Val-
ues

After estimating a set of base-parameter values, we will be able to determine p; for
i =1,2,---,N as the constant vectors whose entries are real. Each constant vector p;
must be a element of the subset that is determined by f;, otherwise the inertial matrix
would not always be positive definite, that would be physically impossible. Nevertheless,
we may estimate such a set of base-parameter values that determine p, which is outside
of the cone. If we use such a set of base-parameter values, we can not ensure good control
performance of the manipulator. Hence, after estimating a set of base-parameter values we
should judge if it is “possible” or not, and modify the estimated base-parameter values for
the set of them to be at least “possible” if it is judged not to be. Then in this chapter we
propose one method to do it using the convex cone on computers.

4.4.1 Judgement

Let p; for : = 1,2,---, N denote the constant vector whose entries are determined by a
set of estimated base-parameter values. A simple method to judge if it is “possible” or not
is to examine each p; if

vg, - p; >0 (4.49)

holds for each §; € C; and fori =1,2,---,N.
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4.4.2 A Method to Modify

If the set of estimated base-parameter values is judged not to be “possible” , there is at
least one p, among p,;, p,, ---,Py that does not hold v, -p; > 0 for each §; € C;. Then
let A denote the set consisting of all indices: 1, 2, ---, N, and I" the subset of A which
satisfy that for 7 € P’”fj - P; < 0 holds for some §; € C;. Let £; denote the subset of
C;, (j € T') which satisfy that for §; € &, ve,P; <0 holds.

We propose a method to modify the estimated base-parameter values taking the following
steps.

Stepl: We find the nearest point on the boundary of convex cone corresponding to
p; for i € T from the point p;. We use “nearest” in the sense of Euclidean distance. The
nearest point would be easily found because we obtained hyperplanes W 13 (&; € C;) whose

subset constitute the boundary of convex cone, and it would be sufficient to examine the
only hyperplanes ng for §; € &; because p; is near them outside the convex cone.

Let p; (i € ') denote the nearest point on the boundary of convex cone.

Step2: We obtain a line through the point p; and p; for ¢ € I', and take another point
p; in the interior of the convex cone and on the line.

Step3: We make a hypercube in the interior, taking its center on p; and the length of
edges as 2a; for each ¢ € I'. In the same way we make a hypercube, taking its center on
p; for each i ¢ I'. Thereby we obtain a inequality for each element of p; for each i € A. It
is described as

ijmi’vi -y < Pmiv; < ﬁmi’l)i + o, (450)
for each 1 € T,

ﬁmivi -y < Pmiv; < ﬁmi’l)i + oy (451)

foreach: ¢ T, for 1 < v; < n;.

Step4: We search the system of inequalities in Step3 for a set of base-parameter values.
After searching, if we fail to find the solution, we take o; as «;+¢;, £; is appropriate positive
value, and go back to Step3.

If we make the domain in each convex cone, for which a solution is searched, enlarge so
as to gradually cover the interior of the convex cone, we will surely be able to obtain a
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solution. Because each p; that is determined by the set of true base-parameter values is
in the interior for each 1 < < N, and Pmiy; are continuous on the continuous changes of
the base-parameter values as mentioned in section 3, there is a domain in each convex cone
that is the neighborhood of p,.

It is needed to find a good algorithm for Step4 to search for a solution, but it should
be done after the structure of the manipulator is fixed because the algorithm needs the
information about the explicit forms of puiy,.

4.5 Conclusion

We proposed a method to judge if a set of base-parameter values determines the inertial
matrix to be positive definite for each configuration of the manipulator or not, when we
approximately consider the continuous change of each joint variable of the manipulator as a
finite set of discrete points. The method can be executed on computers. Using this method
we can judge if a set of estimated base-parameter values is “possible” or not. If a set of
base-parameter values is not “possible”, it is physically impossible. Also we proposed one
method to modify the estimated base-parameter values for the set of them to be at least
“possible” if we judge it is not.

Though we used approximation in obtaining the subset of the solutions of each inequality
in (4.8), we could make the accuracy of approximation high enough for the purpose of
judgement and modification of the set of estimated base-parameter values. Obtaining a
good algorithm in Step4 in chapter 4 would be very important.

Even if a set of base-parameter values is “possible”, it is not always physically possible,
since being “possible” of a set of base-parameter values only ensures the inertial matrix to
be positive definite for each configuration of the manipulator. Then it would be important
to make it clear which set of base-parameter values is physically possible. The study in this
chapter is the first step for the goal. The other properties that characterize the dynamic
equations for manipulators should be taken into consideration.
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Chapter 5
Concluding Remarks

Dynamics of robot manipulators has been discussed in this dissertation, focusing on
inertial parameters of kinematic chains of the robot manipulators and identification of
them for dynamic modeling. For the model-based control of a robot manipulator, it is very
crucial to obtain an accurate dynamic model of the manipulator. The dynamic model of the
manipulator consisting of rigid links is described as a set of nonlinear differential equations
involving various constant parameters: kinematic parameters, link inertial parameters of
its kinematic chain, and dynamic parameters of driving systems. If all the values of these
parameters are known, we can determine the dynamic model. Hence, accurate values of
the parameters are required to obtain an accurate dynamic model. The values of the
kinematic parameters can be obtained from design data or by kinematic calibration. The
most practical way to obtain the values of the link inertial parameters and driving system
parameters is to make test motions of the manipulator and to estimate them from the input
data and joint motion data which are taken while the manipulator is in the test motions.

However, unfortunately, it is impossible to estimate all the link inertial parameter values
from the input data and the joint motion data in general since they are redundant to
determine the dynamic model uniquely. Hence in Chapter 2, we have investigated a base
parameter set which is defined to be a minimum set of inertial parameters whose values
can determine the dynamic model uniquely for each of three types of manipulators. The
investigation of a base parameter set would give us many insights into the structure of the
dynamic equations.

The base parameters are also the parameters that can be identified independently from
input data and joint motion data. We have described each element of the base parameter
set in a linear combination of the link inertial parameters directly and completely in closed
form, also we have given the exact number of the base parameters.

Next, it would be very important to have a good identification method to obtain the
values of the base parameters for modeling. Then, in Chapter 3, we have experimen-
tally examined to estimate the base parameters for an industrial manipulator applying
the identification methods: step-by-step method, simultaneous method, and advanced si-
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multaneous method. We have compared the methods about the accuracy of estimates.
To evaluate the accuracy of them, we have simulated the manipulator motion using the
estimates and compared the simulated trajectories with measured trajectories. We have
also described in detail the contents of the work which is needed to obtain the estimates
about each identification method, and compared them about the amount of labour and
consuming time on a computer.

If we could obtain the true values of the parameters, no problem would happen. However
we are forced to have the estimates biased more or less, and determine the dynamic models
using them. Thereby it may happen that the inertial matrix of the dynamic model is not
always positive definite for each configuration of the manipulator, though it is the fact that
the inertial matrix is positive definite for each configuration of the manipulator. If a set of
estimated base-parameter values determines such inertial matrix, it is physically impossible.
Hence, in Chapter 4 we have proposed a method to judge if a set of base-parameter
values determines the inertial matrix to be positive definite for each configuration of the
manipulator or not, when we approximately consider the continuous change of each joint
variable of the manipulator as a finite set of discrete points. The method can be executed
on computers. Using this method we can judge if a set of estimated base-parameter values
is “possible” or not. We have also proposed one method to modify the estimated base-
parameter values for the set of them to be at least “possible” if we judge it is not. Even
if a set of base-parameter values is “possible”, it is not always physically possible, since
being “possible” of a set of base-parameter values only ensures the inertial matrix to be
positive definite for each configuration of the manipulator. Hence the study in Chapter
4 is the first step in the context of making it clear which set of base-parameter values is
physically possible. It would be important to make it clear which set of base-parameter
values is physically possible.

The results in this dissertation would have direct contribution to the identification prob-
lem of the inertial parameters for robot manipulators. Moreover, through the detailed
examination of the dynamic equations we have had a fact that some link inertial parame-
ters appear in the form of linear combinations in dynamic equations. Also we have noticed
that some sets of base-parameter values for the dynamic model are physically impossible.
Some other features of the dynamics of the robot manipulators have been found to be
quite important by several researchers. Those would help us to better understanding of
the dynamics of the robot manipulators.



119

Appendix A

Proof of Lemma 2.3.3, 2.3.4, 2.3.5,
and 2.3.6

Since inner product of two vectors can be executed about any coordinate system, H(z, j)
in (2.17) can be evaluated for 1 < j <1 < N as follows:

N
H(i, j) ZZSZ%SJSSZJ'

Ss=1

s (st s ST.SS Rt s Syt s (A.1)
+Z zi[2( Ls°SRs)E —°Ls°SRg,, — °SRs1° L] °z;

s=1

+124[(CLY 'SR,)E - 'L; 'SR] 'z;.
Since using (2.13) and Lemma 2.2, we can derive that
SSRg41 = SRs - *Rs = [0 —RZB(s) RZ(s)|' + GA,, (A.2)
where G Ay, is a vector whose entries are functions of 8 generated by RY and R:g —RZB(t)
for t > s+ 1. We obtain by direct calculations that

2(5L45SRs,1)E — SLsSSR,,, — SSRs,,SLY

[ 2[LIZRZ(s) [LISRZB(s) —[LIFRZ(s) |
(A.3)
= | 1{ZZRZB(s) 2[LJZRZ(s) [LIZRZB(s) | + Ds

| —[LISRZ(s) [LISRZB(s) 0 ]
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where Ds = 2(°L5G A1,)E — *LsG A}, - GA,,° L. Denoting ‘L, ; by

. . - - t

'Lji= [ (L, LV PLil | (A4)
it can be derived by Lemma 2.3.2 and izi = e3 that

'24[(LY 'SR;)E - 'L; ;*SR]]

. t
—R7['L; i) ]
(A.5)
= ~(RY - RZB())['L; ;? + GA,

| RIPL; ;I° + (RY - RZB(i)['L; ;Y |

where G A,; is a vector whose entries are functions of @ generated by R%: and R% —RZB(t)
for t > i + 1. Define

I =JZ + 2[LIERZ(s), T =1Y+2LIZRZ(s)

I2Y = 3TV 4 [LZRZB(s), TV = 1Y% + [L)ZRZB(s) (A.6)
Iz
Js" =357 — [LIFRZ(s)
and
[ 37 339 357
STs=| T3¢ 3¢ 3% |. (A7)
R A
Then substituting (A.3)-(A.7), 5z; = (*As)tes, Sz; = (1As)tes, and 'z; = *A,e; for

(A.1), we obtain
H(Z ] Ze Asst JAs)t €3

-R7[L; ;7 (A.8)

+ —(RY - RZB())['L; ;¥ ‘Ajes+ GAs

| RI[L; )% + (RY - RZB()['L; ;1Y |
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where G'A3 is a function of @ generated by RY and R?tJ —RZB(t) fort > i+ 1.
Since L; ; =0, it is obvious from (A.8) that

N . .
H(Z, Z) = Eeg zAss—J-s(zAs)t e; + GA4 (Ag)
s=t

where GA, is a function of 6 generated by R¥ and R%/ —RZB(t) fort > i+1. (iAs)‘e:, =

. . . t . . . .
[ (*As)ar (*As)sz (*As)as ] and (*As)s =0, (*As)s2 =0 and (*As)ss = 1 fori <s <
By by Property 2.3.1. Thus, we can derive by direct calculations that

ﬁc(z K

H(i,1) ZJZ + > Z (Js ZAé>‘)3.1 +3J (ZAS)sz + JZ(ZAS)sa)

s=t d=c(i)+1 S=aq4

K Bd Ty . —zz )
+2 > > (Fs7(*As)ai(*As)s2 + Ts (*As)31(*As)ss (A.10)
d=c(i)+1 S=aq .

+j‘zz (iAs)sz (iAs)sa)

+ GA,.

Since (iA3)32 =1- (iAs)31 (Z'As)33 (because z.As is a rotation matrix) and (iA3)§3 =
(*Apy-1)3 for ¢(3) < c(s) by Property 2.3.1, (*As)}, = —(*As)}y + (1 — (*Ag,,,_)}) =
—(*Ag)%, + (ZAﬂc(,)_l):n (ZAﬂc(,) )35 Using this relation, we can derive that

K Bd —y i K Ba =Y
Yo D Ts(As) = Y D JIs(CAs)i

d=c(i)+1 S=0aq d=c(i)+1 S5=aq

ﬂc(t)+l

+H Y TD(CAp)h + (CAp,0)%) (A1)

§=ec(iy1

K-1 Bas1

+ 3 (Y TDCA)% + (CAs)5%).

d=c(i)+1 S=aq41

Since (iAﬂc(‘.))31 = 0 and (iAﬂc(l.))33 =1 by Property 2.3.1, we obtain from (A.11), (A.6),
and (2.24) that
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Bei) K Ba .
T _ .
YU+ Y Y [@CA)H + T AR + I As))
S=1 d=c(i)+1 S=aq
Be(i
=Y (JZ+IYB(s)) (A.12)
s=i

+ f: i [(Ts — TY +IYB(s))(*As)% + (3% + TYB(5))(*As)3]
d=c(i)+1 S=aq

By (A.10), (A.12) and the fact that J; — J9 = J% — J¥ from (A.6), Lemma 2.3.3 is
proved directly.
It is obvious from (A.8) that

N - .
H(i,j) = Zeg ZAs“”js(’As)‘_ e; + GAs (A.13)
: 8=t

for i > j where GAjs is a function of @ generated by RY and R:lt/ — RZB(t) for t >i. We
can obtain by direct calculations that

4T A5 Ts(As) e =TV ((As)n(As)n + (CAs)n(As)n)
+35 ((*As)as(? As)ar + (*As)s1 ( As)as)
+35°((*As)ss(*As)sz + (*As)32(? As)as) (A-14)
+T5("As)s1(FAs)sr + T3 (*As)n( As)

+J§(iAs)33(jAs)33-

Here, let us consider ¢ > a; and j = f;)-1. When B)-1 < @ < 8 < By, it is obvi-
ous by Property 2.3.1 that (iAs)31 = 0, (iAs)gg =0, (iA3)33 =1, (P-1A5)3 =
sin 8(ay), 8), (P)-1Ag)3r = cos By, s) and (P«>-1Ag)33 = 0. Using these and (A.14),
we can obtain from (A.13) that
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ﬁc(t

H(’i, ,Bc(i)—l) z (Js sin B(ac(t), S) -+ Js COS 0(ac(,), s))
S§=1

K Ba o : —ay s A.15
+ Z[Jg(zAs):;l(ﬂ‘“’“‘As)sl + J5(*As)aa (P01 Ag)sy (A.15)

d=c(i)+1 S=aq

+J g(iAs):m(ﬁ «()-1Ag)33] + GAs

where G A is a function of @ generated R} and Ri{ —RZB(t) for t > i and jfy, j%/ # and
j’fz for t > ac(i)+1. Since Ber-1 Ag = Peti)1 Ai’As, it is derived by Property 2.3.1 that

(ﬂ"(")‘lAs)gw = sin 0(ac(,-), i)(iAs)lw -+ cos 0(0[6(,'), ’i)(iAs)zw (A16)

for w = 1, 2,3. Therefore

3 . 3 . .
> (CAs)auw(P-1 Ag)sw = sinb(aeq), 1) D (CAs)sw(*As)1w
w=1

w=1

3 . A7
+ 08 0( (i), 1) D (*As)3w(*As)2w ( )
w=1

=0

since Z (*As)uw(*As)yw = 0 if u # v (because *Ag is a rotation matrix). By (A.17) and
Property 2.3.1, we derive

(iAs)sz(ﬁ"(")‘lAs)n = —(iAs)31(ﬂ°“)‘1As)31 - (iAs)ss(ﬂ"“)‘lAs)%
= —(*As)n (P01 Ag)y — (iAﬂc(.>—1)32(ﬁ €14, )32
(A.18)
= —("As)s (-1 Ag)ar + (*Ag,,,_ )1 (P01 Ag,,_)a

+ (ZAﬂc(l)—l )33 (ﬂc(i)_l Aﬂc(.)-l )a3

for s > acgiy+1. Since (z.Aﬂc(‘)_l):_;z = 0 when c(i) = ¢(s) — 1, using (A.18), we can obtain
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that
K Ba Y K Ba < ;
> Z T5(CAs)a2(P--1Ag)3 = — > Z J5(*Ag)a1(Per-1 Ag)a
d=c(i)+1 S=adq d=c(i)+1 S=aq
K-1 Bat1 . (Alg)
+ Y (S TD(CAs)n(P0-144,)5
d=c(i)+1 S=0gq41
+(*Ag,)aa(P-1 Ag, )s3).
Hence

K Bda . s
S Y [T (FAs)ai (P01 Ag)ar + T3 (EAg)sa (P91 Ag)y

d=c(i)+1 S=oay

+J%(*As)as(Per-1 Ag)33)
(A.20)
K Bd .
= Y S ([T — T4 +IYB(5)(FAs)a (P01 Ag)ay

d=c(i)+1 S=ay4q
+(IZ + TYB(5))(*As)33 (%1 Ag)33).
By (A.15) and (A.20), Lemma 2.3.4 is obviously proved.
When o ;) < j <i<s,'Aje; = e3 and (“As)'es = (*As)'e;. Thus, we can derive from
(A.8) and (A.10) that

H(,j) = HG,5) + RF['L; ;)% + (RY ~RZB()['L; IV + GA (A.21)

where G A7 is a function of 6 generated by R} and Rg —RZB(t) for t > i+ 1. By (2.15),

: - i1
we can describe zLj,i as ZLj,i = Y (°A;)*5Ls. When a,;) < j < s < 1, we obtain by

S=j
(2.3) and Property 2.3.1 that
. i-1 . i-1
[L; J° = Y [L]§ cosb(s +1,4), ['L; ;¥ = -3 [LZ sin (s + 1,3). (A.22)
8=j s=j

Lemma 2.3.5 is obviously proved by (A.21) and (A.22).
It is obvious from (2.34) in the proof of Theorem 2.3.1 that all the g - (z; x SR;) for
1 <i < N are functions of 6 generated by Ry and Rg —~RZB(s) for1 < s < Nif z; is
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not parallel to g or for a; < s < N if 2z, is parallel to g (in this case g - (z; X SR;) =
for 1 <i< ;). From (A.8), H(i,7) for 1 < j <1i < N can be represented by

N . ‘
H(i,j) =Y e’ A°Ts(PAs)es + GAs (A.23)

5=t

where GAg is a function of @ generated by R,f and Rij —RZB(t) for t > i. Here, we define

N . .
[Wa W Wi | = e}'As5Ts("As)". (A.24)

S=1

Then, since (PAs)t = (‘As) (P A;)",

Ze z14.,5;8.13 J443) €3 = [ Wil Wi2 VV,';; ] (in)teg. (A25)

When j = i, H(i,i) = W;3 + GA4 from (A.10) and (A.25). Since it has been shown by
Lemma 2.3.3 that H(i,1) is a function of @ generated by the inertial parameters given in
Theorem 2.3.1, so is W3 for 1 <7 < N. When j = Bci)-1,

H('l, ﬂc(i)—l) = Wil sin O(ac(i), Z) + Wi2 COs 0((10(,'), ’L) + GAg (A26)

from (A.23) and (A.25) since (P--14;)'e; = [ sin f(acg), 1) cosB(acqy,i) 0 ]t by Prop-
erty 2.3.1. Since it has been shown by Lemma 2.3.4 that H(z, Bc;)-1) is a function of
0 generated by the inertial parameters given in Theorem 2.3.1, so is Wj; sin 8(o), %) +
Wiz cos B(ac(i), 1) for ap < i < N. cosB(ae), ) and sin (o), ) are linearly independent
functions, and 6, , 0,,0(..) 41 - - »0; appear in neither W;; nor W;,. Hence, we can conclude
that W;; and W;, for as < ¢ < N are functions of @ generated by the inertial parameters
given in Theorem 2.3.1. It is obvious from (A.23) and (A.25) that all the H(z, j) for j <1
and ay <1 < N are functions of @ generated by the inertial parameters given in Theorem
2.3.1. In the case that 1 < i < (1, H(4,j) = Wi3 + GAg for j < i from (A.23) and (A.25)
since (7A;)'es = e3 for 1 < j <4 < By. Thus, H(3,j) is also a function of @ generated
by the inertial parameters given in Theorem 2.3.1 for 1 < j < i < ;. Lemma 2.3.6 is
proved. |
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Appendix B

Proof of Lemma 2.5.2, 2.5.3, 2.5.4,
2.5.5, and 2.5.6

We begin with the proof of Lemma 2.5.2. . _ '
In case of i < & — 1, using (2.145) and (3.35) we can describe *SR; + *R; + "R¢41 as

-1, . . N
Z Z4433123 + 7'445(6125 + <+1R(+1) + zz4§.|_1((_+_1}25.*.1 + A,,CR() + Z ZAssRs. (B.].)
S:i 8=E+1

Then, using (2.147)-(2.149), we obtain the w-th (w = 1,2, 3) entry of (B.1) as

N . .
S {(As)umRs + (As)usRE + (“As)usR5}. (B.2)
S=1

We can derive from (2.144) that

(iAs)w3 = —sin as(iAs_l)wz 4+ cos as(iAs_l)wg. (B3)

N .
Applying (B.3) repeatedly and using (2.153)-(2.155), we can deform Z(ZAs)ng in (B.2)

S=1
as

N . ~ N-1 . B
Z(ZAs)ngg = — Y (*As)uw2sin as 1 RZ(s)
5 5= (B.4)

+(*A;)ws[RY + cos oy, RZ(3)].

Then, we can describe (B.2) as
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N N . ~ .
Z.(ZAS)wIRZ‘ + Z'(zAs)u,gRg + (zAi)w:; [R.Zz + cos az+1RZ(1)] (B5)
S=1 S=1

Consequently, we obtain

-R%U

'SR; +'R;+'Rey1 = | RY + G (B.6)
| R}

+ cos o \RZ(7) |
where

S [(FAs)uRE + (As)nRy)

[ (Gao)® ] §=1+1
Gu=| (GuY | = Z [(iA3)21R§+(iA3)2212{g] . (B.7)
S=1+1
| (Gu)? |

> (*As)u RS + (iAs)32ﬁg]

| $=7+1

In the similar way , we can show that Z'SRZ- + iRC + iRCH is described as shown in
Lemma 2.5.2 wheni=&oré+1<14. - [ |

Next, we give the proof of Lemma 2.5.3, 2.5.4, 2.5.5 and 2.5.6. First of all, we rewrite
(3.25) as



Hll(i,j) =

129

£-1
- [22 Tslz;

£-1
-3 _{2Ls - (SRs+1 + R¢+ R¢1)E
3=’I:

—Ls® (SR3+1 + R( + RC+1) - (SR3+1 + RC + R(.H) ® Ls}]Zj

[ Islz;
s=¢

N-1

- [D>_{2Ls-SRs1E — Ls ® SRs.1 — SRs41 ® Ls}|z;

S=¢

~J ¢z

[2L¢- Ren B — L ® Reyy — Rea ® Lz,

"Jenz;

[Lj i (SR;+ R¢ + Rt )E — Lj ; ® (SR; + R¢ + Reh))z;.

Since the inner product of two vectors can be executed about any coordinate system, the
first and second terms of (B.8) can be evaluated as follows

£-1
sz%[z st] st

s=1

6_
+ °zi[3 {2°L5(°SRsi1 + °Re + °Re)E

(B.9)

S=1

- SLS(SSRs.H + SR( + SR(.H)t - SSR3+1 + SR( + SR(+1)8L2}]SZJ'

From Lemma 2.5.2 and (2.147)-(2.149), we can derive that
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[0

SSR3+1 + sRC + SR(_H = —sin a3+1R_Z(s) + G13 (BIO)

| cosasi1RZ(s) |

where

[ N
_ 2 Y
3 [CA)uRE + (CA)LR;]
k=8+1

N
_ :y
Gis=| X [CA)aR, + (CA)nRy] |- (B.11)
k=S+1

N

_ =Y
3 [CA)aRE + (CAn)nRy]
| k=S+1

-

Then we can deform the 2nd term of (B.9) as
QSLE(SSRs.H + SR( + sR(.H)E
—SLs(°SRs41 +5R; +5R¢ 1)t — SSRsyy + SR+ SR¢+1)SL%
[ 2[Ls]? cosas RZ(s) [Ls|®sinasy RZ(s) —[Ls)T cosasiiRZ(s) ] (B.12)

= | 1[Ls|®sinas 1 RZ(s) 2[Ls]?cosasiRZ(s) [Ls)?sinasy RZ(s) |+ Ds

| —[Ls]* cosas11RZ(s) [Ls|? sinas4 1 RZ(s) 0
where
Ds=2°L4GsE - °LsGl 5 — Gis° LS. (B.13)

Using (2.153),(2.157)-(2.161), and (B.11), we can deform (B.9) as

£-1 _ -1

E sz,t’;stst + Z SZ%DSSZJ'. (B14)
In the same manner, using (2.154),(2.157)-(2.161), we can deform the 3rd and 4th terms
of (B.8) as



N N

S t8y 8 St ]
E Zz' Js zZ; + E Z,,:Ds zZj,
8=¢ s=¢

and using (2.155)-(2.161), we can deform the 5th, 6th, and 7th terms of (B.8) as

C2ECT Sz + 2t D¢ Sz + P2k Ty g
where

DC =2 CLéGlcE - CL(thc - Gl(cLz,

i ) .y
((Ac+1)11R?+1 + (“Ar1)1Re 4,

_ =Y
Gl( = (CA(+1)21RZ:+1 + ((A(+1)22R(+1

_ 2 Y
L (CAC+1)31R:CE+1 + ((A<+1)32RC+1 ]
Then, using (2.166)-(2.168), we can describe (B.15) together with (B.16) as

N N
Z sz%'SJsst + Z SZ%DSSZJ' + CZ%DCCZJ'.
S=¢ S=¢
Here, we rewrite ¢zt D‘z; of (B.19) as ¢2%(¢ A D¢ A¢)*z; where
[ cos(§; — 0¢) —sin(f; —6¢) O]
CAE = | sin(f; —6;) cos(6;—0;) O

0 0 1
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(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

Thus, from (B.18), we see that ¢ALD.$A, includes dependent variables. Using (2.113)-
(S SRR
(3.2) we delete the dependent variables in ¢ A{ D¢ A then, after lengthy calculation, we

obtain that

CA:DSA¢ + Dg

dll d12 d13 ]

= | dn dy dp | +2¢LEGE — LG} — Gif L}

| d31 d3p das |

(B.21)
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where
di1 = —2(sin b1 cos p[L¢]% + cos B¢y 1 sin p[Lc]ﬂ'J)R?+1
di2 = sin 0£+1(“[L§]xR§+1 + cos P[LC]zRCxﬂ — sin P[LC]xR?ﬂ)
+ cos 0§+1(—[L§]$Rg+1 +sin p[LJ*RY,, + cos p[LC]xRCyH)
d13 =0
dyp = 25in 04 (—[Le] Re,, +sin p[L]*RE, (B.22)
+2 08 Og1([Le]*RE,; — cos p[L|*RE,,)
d23 =0
d33 = 2sin 0§+1(—[L§]xf1g+l +sin p[L¢JFRY,; — cos p[LC]xR?gﬂ)
+2¢08 041 ([Le]*RE, , — cos p|LJRY,, — sin p[LC]zR?ZH)
and
[ S 1640 R 4 (€ Y7 |
> [CA)uRy + (CAr)12Ry]
k=£+2
o 1A RE + (AR
Gl{ = Z [( Ak)21Rk +( Ak)22Rk] . (B23)
k=£+2
N . Ly
> [CADa Ry + (CAk)nRy]
L k=¢+2 i

In the calculation above, we used L, = [ [LJ* 0 0 ]t . Let D¢ denote ¢A{D:A¢ + D;
, then, (B.14) and (B.19) can be unified and described as

N N
Y %2052+ Y S2tDs%z;. (B.24)
s=1 $=1

Since %z; = Sz; = e;(e; = [O 0 1]t) for1 < j<i<s < K and e{Dse; =

N
2[Ls]*(G15)%, then Z 52tDs®z; in (B.24) can be described as
8=1



K N
2> [Ls]®(Gis)* +dss+ Y.  %ziDgs%z;
S=1 S=maz(K+1,1)

if : <& < K, otherwise d33 disappears.
Next, the last term of (B.8) will be evaluated. Denoting ZLj,i by

. . . . t
"Lji= [ [Lil® CLil¥ L% ],
we can describe it by using Lemma 2.5.2 as
RY(PL; 315 (P A45)ss — 'L 317 (P Aj)s)
2Y - . . .
+R; (*Lj 319 (*Aj)ss — 'L ;17 ("A;)2)

+G

where G is a function of @ generated by Rf;’ and f{Z fori+1<s<N.

Consequently, from above, we obtain that

N
H’I‘(Z,]) = Z SZ%SJSSZ]'
3=’i

N

K
+2 Z[Ls]x(Gls)x + ds3 + Z sngsszj

S=1 =maz(K+1,1)
+f_{f([iLj’ z’]x(iAj)Sii - [iLj,i]z(iAj)ls)
+ﬁ§l([iLj,i]y(iAj)33 = [iLj, 17 (*A7)2)

+G
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(B.25)

(B.26)

(B.27)

(B.28)

_ “Y
for 1 < j <t < €—1 where G is a function of @ generated by Rg and Rg fori+1 < s < N.
In the same manner as was used in deriving (B.28) but more simply, we can derive that
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N
HT(Z,j) = Z.SZ%SJSSZ]'
S=1

K N
+23 [Ls)*(Gis)*+ Y. °2iDs%z;
8=1 s=maz(K+1,i)

| | | | (B.29)
+Rf¢p([zLj, il*(Aj)z — 'Ly 31 (*Aj)is)
+f‘}ij([iLj, 1Y (tA;)zs — [iLj,z']z(iAJ')%)

+G

for £+2 < j <1 < N where G is a function of @ generated by Rg and ftg fori+1 <s<N.

Next, from (3.22)-(3.25) and (2.137)-(2.140) we can derive Hr(é+1,5) for1 < j < €-1,
Hr(j,,6+1) for{ +2<j< N, Hr(6+1,6+1),Hr(,j)for1 <j<€-1, Hr(3,€) for
£€+2<j< N, Hr(¢), and Hr(¢ + 1,£) by lengthy and direct calculations that

N
HT(€ + l,j) = E SZ€+1(SJ3 + Ds)sz_j
S=£+1

+[cos O 1 ([Le]*RE,, — cos p[L¢]*RY,; — sin P[Lc]xR?H)
- sin g (Ll PRE, = sin pLLATRE,, + o8 plLTRE I a5
FRE (¥ Ap)asl Lgl® = (91417 Lg]?)
R [ A0l LyglV — (FA) [ L))
+G
for 1 < j < £ —1 where G is a function of @ generated by R§ and ﬁg for{+2<s<N.

Hr(j,§+1) for§+2 < j < N and Hr({+1,£+1) can be included in (B.29), hence, (B.29)
holds for € +1 < j <i < N.
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Hr(£,j) =‘2t8J¢z;
+[cos 05+1([L£]xR?+1 — Cos P[LC]xR(zH — sin P[LCFR?(IH)
— sin O ([Le]” Re§+1 —sin P[L(]chﬂ cos P[LC]xR?c/H)](jA{)S«‘i
(B.31)
+RZ ([EL;5 (0 Ae)ss — [L;6)*(Ag)ar)
2~ Y 3 .
+R; (FL;¢]Y (P Ag)ss — [FLjg]* (P Ag)s2)
+G

for 1 < j <€ — 1 where G is a function of @ generated by R? and f{i’ for( +2<s<N.

Hr(,6) = L@+ 3 {(FA)nRE + CAp)uitl})

k=342

[ Ag) 11 (Ot Agya)ss — (TP Ag)a1 (P Ag s

(B.32)
IR y Y k > L k 2 Y
HLJ* R + Y {FAjn)nRy + (FAj0)2Re })
k=j+2
(' A)a1(H Ags1)ss — O Ag)n (! Agya)as)
for+2<j<N.
LA
Hr(g,6) = ;. (B.33)
Hr(+1,8) = cosOe([Le®RE,, — cos p[L]*RE,, — sin p[LJTRY, ;)
— sin fg41 ([Le]*Re,, — sin plLJ"RE, ; + cos p[L|*RY,,) (B34

HEI( §2{(£Ak)nﬁf + EARLY).

N
Next, we can describe Y _ %z:°Js%z; of (B.28)-(B.31) as
s=1
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N . N . . T . . . . -
3 82450592 = Y[ As)u(As)ads + (As)u( As)ndy + (As)n( As)nds

s=1 S=1

+{(*As)31(As)s + (*As)s2(1 As)1}T5” (B.35)

+{(PAs)3(As)ss + (CAs)ss(I As)n}dY°

. _ ) , Iz
+{(*As)31("As)ss + (*As)33((As)n }s |-
Since "Ag ="Ag_;51Ag for j <i < n+1< s, we obtain

("As)z2 = —sinfs(®A,-1)a1 + cosbscosas(®As_1)s2
(B.36)

+ cos 03 sin as("A3_1)33.

Using (B.36), we can describe (iA3)32(jA3)32 of (B.35) as

(tAs)52((As)sa = —(PAs)a1(PAs)ar + (CAs_1)s1(PAs_1)a

+sin? as(*As_1)s1(As_1)ss
(B.37)

+ sin ag cos as[(iAS—l)BZ(jAS-—l)SB + (iAs—1)33 (PAs—1)32]

+ cos? aS(iAS—1)32(jA8—1)32-

Using (B.37) repeatedly, we can deform (B.35) as

N N
‘ ; T s , .
> 2005z =3 [("As)u(As)n(Js - 37 +sin? 2,1, IY(s))
s=1 s=1

+(iA3)33(jA3)33(j§ + SiI]2 as+1JY(s))

. _ . , . (B.38)
+H{(*As)51( As)sa + (145)n( As) Hg"
+{(iA3)32(jA3)33 + (iA3)33(jA3)32}(j!s/z + sin Qg1 COS a8+1JY(s))

+{(*As)31 (7 As)ss + (As)sa( As)n} s .
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Here, let us consider the case that 7 = . Since L j,4 = 0, We can derive from (B.28) and
(B.29) that

N
Hr(i,i) =) %zt%Js%2;
§=1

(B.39)
K K
+2 ) [Ls]*(G1s)® + dss + Y %ziDs%%;
=1 S=maz(K+1,1)

for1<i<f—-1lor{+1<i<N.Sincea,=0fori+1<n<6(i)—1andn#6(5),
we can easily derive that Sz; ='A%e; =e; fori < s < 6,(i) — 1 and

Sz; = [ sin 8(6, (), s) sinag, () cos 6(6,(3), s) sin ag (i) COSAg(5) ]t (B.40)

for 6;(1) < s < 6(1)—1,%2z; = [ 001 ]t for 6(¢) <1 < &£—1, moreover (iA§)31, (iA§)32,
and (iAg)as are not zero for ¢ < §(§) — 1. Using these and (B.38), we can prove Lemma

2.5.3 from (B.39) and (B.40).
In case that j = 6(¢) — 1 (K + 1 < ©), we can derive that 5z; = e; and

s‘.‘_.‘s(i)_1 - [sine(é(i),s) sinaé(i) cos 8(6(z2), s) sinaa(i) €08 a7 ]t (B.41)

for i < s < 6,(3) — 1 since a, = 0 for 6(i) +1 < n < 6(7) — 1, 5zz- = [O 0 l]tfor
6(€) < i < &—1, moreover (iAE)31, (iA§)32, and (iA§)33 are not zero for ¢ < §(§) — 1. Then,
Using these, we can prove Lemma 2.5.4 by direct calculations from (B.28)-(B.31).

Next, since o, = 0 for 2 < n < K, we can derive that

iL; ;= [Ls]®cosf(s +1,5) —[Ls]sinb(s+1,) [Ls)* | (B.42)

for j < i < K. Also we obtain 5z; = 5z; for j < i < K. Using these, we can prove
Lemma 2.5.5 from (B.28)-(B.31).

Taking it into account that 5z; = e; for 1 < ¢ < s < K, we can easily show from
(B.28), (B.29), and (B.38) that Hr(i,j) (j <i)for 1 <i<€—-lor{+1<i< Nisa
function of @ generated by some fundamental parameters in Theorem, and it is obvious
from (B.30)-(B.34) that Hr(§ + 1,j) for 1 < j < £ -1, Hr({,j) for 1 < j < €1,
Hr(5,&) for §+2 < j < N, Hr(§,€), and Hr(¢+1,€) are functions of & generated by some
fundamental parameters in Theorem 2.5.1. Therefore, Lemma 2.5.6 is proved . [}
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