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Abstract

  Dynamics of robot manipulators is to be discussed in this dissertation, focusing on inertial

parameters of kinematic chains of the robot manipulators and identification of them for

dynamic modeling.
  There are three problems solved, in this dissertation, concerning the inertial parameters

of the kinematic chains and the identification of them.

o All the values of link inertial parameters ( mass, the product of the mass and the

  location of center of mass, and moments of inertia for each link) of a kineMatic chain

  are redundant to determine its dynamic equations unique}y, hence they can not be
  identified independently and some parameters can not be identified completely from

  input data and motion data. Then it is important to investigate a minimum set of

  inertial parameters whose values can determine the dynamic equations uniquely. Such

  a set of inertial parameters is called A base parameter set below. The investigation of

  a base parameter set gives many insights into the structure of the dynamic equations.

  Each element of a base parameter set is also an identifiable parameter.

e It is needed to establish an eMcient identification method of the base parameters.

e The identified parameters are inevitably biased more or less, hence, it may happen

  that some sets of the obtained base-parameter values are physically impossible. Such

  set of base-parameter values should be avoided.

  In Chapter 2, a base parameter set is investigated for each of three types of manipulators.

Then, two identification methods of the base parameters, which have been proposed, are

experimentally examined and compared about some items in Chapter 3. In Chapter 4,
one method is proposed to judge if a set of base-parameter values for a kinematic chain

determines the inertial inatrix of the dynamic equations to be positive definite or not for

each configuration of the manipulator. If not, it is physically impossible.

  The results obtained in this dissertation would have direct contribution to the identi-

fication problem of the inertial parameters for robot manipulators. Moreover, knowledge

obtained through the detailed examination of the dynamic equations (e.g. redundancy of

the link inertial parameters or physical impossibility of a set of base-parameter values)

would help us to better understanding of the dynamics of robot manipulators.
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Chapter 1

Introduction

  How wonderfu1 the motions of animals are ! Human beings can walk and run by very
skillfu1 use of their two legs. Horses, cheetahs, and other animals can run in very sophis-

ticated manners. When they move without any coupling to an external body, e.g. in the
air or in the space, we can observe curious phenomena. Cats, dropped from upside-down

with no angular momentum, change their shape in such a way as to land on their feet.
The other examples are too numerous to mention. It is needless to say that the control
by their brains plays very important role in their wonderful motions. However, the keys

of wonderfu1 motions of the animals might be potentially in the dynamics of their bodies.

Animal body composed of obviously nonrigid members may well be treated as a system of
interconnected rigid bodies when its gross motion is of interest. Such a system which is

composed of rigid bodies, however, in the joints connecting the bodies nonrigid members
such as springs and dampers are allowed will be called multi-body system [1]. Then, we

could find out the keys of wonderful motions in features that are proper to the dynamics

of multi-body systems. Actually, the dynamics of multi-body systems would show features

that are proper to its dynamics, hence reveal to be quite unique. We have had some ev-
idences for its uniqueness through the control of robot manipulators; kinematic chains of

the robot manipulators are examples of multi-body systems. (Here, the robot manipula-

tors are considered to consist of kinematic chains with driving systems and the way they

are used.) The dynamic models (dynamic equations) of the robot manipulators play very

important role in position control and force control. There have been model-based position

controllers proposed for robot manipulators; feedforward control [2] and computed torque

control [31 which are based on joint coordinates, and resolved acceleration position control

[4] which is specified in term of Cartesian coordinates. For force control Cartesian-based

force controllers such as impedance control [5]-[7] and operational space method [8] have

been proposed. Also a unified control scheme of position, force, and impedance has been

proposed [9]. All these contro} schemes use dynamic models of the robot manipulators
explicitly, incorporating them to improve the control. Hence, we need values of parameters

appearing in the dynamic model to use these control schemes. Through identification prob-



2 Chapter 1. Introduction

lem of inertial parameters, a fact has been obtained that link inertial parameters (mass,

the product of the mass and the location of center of mass, and moments of inertia of each

link) appear only in the form of linear combinations in the dynamic equations, and the

dynamic equations are linear in the terms of inertial parameters. This phenomenon would

arise in any multi-body system. Taking advantage of that fact adaptive control scheme
for robot manipulators have been proposed [10]:[12]. On the other hands, there has been

leaming control for robot manipulators proposed by Arimoto et.al. [13]-[17]. The learning

control scheme does not use dynamic models of the manipulators. The key issues are the

stability and convergence of iterative process to desired trajectory. In the proof of them,

some features of the dynamic equations of robot manipulators play an important role. The

learning control scheme uses the knowledge of the dynamic model, hence we can say it
uses the dynamic model implicitly. Arimoto et.al. have found out what are essential for

learning control i.e., remarkable features of the dynamic equations for robot manipulators.

Thus, the dynamic model of robot manipulators plays very important role when we control

them, and some features which characterize the dynamics of the robot manipulators have
been found out. Hence, it would be worth while to examine the dynamic equations for the

robot manipulators in detai1 and obtain more knowledge about their dynamics, especially

the features proper to their dynamics. Then we extend the examination of the dynamic
equations to the multi-body systems, thereby we would get to know the keys of wonderfu1

motions of animals. Some results in this dissertation would be a clue for the goal.

  In this dissertation, dynamics of robot manipulators is to be discussed , focusing on

inertial parameters of kinematic chains of the robot manipulators and identification of

them for dynamic modeling. As mentioned above, for the model-based control of a robot

manipulator, it is very crucial to obtain an accurate dynamic model ofthe manipulator. The

dynamic model of the manipulator consisting of rigid links is described as a set of nonlinear

differential equations involving various constant parameters: kinematic parameters, link

inertial parameters of its kinematic chain, and dynamic parameters of driving systems. If

all the values of these parameters are known, we can determine the dynamic model. Hence,

accurate values of the parameters are required to obtain an accurate dynamic model. The

values of the kinematic parameters can be obtained from design data or by kinematic
calibration. The most practical way to obtain the values of the link inertial parameters

and driving system parameters is to make test motions of the manipulator and to estimate

them from the input data and joint motion data which are taken while the manipulator is

in the test motions.

  However, unfortunately, it is impossible to estimate all the link inertial parameter values

from the input data and the joint motion data in general since they are redundant to de-

termine the dynamic model uniquely. This fact has driven us to investigate nonredundant

inertial parameters suMcient to determine the dynamic model uniquely, then, in Chapter

2, we show a base parameter set which is defined to be a minimum set of inertial param-

eters whose values can determine the dynamic model uniquely for each of three types of
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manipulators. The investigation of a base parameter set would give us many insights into

the structure of the dynamic equations. The definitions for a base parameter set would be

valid for Inulti-body systems. We might say that the base parameters are physical existence

in a sense in the dynamics of multi-body systems. Then, they suggest us a new formulation

of dynamics that are suitable to describe the dynamics of the multi-body systems.

  The base parameters are also the parameters that can be identified independently from

input data and joint motion data. We describe each element of the base parameter set in

a linear combination of the link inertial parameters directly and completely in closed form,

also we give the exact number of the base parameters.

  Next, it would be very important to have a good identification method to obtain the

values of the base parameters for the modeling. Then, in Chapter 3, we experimen-
tally examine to estimate the base parameters for an industrial manipulator applying the

identification methods: "step-by-step method", "simultaneous method", and "advanced

simultaneous method". We compare the methods about the accuracy of estimates. To
evaluate the accuracy of them, we simulate the manipulator motion using the estimates

and compare the simulated trajectories with measured trajectories. We also describe in

detai1 the contents of the work which is needed to obtain the estimates about each identi-

fication method, and compare them about the amount of labour and consuming time on a

computer.
  If we could obtain the true values of the parameters, no problem would happen. However

we are forced to have the estimates biased more or less, and determine the dynamic models

using them. Thereby it may happen that the inertial matrix of the dynamic model is not

always positive definite for arbitrary configuration of the manipulator, though it is the fact

that the inertial matrix is positive definite for arbitrary configuration of the manipulator.

If a set of estimated base-parameter values determines such inertial matrix, it is physically

impossible. Hence, in Chapter 4 we propose a method to judge if a set of base-parameter

values determines the inertial matrix to be positive definite for arbitrary configuration of the

manipulator or not, when we approximately consider the continuous change of each joint

variable of the manipulator as a finite set of discrete points. The method can be executed

on computers. Using this method we can judge if a set of estimated base--parameter values

is "possible" or not. Here,we use "possible" in the sense that the set of base-parameter

values determines the inertial matrix to be always positive definite. We also propose one

method to modify the estimated base-parameter values for the set of them to be at least

"possible" if we judge it is not.

  The results in this dissertation would have direct contribution to the identification prob-

lem of the inertial parameters for robot manipulators. Moreover, through the detailed

examination of the dynamic equations we have had a fact that some link inertial paramed-

ters appear in the form of linear combinations in dynamic equations. Also we have noticed

that some sets of base-parameter values for the dynamic model are physically impossible.

Some other features of the dynamics of robot manipulators have been found to be quite
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important by several researchers. Those would help

dynamics of robot manipulators.

         Chapter 1. Introduction

us to better understanding of the
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Chapter 2

Base Parameters
Models of Robot

for the Dynamic
Manipulators

2.1 Introduction

  For the model-based control of a robot manipulator, it is very crucial to obtain an
accurate dynamic model of the manipulator [18]. The dynamic model of the manipulator
consisting of rigid links is described as a set of nonlinear differential equations involving

various constant parameters: kinematic parameters(link lengths, twist angles of adjacent

joint axes, and types of joints-rotational or translational), link inertial parameters of its

kinematic chain (mass, the product of the mass and the location of center of mass, and

moments of inertia for the links), and dynamic parameters of driving systems, since the

dynamic model of the manipulator is obtained by means of the combination of the dynamic

equations of motion for the kinematic chain and the dynamic models of the driving systems.

If all the values of these parameters are known, we can determine the dynamic model. The

values of the kinematic parameters can be obtained from design data or by kinematic
calibration. The most practical way to obtain the values of the link inertial parameters

and driving system parameters is to make test motions of the manipulator and to estimate

them from the input data (joint torques or forces) and joint motion data(joint positions,

velocities, and accelerations if needed) which are taken while the manipulator is in the test

motlons.
  However, unfortunately, it is impossible to estimate all the link inertial parameter values

from the input data and the joint motion data in general since they are redundant to
determine the dynamic model uniquely. The redundancy is caused by the fact that relative

motions of two adjacent links are restricted to one degree-of-freedom, and the first link of

the manipulator is connected to fixed base by a joint. It is well recognized that making

clear nonredundant inertial parameters suMcient to determine the dynamic model uniquely

is fundamentally important for the identification of the dynamic model I18]-[23]. Such
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nonredundant inertial parameters can be termed a minimum set of inertial parameters
whose values can determine the dynamic model uniquely. Such a set of inertial parameters

is called a base parameter set for certain reasons to be shown later.

  A base parameter set is usefu1 for more eficient and accurate identification of the dynamic

model [18]-[23] since we can reduce the number of the inertial parameter values to be

estimated; the elements of a base parameter set are also the inertial parameters which

can be estimated independently from the input data and joint motion data. To solve the

inverse dynamics problem which is a key procedure in the computed torque control and
the simulation of the manipulator motions, we need all the link inertial parameter values

[24]-[26]. If a base parameter set is made clear, we can show that a certain number of

link inertial parameter values can be always supposed to be O or 1 assigning appropriate

values to the rest of the link inertial parameters without contradiction to estimated values

of the inertial parameters in the base parameter set [27]-[29]. Taking advantage of this

result, we can reduce the amount of calculations in the Luh et al. algorithm [24] for inverse

dynamics problem by about 20 ero [281. The same idea will be valid to other algorithm [25],

[26]. Thus, an investigation of the base parameter set is also usefu1 in obtaining eMcient

algorithms to solve the inverse dynamics problem. Since the notion of base parameter set is

so fundamental, the study of it must be helpfu1 for a better understanding of the dynamic

models and must give insights to many other problems concerning the dynamic models.
  General methods to find a base parameter set has been addressed by several authors.
Khosla I21],[22] and Khalil and Kleinfinger I29] have developed computer-aided methods

by symbolic procedures for Newton-Euler formulation. Gautier and Khalil [31] have ex-

amined a direct determination of a base parameter set for tree structured manipulators by

differentiating the energy function of the manipulator. They have used recursive symbolic

expressions of the inertial parameters. However this method does not give complete closed

form solutions and gives only upper limit of the number of inertial parameters in a base

parameter set. Since the method uses the energy function, it is diMcult to see directly the

affections of the inertial parameters in the obtained base parameter set to the manipulator

motions. Sheu and Walker [32] have proposed a method to find out a base parameter set

that can be applied to both general open-loop kinematic chains and closed-Ioop kinematic

chains. The method is based on a numerical analysis of the possible changes in the energy

contents of the kinematic chain by using sampled motion data. Their method gives a way

of determining which base parameter is more effective on the energy. However the choice of

motion data would be a problem. Ghodoussi and Nakamura [33] have developed a method

to find out a base parameter set for both open and closed kinematic chains, investigating

the dynamic equations of the kinematic chains. Their method also includes numerical anal-

ysis but whole admissible motion set of the kinematic chain is considered in the numerical

analysis. They further have defined the set of the Principal Base Parameters as a set of the

base parameters that are orthogonal to each other and numbered in the order of sensitivity

to joint torque. Kawasaki et al.[34] have given a method to determine a base parameter
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set for tree structured manipulators examining the dynamic equations in Newton-Eular
formulation. Though the method gives the exact number of inertial parameters in a base

parameter set, it uses recursive symbolic expressions of the inertial parameters.

  The methods by Khosla, Khali1 and Klainfinger, Sheu and Walker, and Ghodoussi and
Nakamura are to be applied to each type of manipulator and require long time to execute

when the number of links is increased. The methods give by nature fewer insights about

physical meaning of the inertial parameters in the obtained base parameter set.

  On the other hand, we show a base parameter set, every inertial parameter in which is

described in a linear combination of the link inertial parameters directly and completely

in closed form. Also, thereby, we give the exact number of the base parameters that is the

minimum number of inertial parameters whose values can determine the dynamic model
uniquely. The complete closed form expression of base parameters gives many insights
into the physical meaning of the parameters, hence the redundancy of the link inertial

parameters. The method we use to find out a base parameter set is based on a coordinate

free expression of the dynamic equations for kinematic chains, hence it gives many insights

about the structure of the dynamic equations. It is also shown that any base parameter
set can be obtained by a nonsingular linear transformation of all the inertial parameters in

a base parameter set.

  To investigate a base parameter set, first of all, in the next section we give some definitions

and properties to discuss the redundancy of the link inertial parameters strictly and to show

exact meaning of base parameter set. A base parameter set is proved to be a base set for

linear vector space of all the identifiable inertial parameters. Several usefu1 results are

derived from this. The definitions and results in this section are valid to any kinematic

chain. Then, in section 3 a base parameter set is shown for general open-loop parallel and

perpendicular manipulators(successive aJces of which are parallel or perpendicular) with

rotational joints only. In section 4 the results of section 3 is extended to general open-

loop parallel and perpendicular manipulators with rotational and translational joints. The

results of section 3 and 4 have been extended to general open-loop kinematic chains [35].

However, there are many examples in mechanisms of robot arms or walking machines and

in manipulations by multi-finger hands or multi-arms, where we need to treat closed link

mechanisms. In particular, there is an important class of industrial manipulators that have

closed kinematic chain mechanisms. This mechanism has the advantage that the inertia of

links and gravitational loads can be reduced. Hence, it is important to investigate a base

parameter set for closed-loop kinematic chains. There have been studies to investigate

the base parameter set for such kind of kinematic chains. Based on the same definitions
as in the section 1, Mayeda et al.[36] extended the investigation of a base parameter set

and giving the complete closed-form solutions of it to a planar closed link mechanism

with rotational joints only. They have given the exact number of the base parameters.

Bennis and Khalil [37] have examined a direct method to determine a base parameter
set by differentiating the energy function of manipulators with parallelogram closed-loop.
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They used recursive symbolic expressions of the inertial parameter. However, this method

does not give complete closed-form solutions. They have given only the upper limits of

a number of parameters in a base parameter set. Kawasaki et al.[38] have proposed a
computer-aided method by symbolic procedure to find out a base parameter set for closed

kinematic chains. The methods by Sheu and Walker[32], Ghodoussi and Nakamura [33],
and Kawasaki et al.[38] are applicable to the close-loop kinematic chains, however they

are to be applied to each type of kinematic chains, then they have the same demerits
as mentioned above. Hence, it is very important to extend the results in [36] to general

closed-loop kinematic chains for the purpose of control and getting a better understanding

of the dynamics of the kinematic chains. In section 5 we make a small extension of the
results in [36] to manipulators with a planar parallelogram link mechanism. The results of

the section would cover most of commercially available industrial manipulators with closed

chain mechanisms such as OKURA A930, MITSUBISHI RV-SIOOA and so on. Finally, in
section 6 a conclusion is given.

2.2 Definition of Base Parameters

  We investigate the nonredundant inertial parameters suficient to determine the dynamic

model uniquely. Hence, we need not consider the dynamic models of driving systems. Then,

we consider only the dynamic equations of the kinematic chains of manipulators and take

them as the dynamic models of the manipulators below in this chapter.

  First, describing a structure of the dynamic equations of open-loop kinematic chains, we

make clear the redundancy of the link inertial parameters.

  Each rigid link of the kinematic chain has 10 link inertial parameters: the link mass m,
the six independent elements of inertial tensor IX, IY, IZ, IXVt,IXZ, IYZ, and the three

elements of the center of mass vector multiplied by the mass: mrX, mrY, mrZ, which
are represented about the coordinate system fixed on the rigid link. Hence, an N degree-

of-freedom manipulator has 10N link inertial parameters. However, all 10N link inertial

parameters are redundant to determine the dynamic equations for the kinematic chain.

  As is well known, the dynamic equations of open-loop N degree-of-freedom manipulators

can be represented in the following form:

                         "• • 10• •                T- H(e)e+ H(e)e-ibTt (eH(e) e) +G(e) (2.1)

where T = [Ti •••••• TN]t is thejoint torque and force vector and e = [ei •••••• eN]t is the

joint variable vector. The superscript (•)t indicates transposition. H(e) is N Å~ N inertial
term matrix, and G(e) is N-dimensional gravity term vector. zl}(eH(e)e) represents

the vector [SZT,(OH(e)e) SZ7,(eH(e)e) ••• b21.7(eH(e)e)]t. Hence, it is evident that
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the dynamic equations (2.1) can be determined if and only if each element of H(e) and

G(e) is determined as functions of e. Here, let q denote the vector whose entries are all

translational joint variables of e and er the vector whose entries are al1 rotational joint

variables of e. Then, we can describe each element of H(e) and G(e) in the following

form:

T
2pvfv(er, q)
v=1

(2.2)

where pv is a linear combination of the link inertial parameters and fv is a polynomial of q

and trigonometric functions of e.. (fv is allowed to be a constant function.) The form (2.2)

will be called a function ofe generated by pi, p2, ••• , pT. These forms are determined if

the values of the kinematic parameters are given. These facts will become evident in later

discussions. Thus, assuming that the values of kinematic parameters are known, if we give

values to all the link inertial parameters, we can determine all the elements of H(e) and

G(e) as functions of ei, e2, ..., eN and hence the dynamic equations (2.1). If two choices

of values to all the link inertial parameters determine some different elements of H(e) or

G(e), different dynamic equations are determined from them, and vice versa.

  For the purpose of determining the dynamic equations (2.1) uniquely, the link inertial

parameters are redundant in the sense that same dynamic equations might be determined
even if some link inertial parameters take different values. Therefore, it is unfortunately

impossible to estimate all the link inertial parameter values from link motion and joint

torque or force data. The redundancy is caused by linear dependencies among fi, f2,•••,fT

and also among pi, p2, ••• , pT in (2.1). In any kinematic chain similar phenomenon
would arise. For modeling of the manipulator motion and its identification, it is a very

fundamental problem to find nonredundant parameters that are suficient to determine the

dynamic equations uniquely and can be identified independently from motion and torque

or force data. Any linear combination of the link inertial parameters is defined to be an

inertial parameter as a candidate of nonredundant parameters and will be written in upright

bold face letters. Since the set of all the inertial parameters includes every pv in (2.1), it

is no use to consider any broader class of parameters as candidates of the nonredundant

parameters. The set of all inertial parameters obviously constitutes a lmear vector space.

  To investigate the problem we give following definitions and properties.

Definition 2.2.1 An inertial parameter p is called a fundamental parameter if any two
choices of values to all the link inertial parameters, that give different values to p, never

determine same dynamic equations.

  A fundamental parameter corresponds to an identifiable parameter from motion data
and joint torque or force data since there exists an appropriate joint torque or force for two

different dynamic equations, which generates different link motions for them.
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Definition 2.2.2 A set F of inertial parameters is said to generate the dynamic equa-

tions if same dynamic equations are always determined by any choices of values to all the

link inertial parameters as long as they give same value to each inertial parameter in F.

Definition 2.2.3 A set F of linearly independent fundamental parameters that gener-
ates the dynamic equations is called a base parameter set and each fundamental parameter

in F is called a base parameter.

Property 2.2.1 The set of all the fundamental parameters constitutes a linear vector
space, and a base parameter set forms a base set of the linear vector space.

Proof Let pi and p2 be fundamental parameters, and let a be a scaler. For different

values of api or pi + p2, pi or either pi or p2 must take different values. Hence same

dynamic equations can not be determined if api or pi + p2 takes different values, and

hence, api and pi + p2 are also fundamental parameters, The set of all the fundamental

parameters constitutes a linear vector space.

  Suppose that a base parameter set F does not form a base set of the linear vector space.

Then, there exists a fundamental parameter p which is linearly independent to the base
parameters in F. It is easy to find two choices of values to all the link inertial parameters,

that give different values to p and same value to each base parameter in F. Since p is

a fundamental parameter, these two choices of link inertial parameter values determine

different dynamic equations. This contradicts the definition of base parameter set. 1

Property 2.2.2 A base parameter set is a minimum set of inertial parameters, that

can generate the dynamic equations.

Proof Assume that there exists a set F of inertial parameters that can generate the
dynamic equations and such that the number of the inertial parameters in F is less than

that in a base parameter set. Since F can not span the linear vector space of all the fun-

damental parameters, there exists a fundamental parameter p that is linearly independent

to the inertial parameters in F. It is easy to find two choices of link inertial parameter

values that give different values to p and the same value to each inertial parameter in F.

These two choices of link inertial parameter values determine different dynamic equations

since p is a fundamental parameter. This contradicts the assumption that F can generate

the dynamic equations. -
  Fhrom Property 2.2.2, we can regard a base parameter set as the nonredundant param-
eters that are suficient to determine the dynamic equations. Values of base parameters can

be estimated independently from motion data and torque or force data of the manipulator

since base parameters are fundamental parameters. Property 2.2.1 shows•the reason why
we adopt the name ofbase parameter. Note that once one base parameter set F is found,



11

any fundamental parameter is a linear combination of the base parameters in F and any

other base parameter set can be obtained by a nonsingular linear transformation of all the

base parameters in F. Thus, the problem to be solved is to find a base parameter set.

2.3 Base Parameters for Manipulators with Rota-
       tional Joints Only

  In ordinary manipulators, any two adjacent joint axes are parallel or perpendicular. In

this section we consider a general manipulator of this type with N links and assume that

every joint is rotational for simplicity. We show a base parameter set for the manipulators,

describing every base parameter in a linear combination of the link inertial parameters

directly and completely in closed form. Also, thereby, we give the exact number of the

base parameters. .

2.3.1 Dynamic Models ofthe Manipulators
  To describe the manipulator motions, we number the links successively from O to N. (O

is assigned to the base.) Jointiconnects linksi-1 and i. We attach a coordinate system

(oi;xi,yi,zi) to each link i in the way shown in Fig.2.3.1. This is similar to Craig's

convention [39] except that the origin oi of (oi;xi,yi,zi) is chosen to be the intersection

ofjointi axis and common normal to axes ofjointsi-1 and i. Joint angle ei is the angle

between xi-i and xi measured around zi. Taking advantage of every joint axis that is
perpendicular to the predecessor, we divide the whole IV links into link clusters as shown in

Fig.2.3.2. More precisely, let ai = 1 and let (2 S)a2 < a3 < • • • < aK be link numbers such

that joint ad axis is perpendicular to joint ad - 1 axis for 2 S d S K. Define 6d = ad+i - 1

for 1 S d S K - 1 and 6K == N. Then, links ad, ad + 1, • • • , 5d constitute link cluster

d where axes ofjoints ad, ad +1, ••• , 6d are parallel. K is the number of link clusters

in the manipulator. When link i is included in link cluster d, we define c(i) as c(i) = d.

  Let mi be the mass of link i, Ii be the moment of inertia matrix of link i around oi, and

ri and Li be the vectors from oi to the center of mass of link i and oi+i, respectively. We

consider any vector v and any tensor T are represented about the base coordinate system
(oo;xo,yo,zo). The representations of v and T about (oi;xi,yi,zi) aJre denoted by iv

and ZT, respectively. ZLi, Zri and ZIi are constant vectors and a constant matrix and will

be denoted by

ZLi-[[L]9 O [L]i ]t (2.3)
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                         iri-[r: r7• rg]t (2.4)

                                   i9 I9.Y I9Z

                         ZIi =: Iif.Y IY. I7.Z. (2.5)

                                  Ige IY.Z I,Z•

The superscript (•)t denotes the transposition of (•). iLi means the length of link i and

is assumed to be known. (yi component of ZLi is zero when the link coordinate sys-

tems in Fig.2.3.1 are adopted. This simplifies expressions of the base parameters in later

discussions.) As mentioned in preceding section, for each link i we have 10 link inertial
parameters: mi, mir{,Y, mirY•,mirl, I:,I,Y•,Il, I9• Y, I9Z, IiZ (mi l O is assumed.)

  After attaching coordinate systems to links, we have rotation matrices. 3 Å~ 3 matrix
Ai = [xi yi zi] represents the orientation of (xi,yi,zi) about the base coordinate system

and jAi = [Jxi iyi izi] represents rotation of (xi•,yi•,zi•) to (xi,yi,zi). Entries ofJAi

are functions of eJJ+i, ej•+2, ••• , ei when i> 2' and will be denoted by

jAi =

It is well known that Jv = eAi

  (JAi),, (JAi),2 (2'Ai)i3

  (iAi),, (jAi)22 ()Ai)23

  (iAi),, (JAi)32 (j'Ai)33

Zv for any vector v, (jAi)t =

(2.6)

ZAj, jAi =jAsSAi, and that

z-iAi ==

cos ei - sin ei o

sin ei

o

cos ei

  o

cos ei O

o 1

- sin ei O

o

sin ei cos ei

-1

o

, if zi is parallel to zi-i

, if zi is perpendicular to zi-i.

(2.7)



15

Let us define e(i, j') = ei + ei., + • • • + ej . It is easily d

have following properties.

Property 2.3.1
  (i) For ad S j' <iS 6d where 1SdSK,

erive d that the rotation matrices

jAi =

cos e(2' + 1, i)

sin e(2' + 1, i)

o

---
 sin e(j' + 1, i) o

cos e(j' + 1, i)

o

o

1

(2.8)

(ii) For a2 Si <- N,

6c(i)-iAi =

cos e(ac(i) , i)

o

sin e(ac(i), i)

- sin e(ac(i) , i)

o

cos e(ac(i) , i)

o

-1

o

(2.9)

(iii) When c(2`) < c(i),

JAi =

(JAi),, (JAi)i2 -(

(jAi),, (JAi))22 -(

(JAi),, (iAi)32 -(

JAfic(,)-i)12

JAfic(o-i)22

jA6c(,)-i)32

(2.10)

  Denoting operations of inner product, cross product, and tensor product of two vectors

by •, Å~ ,and X ,respectively, we introduce the fo}lowing notation:

       NMi=Åímj
       J'=i

(2.11)

Ri == Mi+iLi+miri (2.12)

SR
      N
i= 2) Rj
     i'=i

(2.13)
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Ji = Ii+Mi.,[(Li • Li)E - Li XLi ] (2.14)

                            i-1

                   Lii =2Ls (2.15)
                           S=2`

where E is unit tensor of rank 2. mi, ri, and Ji are the moments of order O,1and2 for

the augmented link [25] of link i around oi, respectively. L]•,i means vector from oj to oi.

Note that mi and all the entries of ZRi and ZJi are inertial parameters.

  For the dynamic model of the manipulator, we adopt following simple dynamic equations

in vector-tensor form, which can be derived from the Lagrange equations by elementary

operatlons:

2 H(i,j)ej + 2 2(
J' =1 j' =l k=1

aH(i,o') 0H(k, 2')

Oek 20ei

)ek e,• -9• (Zi Å~ SRi )= Ti (2.16)

for i =

and ei

1, 2, ... , N, where Ti is torque imposed around jointiaxis, g is gravity vector,

and ei are first and second time derivative of ei,

              N
H(i, j') = zi • (Åí Js)zi'

             s=i

       N-1
+ zi • { Z) [2(Ls • SRs+i)E - Ls X SRs+i - SRs+i op Ls]}zj

       s=i

(2.17)

+ zi • [(L ii • SRi)E - L ii x SRi]zj

for 1 sl' <i<N'
and

H(i,j') -H(o',i) (2.18)

for i S j. These dynamic equations can also be derived by Newton-Euler approach. In the

approach, H(i, j') and g • (zi Å~ SRi) would be understood more intuitively.

  The dynamic equations (2.16) can be determined if and only if H(i, 1') and g• (zi Å~ SRi)

are determined as functions of ei, e2, ••• , eN for 1 S i,j' -< N. Evaluating each of them

about an appropriate coordinate system, we can describe them in the following form:

T
2 pvfv
V=1

(2.19)
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where pv is an inertial parameter and fv is a polynomial of trigonometric functions of ei

for 1 S i S IV. (fv is allowed to be a constant function.) The form (2.19) will be called a

function of e generated by pi, p2, ••• , pT in later discussions.

2.3.2 ABaseParameterSet
  In this subsection we show a base parameter set for the dynamic model (2.16), each base

parameter is described by the link inertial parameters directly and completely in closed
form. First, to describe the base parameters, we introduce the following notation. ZRi and
iJi are constant vector and matrix, respectively, hence, they will be represented as follows:

  To simplify descriptions

duced:

  iR, -[Rif RY•

             J9 Jg.Y

  iJi - J9.Y JY•

            J?Z JY.Z

of the base parameters,

R7 ]t

 J9Z

 J,Y.i

  J;•

following inertial parameters are

(2.20)

(2.21)

intro-

RZ(i) ==

RZB(i) -

JYB(i) =

Here we assume that [L]
but makes no sense for practical cases.)

theorem.

 O, if i= 6c(i)

  /3c(i)

  2RiZ•, otherwise
 j'=i+1

  fic(i)+1

   2 R,Z, if i= 6,(i) and c(i) lK

 j=ac(i)+1

 O, otherwise
  Pc("+1
   2 (J,Y• +2[L]; RZ (j')), if i - 6.(i) and c(i) l K

 J= a.(i)+1

 O, otherwise
9#O for1SiS 5i - 1. (Removalo
             Then, a base parameter set is given in th

(2.22)

(2.23)

(2.24)

f this assumption is possible

               e following



18 Chapter 2. Base Parameters
Theorem 2.3.1 The following inertial parameters constitute a base parameter set for
the manipulator dynamic model (2.16). For the case that zi is not parallei to gravity vector

g,

                    J,Z•+JYB(i), R9, RY•-RZB(i) (2.25)

for1SiS N, and

                   J9 - JY. + JYB(i), J9Z - [L] 9. RZ(i),

                                                                      (2.26)
                   J,X• Y + [L]9RZB(i), JY. Z + [L] ij RZB(i)

for a2 S i <. N. For the case that zi is parallel to g, delete R9 and RY - RZB(1) from

the above inertial parameters.

  The total number of base parameters in the base parameter set is 7N - 46i if zi is not

parallel to g or 7N - 4fii - 2 if zi is parallel to g.

  We first show the following lemmas necessary for the proof of Theorem 2.3.1.

Lemma 2.3.1 Suppose that H(i,2') or g• (zi Å~ SRi) is described as

                           Ul U2                          2pv fv+2 pv fv (2.27)
                          V=1 v=Ul+1

where pv is an inertial parameter and fo is a polynomial of trigonometric functions of

ei, ... , eN for1 f{ vS T. If fi, f2, ... , fu, are linearly independent functions and

Pu,+i, pu,+2, ••• , pu, are fundamental parameters, then pi, p2, ... , pu, are also
fundamental parameters.

Proof Assume that some pa such that 1Sag Ti is not a fundamental parameter.
Then, we can consider two choices of values to all the link inertial parameters, which give

different values ph and pa to pa and determine same dynamic equations. Let pb and pe

be the values of pv corresponding to the two choices of the link inertial parameter values.

Then pb = p& for Ti +1 S v S T and hence (pb -pa)fa = {} (pZ -pDfv must be

                                                      g;E
satisfied since pv for Ti + 1 -< v -<- T are fundamental parameters, and the two choices of

the link inertial parameter values determine the same dynamic equations. This contradicts

the condition that fi, ... , fT, are linearly independent since (p2t - pa) 7E O. 1

Lemma 2.3.2 ZSRi can be represented by
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                          R9

                ZSRi= RY•-RZB(i) +Gi (2.28)
                       R7• + Rz(i)

for 1 S i <- N where Gi is a vector whose entries are functions of e generated by Rg and

Rg - RzB(s) for i+1sss N.

Proof ZSRi can be described as Z ZAsSRs, and wth entry ofZSRi is given by
                        s=i

              N. . .              2((ZAs).,Rg+(ZAs).2Rg+(ZAs).3Rg) (2.29)
              s= i

w = 1,2,3. Since (ZAs).3 = -(ZAp.(.)-,).2 for a.(i)+i S s from Property 2.3.1, we can

deform (2.29) as

    fic({) N K-1 6d+1    2 (iA,)., Rg + 2((iA, )., Rg + (iA,)., Rg) - 2) ((iAp, )., 2 R.Z)

    s=i s=i d=c(i) S=ad+1                                                     (2.30)
     fic(i). N. .    = ]iii (zA.).,Rg + 2((zA,).,Rg + (zA,).,(Rg - RzB(s))).

     s=z s=z
We can obtaip (2.28) from .(2.30) using the fqct that (ZAi).t ==1if iv = t, (ZAi).t :O if

w l t, and (ZAs)33 == 1, (ZAs)i3 = O, and (ZAs)23 = O for i S s S 5.(i) from Property

Lemma 2.3.3
                         6c(o+i
       H(i, i) = J,Z• + JYB (i) + 2 (Jg - Jg + JYB (s))(Z As )g,

                        S=ac(i)+1
                                                     (2.31)
                fic(i)+1
              +2 2 (JgY+[L]3RZB(s))(ZA,),,(ZAs),, + G2
               S= ac(i)+1

for 1 S i S N, where G2 is a function ofe generated by J,Z+JYB(s), Rg, and Rg-RZB(s)

for s 2 i+1, JgZ+[L]gRzB(s) and JgZ-[L]gRz(s) for s 2 a.(i)+i, and Jg-Jg+JyB(s)
and JgY + IL]gRZB(s) for s 2 a.(i)+2•
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Lemma 2.3.4

            X3c(o
H(i,6,(i)-i) = 2[(JgZ - [L]gRz(s))sine(cy,(,),s)

            s=i (2.32)

+(JgZ+[L]gRzB(s))cose(a.(i),s)] + G3

for a2 S i S N, where G3 is a function of e generated by Rg and RY - RZB(s) for
s ) i and Jg + JyB(s), Jg - Jg + JyB(s), JgY + [L]gRzB(s), JgZ + [L]gRzB(s) and
Jgz - [L]gRz(s) for s ) cu.(i)+i.

Lemma 2.3.5

                    i-1
H(i, j') = H(i, i) + R9 2[L]g cos e(s + 1, i)

                    s=o'
(2.33)

             i-1-(RY. - RZB(i)) 2) [L]g sin e(s + 1, i) + G,

             S=2'

for ac(i) S j' < i, 1 S i S N, where G4 is afunction ofe generated by Rg and Rg-RZB(s)

for s>i+ 1.

Lemma 2.3.6 All the H(i,]') and g• (zi Å~ SRi) for 1 S j' <m i S N are functions ofe

generated by the inertial parameters given in Theorem 2.3.1.

 The proofs of Lemma 2.3.3, 2.3.4, 2.3.5, and 2.3.6 are given in the Appendix.

( Proof of Theorem 2.3.1) Represent Zg as Zg == [Zg. Zgy Zg.lt. Using Lemma
2.3.2 and Zzi = e3 (e3 = [O O 1]t),we can evaluate g•(zi Å~ SRi) about (xi,yi,zi) as

           Zg • (Zzi Å~ ZSRi) = R9 Zg, - (R,Y• - RZB(i)) Zg. + G (2.34)

where G is a function of e generated by Rg and Rg - RZB(s) for s 2 i+ 1. It is

easy to show that Zgx and Zgy are nonzero independent functions of ei, e2, ... , ei for

1 S i S N if zi is not parallel to g or for a2 S i S N if zi is parallel to g. Therefore, if
Rg and Rg - RZB(s) for s >- i + 1 are assumed to be fundamental parameters, R9 and

RY• - RZB(i) are also fundamental parameters by Lemma 2.3.1. When i = N, G = O in

(2.34). It can be derived in the same way that RXN and RYN are fundamental parameters.

By the mathematical induction, it is concluded that R9 and RY• -RZB(i) are fundamental

parameters for 1 S i S N if zi is not parallel to g or for a2 S i S N if zi is parallel to g.
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 It is derived from (2.17) and NzN = e3 that H(N,N) = Nz`NNJNNzN = Jk. Jft is
obviously a fundamental parameter. For arbitrary d such that 2 S d g K, assume that

                            Jij +JYB (i) (2.35)
fori) 6d and

                    JY.Z+ [L] ,Z. RZB (i), J9Z - [L]2 RZ (i) (2.36)

                   J9 -JY. +JYB (i), J9. Y+ [L]9RZB (i) (2.37)

fori >- ad+i are proved to be fundamental parameters. Let F be the set of all these
fundamental parameters and R9 and RY• - RZB(i) for cM2 S i S N.

  By Lemma 2.3.4,
         H(6d, 5d-i) = (Jfi,Z - [L]ff,RZ(6d)) sine(ad, fid)

                                                                 (2.38)
                       + (JfiY,Z + [L]flZ,RZB(fid))cose(ad,fid) + G

where G is a function of e generated by fundamental parameters in F. Since sine(ord, fid)

and cos e(ad, 6d) are linearly independent functions, it is concluded by Lemma 2.3.1 that
Jff,Z - [L]ff,RZ(5d) and Jg,Z + [L]fi,RZB(6d) are fundamental parameters. Next, we can

derive by Lemma 2.3.3 that

              H(6d-1,5d-1)=Jfi,-,+JYB(fid-1) + G (2.39)
where G is a function of e generated by the fundamental parameters in F. By Lemma
2.3.1, JpZ ,.i + JYB(fid - 1) is a fundamental parameter. Add these new fundamental
parameters to the set F. Investigating H(i, 5d-i) and H(i - 1,i - 1) for i == Pd - 1, 6d -

2, •.. , ad +1 and H(ad,5d-i) in order, we can prove that the inertial parameters in
(2.36) for ad g i S 5d -1 and the inertial parameters in (2.35) for ad S i S 6d -2

are fundamental parameters by use of the same arguments as above. Add all these new

fundamental parameters to F.
  Next, it can be shown by Lemma 2.3.3 that

H(fid-i, 5d-i) = JpZ,-, + JYB(6d-,)

  fid
+ 2 (Jg - Jg + JYB(s))(6d-iAs)g,

 S=ad
(2.40)

   6d
+2 2 (JgY + [L]gRZB(s))(6d-iAs)3,(fid-iAs)32

  S=ad

+G
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where G is a function of e generated by the fundamental parameters in F. It is obvious from
Property 2.3 that (Pd-iAs)3i = sin e(ord, s) and (fi"-iAs)32 = cos e(ad, s) for ad S s S fid.

Constant function, sin2e(ad,s) and sine(ad,s)cose(ad,s) for ad S s S 6d can be easily

proved to be linearly independent functions. We can conclude by Lemma 2.3.1 that
JfiZ ,-, + JYB(6d-i) and the inertial pararneters in (2.37) for ad S i S fid are fundamental

parameters. Add these new fundamental parameters to .17.
  Now, the inertial parameters in (2.35) for i ) 5d.i and the inertial parameters in (2.36)

and (2.37) fori) ad have been shown to be fundamental parameters. Using the mathe-
matical induction from d = K to d = 2, we can prove that the inertial parameters in (2.35)

fori 2 5i and the inertial parameters in (2.36) and (2.37) fori ) a2 are fundamental

parameters. Add all these fundamental parameters to F.

  Next, it is derived by Lemma 2.3.5 that

          H(6i , fi, - 1) = H(fii, Pi) + R6X-i [L] ff, -i COS e6,

                                                                      (2.41)
                          - (Rg-, - RZB(6, )) [L] za ., sin efi, + G

where G is a function of e generated by Rg and Rg - RZB(s) for s ) a2 that are included

in F. From the above arguments and (2.40), H(6i, 6i) is a function of e generated by the

fundamental parameters in F. Since cos efi, and sin efi, are linearly independent functions
and [L]7,-i i O is assumed, Rff-i and RZ-i - RZB(6i) are fundamental parameters by

Lemma 2.3.1. Add these fundamental parameters to F. It can be derived by Lemma
2.3.3 that

               H(6i -1, fii -1)=JpZ,-,+JYB(6, -1) + G (2.42)

where G is a function of e generated by the fundamental parameters in F. J6Z , -i+JYB(6i -
1) is obviously a fundamental parameter by Lemma 2.3.1. Add this to F. Investigating
H(i,i-1) and H(i-1,i-1) for i= 5i -1, 5i-2, ... , 2 in order, we can prove by iterative
use of the above argument that J,Z• + JYB(i) for 1 S i S 6i and R9 and RY• - RZB(i)

for 2 S i S fii are fundamental parameters. In the case that zi is not parallel to g, it has
been already proved that R9 and RY• - RZB(i) for i ) 1 are fundamental parameters.

  Now, we have proved that all the inertial parameters given in Theorem 2.3.1 are funda-

mental parameters. These inertial parameters are obviously linearly independent since each

of them includes at least one link inertial parameter which does not appear in the others.

We can conclude by Lemma 2.3.6 that these inertial parameters generate the dynamic
equations (2.16). Thus, the set of all the inertial parameters given in Theorem 2.3.1

constitutes a base parameter set. The number of base parameters in this base parameter

  From the Theorem 2.3.1 and Property 2.3.11 we can conclude that the minimum
number of the inertial parameters whose values can determine the dynamic model uniquely
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is 7N - 46i (7N - 46i - 2 if zi is parallel to g). This minimum number can be interpreted

as follows. The mass mi appears alone in neither H(i, 2') nor g• (zi Å~ SRi) in the sense of
zeroth order moment since all the joints are rotational. RzZ• or JY• can always be grouped

with other inertial parameters. The mechanism of the grouping will be shown in the proofs

of Lemmas 2.3, 2,4,and 2.5 in the Appendix. Since the links in the first-link cluster
rotate only around the joint axes parallel to zi, second-order moments except for J3 , do

not appear in the dynamic equations. If zi is parallel to g, R9 and R? - RZB(1) appears

in neither H(i, 2') nor g • (zi Å~ SRi)•

  H(i,1') relates eJ• to Ti and it is a function of e which represents the attitude of the

manipulator. From the proof of Theorem 2.3.1, we can guess a procedure to estimate
the base parameter values given in Theorem 2.3.1 as well as desirable joint motions and

manipulator attitudes for accurate estimations.

2.3.3 Conclusion

  The base parameter set as a minimum set of inertial parameters which can generate
the dynamic model is investigated for a general parallel and perpendicular manipulator

with rotational joints only. This is also regarded as a parametrization of the manipulator

dynamic model. Base parameters can be identified from link motion and joint torque data.

A base parameter set such that every base parameter is described by the link inertial

parameters directly and completely in closed form is given, and the exact number of the

base parameters in the set is aiso evaluated. Any base parameter set can be obtained from

the base parameter set by a nonsingular linear transformation.

  The proof of Theorem 2.3.1 gives good understanding of the relation between the
base parameters and the manipulator motions, which is usefu1 for eficient and accurate

identification of the dynamic model. The notion of base parameter is so fundamental that

it will be helpfu1 for other problems related to the manipulator dynamic models like the

inverse dynamics problem.

2.4 Base Parameters for Manipulators with Rota-
tional and Thranslational Joints

  The manipulators considered in preceding section are assumed to have rotational joints

only. Then, in this section we extend the results of the preceding section to manipulators

with rotational and translational joints. We show a base parameter set for the manipulators,

describing every base parameter in a linear combination of the link inertial parameters

directory and completely in closed form. Also, thereby, we give the exact number of the

base parameters.
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2.4.1 Dynamic Models ofthe Manipulators
  We consider the manipulator that has a open-}oop kinematic chain, each link of which
is connected to the predecessor (base for the first link) by a rotational or translational

joint and is called rotational or translational link, respectively. Let N be the number of all

the rotational links in the manipulator. The n-th rotational link from the base is labeled

as (n,O) for 1 S n S N. The base is labeled as (O,O), regarding it as a rotational link.

Base coordinate system (oo;xo,yo,zo) is set arbitrarily, and zo is supposed as (O,O) joint

axis. Let T. be the number of all the translational links between rotational links (n, O) and

(n + 1,O) for O S n S N - 1 or succeeding to rotational link (N, O) for n = N. The t-th

translational link from rotational link (n,O) is }abeled as (n,t) for O S n S IV, 1 S t S Tn.

                           -NThus the total number of links N is E (1 + T.)- 1. Here we assume that the axes of
                                n=O
rotational joints (n, O) and (n+1, O) are parallel or perpendicular for 1 S n g N - 1. Note

that relation between the direction of the axes ofjoints (n,O) and (n + 1,O) never change

for whatever displacements along the translational joint axes between the two rotational

Jomts axes.
  To describe manipulator motions, we attach coordinate system (on; xn, yn, zn) to rota-

tional link (n,O) and coordinate system (on,t; xn,t,yn, t, zn,t) to translational link (n, t)

in the way shown in Fig. 2.4.1. For translational links, zn,t is alongjoint (n,t) axis, and

xn,t and yn,t are chosen arbitrarily to complete a right-hand coordinate system. The
origin on,t of (on,t;xn,t,yn,t,zn,t) is chosen on joint (n,t) axis arbitrarily. We set a

reference point pn,t on joint (n,t) axis arbitrarily, which is fixed to link (n,t - 1) . The

arnount of translation about translational joint (n, t) is considered as the distance qn, t from

pn,t to on,t . For rotational links, setting the position of every translational link (n- 1,t)

between rotational links (n - 1,O) and (n,O) on its reference point i•e• pn-i,t = on-i,t Or

qn-i,t = O for 1 S t S Tn-i, we set the origin on of (on;xn,yn,zn) at the intersection

ofjoint (n,O) axis and the common normal to the axes ofjoints (n - 1,O) and (n,O). zn

direct along joint (n, O) axis. xn directs along the common normal from joint (n, O) axis to

joint (n + 1, O) axis. yn is chosen to complete a right-hand coordinate system. Rotational

joint angle en is the angle between xn-i and xn mesured in the right-hand sense about zn.

For O S n S N, O S t S Tn and t l Tn the vect ors from on,t (on if t = O) to pn,t+i (On+i

if t = Tn) or to on,t+i (on+i if t = Tn) are denoted by Ln,t or Ln,t, respectively. Note

that Ln, t is a constant vector and the following relations are satisfied:

                         in,t = Ln,t+qn,t+iZn,t+i (2•43)

forOSnSN, OStSTn-i,

                              in,T. = Ln,T. (2•44)

for O<n<N- 1.
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  For each link (n,t) let mn,t be the mass, In,t be the moment of inertia tensor around

the origin on,t and rn,t be the vector from on,t to the center of mass.

  Since the axes of rotational joints (n,O) and (n + 1,O) are parallel or perpendicular for

1 S n S N - 1, showing in Fig. 2.4.2, we can divide the whole manipulator links into
lmk clusters as follows; Let a(1) ==1 and 2S a(2) <•••< a(K) be numbers such that
joint (a(d),O) axis is perpendicular to joint (a(d) - 1,O) axis for 2 S d S K, and define

b(d) = a(d+1) -1 for 1 SdSK-1 and b(K) = N. Then all the links from (a(d),O) to
(b(d),Tb(d)) constitute d-th link cluster in which all the rotational joint axes are parallel.

Tlrranslational links (O, 1), (O, 2), . . . , (O, To) are considered to be O-th link cluster. (d- 1)-th

and d-th link clusters are connected by joint (a(d),O). Thus the number of link clusters in

the manipulator is K + 1. When rotational link (n, O) is included in d-th link cluster , we

define k(n) as k(n) = d.

  After attaching coordinate systems to links, we have rotation matrices. nAn,t = [nxn,t

nyn,t nzn,t]t represents the rotation of (xn,t, yn,t, zn,t) to (xn, yn, zn). Each element of

the matrix will be denoted by

nAn,t =

+[An,t]ii [An,tli2 [An,t]i3

+[An,t]2i [An,t]22 [An,t]23

+[An,t]3i [An,t]32 [An,t]33

(2.45)

nAn,t is a constant matrix since relative motions between (n,O) and (n,t) links are only
translational. The matrix i'Ai = [j'xi jyi i'zi ]t' represents the rotation of (xi,yi,zi)

to (xJ-,yj,zi•), both coordinate systems are attached to rotational links. Hence, they are

same as the rotation matrices defined in section 3, then each elements of the matrices will

be denoted by same symbols as in the section 3. Let us define e(i,j') = ei + ei+i + ••• ej•

for i S i Then, it can be easily shown that the rotation matrices have following property.

Property 2.4.1
i) For a(d) Si< j' < b(d) where 1SdS K,

zAj =

cos e(i + 1, 2') - sin e(i + 1, 2') o

sin e(i + 1, j') cos e(i + 1, j') o

o o 1

(2.46)
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ii) For a(2) SiS N,

                     cose(a(k(i)),i) -sine(a(k(i)),i) O

          b(k(i)-i)Ai ,. o o -1 . (2.47)
                     sine(a(k(i)),i) cose(a(k(i)),i) O

iii) When k(i) < k(i

                                  (ZAb(k(j)-i))i2

             (3rd column of iA,•)=- (iAb(k(,)-i))22 . (2•48)

                                  (ZAb(k(J•)"i))32

(n't)Ln,t,nAn,t for O S n S N, O S t S T. and type of n'iAn for 1 S n S N are

obtained from the kinematic parameter values of the manipulator, and they all are assumed

to be known.
 We introduce following notation for later argument.

              Tn N Ti      Mn,t= ]2 Mn,t,+2 2mi,t, (2•49)
              tl=t i=n+l ti=O                                           '
      Rn,t = Mn,trn,t+Mn,t+iLn,t, Rn,t=Mn,trn,t+Mn,t+iLn,t (2•50)

      Jn,t = In,t+Mn,t+i(Ln,t'Ln,tE-Ln,tXLn,t) (2•51)
Mn,t7 Rn,t, Jn,t are moments of order O,1,2 for augmented link of link (n,t) around

on,t (on if t = O), respectively. Moreover we define followings:

                 Tn Tn         RCn =: 2Rn,t,, RCn=2-Rn,t, (2•52)
                 tl=O tl =O
                 Tn Tn        RCn,t == 2Rn,t,, RCn,t=2-Rn,t, (2•53)
                 tl=t tl=t
                 N IV         SRn = ]2 RCi, SRn=2RCi (2•54)
                 i=n i=n
        SRn,t = RCn,t+SRn+i, SRn,t=RCn,t+SRn+i (2•55)
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       Tn
Ln =: 2Ln,t,
       t=o

     Tn
in = 2Zn,t•
     t=o

(2.56)

Ln is the vector from on to on+i, and Ln is that when qn,t=O for 1StS Tn. Ln is
a constant vector. For (ni,ti) and (n2,t2) links we denote (ni,ti) < (n2, t2) if (ni,ti) link

is predecessor to (n2,t2) link i.e. ni < n2 or ti < t2 when ni = n2. In this case the vector

frOM On,,t,(Oni if tl =O) tO On,,t,(On, if t2 == O) is defined as

L(ni,tixn2,t2)
  Tnl n2-1 t2-1= 2Zn,,t + 2 Zn + 2Zn,,t
  t=tl n=nl +1 t=O

(2.57)

or, when qn,,t =O for ti +1 S t g Tn,,

and qn,,t == O for 1 S t S t2,
qn,t == O for ni +1SnS n2 -1, 1(tS T.

L(ni,ti)(n2,t2)
  Tni n2-1 t2-1=2Ln,,t+ 2 Ln+2Ln2,t•
  t=ti n=nl+1 t=O

(2.58)

Finally, we define

     Tn
Jn=2Jn,t+
     t= o

Tn-1
2(
t=o

2Ln, t ' RCn,t+iE

-Ln,t X RCn,t+i - RCn,t+i X Ln, t)'

(2.59)

When on,t is fixed on pn,t for all 1 f{ t S Tn, Links (n, O), (n, 1), ..., (n, Tn) can be

considered as a rigid rotational link. It can be proved that Jn is the moment of inertia

tensor of this composite rotational link. To construct a dynamic model of the manipulator,

we adopt Lagrangian formulation. By length but straightforward operations, following
coordinate free expressions for the dynamic equations of manipulator motions are derived:
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(i) For input torque Tn generated in rotational joint (n,O) around the joint axis

        N NTi    Tn = 2Hi (n, i)ei + 2 2H2 (n, (i, t))Q'i, t

       i=1 i=O t=1
       +tN.,tY.,(aHi?.'i-OKitti)e,e,

       +l., Åí.,tY.,(0H2 "'ji't - OH2 j',Åíi,t) )ejai,t

                                       (2.60)
        NN Tj       +ll•lli., ,l=, II.ll,(OH'q,l,t' i )ei4,•,t

        N Ti N Tj       +i.Ili=o,P.,,2.=o,?l.il,(OH2 "q'itZ,"t' -aH3 it2.' i't' )di,t,a,.,t,

       -g'(znÅ~SRn)
for 1<n< N.
(ii) For force fn t generated in translational joint (n,t) along thejoint axis

       '
       N NT{   f.,t : Z)H2(i, (n, t))ei +2 Z)H3((i, ti), (n, t))4'i,t,

       i=1 i--O t=1
        NN       +l.lll.,,1.,(OH2 i' j"'t - 02Hiq.2'iti )eiej

       +l.Ilii.,,2.lll,tY.,(OH3 i't'j' n't OH2 2i.,iit' )ojq'i,t,

                                       (2.61)
       +i.ill.,tY.,,Il.l},(aH2zil.,,?•t)e,Q,,,,

        N Ti lv Tj       +i.Ili=,,IIi.il,,]Z, )=,,il.ll,(0H3 i'i,l,t)I("'t) OH3((2j"tq2.;t(i'ti) )qi,t,4it,

       -Mn tg'Zn t          )7
for OSnS N, 1StS Tn•
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where

Hi (i, 2')    N= zi ' (2Jn)zj

   n=i
  N-1+zi ' [2 (2Ln ' SRn+iE - Ln X SRn+i - SRn+i Q Ln)]zj

  n=t
+zi • [L(j,o)(i,o) • SRiE - L(j,o)(i,o) X SRi]zj

   N Tn+zi ' []E 2qn,t(2zn,t ' SRn,tE - zn,t X SRn,t

  n=i t=1

  -SRn,t+i X Zn,t)]Zj

  i-1 Tn+zi ' [2 2qn, t(zn, t ' SRiE - zn, t Q SRi )]zj

  n=j' t=1

 IV Tn
+22an,tMn,t

n=i t=1

(2.62)

for 1'  <- i and Hi(i,j') = Hi(j',i) for i < 2', where an,t is a scaler generated from zi,zj,

and qn,tzn,t for 2'  <- nS IV, 1StS Tn and Ln,t for j' <- nS N, OStS T. by vector
operatlons.

    H, (i, (j., t)) =1(zixS:tTi)•z,•,t, if 2' <i (2.63)

          t [zi Å~ (M,•,tZ(i,,)(j,t) + stt7,-,t)] • zit, if i S j'

for1sisN, Os2' m< N, 1stsTj,

          H3((i, ti), (j', t2)) = Mi,t, zi,t, • z,•,t, (2.64)

for Os i,j' <- N, 1 S ti S Ti, 1 S t2 S T2', (j',tj') S (i,ti) and H3((i,ti),(2',tJ•)) =
H3((j', tJ'), (i, ti)) for (i, ti) S (J', t2•), and g is the gravity vector.

 It is obvious that the dynamic equations (2.60),(2.61) can be determined if terms Hi (i, 2')

for 1 S i, g" <- N, H2 (i, (i t)) for 1Si <- IV, OS j' <- N, 1 StS T2', H3 ((i, ti), (i t2))

for OS i, j' <- N, 1 -< ti S Ti, 1S t2 -< Tj, g• (zi Å~ SRi) for 1 Si -< N and
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Mi ,tg • zi ,t for O S i S N, 1 S t S Ti are given as functions of e. for 1 <- n S N and qn ,t

forO-<n-<N, 1StSTn•
  Evaluating each of them about an appropriate coordinate system, we can describe them

in the following form:

                                U
                               2pufu (2.65)
                               u=1

wherepiL is an inertial parameter and fu is apolynomial ofqn,t for O S n S N, 1 S t S t.
and trigonometric function of en for 1 S n S N. (fiL is allowed to be a constant function.)

The form (2.65) will be called a function of e and q generated by pi,p2,•••, pu in later

discussions.

2.4.2 A Base Parameter Set
  In this subsection we show a base parameter set for the dynamic model (2.60) and (2.61).
To describe the base parameters we introduce the following notation; Since (n,O)Ln is a

constant vector, (n,O)Ln is denoted by

                     ("'O)Ln =[[Ln]X O [Ln]Z]`. (2•66)

Since (n,t)Rn,t is a constant vector, (n'ti)Rn,t, = nAt n,t,nAn,t,(n't2)Rn,t, is a constant

vector. (n,t)RCn,t and (n'O)RCn are also constant vectors, then they will be denoted by

                  (n't)RCn,t = [RCXn,t RCZ,t RCfi,t]t

                   (n'O)RCn = [RCXn RCZ RCit]`-

(n,O)Jn is also a constant matrix, and will be denoted by

(2.67)

(n,O)Jn =

To simplify descriptions of the base

duced:

  JXn JXnY JXnZ

  J%y Jy. Jzz .

  J%Z J%Z Jft

parameters, following inertial parameters

(2.68)

are mtro
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RCZ(n) =

o,

b(k(n))

2 RCi,
i=n+1

ifn= b(d) (1 SdS K)

otherwise
(2.69)

                     b(d+1)
                      ]2 Rcf
         RCZB(n) :                    i=a(d+1)
                     o,

Using these we modify some parameters:

, if n= b(d) (1 SdS K)

  otherwise

(2.70)

j:y =

-XZJn =

jZ. ,.

JXnY + [Ln]XRCZB(n)

JX.Z + [Ln]XRCZ(n)

JZZ + [Ln]ZRCZB(n)

(2.71)

(2.72)

(2.73)

R"C:,t

R"CZ,t

RACg,t

RcX.,t

RCY
n,t

RCft,t

+ nAht
     '

    o

-RCZB(n)

 RCZ(n)

(2.74)

R"c%-RC% - RCZB(n) (2.75)

and define

                              b(k(n)+1)                       JY(n)- 2 jY•. (2.76)
                              i=a(k(n)+1)

we show base parameters using these inertial parameters. Define rotational link number
Q less than a(2) as follows;Q = O if zi or some zo,t is not parallel to gravity vector g. If

Q ; O, (? is the minimum number such that zQ+i or zQ,t is not parallel to g or [LQ]X 7E O.
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Theorem 2.4.1 The following inertial parameters constitute a base parameter set for
the dynamic model (2.60) and (2.61).

JE + J"Y(n) (2.77)

for 1SnS N,

for Q+1 SnS N,

for a(2) SnS N,

for OSnS N,

RCXn,

JXn - J% + J"Y(n),

1stSTn,

R"c%

jxny•

Mn,t

jZ., -XZJn

(2.78)

(2.79)

(2.80)

for a(2) SnSN

         -X       RCn,t,

,1StS Tn, and

R"c%t,
    '

 AZRCnt
    '

(2.81)

                    [An t]32R"C'n t - [An t]3iR"CZt

                       es                                   !)                                                              (2.82)
       R"CE,t - [An,t]33([An,t]3iR"C:,t + IAn,t]32R"C%,t + [An,t]33R"CA,t)

for 1 S n S b(1), 1 S t S T.. The parameters in (2.82) are disappeared for (n,t) if and

only if translational joint axis zn,t is parallel to rotational joints a)cis zn.

 For 1 S n S b(1) let VVn be the number of translational joint aJces between zn and

zn+i, that are parallel to zn . Then the total number B of base parameters in a base
                                                           Nparameter set is given as B = Bo - Bi where Bo = 7N -4+ To +3Ti +4 Z Tn and
                                                          n=2
                   b(1) b(1)Bi = 2Q +4(b(1) ' 1) + Åí Tn + 2 2Wn. B = Bo for most general cases, and we can
                   n=2 n=1reduce this by Bi which depends on kinematic structure of the manipulator and relation

between the directions of zi and g.

We give following lemmas for proof of Theorem 2.4.1.
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Lemma 2.4.1 Suppose that Hi (i, 2'), H2 (i, (i t)), H3((i, ti), (i, t2)), g ' (Zi Å~ SRi)

or Mi,tg • zi,t is described as

                       Ul U2                       2)pufu+Åípufu (2.83)
                       u=1 u=Ui+1
where pu is an inertial parameter and fu is a polynomial of qn,t for O S n S N, 1 S

t S Tn and trigonometric function of en for 1 S n S N. If fi,f2,•••,fu, are mutually
independent and pu,,pu,+i,•••,pu, are fundamental parameters, then pu for 1 .<- u S Ui

are fundamental parameters .

Lemma 2.4.2

(n,O)SRn =

RCfi

R"CZ

RCA + RCz(n)

+Gi (2.84)

for 1SnS N,

(n•t)SRn,t =

 AXRCn,t

R"cY
.t    '

 -zRCnt
    '

+G2 (2.85)

for O S n S N, 1 S t S T. where Gi or G2 is a vector whose entries are functions of e
generated by RCg and R"Cg for n+1 ss s N.

 The proofs of Lemma 2.4.1 and 2.4.2 are almost same as those of Lemma 2.3.1 and
2.3.2, respectively, hence we omit them.

(Proof of Theorem 2.4.1) It is evident from (2.64) that H3((n,t),(n,t)) = Mn,t•

Hence Mn,t is a fundamental parameter for O S n S N, 1 S t S Tn.
 Represent (n,O)g as (n,O)g = [ngx ngy ngz]t. Since

                               NTi                  SRn =SRn+2) 2Mi,tqi,tzi,t, (2•86)
                              i=n t=1
using Lemma 2.2.2 and (n,O)zn = e3 (e3 = [O O 1]t), we can evaluate g • (in Å~ SRn)

about (xn,yn,Zn) as

(n,O)g . ((n,O)z. Å~ (",O)sR.) = ngyRCX. - "gxR"C% + G (2.87)
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where G is a function of e and q generated by RCg,R"Cg for n+ 1 s s s N and Ms.t

for n S s S IV, 1 S t S T,. It is easily shown that ngx and ngy are nonzero mutually

ipdependent functions for a(2) S n S N in general case and for 1 S n S N if zi is not
parallel to g. Hence if RCg and R"Cg for s 2 n + 1 are assumed to be fundamental

parameters, RCXn and R"CYn are fundamental parameters by Lemma 2.2.1 since all Mn,t

are fundamental parameters. For n = N, RCXN and R" Csc can be shown to be fundamental

parameters in the same way. By the mathematical induction it is concluded that RCfi and

R"C% are fundamental parameters for a(2) S n S N in general and for 1 S n S N if zi is

not parallel to g.

 For n such that n > j', we have

                    H2 (n, (j', t))=zit'(znÅ~SRn) (2.88)
in (2.63). This is same form as g•(znÅ~SRn) if zit is regarded as g. By the same

arguments in the above, we conclude that RCXn and R" CZ are fundamental parameters for

(1 S)w S n S N if there exist any zw-i,t for 1 S t S T..i which is not parallel to zw.

 Consider terms:

                  i-1 Tn
               Zi ' [2) 2qn,t (zn,t 'SRiE- zn,t QSRi )] zj (2•89)
                  n=j` t=1

in Hi(i,j'). In the case that 1 S j' <. n <i S b(1), then (Z,O)zi = e3,(Z'O)zJ• = e3. Denoting

(n,O)zn,t as (n,O)zn,t = [a 6 7]t((n,O)zn,t is a constant vector), we obtain from Property

2.4.1 that

(Z,O)zn,t = nA:•(n'O)zn,t =

acos e(n + 1, i) +6sin e(n + 1, i)

-a sin e(n + 1, i) +6cos e(n + 1, i)

7

(2.90)

Using Lemma 2.4.2 we can easily derive that

          qn,t(Z'O)Zi((Z'O)Zn,t ' (Z'O)SRiE - (Z'O)zn,t Q (Z'O)SRi)(Z'O)Zj

               = RC9qn,t(a cos e(n + 1, i) + 6 sin e(n + 1, i))

                +R"C ,Y• q.,t(-a sin e(n + 1, i) + Bcos e(n + 1, i)) + G.

where G is a function of e generated by RCg and R"Cg for s 2 i+1.

                 qn,t(a cos e(n + 1,i) + 6sin e(n + 1, i))

(2.91)

(2.92)
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and

                 qn,t (-a sin e(n+1, i) +5cos e(n +1, i)) (2.g3)

are mutually independent functions unless a = O and 5 = O , and a = O and 6 = O are
satisfied if and only if zn,t is parallel to zn. If zn,t is not parallel to zn, then zn,t is

not parallel to zn+i. We have proved RCg and R"Cg are fundamental parameters for

(1 S)w S n S N if there exist any zwmi,t for 1 S t S T.-i which is not parallel to ziv.

Hence, it is shown that the term (2.89) can be generated by fundamental parameters.

  For n such that n) i,

            H2 (i, (n, t)) = [Zi Å~ (Mn,tZ(i,oxn,t) + SRn,t)] ' Zn,t (2•94)

in (2.63). Since we can easily derive that

                         Tn nTs   SRn,t=RCn,t+SRn+i+ 2 Mn,t,qn,t,Zn,ti+ 2I) 2Ms,tiqs,tiZs,ti, (2•95)
                        tl=t+1 s=n+l ti =1
we obtain

            H2 (i, (n, t)) = -Zi ' [Zn,t Å~ (RCn,t +SRn+i)] +G (2.96)

where G is a function of e and q generated by Ms,w. Since (n,O)SRn+i = (n,O)SRn -
(n,O)RCn, it can be shown by using Lemma 2•4.2, that

             (n'O)SRn+i=[O -RCZB(n) RCZ(n)]t+G' (2.97)
where G' is a vector whose entries are functions of e generated by RCg and R"Cg for

n+ 1 S s S N. Thus, using (2.74) we obtain

                            RCfi,t O

     (n,t)RC.,t+(n,t)SRn+i = RC%,t +nAh,t -RCZB(n) +G'

                            RCfi,t RCZ(n)
                                                            (2.98)
                            R"c:,t

                        == Rrc%,t +Gt.

                            R-cA,t

Since (n,t)zn,t == e3 and (n,t)zi = nAh,tiAhe3, it 'is easily derived that
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H2 (i, (n, t)) = iAhe3 • "A.,t

-R"c%t
     '

 -XRCnt
    '

o

+Gn (2.99)

where G" is a function of e and q generated by RCg and R"Cg for n+1 S s S N and

Ms,w for i S s S N, 1 S w S Ts. If 2 S k(i) = k(n), then ZAt. e3 = e3, hence 3rd
component ofnAn,t[-RACZ,t R"CXn,t O]t is a fundamental parameter by Lemma 2.2.1

since RCg and R"Cg for s ) a(2) and Ms ,w for 1 S s S N, 1 S w S Ts are fundament al

parameters. If 2 S k(n) = k(i) + 1, it is derived by using Property 2.4.1 that

iAhe3 = [sine(a(k(n)),n) cose(a(k(n)),n) O]t. (2.100)

In this case, since sine(a(k(n)),n) and cose(a(k(n)),n) are mutually independent func-
tions,lstand2ndcomponentsofnAn,t[-R"CYn,t R"CXn,t O]tarefundamentalparameters

from the same reasons. Any linear combination of fundamental parameters is a fundamen-
tal parameter . Thus we can conclude that R" CXn,t and R" C%,t are fundamental parameters

for a(2) S n S N, 1 S t S Tn since nAn,t is a nonsingular constant matrix. In the case
that 1 = k(i) = k(n), since iAhe3 = e3, it is derived from (2.99) that

H2(i, (n, t)) = [An,t]32R"CXn,t - [An,t]3iR"CZ,t + G". (2.101)

[A.,t]32R"CX.,t - [A.,t]3iR"CZ,t is disappeared if and only if [A.,t]32 = O and [An,t]3i =: O i.e.

zn,t is parallel to zn (since nAn,t is a rotational matrix). If not the case, since RCg and

R"Cg for n+ 1 S s have been shown to be fundamental parameters, by Lemma 2•2•1 we
can conclude from the same reasons that [An,t]32R"CXn,t - [An,t]3iR"CZ,t is a fundamental

parameter for 1 S n S b(1), 1 S t S Tn•

 Next, consider term:

    N Tn
zi ' [2 2qn,t(2zn,t ' SRhe,tE - zn,t X SRn,t ' SRn,t X zn,t)]zj

   n=i t=1

(2.102)

in Hi(i,2'). Evaluating this term about coordinate system (n,t) and using Lemma 2.4.2

we can easily derive that
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       2(n,t)zh,t(n•t)sR.,tE - (n•t)z.,t (n•t)SRh,t - (n,t)SR.,t (n•t)zh,t

            AZ AX          2RCn,t O -RCn,t
                                                          (2.103)
       - o 2R"cft,t -R"c%,t +G

          -R"cX.,, -R"c%,t O

where G is a matrix whose entries are functions of e generated by RCg and R"Cg for

s2n+1. Ifn) a(2) and i= j' = b(k(n) - 1), then,

      (n,O) zi = (n•O)zj = ZAt. e3 = [sin e(a(h(n)), n) cos e(a(k(n)), n) O]`. (2.104)

In this case, using (n,t)zi = (n,t)zj• = nAh,t(n,O)zi we can derive directly from (2.103) that

   qn,tZi ' (2Zn,t ' SRn,tE - zn,t X SRn,t - SRn,t X zn,t)zj = R"CA,tf + G' (2.105)

where G' is a function of e and q generated by RCg and R"Cg for s 2 n+1 and R"Cg,t

and R"Cg,t for s) n, 1StS Ts, and

       f = 2qn,t[([An,t]ii sine(a(ic(n)), n) + [A.,t]2i cos e(a(k(n)),n))2

                                                          (2.106)
             +([An,t]i2 cos e(a(k(n)), n) + [A.,t]22 sin e(a(k(n)), n))2].

We can easily show that f f O. It is evident that qn,t in (2.103) does not appear
in other terms of Hi(i,i) except the term that is a function of e and q ganarated by
                                                           .Zfundamental parameters Ms,ws only. Hence, it is concluded by Lemma 2.4.1 that RCn,t
is a fundamental parameter for n > a(2), 1 S t s T. since RCg and R"Cg for s 2
a(2), R"Ct,,t and R"Cg,t for s) a(2) and M,,t for OSsS N, 1 St -< Ts are already

shown to be fundamental parameters. If 1 S 2' <. i S n S b(1), then (n,O)zi = (n,O)zJ• = e3.
In this case, using (n,t)zi = (n,t)zj ---- nAh,te3 and [An,t]gi + [An,t]32 + [An,tlg3 == 1 , we

can easily derive that

    qn,tZi ' (2Zn,t ' SRn,tE - Zn,t X SRn,t - SRn,t X Zn,t)Zj = 2Pqn,t + G' (2.107)

where G' is a function of e and q generated by RCg and R"Cg for s ) n+ 1, and

     p = R"Cfi,t - [An,t]33([An,t]3iRAC:,t + [An,t]32R"CZ,t + [An,t]33R"CA,t)• (2.108)
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Since nAn,t is a rotation matrix, p is disappeared if and only if [An,t]3i = [An,t]32 = O

and IAn t]33 = 1 i.e. znt is parallel to zn. If not the case, since RCg and R"Cg have been

       11proved to be fundamental parameters, thus, in the same way, we can conclude by Lemma
2.4.1 that p is a fundamental parameter for 1 S n S b(1) and 1 S t S T..

  The terms of Hi(i,j') in the first 3 lines in (2.62) have the same form as the case that

the manipulator has rotational joints only and any two adjacent rotational joint axes are

parallel or perpendicular. This case is treated in preceding section. Using exactly same

arguments and Lemma 2.4.1, we can show that all the parameters in (2.77),(2.78) and

(2.79) are fundamental parameters and they can generate these terms completely. In the
case zi is parallel to g, [Ln]X # O was assumed for 1 S n S b(1) - 1 in the preceding

section. It makes no sense to remove the assumption in the preceding section, but not for

the manipulators in this section. Modifying the arguments in the preceding section slightlx
we can easily remove the assumption and modify the results concerning RCXn and R" CX
for 1 S n g b(1) as follows; RC9 and R"CY• for n S i S b(1) are fundamental parameters

if [Ln-i]X 7E o.

  It has been proved that all the parameters given in Theorem 2.4.1 are fundamental

parameters. Observation of the above arguments shows that these parameters generate
all Hi (i, j'), H2 (i, (i t)), H3((i, ti), (J', t2 )), g ' (zn Å~ SR.) and Mn,tg ' zn,t. It is

evident that these parameters are mutually independent since each of them includes a
link inertial parameter which is not appear in the others. Thus the set of ail the inertial

parameters given in the Theorem 2.4.1 constitutes a base parameter set. The number of

base parameters in this base parameter set is evident. 1

2e4e3 Conclusion

  We have shown a base parameter set, which is a minimum set of inertial parameters that

can generate the dynamic models uniquely, for general parallel and perpendicular manipu-

lators with rotational and translational joints. We have described every base parameter in

a lmear combination of the link inertial parameters directly and completely in closed form.

Also, we have given the exact number of the base parameters.

  Any base parameters can be obtained from these base parameters by nonsingular linear

transformation of them.

  The assumption that any pair of two adjacent rotational joint axes is parallel or perpen-

dicular is not restrictive since all existing industrial manipulators satisfy it.

  The investigation of a base parameter set and giving the complete closed-form solutions

of it has been extended to general open-loop kinematic chains without essential change of

the results in this section [35].
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2.5 Base Parameters for Manipulators with a Planar
Parallelogram Link Mechanism

  In this section, we extend the investigation of a base parameter set and giving the com-

plete closed-form solutions of it to manipulators with a planar parallelogram link mecha-

nism. We also give the exact number of the base parameters. The results of this section

would cover most of commercially available industrial manipulators with closed chain mech-

amsms.

2.5.1 DescriptionofManipulators
  In this section, manipulators with only one planar parallelogram link mechanism are
treated. Also, only revolute joints are considered. As showB in Fig.2.5.1, link O is a

stationary pillar. Link i is connected to link i- 1 through joint i for 1 s{ i f{ C. Link C

and link < are connected to link C- 1 through joint C andjoint <, respectively. The axes of

joint C and joint < coincide with each other. Link C + 1 is connected to Iink C through joint

C+1 and link <+1 is connected to link C through joint <+1 and to link C+1 through joint

< + 2. The axes of joints C, 6 + 1, <, < + 1, and < + 2 are parallel. Link C has same length

as that of C + 1 and link < has same length as the length between joints C + 2 and C + 2.

Then, links C,C+ 1, <, <+ 1 form a planar parallelogram. We assume that joint C and joint

C are actuated andjoints C+1,<+1, and <+2 are passive. Finally, link i is connected to

link i - 1 through joint i for e + 2 S i S N where N denotes the last link number.

  Suppose that the parallelogram were cut open at joint < + 2, then the kinematic mech-

anisms of the manipulator would have a tree structured open kinematic chain. For open

kinematic chain, it is possible to apply the same method as in the sections 1,2 to assign

and attach a coordinate system (oi;xi,yi,zi) to link iwhere oi denotes the origin of the

coordinate system. As shown in Fig.2.5.1, we can make oc coincide with oc since the axes

ofjoints 6 and < coincide. We can set origins oc,oc+i,oc,oc+i such that they determine a

plane since the a[xes ofjoint C, C+1, <, <+1 are parallel and we set a point o<+2 on the axis

ofjoint <+2 such that it is in the plane. Let ei denote the joint angle that is measured

from xi-i-axis to xi-axis about zi-axis for 1 S i S N or i = C+ 1. e< is measured from

xc-i-axis to x<-axis about zc•-axis which coincide with zc-axis. Let ai denote the twist

angle between zi-i-axis and zi-axis about xi.i-axis and let Li denote the vector from oi

tO Oi+1•

  For each link i let mi denote the mass, Ii denote thg inertial .tensor around oi and ri
denote the vector from oi to the center of mass. Then, Zri, and ZIi are a constant vector

and a constant matrix, respectively.

  After attaching coordinate systems, we can obtain rotation matrices. Let jAi denote a
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    Xe+r."
             s             . •joint g+2   Zel OeflS, .
                 N      link g'Ss,, eg 'tt(I(e'Ci.2,.t 1ink g'1

            Xg s
                       s             ec ' 'nk
          z i X xc.1 . joint g+1
    joint g Zg oOgl 'C zg.Si 5}.,e.}+.i
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Fig. 2.5.1 Manipulator with a Planar Parallelogram Link Mechanism
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rotation matrix that represents

described as

(xi, yi, zi) with reference tO (XJ',Yl',ZJ')' Then, z-IAi is

z-iAi =

and iAi (j < i) will b

cos ei

sin ei cos ai

sin e i sln ai

e denoted as

- sin ei

cos ei cos ai

cos ei sin ai

o

- sm ai

cos ai

(2.109)

iAi =

(jAi),i (jAi)i2 (jAi)i3

(J Ai)2i (j'Ai),2 (i'Ai)23

(eAi)3, (jAi)32 (JAi)33

(2.110)

  Each Li and each element of jAi can be determined from kinematic parameter values

of the manipulatoT. We assume that aJl they are known.

2.5.2 Constraints
  Fig.2.5.2 depicts the schematic diagram of the planar parallelogram.

Ielogram must satisfy two equality constraints:

The planar paral-

where ea and eb are the angles shown

ea = ec+1

eb = e<+,

in Fig.2.5.2. Ftom the two equalities,

(2.111)

(2.112)

we obtain

                         sinec = sin(ec+e<+i) (2.n3)
                         cosec = cos(ec+ec+,) (2.n4)
                         sine< = -sin(ec+ec+i+p) (2.11s)
                        cose< = -cos(ec+ec+i+p) (2.n6)

where p denotes the angle that is measured from xc+i-axis to the direction of Lc+2 which

is defined as the vector from oc+2 to oc+i. We can consider that two variables of e<, ec+i, ec,

and e6+i are independent variables and the rest are functions of the independent variables.



44 Chapter 2. Base Parameters

 NN

eg.1

 p

 Å~
SN•<1

  .

N

.

 N's
xgN+N

ix
   is

 Og+1

N
.)J:.1

Zg+1

link ig

ea

Xg

Lig.2

eg

link g+1

q

Zg
  Zt

0g
ot

"

'

t

,

i
l

lÅ~•

eb

xc

Og+2

link ig+1

link ig

  ZC+1

XC+1

eg.1

  .
Og+1 "N

Fig. 2.5.2 Schematic Diagram of the Planar Parallelogram
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2.5.3 DynamicModelsofManipulators
 In this subsection, we derive the dynamic model of the manipulator shown in Fig.2.5.1.

First, we introduce the following notations:

Rs =

msrs +(

msrs +

 N2mj
2'=S+1

 N2
j=S+1

+m<+m<+i)Ls, if 1SsSC-1

mjLs, if CSsSN

(2.117)

      N
SRi=:Z)Rj
     J'--i

(2.118)

R< = mcr< + m<+iL< (2.119)

R<+1 = mc+IT<+1 (2.120)

Js =

Is +(

Is +(

 N2
1"=S+1

 N2
1'=S+1

mj + mc + mc+i)[(Ls • Ls)E - Ls X Ls], if 1 S s g C - 1

                                            (2.121)

mj)[(Ls•Ls)E-Ls {g) Lsl, if CSsSN

J< == I< + mc+i[(Lc t L<)E - L< x L<] (2.122)

J<+i == Ic+i (2.123)

                               i-1
                          Lii=2Ls (2.124)
                               S=1'

Note that ZRi and ZJi are a constant vector and a constant matrix, respectively.

 Next, we consider the manipulator shown in Fig.2.5.1 as two open kinematic chains. As
shown in Fig.2.5.3, we will call the kinematic chain which consists of N links : link O, link

1, link 2, . . . . . . , link C, link C + 1, link C + 2, . . . . . . , and link N , C- chain and we wM call

the kinematic chain which consists of (C + 1) links : link O, link 1, ......, link C - 1, link

<, and link <+ 1, <-chain. Then we define the variable vectors ec and e< as
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Fig. 2.5.3 Tree Stmctured Manipulator
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ec = [ e,V ...
ee-i ec ec+i '''

 eN ]t, (2.125)

The kinetic energy Kc

  e<=[e, ••• ec., e<

of C-chain is described as

e<+1 ]t. (2.126)

                              1= -L                         Kc = iec • Hc(ec)ec

where Hc(ec) is a positive definite symmetric matrix and

by coordinate free vector-tensor form as

(i,2')- th entry of it is d

(2.127)

escri bed

Hc (i, j')
      N
= zi ' [2 Js]zj•

     s=i

     N-1
+zi • I2 {2(Ls • SRs+i)E - Ls X SRs+i - SRs+i X Ls}]zl'
     s=i

(2.128)

The

         +zi • [(Lj•,i • SRi)E - Lj•,i X SRi]zj.

kinetic energy K< of <-chain is described as

                              1= -=                         K< = iec • H<(e<)e<

where Hc(e<) is also a positive definite symmetric matrix and

described in the sarne way as shownjust above.

  The whole knetic energy K of the manipulator is obtained by

energy of the common links to <-chain and C-chain from K4 + K<.

vector e as

(i,]')-th entry

(2.129)

of it is

subtracting the kinetic

Defining joint variable

        b=[e, •••

we can describe K as

ec-i I ec e6+i I ec e<+i l ec+2
''' eN ]t, (2.130)

    1=K= -e    2
• H(e)e (2.131)
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where H(e) is a (N + 2) Å~(N+2) positive d

            Chapter 2. Base Parameters

efinite symmetric matrix and is given as

H(e)-

Hll

Hc,i

H<,i

Hc3i

Hc,i

Hc,2

02Å~2

Hc,2

Hc,2

02Å~2

H<,2

Opx2

Hc,3

Hc,3

02xp

Hc,3

(2.132)

where Oqxt
matrices in

ls aq Å~t zero matrm

Hc(ec) and H<(ec) w
and p = N - (C + 1), and Hcij'

hen they are divided as

and H      <i]' are block

Hc(ec) =

 Hc,i

 Hc,i

 Hc,i

cYi

Hc,2

Hc,2

Hc32

Y

 Hc,3

 Hc,3

 Hc33

Y

}
}
}

C-1
 2
 p

(2.133)

H<(e<) -
 H<,i

 H<,i

cYi

H<,2

Hc22

Y

}
}

C-1
 2 (2.134)

Hll isa(C-1)Å~ (C - 1) matrix, and the (i, J')-th entry of it is described as
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     '               N
  Hii(i, 2') == zi ' [2(Js) + Jc + Jc+i]zj'

                .              s=z

              C-1
         +zi • [2{2Ls • (SRs+i + R< + Rc+i)E
              s=i

              -L. x (sR,., + R< + Rc.i) - (SRs+i + Rc + R<+i) X Ls}(2.13s)

                N-1
              + 2 {2Ls • SRs+iE - Ls X SRs+i ' SRs+i Q Ls}
                s=6

              +2Lc • Rc+iE - L< X R<+i - R<+i Q L<]zj•

         +zi • [Lj,i • (SRi + R< + R<.,)E - Lj,i X (SRi + R< + Rc.i)]z2••

 Let U denote the potential energy of the manipulator. Then, we can derive the dynamic
model of the manipulator from Lagrange equations. It is described as

        . = wtHwb + Åí(vvtHw)e - zilt (ie • wtHwe) + z;It7u (2.136)

where e = [ei ••• ee I ec I ec+2 ••. eN ]t whose entries are independent vari-

ables, and T is the generalized force vector ( actuated joint torque) corresponding to e .

W is (N + 2) Å~ N Jacobian matrix which relates e with e as

                           e= VVe (2.137)

and it is given as
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W=

Ecxc Ocxp

o••••••o

o--•o

o-••••o

y0232i?!egoyOis2ete6 yOtt}!ec1sat232i;Le,

o••••••o

o••••••o

o••••••o

.Opx(C+1) EpÅ~p

(2.138)

where

                          OaeCefi = -1, !Oli52tle < .. 1 (2.13g)

                           OgCe+6i = 1, YOi52tile c = -1 (2.14o)

which are obtained from (2.113)-(3.2). Es Å~s denotes the s Å~ s identity matrix. The
(i,2')-th entry of VVtH(e)VV will be denoted by H.'(i,2') in the followings.

  It is obvious that the dynamic model (3.26) is determined if and only if WtH(D)VV and
O  U are determined as functions of e.oo

  Evaluating each element of them about an appropriate coordinate system, we can de-
scribe them also in the following form:

                                 T
                                2pv fv (2.141)
                                v=1

where pv is an inertial parameter and fv is a polynomial of trigonometric functions of e.

(fv is allowed to be a constant function.) This fact would be evident below. The form
(3.15) will also be called a function of e generated by pi, p2, • • • , pT in later discussions.

2e5•4 ABaseParameterSet
  We introduce the following notation to describe a base parameter set. First, ZLi is

obviously constant vector, then, it will be denoted by
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                        ZLi = [ [Li]X o [Li]z ]t.

ZLi denotes the length of the linkiand is assumed to be known.

from (2.113)-(3.2) that
Next,

(2.142)

since we can derive

C+iAc = Ap
(2.143)

where Ap

                    CAc+1 = E3.3

is a constant matrix which is given as

Ap =

- cos p

- sin p

o

sinp O

cosp O

o 1

'
(2.144)

we obtain

C+iRc == Ap CRk (2.145)

                            CR<+i= C+iR(+i. (2.146)
Then C+iR< and CR<+i are constant vectors since nRn is a constant vector. Hence, CR6 and

<+iR(;+i are combined, also, C+iRc+i and Ap CRc are combined. Entries of the combined

vectors will be denoted by

cRc + C+IR<+1-[R,X R-,Y R-,Z]t (2.147)

For consistency, nRn

C+IRe+1 + Ap CRc

will be denoted by

=[ R?+1 R,Y., RcZ., ]t'
(2.148)

nRn

for 1SnSC-1 or e+2SnSN
<+iR<+i will be denoted by

-[RdeX RhY R;Zi

. Besides of (2.147)

]t (2.149)
and (2.148), entries of C+iR6+i and



                   e+iRc.,=[Rg., RcY., RcZ.,]`

                    <+iR,.,-[Rg., R,Y., R,Z.,]t

which are also needed below.
 nJn is also a constant matrix and it will be denoted by

                              JXn JXnY J%Z

                      nJn= JXnY JZ J%Z .

                             Jx.z JZZ Jft

We define

                                 Ni
                  R-Z(n) = R.Z.,+ 2 ( H cosaj)R,Z•
                               i=n+2 J'--n+2
for 1SnS6-1 or C+1 -< n -< N,

                                 Ni
                  R-Z(C)=ReZ.i+ Z) ( II cosaj)R,Z,
                               i=C+2 j'--C+2

                           R-Z(<) = R?.,.

Using these we modify some parameters as follows:

                      j: = Jfi + 2[Lnli cos a.+iR-Z (n)

                      j% = J% + 2[Ln]Z cos a.+iR'Z(n)

                     jX.Y = JXnY + [Ln]X sin an+iR-Z(n)

                     jX.Z = J:Z - [Ln]X cos an+iR-Z(n)

                     j%Z = J%Z + [L.]Z sin a.+iR-Z(n)

                        R;Yi = R% - sin a.+iR'z(n)

Base Parameters

       (2.150)

       (2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)
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for 1 S n S N or n == C,n=<+1. We remark here that RcY = Rg since aE.i = O.

Moreover we define

                    RcY+i = R6Y+i-sin orc+2 R-Z (C+1). (2.162)

Let njn be a matrix whose entries are (2.157)-(2.161) and Jit :

                              jXn J-XnY jX.Z

                      "j.= j:Y jZ jZZ . (2.163)

                              jx.z jZZ JA

Then we obtain from (2.143) and (2.144) that

                         C+'jc=Ap Cj< Afo (2.164)

                           6jc+,== C+ij<+,. (2.165)
Hence, C+iJc and CJc+i are constant matrices. Therefore C+iJc+i and Ap CJ< Afo are

combined, also, CJc and (+iJc+i are combined. Entries of the combined matrices are

denoted by

                                   j2., jg.Y, j2.Z,

                c+ij,+Ap g,Afo= jg.y, j,y., j,yi, (2.166)

                                   j2.z, jg.z, jg.,

                                  j2 j2y jgz

                  Cje+ <+ij<.,= j2Y j<Y J"<YZ . (2.167)

                                 j2Z jYZ j?

For consistency, entries of nJn will be denoted by
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njn =

jXn J"X.Y jX.i

jx.y j% j%z

jX.Z j%i jA

(2.168)

for 1SnS6-1 or C+2SnS N. Moreover, we define

                                Ni                  JY(n) =j.Y.i+ 2( ll cos2 aDj,Y•. (2.169)
                               i=n+2 j=n+2

  Finally, we introduce some more symbols to state a theorem. Let K denote the maJcimum

link number such that zn is parallel to ii that is a2 =•••= an =O for 1 -< n -< K. (If

z2 is not parallel to zi, then K = 1.) We define link number Q less than K+1 as follows;

Q = O if zi is not parallel to gravity vector g, otherwise e is the minimum link number
such that zQ+i is not parallel to g or [LQ]X iE O.

  We give a base parameter set.

Theorem 2.5.1 The following inertial parameters constitute a base parameter set of
the dynamic model (3.26).

j: + sin2 a.+iJ"Y(n) (2.170)

for 1SnS N,

Rhx,R;Yh (2.171)

for Q+1SnS N,

j: - jZ + sin2 a.+iJ"Y(n), j:Y, j:Z, jZZ + sin a.+i cos a.+iJ"Y(n) (2.172)

for K+1SnS N, and

[Lc]XR6X., - cosp[L<]XR(X., - sinp[Lc]XR<Y.,,

(2.173)

               llLe]XR.Y., - sin p[L<]XR2., + cos p[L<]XRY.i

if C + 1 S K, otherwise
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        Rg.,, [Lc]XRg.,-cosp[L<IXR?.,, [LelXRcY.,-sinp[Lc]XR?., (2.174)

where R?+i and RcY+, are deleted if C + 1 S K and Q = C.

 The total number B of base parameters in a base parameter set is given as B == 7N -

4K-2Q+3-Bi where Bi =3 if C+1SK and Q=C or Bi =1 ifC+1SK and Ql6,
otherwise it is O.

Remark: Note that the size of a base parameter set is independent of virtually cut joint

in the parallelogram.

 We first show the following lemmas for the proof of the Theorem 2.5.1 , introducing
following notation. Let 6(n) be the link number such that 6(n) S n,as =O for 6(n) +

1 S s S n , and a6(n) l O. Similarly we define 6-k(n) and 6k(n) for k = 1,2,... as

6-k(n) = 6(6-(k-i)(n) - 1) regarding 6(n) as 6o(n), and 6k(n) is the link number such that

n + 1 S 6i (n) < 62 (n) < • • • < 6k (n), a6. (.) gE O for 1 f{ w f{ k, and as = O for s 7E 6. (n)

and n S s S 6k(n) - 1. It is obvious that 6(n) =n when a. I O. In case K+1 S n, 6(n)
always exists since orK+i 7E O.( See Fig.2.5.4)

Lemma 2.5.1 Suppose any entry of VVTH(e)W or zl}U is described as

                        Ul U2                        2pu fu+ 2 pu fu (2•175)
                       u=1 u--Ui +1
where ptt is an inertial parameter and fu is a polynomial of trigonometric functions of e

. If fu for 1 SuS Ui are linearly independent functions and pu for Ui +1 SuS U2 are
fundamental parameters, then pu for 1 S u S Ui are fundamental parameters.

Lemma 2.5.2 ZSRi +Z Rc +Z R<+i can be represented as

ZSRh +Z R< +Z Rc+i =

R9•

t}6Y

R6Z + cos ai.,R-Z(i)

+G2 (2.176)

for 1 <i < N where
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                   ZRc +Z Rc+i + G', if C+2 Si

              G2= ZRc+i+G', if i=C+1 (2.177)

                   Gt, if iSC
where G' is a vector whose entries are functions of e generated by Rg and Rg for i + 1 s

s< N.

Lemma 2.5.3

             6i (i)-1
     Hr (i, i) = 2 (JsZ + sin2 as+iJ"Y(s))

               .              s=z

             62(i)-1           + ,t/lil(,)[sin2 e(6i (i), s) sin2 a6,(i) (jg - jY + sin2 ors+iJ`Y(s)) (2.i7s)

                +2 sin e(6, (i), s) cos e(6, (i), s) sin2 or6, (i)jgY]

           +G3,1 + G3,2

for 1 S i S 4-1 or C S i S N where G3,i is a function of e generated by jg+sin2 as+iJ Y(s)

for 6i (i) s s -< N, jgi and jYZ + sin as+i cos as+iJ"Y(s) for 6i (i) s s s N, jg - jg +

sin2 as+iJ" Y(s) and jgY for 62(i) S s S N , and G3,2 is as follows:

                            'i) In case ofC+1SK
   a) If k < i, G3,2 is a function of e generated by Rg and Rg for i+ 1 s s s lv

  b) IfC+1Si.<- K,

                         K                    G3,2 =2[L,]Xa,+G,,, (2.179)
                        s=i

where Cs is a function of e gener.ated by Rfi and R% for s+1 S n S N and G3,3 by Rg

and Rg for K+2ss -< N
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  c) If 1 s{ i s{ 6 --- 1,

           6-1
      G,,, = 2 [L,]XC, + G,,,
           s=i
          +2 sin ec+i(- [Lc]XRcY.i + sin p[Lc]xR2., . cos p[LclxR<y.,) (2'i80)

          +2 cos ec+i([Le]XR2., - cos p[L<]XR?., - sin p[L<IXRY+,)

where es is a function of e generated by RXn and R;Yh for s+1 s n s N and G3,3 by Rg

   2Y    s for C+2SsS N.and R

ii) In case of K < C

  a) If C + 1 S i, G3,2 is a function of e generated by Rg and Rg for i + 1 s s s N

  b) If K< 6(C) SiSC- 1,

            C-1      G,,, =22[L,]XC,+G,,,
            s=i
          +2 sin e6+i(-[Lc]XReY., + sin p[LdXR?., - cos p[Lc]XRY.,)

          +2 cos ec+i([Lc]XReX.i - cos p[L<]XR?.i - sin p[L<]XRY.,)

where Cs is a function of e generated by Rg and Rg for c+2 s s s N.

   c) If K S i S 6(C) - 1,

              G3,2 =fiRg.,

                  +f,([Lc]xRg., - sin p[Lc]xR?.,)

                  +f3(ILe]XR?., - cos p[Lc]XR?.,)

                  +G3,3

where G3,3 is a function of e generated by Rg and Rg for i + 1 s s s N.

(2.181)

(2.182)



d) If 1Si< K,

where Gs is a function of e generated by R
   sy    s for K+2SsSN.and R
 In c) or d) fi,f2,f3 are as follows:

      fi = [LclX{[(CAi):, + (CAi)g,)](-2sin ec+i cosp- 2cos ec+i sin p)

           +2(6Ai)i3(6Ai)23(-2 sin e6+i sin p + 2 cos ec+i cos p)}

      f, = [(CAi)3, + (CAi)3,](-2sin e6.,) + 2(eAi),,(eAi),, cos ee.,

      f3 = [(CAi);3 + (CAi)g3](2 cos ee+i) + 2(CAi)i3(CAi)23 sin ec+i

and
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      C-1
G,,, =22[L,]XC,+G,,,
      s=i

    +fi R?+i (2.183)
    +f2(IL6]XR7., - sin p[L<]XR?.,)

    +f3([Lc]XR?., - cos p[Lc]XRg.,)

            -X. and RhY fors+1snsN and G3,3 by Rg

(2.184)

                  Hr(C, C) =jcZ+sin2 a6+iJ"Y(C). (2.185)

Lemma 2.5.4

                6i(i)-1   Hr(i, 6(i) - 1) = 2. [cos e(6(i), s) sin a6(i)(jY• Z + sin ai., cos ai.,JY(i))

                s=z
                 +sin e(6(i), s) sin a6(i)j: Z] (2•186)

               +G4,1 + G4,2

for K+1 S i S N and i l.C where G4,i is a function of e generated by jg+sin2 as+iJ"Y(s), Rg

and Rg for i <- s s N, jgZ and jgZ+sinas+i cos as+iJY(s) for 6i(i) s s s N, jg -jg+

sin2 ors+iJ" Y(s) and jgY for 6i(i) S s S N , and G4,2 is as follows:
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i) In case of C + 1 S K, G4,2 disappears

ii) In case ofKSC-1

  a) If C + 2 S i, G4,2 disappears

  b) If 6(C) S i S 6+1, G4,2 is a function of e generated by (-[Lc]XRg., +sin p[L<]XR?.,

  - cosp[L<]XRY.,) and ([Lc]XR?., - cos plLc]XR?.i - sin p[Lc]XRg+i)

  c) If K+ 1 S i S 6(6) - 1, G4,2 is a function of e generated by RY+,,

  ([Lc]XRcY., - sinp[LdXR2.,), and ([Lc]XR?., - cosp[LdXR2.,),

and

Hr(C,6(C) - 1) = cos e(6(C),C) sin a6(c)(jcYZ + sin ac+i cos ac+iJY(C))

             + sin e(6(C), C) sin a6(c)j?Z + cos a6(c) (jcZ + sin2 ac.,J"Y(C))

             +[cos ec+i([LclXRcX., - cos p[Lc]XR?., - sin p[LdXR7.,)

             - sin ee+i([Lc]XRcY.i - sin p[L<]XR2., + cos p[L<]XRg.,)](6(C)-iAc)SZ•i87)

             +R6X([CL6(c)-,,c]X(6(C)-iAc),, - [CL6(c)-,,6]Z(6(C)-iA6),,)

             +iR.Y([6Lfi(c)-i,e]Y(6(C)-'Ac)33 - [CL6(c)-i,dZ(6(C)-iAc)32)

             +G
where G is a function of e generated by Rg and Rg for C + 2 s s s N.

Lemma 2.5.5

               Hr(i,2')= Hr(i,i)

                          i-1
                      +R9 2 [Ls]X cos e(s + 1, i)

                          S=J'
                                                     (2.188)
                          Z-1                      -]R•iY 2 [Ls]X sin e(s + i, i)

                          S=ji

                      +Gs
for 1 S 2' <- iSK and 1' lC, where Gs is as follows:
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i) In case of KSC-1 ,Gs is a function of e generated by Rg and RY. for i+1 sss N,

ii) In case of C+ 1 g K

   a) IfC+2SiS K, Gs is a function ofe generated by Rg and Rg for i+1 sss N,

   b) If i =C or i=C+1 and 1 S j <- C - 1, Gs is a function of e generated by Rg

  and Rg for C + 2 s s s N, [L6]XRcX., - cos p[LclXR?.i - sin p[Lc]XR<Y+i,

   and [Le]XRcY., - sin p[LdXR7.i + cos p[Lc]XR<Y.,,

   c) If1 ( a' -< i <- C-1,Gs isa function ofegenerated by Rg and Rg for i+1 <- ss N,

and

                   Hr(i, C) == cos e(6 + 1, i) [L6]XRiX

                          -sin e(c +i, i) [Lc]X ]R.iY (2.lsg)

                          +Gs,1

for C+2 S i S K where Gs,i is a function of e generated by Rg and Rgfor i+ 1 s s s N.

Lemma 2.5.6 Hr(i,j') for 1 S i,2' -< N is a function of e generated by some inertial

parameters given in Theorem 2.5.1

 The proof of Lemmas 2.5.1 is same as that of Lemmas 2.3.1, hence we omit it. The
proofs of Lemmas 2.5.2, 2.5.3, 2.5.4, 2.5.5 and 2.5.6 are given in Appendix.
(Proof of Theorem 2.5.1) Representing ig as ig = [ig. igy ig. ]T and using

                         NLemma 2.5.2, we evaluate g • (2 Rs + R< + R<+i)(== U) about coordinate system
                         S=1
(Oi.i; Xi.i, Yi-i, zi-i)• Then partially differentiating it by ei and using the relation Zg ==Z-i

A:• Z-ig, we obtain

                    zSt;.U== ig, RIXI --i g. RYii +G (2.lgo)

for 1SiSN and ilC+1, and

                 SZt?U= C'ig, RcX.,- C'ig. RcY.,+G (2.191)

                                                             '
where G is a function of e generated by Rg and Rg for i+1 S s s N if i l6 , for

C+2 <- s S N if i = < , and G = O if i = C or i = N. It is easy to show that Zg. and
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igy are nonzero independent functions of es for 1 S s S i if zi is not parallel to g. or for

K+1 SsSi if zi is parallel to g. Hence, if Rg and RsY for i+1 SsSN are assumed

to be fundamental parameters, RdX and R6Y are also fundarnental parameters by Lemma

2.5.1. It can be derived in the same way that RXN and RYN are fundamental parameters.

By mathematical induction, we can conclude that R9• and RY- are fundamental parameters

for 1 S i S N if zi is not parallel to g or for K+1 S i ( N if zi is parallel to g.

  In the following, we first give a proof in case of K < C. For an arbitrary link number n

such that C+2 S n S Ar, assume that

j;' + sin2 ai.,J Y(i) (2.192)

for n+1SiSN,

j9• Z, jY• Z + sin ai+, cos ai+iJ Y(i) (2.193)

for n+1SiS N, and

                      j,X' -ji +sin2ai.,J"Y(i), jiY

for 6i(n) .< i S N are proved to be fundamental parameters. Let F be the set
fundamental parameters and Rg and Rg for K+1 S s s N . From Lemma

can derive that

 (2.194)

 of these

2.5.4 we

      Hr(n, 6(n) - 1) = sin a6(.) cos e6(.)(j%Z + sin an+i cos an+iJY(n))

                                                                  (2.195)
                                    -XZ                    + sin a6 (.) sin e6(.) Jn + G

where G is a function of e generated by fundamental parameters in F. Since a6(n) ; O ,

then sin a6(n) cos e6(n) and sin a6(n) sin e6(n) are linearly independent functions. Hence

we can prove by Lemma 2.5.1 that jYnZ +sina6(n+i) cosa6(n+,)JAY(n) and jXnZ are

fundamental parameters. Next, in case of 6(n) S n - 1 we can derive from Lemma 2.5.3

that

              Hr(n - 1,n- 1) = j:-, + sin2 anJAY(n - 1) +G (2. 196)

where G is a function of e generated by fundamental parameters in F. By Lemma
2•5•1, j:.i + sin2 anJ"Y(n - 1) is proved to be a fundamental parameter. Add these new

fundamental parameters to the set F.
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  Investigating Hr(i, 6(n)-1), Hr(i-1, i-1) for i = n, n-1, . . . ,6(n)+1 and Hr(6(n), 6(n)-

1) in order for an n such that 6i(C+ 1) S n S N, we can prove that the inertial parameters

in (2.192) for 6(n) S i S n - 1 and the inertial parameters in (2.193) for 6(n) S i S n are

fundamental parameters by use of the argument above. Add all these new fundamental
parameters to F. Next, we can derive from Lemma 2.5.3 that

 Hr(6(n) - 1,6(n) - 1) = jg(.)-, + sin2 a6(.)J"Y(6(n) - 1)

                       6i(n)-1                     + 2 [sin2 a6(.) sin2 e(6(n), s) (3g - jg + sin2 as.,J"y(s))

                       S=6(n)                                                                      (2.197)

                       +2 sin2 a6(.) sin e(6(n), s) cos e(6(n), s)jgY]

                     +G

where G is a function of e generated by fundamental parameters in F. Since a6(n) l O ,

then sin ce6(.) 7E O. Hence sin2 a6(.) sin2 e(6(n), s) and sin2 a6(.) sin e(6(n), s) cos e(6(n), s)

for 6(n) S s S 6i(n) - 1 can be easily proved to be linearly independent functions. We
                             -Zcan prove by Lemma 2.5.1 that J6(.)-, + sin2 a6(.)JY(6(n) - 1) and the inertial pa-

rameters in (2.194) for 6(n) SiS 6i(n) -1 are fundamental parameters. Add these new
fundamental parameters to F. Since NzN = e3, it is derived that Hr(N, N) = jk. jft

is a fundamental parameter by Lemma 2.5.1. Using the mathematical induction from
n = N to n = 62(C + 1) - 1 we can prove that the inertial parameters in (2.192) for
6i(C+1) - 1 S i <- N , the inertial parameters in (2.193) and (2.194) for 6i(C+1) S i S N

are fundamental parameters. Add these new fundamental parameters to the set F.
  Next, using (2.195), (2.196) again, we investigate Hr(i,6(i) - 1),Hr(i - 1,i- 1) for

i = 6i(C + 1) - 1,...,C +2 in order, then, since the inertial parameters in (2.192) for

6i (C + 1) - 1 -< i S N and the inertial parameters in (2.193) and (2.194) for 6i(C + 1) g

i S N have been proved to be fundamental parameters, we can prove that the inertial
parameters in (2.192) for C + 1 S i S 6i(C + 1) - 2 and the inertial parameters in (2.193)

for C+ 1 S i S 6i(C + 1) - 1 are fundamental parameters . Add these new fundamental

parameters to the set F.

  Next, From Lemma 2.5.3, we can derive that

                      Hr (C, C) =jcZ+sin2 ae+iJ"Y(C). (2.198)

We can prove that it is a fundamental parameter by Lemma 2.5.1. Add it to F. Next,
for an arbitrary n such that 6(C) S n -< C - 1, we can derive from Lemma 2.5.3 that
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          6i(n)-1
Hr(n, n) = 2 (jA + sin2 an+i + JY(n))

           s=n

        +2 sin ee+i(-[L6]XR.9.i + sin p[L<]XR2., - cos p[L<]XR7.,)

        +2 cos ec+i([Lc]XRg., - cos p[LdXR?., - sin p[LdXRY.,)

(2.199)

+G

where G is a function of e generated by fundamental parameters in F. Investigating
                                                  AZHr(n,n) when n = C - 1, we can prove by Lemma 2.5.1 that Jc-i + sin2 ac + J"Y(C -

1), (-[Lc]XRg., + sinp[L<]XR?., - cosp[L<]XRY.,), and ([Lc]XRcX., -- cosp[Lc]XR?., -

sinp[Lc]XRcY+i) are fundamental parameters since sinec+i and cosec+i are linearly inde-

pendent functions. Add these new fundamental parameters to F. Here, assume that the
inertial parameters in (2.192) for n + 1 S i S C - 2 are proved to be fundamental parame-

ters. Add these to F. Then for an arbitrary n such that 6(C) S n S C - 2, we can derive

from (2.199) that

HT(n, n) = jft + sin2 a.+i + J"Y(n)

(2.200)

+G
where G is a function of e generated by fundamental parameters in F , hence we can prove
jA + sin2 a.+i + J"Y(n) to be a fundamental parameter by Lemma 2.5.1. Add it to F.

Using the mathematica} induction from n = 6 - 2 to n = 6(C), we can conclude that the

inertial parameters in (2.192) for 6(C) S i S C - 2 are fundamental parameters. Add these

to F.

  Next, for an arbitrary n such that 6(C) S n S C+ 1, assume that the inertial parameters

in (2.193) for n+ 1 S i S C+ 1, and add these to F. Then, from Lemma 2.5.4 we can
derive that

Hr(n,6(n) - 1) = cos e(6(n), n) sin a6(.) (j%Z + sin a.+i cos a.+iJ"Y(n))

             +sin e(6(n), n) sin a6(.)jX.Z (2.201)

+G



65

where G is a function of e generated by fundamental parameters in F. We can prove by
Lemma 2.5.1 that jZZ + sina.+i cos a.+iJ"Y(n) and jEZ are fundamental parameters

because cos e(6(n), n) sin or6(c + 1) and sin e(6(n), n) sin a6(c + 1) are linearly independent

functions since sin a6(c + 1) l O. Add these new fundamental parameters to F. Using the

mathematical induction from n = C+ 1 to n = 6(C) in order, we can conclude that the

inertial parameters in (2.193) for 6(C) S i S C + 1 are fundamental parameters.

 Next, from Lemma 2.5.3 we can derive that

Hr(6(C) - 1,6(C) - 1) = j6Z (c)-, + sin2 a6(c)JY(6(C) - 1)

 6i(6)-1
+ 2) Isin2 e(6(c), s) sin2 a6 (c) (jg - jg + sin2 as.iJ"y(s))

 s=6(C)

+2 sin e(6(c), s) cos e(6(C), s) sin2 a6(e)jgY]

-2fi ([Lc]XRcY., - sin p[L<]XR2.,)
(2.202)

+2f2([Lc]XRcX., - cos p[L<]XR?.,)

+2f3RY+,

+G
where G is a function of e generated by fundamental parameters in F. fi,f2,f3 and
(sin2e(6(C), s) sin2 or6(c)) and (sin e(6(C),s) cos e(6(C), s) sin2 a6(c)) for 6(C) S s S 6i(C) - 1

can be proved to be linearly independent functions since or6(c) l O, hence , we can conclude

by Lemma 2.5.1 that j6Z (c)-, + sin2 a6(c)J Y(6(C) - 1) , the inertial parameters in (2.194)

for 6(C) S i <- 6i(C) - 1, and [Lc]XRcY., -sin p[L<]XR?.,, [L6]XR?., - cos p[LdXR2.,, RY.,

are fundamental parameters. Add these new fundamental parameters to 17.

 We have proved that the inertial parameters in (2.192) for 6(C) - 1 S i S N, the inertial
parameters in (2.193) and (2.194) for6(C) S i S N, ([Lc]XRcY.i-sin p[LdXRg.i), ([Lc]XRcX.,-

cosp[LdxR2.,), R<Y.,, (-[Lc]xRcY., + sinp[LdxRg., - cosp[Lc]xRY.,), ([Lc]xRg., -

cosp[Lc]XR2+, - sinp[L<]XR?+,) , Rif and RY' for K+1 S i S IV are fundamental

parameters by the argument above.
 Next, for an arbitrary n such that K+ 1 S n S 6(C) - 1, assume that the inertial
parameters in (2.192) for n S i S 6(C) -2 , the inertial parameters in (2.193) for n+ 1 S

iS 6(C) --1,and the inertial parameters in (2.194) for 6i(n) SiS 6(e) -1 are proved
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to be fundamental parameters, and add these assumed fundamental parameters to F.
Then, we can derive (2.195) by Lemma 2.5.4 and (2.196),(2.197) by Lemma 2.5.3 .
Hence, by the same argument as we used to prove the inertila parameters in (2.192) for
6i (C + 1) - 1 S i S N, the inertial parameters in (2.193) and (2.194) for 6i (C + 1) S i S N

to be fundamental parameters, we can prove that the inertial parameters in (2.192) for
K -<. i -< 6(C) -2 and the inertila parameters in (2.193) and (2.194) for K+1 S i S 6(6)-1

are fundamental parameters. Add these fundamental parameters to F.
  Let S be a number such that 1SSS K, [Li]X =O for 1 SiSS-1 and [Ls]X 7! O. (
S = 1 when [Li]X l O ). For an arbitrary n such that S < n < K, assume that Hr(n, n) is
a function of e generated by fundamental parameters and RdX and RY' for n + 1 s i s K

are proved to be fundamental parameters . Add these assumed fundamental parameters

to F. Then we can derive from Lemma 2.5.5 that

Hr(n, 1) = Hr (n, n)

    n-1+R: Åí [Ls]X cos e(s + 1, n)

    S=1
(2.203)

    n-1-RSYi 2) [Ls]X sin e(s + 1, n)

    S=1

+G
where G is a function of e generated by fundamental parameters in F. Since S < n,

    n-1 n-1then Z[Ls]Xcose(s+ 1,n) and 2[Ls]X sine(s+ 1,n) are non-zero linearly independent

    S=1 S=1functions. Hence, by Lemma 2.s.1, we can prove Rff and RY are fundamental parameters.

Add these to F. Next, we can derive from Lemma 2.5.3 that

Hr(n - 1,n- 1) = jit-, + sin2 anJ"Y(n - 1)

    K
+2 2 [Ls]XGs
  s=n-1

(2.204)

+G
for 2 S n S K where G is a function of e generated by fundamental parameters in li', Gs is
a function of e generated by R9 and ]ftY• for s+1 s i s N, then, we can prove by Lemma

2.5.1 that jfi-i + sin2 anJaY(n - 1) is a fundamental parameter. Hence, Hr(n - 1,n- 1)
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is a function of e generated by fundamental parameters. Hr(K, K) has been proved to be
a function of e generated by fundamental parameters, and R9• and RiY for K+ 1 s i s N

have been proved to be fundamental parameters. Using the mathematical induction from
n = K to S+1, we can conclude that RiX and R6Y for S+1 s i s K and ji' +sin2 ori+,JY(i)

for S S i S K - 1 are fundamental parameters. Add these new fundamental parameters
to F.
  Next, for an arbitrary n such that 1 S n S S - 1, assume that jzZ' + sin2 ai+iJ Y(i) for

n+1 S i S S-1 are fundamental parameters. Add these assumed fundamental parameters
to F. Then we can derive from Lemma 2.5.3 that

                     Hr (n, n) = j: + sin2 an+iJ"Y (n)

                                                                  (2.205)
                             +G

where G is a function of e generated by fundamental parameters in F. We can prove by
Lemma 2.5.1 that jg+sin2 an+iJ"Y(n) is a fundamental parameter. jg+sin2 as+iJ"Y(S)

has been proved to be a fundamental parameter. Using the mathematical induction from
n = S-1 to n = 1 we can conclude that jzZ' + sin2 ai+iJ"Y(i) for 1 S i S S-1 are

fundamental parameters.
  RdX and R6Y have been proved to be fundamental parameters for 1 S i S N when zi is

not parallel to g, for K+1 Si SN when zi is parallel to g, and for S+1 SiS N.
Hence, it is obvious that they are fundamental parameters for Q + 1 S i S N.

  We have proved that the inertial parameters in (2.192) for 1 S i S N, the inertial
parameters in (2.193) and (2.194) for K+1 S i s N, R9• and RY- for Q+1 s i s N,

        [Lc]XRcY.,-sinp[Lc]XR2.,, [Lc]XR?.,-cosp[LdXR?.,, RY.,, (2.206)

and

               -[Le]XRcY., + sin p[Lc]XR?., - cos p[L<]XRg.,,

                                                                  (2.207)
                1[Lc]XR?., - cos p[L<]XR2., - sinp[L<]XRY.i

are fundamental parameters. The fundamental parameters in (2.192) for 1 SiS N, in
(2.193) and (2.194) for K+1 S i S N , and Ri and R,Y• for Q+ 1 S i S N are obvi-

ously linearly independent since each of them includes at least one link inertial pararneter

that does not appear in the others. Let F' denote the set of these fundamental parame-

ters. After we add the fundamental parameters (2.206) to F', we can easily show that the

fundamental parameters in F' are linearly independent. However, each fundamental pa-
rameter in (2.207) can be obtained as a linear combination of the fundamental parameters
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in (2.206). Therefore, all the elements of F' are linearly independent fundamental param-

eters in case of K < C. In case of C + 1 S K, we can prove the inertial parameters shown

in Theorem 2.5.1 are linearly independent fundamental parameters in the s.ame manner
as above. It is obvious from the argument above that zil}U is a function of e generated by

some inertial parameters in Theorem 2.5.1, hence, we can conclude with Lemma 2.5.6
that the inertial parameters in Theorem 2.5.1 generate the dynamic model (3.26). Thus,

the set of the inertial parameters in Theorem 2.5.1 constitute a base parameter set. The

number of base parameters is evident. 1

2.5.5 Conclusion

  A base parameter set has been shown in complete closed form for manipulators with a

planar parallelogram link mechanism. The exact number of base parameters has also been

shown. The size of a base parameter set does not depend on a virtually cut joint in the

planar parallelogram. The extension of the results to manipulators with general closed

chain mechanisms remains. The results of this section would cover most of commercially

available industrial manipulators with closed chain mechanisms.

2.6 Conclusion

  The base parameter set which is defined to be a minimum set of inertial parameters
that can generate a dynamic model uniquely was investigated for a general parallel and

perpendicular manipulator with rotational joints only in section 3. The results of section

3 was extended to a general parallel and perpendicular manipulator with rotational and

translational joints in section 4, and also the investigation of the base parameter set was

extended to manipulators with a planar parallelogram link mechanism in section 5. The

results in section 4 coincide with the results in section 3 by deleting the terms concerning

translational links, but such operation would be so complicated that it would be easier

to apply the results in section 3 to a manipulator if it has only rotational joints. Base

parameters are also the inertial parameters which can be identified independently from

link motion data and input data (joint torques or forces). We have given the definitions

and properties concerning the base parameter set and made clear the meaning of the
redundancy of the link inertial parameters. We have described each base parameter by a

linear combination of the link inertial parameters directly and completely in closed form.

We have given the exact number of base parameters in the set. Any base parameter set
can be obtained from this base parameter set by a nonsingular linear transformation. The
results of section 4 have been already extended to a general open-loop kinematic chain [35].

The investigation of base parameter set for a general closed-loop kinematic chain, which is

the final extension of the results in section 5, still remains. The method we took in proofs
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of theorems is very laborious and complicated, especially in proofs of lemmas, hence, the

extension of the investigation of the base parameters to complex kinematic chains would

need another mathematical tool or idea. Through making clear the redundancy of the
link inertial parameters, we have obtained the fact that some link inertial parameters can

only be identified in linear combinations i.e., some link inertial parameters only appear in

the form of linear combinations in the dynamic equations for manipulator. In multi-body

systems, similar phenomenon would arise. Hence, the definitions we have given would be

valid for multi-body systems.
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Chapter 3

Experimenta1
Identification

Parameters

Examination of the
Methods of Base

3.1 Introduction

  In this chapter, the identification methods of base parameters will be experimentally

examined.

  As mentioned in chapter 1, the dynamic model of the manipulator consisting of rigid

links is described as a set of nonlinear differential equations involving various constant

parameters: kinematic parameters, link inertial parameters, and dynamic parameters of

driving systems. If all the values of these parameters are known, we'can determine the

dynamic model. Hence, accurate values ofthe pararneters are required to obtain an accurate

dynamic model. The values of the kinematic parameters can be obtained from design data

or by kinematic calibrations. After they are obtained, for the purpose of determining the

dynamic model, it is suficient for us to obtain the values of base parameters and the

dynamic parameters of the driving systems. The most practical way to obtain them will be

to estimate them from the input data (joint torques or forces ) and link motion data (joint

positions, velocities, and accelerations if needed) which are taken while the manipulator is

in test motions. The identifiability of base parameters from such data has been ensured in

the previous chapter. Then it is very important to develop the identification method that

gives us accurate parameter values. Several authors have proposed identification methods

of the parameters.

  Mayeda et al. [40] have first proposed a general systematic identification method of

the parameters. The method consists of 3 types of simple test motions that move 1 or
2 joints simultaneously freezing the rest of the joints, and estimates a small number of

parameter values at a time using the data of a test motion and the formerly estimated
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parameter values. Beginning to estimate the parameter values of the last link, it estimates

parameter values step by step. Thus this method will be called step-by-step method. This

step-by-step method was applied to a 3 degree-of-freedom industrial manipu}ator [41], and

considerably good estimation of the parameter values have been reported. The method

was also applied to a 6 degree-of-freedom Direct Drive manipulator and the results were
also good [42].

  Atokeson et al.[23] written the dynamic model of manipulators as a system of equations

which are linear in terms of the inertial parameters that are identifiable independently.

They have proposed a method to estimate all the parameter values at a time applying the

least squares method to the system of linear equations using the input data and link mQ

tion data that are taken while the manipulator is in the test motion which moves all joints

simultaneously in random enough way. They applied the method to a 3 degree-of-freedom

Direct Drive manipulator. In the estimation, they have made clear the independently iden-

tifiable parameters of the manipulator in a closed form using a computer with a commercial

software. The experimental results showed that good estimates of parameters values were

obtained.

  Khosla [21] has independently developed a identification method very similar to the

method proposed by Atokeson et al. Khosla has also developed a computer-aided method
to find out identifiable parameters of manipulators by symbolic procedures for the Newton-

Eular formulation. Working with a 6 degree-of-freedom Direct Drive manipulator, he could

show that the good estimates were obtained by the method.
  Kawasaki et al.[43] have also developed a method similar to the methods proposed by

Atokeson et al. and Khosla. Moreover they have proposed to take advantage of the instru-

mental variable method instead of the simple least squares method to avoid inconsistent

estimation which is inevitable when the simple least squares method is applied with con-

taminated data. He applied the method to a 6 degree-of-freedom industrial manipulator .

He has made clear the identifiable parameters of the manipulator by symbolic procedures.

The experimental results showed that good estimates of parameters values were obtained.

  The methods proposed by Atokeson et al., Khosla, and Kawasaki et al. are all based
on the dynamic models of manipulators and estimate all the parameter values at a time

using the data sampled while the manipulator is in the test motion that moves all joints

simultaneously in random enough way. Hence they might be able to be grouped into one

method which could be called simukaneous method.
  Gautier and Khali1 [44] have developed a different identification method which is based

on the energy model of manipulators. From the energy model, they derived a energy
difference equation which is linear in terms of identifiable parameters. They have proposed

a method to estimate all the parameter values at a time applying the least squares method

to the equation, using the input data, joint position data, and joint velocity data which are

taken while the manipulator is in the test motion that moves ail joints simultaneously in

random enough way. They have also examined a direct determination of base parameter
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set by differentiating the energy functions of manipulators[31]. They recently applied their

method to a 6 degree-of-freedom industrial manipulator[45] and have shown that good

estimates of the parameter values were obtained.

  The identification methods should be examined on validity through experiments. Mayeda

et al. have examined their step-by-step method and Atokeson et al., Khosla, and Kawasaki.

et.al. have examined the simultaneous method through the experiments applying them to

their own manipulators. However, the validity of the identification methods may seriously

depend on type, degree-of-freedom, and driving systems of manipulators. The two identi--

fication methods should be applied to a same manipulator and compared totally through

experiments. Hence, in this chapter, we will experimentally examine the two methods on

validity applying them to a typical industrial manipulator PUMA 560 and compare them.

We will adopt also the instrumental variable method in applying the simultaneous method.

To evaluate the accuracy of the estimates, we will simulate the motion of the manipulator

using the estimates and compare the simulated trajectories with measured trajectories.

As the results, it will be concluded that the step-by-step method is more precise way to

estimate the parameters than the simultaneous method, however the simultaneous method
taking advantage of the instrumental variables method is nearly as precise way as the step-

by-step method. Moreover, we will describe in detail the contents of the work which is
needed to obtain the estimates by each identification method, and compare the methods
about the amount of labour (human involvement) and consuming time on a computer.

  As we will show in below, we can obtain a good estimates adopting the instrumental
variable method in the simultaneous method if we choose the instrumental matrix sequence

appropriately. Then, it is very crucial how to choose the instrumental matrix sequence.

Kawasaki et al.[43] used a instrumental model to make it. Their instrumental model is

very simple, however, it is not easy to determine the values of parameters in the model.

Afterwards, Kawasaki[46] proposed to use the dynamic models of manipulators as the
instrumental models, in which all the parameter values that are to be estimated are needed.

Hence, if we are to use the instrumental variable method with kawasaki's instrumental
model, we have to obtain in advance a set of parameter values that is appropriate for the

instrumental model. Kawasaki has not given any clear method to obtain it. Then, we will

propose a method to obtain it. Though it is very time consuming, it is very easy.

3.2 PUMA 560 and Its Base Parameter Set
  As shown in Fig.3.2.1, PUMA 560 is a 6 degree-of-freedom typical industrial manipu-

lator and all joints are revolute type. To each link i of PUMA 560, a coordinate system

(oi;xi,yi,zi) is attached in the way shown in Fig.3.2.1. This is our convention adopted

also in chapter 1. Let 7i denote the twist angle between zi.i and zi measured around
                                               rxi-,. In case of PUMA 560, 7i .= O for i= 1,3 and 7i = i for i = 2,4, 5, 6. Joint variable
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ei is the angle from xi-i to xi measured around zi. Li

denotes the length of link i, and is described as

is the vector from oi to oi+i

  75

. zLi

                         zLi

Then, for PUMA 560, only [L]9 =
elements.

  We attach a load to 6-th link, w

                t-[[L]9• O [L]ij]

43.2[cm], [Ll,Z -- -15[cm], [L],Z =

hich is characterized by

43.3[cm] are

(3.1)

nonzero

Approximate mass:

                               1.6 [kg]

Approximate location of center of mass with respect to 6-th coordinate system:

                         [-7 7 11 ]` [cm]

Approximate moment of inertia matrix around o6 with respect to 6-th coordinate system:

                3.67 Å~ 10-2 7.59 Å~ 10-3 1.23 Å~ 10-2

                7. 59 Å~ 10-3 3.67 Å~ 10-2 -1.23 Å~ 10-2

                1.23 Å~ 10-2 -1.23 Å~ 10-2 2.s7 Å~ 10-2

The 6-th link and the load will be regarded as one link.

  Applying the results of section 1 in chapter 2 for this PUMA

base parameter set consists of 36 inertial parameters.

          Jlz == Ji + JY + J,Y + 2[L]gR,Z,

[kg • m2]

560, we obtain following
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J2z = Jg,

J2xz == J9Z - [L]9R,Z,

R2x == R9,

J3z = J,Z + J4Y,

J3xz = JgZ,

R3x = Rg,

J4z == Ji + Jg,

J4xz = JfZ,

R4x = R?,

J5z = J,Z + J6Y,

Jsxz = Jgz,

R5x = Rg,

J6z = J,Z,

J6xz = Jgz,

R6x == R6X,

Experimental Examjnation of the Identification Methods

   J2(x-y) = J9 - JY,

J2yz = JYZ,

R2y = Rg,

J3(x-y) - J9 - Jg + JY,

J3yz ,. JYZ,

R3y - Rg - Rg,

J4(x-y) - J? - Jg + Jg,

J4yz = J,YZ + [L],ZR3,

R4y - RY - Rg,

Js(.-y) - Jg - Jg + Jg,

J5yz == JgZ,

R5y = Rg - R6Z,

J6(.-y) = Jg - Jg,

J6yz = Jgz,

R6y = R6Y.

J2.y = J9Y,

J3.y = J9Y,

J4xy = JfY,

Js.y = Jgy,

J6.y = Jgy,

The dynamic equations for the kinematic chain of PUMA 560 can be described as

                  T = H(e)e + B(e, e)e + G(e)

(3.2)

(3.3)
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where T = [Ti ••• 76]t is joint torque vector, and e = [ei ••• e6]t is joint angle vector.

H(e), B(e,e), and G(e) are the inertial matrix, the Coriolis and centrifugal force term

matrix,' and gravity term vector, respectively. Each element of these matrices and vector

is a function of e generated by the base parameters shown above.

3.3 The Driving Systems ofPUMA 560
  The 6 joints of the manipulator are supplied torques by 6 motors via gear mechanisms.
Let emi denote the rotation angle of -th motor and em = [emi ••• em6]t. Then thejoint

angles are related to the motor angles by the gear mechanisms as

e= Ke. (3.4)

where

K=

kl

o

o

oo
k, O
O le3

o

o

k, O O
ks,4 ks O
k6,4 k6,s k6

(3.5)

ki = 1.60 Å~ lo-2, k2 == 9.26 Å~ lo-3, k3 = 1.86 Å~ 10-2

k4 = -1.32 Å~ 10-2, ks = -1.39 Å~ 10-2, k6 = -1.30 Å~ 10-2

ks,4 = 1.80 Å~ 10-4, k6,4 == 1.40 Å~ 10-4, k6,s = 2.51 Å~ 10-3.

  The gear mechanism for the last 3 degree-of-freedom of the wrist

motors 4,5 and 6 have some interactions.

  The dynamic models of the driving systeins will be described as

is sophisticated, and

                   T;ni=7mi-hiemi-biemi-cisgne.i (3.6)

for 1 < i < 6 where Tmi is 0th motor torque, 7'mi is transmitted torque from 0th
motor to gear mechanism, and hi, bi and ci are the moment of inertia, the viscous friction

coeMcient and the Coulomb friction coeficient around ilth motor axis, respectively. The
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inertia, the viscous friction and the Coulomb friction of the gear mechanism are supposed

to be concentrated around the motor axes. Let T'm : [T'mi ••• T'm6]t. Then we have

Tt m = KtT. (3.7)

  Combining (3.3),(3.6) and (3.7), we can obtain the dynamic model of PUMA 560. hi

and h2 appear in the dynamic model always in the forms of

Jlz + (ki)-2hi, (3.8)

                             J2z+(k2)-2h2, (3.9)
respectively. Therefore we can consider (3.11) and (3.12) as base parameters and abuse

Jlz and J2z to denote them, respectively. The parameters hi,bi and ci for 1 < i < 6
except for hi and h2 will be called driving system parameters. To determine the dynamic

model of PUMA 560, we have to estimate all the values of the 36 base parameters and the

16 driving system parameters. Those 52 parameters will be called model parameters, and

column vector of the 52 model parameters will be denoted by p.

  It is easily shown that all the values of the model parameters can be estimated from
motor torque and motor rotation data [40]. In this manipulators, each motor current and

rotation angle are measurable by an equipment and an encoder, respectively. Thus we can

obtain the motor torque and motor rotation data.

3.4 Identification by Step-by-step Method

  The step-by-step method consists of 3 types of simple test motions, such that we only

need to move one or two joints simultaneously, freezing the rest of the joint. The model

parameters are divided into a certain number of subgroups, and values of model parameters

in each subgroup are estimated from data of the test motions, use being made of formerly

estimated model parameter values.
  The extension of this method to general open-loop kinematic chains is given in [47]

3.4.1 Static Test

  If the manipulator stands still, the gravity term is written as

              6
Ti = -g• (zi Å~ ÅíRj)

             j'=i

(3.10)
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where g is the gravity vector. Denoting Zg by Zg = [Zgx Zgy Zgz]t, we can easily derive that

Ti = igxRiy - igyRix + Gi (3.11)

where Gi is a term figured out from Rsx and Rsy for i+1 < s < 6. Using (3.11) for
more than two angles of ei, we can estimate Rix and Riy provided that zi is not parallel

to g. Ti can be obtained from Tmi using (3.5),(3.7). To avoid the effect of the Coulomb

static friction around motor axis, we change 7mi gradually and measure T"Li and Tihi at

the instance when emi begins to move + and - directions, respectively. Then 7mi is
estimated as Tmi = (Tthi - Tihi)/2•

  Performing this test from i = 6 to 2, we can estimate Rsx and Rsy in (3.2). Using the

results obtained here, we can compensate the gravity term in (3.3). Thereby, we omit the

gravity term in later discussions.

3.4.2 Constant Velocity Motion Test

  Make ith motor rotate in constant angular velocity, freezing other motors. Then, ne-
glecting off-diagonal element of K since their effects are very small, we can derive from

(3.6) that

Tmi = biemi + cisgnemi• (3.12)

If we realize this motion for more than two angular velocities, it is easy to estimate bi and

ci from (3.12).

  Performing this test for every motor, bi and ci for1<i<6can be estimated. By
compensation, we omit the viscous friction and the Coulomb friction in later discussion.

3.4.3 Accelerated Motion Test

  Make an accelerated rotations about 6-th joint freezing the other joint. The motion

equation is described as

(k,2 J6z + h6)em6 = Tm6• (3.13)

  I"rom this we can directly estimate (k62 J6z + h6).

  Next, make accelerated rotations about 5-th joint for three different e6s freezing the other

joints. The motion equation about 5-th joint is easily derived as
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       [k,2 Jsz + hs + k,2,,k6-2h6 + k,2 (J6(x-y) sin2 e6 + 2J6xy sin e6 cos e6)]O'.s

    = -7ms'k6,sk6-i7m6.

By solving linear equations obtained from (3.14) for three different e6s, we can

J6(x-y), J6xy and k,2 J5z + hs + hgk6-2h6.

  Next, make an accelerated rotation about 6-th and 5-th joints simultaneously

the other joints. The motion equation about 6-th joint is easily derived as

(3.14)

estlmate

freezing

   k6[ks (J6xz sin e6 + J6yz cos e6) + k6,s J6z]ems

+ (kg J6z + h6)em6 - ic6k,2 [J6(x-y) sin e6 cos e6 + 2J6xy(2 cos2 e6 - 1)]eh, (3.15)

    --- 7m6•

Since k62J6z + h6, J6(x-y), and J6xy have been already estimated, by solving linear

equations obtained from (3.15) for three different e6s, we can estimate J6xz, J6yz, and

J6z, and hence h6.

  Continuing same kind test motions for the rest ofjoints, we can estimate all the rested

model parameters. 13 test motions are required for PUMA 560 (See Fig. 3.4.1). In this

method, by integrating both sides of the motion equations, we can avoid to use angular

acceleration data. The estimated values ofthe model parameter by the step-by-step method

are shown in Table 1.

3.5 Identification by Simultaneous Method

  Since the model parameters afl;ect linearly to the motor torques, (3.3), (3.6)and (3.7) can

be modified as

                          Tm=di(e, e, e, sgne)p (3.16)
where di(e, e, e, sgne) is 6 Å~ 52 block upper triangular matrix, each element of which is a

function of e,e,e. As shown in Fig. 3.5.1, making random enough accelerated rotations

for all the joints simultaneously and using the sampled data, we can estimate p by the least

squares method by use of iterative formula.

  The estimated values of the model parmeters are shown in Table 2.

  In general, data contain errors which are caused by the dynamics of sensors, noises and

so on. When we estimate the p by the least squares method using such contaminated data,

bias may arise for the estimate[48]. Kawasaki et al.[43],[46] have proposed a method taking
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Table 1 Model Parameter Values by Step-by-step Method

Parameter Value

Cl

C2

C3

C4

C5

%

1.42 Å~ 10-i

1.05 Å~ 10-i

1.24 Å~ 10-1

2.36 Å~ lo-2

1.43 Å~ 10-2

2.25 Å~ 10-2

   [Nm]

bi

t)2

b3

b4

bs

b6

8.63 Å~ lo-4

4.00 Å~ lo-4

3.67 Å~ 10-4

5.55 Å~ 10-5

4.27 Å~ 10-5

5.65 Å~ 10-5

   [Nms]

h3

h4

hs

h6

3.12 Å~ lo-4

2.30 Å~ 10-5

3.73 Å~ 10-5

3.16 Å~ 10-5

   [kgm2]

R2x
R3x
R4x
R5x
R6x
R2y
R3y
R4y
R5y
R6y

   7.27
1.85 Å~ 10-i

1.08 Å~ 10-2

-1.16 Å~ 10-3

-9.86 Å~ 10-2

5.24 Å~ 10-i

  -2.35
-8.60 Å~ 10-3

-2.65 Å~ 10-i

1.16 Å~ 10-i

    [kgm]

Parameter Value

Jlz
J2z
J3z
J4z
J5z
J6z

J2(x-y)
J3(x-y)
J4(x-y)
J5(x-y)
J6(x-y)

J2xy
J3xy
J4xy
J5xy
J6xy

J2xz
J3xz
J4xz
J5xz
J6xz
J2yz
J3yz
J4yz
J5yz
J6yz

  5.31
  7.01
  1.11
4.12 Å~ 10-2

3.81 Å~ 10-2

4.82 Å~ 10-2

  -2.58
2.11 Å~ 10-i

2.41 Å~ 10-2

3.42 Å~ 10-2

-3.85 Å~ 10-3

1.05 Å~ 10-i

2.12 Å~ 10-2

-7.57 Å~ 10-3

5.63 Å~ 10-2

-3.24 Å~ 10-2

   1.05
-4.85 Å~ 10-i

-3.58 Å~ 10-2

1.41 Å~ 10-2

4.47 Å~ 10-2

2.12 Å~ 10-1

3.07 Å~ 10-2

-1.78 Å~ 10-2

2.28 Å~ 10-2

-2.08 Å~ 10-3

    [kgm2]



<f`iiii)Ni

:-1

 /e
({.

/

83

9
. N.

---

;st

tt
't

--

" },
---- "

-. .

.

'N

'N

 ,
'N

Fig.3.5.1 A Test Motion for Simultaneous Method



84 Chapter 3. Experimental Examination of the Identification Methods

Table 2 Model Parameter Values by Simultaneous Method

Parameter Value

Cl

C2

C3

C4

C5

%

1.67 Å~ 10-i

1.21 Å~ 10-i

1.25 Å~ 10-i

2.89 Å~ 10-2

2.19 Å~ 10-2

2.35 Å~ 10-2

    [Nm]

bl

b2

b3

b4

bs

b6

4.30 Å~ lo-4

6.22 Å~ 10-4

3.10 Å~ lo-4

1.73 Å~ 10-5

2.39 Å~ 10-6

6.15 Å~ 10-5

    [Nms]

h3

h4

hs

h6

7.08 Å~ lo-4

3.69 Å~ 10-5

4.92 Å~ 10-5

3.64 Å~ 10-5

   [kgm2]

R2x
R3x
R4x
R5x
R6x
R2y
R3y
R4y
R5y
R6y

   8.94
-3.86 Å~ 10-2

5.63 Å~ lo-2

2.01 Å~ lo-2

-8.44 Å~ 10-2

3.27 Å~ lo-i

  -2.86
-3.91 Å~ lo-2

-2.11 Å~ 10-1

1.16 Å~ 10-i

    [kgm]

Parameter Value

Jlz
J2z
J3z
J4z
J5z
J6z

J2(x-y)
J3(x-y)
J4(x-y)
J5(x-y)
J6(x-y)

J2xy
J3xy
J4xy
J5xy
J6xy

J2xz
J3xz
J4xz
J5xz
J6xz
J2yz
J3yz
J4yz
J5yz
J6yz

   1.61
   5.24
-7.48 Å~ lo-i

-2.86 Å~ lo-3

-4.44 Å~ lo-2

3.81 Å~ 10-3

8.20 Å~ 10-i

-1.94 Å~ 10-i

-1.71 Å~ 10-2

-2.21 Å~ 10-2

6.96 Å~ 10-3

3.11 Å~ 10-2

7.25 Å~ 10-2

-2.16 Å~ 10-2

--
4.76 Å~ 10-3

9.99 Å~ 10-3

1.60 Å~ 10-i

2.86 Å~ 10-2

1.40 Å~ 10-2

--
1.38 Å~ 10-2

6.91 Å~ 10-4

3.57 Å~ 10-2

3.93 Å~ 10-i

-1.66 Å~ 10-2

--
2.60 Å~ lo-3

8.70 Å~ 10-3

    [kgm2]
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advantage of the instrumental variable method to avoid the bias. Then, we adopt also the

instrumental variable method in the estimation by the simultaneous method. We will call

this method as advanced simultaneous method in the later discussion. We, first, give brief

explanation of the instrumental variable method.

3.5.1 Instrumental Variable Method [4s]

We use the discrete time model of (3.16). It can be described by

                           +m[n]=di[n]p+e[n] (3.17)
                                                             AAwhere t7n [n] denotes the sampled value ofTm at sample time n, and b[n], O[n], O[n] denote

                      --- Athe sampled values of e, e, e, respectively, on the same sample time. di[n] is di which is
                 AtLdetermined by D[n], e[n], O[n]. e[nl is error vector.

  We define the following matrix and vectors.

ptN = [dit[1],dit[2],...,fot[N]]t (3.18)

YN = [t;n [i], +in [2],•••,ein [N]]t (3.19)

                        EN == [et[1],et[2],•

Using the data from sample time 1 to sample
concatenated form of equation (3.17):

••
,e` [N]]t. (3.20)

time N (N ) 9), we can obtain following

Then,

                       ylv = ptNp + eN•

it is possible to estimate the parameter p by weighted least squares method.

(3.21)

                      PN = (ptI,Wivpt.)-iptt,,iVV.y.

where PN is the estimated parameter vector using the data from sample time

WN is a weighted matrix. We can choose the WN such that

     (3.22)

1to N, and
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                            WN = ONnt.

where S?N is same size as ptN.

  In general, observed value vector yN and matrix ptN

as follows:

contaln nolses.

(3.23)

We can write them

yN = utNp' + gN (3.24)

                            ptN == VX+VN (3.25)
where V'N and p' are true value matrix and vector, respectively. gN and ptN are noise
vector and matrix, respectively. Substituting (3.24) and (3.25) into (3.22), we consider the

probability limit of the sequence PN (IV= 9 to infinity). Applying the Slutsky's Theorem,
it is derived under the assumption that OtNptN is nonsingular that

            p.IU}i.I.PN == p' +p"i-m.. Ijlii(ntNptN)-' •p"ilm.. -lil}nt.v. (3.26)

where

                          VN=-ptNPX+gN• (3.27)
Hence, if

                            p"ilm.-kn`.ptN (3.2s)

exists and is nonsingular, and

                          p"i-m. lil}ntNvN-o, (3.2g)

then, the instrumental variable estimate is a consistent estimate ofp'. The matrix sequence

ON (from N=9 to infinity) which satisfies (3.28),(3.29) is called an instrumental matrix

sequence. It is clear that the estimated value is asymptotically unbiased.

3.5.2 InstrumentalMatrixSequence
  In the instrumental variable method, we can choose the instrumental matrix sequence

freely as long as it has no correlation to the noise vector uN.
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  Since PUMA 560 is equipped only encoders to measure the values about motions, we can

obtain the joint angles with high precision. However we must estimate angular velocity and

angular acceleration data based on the allgle data. It is likely that the angular acceleratiQn

data is more contaminated rather than the angle and the angular velocity data. Hence, we

assume fo11owings:

D[n] = e' [n] (3.30)

f'*        [n]e[n] =      e (3.31)

.A. "* :e[n] =        [n] +e[n].      e (3.32)

we assume that b[n] is independent of e'[n], b[n], and b[n]. we assume also E[b[n]] = o,

for n = 1,2,3,.... The symbols with ' denote true values. E[•] denotes expected value of

(•). We finally assume that

lm[n] == T;n[n]. (3.33)

Then, we make a matrix sequence as follows. First, we estimate O'[n] in the way described

                        =. "*                                                [n]. Next, since each element ofin the next subsection. Let e[n]                                              e                            denote the estimated
di(b, e, e, sgne) is a function of D, e, e, we can obtain the same size matrix n[n] as sb[n]

          A-Ausing D[n], e[n], and b[n] instead of blnl . Thereby, we obtain a matrix sequence

s?N = [nt[1], . . . , nt [N]]t (3.34)

for N = 9, 10, . . .. If the test motion is not controlled by feedback of trajectory, this matrix

sequence has no correlation to the noise vector uN which are caused only by e[n]. Also,

the test motion is made move all joints simultaneously random enough way.

  Using this matrix sequence as an instrumental matrix sequence, we estimate p by iterative

formula.

3.5.3 Instrumental Model
From equations (3.3),(3.4),(3.6) and (3.7), we obtain
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(H+RK-i)e
= (K't)-iTm - (Be+G(e)+(Kt) -i (vK-i e + Csgn(K-i e)))

(3.35)

where

R = diag[hl, h2, h3, h4, h5, h6] (3.36)

V = diag[bl, b2, b3, b4, b5, b6] (3.37)

                       C= diag [cl, c2, c3, c4, c5, ad]. (3.38)

K is nonsingular.

                                                 -A  Using the equation as an instrumental model, we obtain O[n] by substituting b[n], e[n]

and im[n] into it.

  The instrumental model (3.35) is nothing but the dynamic model of PUMA 560 and it

is same as the instrumental model proposed by Kawasaki[46]. Hence, in advance, we need

a set of the values of the model parameters for the instrumental model. Kawasaki has not

given any method to obtain it. Then, we use the values of the model parameters which
were estimated by the simultaneous method where the least squares method was adopted.

  The estimated values of the model parmeters by the advanced simultaneous method are

shown in Table 3.

3.6 Discussion

Methods
and Comparisonof the Identification

  In this section, we will describe in detail the contents of the work which is needed to

obtain the estimates by each identification method, and compare the identification methods

about the amount of labour (human involvement) and consuming time on acomputer. We
will also compare them about the accuracy of the estimates. To evaluate the accuracy
of the estimates we will simulate the motion of the manipulator using the estimates and

compare the simulated trajectories with measured trajectories.

  First, we will describe in detail the contents of work in the estimation by each identifi-

cation method.

  The step-by-step method consists of 3 types of simple test motions, such that we only

need to move one or two joints simultaneously, freezing the rest of the joints. The model

parameters are divided into a certain number of subgroups, and values of model parameters



Table 3 Model Parameter Values bY Advanced Simultaneous Method

Parameter Value

Cl

C2

C3

C4

C5

C6

1.28 Å~ 10-1

1.23 Å~ 10-i

1.23 Å~ 10-i

2.68 Å~ 10-2

1.56 Å~ 10-2

2.02 Å~ 10-2

    [Nm]

bl

b2

b3

b4

bs

b6

1.09 Å~ 10-3

4.17 Å~ 10-4

4.78 Å~ 10-4

4.01 Å~ lo-5

3.94 Å~ 10-5

8.31 Å~ 10-5

   [Nms]

h3

h4

hs

h6

3.62 Å~ lo-4

3.74 Å~ 10-5

3.22 Å~ lo-5

3.75 Å~ 10-5

   [kgm2]

R2x
R3x
R4x
R5x
R6x
R2y
R3y
R4y
R5y
R6y

   7.76
9.60 Å~ lo-2

-2.69 Å~ lo-2

-3.30 Å~ 10-3

-1.28 Å~ 10-i

3.15 Å~ 10-i

  -2.23
-5.10 Å~ 10-3

-2.63 Å~ 10-i

1.41 Å~ 10-i

    [kgm]

Parameter Value

Jlz
J2z
J3z
J4z
J5z
J6z

J2(x-y)
J3(x-y)
J4(x-y)
J5(x-y)
J6(x-y)

J2xy
J3xy
J4xy
J5xy
J6xy

J2xz
J3xz
J4xz
J5xz
J6xz
J2yz
J3yz
J4yz
J5yz
J6yz

   5.56
   7.84
   1.00
---

1.13 Å~ 10-2

5.76 Å~ 10-2

2.11 Å~ 10-2

  -2.46
7.40 Å~ 10-i

2.79 Å~ 10-3

4.68 Å~ lo-2

-1.31 Å~ 10-3

-1.12 Å~ 10-2

3.78 Å~ 10-2

1.11 Å~ 10-2

6.13 Å~ 10-4

1.15 Å~ 10-2

   1.07
--

8.09 Å~ lo-3

--
8.14 Å~ lo-3

6.88 Å~ 10-4

1.39 Å~ 10-2

2.80 Å~ lo-2

-1.75 Å~ lo-2

-6.92 Å~ 10-3

2.32 Å~ 10-3

-1.15 Å~ 10-2

    [kgm2]

89
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in each subgroup are estimated from data of the test motions, use being made of formerly

estimated model parameter values. The test motions are very simple, and it is easy to

understand how the target parameters in the test motion affect motor torques. Hence
programming for data processing is simple and of small size, and we can contrive good

test motions for the estimations. The estimated values of subgrouped parameters in each

motion test are examined by a small size simulation, and we can improve the test motion

and the accuracy of the estimation. On the other hand, this method requires a number
of test motions; 6 static tests, 6 constant velocity motion tests, and 13 accelerated motion

tests in case of PUMA 560. Hence, the step-by-step method requires considerable amount
of labour.

  The simultaneous method is simple to understand and requires only one random enough

test motion. Hence, it is easy to execute, however, the programming of data process is

more time consuming than that of the step-by-step method for the high degree-of-freedom

manipulators. The most serious drawback of this method is diMculty of convergence judg-

ment and a huge number of iterative calculations for convergence. In our estimation by
this method, as a test motion, we made the manipulator stand still in a configuration first,

and made the manipulator move by giving a command of torque values to each motor.
The motor current and motor angle data are taken at every 5 ms for each motor while

the manipulator is in the motion. The joint torques are computed from motor currents.
To obtain the joint velocities and accelerations, the joint angles, which are computed from

motor angles, are differentiated and double-differentiated, respectively. Fig.3.6.1 shows the

convergence of model parameters Jlz and J5z in iterative calculations when the model

parameters were estimated by simultaneous method and advanced simultaneous method.
In case of PUMA 560, the model parameters are grouped into two categories with respect

to convergence rate. Jlz is one of the model parameters which converge fast and have
relatively large values. J5z is one of the model parameters which converge slowly and have

relatively small values. The figure shows that it took about 80000 iterations for J5z to

converge in simultaneous method, and hence about 80000 data points were needed. Also it

took even about 40000 iterations for Jlz to converge. Still, a few parameters could not be

convinced to have converged after 120000 iterations. We stopped the estimation process

at this point and obtained the model parameter values as the estimates. It took about 36

hours as total for sun SPARKstation IPC to do 120000 iterative calculations. Thus, the

simultaneous method requires a huge number of data points and a very long time on a
computer for obtaining the estimates.

  The advanced simultaneous method is different from the simultaneous method only in
data process. Hence, it is also easy to execute. However, it uses the instrumental variable

method instead of the least squares method, hence, programming for data processing is

more complicated than that of the simultaneous method. Moreover, it is a crucial problem

to choose the instrumental matrix sequence. If we make the instrumental matrix sequence

using the instrumental model, then it is a problem to construct the instrumental model.
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This method also requires a big number of data points. As shown in Fig.3.6.1 it took
about 50000 iterations for J5z to converge and about 30000 iterations for Jlz. The other

model parameters also could be judged to have converged after about 80000 iterations.

Hence, the advanced simultaneous method requires a less number of data points than the

simultaneous method, however 80000 data points is still huge. In our estimation by this

method, we used the dynamic model of the manipulator as the instrumental model, hence

we needed a set of model parameter values to construct the instrumental model in advance.

We used the estimates by the simultaneous method for the instrumental model, which is

our proposal. According to our proposal, you could construct the instrumental model very

easily, however it would take a very long time.

  Next, we will compare the three identification methods about the accuracy of the es-

timates. To evaluate the accuracy of the estimates we will simulate the motion of the

manipulator using the estimates and compare the simulated trajectories with measured
trajectories. As the motion for the simulation, we made the manipulator stand still in a

configuration first, and made the manipulator move by giving a command of torque values

to each motor. The motor current and motor angle data are taken at every 2 ms for each

motor while the manipulator is in the motion. The joint torques are computed from motor

currents. To obtain the joint velocities, the joint angles, which are computed from motor

angles, are differentiated. The results are shown in Fig.3.6.2 - Fig.3.6.4. We can conclude

from these results that the step-by-step method is more precise way to estimate the model

parameter values than the simultaneous method, and the advanced simultaneous method
is nearly as precise way as the step-by-step method.

  The following is a summary of the above.

  The step-by-step method is precise way to estimate the model parameters, however, it

requires the most amount of labour among the three methods. The consuming time on a
computer for data process is the shortest.

  The simultaneous method is not so precise way as the other methods. It requires the
least amount of labour among the three methods, however, a huge number of data points

hence a very long time on a computer for obtaining the estimates.

  The advanced simultaneous method is as precise way as the step-by-step method. It

requires more amount of labour than the simultaneous method, however a less number of

data points and a shorter time on a computer than the simultaneous method.

  Finally, we give some comments on the experimental results.

  The convergence rate of model parameters in the simultaneous method and the advanced

simultaneous method depends on test motions. We did not take it into account at all.
Hence, the demerit that the methods require a huge number of data points might be able

to be improved. However, it is diMcult to find a good test motion with regard to the

convergence rate[49]. -
  PUMA 560 has only encoders at each joint, hence we can obtain joint angle data with
high precision, however we have to manage to obtain joint angular and joint acceleration
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data using the joint angle data. In our experiment, we obtained them by differentiating and

double-differentiating the joint angles, respectively. Thus, the acceleration data contained

a large amount of noise. It seems to have partially caused the slow convergence and the

inaccuracy of the estimation in the simultaneous method.

  PUMA 560 has a very sophisticated gear mechanism to move the 4-th, 5-th, and 6-th
link, and torques are transmitted to it with long rods which may be a little elastic. Those

factors may restrict the accuracy of the estimates, especially those of the 4-th, 5-th, and

6-th link.

  Though we had several assumptions to fu1fill the conditions to get estimates unbiased in

applying the advanced simultaneous method, the instrumental matrix and the noise vector
in (3.29) may have a correlation in practice, hence, the estimates may be biased. However,

the simulation results show the bias are very small.

  Strictly speaking, the origin of 4-th coordinate systems does not coincide with the origin

of 3rd coordinate systems; there is a gap of a few cent meters in the direction of x3. The

simulation results, however, show that the gap can be neglected in the dynamics of PUMA

560.

3.7 Conclusion

  We have experimentally examined to estimate the model parameters of PUMA 560 ap-
plying the identification methods: the step-by-step method, the simultaneous method, and

the advanced simultaneous method . To evaluate the accuracy of the estimates, we sim--

ulated the motion of the manipulator using the estimates and compared the simulated
trajectories with measured trajectories. We described in detail the contents of the work
which is needed to obtain the estimates by each identification method, and compared the

identification methods about the amount of labour and consuming time on a computer.

  We can conclude as follows. The step-by-step method is precise way to estimate the model

parameters, however, it requires the most amount of labour among the three methods. The

consuming time on a computer for data process is the shortest. The simultaneous method

is not so precise way as the other methods. It requires the least amount of labour among

the three methods, however, a huge number of data points hence a very long time on a

computer for obtaining the estimates. The advanced simultaneous method is as precise
way as the step-by-step method. It requires more amount of labour than the simultaneous

method, however a less number of data points and a shorter time on a computer than the

simultaneous method.

  For the advanced simultaneous method, it is a crucial problem to choose a good in-
strumental matrix sequence. If we make the instrumental matrix sequence by using the

instrumental model, it is a problem to construct the instrumental model. We have proposed

one method to obtain a set of parameter values which is needed to the instrumental model
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that has been proposed by Kawasaki. Though the method is considerably time consuming,

it is effective for accurate estimation and there is no diMculty.
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Chapter 4

Physical Impossibility of the Set of
Base-parameter Values

4.1 Introduction

  In this chapter, we propose a method to judge if a set of base-parameter values for a

manipulator determines the inertial matrix of its dynamic model to be positive definite or

not. The set of base-parameter values that is judged not to do is physically impossible.

  To obtain an accurate dynamic model of a manipulator for the inodel--based control,
accurate values of the parameters that appear in the dynamic model of the manipulator

are required. Then, it is important to have a good method to obtain the parameter values.

Hence, as far as the base parameters are concerned, we have experimentally examined
the identification methods of them, assuming the values of thb kinematic parameters are

known. If we could obtain the true values of the parameters, no problem would happen.

However we are forced to use estimated values to determine the dynamic model. Thereby
it may happen that the inertial matrix of the dynamic model is not always positive definite

for each configuration of the manipulator, though it is the fact that the inertial matrix

is positive definite for each configuration of the manipulator. If a set of base-parameter

values determines such inertial matrix, it is physically impossible and it is needless to

examine the accuracy of the values as far as we use the dynamic model derived under the

assumption that all the links of the manipulator are rigid. The dynamic model that is

determined by such a set of baseparameter values would express nothing in the physical

world. If the manipulator were controlled by using such a set of base-parameter values, a

good performance of the manipulator would not be ensured, and if the manipulator motion

were simulated, the results would not be worth believing. Hence, in this chapter we propose

a method to judge if a set of base-parameter values determines the inertial matrix to be

positive definite for each configuration of the manipulator or not, when we approximately

consider the continuous change of each joint variable of the manipulator as a finite set
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of discrete points. The method can be executed on computers. Using this method we
can judge if a set of estimated base-parameter values is "possible" or not. Here we use

"possible" in the sense that the set of base-parameter values determines the inertial matrix

to be positive definite for each configuration of the manipulator. If a set of base-parameter

values is not "possible", it is physically impossible. The physical impossibility of a set of

estimated base-parameter values is caused by the biased base-parameter values of the set.

We actually estimate a set of base-parameter values in the presence of a noise on data,

modeling error, and so on, hence, we are forced to have biased base-parameter values more

or less. Then, no estimation method would ensure to give a set of estimated base-parameter

values to be always "possible". If we unfortunately estimate a set of base-parameter values

not to be "possible", should we try to estimate again without any strategy ? Otherwise

should we try to develop the ultimate estimation method that gives always "possible" set

of base-parameter values ? Both would be just laborious and fruitless. Hence we will also

propose one method to modify the estimated base-parameter values for the set of theM to

be at least "possible" if we judge it is not. In the modification we will make the best of

the originally estimated base-parameter values. The modification of the estimated base-

parameter values might reduce the accuracy of some values, however, it would be better

that a set of base-parameter values that we use is "possible" than that it is not "possible",

i.e., physically impossible.

  Even if a set of base-parameter values is "possible", it is not always physically possible,

since being "possible" of a set of base-parameter values only ensures the inertial matrix

which is determined by the set of base-parameter values to be positive definite for each

configuration of the manipulator. Hence the study in this chapter is the first step in the

context ofmaking it clear which set ofbase-parameter values is physically possible. Actually

there has not been any study about the relationship between a set of base-parameter values

and its physical possibility or impossibility in the dynamic model. It would be important

to make it clear which set of base-parameter values is physically possible.

4.2 Inertial Matrix

  The inertial matrix of the dynamic model of a manipulator will be explained briefly.

  We consider the manipulator having open-loop kinematic chain with N Iinks and revolute

joints only. Then, the dynamic equations for the kinematic chain is described as

T=H(e)e+B(e,e)e+G(e) (4.1)

where T == [7i •••••• 7N]t is the joint torque vector and e = [ei •••••• eN]t is the joint

variable vector. H(e) is an N Å~ N inertial term matrix, B(e,e) is the Coriolis and



centrifugal force term matrix, and G(e) is an N-dimensional gravity term vector.

(i,]')-th element of inertial term matrix H(e) will be denoted by H(i,2'). Then

described as

                    N
      H(i, 3') = zi • (][i ) Js)zj

                   s=i

                   N-1
             +zi • { 2 [2(Ls • SRs+i)E - Ls X SRs+i - SRs+i (g> Ls]}z2'

                   s=i

             +zi • [(Lj,i • SRi)E - Lj,i X SRi]zj

for1S j' -<iS N, and

                             H(i,j') = H(]',i)

101

The
it is

(4.2)

(4.3)

for i < i where the notation used in (4.2) is same as that in chapter 2. The equation (4.2) is

quite same as that of the dynamic equations for the parallel and perpendicular manipulators

with rotational joints only which is treated in section 3 of chapter 2. The dynamic equations

that we have derived is a coordinate-free and vector-tensor form, hence, evaluating (4.2)

about an appropriate coordinate system, we have difference between H(i, 1') for the parallel

and perpendicular manipulators and H(i,j') for general open-loop manipulators.
  Using the rotation matrices and izi = [O O 1]t, we evaluate each H(i,j') about an

appropriate coordinate system, then we can describe it in the following form:

                               Tb
                              2pbvfbv(e) (4.4)
                              V=1

where fbv(e) is a polynomial of trigonometric functions of ei for 1 S i -< N. (fbv is allowed

to be a constant function), and pbv is a base parameter.

4.3 A Condition for a Set ofBase-Parameter Values
       to be "possible"

  In this section, first, a necessary and suficient condition for the inertial matrix to be

positive definite will be derived. As shown below, the condition is described as a system of

N inequalities, each of the N inequalities can be described as
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ni
2p,•fj(e) > o
)'=1

(4.5)

where pj• is a parameter generated by the base parameter set and fj•(e) is a polynomia} of

trigonometric functions of ei for 1 S i S N. Each inequality holds for each configuration

of the manipulator. Conversely, based on this fact and assuming all pi• as unknowns, we
can obtain the domain of the solutions of ni-tuples:(pi,...,pni) for the inequality to hold

for each ei and for each 1 S i S N. Then a set of base-parameter values is "possible" if

and only if the ni-tuples that is determined by the set of base-parameter values is in the

domain. The goal of this section is to obtain the domain.

4.3.1 A Condition for the Inertial Mat rix to be Posit ive Definite

  In this subsection, we will derive a necessary and suficient condition for the inertial

matrix to be positive definite using the elements of the inertial matrix. Taking advantage

that the inertial matrix is symmetric, we apply Sylvester's theorem to the inertial matrix.

Then, the inertial matrix H(e) is positive definite if and only if all the leading principal

minors of it are positive. We have hence a system of N inequalities because we consider

the N degree-of-freedom manipulator. Since each element of H(e) is described as shown

in the preceding section and leading principal minors are calculated by only multiplication

of elements and addition and/or subtraction of the. products, each of the N inequalities

can be described as

T
2 pv fv (e) > o

V=1

(4.6)

where pv is a parameter generated by base parameter set and fv(e) is a polynomial of

trigonometric functions of ei for 1 SiS N. T is the number of the terms ofa leading
principal minor that is considered.

  We remark here 3 items. First, after calculating a leading principal minor, we can delete

the linear dependency among fi,...,fn and pi,...,pn, thus we can modify (4.6) as

Trn

2 pmvfmv(e) > o
V=1

(4.7)

where p.v is a parameter generated by base parameter set and fml(e),...,fmT.(e) are

linearly independent. Secondly, p.v(v = 1,...,T.) is aparameter that is asum of products
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of some base parameters, for example, when the leading principal minor is 2nd order, pmv

may be described like p.v = (pbl)2 - pblpb2 + pb3pb4 where pbl,pb2,pb3, and Pb4 are

base parameters. Hence, pmv is continuous on the continuous change of base parameters.

Finally, any f.v(e) is a continuous and bounded function because it is a polynomial of

trigonometric functions.

  Consequently, we obtain the following system of N inequalities as a necessary and sufi-

cient condition for the inertial matrix to be positive definite.

 nl
Åí

Vl=1

n2

2
V2=1

pmivi f.ivi (e) > O

pm2v2 fm2 v2 (e) > o

---

 ni
2 pmivi fmi v, (e) > o

Vi=1

(4.8)

---

nN
Åí pmNvNfmNvN(e)>O

VN=1

where pmivi(i = 1,•••,N, vi == 1,•••,ni) is a parameter generated by base parameter set,

and fmivi(e)(i = 1,•••,N, vi = 1,•••,ni) is a polynomial of trigonometric functions of ei

for 1 S i S N, besides fmil, f.i2,..., fmini are linearly independent for 1 S i S N.

  The goal of this section is to show the subset of Rni of which the ni-tuples (pmi1, • • • , pmini)

must be the element when the ni-tuples is determined by a set of base-parameter val-
ues. Rni denotes the vector space consisting of ni-tuples. For the purpose, assuming

pmil,''',pmini to be unknowns, we will show the set of the solutions for the inequality
 ni
Åí pmivifmivi(e) > O to hold for each ei and for each 1 s i .< N.

Vi=1

4.3.2 ApproximationoftheInequalities
  Each of the N inequalities, derived in the preceding subsection, holds for each ei and

for each 1 S i S N. Then we must investigate the inequality when the functions change
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continuously. However, we will approximately consider each function as a finite set of
discrete points for simplicity, thereby we obtain a system of finite linear inequalities instead

of the inequality containing functions. In this subsection we will explain the approximation.

  It is suMcient for us to consider the joint variables ei as O S ei < 2T for each 1 S i S N,

hence 2T is divided into m pieces and ei is approximately considered to take these discrete
               2T
values. If ei takes -k where k is an integer (O -< k < m), it is denoted by ei[k]. Thus,
                m

    ei [o] = o, ei [i] = ?i'll, ••• ,ei [m - 2] = 27 - lii'i Å~ 2, ei [m - i] = 2T - i'l:. (4.g)

Then substituting el[kl],e2[k2],e3[k3],•••,elv[klVl into f.ivi(e), we can obtain a real
value and will denote it by f.iSkii' k2""'kN). Thus we obtain the system of finite linear

inequalities:

 ni
2 pmtvi frniSO,'

Vi=1

 ni
2 pmivi frni80,'

Vi=1

o,•••,o) > o

o,•-,1) > O

(4.10)

---

ni
2 pmivif.i8mi ' m,"',m) > o,

Vi=1

approximating the inequality:

 ni
2 pmivifmiv,(e) > o

Vi=1

(4.11)

If we take m large enough, we can obtain good approximation of (4.11) for each ei and for

each 1 <i< N.
  We introduce some symbols for convenience. vectors pi and fi are defined as

Pi = [Pmil PTni2 ''' Pmini]t (4.12)
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fi = [fmi 1(e) f., 2(e) ... fmin,(e)]t (4.13)

and vector f: is defined as

fl• == [fmi (o, o,•••,o)

1
fmiSO, o,•••,o) ' ' ' f.ihO; o•-••,o)]t. (4.14)

Then the first inequality in (4.10) can be expressed as fe •pi > O.

fzh- is defined to express the h-th inequality from the top in (4.10),

as

In the same way, vector
and vector fg• is defined

f2• - [fmi (ml ml...tm)

1 '"
fmi hZ. • m•••••m)]t (4.15)

where q = mM. Finally, matrix F i is defined as

Fi - (f: l f3 I ••• i fg. ). (4.16)

Then the system of finite linear inequalities (4.10) is described as

F5•pi > o. (4.17)

Each vector inequality holds for every component individually.

4.3.3 ExistenceofSolutions
  In this subsection we will ensure that the system (4.17) has solutions.

  We begin with a lernma concerning the dual systems

Atp)o and Ax=o,x2o (4.18)

where
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                        A= (alIa2I•••Iaq) (4.19)

is a q-columned matrix with arbitrary real entries, p and x denote vectors. Each vector

inequality and each vector equality holds for every component individually.

Lemma4.3.1 Thesystem

                                A`p >o (4.20)

possesses solutions if and only if the system of equations

                             Ax=o,x)o (4.21)

possesses only a solution x = o.

Proof As acorollary of Tucker's theorem [50] we can prove the lemma. 1

  Then, we have the following theorem.

Theorem 4.3.1 The system of finite linear inequalities (4.17) possesses solutions.

Proof We begin with showing that there is one constant function among

                    frnil(e), f.i2(e), ••• ,f.in,(e)

for each 1<i< N.
  The functions are obtained through calculating the leading principal minor of H(e). Let

detHr denote the r-th order leading principal minor (1 S r S N), then it is also described

as

                detHr= 2) sgn(o)H(1,a(1))•••H(r,u(r)) (4.22)
                        aE Sr
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where a denotes a permutation of the index set 1,...,r, S. denotes the set consisting of

all permutations, and sgn(a) denotes the sign of permutation a. Then detHr contains the
                r
term produced by fi H(s,s). On the other hand, from (4.2) each (i,i)-th entry of inertial

               S=1
matrix H(e) is described as

                             H(i,i)=J,Z• +G (4.23)

where G is a function of es (i+1 S s g N) generated by base parameters, and JzZ- is

                                                  r
(3,3)-th element of ZJi. Hence, detHr contains the term ll Jg which is not multiplied

                                                 S=1
by any function. This term will not be canceled by any other term, we will show it below.
The parameter Ji only appears in H(1, 1), hence, if

                  sgn(a')H(1, a'(1)) •••H(r, a'(r)) (a' E S.) (4•24)

                            r
contains the term that cancels fi Jg, then (4.24) must contain H(1,1). Hence, (4.24)

                           S=1
must contain one of H(2,2),H(2,3),•••,H(2,r) except H(2,1), but J5 does not appear

in H(2,s) for 3 S s -< r, which we can see through lengthy calculation of H(2,s) for
3 S s S r. Therefore (4.24) must contain H(2,2). By a similar argument, consequently,

                        rr(4.24) must coincide with fi H(s,s), hence ll Jg is not canceled. Then each leading

                       S==1 S=1                                         r
principal minor contains the term that include ll Jg and that is not multiplied by any

                                        S=1
function, hence we can make f.ini(e) to be constant function 1.

  Then we have fl• as

                      f;'=[ffi fil'''ftZ'q-i) i]` (4•25)

where fijk for 1 S k ( q- 1 are real entries. Hence, we can easily show that the system

                             Fix=o,x)o (4.26)

has only a solution x = o.

  By Lemma 4.3.l the system (4.17) has solutions. e
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4.3.4 ASet ofSolutions
  In this subsection we will show the set of the solutions of the system

Flpi >o (4.27)

for i= 1,•••,N. It will be shown as a subset of Rni.

  First, we will investigate a subset of solutions of the system

F:pB o (4.28)

for i = 1,•••,N and will denote it by Di. Secondly, we will investigate a subset of the
solutions of the equality fzk- • pi = O for k = 1,•••,q, which will be denoted by Szk• . Then

we will get rid of the intersection of Di and the union of Szl•, Si, ••• ,Sg• from Di. We

can ensure that the system (4.27) has solutions except pi = o because we have shown the
existence of the solutions of the system F:pi > o.

  We introduce some terms and symbols [50]. Let A be asubset of Rni, then we denote
by A* the set of all y E Rni such that c •y ) O for each x E A. The set A is called convex

cone if it satisfies that:

1. Ac EA if AE R,A }) O, and vE A;

2. xl + c2 EA if cl and x2 E A.

  Let B be a subset of Rni. A set B is said to span a convex cone A if B is a subset of A

and each vector of A can be expressed as a finite linear combination of vectors of B with

non-negative coeficients. If convex cone A is spanned by a finite set, A is called polyhedral

convex cone.
  Let A be a finite subset of Rnz, and A = {al, • • • , ap}. We denote by A[ the set consisting

of all vectors y E Rni such that

                       p
                   y=2•)tiai and Ai >- o (i =: 1,...,p).

                       i=1

  We can easily see that A[ isaconvex cone. We can also easily see that A' isa

cone if A is a convex cone, then A' is called dual cone of a convex cone A.

(4.29)

convex



                                                                     109

  Let A be a convex cone. A is called vertex-convex cone if A does not contain subvector

space of dimension r (1 S r S ni).

  As we mentioned in subsection 4.3.1, fmivi(e)(i = 1,...,ni) are linearly independent,

hence the rank of the matrix

                Fi=(fl• If3 l•••ijfg•)ERniÅ~q, n,<q (4.3o)

is ni, which is the number of the terms of i-th order leading principal minor. Then the
subvector space spanned by {f} I'f: l•••if9•} is ni-dimensional. Let sti denote the set

consisting of all indices of fl• (1 S j' <- q):

                          9= {1, 2, •••, q} (4.31)

and qi a subset of sti that satisfies the followings:

  1. {fl• l 2' E gi} spans a (ni - 1)-dimensional subspace that will be denoted by Wgi;

  2. There is 1-dimensional vector ygi in the orthogonal complement of VVgi (= Wqii)

    such that yg, E ({f,1•, f,2•, •••,fg• }Z)' and non-zero.

  Let Bi denote the family consisting of all the set gi. Bi is a finite set that has at most
2q elements.

  We now proceed to a important theorem:

Theorem 4.3.2 The set Di of the solutions of the system

                              F:pi >- o (4.32)

is equal to the polyhedral vertex-convex cone

                           {yq,[giEBi}l• (4.33)
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Proof We begin with the following lemma.

Lemma 4•3.2 Di = {f}, f3, •••,fg• }' is equal to the dual cone of {f}, f;, •••,fg. }L,

that is

                        Di-({f}, f;, •••,fg•}`)'. (4.34)

                                                      q-
Proof EachyE {f:, fZ•, •••,f,q•}Z is described as y=2fl•Aj•, Al• >. O. Then,

                                                     j'=i
y•a }r O holds for each x E Di. Hence, if c E Di, then x E ({f}, f;•, •••,fg• }L)', thereby

Di c ({f:, f;, ...,fg.}z)*.

  Conversely, if xE ({f:, f;•, •••,fg• }L)*, then y•a }) O holds for each

yE{fl-, f;•, ••t,f2•}Z. Hence, f;• •x)O also holds for each 2' =1,•••,q.

Therefore if cE ({f}, f;, •••,f2•}L)',then cE Di,thereby, Di ) ({f}, f;, •••,f9•}Z)'.

Consequently, Di=({f:, f:, •••,fg.}l)'. 1

  Therefore, it is suMcient for us to obtain the dual cone of polyhedral convex cone
{fS•• f;•, •t•,f2. }Z.

  According to the following theorem:

Minkowsky-Farkas' Theorem[50]: The dua] cone of polyhedral convex cone is poly-
hedral convex cone.

We can see that Di is a polyhedral convex cone, and by Weyl's Theorem[501, it is shown

that {ygi1gi E Bi} span Di.

  Finally, we will show that Di is polyhedral vertex-convex cone. We begin with following

leiuma.

Lemma 4.3.3 The dual cone of {fS, f:•, •••,fg•}is polyhedral vertex-convex cone if

and only if the rank of the matrix

                 Fi = (f:• If; l••• lfg.)E Rni Å~q, ni <q (4.35)

is equal to ni.
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Proof We assume that the subspace spanned by fl•, f;, •••fg• E Rni is r-dimensional

and r < ni, and denote that subspace by U and the orthogonal complement of U by Ul.

Then each y E Rni can be described as y =u+v where uE U and v E U-L. Ify=u+v
is a element of the dual cone of {fS, f;, •••fg• }, then

(u +v) • fl• 2o for ]' = 1, •••,q. (4.36)

That is

u• fl• )o for 2' = 1, •••,q (4.37)

because

v E u-L. (4.38)

Hence, if (u + v) E ({f:• , f,2• , • • • fg• }Z)', then u E ({f} , f3, • • • fg• }Z )*. This implies

({f:., f;, ...fg.}z)*

- ({f,i• , f?• , ••• fg. }z)* nu+ ui. (4.39)

If the dual cone ({f}, f;, •••fg• }[)' has a subspace of dimension 1, then the dual cone

has 2 elements b and -b among the elements spanning the dual cone, where b is a basis of

the 1-dimensional subspace. Then b satisfies

b• fl )O and -b• fl• 2O for 2' = 1, •••, q• (4.40)

Hence, b•fl• = O holds for 2' = 1,•••,q. This implies that the 1-dimensional subspace is

involved in UÅ}. If the dual cone has a subspace of dimension t and 1 < t < r, the subspace

will be shown to be involved in Ui in a similar way.

  We defined that polyhedral vertex-convex cone does not contain a subspace of dimension
t(t ) 1). Then the dual cone is polyhedral vertex-convex cone if and only if Ui is empty,

and Ui is empty if and only if the rank of Fi is ni. 1
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  The rank of Fi is ni as we mentioned above, hence by Lemma 4.3.3 the dual cone is

polyhedral vertex-convex cone. 1
  Though we can obtain the set of the solutions of the system F:pi ) o by finite calcu-

lations from Theorem 4.3.2, we must examine the set because what we should obtain is
the set of the solutions of the system F:pi > o, not F:pi ) o. We will examine the set

below.
  The dual cone of {f}, fZ, •••fg• } is the intersection of finitely many halfspaces

                          q.                         n{xERntlfl. •x }r O} (4.41)
                         J'--1

whose boundary hyperplanes are

                    {cER"ilfl• •x=o} (i s{j-< q). (4.42)

Then let Ql• denote the subset of Rni such that

                          {xERnil fl• •c> o}, (4.43)

and Sl• the hyperplane of Rnz such that

                          {xERnilfl• •c= o}. (4.44)

Because of the reason just mentioned above, we can describe the dual cone as

                                 q..
                            Di - n(Q9, Usl• ),

                                j'=1

hence, by short calculation, we can obtain

(4.45)

      q .q k-iDi -{n Q;,?}u [{ n Q:}n{s,k• nD,

     j'=1 k=2 S=1

}] u{sl• n Di}• (4.46)
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                                                               q•
  Therefore, we can see that the dual cone Di is constituted of the interior {fi Qlzl}, which

                                                               2'=1
is the subset of the solutions of the system F:pi > o, and boundary that is union of such

subset of hyperplanes that defined in (4.43). We can easily see that the interior is convex

set.

  F\om the examination above, we also see that the hyperplanes whose subset constitute

the boundary play very important role when we make use of the convex cone. Hence, it
would be worth while to obtain such hyperplanes.

  We use the following theorem:

Farkas' Theorem[50]: If A is a finite set of vectors, then A" == Al.

Applying Farkas' Theorem to {fl, f:, • • • fg• }, which is a finite set, and taking Lemma

4.3.2 into account, we obtain

{f}, fg, •••fg•}z-({f}, f:, •••fg•}z)**. (4.47)

By Theorem 4.3.2, the dual cone of {fl•, f;, •••fzq•}Z is polyhedral vertex-convex

cone that is described as {ygi 1 gi E Bi}[. We will apply Theorem 4.3.2 again.

For the purpose, we number the elements of {ygi l gi E Bi}l, and express them as

{y:, y;, .•••,yzS•} (s <- 2q). Let styi denote the set of all indices of yl•,then styi =

{1, 2, ••• s}, and Ci a subset of 9yi that satisfies the followings:

1. {y;zZ 11' E 6i} spans a (ni - 1)-dimensional subspace that will be denoted by VVci;

2. There is 1-dimensional vector vci in the orthogonal complement of Wei (= WcÅ}i)

  such that vci E ({y}, yz2•, •••,yi• }Z)' and non-zero.

Let ei denote the family consisting of all the set Ci. From Theorem 4.3•2, we obtain

{f:' f;', '''fg' }` =: {vci1ci E e,}[, (4.48)

hence, we can conclude that each element spanning the convex cone {f}, f;, •••'fz9}L

corresponds to one of the elements of {vci 1Ci E ei} and they would coincide if they
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were normalized. The hyperplanes whose subsetS constitute the boundary are the set
{Wci l6i E Ci} because each of them is orthogonal complement of the element which
spans the convex cone {fl•, f;, •••fg. }L.

  We obtained Npolyhedral vertex-convex cones andthe vectorspi = [pmq pmi2 • • • pmini]t

fori= 1, 2, ••• ,N, each of the vectors corresponds to the cone. Each polyhedral vertex-

convex cone can be obtained by finite calculations. Here, we state the main result of this

section:

  A set of base-parameter values is "possible" if and only if ench pi that is determined by

the set of base-parameter values exists in the domain that is determined from fi, and the

domain is approximately the interior of the polyhedral vertex-convex cone corresponding to

Fi•

4.4 Modification of Estimated Base-Parameter Val-
       ues

  After estimating a set of base-parameter values, we will be able to determine pi for

i = 1,2,•••,N as the constant vectors whose entries are real. Each constant vector pi

must be a element of the subset that is determined by fi, otherwise the inertial matrix

would not always be positive definite, that would be physically impossible. Nevertheless,

we may estimate such a set of base-parameter values that determine pi which is outside
of the cone. If we use such a set of base-parameter values, we can not ensure good control

performance of the manipulator. Hence, after estimating a set of base-parameter values we

should judge if it is "possible" or not, and modify the estimated base-parameter values for

the set of them to be at least "possible" if it is judged not to be. Then in this chapter we

propose one method to do it using the convex cone on computers.

4.4.1 Judgement
  Let p"i for i == 1,2, • • • ,N denote the constant vector whose entries are determined by a

set of estimated base-parameter values. A simple method to judge if it is "possible" or not

is to examine each p" i if

V6i •p"i >o (4.49)

holds for each Ci E ei and fori= 1,2,•••,N.
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4.4.2 A Method to Modify
  If the set of estimated base-parameter values is judged not to be "possible" ,there is at

least one p" i among p" i, p" 2, •••,p" N that does not hold vci •p"i >O for each 6i E ei. Then

let A denote the set consisting of all indices: 1, 2, •••,N, and r the subset of A which

satisfy that for g' E r,v6i p"2• f{ Oholds for some e)• E ej. Let S2- denote the subset of

e,•, (j' E r) which satisfy that for C,• E `Sj, vci p",• s{ O holds.

  We propose a method to modify the estimated base-parameter values taking the following

steps.

Stepl: We find the nearest point on the boundary of convex cone corresponding to
pi for i E r from the point p" i. We use "nearest" in the sense of Euclidean distance. The
nearest point would be easily found because we obtained hyperplanes Wci (Ci E Cj•) whose

subset constitute the boundary of convex cone, and it would be suficient to examine the

only hyperplanes Wci for Ci E Ei because p"i is near them outside the convex cone.

  Let p'Vi (i E I') denote the nearest point on the boundary of convex cone.

Step2: We obtainaline through the point p" i and pN i foriE Ir, and take another point
p" i in the interior of the convex cone and on the line.

Step3: We make ahypercube in the interior, taking its center on pV i and the length of

edges as 2ai for eachiE r. In the same way we make a hypercube, taking its center on
p" i for each i Åë r. Thereby we obtain a inequality for each element of pi for each i E A. It

is described as

Pmivi - ai S Pmivi f{ fomivi + ori (4.50)

for each iE r,

Pmivi - ai S Prnivi S Pmivi + C}fi (4.51)

for each i Åë r, for 1 S vi S ni•

Step4: We search the system of inequalities in Step3 for a set of base-parameter values.

After searching, if we fail to find the solution, we take ai as dvi+ei, 6i js appropriate positive

value, and go back to Step3.

  If we make the domain in each convex cone, for which a solution is searched, enlarge so

as to gradually cover the interior of the convex cone, we will surely be able to obtain a
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solution. Because each Pi that is determined by the set of true base-parameter values is

in the interior for each 1 Si <- N, and pmivi are continuous on the continuous changes of

the base--parameter values as mentioned in section 3, there is a domain in each convex cone

that is the neighborhood of Pi.

  It is needed to find a good algorithm for Step4 to search for a solution, but it should

be done after the structure of the manipulator is fixed because the algorithm needs the

information about the explicit forms of pmivi•

4.5 Conclusion
  We proposed a method to judge if a set of base-parameter values determines the inertial

matrix to be positive definite for each configuration of the manipulator or not, when we

approximately consider the continuous change of each joint variable of the manipulator as a

finite set of discrete points. The method can be executed on computers. Using this method

we can judge if a set of estimated base-parameter values is "possible" or not. If a set of

base-parameter values is not "possible", it is physically impossible. Also we proposed one

method to modify the estimated base-parameter values for the set of them to be at least

"possible" if we judge it is not.

  Though we used approximation in obtaining the subset of the solutions of each inequality

in (4.8), we could make the accuracy of approximation high enough for the purpose of

judgement and modification of the set of estimated base-parameter- values. Obtaining a

good algorithm in Step4 in chapter 4 would be very important.
  Even if a set of base-parameter values is "possible", it is not always physically possible,

since being "possible" of a set of base-parameter values only ensures the inertial matrix to

be positive definite for each configuration of the manipulator. Then it would be important

to make it clear which set of base-parameter values is physically possible. The study in this

chapter is the first step for the goal. The other properties that characterize the dynamic

equations for manipulators should be taken into consideration.
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Chapter 5

Concluding Remarks

  Dynamics of robot manipulators has been discussed in this dissertation, focusing on

inertial parameters of kinematic chains of the robot manipulators and identification of

them for dynamic modeling. For the model-based control of a robot manipulator, it is very

crucial to obtain an accurate dynamic model of the manipulator. The dynamic model of the

manipulator consisting of rigid links is described as a set of nonlinear differential equations

involving various constant parameters: kinematic parameters, link inertial parameters of

its kinematic chain, and dynamic parameters of driving systems. If all the values of these

parameters are known, we can determine the dynamic model. Hence, accurate values of
the parameters are required to obtain an accurate dynamic model. The values of the
kinematic parameters can be obtained from design data or by kinematic calibration. The

most practical way to obtain the values of the link inertial parameters and driving system

parameters is to make test motions of the manipulator and to estimate them from the input

data and joint motion data which are taken while the manipulator is in the test motions.

  However, unfortunate}y, it is impossible to estimate all the link inertial parameter values

from the input data and the joint motion data in general since they are redundant to
determine the dynamic model uniquely. Hence in Chapter 2, we have investigated a base

parameter set which is defined to be a minimum set of inertial parameters whose values

can determine the 'dynamic model uniquely for each of three types of manipulators. The

investigation of a base parameter set would give us many insights into the structure of the

dynamic equations.
  The base parameters are also the parameters that can be identified independently from

input data and joint motion data. We have described each element of the base parameter
set in a linear combination of the link inertial parameters directly and completely in closed

form, also we have given the exact number of the base parameters.
  Next, it would be very important to have a good identification method to obtain the

values of the base parameters for modeling. Then, in Chapter 3, we have experimen-
tally examined to estimate the base parameters for an industrial manipulator applying

the identification methods: step-by-step method, simultaneous method, and advanced si-
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multaneous method. We have compared the methods about the accuracy of estimates.
To evaluate the accuracy of them, we have simulated the manipulator motion using the

estimates and compared the simulated trajectories with measured trajectories. We have

also described in detail the contents of the work which is needed to obtain the estimates

about each identification method, and compared them about the amount of labour and

consummg tlme on a computer.
  If we could obtain the true values of the parameters, no problem would happen. However

we are forced to have the estimates biased more or less, and determine the dynamic models

using them. Thereby it may happen that the inertial matrix of the dynamic model is not
always positive definite for each configuration of the manipulator, though it is the fact that

the inertial matrix is positive definite for each configuration of the manipulator. If a set of

estimated base-parameter values determines such inertial matrix, it is physically impossible.

Hence, in Chapter 4 we have proposed a method to judge if a set of base-parameter
values determines the inertial matrix to be positive definite for each configuration of the

manipulator or not, when we approximately consider the continuous change of each joint

variable of the manipulator as a finite set of discrete points. The method can be executed

on computers. Using this method we can judge if a set of estimated base-parameter values

is "possible" or not. We have also proposed one method to modify the estimated base-
parameter values for the set of them to be at least "possible" if we judge it is not. Even

if a set of base-parameter values is "possible", it is not always physically possible, since

being "possible" of a set of base-parameter values only ensures the inertial matrix to be

positive definite for each configuration of the manipulator. Hence the study in Chapter

4 is the first step in the context of making it clear which set of base-parameter values is

physically possible. It would be important to make it clear which set of base-parameter

values is physically possible.

  The results in this dissertation would have direct contribution to the identification prob-

lem of the inertial parameters for robot manipulators. Moreover, through the detailed

examination of the dynamic equations we have had a fact that some link inertial parame-

ters appear in the form of linear combinations in dynamic equations. Also we have noticed

that some sets of base-parameter values for the dynamic model are physically impossible.

Some other features of the dynamics of the robot manipulators have been found to be

quite important by several researchers. Those would help us to better understanding of

the dynamics of the robot manipulators.
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Appendix A

Proof of LemMa 2e3e3, 2e3e4, 2•3e5,
and 2e3.6

 Since inner product of two vectors can be executed about any coordinate system, H(i, j`)

in (2.17) can be evaluated for 1 S 2' <- i S N as follows:

            N    H(i,2') =2Sz:SJ,S.j
           s=i

           +"2"szpt2(sLtsssRs.i)E - sLsssRt.., - ssRs+isLt.] sz, (A'i)

            s=z
           +Zz:[(ZLS•, iZSRi)E - ZLj•, iZSR:] Zz,•.

Since using (2.13) and Lemma 2.2, we can derive that

       SSRs+i=SSRs-SRs=[O -RZB(s) RZ(s) ]t + GAi, (A.2)

                                                    'where GAi, is a vector whose entries are functions of e generated by RtX and R7 - RZB(t)

for t >. s+ 1. We obtain by direct calculations that

         2(SLt,SSRs+i)E -- SLsSSRt,+i - SSRs+iSL`s

             2[L]gRz(s) [L]gRzB(s) -[L]gRz(s)
                                                      (A.3)
         == llL]gRzB(s) 2[L],zRz(s). [L]gRzB(s) + D,

            -[L]gRz(s) [L].ZRzB(s) o
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where Ds = 2(SLt,GAi,)E - SLsGAI, - G.t4i,SL`,. Denoting ZLj•,i by

            iLii=[ [iLj•,,]x [iLj•,i]y [iLj.,i]z ]`,

it can be derived by Lemma 2.3.2 and izi = e3 that

         Zz:[(ZLS•, iZSRi)E - ZLj•, iZSR:•]

                   -R: [iL]•,i]i t

         = -(RY. -RZB(i))IZL2•,i]Z + GA3,

           R9 [Z Lj•, i]X + (RY. - RZB(i))[Z Lj•, i]Y

for t > i + 1. Define

         jg - Jg +2[L]gRz(.), Jg - Jg +2[L]gRz(s)

         jgy ., Jgy + [L]gRzB(,), jgz - Jgz + [L]gRzB(.)

         Jgz = Jgz - [L]gRz(s)

and

                      jg Jgy jgz

                s7.= Jgy Jg jgz .

                      jgz jgz Jg

Then substituting (A.3)-(A.7), Szi = (iAs)te3, Szj = '
(A.1), we obtain

           N.    H(i, 2') = 2eg ZAsS7s (jAs)t e3

          s=i

                    -R9 [i Li i]z t

          + -(RY. -RzB(i))[zLj•,i]z zAje,+

             R; [ZLI•,i]X + (R,Y• - RZB(i))IZLi i]Y

Appendix A

(A.4)

(A.5)

where GA2, is a vector whose entries are functions of e generated by R9 and RtY -RZB(t)

(A.6)

(A.7)

(j'As)te3, and Zzj = iAj•e3 for

GA3

(A.8)
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where GA3 is a function of e generated by RtX

 Since Li,i = O, it is obvious from (A.8) that

and RtY - RZB(t) for t ) i + 1.

       N.H(i, i) = 2eg ZAsS7s (iA

      s=i
s)t e3 + GA, (A.9)

where GA4 is a function of e generated by RtX and RtY -RZB(t) for t 2 i+1.

[ (iAs)3i (iAs)32 (iAs)33 ]` and (iAs)3i =O, (iAs)32 =O and (iAs)33 = 1

5.(i) by Property 2.3.1. Thus, we can derive by direct calculations that

(ZAs)te3 ==

for i<s<

H(i,i) -
I3c(o

2Jg +
s=z

  K fid 2 2(jg
d=c(i)+1 S=ad

   K fid+2 2 2(jgY(iA
  d=c(i)+1 S=ad

+jgZ(iA,)32(iAs)33)

(iAs)Zi + jg(iA,)g, + Jg

s)3i(iAs)3, + Jgi

(ZAs)Z3)

(ZAs)3i(ZAs)33
(A.10)

+ GA,.

Since (ZAs)g, == 1 - (ZAs)g, - (ZAs)g, (because ZAs is a rotation matrix) and (ZAs)g, =

(ZAfi.,.,.,)g, for c(i) < c(s) by Property 2.3.1, (ZAs)g, = -(ZAs)g, + (1 - (ZAfi.,,,-,)g,) =

-(ZAs)gi + (ZAp.(.)-,)gi + (ZAp.(.)-,)g3. Using this relation, we can derive that

  K2
d=c(i)+1

2jg(iA,)g, -- 2
S=ad d=c(i)+1

5d
2 jg(iA,)g,

S=ad

  X3.(o+i

+( 2
 S=ac(i)+1

jg)((iAfi.,,,)g, + (iAp.,,,)g,) (A.11)

  K-1+2
 d=c(i)+1

 fid+1

(2
S--ad+1

Jg)((iAfi,)gi + (iA6,)g3)•

Since (ZAp.(,))3i

and (2.24) that

== O and (ZAfi.(,))33 = 1 by Property 2.3.1, we obtain from (A.11), (A.6),
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     fic(i) K                 6d     >: J,i + 2 ]x) (Jg (iA,)g, + jg (iA,)g, + Jg (iA,)g,)

     s=i d=c(i)+I S=ad

       6c(i)
     - 2 (Jg + JyB(,))
       s=i

        K 6d     + 2 2 [(jg - Jg + JYB(s))(iAs)g, + (Jg + JYB(s))(iAs)g,]
      d=c(i)+1 S=ad

By (A.10), (A.12) and the fact that jg - jg == Jg - Jg from (A.6), Lemma

proved directly.

 It is obvious from (A.8) that

(A.12)

2.3.3 is

                    N.              H(i,7')=2egZAsS7s(jAs)t e3 + GAs (A.13)
                      .                 ' s--z

for i > j' where GAs is a function of e generated by RtX and R7 - RZB(t) for t ) i. We

can obtain by direct calculations that

       eg iA,Sjs(jAs)t e3 = jgY((iAs)3,(2As)3, + (iAs)3i(J'As)32)

                      +jgZ((iAs)33(jAs)3i + (iAs)3i(j'As)33)

                      +JgZ((iAs)33 ("As)32 + (iAs)32 ('As)33) (A•14)

                      +jg (iAs)3, (J'As)3i + jg (iAs)32 (j'As)32

                      +Jg(ZAs)33(jAs)33•

Here, let us consider i > a2 and j' = 6.(i).i. When 5,(i)-i < i S s S 5c(i), it is obvi-

ous by Property 2.3.1 that (ZAs)3i = O, (ZAs)32 = O, (ZAs)33 = 1, (6c(`)-iAs)3i ==
sine(aofi),s), (Pe(`)-iAs)32 = cose(or,(i),s) and (Pc(t)-iAs)33 = O. Using these and (A.14),

we can obtain from (A.13) that
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                                   '             X7c(i)
   H(i, fi.(i).i) = 2 (JgZ sin e(a,(i), s) + jgZ cos e(a.(i), s))

             s=i

             + :ll) ]IliS [jg(iA,),,(6c(t)-iA.),,+Jg(iA,),,(p.,,,.,A.),, (A•15)

              d=c(i)+1 S=ad

                       +Jg(ZAs)33(fic(`)-iAs)33]+ GA6

where GA6 is a function of e generated RtX and R9 - RZB(t) for t ) i and J9Y, jtYZ and

j9Z for t ) a.(i)+i. Since fic(i)'iAs = fie(i)-iAiiAs, it is derived by Property 2.3.1 that

         (fic(t)-iAs)3. = sin e(a,(i), i)(ZAs)i. + cos e(ac(i), i)(ZAs)2w (A.16)

for w == 1,2,3. Therefore

        2(ZAs)3.(fie(t)-iAs)3. =sine(a.(i),i)2(ZAs)3.(ZAs)iw

        w=1 w=1
                         +cose(a,(,),i)>l (iAs)3.(iA,),. (A•i7)

                                  w :1

                        =o

since Åí (ZAs)..(ZAs).. = O if u l v (because ZAs is a rotation matrix). By (A.17) and
   w=1Property 2.3.1, we derive

    (ZAs)32(6c(o-iAs)32 = -(ZAs)31(fic(i)-iAs)31 - (ZAs)33(Pc(i)-iAs)33

                 = -(ZAs)31(fic(i)-iAs)31 - (ZAp.(,).i)32(fiC(i)'iAfi.(.)-i)32

                                                     (A.18)
                 = -(ZAs)31(fic(i)-iAs)31 + (ZAp.(.)-i)31(fiC(')'iAp.<,).i)31

                 +(ZAfi.(.)-1)33(6C(i)'IAfic(.).1)33

for s ) ac(i)+i. Since (ZAfi.(.)-,)32 = O when c(i) == c(s) - 1, using (A.18), we can obtain
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                               K fid         Pd    K    ]Åí 2jg(iA,),,(Bc(i)-iA,),, =- 2 ]X) jg(iA,),,(6c(t)-iA.),,

  d=c(i)+I S=ad d=c(i)+I S=ad
                            + "2" ( fi2"i Jg)((iA6,),,(fic(t)-iAp,),, (A'19)

                             d=c(i)+1 S=ad+1

                            +(ZAfld)33(fic(i)-iA6,)33)•

Hence

           K 6d          Z 2 [jg(iAs)3,(6c(t)-iAs)3, + jg(iA,)3,(Pc(i)-iAs)32

         d=c(i)+1 S=ad

                  +Jg(ZAs)33(6c(o-iAs)33]

                                                         (A.20)
             K fid         = 2 2[(jg-jg+JYB(s))(iA,),,(fic(i)-iAs)3,
           d =c(i)+1 S=ad

                      +(Jg + JYB(s))(ZAs)33(fic(`)-i As)33]•

By (A.15) and (A.20), Lemma 2.3.4 is obviously proved.
 When a.(i) S 1' < i S s, iAj-e3 = e3 and (j'As)te3 = (iAs)te3. Thus, we can derive from

(A.8) and (A.10) that

       H(i, 1') = H(i, i) + R9 [Z Lj•, i]X + (RY. - RZB(i)) [Z Lj•, i]Y + GA, (A.21)

where GA7 is a function of e generated by RtX and RtY - RZB(t) for t ) i+ 1. By (2.15),

           • • Z-1we can describe ZL2',i as ZLJ•,i = sll?j(SAi)t SLs. When a,(,) S j' <- s < i, we obtain by

(2.3) and Property 2.3.1 that

      [Z L2•, i]X = 2[qg cos e(s + 1, i), [i Lj•, i]y = -2 [L]g sin e(s + 1, i). (A.22)

             s=j s=j
Lemma 2.3.5 is obviously proved by (A.21) and (A.22).
 It is obvious from (2.34) in the proof of Theorem 2.3.1 that all the g • (zi Å~ SRi) for
1 S i S N are functions of e generated by Rg and Rg - RZB(s) for 1 S s S N if zi is
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not parallel to g or for a2 S

for 1 S i S 6i ). From (A.8),

H(i,2')

s S N if zi is parallel to g (in this case g• (zi Å~ SRi) = O

H(i,j) for 1 S j' -< i S N can be represented by

  N=2egiAsS Ts(jAs)`e3 + GAs (A.23)
  s=i

where GAsis a function of e generated by RtX an

[ liVil Wi2
       Nwi,]=2eg
      s=i

dRtY- RZB(t) for t 2 i.

ZAsS7s(ZAs)t.

Here, we define

(A.24)

Then, since (jAs)t = (ZAs )t(jAi)t,

N.2 egZA,sj.
s= i

(j'As)`e3 == [ Wii Wi2 Wli3](jAi)te3. (A.25)

When j' = i, H(i,i) = Wi3 + GA4 from (A.10) and (A.25). Since it has been shown by
Lemma 2.3.3 that H(i, i) is a function of e generated by the inertial parameters given in

Theorem 2.3.1, so is VVi3 for 1 g i S N. When 1' '---- 5c(i)-i,

           H(i, 6c(i)-i) = Wii sin e(ac(i),i) + Wi2 cos e(a.(i),i) + GAs (A.26)

from (A.23) and (A.25) since (6c(,)'iAi)te3 = [ sine(a.(,),i) cose(a.(,),i) O ]t by Prop-

erty 2.3.1. Since it has been shown by Lemma 2.3.4 that H(i,5,(i)-i) is a function of

e generated by the inertial parameters given in Theorem 2.3.1, so is Wiisine(a.(i),i) +
Wi2 cos e(a.( i) , i) for a2 S i -< N. cos e(a.( i) , i) and sin e(aofi) , i) are 1inearly indep endent

functions, and ea.(,), ea.(o+,, . . . , ei appear in neither Wii nor Wi2. Hence, we can conclude

that Wii and Wi2 for a2 S i S N are functions of e generated by the inertial parameters
given in Theorem 2.3.1. It is obvious from (A.23) and (A.25) that all the H(i,1') for 1' -< i

and a2 S i S N are functions of e generated by the inertial parameters given in Theorem
2.3.1. In the case that 1 S iS 6i, H(i,o') = Wi3 + GAs for j' <- i from (A.23) artd (A.25)

since (i'Ai)`e3 = e3 for 1 S j' <-. i S fii. Thus, H(i,2') is also a function of e generated

by the inertial parameters given in Theorem 2.3.1 for 1 S 2' <- i S 6i. Lemma 2.3.6 is
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Appendix B

Proof of LeMMa 2e5e2, 2e5e3, 2e5e4,
2e5e5, and 2e5e6

 We begin with the proof of Lemma 2.5.2.
 In case of i S C --- 1, using (2.145) and (3.35) we can describe ZSRi +ZR< +ZR<+i as

  2 ZAsSRs + ZA6 (C Rc + C'i R<+i) + ZA6+i (C+' Re+i + A,CRc) + 2 ZAsSRs . (B.1)

Then, using (2.147)-(2.149), we obtain the w-th (w = 1, 2, 3) entry of (B.1) as

              N. . .             2 {(zA,)., Rg +(zA,)., Rg + (zA,).,Rg}. (B.2)
             s=i
We can derive from (2.144) that

            (ZAs)w3 = - sin crs(ZAs-i)w2 + cos as (ZAs-i)w3. (B.3)

Applying (B.3) repeatedly and using (2.ls3)-(2.lss), we can deform :lll) (iAs).3R,Z in (B.2)

                                           s=i
as

             N. N-1.            2(ZAs).3Rg =- 2 (ZAs).2sinas+,R-Z(s)

            s=z s=z (B.4)
                      +(iAi).3 [RiZ + cos ai.,R-Z(i)]•

Then, we can describe (B.2) as



      Si) (iA,).,Rg + :lli) (iA,).,Rg + (iAi)., [RiZ + cos ai.,R-z(i)]. (B.s)

      s=z s=z

Consequently, we obtain

                      R9

        iSRi+iR<+iRc.,= R.iYi +G,, (B.6)
                      R6Z + cos ai.,R-Z(i)

where

                     N                     2 [(iA,),,Rg + (iA,),,R.gl

                    S=i+1            (G,,)x
                     N        G,,= (G,,)Y = 2[(iA,),,Rg+(iA,),,]R,g] . (B.7)
                    S=i+1
            (G,i)Z N'
                     Z [(iA,),,Rg + (iA,),,R,g]

                    S= i+1

 In the similar way,we can show that ZSRi +ZRc +ZRc+i is described as shown in

Lemma 2.5.2 wheni=CorC+1S i.• 1
 Next, we give the proof of Lemma 2.5.3, 2.5.4, 2.5.5 and 2.5.6. First of all, we rewrite

(3.25) as
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          6-1Hii(i, o') = zi • [2 Js] zj•

          s=i

          C-1      + zi • [2{2Ls ' (SRs+i + Rc + Rc+i)E

          s=z
            -Ls X (SRs+i + R< + Rc+i) - (SRs+i + Rc + Rc+i) X Ls}]zj

           N      + zi•[]Z J.]zj
          s=c
          N-1      + zi ' [2 {2Ls ' SRs+iE - Ls Q SRs+i - SRs+i Q Ls}] zj

          s=e

      + zi•Jczj

      + zi • [2L< • Rc+iE- Lc X Rc+i - R<+i X L<]zj

      + zi • J<+lz2•

      + zi • [Lj•,i • (SRi + R< + R<.,)E - Lj•,i X (SRi + R< + Rc.i)]zj.

Since the inner product of two vectors can be executed about any coordinate system, the
first and second terms of (B.8) can be evaluated as follows

        C-1      sz:• [2 sJs] sz,•

        s=i

    + s.:i]z')'{2sLt,(ssR,.,+sRc+sRc.,)E (B•9)
        s=i
    - SLs(SSRs+i + SR< + SRc+i)t - SSRs+i + SRc + SRc+i)SLts }]Szj

Flrom Lemma 2.5.2 and (2.147)-(2.149), we can derive that

(B.8)



130

                             o

          SSRs+i+SRc+SRc+i= -sinas+iR-Z(s) +Gis

                             cos as+iRZ(s)

where

                     :lli) [(sA,),,Rf + (SA,),,R,Y]

                    k=S+1

              G,,= S5 [(SA,),,R2+(sA,),,R.7] .

                    k=S+1

                     :llS [(sA,),,Rf + (sA,),,R7]

                    k=S+1
Then we can deform the 2nd term of (B.9) as

  2SLt, (SSRs.i + SR< + SRc+i)E

  -SLs(SSRs+i + SRc + SRc+i)t - SSRs+1 + SR< + SR<+1)SLt,

    2[Ls]Z cos as+i R-Z (s) [Ls]X sin or s+iR-Z (s) - [Ls]X cos as+i R-Z (s)

 = 1[Ls]X sin Qs+iR-Z (s) 2[Ls]Z cos ors+iR-Z (s) [Ls]Z sin as+i R-Z (s)

    -[Ls]Xcosas+iR-Z(s) [Ls]Zsinas+iR'Z(s) O

where

              Ds = 2 SLgG,sE - SLsGl, - G,sSLg.

Using (2.153),(2.157)-(2.161), and (B.11), we can deform (B.9) as

                  c-1 e-1                  2 Sz:SjsSzj + 2 Sz;DsSzj.

                  s=z s=z
In the same manner, using (2.154),(2.157)-(2.161),

of (B.8) as

Appendix B

(B.10)

(B.11)

   (B.12)

+Ds

(B.13)

(B.14)

we can deform the 3rd and 4th terms
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                   NN                   2Sz:• Sjs Szj+2 Sz:DsSzJ•, (B.15)
                   s=e s=c
artd using (2.155)-(2.161), we can deform the 5th, 6th, and 7th terms of (B.8) as

             Cz; <jc <zj• + <z: CD< CzJ• + <+izti C+ijc+i C+izJ• (B.16)

where

                 D< =2CL}Gi<E-<Lc G:< - GicCL}, (B.17)
                                                     '
                     (CAc.,),,R2., + (CAc.,),,R<Y.,

               Gic== (<Ac.,),,R2.,+(CA<.,),,RY., • (B.ls)

                     (cA<.,),,R2., + (CAc.,),,Rg.,

Then, using (2.166)-(2.168), we can describe (B.15) together with (B.16) as

               NN               2 Sz;SjsSzj +2Sz:DsSzj +Cz:Dc<zj. (B.19)
               s=c s=c
Here, we rewrite Cz:Dc<zj of (B.19) as Cz:(CAEDc<Ac)Cz2• where

                     cos(e< - ec) - sin(ec - ee) o

               CA2= sin(ec-ec) cos(ec-ec) o. (B.2o)

                         O OI
Thus, from (B.18), we see that CA}DcCAc includes dependent variables. Using (2.113)-
(3.2) we delete the dependent variables in CA2Dc<Ae,then, after lengthy calculation, we

obtain that

           <AEDcCAc + De

              dn di2 di3
                                                          (B.21)
           = d2i d22 d23 +2CLEGieE-eLcG:c-GieCLE

              d31 d32 d33
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where

       dii = -2(sin ec+i cos p[Lc]X + cos ec+i sin p[L<]X)RY+,

       di2 = sin ee+i(-[L6]XR?+, + cosp[Lc]XR?., - sin plLc]XR<Y.,)

          + cos ee+i(-[Lc]XRcY+, + sin p[Lc]XR2+, + cos p[Lc]XRg+,)

       d13 == O

       d,, = 2 sin ec.,(-[Lc]xR.g., + sin p[L<]xRg.,

          +2 cos ec.,([L6]xRg., - cos p[Lc]xR?.,)

       d23 =O

       d,, = 2 sin ec.,(- [Lc]xR.g., + sin p[Lc]xRg., - cos p[Lc]xRg.,)

          +2 cos e6+i([Lc]XR?., - cos p[Lc]XR?., - sin p[L<]XRY.,)

and

                     Si [(cA,),,Rf+(cA,),,iR.7]

                    k=e+2

              G,c=: :Åíi) [(CA,),,Rf+(CA,),,R7] .

                    k=6+2

                     :Åíl [(cA,),,Rf+(cA,),,R7]

                    k=C+2
In the calculation above, we used <Lc = [ [L<]X o o ]t.

, then, (B.14) and (B.19) can be unified and described as

                  NN                  2 Sz:SjsSzj + 2Sz:DsSzj.

                  s=z s=z
Since Szi = Sz,• = e3 (e3 = [O O 1]`) for 1 S 2' <- i < s S

             N2[Ls]X(Gis)X, then 2 Sz:-DsSzi- in (B.24) can be described as

             s=i

Appendix B

(B.22)

(B.23)

Let De denote CA2Dc<Ac + Dc

(B.24)

K and e5Dse3
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                      '              KN             22[Ls]X(Gis)X+a33+ 2 Sz:DsSz,• (B.2s)
              S=Z S=max(K+1,Z)
if i S C < K, otherwise d33 disappears.

 Next, the last term of (B.8) will be evaluated. Denoting ZLj•,i by

               iLi i= [ [i Lj, i]X [i L2•, i]Y [i Ll•, i]Z ]`, (B.26)

we can describe it by using Lemma 2.5.2 as

                 RIXi ([iLj•,i]X(iA,J)33 --• [iLi i]Z(iA,•)i3)

                +iR.iY([iLj•, i]Y(iA,)33 -- [iLj•,i]Z(iA,),,) (B.27)

                +G

where G is a function of e generated by Rg and Rg for i+ 1 <. s s N.

 Consequently, from above, we obtain that

                  N         Hr(i,2') = 2 Sz:Sj,Szj
                 s=i

                  KN                +22[L,]X(G,s)X+d,,+ 2 Sz:D,Szj
                  s==z s=nvax(K+1,z)
                                                        (B.28)
               +RIXi ([iLi i]X(iAj)33 - [iL2•,i]Z(iA2•)i3)

               +RSY([iLj•,i]Y(iA,•),, - [iL]•, i]Z(iA,)23)

               +G

for 1 S 1' <` i SC-- 1 where G is a function ofe generated by Rg and Rg for i+1 s s s N.

 In the same manner as was used in deriving (B.28) but more simply, we can derive that
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Hr(i,2')
  N=E Sz:sjsszj
 s=i

+22[Ls]X(Gis)X+ 2 Sz:•Ds
  S=i s=max(K+1,i)
+RIXi ([iLl•,i]X(iA,•)33 - [iLj•,i]Z(iA,),3)

+RiYi ([i Lj•, i]Y(i A,•),, - [iLl•, i]Z(iA,•),,)

+G

s Zj•

(B.29)

for C+2 S 2' <.-- i S N where G is a function of e generated by Rg and Rg for i+1 s s s N.

 Next, from (3.22)-(3.25) and (2.137)-(2.140) we can derive Hr(C+1,o') for 1 g 1' <- C-1,

Hr (i ,C + 1) for 6+2 -< j' -< N, Hr (6 + 1, C+ 1), Hr (6, 1') for 1 -< ]' .< 6 - 1, Hr (1', 6) for

C+2 S 1' <- N, Hr(C,C), and Hr(6+1,C) by lengthy and direct calculations that

Hr(e + 1, j')   N= 2 Sze+i(Sjs+Ds)Szj
 S=C+1

+[cos ec+i([Lc]XR?+, - cos p[Lc]XR?., - sin p[LdXRY+,)

- sin ec+i([Lc]XRcY., - sin p[Lc]XRg., + cos p[L<]XRcY.,)](C+'Aj)

+RcX.,[(e+iA,•),, [C+iL,•,clX -- (C+iA,•),, [C+iL,•,clZ]

+R.g+,[(e+iA,•),, [C+iL,,clY - (C+iA,),, [C+iL,,c]Z]

+G

33(B.30)

for 1g j' <- C-1 where G is a function ofe generated by Rg and Rg for C+2sss N.

Hr(j',C+1) for C+2 S 2' .< N and Hr(C+1,C+1) can be included in (B.29), hence, (B.29)

holds for C+1S 2' <- iS N•
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    Hr(C,o') = 6zECJcCz,•

           +[cos ec+i([Le]XRcX+, - cos p[LdXR?+, - sin p[Lc]XRY+,)

           -- sin ec.,([Lc]xR.g., - sin p[LdxR?., cos p[LdXR?.,)](j'Ac),3

                                                     (B.31)
           +R?([CL,`,c]X(jAc)33 - [CLie]Z(jAe)3i)

           +R.g(ICL,,c]Y(jA6),, - [CL,,c]Z(jAe)32)

           +G
for 1 S 3' <- C- 1 where G is a function of e generated by Rg and Rg for C+2 s s s N.

                                          '                         N       HT(j',c) = [Lc]X(R;.,+ 2 {(kAj.,),,Rf+(kA,•.,),,]R.g})

                        k=2'+2

              [(,"'Ac)n('""Ac+i)33 - ("+'Ac)3i(""Ac+i)i3]

                                                     (B.32)
                         N              +[Lc]x(R,Y.., + Åí {(kAj.,),,Rf + (kA,•.,),,Rg})

                        k=j'+2

              [(""Ac)2i(i'"'Ac+i)33 - (2"iAc)3i(i"iAc+i)23]

for C+2 -< 2' -< N.

                              .Z                       Hr(6, C) =Je• (B.33)

    Hr (c + 1, c) = cos ec+, ([Lc]XRg., - cos p[LdXR?., - sin p[LdxRg.,)

              - sin eE+i([Lc]XRcY., - sinp[LdXR?., + cos p[LdXRg.,)
                                                     (B.34)
             +[Le]x( :Åíi {(eA,).Rf+(eA,),,R.7}).

                  k=C+2
                N Next, we can describe Åí Sz:SjsSz,• of (B.28)-(B.31) as

                s=i



 :Åí5 szt,sjss., ., :ll5 [(zA,),,(jA,),,jg + (iA,),,(jA,),,jg + (iA,),,(JA,)33jg

 s=z s=z
             +{(iAs)3i (jAs)32 + (iAs)32 ("As)3i}jgY
                                               (B.35)
             +{(iAs)32 (jAs)33 + (iA,)33 (J'As)3,}jYZ

             +{(iAs)3i ("As)33 + (iAs)33 (j"As)3i}jgZ].

Since "As = "As-iS-iAs for j' <- i S n+ 1 S s, we obtain

         (nAs)32 = - sin es(nA,-1)31 + cos es cos ors(nAs-1)32

                                               (B.36)
              + cos es sin as("As-i)33.

Using (B.36), we can describe (iAs)32("As)32 of (B•35) as

   (ZA,)32(i'As),, = -(ZAs)3,(jAs)3i + (ZAs-i)3i(j'As-i)3i

              + sin2 as (ZAs-i)3i (i'As-i)33

                                               (B.37)
              + sin as cos as[(ZAs-i)32(J'As-i)33 + (ZAs-i)33 (J' As-i)32]

              + cos2 as (ZAs-i)32 ()' As-i)32 •

Using (B.37) repeatedly, we can deform (B.35) as

]Åí sz:sJ,s.,• = 2[(iA,),,(i'A,),,(jg - jg + sin2 a,.,J Y(s))

s=z s=z
          +(iAs)33 ("As)33 (j,Z + sin2 a,+iJ Y(s))

          +{ (i As )3i (J' As)32 + (iA,),, (J A,),, }jgY (B•38)

          +{(iAs)32(jAs)33 + (iAs)33 (j'As)32}(jgZ + sin a.+i cos a,+iJ"Y(s))

          +{(iAs)3i("As)33 + (iAs)33("As)3i}jgZ]•
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 Here, let us consider the case that 1' = i. Since L2-,i= o, we can derive from (B.28) and

(B.29) that

                   N          Hr (i, i) = 2 SzS•SjsSzi

                   s=i
                                                              (B.39)

                    KK                 +2>i (Ls]X(G,s)X+d33+ ]E Sz:DsSzi
                   S=Z S=max(K+1,Z)
for 1SiSC-1 or C+1SiS N. Since a. == O for i+1SnS 62(i)-1 and nl 6i(i) ,
we can easily derive that Szi = iAge3 = e3 for i S s S 6i(i) - 1 and

      Szi = [ sin e(6i (i), s) sin a6, (i) cos e(6i (i), s) sin or6, (i) cos a6, (i) ]t (B.40)

for 6i(i) S s S 62(i)-1 , ezi = [ O O 1 ]` for 6(C) S i gC-1 , moreover (iA6)3i,(iA6)32,

and (ZAc)33 are not zero for i S 6(C) - 1. Using these and (B.38), we can prove Lemma

2.5.3 from (B.39) and (B.40).
 In case that 2' = 6(i) - 1 (K+1 S i), we can derive that Szi == e3 and

      Sz6(i)-, = [ sine(6(i),s) sin a6(i) cose(6(i),s) sin a6(i) cos or6(i) ]t (B.41)

for i S s S 6i (i) -1 since or. =O for 6(i) +1 S n S 6i (i) - 1, Czi = [O O 1 ]t for

6(C) S i -< C- 1, moreover (ZAc)3i, (iAc)32, and (ZAc)33 are not zero for i S 6(C) - 1. Then,

Using these, we can prove Lemma 2.5.4 by direct calculations from (B.28)-(B.31).

 Next, since a. = O for 2 -< n S K, we can derive that

         iLj,i =[ [Ls]X cos e(s + 1, i) -[Ls]X sin e(s + 1, i) [Ls]Z ]t (B.42)

for 7' <- i S K. Also we obtain Szj = Szi for 2' <- i <- K. Using these, we can prove

Lemma 2.5.5 from (B.28)-(B.31).
  Taking it into accou nt that Szi = e3 for 1 S i S s S K, we can easily show from

(B.28), (B.29), and (B.38) that Hr(i,]') (1' <- i) for 1 S i S 6- 1 or e+1 S i <- N is a

function of e generated by some fundamental parameters in Theorem, and it is obvious
from (B.30)-(B.34) that Hr(C + 1,j') for 1 S 1' <- C- 1, Hr(C,2') for 1 S 2' -< C -- 1,

Hr(1',C) for C+2 S j' <- N, Hr(C,6), and Hr(C+1,C) are functions of e generated by some

fundamental parameters in Theorem 2.5.1. Therefore, Lemma 2.5.6 is proved . 1
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