

Title	STM発光分光法を用いたCNTおよびフタロシアニン薄膜 の発光特性に関する研究
Author(s)	植村, 隆文
Citation	大阪大学, 2008, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/219
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士論文

STM 発光分光法を用いた CNT および フタロシアニン薄膜の発光特性に関する研究

2008年

大阪大学大学院工学研究科 精密科学・応用物理学専攻

植村 隆文

目 次	
-----	--

第1章 序論1
1.1 緒言1
1.2 本論文の構成
第 2 章 研究背景5
2.1 緒言
2.2 ナノスケール構造の発光特性評価手法
2.2.1 フォトルミネッセンス法
2.2.2 カソードルミネッセンス法7
2.2.3 STM 発光分光法8
2.3 結言
第3章 STM発光分光システムの構築17
3.1 緒言17
3.2 STM 発光分光システムの構築17
3.2.1 システム概要17
3.2.2 走査トンネル顕微鏡システム19
3.2.3 集光システムの設計20
3.2.4 発光強度二次元マッピング(フォトンマップ)分析
3.2.5 発光スペクトル分析
3.3 システムの発光検出能力・空間分解能の評価28
3.3.1 ナノスフィア・リソグラフィ法による Au ナノ構造の作製28
3.3.2 フォトンマップ分析による空間分解能の検証
3.3.3 個々の Au ナノ構造の発光特性解析
3.4 結言
第4章 カーボンナノチューブからの STM 発光分光分析 34
4.1 緒言
4.2 カーボンナノチューブの電子構造について
4.3 実験
4.4 結果と考察43
4.4.1 電子顕微鏡による試料観察43
4.4.2 多層カーボンナノチューブの STM 観察45
4.4.3 多層カーボンナノチューブのフォトンマップ分析47
4.4.4 多層カーボンナノチューブの発光スペクトル分析48

第1章 序論

1.1 緒言

現在の情報化社会の発展は、情報処理性能、情報通信速度、情報記憶容量、という3つの基盤技術の向上と共に目覚しい速度で進展を遂げている。これらの基盤技術の発展は、おもにリソグラフィ技術の高精度化により実現される、半導体素子の高集積化・高性能化によって支えられている。International Technology Roadmap for Semiconductors[1]によれば、現行の65 nm ノードのトランジスタにおける物理ゲート長は25 nm、2020年には14 nm ノードで6 nm まで縮小されることが予測されている。研究開発レベルでは、最小ゲート長 5 nm のトランジスタ作製に成功しているが[2]、その動作特性は実用に耐えうるものではなく、物理ゲート長が4 nm になると、量子効果による電子のトンネルがソースとドレイン間で起こり、事実上トランジスタの制御が不可能となる[3]。このような予測のもと、ナノメートル領域において発現する量子効果を積極的に利用した新しい機能を持つデバイスの開発が求められている。これらの試みは、金属、半導体、誘電体、有機物等の種々の材料を用いて研究が行われ、現在、これらの材料を用いたナノスケール構造体において発現するあ奇な機能をデバイスに応用するためには、それぞれのナノスケール構造の機能、および特性を個別に評価するための新しい計測・評価手法の開発が必要となる。

本論文では、ナノスケール構造の物性計測・機能評価手法として、走査トンネル顕微鏡 (Scanning Tunneling Microscope; STM)をベースとした STM 発光分光法に注目し、ナ ノスケール構造の光物性評価を行うと共に、STM 発光分光法の高感度化を目指した研究を 行った結果を示す。STM 発光分光法は、1988年に IBM Zurich の Gimzewski らによって 始められて以来[4]、金属ナノ構造、半導体表面ナノ構造、有機分子など、表面におけるさ まざまなナノスケール構造を測定対象とした原子・分子スケールの光物性評価手法として、 数多くの成果を挙げている[5]。STM 発光分光法は、STM の探針ー試料間を流れるトンネ ル電流によって誘起される発光現象を利用しているため、STM によるナノスケール構造観 察と同等の高い空間分解能で発光点の位置を特定できる。発光の励起源であるトンネル電 流が測定試料表面において限られた大きさの広がりしか持たないことから、光の波長より も遥かに小さい、ナノスケール構造の計測・評価に適した発光分析が可能である。STM に よるナノスケール構造の実空間観察と同時に、測定試料から放出された発光を分析するこ とによって、発光強度特性、波長特性、放射角度分布、偏光特性など、ナノスケール構造 のさまざまな光特性の評価を行うことができる。従来の固体表面の光物性評価手法として は、フォトルミネッセンス法、カソードルミネッセンス法などが一般的に用いられる手法 である。しかし、これらの手法はSTM発光分光法に比べると発光検出の空間分解能が劣る。 フォトルミネッセンス法は、発光の励起源に光を用いるため、光の回折限界以下の空間分 解能は得られず、カソードルミネッセンス法は、高エネルギーに加速した電子線を励起源 に用いるため、試料内部の広い範囲からの発光を誘起してしまう。STM発光分光法は、原 子・分子スケールでのナノスケール構造観察と同時に、発光検出において高い空間分解能を 有するという特長のほか、測定上、励起源のトンネル電子のエネルギーがSTMのバイアス 電圧によって与えられるため、励起エネルギーを連続的に変化させることができ、原理的 に適応エネルギー範囲の制限がないという特長を持つ。実際の測定では、ナノスケール構 造の光デバイスへの応用上重要となる可視光領域での測定例が多い。これは、STMの数十 nAのトンネル電流によって誘起される発光が非常に微弱であるため、可視光領域での微弱 光測定に適合する検出器の選択肢が豊富であることも1つの理由である。

本研究では、室温・大気中にて動作する STM 発光分光システムを新たに構築した。大気 中で動作する本システムは、デバイスの動作環境と同等の環境での分析が可能であるとい う点で重要性が高い。本システムでは、発光強度の空間分布情報を得るためのフォトンマ ップ分析と、発光の波長分布を知るための発光スペクトル分析の2 種類の発光分析を同時 に実行することにより、ナノスケール構造の光物性に関する多角的な特性解析が可能であ る。本論文では、システムの構築から動作確認のための Au ナノ構造の発光特性評価結果に ついて述べたのち、ナノスケール構造の物性計測・機能評価の一例として、代表的な量子材 料として知られるカーボンナノチューブ(Carbon Nanotube; CNT)からの発光特性解析結 果についてまとめた。CNTは、1991年に NEC 基礎研究所の飯島が発見した材料であり[6]、 その構造は炭素のみで構成される筒状の構造物で、直径はおよそ数 nm から数十 nm、長さ は数 µm にも及ぶ理想的な一次元構造物である。CNT は、炭素ネットワークの構造の違い によって、それ自体の電気特性が金属的性質または半導体的性質を示すなど、その電子状 態が変化する。近年、この CNT の持つ特異な電子物性に起因した発光現象が観測されるこ とが報告され[7]、光デバイスへの応用に向けて研究が盛んに行われるようになってきた。 しかし、現在の CNT の合成技術では金属的または半導体的性質を示す CNT の作り分けが 不可能であるため、そのデバイス応用を考える際には、個別の CNT からの発光を評価し、 その発光特性と関連付けて個々の電気特性を同時に明らかにすることが重要となる。そこ で本論文では、STM 発光分光法を用いて、CNT の発光特性評価ならびにその電子状態評価 を個別の CNT に対して行った結果についてまとめた。

本論文の後半では、STM 発光分光法における発光の量子効率向上による高感度化を目指 した研究結果についてまとめた。STM 発光分光法では、トンネル電子から光への変換効率 が低く(1×10⁻⁷ ~ 10⁻³ photon/electron)、特に有機材料を対象とした実験では発光の検出が 困難な場合が多い。STM 発光分光法をより多くの材料に適用可能な計測手法として確立す るためには、発光の量子効率を改善する必要がある。本研究において測定の対象としたフ タロシアニン薄膜は、有機エレクトロルミネッセンス素子、有機薄膜トランジスタなどに 用いられる代表的な有機半導体材料である。フタロシアニン分子は、中心の金属配位子の 違いによってその光物性が変化する。特に、Cuを配位子とした銅フタロシアニン(Copper Phthalocyanine; CuPc)分子は、蛍光発光の量子効率が非常に低く、これまで蛍光発光の 観測が困難であった有機材料である。本研究では、発光測定時に貴金属基板を用い、STM 探針直下のナノスケール領域にプラズモン増強効果を導入することにより、CuPcの蛍光発 光量子効率の向上に成功し、これまでに観測されたことのなかった CuPc の蛍光発光の観測 に成功した。また、プラズモン増強効果の導入により、STM 探針直下の局所領域における 分子間相互作用によるアップコンバージョン発光の観測にも成功した。アップコンバージ ョン発光は、注入するトンネル電子のエネルギーよりも大きなエネルギーを有する特異な 発光である。さらに、本論文では、観測したアップコンバージョン発光を利用して、STM 発光分光法を用いた蛍光発光イメージングが実現可能であることを提案し、実際に CuPc の蛍光発光イメージングを取得することで、その有用性を実証することに成功した。

1.2 本論文の構成

本論文の構成は以下の通りである。

第2章では、本研究の研究背景について述べた。また、ナノスケール構造の発光特性評価手法をフォトルミネッセンス法、カソードルミネッセンス法、STM発光分光法の3種類に分類し、空間分解能の点からそれぞれの手法について述べた。特に、本研究の主体となるSTM発光分光法については、測定手法の原理、測定対象に依存する幾つかの発光メカニズムなどについて詳細に解説した。

第3章では、本研究で立ち上げた室温・大気中で動作する STM 発光分光システムの特長 について解説した。本システムは、STM 観察領域における発光強度分布を示すフォトンマ ップ分析と、発光のエネルギー分析を行うための発光スペクトル分析を同時に実行可能な システムであり、それぞれの分析モードの詳細について述べた。また、ナノスフィア・リソ グラフィ法によって作製した酸化インジウムスズ基板上の Au ナノ構造を用い、Au ナノ構 造からのプラズモン発光分析を行うことによって、立ち上げたシステムの動作確認と性能 評価を行った結果を記した。

第4章では、ナノスケール構造の光物性評価の一例として、CNTのSTM発光分析結果 について記した。本研究では、固体基板上に配置した個々のCNTのフォトンマップ分析、 発光スペクトル分析により、CNTから観測されるSTM発光の発光メカニズムを解明した。 また、明らかになった発光メカニズムをもとに、個々のCNTに関する発光特性評価と電子 状態評価を行った結果を記した。

第5章では、STM発光分光法における試料からの発光の量子効率向上による分析手法の 高感度化に関する研究について記した。STM発光測定において、分析試料を固定する基板 として貴金属基板を用い、STMの探針直下にプラズモン増強効果を導入することによって 発光の量子効率を向上し、STM 発光分光法を高感度化することに成功した。本研究では、 これまで量子効率が低いために観測されたことのなかった CuPc からの蛍光発光を、プラズ モン増強効果を用いることで初めて検出することに成功した。また、STM 探針直下の局所 領域における分子間相互作用により発現する、アップコンバージョン発光について述べた。 アップコンバージョン発光は、注入するトンネル電子のエネルギーよりも大きなエネルギ ーを有する特異な発光であり、その発光メカニズムについて述べた。さらに、アップコン バージョン発光を用いることで可能となる、STM 発光分光法を用いたナノスケールでの蛍 光発光イメージング手法を考案し、実験によってその有用性を検証した。

第6章では本論文の総括を記した。

第2章 研究背景

2.1 緒言

近年、エレクトロニクス分野のみならず、材料物性研究、ライフサイエンス分野など、 多くの場面においてナノスケール領域の物質キャラクタリゼーション技術の向上が求めら れている。ナノスケール領域のキャラクタリゼーション技術には、物質の構造観察を基本 とし、それと同時に物質の組成分析、化学結合状態、電気・磁気特性、機械特性、光学特 性など、さまざまな観点からの物理的・化学的特性を評価することが必要とされる。本章 では、上記のナノスケール構造特性評価の中で、特に光学特性を評価する手法として有用 なルミネッセンス法に焦点を置き、幾つかの手法について空間分解能の観点からそれぞれ の手法について述べたのち、本論文でおもに扱う STM 発光分光法の原理・特長について詳 しく述べる。

2.2 ナノスケール構造の発光特性評価手法

物質の発光とは、外部から与えられたエネルギーが物質の励起状態を誘起したのち、元 の基底状態へと戻る際に余剰のエネルギーを光として放出する現象である。つまり、物質 の発光はその物質の電子状態と密接な関係を持つ。ナノスケール構造の電子状態は、構造 の変化や不純物、格子欠陥などの存在によってその電子構造が大きく変化する。この理由 から、ナノスケール構造の発光特性を評価する場合には、ナノスケール構造の構造観察を 高い精度で行うことが要求される。発光を励起する手法は、物質に与えるエネルギーの種 類(励起源)によって分類することができ、熱を励起源とする場合はサーマルルミネッセ ンス、電子・正孔の注入を励起源とする場合はエレクトロルミネッセンス、光を励起源と する場合はフォトルミネッセンス、電子線を励起源とする場合にはカソードルミネッセン スなどと呼ばれる。本論文の議論の中心となるのは STM のトンネル電子を励起源とした STM 発光である。これらの5種類の発光現象の中で、発光をナノスケール構造の構造観察 と同時に捉えることが可能な手法はフォトルミネッセンス法、カソードルミネッセンス法、 STM 発光分光法の3種類である。

ナノスケール構造の発光特性評価手法では、ナノスケール構造の構造観察を行うための 高い空間分解能と、発光の起源を特定するための発光観測における高い空間分解能の2種 類の空間分解能が同時に要求される。以下の項では、上に挙げた3種類のルミネッセンス 法についての簡単な解説と、おもに可視光領域(波長:360~830 nm[8](光子エネルギー:3.4 ~1.5 eV))の発光観測におけるそれぞれのルミネッセンス法の空間分解能について述べる。

2.2.1 フォトルミネッセンス法

フォトルミネッセンス (Photoluminescence; PL) 法は、光を励起源として用いるルミネ ッセンス法である。物質の構造観察、または励起に光を用いるため、空間分解能は対物レ ンズの開口数 (Numerical Aperture; NA) と観察波長 (λ) で制限される光の回折限界に よって決まる。光学顕微鏡の場合、構造観察における空間分解能 *dmin-imaging* は式 (2-1) で表わされ、アッベ (Ernst Abbe, 1840~1905) の定義による分解能[9]と呼ばれる。

$$d_{min-imaging} = \frac{\lambda}{NA}$$
 $\ddagger (2-1)$

現在、市販されている対物レンズ(油浸)のNAは最大 1.4 であり、例えば緑色(546 nm)の光による観察では、空間分解能 *dminimaging*は式(2-1)により約 390 nm となる。

PL法では、励起光を光学フィルターで除去し、物質からの発光のみを検出して結像する 蛍光顕微鏡法を用いることで、より高い空間分解能を得ることができる。蛍光顕微鏡法の ように、観察像の各点から光が放射される場合、つまり、観察試料の各点からの独立した 光をレンズによって結像した場合、空間分解能はアッベの定義とは異なる。この場合、2 点 の独立した発光点がある距離以下に接近したとき、光学レンズを通した結像ではその 2 点 を個別の物として区別できなくなる。この距離 *dmin-emission* は式 (2-2) で表わされ、レイ リー (Lord Rayleigh, 1842~1919)の定義による分解能[10]と呼ばれる。

$$d_{min-emission} = 0.61 \times \frac{\lambda}{NA}$$
 $\ddagger (2-2)$

この場合、対物レンズの NA を 1.4、上と同じく緑色(546 nm)の発光観察では、発光 検出の空間分解能 *d_{min}-emission* は式(2-2)により約 240 nm となる。

蛍光顕微鏡法の場合、レンズによる像の結像を CCD カメラで受光し、コンピューター処 理を行うことによってその空間分解能を約 20 %向上したビデオ強化顕微鏡などが利用でき る[11]。他にも、励起光にレーザー光を用いた共焦点レーザー顕微鏡(Confocal Laser Scanning Microscope; CLSM)が存在する。CLSM では、レーザー光を対物レンズにより 絞って観測試料に照射し、発生した蛍光発光を同じ対物レンズにより結像し、ピンホール を通して焦点面から出る蛍光発光のみを結像させる。このように、CLSM では光束を 2 回 絞って像を得ることにより、通常の光学顕微鏡の√2 倍の高い空間分解能を得ることが可能 である。しかしながら、以上のような可視光とレンズを用いた PL 法では光の回折現象を回 避することは不可能であり、100 nm 以下の空間分解能は得られず、ナノスケール構造の発 光特性評価手法としては試料作製に工夫を要し、適応範囲が限られる。

PL 法の中では、走査型光近接場顕微鏡(Scanning Near-Field Optical Microscope; SNOM) [12]が最も高い空間分解能を有する。SNOM では、ナノスケール構造の構造観察

を原子間力顕微鏡(Atomic Force Microscope; AFM)の原理を用いて行うため、nm レベ ルの構造観察が可能である。光の励起には、先端の尖ったファイバープローブ先端に誘起 した近接場光(エバネッセント光)を用いる。エバネッセント光は通常の伝播光とは異な り、ファイバープローブ先端のみに局在する光であるため、光の回折限界を超えた局所領 域を照らすことができる。これによって、発光検出能力は約 10 nm[13]と高い空間分解能を 有するため、ナノスケール構造の発光特性評価手法として期待される手法のひとつとして 挙げられる。

2.2.2 カソードルミネッセンス法

カソードルミネッセンス(Cathodoluminescence; CL)法は、真空中で加速された電子 を励起源として用いるルミネッセンス法である。CL 法に用いられる電子線は、走査型電子 顕微鏡(Scanning Electron Microscope; SEM)、または透過型電子顕微鏡(Transmission Electron Microscope; TEM)などの電子顕微鏡における電子線を利用することが多い。そ のため、物質の構造観察における空間分解能はプローブとなる収束電子線のスポット径に 依存する。SEM の場合、電子プローブ径 $d_{min-electron}$ は式 (2-3)で表わされる[14]。

$$d_{min-electron} = \left\{ \left(Mds \right)^2 + \left(0.5Cs \,\alpha^3 \right)^2 + \left(Cc \,\alpha \Delta V / V \right)^2 + \left(0.61\lambda / \alpha \right)^2 \right\}^{0.5} \qquad \vec{\mathfrak{R}} \quad (2-3)$$

ここで、ds:電子源サイズ、M: レンズ系全体の総合倍率、Cs: 球面収差係数、 α : 試料面でのプローブビームの開き角、Cc: 色収差係数、 ΔV : 電子プローブのエネルギー 幅、V: 加速エネルギー電圧、 λ :電子波長である。第1項は電子源の種類とレンズ系全体の総合倍率で決まる項、第2項は最終レンズの球面収差によるによる項であり、第3項 は色収差によるもので、電子源のエネルギー幅が小さく、加速電圧が高いほど d_{min} -electron は小さくなる。第4項は電子の回折現象によるもので、光の回折限界による式(2-2) と 同じである。電子波長はド・ブロイ (de Broglie, 1892~1987) によるド・ブロイ波長によっ て決まる。式(2-3) により、数 kV の加速電圧で得られる電子プローブ径 d_{min} -electron は数 nm となる。これにより、SEM を用いた CL 法では nm レベルの空間分解能を有する構造 観察が可能となる。

しかしながら、CL 法において観測する発光は、試料に入射された電子線によって誘起さ れるので、入射電子の試料内での拡散の影響を考慮しなければならない。試料内に入射し た電子は試料内の原子と弾性または非弾性散乱しながら多重散乱を起こすため、発光が誘 起される空間は試料内部の数十 nm に達する。このため、CL 法は nm レベルの高い空間分 解能を有する構造観察が可能である一方で、発光を捉えるための空間分解能は数十 nm に 低下する。

2.2.3 STM 発光分光法

STM 発光分光法は、STM の探針-試料間を流れるトンネル電流を励起源として用いるル ミネッセンス法である。物質の構造観察には STM の原理が適応されるので、ナノスケール 構造の構造観察では原子・分子スケールの究極的な空間分解能が得られる。また、STM 発 光分光法において観測する発光は、励起源のトンネル電流が試料表面内において極めて限 られた大きさの広がりしか持たないことから、STM 像と同等の空間分解能で発光点の位置 を特定できる。以下に、STM の動作原理について解説し、STM 発光分光法が高い空間分解 能を有する理由を説明したのち、測定対象に依存する STM 発光の幾つかの発光メカニズム について解説する。

(a) STM の動作原理と STM 発光分光法の空間分解能について

STM は、1982 年に Bennig と Rohrer により開発された表面分析手法であり、表面の1 つ1つの原子を実空間で観察することを可能にしたものである[15]。この手法の発明により、 固体表面の研究は飛躍的な発展を遂げ、STM はナノスケール領域の物質キャラクタリゼー ション技術として確たる地位を築いている。STM が原子・分子スケールの空間分解能を有 するのは STM の探針-試料間を流れるトンネル電流を制御し、表面をなぞるようにして表 面の凹凸を画像化しているためである(図 2.1)。

図 2.1 STM 動作原理の模式図

ここでは、STM の理論について最も簡明であり、広く用いられている Tersoff - Hamman の理論計算モデル[16]について簡単に説明する。

対向する電極間の間隔が比較的広く、バイアス電圧が小さい時、トンネル電流 *I* はバー ディーンの摂動理論により時間の一次の摂動から次のように表わされる。

ここで f(E) はフェルミ分布関数であり、 V_s は両極にかかるバイアス電圧である。 $M_{\mu\nu}$ は 両極の電子状態 ψ_{μ}, ψ_{ν} 間のトンネル行列要素であり、 E_{μ}, E_{ν} はそれぞれの ψ_{μ}, ψ_{ν} のエ ネルギーである。またトンネル行列要素 $M_{\mu\nu}$ は次のような積分で表わされる。

ここで、積分は両極間の真空バリア領域内の任意の表面で行う。この式の積分内の項は電流密度 $\mathbf{j}_{\mu\nu}$ と考えられる。このように $M_{\mu\nu}$ の行列要素は両極の波動関数 Ψ_{μ} , Ψ_{ν} で表せる。

STM の場合、この両極が探針と試料表面にあたり、実際の探針の先端の原子構造は正確 には分からない。よって探針表面の波動関数は近似的に表わすことになる。Tersoff と Hamann は図 2.2 のように探針を球形に見立てる近似で計算を行った。この場合、トンネ ル行列要素の角度依存の部分 ($l \neq 0$) は打ち消し合い、探針の s 軌道の波動関数のみで記 述される。

図 2.2 Tersoff - Hamann モデルにおける試料と探針の模式図

多くの場合、STM は室温下もしくはそれ以下の低温で実験が行われ、その時に両端にかけるバイアス電圧が小さいとき(約0.01 V)、式(2-4)は次のように簡単になる。

$$I = \frac{2\pi e^2}{\hbar} V_S \sum_{\mu,\nu} \left| M_{\mu\nu} \right|^2 \delta \left(E_{\nu} - E_F \right) \cdot \delta \left(E_{\mu} - E_F \right)$$
 $\stackrel{\text{R}}{\rightrightarrows} (2-6)$

ここで E_F はフェルミ準位である。トンネル行列要素 $M_{\mu\nu}$ を計算するために表面波動関数 を平面波に分解して表わす。

ここで Ω_s は試料の体積であり、 $\kappa = \sqrt{2m\phi}/\hbar$ は波動関数の真空バリアでの減衰距離の逆数、 ϕ は仕事関数である。位置 r を表面からの高さ z と平面成分の x に分解したとすると、 κ_G は

で表せる。ここで k₁ は表面平行方向の波数成分であり、G は逆格子ベクトルである。

次に探針が局所的に球形のポテンシャルと持つと近似し、波動関数を漸近的な球面波で 展開すると

になる。 Ω_t は探針の体積であり、 \mathbf{r}_0 は探針を球としたときの中心の位置であり、R は探針の半径である。 c_t は探針の電子状態や真空との境界条件で決まるパラメータである。

これからトンネル行列要素 $M_{\mu\nu}$ を計算すると

と表せる。これを式 (2-4) に代入すると

$$I = \frac{32\pi^{3}}{\hbar} e^{2} V_{S} \phi^{2} D_{t} (E_{F}) R^{2} \kappa^{-4} e^{2\kappa R} \sum_{\nu} \left| \psi_{\nu} (\mathbf{r}_{0}) \right|^{2} \delta (E_{\nu} - E_{F}) \qquad \vec{\mathfrak{R}} \quad (2-11)$$

が得られる。ここで $D_t(E_F)$ は探針の体積あたりの状態密度である。 ここで次のような関係式を定義する。

この場合 $\rho_s(\mathbf{r}_0, E_F)$ は探針の中心 \mathbf{r}_0 にある局所状態密度と考えられる。よって式 (2-11) からトンネル電流は \mathbf{r}_0 にある表面の局所状態密度 (LDOS) に比例することになる。

上記の式(2-11)は電圧が低い場合の計算であったが、有限のバイアス電圧の場合に対しても同様の式が得られる。すなわち

となる。したがって、STM の電流一定モードで得られた像は表面上の LDOS を表現し、原 子レベルの空間分解能を有する像となる。

STM 発光分光法は、STM の探針ー試料間を流れるトンネル電流によって誘起される発光 現象を分析することによって可能となるナノスケール光物性評価手法である。トンネル電 流によって誘起された発光を分析することによって、発光強度特性、発光スペクトル特性、 放射角度分布特性、偏光発光特性など、ナノスケール構造に由来するさまざまな光特性評 価を行うことができる(図 2.3)。

図 2.3 STM 発光分光法によるナノスケール構造の発光特性評価の模式図

STM 発光は、STM のサンプルバイアス (Vs) によって与えられるトンネル電子のエネ ルギー (eVs) が試料に与えられることによって発光が生じる。STM 発光は、発光の誘起 過程によって分類すると以下の 2 種類の発光メカニズムに分類することができ、それぞれ の場合で発光を検出する際の空間分解能が異なる。

- ▶ 電子のトンネル過程に伴う発光(図 2.4 ①)
- ▶ トンネル電流による電子の注入(または引き抜き)による発光(図 2.4 ②)

図 2.4 STM 発光における 2 種類の発光誘起過程

図 2.4 ①の電子のトンネル過程に伴う発光の場合、発光点は電子のトンネル過程が起こ る空間に限られるので、発光検出における空間分解能は STM の構造観察と同じである。 STM の構造観察が原子・分子スケールの空間分解能を有するのと同様に、ナノスケール構 造からの発光を原子・分子スケールで検出することが可能である。

図 2.4 ②のトンネル電流による電子の注入(または引き抜き)による発光の場合、CL 法 の場合と同じく、試料内での電子の拡散を考慮しなければならない。図 2.4 ②は、半導体 表面における STM 発光の発光過程を示している。STM 探針からトンネル電子が試料へ弾 性トンネルした後、電子は半導体試料中を少数キャリアとして拡散し、試料中に存在する 多数キャリアと再結合することで発光が生じる。この際、キャリア拡散長は試料の種類に 依存するが、例えば AlGaAs 表面では電子の平均自由行程より短く、約 10 nm 程度とされ ている。この拡散長は CL 法における電子線の試料内での拡散に比べ遥かに短く、STM 発 光分光法が高い空間分解能を有する要因となっている。

(b) STM 発光の発光メカニズム

STM 発光分光法は、1988 年に Gimzewski らによって始められて以来、金属ナノ構造、 半導体表面ナノ構造、有機分子など、表面におけるさまざまなナノスケール構造を測定対 象とした原子・分子スケールの光物性評価手法として数多くの成果を挙げている。誘起さ れる発光は試料によってその発光メカニズム・発光効率が異なり、まずはその発光のメカ ニズムを知ることで発光特性が示すナノスケール構造の物性情報を引き出すことができる [17]。以下に、STM 発光分光法を用いた過去の研究を例に、代表的な 4 つの STM 発光の 発光メカニズムと、その発光効率(量子効率)について述べる。

図 2.5 STM 発光における 4 つの発光メカニズムのエネルギーダイアグラム

▶ 貴金属表面における探針誘起プラズモン励起による発光

貴金属表面では、金属と探針との近接領域に誘起される探針誘起プラズモン(Tip-induced Plasmon; TIP) による発光が観測される。TIP とは、金属探針と貴金属表面のそれぞれの 表面プラズモンが 1 nm 程度のトンネル電流が流れる距離にまで近接したときに誘起され る合成プラズモンである。通常、完全に平坦な表面に誘起される表面プラズモンは運動量 保存によって光に変換されることはない。しかし、表面荒さなどによる不規則な表面上で は表面に沿った並進不変性が破れ、表面プラズモンからの発光が観測される[18]。STM に おいて誘起される TIP は、探針と試料の間のトンネルギャップに局在し、トンネル電流に よる励起の後、エネルギー失活を起こし、光に変換される。TIP の励起過程のメカニズムに は幾つかの議論があり、非弾性トンネル (Inelastic Electron Tunneling; IET) 過程によっ て TIP が励起されるモデルと、弾性トンネル過程によって試料に注入されたホットエレク トロンが TIP を励起するモデルの 2 種類が提唱されている[19]。いずれのモデルにおいて も、TIP の励起エネルギーは STM のトンネル電子の持つエネルギーによって与えられるた め、STM のサンプルバイアス (Vs) によって与えられるトンネル電子のエネルギー (eVs) よりも低いエネルギーの光が放出される。この関係は量子カットオフ条件と呼ばれ、式 (2 -14) で表わされる[20]。

$$hv \leq eV_s$$
 $\ddagger (2-14)$

ここに、*h* はプランク定数 (6.6×10⁻³⁴ J·s)、*e* は電気素量 (1.6×10⁻¹⁹ C) である。

IET 過程によって TIP が励起されるモデルでは、トンネル電子が光子へと変換される量 子効率(Quantum Efficiency; QE) は約 1×10⁻³ photons/electron、ホットエレクトロンが TIP を励起するモデルでは約 1×10⁻⁶ photons/electron と予測されている。Gimzewski や Berndt らによって行われた一連の貴金属表面における実験[21]により、TIP 発光の量子効 率は約 1×10⁻⁴~10⁻³ photons/electron であることが明らかになり、TIP 発光が理論計算モ デルによって定量的に説明された結果[22]、TIP 発光の発光メカニズムは IET 励起よる発 光であると結論付けられた。

IET 過程によって励起された TIP は、STM の探針直下で有限の大きさを持つ。その大き さ TIP_{Radius} は探針と試料の距離 d と、探針の先端曲率半径 R によって式 (2-15)のよう に表わされる[23]。

ここで、STM 測定における典型的な値、 d = 1 nm, R = 50 nm を代入すると、TIP_{Radius} は約 10 nm となる。このように、TIP 発光による発光検出の空間分解能は TIP_{Radius}程度の 広がりを持つことになる。しかし、励起される TIP モードが金属探針の形状[24]、探針と 試料の距離[25]、試料の LDOS などの電子状態に依存したトンネル電流[26]によって変化す るため、TIP 発光特性は表面の原子レベルの凹凸を反映して観測される。これにより、STM の表面凹凸像と同時に取得する発光強度分布像(フォトンマップ分析)では、原子レベル の空間分解能が得られる[27]。

▶ 直接遷移型半導体表面における電子-正孔再結合による発光

直接遷移型半導体では、STM 発光は探針から注入された少数キャリアが試料内の多数キャリアと再結合することによって観測される。1990年に IBM の Alvarado らが AlGaAs/GaAs 量子井戸の発光像を報告して以来[28]、STM 発光分光法は量子井戸・細線・ドットなどの量子構造の局所的な光学特性を探る有力な手段として注目されている。 AlGaAs/GaAs 量子井戸劈開(110)面では、GaAs は AlGaAs に比べてバンドギャップが小さいため、井戸構造を反映したコントラストが現れ、STM 像中では明るく見える[29]。GaAs 層からの STM 発光は、PL 分析の結果とよく一致し、注入された電子と正孔との再結合に よる発光であると考えられている。この時、注入された電子は試料中を拡散したのち、正 孔と再結合するため、STM 発光の発光点はこの電子の拡散長の分だけ広がることになる。 20 nm 幅の AlGaAs 層上の中央付近から電子を注入した場合には両側の GaAs 井戸層から の発光が僅かに観測される。したがって、探針から注入された電子の大部分は約 10 nm 試 料中を拡散した後、エネルギー緩和して再結合していると考えられる[30]。これにより、直 接遷移型半導体表面上における STM 発光検出の空間分解能は約 10 nm とされている。し かし、トンネル電子を注入する場所は nm スケール以下の空間分解で制御可能であること から、観測される GaAs 井戸層からの発光強度と共に解析することによって、10 nm 以下 のスケールで注入電子キャリアの動的過程を評価することが可能となっている。また、観 測される発光はバンドギャップ間の電子-正孔再結合による発光であるため、STM のサン プルバイアスの変化に対して発光のエネルギーは一定であるという特徴を有し、その量子 効率は約 1×10⁴ photons/electron である[31]。

▶ 間接遷移型半導体表面における双極子遷移に伴う発光

間接遷移型の半導体である Si 表面では表面の局在準位であるダングリングボンドに起因 する発光が観測される。Si 表面は可視光領域にプラズモンの共鳴エネルギーを持たず、バ ンドギャップ間での発光が禁制過程であるため、可視光領域には探針と試料表面の電子準 位間の双極子遷移に伴う発光が観測される。この発光過程は電子のトンネル過程に伴う発 光であるため、発光点を原子スケールの空間分解能で特定できる。このような発光は、水 素終端された Si(001)-(2×1)表面において、STM 探針による水素の引き抜きによって作製さ れたダングリングボンド上で観測される[32]。Si 表面に形成されたダングリングボンドは、 バンドギャップの上下に反結合状態(π*状態)と結合状態(π状態)の表面準位を形成し、 探針のフェルミ準位近傍の電子準位との間で双極子遷移が起こり、発光が誘起される。こ の発光は試料と STM 探針の固有の電子状態間の遷移による発光であるため、STM のサン プルバイアスの変化に対して発光のエネルギーが変化するという特徴を有する。また、そ の量子効率は約1×10⁻⁶ photons/electron である。

▶ 有機分子における分子軌道間の電子遷移に伴う発光

有機分子のSTM発光測定では、分子の蛍光・燐光発光に対応する分子軌道間の電子遷移 による発光が観測される。分子は固有の電子エネルギー準位を持つので、個々の有機分子 のSTM発光スペクトルを測定することにより分子の識別が可能である。通常のSTMは表 面組成分析能力を持たないので、STM発光分光法はこれを補うための計測手法としても期 待され、1993年にBerndtらによってAu(110)面上のC₆₀分子からのSTM発光が報告され て以来[33]、有機分子のSTM発光測定が活発に行われている。しかしながら、分子からの 発光を特定する際には幾つかの注意を要する。

特に注意しなければならないのは、観測波長領域に TIP 発光を生じる貴金属基板上に直

接吸着した有機分子からの STM 発光を計測する場合である[34]。通常、基板に直接吸着し た有機分子は、IET 過程によって励起されるが、その励起エネルギーは光に変換される前 に金属基板へエネルギー移動を起こすために失活する[35]。これにより、有機分子からの発 光は観測されない。しかし、基板に吸着した有機分子が誘電体として機能し、探針と基板 間に形成された TIP モードを変調した結果、分子の吸着した部分の発光特性が変化する。 その結果、分子が吸着していない部分との発光特性の違いが発光観測のコントラストとし て観測される。すなわち、ここで観測している発光は TIP からの発光であり、分子特有の 電子エネルギー準位を反映した発光ではない。

2003 年、W. Ho らによって基板と分子の間に絶縁体として機能する極薄酸化膜を挟むこ とによって吸着分子固有の電子エネルギー準位を反映した発光が観測されるという報告が なされた[36]。この報告以降、他の極薄酸化膜や有機分子を多層膜構造にするなど、有機分 子から基板へのエネルギー失活を抑える手法が見いだされ、分子固有の発光を観測した報 告が多くなされるようになってきた[37]。これらの発光では、トンネルギャップ中に存在す る有機分子を IET 過程によって励起し、分子が基底状態に戻る際の発光を観測しているた め、発光検出では分子レベルの空間分解能を得ることができる。観測可能な発光は分子か らの蛍光発光、または燐光発光であり、PL 測定や可視光吸収測定の結果と発光スペクトル を比較することにより、分子の特定が可能である。また、観測される発光は分子特有の発 光であるため、STM のサンプルバイアスの変化に対して発光のエネルギーは一定であり、 その量子効率は約1×10⁻⁷ ~ 10⁻⁴ photons/electron である。

量子効率 発光検出の 測定試料 具体例 発光メカニズム 空間分解能 photons/electron 約 1×10⁻⁴~10⁻³* 原子レベル 非弾性トンネル励起 貴金属表面 Au, Ag, Cu... 半導体表面 バンドギャップ間の 約 1×10⁻⁴ 約 10 nm GaAs... (直接遷移型) 電子-正孔再結合 半導体表面 原子レベル 約 1×10-6 双極子遷移 Si... (間接遷移型) C60. 有機分子 約 1×10⁻⁷~10⁻⁴* 分子レベル 非弾性トンネル励起 Phthalocvanine...

表 2.1 STM 発光分光法における発光メカニズムのまとめ

表 2.1 に以上の 4 つの発光メカニズムについて簡単にまとめた。

表 2.1 において、貴金属表面と有機分子の量子効率には複数桁の幅(*印)がある。これ は発光メカニズムが IET 過程を含んでいることに起因している。STM の探針から試料に流 れるトンネル電子は弾性トンネルと非弾性トンネルの 2 成分に分類できる。そのうち、非 弾性トンネル成分は全トンネル電子中の約1~10%であるとされている[38]。また、この IET 励起が起こる確率は TIP の励起モード、または分子の電子状態などに依存して変化す るので、量子効率には複数桁の幅が存在する。

2.3 結言

以上のように、本章では本研究の研究背景について述べ、ナノスケール構造の発光特性 評価手法を PL 法、CL 法、STM 発光分光法の 3 種類に分類し、空間分解能の点からそれ ぞれの手法について述べた。空間分解能についてまとめると図 2.6 のようになる。以下に本 章の要点をまとめる。

図 2.6 ルミネッセンス法における発光検出の空間分解能

- (1) ナノスケール構造の発光特性評価では、構造観察を高い空間分解能で行うと同時に、 ナノスケール構造の発光特性を評価するため、発光点を正確に知るための発光検出に おける高い空間分解能を有する手法が必要であることを記した。
- (2) PL 法では、光の回折限界により、発光検出の空間分解能が約 100 nm 程度であること を示した。また、光の回折限界を回避することにより、SNOM が最も高い空間分解能 を有し、約 10 nm の発光検出空間分解能を有することを述べた。
- (3) CL 法では、電子顕微鏡を用いることによって構造観察を数 nm レベルの高い空間分解 能で行うことが可能である。一方で、高エネルギーに加速した電子線を用いた手法で あるため、発光検出の空間分解能が数十 nm に低下することを述べた。
- (4) STM 発光分光法では、STM の動作原理にもとづき、原子・分子スケールで構造観察 が可能であることを示した。発光検出における空間分解能は測定試料の発光メカニズ ムによって2通りに区別でき、電子のトンネル過程に伴う発光では、STM 像と同等の 空間分解能で発光を検出可能であり、トンネル電子の注入(または電子の引き抜き) による発光では、試料内での電子拡散による空間分解能の低下を考慮しなければなら ないことを述べた。
- (5) STM 発光分光法において観測される発光について、測定試料によって4種類の発光メ カニズムに分類できることを示した。また、それぞれの発光の発光メカニズムについ てエネルギーダイアグラムを用いて解説し、発光の特徴、量子効率等について述べた。

第3章 STM 発光分光システムの構築

3.1 緒言

本章では、本研究において新たに立ち上げた室温・大気中にて動作する STM 発光分光シ ステムについて、そのシステムの詳細について説明する。そして、ナノスフィア・リソグ ラフィ (Nanosphere Lithography; NSL) 法によって作製した酸化インジウムスズ (Indium Tin Oxide; ITO) 基板上の Au ナノ構造を用いて、立ち上げたシステムの動作確認・性能評 価を行った結果を示す。

3.2 STM 発光分光システムの構築

本研究において立ち上げた STM 発光分光システムは、試料の構造観察と同時に、発光の 励起源となるトンネル電流を制御するための STM 本体と、誘起された発光を分析するため の2種類の微弱光検出システムから構成される。これにより、STM の観測領域における発 光強度分布を得るフォトンマップ分析と、発光のスペクトル分析を同時に実行可能なシス テムとなっている(図 3.1)。以下の項ではシステム全体の概要について解説した後、シス テム主要部、または各分析モードの詳細について述べる。

図 3.1 STM 発光分析システムにおける分析データ取得フローチャート

3.2.1 システム概要

数 nA~数十 nA のトンネル電流によって誘起される発光は非常に微弱であるため、S/N 比 に配慮した高感度な光検出装置が必要となる。第2章で述べたように、STM 発光の量子効 率は測定試料によって異なるが、約 $1 \times 10^{-7} \sim 10^{-3}$ photons/electron の範囲内である。例え ば、1 nA (6.2×10⁹ electrons/sec)のトンネル電流では、単位時間あたり約 6.2×10²~10⁶ photons/secのフォトンが放出される。探針-試料間の発光が生じる空間は nm スケールの 領域であることから、STM 発光では点光源からの発光を観測していると見なせる。測定試 料と金属探針による物理的遮蔽により、STM の探針-試料間の点光源から全方位方向に放 出されるフォトンを全て集光することは困難である。本研究では、光ファイバ 2 本による 集光システムを採用している。それぞれの光ファイバによる発光検出効率は約 1 %であり (検出効率に関しては後述する)、各検出器で受光するフォトン数は約 6.2×10⁰~10⁴

photons/sec となる。検出器の量子効率などを考慮すると信号として得られるフォトン数は さらに低下することになり、測定のノイズ対策には十分注意する必要がある。

以上の条件を満たすために、本研究で立ち上げた STM 発光分光システムでは外部からの 迷光を避けるため、STM 本体と光ファイバなどからなる集光システムを全て暗室内に配置 して実験を行っている(図 3.2)。また、暗室は防音ボックスの効果を持つ。

図 3.2 STM 発光分析システムの STM 本体・発光検出部の外観図(暗室内に配置)

図 3.2 に示すように、本システムでは STM 本体、2 本の光ファイバを支持するための独 立した 2 個のメカニカルステージを卓上型アクティブ除振台(e-Stable mini-500AD: 倉敷 化工株式会社)上に配置している。発光点と光ファイバの光軸アライメントには CCD モニ タシステムを使用し、モニタ上に探針、試料、光ファイバの拡大像を映し出すことにより 正確なアライメントを行っている。本システムで使用した STM は試料をピエゾ素子で駆動 するタイプであるため、一度調節した光軸アライメントがずれることはない。

発光分析には光電子増倍管(Photomultiplier Tube; PMT)と液体窒素冷却型 CCD 分光 器の 2 種類の微弱光検出器を使用した。それぞれの分析システムについては以下の節で詳 しく述べる。STM コントローラーには RHK 社の SPM1000 を使用している。SPM1000 にはパルスカウント用のデジタルカウンターが備えられており、PMT を用いたフォトンカ ウンティングによって得られたフォトン数信号を計測し、STM 像と同期して出力する。こ れにより、フォトンマップ分析が可能となる。また、SPM1000 は STM 像の各ピクセルに おいて TTL 信号を外部に出力する機能を備えており、この TTL 信号を CCD 分光器のコン トローラーに動作トリガとして入力することにより、STM 像の各ピクセルにおける発光ス ペクトルを取得することが可能である。このように、SPM1000 コントローラー(ソフトウ ェア: XPMPro Ver.1.2) は本システムの統合コントローラーとして機能し、図 3.1 に示すよ うに STM 像とフォトンマップ、発光スペクトルの 3 種類の分析データを同時に取得するこ とが可能である。

以下の節では、本システムにおいて重要な構成要素となるSTMシステム、集光システム、 フォトンマップ分析、発光スペクトル分析についてそれぞれ記述する。

3.2.2 走査トンネル顕微鏡システム

システムの主体となる STM 本体には、大気中、液中測定対応など多彩なオプションを有 する Digital Instruments 社の NanoscopeIIIa を使用した。また、コントローラーには RHK 社の SPM1000 を使用した。図 3.3 には、この STM システムを用いた高配向性グラファイ ト (Highly Oriented Pyrolytic Graphite; HOPG)表面の原子像観察の結果を示す。

図 3.3(a)は HOPG 表面の広範囲観察像であり、HOPG のステップが観測されている。図 3.3(b)は HOPG 表面の原子分解能像であり、HOPG 表面のβサイトに対応する個々の輝点 が観測されている[39]。図 3.3(c)の断面プロファイルから、βサイトの間隔が約 0.25 nm で あることが確認でき、HOPG 表面の原子像を正確に観測できている。このように、本シス テムは原子分解能を有する高い空間分解能での構造観察が可能である。

3.2.3 集光システムの設計

STM 発光分光システムでは、放出される微弱光を如何に高効率で集光できるかが重要に なる。本システムでは、探針ー試料間から放出されるフォトンを直接光ファイバで集光す るシステムを採用した。図 3.4 に測定セットアップ時の写真を示す。これまで、光ファイバ による集光法の他には、レンズ[40]、光透過型 STM 探針[41]などを用いての集光が実現さ れている。しかしながら、本システムのように光ファイバを探針ー試料間にできるだけ近 接させて直接光を検出するシステムが最も単純かつ自由度が高く、ファイバ本数の追加に よる高い集光率の獲得、多系統の分析(本システムではフォトンマップ分析と発光スペク トル分析の2系統の同時取得)、発光の角度依存性測定なども可能である。

図 3.4 光ファイバによる発光検出の外観図 (a) 発光検出部の拡大写真, (b) 光ファイバの配置模式図

本システムでは、光ファイバにステップインデックス型の石英ファイバ(ST1000H: 三 菱電線工業株式会社,ファイバの直径: 1.25 mm,コア径: d=1 mm,開口数(NA):0.22) を使用した。2本の光ファイバはそれぞれ独立したメカニカルステージに保持され、探針-試料間の発光点に近接させることが可能である。図 3.4 は試料水平面からの仰角 25 度で光 ファイバを近接させたときの写真(a)と模式図(b)である。

図 3.5 には本システムで使用した光ファイバの設計図と仕様を示す。試料との物理的干渉 を避けるため、光ファイバ先端はステンレススリーブに 20 度のテーパを入れた形に加工し ている。PMT、または CCD 分光器への光ファイバ接続には FC コネクタを採用した。ステ ンレススリーブ部分はメカニカルステージに固定され、xyz 方向に µm レベルでの移動が可 能である。光ファイバ先端は仰角 25 度を保って発光点へ近接させることによって、発光点 との距離 D(図 3.4(b))を 2 mm 以下に近づけることができる。

図 3.5 光ファイバ設計図・仕様

光ファイバによる集光では、式(3-1)を満足する光ファイバ近接条件では発光点と光 ファイバの距離Dに関係なく1本の光ファイバで得られる最大の立体角が得られる[42]。

ここで、 *D*₀は発光点*P*から光ファイバ端面までの距離を示し、図 3.6の関係によって定義 される距離である。

図 3.6 点光源と光ファイバによる集光図 θ_{max}:開口数 NA の光ファイバによって集光可能な最大の開き角

本実験で使用した光ファイバのコア径 (d) は 1 mm、NA=0.22 であることから、 D_0 =2.2 mm となる。上でも述べたように、本実験では発光点と光ファイバの距離Dを 2 mm 以下 に近接させることが可能であるので、式 (3-1)を満足し、1本の光ファイバで得られる最大の立体角を得ている。

ここで、1本の光ファイバによって得られる最大の立体角は以下のように求められる。図 3.7 は斜面の長さ l、半頂角 θ_{max} の直円錐を示している。円錐の頂点、ここでは発光点Pから光ファイバのコアの端面を見込む立体角を Ω とする。

図 3.7 のように、円錐が頂点Pを中心とする半径lの球面を切り取る面積 S_0 を求めれば、

として立体角が得られる。 S_0 を求めるには、半頂角が $\phi \ge \phi + d\phi$ の 2 つの円錐面が S_0 切り取る環状(図 3.7 の右側に示した S_0 投影面の中の灰色部分)の面積要素 dS_0 を計算し、仮定した半頂角 ϕ をゼロから θ_{max} まで変えてその dS_0 を積分すればよい。 dS_0 は、 $d\phi$ が 微小量であるので、内のりが半径 $l\sin\phi$ の円で幅が $ld\phi$ の環状部分と見なせるから、

$$dS_0 = \pi (l\sin\phi + ld\phi)^2 - \pi (l\sin\phi)^2 = 2\pi l^2 \sin\phi d\phi + \pi l^2 (d\phi)^2 \qquad \text{if} \quad (3-3)$$

であり、最後の項は dφ が微小量なのでその2乗は無視でき、結局、式(3-3) は

となる。これを $\phi=0 \rightarrow \theta_{max}$ で積分すると S_0 は

となる。これにより、立体角 Ω は

$$\Omega = \frac{S_0}{l^2} = 2\pi \left\{ 1 - \cos \theta_{\max} \right\} = 2\pi \left\{ 1 - \cos \left(\sin^{-1} NA \right) \right\} \qquad \exists (3-6)$$

となる。本システムで用いた光ファイバの NA は 0.22 であることから、立体角 Ω は 0.15 sr と求められる。全立体角は 4π (sr)であることから、1 本の光ファイバで得られる光の集光 効率は約 1.23 %となる。次に、光ファイバの透過率は 1 m につき 99.5 %であるので、今回 使用した 3 m の光ファイバでは透過率 98.5 %となる。また、空気-光ファイバ界面の反射 による損失約 10 %を考慮すると、発光を検出器へ導く効率は最終的に約 1.1 %となる。

0.0123×0.985×0.9=0.0109=約1.1% (光ファイバ1本の発光検出効率)

3.2.4 発光強度二次元マッピング(フォトンマップ)分析

フォトンマップとは、STM の観察領域における発光強度分布を示す像である。本システ ムでは、STM によるナノスケール構造の構造観察と同時に、ナノスケール構造から放出さ れる光を光ファイバ(図 3.4(a)左 Optical Fiber #1)を通して PMT に導入し、フォトンカ ウンティングを行う。得られたフォトン数信号を SPM1000 コントローラーに内蔵されたパ ルスカウンターで計測し、その信号を STM 像の各ピクセルと同期してイメージ化すること によってフォトンマップを得る。STM 探針と測定試料との間に流れるトンネル電流は表面 上において原子スケールの広がりしか持たないことから、フォトンマップは原理的に STM 像と同等の空間分解能を有する。STM による構造観察と同時に発光強度分布の情報を得る ことにより、ナノスケール構造の発光特性を高い空間分解能で分析・評価できる。

本システムでは、各ピクセルで設けるフォトンカウンティング時間を最小値 10 ms から 任意に設定することが可能であり、フォトンカウンティング時間を長く設定することによ って S/N 比を向上できる。また、本システムでは、浜松ホトニクス社の 2 種類の PMT を 実験ごとに切替えて使用している。2 種類の PMT、R649S と R943-02 の陰極放射感度(実 線:S) と量子効率(破線:QE)を図 3.8 に示す。

(a) R649S, (b) R943-02

R649S はヘッドオン型の PMT であり、光電面には仕事関数の低い金属からなるマルチ アルカリ (Na-K-Sb-Cs) を使用している。検出波長は 300~850 nm で、420 nm で最大の 陰極放射感度 (図 3.8(a)実線: S) 51 %を有する。入射光は波長によって光の持つエネルギ ーが変化するので、実際の量子効率 (図 3.8(a)破線: QE) は波長λに対して式 (3-7)の 関係にある。これにより、R649S では 320 nm で最大の 20 %の量子効率を有する。

R943-02 は R649S と同じヘッドオン型の PMT であり、光電面には R649S のマルチアル カリに比べ、より長波長側にも感度を持つ GaAs(Cs)を使用している。検出波長は 160~930 nm であるが、300~850 nm の可視光領域で 10~20%の高い量子効率を有する。しかし、 長波長領域で高い検出感度を有する分、熱による暗電流(ダークカウント)が大きい。

図 3.9 に R649S(a)、R943-02(b)の光電面の配置図を示す。R649S の光電面の面積は 5×8 mm であり、受光窓の硼珪酸ガラス直下に配置してある。R943-02 の光電面は有効面積 10×10 mm であるが、受光窓の合成石英ガラスから 20 mm ほど奥の位置に配置してある。 PMT は冷却器と静電および磁気シールドを兼ねた C4877 (図 3.9(c)) に内蔵されるため、 光ファイバから入射した光は 50 mm ほどの石英窓を通過する。

図 3.9 PMT と光ファイバの接続部 (a) R649S 設計図, (b) R942-02 設計図, (c) 光ファイバ接続フランジ設計図(C4877), (d) 凸レンズによる集光設計図

本システムでは、FC コネクタによって接続された光ファイバ端面からの光を 2 種類の PMT に対応し、両方の光電面に漏れなく結像させるため、f=25 mm と f=70 mm の 2 枚の 凸レンズを用いている (図 3.9(d))。これにより、R649S と R942-02 の両方の光電面に φ 5 mm 以下のデフォーカス像が結像され、両方の光電面で集光した光を受光できる。 ここでは、C4877の石英窓での光の透過率90%、2枚のレンズ(それぞれ90%)の透過率により、PMTへの光の接続効率は約73%となる。

0.9×0.9×0.9=0.729=約72.9% (PMTへの光の接続効率)

本システムでは、PMT のダークカウントを抑え、S/N 比の良い計測を行うために、ペル チェ素子を利用した電子式冷却器(C4877:浜松ホトニクス社)と冷却水循環装置 (LTC-450N:アズワン)を用いることによって PMT 本体を約 - 40 ℃に冷却している。

PMT のダークカウント公称値は、R649S は室温で 61.8 count per sec (cps)、R943-02 は - 20 ℃の冷却で 20 cps であるが、冷却によりダークカウントを低減できる。

図 3.10 に、約 - 40 ℃の冷却下におけるそれぞれの PMT のダークカウント評価結果を示 す。R649S (図 3.10(a)) では、印加電圧 - 1200 V (R649S において最も S/N 比の良いプ ラトー電圧) で 60 分間の計測を行った。R943-02 (図 3.10(b)) では、印加電圧 - 1800 V (R943-02 において最も S/N 比の良いプラトー電圧) で 30 分間の計測を行った。

図 3.10 約 - 40 ℃の冷却下における PMT のダークカウント評価 (a) R649S, (b) R943-02

R649S では、平均ダークカウント約 0.62 cps、R943-02 では、平均ダークカウント約 1.63 cps となり、共に冷却の効果が得られ、ダークカウント約 2 cps での非常に S/N 比の良いフォトンカウンティング計測条件が得られている。

3.2.5 発光スペクトル分析

発光スペクトル分析はナノスケール構造の光特性に関する多くの情報をもたらす。励起 源となるトンネル電子の持つエネルギーは STM のバイアス電圧によって与えられるため、 バイアス電圧を調節することで励起エネルギーを連続可変することが可能である。ナノス ケール構造はトンネル電子によって与えられたエネルギーを光として放出する。この電子 ー光変換過程はナノスケール構造の電子状態の影響を受けるので、発光スペクトルを詳細 に解析することによってナノスケール構造の発光メカニズム、ひいてはその電子状態に関 する知見を得ることができる。 本システムでは、光ファイバ(図 3.4(a)右 Optical Fiber #2)によって得た光を CCDに よるマルチチャンネル分光器を通して発光スペクトルを取得している。マルチチャンネル 分光器を使用することによって、広波長範囲におけるスペクトルを短時間で取得すること ができる。図 3.11に本システムで用いた CCD 分光器の仕様を示す。

図 3.11 液体窒素冷却型 CCD 分光器の仕様

分光器は微弱光測定であることを考慮し、短焦点距離(300 mm)、明るさf/4.0 の分光器 SpectraPro·300i (Acton Research Corporation 社)と刻線数の少ない2種類のグレーティ ング(1.150本/mm, ブレーズ波長:500 nm, 波長域:330~950 nm, 2.150本/mm, ブレー ズ波長:800 nm, 波長域:475~1300 nm)を使用した。FC コネクタによって接続された光 ファイバからの光を全て取り込むために、スリット幅は光ファイバのコア径と同じ 1.25 mm としている。これにより光の取り込み量は最大となるが、スペクトルの分解能は低下 する。例えば、632.8 nm の He-Ne レーザーの光を検出する際には約 30 nm のスペクトル のばらつきが生じる。

CCD 検出器には量子効率の高い(波長 560 nm において最大 94%) バックイルミネイト型の Spec-10:100B/LN (Roper Scientific 社,検出波長域: 200~1100 nm)を用いた。この タイプは、量子効率がフロントイルミネート型より 2 倍以上高い点が特徴である[43]。 図 3.12 には本システムで使用した液体窒素冷却型 CCD 分光器の量子効率曲線を示した。

CCD 検出器は液体窒素を冷媒とし、-120 ℃に冷却することが可能である。-120 ℃の 冷却により、CCD 素子のダークチャージノイズは約 0.3 electron/pixel・hour に低減される。 これは 1 時間の発光スペクトル測定 (露光時間) でカウントされるバックグラウンドノイ ズが約 0.3 count であることを意味し、ダークチャージノイズはほとんど無視できる。CCD 分光器で生じるノイズのほとんどはシステムの電荷読み出しのアナログーデジタル変換の 際に生じるリードアウトノイズであり、その値は約 3 electron rms である。図 3.13 は検出 中心波長を 800 nm とした時の発光スペクトルのバックグラウンドを露光時間 1 sec で取得 した発光スペクトルの結果である。

図 3.13 発光スペクトルのバックグラウンド評価

図 3.13 で取得した 516 ~ 1080 nm の発光スペクトルのデータ各点は、CCD 素子の横列 1340 pixel に対応し、発光強度は CCD 素子の縦列 100 pixel の積分値となっている。1 sec の露光時間ではダークチャージノイズは 1×10⁻⁴ electron/pixel であるので、ほとんど無視で きる。ここで観測されているバックグラウンドの平均値(約 126 counts)は、システムの リードアウトノイズ(約 3 electron rms)を CCD 素子の縦列 100 pixel で積分した結果得 られる値であり、測定時間(露光時間)によらない値である。実際の測定では、このバッ クグラウンドをあらかじめ計測し、測定結果から引くことが可能であるので、実際の測定 結果に与えるノイズ成分はシステムのリードアウトノイズの約 3 electron rms(±3 count に相当)のみとなる。これにより、本システムでは PMT によるフォトンカウンティングに 匹敵する S/N 比の良い高感度な発光スペクトル取得が可能となっている。

CCD 分光器のコントローラー(ST-133型)は、外部からの計測開始信号(TTL 信号) をトリガとして計測を開始できる。先にも述べたように、SPM1000ではSTM 像の各ピク セルの測定開始と同時にTTL 信号を出力する端子を備えており、SPM1000と分光器コン トローラーを接続することにより、STM 像の各ピクセルにおける発光スペクトルを取得す ることが可能である。ただし、数 cps レベルの発光現象の発光スペクトルを取得するために は分単位の露光時間を必要とするため、各ピクセルにおける待機時間を長く設定する必要 がある。

3.3 システムの発光検出能力・空間分解能の評価

本研究において立ち上げた STM 発光分光システムの動作確認・性能評価を行うために、 ITO 基板上に NSL 法[44]を用いて作製した Au ナノ構造の発光特性解析を行った。ITO 基 板上の Au ナノ構造は STM 像で確認できる。また、フォトンマップにおいて ITO、Au の それぞれの表面上で誘起される TIP 特性の違いを評価することにより、発光検出の空間分 解能を評価することができる。特に、Au の TIP 発光は過去に多くの研究例が有り、発光の 量子効率もよく知られているため、本システムの発光検出能力を評価する試料として適し ている。以下の節では NSL 法による Au ナノ構造の作製方法と、Au ナノ構造のフォトン マップ分析と発光スペクトル分析の結果について説明する。

3.3.1 ナノスフィア・リソグラフィ法による Au ナノ構造の作製

NSL 法とは、直径の揃ったポリスチレン球を平坦基板上に自己組織化的に配列させ、ポ リスチレン球によって形成される隙間を利用して金属などを蒸着することで、構造の整っ た規則的なナノ構造配列を表面に形成する手法である。図 3.14 に NSL 法による Au ナノ構 造の作製手順と、Au ナノ構造作製前後の ITO 基板の STM 像を示す。

図 3.14 NSL 法による Au ナノ構造の作製

- (a) NSL 法による Au ナノ構造の作製手順,
- (b) ITO 基板の STM 像(Vs= +1.5 V, It= 0.8 nA, Scan area: $3\times3 \mu m^2$, Pt/Ir tip),
- (c) ITO 基板上の Au ナノ構造の STM 像
- $(V_S = +1.5 \text{ V}, \text{ I}_t = 0.8 \text{ nA}, \text{ Scan area: } 1 \times 1 \text{ } \mu\text{m}^2, \text{ Pt/Ir tip})$

本実験では、直径約 200 nm の市販のポリスチレン球(Duke Scientific Corp.)と、表 面荒さ 10 nm 以下に研磨した石英基板上に ITO 膜をスパッタ蒸着によって形成した ITO 平坦基板(フルウチ化学株式会社)を用いた。実験では初めに、エタノール溶媒に分散さ せたポリスチレン球を ITO 基板上に滴下し、ポリスチレン球の自己組織化膜を作製する。 この基板上に真空蒸着によって Au を蒸着し、最後にエタノールでの超音波洗浄によってポ リスチレン球の膜を除去する(図 3.14(a))。以上の手順によって ITO 平坦基板上(STM 像: 図 3.14(b))に規則正しく配列した Au ナノ構造を作製した。図 3.14(c)の STM 像において 明るく観測されている三角形の輝点が個々の Au ナノ構造である。

3.3.2 フォトンマップ分析による空間分解能の検証

初めに、作製した Au ナノ構造のフォトンマップ分析(1µm²領域)を行い、本システム の発光検出感度・空間分解能の検証を行った。図 3.15(a)には ITO 基板上の Au ナノ構造の STM 像を、図 3.15(b)には同時に取得したフォトンマップ分析結果を示す。図 3.15(c)には STM 像、フォトンマップ中の点線で示した場所に対応するそれぞれの断面プロファイルを 示す。

図 3.15 Au ナノ構造のフォトンマップ分析 (a) Au ナノ構造の STM 像, (b) Au ナノ構造のフォトンマップ, Vs= +2.4 V, It= 2.5 nA, Scan area: 1×1 µm², PtIr tip, 64×64 pixels, 100 ms/pixel, R943-02 使用 (STM 像(a)、フォトンマップ(b)は同時に取得) (c) STM 像、フォトンマップにおける断面プロファイルの比較

図 3.15 に示した STM 像、フォトンマップの取得では、装置のドリフト効果による像の 歪みを避けるため、測定時間の短縮を目的として通常の像取得(256×256 pixels)よりも 少ない解像度(64×64 pixels)での測定を行った。また、各ピクセルにおけるフォトンカ ウンティング時間は 100 ms とし、約 19 分でイメージを取得した。

図 3.15(a)の STM 像では Au ナノ構造が明るい輝点として観測され、暗く凹んだ部分がポ リスチレン球を除去した後の ITO 基板が露出した部分である。 図 3.15(b)のフォトンマップ では、Au ナノ構造上でのみ発光が観測され、ITO 基板表面では PMT のダークカウント程 度のカウント数しか発光が観測されていない。このため、フォトンマップでは STM 像で観 測される Au のナノ構造の形状をそのまま反映した発光強度像が得られている。 この結果は ITO 表面と Au ナノ構造上の TIP 発光特性の違いを示すものである。TIP 励起による発光 では、測定試料の表面プラズモンと、STM 探針(本実験では Pt/Ir 探針)先端のプラズモ ンとの合成によって形成される TIP が、探針-試料間を流れるトンネル電子による IET 過 程によって励起されたのち、その失活の際にフォトンを放出する。フォトンマップ上で ITO 基板からの発光が観測されなかったことから、ITO と Pt/Ir 探針によって形成される TIP の励起モードは観測しているエネルギー領域 (PMT (R943-02) 観測波長域: 160~930 nm) には存在しないことが理解できる。一方、Au ナノ構造の領域では 100~1000 cps、量子効 率に換算すると約 4×10⁻⁶~10⁻⁵ photons/electron の TIP 発光が観測されている。大気中の 実験における TIP 発光の量子効率は、真空中における TIP 発光の量子効率(約 1×10.4 photons/electron) に比べ、試料表面の吸着水などの影響により 1 桁程低い(約 1×10⁻⁵ photons/electron) ことが知られている[45]。この影響を考慮すれば、本実験においても同 等の量子効率が得られている。以上の結果により、本システムの集光システムが正常に動 作している事が確認できる。

図 3.15(c)の断面プロファイルでは、STM 像の断面プロファイル(上・青色)とフォトン マップの発光強度プロファイル(下・赤色)がほぼ一致している。これは、フォトンマッ プが、STM 像と同等の高い空間分解能で得られていることを示している。さらに、Au ナ ノ構造による凸形状と、フォトンマップ形状の細部を比較すると、STM の凸形状と発光強 度が必ずしも一致していないことが分かる。これは、フォトンマップ分析が、STM 像から は得られない Au ナノ構造中の発光特性に関する情報を含んでいることを示唆している。

3.3.3 個々のAuナノ構造の発光特性解析

次に、Au ナノ構造中の TIP 発光特性分布を調べるため、単一の Au ナノ構造を対象とし て、さらに微小な領域におけるフォトンマップと発光スペクトルの同時取得を行った。図 3.16(a)には Au ナノ構造の STM 像(1 µm²領域)を示す。図 3.16(b)の赤線の発光スペク トルは図 3.16(a)の STM 像中の点線枠(300 nm²)の領域から得たものであり(黒線は同条 件で取得した ITO 基板の発光スペクトル)、図 3.16(c), (d)はこの発光スペクトルと同時に 取得した STM 像とフォトンマップ像である。 STM 像およびフォトンマップ取得では、解像度 64×64 pixels、バイアス電圧 Vs=+2.0 V、 トンネル電流 It=10 nA で、フォトンカウンティング時間を 25 ms/pixel とし、約6分でイ メージを取得した。測定領域が微小になるにつれ、装置のドリフト効果を無視できなくな るため、各ピクセルにおけるフォトンカウンティング時間は短く設定しなくてはならない。 これにより、各ピクセルにおける発光検出時間は短くなり、有効な発光スペクトルを得る ことが困難となる。そこで、本測定では STM 像とフォトンマップ取得中の全時間を CCD 露光時間とし、発光スペクトルを取得している。図 3.16(b)の赤線に示した発光スペクトル はイメージ取得中、約 6 分間の積算スペクトルである。比較のため、金を蒸着していない ITO 基板からのスペクトルを図 3.16(b)黒線に示すが、ITO 基板からは発光が観測されてい ない。このことから、図 3.16(b)赤線の発光スペクトルは Au ナノ構造からの発光のみを観 測した結果であることが分かる。

図 3.16 Au ナノ構造のフォトンマップと発光スペクトルの同時取得 (a) Au ナノ構造の STM 像 (Vs= +2.0 V, It= 0.5 nA, Scan area: 1×1 µm², Pt/Ir tip), (b) Au ナノ構造の発光スペクトル (赤線: Au ナノ構造からの発光スペクトル, 黒線: 同条件で取得した ITO 基板からの発光スペクトル), (c) Au ナノ構造の STM 像, (d) Au ナノ構造のフォトンマップ, Vs= +2.0 V, It= 10 nA, Scan area: 300×300 nm², Pt/Ir tip, 64×64 pixels, 25 ms/pixel, R943-02 使用 (STM 像(c), フォトンマップ(d), 発光スペクトル (b-赤線) は 同時取得、発光スペクトル (b-赤線) はイメージ測定中、約 6 分間の積算スペクトル)
図 3.16(b)中の矢印は、式(2-14)で表わされる量子カットオフ条件から導かれる、バ イアス電圧に対応するカットオフ波長を示している。量子カットオフ条件とは、観測され る光のエネルギーが注入するトンネル電子の持つエネルギーよりも低くなることである。 本測定では、バイアス電圧+2.0 Vによって与えられたトンネル電子は、約 620 nm (式(2 -14)より)よりも長波長領域の発光を誘起している。この結果は、TIPの励起がトンネ ル電子の IET 過程によって励起されており、この際、多重励起がないことを示している。 また、発光スペクトルは明確なピークを持たず、約 800 nm を中心としたブロードなスペク トル特性を示している。この結果は、スペクトル中には複数の発光ピークが含まれている ことを示しており、このナノ構造上には、エネルギーの異なる複数の TIP モードが励起可 能であることを示している。

図 3.16(d)のフォトンマップは、STM 像と完全に一致しており、イメージの各ピクセルの 幅が約5 nm であることから、本システムにおいて10 nm 以下の発光検出空間分解能が得 られていることが確認できる。さらに興味深いことに、図 3.16(d)のフォトンマップでは、 単一のナノ構造上に発光強度の異なる場所が観測されている。この結果からも単一のナノ 構造上に複数の TIP モードが存在している可能性が示唆され、発光スペクトルが複数の発 光ピークから構成されているという結果と一致する。フォトンマップでは、ナノ構造の四 隅周辺が共通して発光強度が弱い。TIP は、STM 探針と試料表面のプラズモンによって形 成される合成プラズモンであり、その発光特性は探針の先端形状とナノ構造によって形成 されるトンネルギャップの形状に強く依存する。特に、式(2-15)に示したように、TIP の空間的な広がりは約 10 nm に及び、この範囲内の TIP を囲む STM 探針、または試料の 表面形状が TIP の励起モードを決定する要因となる。STM 探針が円錐状の探針であるとす れば、Au ナノ構造の四隅周辺における STM 探針と Au ナノ構造からなるトンネルギャッ プ形状はほぼ同様であることが推測される。このため、Au ナノ構造の四隅周辺では同様の TIP モードを誘起していることが推測できる。その他の部分ではこれとは異なる TIP モー ドが励起されており、Au ナノ構造中に発光強度の異なる場所が存在する要因となっている ことが推測される。

以上の結果により、発光検出能力、発光検出の空間分解能など、本システムが十分に機 能していることが確認できた。特に、フォトンマップ分析と発光スペクトル分析を同時に 実行することによって、ナノスケール構造の発光特性を多角的に解析することが可能であ り、本システムがナノスケール構造の光物性評価において有用なシステムであることが示 された。

3.4 結言

第3章では、本論文で立ち上げた室温・大気中で動作するSTM発光分光システムについて解説し、NSL法によって作製したITO基板上のAuナノ構造を用いて、立ち上げたシス

テムの動作確認・性能評価を行った結果を記した。以下に本章の要点をまとめる。

- (1) ナノスケール構造の構造観察、発光誘起を行うためのSTMシステムに加え、発光強度の空間分布を得るためのフォトンマップ分析、発光の波長分布を知るための発光スペクトル分析の2系統の発光分析を同時に行うためのSTM発光分光システムの設計理念、概要について、それぞれの測定・解析装置に求められる要件と共に解説した。
- (2) 構築したシステムに用いた STM (NanoscopeIIIa) と、RHK 社製の SPM1000 コント ローラーを組み合わせることによって、HOPG 表面の原子像観察を行い、本システム が原子レベルの空間分解能で構造観測が可能であることを示した。また、SPM1000 コ ントローラーを用いることにより、フォトンマップ分析、発光スペクトル分析を単一 のソフトウェア上で実行できることを記した。
- (3) 微弱な STM 発光を高効率で検出するため、光ファイバによる集光システムを用いた。 2 系統の発光分析を同時に行うため、独立した 2 本の光ファイバを用いた。それぞれの 光ファイバはメカニカルステージを用いて µm レベルの位置調節が可能であり、CCD モニタで光ファイバの位置を確認することにより、それぞれの光ファイバの先端と発 光点との距離を 2 mm 以下に近接させるシステムを構築した。これにより、本システ ムで使用する光ファイバの開口数 (0.22) によって得られる最大の集光立体角 (0.15 sr) をそれぞれの光ファイバで得ることが可能となった。本システムで用いた光ファイバ1 本の発光検出効率は約 1.1 %となり、2 本を同時に使用すると約 2.2 %となる。
- (4) フォトンマップ分析には PMT によるフォトンカウンティングシステムを用いた。光フ ァイバと PMTの接続部には2枚の凸レンズを配置することによって損失の少ない光の 導入を可能にした。また、STM 発光分光法が微弱光測定であることを考慮し、電子式 冷却器と冷却水循環装置を組み合わせることによって PMT を約 - 40 ℃に冷却するこ とでダークカウントを低減し、S/N 比の良い光検出条件を整えた。R-649S では平均ダ ークカウント約 0.62 cps、R943-02 では平均ダークカウント約 1.63 cps である。
- (5) 発光スペクトル分析には、液体窒素冷却型 CCD を検出器としたマルチチャンネル分光 器を使用した。CCD 検出器を液体窒素により - 120 ℃に冷却することにより、CCD のダークチャージをほとんど無視できる S/N 比の良い測定が可能である(約 0.3 electron/pixel・hour)。これにより、実際の測定上のノイズはシステムのリードアウト ノイズの±3 countのみである。
- (6) NSL 法によって作製した ITO 基板上の Au ナノ構造を用いて、構築した STM 発光分 光システムの動作確認・性能評価を行った。フォトンマップ分析では、Au ナノ構造からの TIP 発光を検出し、本システムで 10 nm 以下の発光検出空間分解能が得られていることを確認した。また、単一の Au ナノ構造からの発光スペクトル分析を行い、フォトンマップ分析とスペクトル分析が同時実行可能であることを確認し、本システムがナノスケール構造の発光特性を評価する手法として十分に機能していることを確認した。

第4章 カーボンナノチューブからの

STM 発光分光分析

4.1 緒言

炭素はさまざまな構造・形態を見せる。炭素原子が3次元の立体構造を組めばダイヤモンドになり、2次元の平面に炭素原子が並べばグラファイトに変わる。ダイヤモンド、グラファイトに次ぐ第三の同素体と呼ばれるサッカーボール形分子フラーレン(C60)が1985年に発見され、炭素材料や有機化学ばかりでなく、物理と化学全般に新しい地平を切り開いた。カーボンナノチューブ(Carbon Nanotube; CNT)は、このフラーレンの研究過程で偶然に発見された新物質である。ヘリウムガス中で直流アーク放電により炭素電極を蒸発させると、フラーレンを含んだ煤の他に、陰極先端にスラグ状の堆積物が形成される。C60の多量合成法が発見された1990年末から1991年にかけては、ほとんどのフラーレン研究者はC60の生成に熱中していたため、陰極先端に堆積した塊にはあまり関心がなかった。しかし、NEC基礎研究所の飯島は煤の回収後に残されていたこの堆積物に注目し、これを電子顕微鏡で調べることにより多層のナノチューブを発見し、その重要性を指摘した。

CNT はグラファイトの1枚面(グラフェンあるいはグラフェンシートと呼ぶ)を巻いて 筒形にした形状をもっており、その直径はおおよそ数 nm から数十 nm の範囲で、長さは 数 µm にも及ぶ。したがって、CNT は極細の炭素繊維と見なせる点もあるし、一部の電子 的性質はグラファイトに似たところもある。特に、CNT における興味深い点は、上述のよ うに長さと直径の比(アスペクト比)が 1000 程度に及ぶので、両端の影響を事実上無視す ることができ、典型的ないわゆる1次元物質として考えられることである。

CNT は理想的な一次元電子系であることから、光デバイスへの応用の面から非常に注目 を浴びている。例えば、量子細線レーザーでは、現在の量子井戸レーザーに比べて、低い しきい値電流、温度に対して安定、高速変調が可能、高い Q 値を示す、などの特性をもつ デバイスが実現可能であるとされている。また、一次元系では、光学応答の非線形性が大 きいことも期待されるので、光スイッチや光演算素子が実現可能な系としても注目されて いる。これらのことは、一次元電子系がもつ特徴、状態密度の発散(van Hove singularity の出現)や、励起子の安定化・振動強度の集中などが、その土台となっている。これらの 研究はIII – V族などのいわゆる「普通の量子細線」で精力的になされている。しかしなが ら、人工的に作られた「量子細線」には、界面の不均一性や細線の太さに問題があり、実 際のところ一次元電子系が実現されているとは言い難い。CNT、特に単層カーボンナノチ ューブ (Single-walled Carbon Nanotube; SWNT) は直径が小さく、また単純な構造をし ており、その基本的な構造から「理想的な量子細線」と見ることができる。理論的研究に よると、SWNT は一次元的な状態密度をもち、その構造(カイラリティ)により、金属的 や半導体的な電子状態を示す。実験的には、共鳴ラマン散乱や STM/STS の測定により、 SWNT のフォノン構造やバンド構造の研究が進められている。また、近年、界面活性剤を 用いて SWNT を溶液中に溶解させることが可能となり、SWNT の光学特性についての研究 が盛んに行われている[46]。

これまでに、SWNT、多層カーボンナノチューブ(Multi-walled Carbon Nanotube; MWNT)などの CNT について、さまざまな光学特性に関する研究が行われている。例え ば、CNT の過飽和吸収効果を利用した光スイッチング素子[47]、光誘起電流による微小受 光素子[48]、電子・正孔注入によるエレクトロルミネッセンス[49]、電流誘起による発光[50]、 レーザー励起による蛍光発光[51]、電界放出に伴う発光[52]などが挙げられる。これらの光 物性は、CNT の一次性に起因する電子物性と密接な関係を持っており、発光と個々の CNT の電子構造との関係を明確にした上でデバイスの設計を行う必要がある。しかし、現在の CNT 合成技術では金属的、半導体的性質を有する CNT の作り分けが不可能であるため、 CNT の光物性を評価するためには個々の CNT の電子状態と、それに起因する光物性を同 時に評価する方法が必要となる。

本研究では、CNT の中でも、MWNT からの STM 発光[53]に着目し、1本1本の MWNT を観察し、MWNT から観測される発光と、個々の MWNT との電子状態との関係について 調べた。

図 4.1 STM 発光分光法による個々の CNT の発光特性評価の模式図

4.2 カーボンナノチューブの電子構造について

CNT はグラフェンシートを巻いて筒形にした構造をしており、その構造を大別すると SWNT と MWNT の 2 種類の CNT が存在する。SWNT は比較的細く、数 nm 程度の直径 を持つものが優勢であるが、MWNT では数層から数十層が同心円状となり、各チューブ間 の層間距離が約 3.4 Åで、その直径は数十 nm にまで及ぶかなり太いものもある。また、 CNT の先端部分は丸く閉じた構造をしており、巨大なフラーレンのような閉殻構造をとっ ている。幾何学的な考えから、六員環のみならず五員環が炭素ネットワークを構成してい ることがわかる。CNT の作製はおもにアーク放電法[54]とレーザー蒸発法[55]により行わ れているが、最近、化学気相成長(CVD)法[56]も使われるようになった。アーク放電法 とレーザー蒸発法により作製されるナノチューブは欠陥が少なく構造完全性が高いが、 CVD 法により生成するナノチューブはグラフェンシートの成長が不完全で欠陥が多い。

CNT は、その形状を指定するために、図 4.2 に示すような方式で各六角形の一つの頂点 に座標を割り当てる。そして座標が(0,0) である原点 O を、点 A (n,m) に重ねるよう にして巻いたものを tube (n,m) と呼ぶ。(n,m) はナノチューブの構造を指定するカイラ リティと呼ばれ、指数(n,m) は点 O (0,0) から点 A (n,m) までを結ぶベクトル成分 になっており、それをカイラルベクトル Cb と呼ぶ。また、CNT の軸方向への並進ベクト ルはこのカイラルベクトルに垂直なベクトル T である。カイラルベクトル Cb を指定するこ とで、チューブの直径 D やカイラル角 θ、チューブの並進ベクトル T、単位格子あたりの 原子数 Nを計算で求めることができる。全ての CNT を表現するには、点 (n,m) が点 (0, 0) の位置を中心として 30°の中心角で開いている扇形の中にあれば十分である[57]。

図 4.2 CNT のユニットセルとカイラルベクトルの指数付け (a) CNT のユニットセル (OAB'B), (b) カイラルベクトル C_h *T*: 並進ベクトル, θ : カイラル角, a_1, a_2 : グラフェンの基本格子ベクトル 原点 O と C_h の指す点 A, 線分 OB と線分 AB'が重なるようにシートを巻く

図 4.2(b)に示すように、 C_{h} により CNT の筒形構造を表現することができる。 C_{h} は2つの整数値 (n, m) (0< | m | < n)の組で指定でき、グラフェンシートの切り方を表している。カイラルベクトル C_{h} はグラフェンの基本格子ベクトル $a_{1,a_{2}}$ を用いて式 (4-1)のように表現される。

$$\boldsymbol{C}_n = n\boldsymbol{a}_1 + m\boldsymbol{a}_2 \equiv (n,m) \qquad \qquad \boldsymbol{\vec{\pi}} \quad (4-1)$$

以上のようにして、カイラルベクトル C_h で表現された CNT のうち、(n, n) 型のものを アームチェア型、(n, 0) 型のものをジグザク型、それ以外の(n, m) 型のものをカイラル 型と呼ぶ。このような 3 種類の tube (n, m) の直径 Dは、次の式 (4-2) のように n と m を用いて表される。

$$D = \frac{\sqrt{3}d_{c-c}\sqrt{n^2 + nm + m^2}}{\pi}$$
 \vec{x} (4-2)

ここで、 d_{ee} は C-C 結合距離(1.42 Å)であるが、式(4-2)ではこの結合距離は全て同じと仮定している。実際の CNT での C-C 結合は、六角形の各頂点を最短距離で結んだものと考えるべきなので、実際の d_{ee} では場所によって微妙な長短ができることになるが、ここでは便宜上この影響を無視する。

図 4.2(a)のカイラル角 θ は、式 (4-2) と同様に考えると式 (4-3) のように表される。 また、(0< |m| < n)の条件より、 $|\theta| < 30^{\circ}$ が与えられ、上述の全ての CNT を表現 するには、点 (n, m)が点 (0, 0)の位置を中心として 30^o の中心角で開いている扇形の 中にあれば充分であることに一致する。

CNT の並進ベクトル Tは C_h に垂直であり、 a_{1,a_2} を用いると式 (4-4) のように表される。

ここで、 t_1 及び t_2 は C_h と Tが直交することを用いて、内積の関係 $C_h \cdot T = 0$ から以下のように与えられる。

$$t_1 = \frac{2m+n}{d_R}, \quad t_2 = -\frac{2n+m}{d_R}$$
 \vec{x} (4-5)

ここで、*d*_Rは(2n+m)と(2m+n)の最大公約数である。

チューブのユニットセルは C_h と Tで囲まれる長方形である。このユニットセル内の六員 環の数 Nは面積 | $C_h \times T$ | を六員環 1 個の面積 | $a_1 \times a_2$ | で割ると求められ、以下のよう に与えられる。

これにより、チューブのユニットセル内における炭素原子の数は2Nとなる。

次に、CNT の電子構造について述べる。グラフェンシートは結合 πバンドと反結合 πバ ンドがフェルミ面で接する零ギャップ半導体であり、二次元物質である。一方、CNT は、 チューブ軸方向に一次元に延びる細線構造を持つ。このことにより、チューブの軸方向の 並進対称性と、軸方向に垂直の方向における電子の波動関数の閉じ込め効果を考慮する必 要がある。ナノチューブにおける炭素原子は、グラファイトと同じように sp² 骨格と π 電子 に分かれ、π電子が価電子になる。チューブが曲率をもつことによって、価電子帯である 結合 πバンドは σ 軌道との混成を起すがその効果は小さい。これにより、1 つの炭素原子に は、1 つの π 軌道が存在するので、ナノチューブは 2N個の 1 次元のエネルギーバンドの集 まりが πバンドを構成する。この 1 次元のエネルギーバンドは、元のグラファイトの電子 状態に対し、円周方向に離散的な波数を与えて得ることができる。以下に、グラフェンの 電子状態を基本としたナノチューブの逆格子ベクトルと逆格子空間を説明する。

まず、軸方向については、次の式(4-7)で定められる一次元の波数ベクトル kを持つ。

チューブの軸方向に垂直な方向では、波動関数の閉じ込め効果により周期境界条件が課 され、円周の長さの整数分の1のド・ブロイ波長をもった電子しか存在し得ない。その結果、 直径方向に存在する電子の波数は N個に離散化され、逆格子ベクトル K1, K2 は次の式(4 -8)のように表される。(実際にはナノチューブは一次元物質であるので、K2 のみが逆格 子ベクトルであり、K1 は Cb方向に離散化した波数 k を与える)

$$\boldsymbol{T} \cdot \boldsymbol{K}_2 = 2\pi \qquad \boldsymbol{C}_h \cdot \boldsymbol{K}_l = 2\pi \qquad \boldsymbol{\exists} \quad (4-8)$$

ナノチューブの逆格子ベクトルが上の *K₁*, *K₂*で表されるのに対して、グラファイトの逆 格子ベクトルは図 4.3 のように表される。

図 4.3 グラファイトの逆格子空間 *a*₁,*a*₂: グラファイトの格子ベクトル, *b*₁,*b*₂: グラファイトの逆格子ベクトル

このようにグラファイトの逆格子ベクトルを定めると、式(4-8)のナノチューブの逆格子ベクトル *K*₁, *K*₂は次の式(4-11)ように表すことができる。

例えば、*C*_b=(4,2)のカイラル型のナノチューブの場合を考えると、まず並進ベクトル *T*は式(4-4)、(4-5)によって、*T*=(4,-5)と求められ、式(4-6)により*N*=28と なり、式(4-11)により、*K*₁, *K*₂は次のようになる。

$$\boldsymbol{K}_{I} = \left(\frac{5}{28}\boldsymbol{b}_{I} + \frac{1}{7}\boldsymbol{b}_{2}\right) \qquad \boldsymbol{K}_{2} = \left(\frac{1}{7}\boldsymbol{b}_{I} - \frac{1}{14}\boldsymbol{b}_{2}\right) \qquad \vec{\mathfrak{K}} \quad (4-12)$$

これを図で表すと、図 4.4 のようになる。

図 4.4 グラファイトの逆格子とナノチューブの逆格子ベクトル *K*₁, *K*₂: ナノチューブの逆格子ベクトル, *b*₁, *b*₂: グラファイトの逆格子ベクトル

ここで、*K*₂に平行な線分 WW^{*}がナノチューブの第一ブリュアン領域を示す。*K*₁の N倍は N·*K*₁=-*t*₂*b*₁+*t*₁*b*₂となり、2 次元グラファイトの逆格子ベクトルと一致するので *K*₁は Nご とに一致する。その間の N-1 本のベクトル μ ·*K*₁ (μ = 1,…N-1) は、*t*₁, *t*₂が公約数を持 たないことから 2 次元グラファイトの逆格子ベクトルとは異なる。このようにして、N本 の波数ベクトル μ ·*K*₁ (μ = 1,…N-1) が N個の離散化した波数ベクトル *k*を与えること になる。図 4.4 には N=28 本の線分を示してある。

グラファイトの電子構造に関しては、先にも少し述べたように結合πバンドと反結合π バンドがフェルミ面(K点)で接するので、ゼロギャップ半導体となり、2次元グラファイ トのエネルギー分散関係は式(4-13)で表わされる。

ナノチューブの電子構造は、この 2 次元グラファイトのエネルギー分散関係を円周方向 の離散化した N本の波数ベクトル μ ・ K_I ($\mu = 1, \cdots N$ -1)によって切断した切り口が N個 のペアのエネルギー分散曲線を与える。

図 4.5 2次元グラファイトの逆格子空間とナノチューブの逆格子ベクトル *N*本の波数ベクトルが K 点を通るとナノチューブは金属的性質を示す

図4.5は2次元グラファイトの逆格子空間と、ナノチューブの波数ベクトルを示している。 N本の波数ベクトルのうちのいずれかが2次元グラファイトのK点をよぎると、フェルミ 面をよぎる一次元エネルギー分散曲線を得ることになり、ナノチューブは金属的な性質を 示すことになる。それに対し、N本の波数ベクトルがK点をよぎらない条件である場合に は、ナノチューブのエネルギー分散はフェルミ面においてギャップを持つ半導体的な性質 を示すようになる。このようにして、ナノチューブが金属的、または半導体的性質を示す という条件は、図4.5の線分YKがK1の整数倍であるかどうか、という幾何的条件によっ て次のように定められる。

この条件によって、(2n+m)が3の倍数であるかどうかという条件(これは(n-m)が3 の倍数であるかということに相当する)が、ナノチューブが金属的であるか半導体的であ るかを決定する。図4.2(b)に示したように、(n-m)が3の倍数の時には金属的性質を示し、 それ以外の時にはナノチューブは半導体的な性質を示す。もしどのようなカイラルベクト ルをもつチューブでも等確率に生成されるのであれば、1/3のチューブが金属的、残りの2/3 のチューブが半導体的性質を示すようになる[58]。ここで興味深いことは、同程度の直径を もつチューブでも結晶構造の幾何学的な違いにより金属的にもなり、半導体的にもなると いうことである。この様な性質は、CNT 特有のものであり、他に類を見ない。

(a) $\mathcal{J} = \mathcal{J} = \mathcal{J$

CNT は一次元物質であるが故にグラファイトと異なり離散的なエネルギー準位を有する。 グラファイトはブリュアン帯域で価電子帯と伝導帯とが約 0.03 eV 重なりあい、半金属的な 性質を示し、状態密度はフェルミ準位を対称に特徴の無い緩やかな増加を示す。これに対 し、CNT はその一次元性により、直径方向にπ電子が閉じ込められることに起因する電子 準位が現れる。これは一次元物質に見られるファン・ホーフ特異点 (van Hove singularity; vHs) と呼ばれ、図 4.6(b)に示したように状態密度中に発散点をもたらす。

4.3 実験

本実験で用いた CNT はアーク放電法によって作製された MTR 社製の MWNT である。 MWNTの外観は黒い粉末状であり、アーク放電法により作製された CNT であることから、 煤の中にはアモルファスカーボン等の不純物が含まれている。購入した MWNT の直径、長 さ等は MTR 社において SEM 観察によりある程度確かめられている。以下にその MTR 社 による公称値と、ナノチューブ成長条件において重要な要素となる触媒の種類、精製方法 等を示す。

表	4.1	実験で使用	した	CNT	の公称値
---	-----	-------	----	-----	------

CNT 直径	7~12 nm		
CNT 長さ	1~10 µm		
CNT 層数	5~50 層		
純度	$75 \sim 85 \ \%$		
触媒	フェロセン, キシレン		

<精製方法>

- 1. 無反応のフェロセンを除去するために、製造物をトルエンで洗浄
- 2. トルエンを除去するために、最高 150 ℃で製造物を乾燥
- 3. 触媒鉄を溶解させるために、塩酸で製造物を処理
- 4. 鉄の溶液を除去するために、製造物をろ過後、乾燥
- 5. 鉄と炭素の残留物を除去するために、最高 450 ℃で酸化

実験ではまず、試料となる MWNT の TEM 観察を行った。TEM 観察は MWNT の構造 を調べる手法として優れており、MWNT の直径、長さ、何層で構成されているかなどの内 部構造に至るまで、構造に関する基本的な情報を得ることができる。MWNT は有機溶媒に 不溶であるため、MWNT 粉末をスクリュー管に入れたエタノールに加え、その後スクリュ ー管ごと超音波洗浄器にかけ、2 時間、超音波分散させた。この MWNT のエタノール分散 液をマイクロシリンジで TEM 観察用のグリッド基板(CU 200 MESH: JEOL 社製)に滴 下・乾燥させて TEM 観察用試料を作製した。取得した TEM 像から、MWNT の直径分布 解析を行った。

STM 観察、STM 発光測定では、導電性であり、かつ CNT の同素体である HOPG を基板として用いた。試料の作製は TEM 観察時と同様、MWNT のエタノール分散液を超音波分散させ、基板上に滴下、その後エタノールを乾燥させて作製した。実験では HOPG 表面上での MWNT の分散状況を評価するために、作製した試料について SEM 観察を行い、その分散特性評価を行った。

STM 観察、または STM 発光測定の全ての実験において、STM 探針は Pt/Ir 探針(直径: 0.25 mm)を使用した。使用した Pt/Ir 探針は機械研磨で作製した。この探針は先端形状の 対称性が悪く、本来 10 nm 以上の凹凸を持つ今回の試料の観察などには適さないが、大気 中の測定で使用できる STM 探針の中では最も機械的、化学的安定性に優れている。

MWNT からの STM 発光測定では、まず MWNT のフォトンマップ分析を行った。フォ トンマップ分析により、MWNT からの発光がどの部分で起こっているかなど、発光の場所 依存性を知ることができる。下の図 4.7 にフォトンマップ分析時の模式図を示す。

図 4.7 CNT のフォトンマップ分析の模式図

次に、MWNT からの発光の特性評価、発光メカニズムを特定するために、発光スペクト ル測定を行った。発光スペクトル測定では、STM 探針を MWNT 上の1点に固定し、CCD 露光時間2分でスペクトルを取得した。図4.8には発光スペクトル取得時の模式図を示す。

図 4.8 CNT の発光スペクトル分析の模式図

発光スペクトル分析を行うことによって、観測されている発光が MWNT のどの様な電子 準位に起因しているのかについて調べることができる。実験では、HOPG 表面からの STM 発光測定も行い、HOPG 表面からの発光が無いことを確認した。そして、HOPG 基板上の 多数の MWNT からの発光スペクトルを取得し、MWNT の発光特性評価を行った。また、 発光スペクトル分析では、印加するバイアス電圧依存性、両極性バイアス電圧での測定な どを行い、MWNT からの STM 発光の特性について詳細に評価した。

4.4 結果と考察

以下の項では、MWNTのTEM 観察による直径分布解析結果、STM 発光測定用の試料作 製手順とSEM 観察による HOPG 基板上でのMWNT 分散状況の評価結果、MWNTのSTM 観察、MWNTのフォトンマップ分析、MWNTの発光スペクトル分析、発光メカニズムに 関する考察についてそれぞれ述べる。

4.4.1 電子顕微鏡による試料観察

TEM 観察用の試料グリッド上に滴下した MWNT は均一に分散せず、エタノール溶媒が 蒸発する際に MWNT が凝集する。そのため、TEM 観察では凝集による MWNT の固まり がグリッド上に点在することが確認できた。また、MWNT が凝集している部分以外には、 単体で存在する MWNT やアモルファスカーボンと思われる不純物も観察された。図 4.9 に は凝集している MWNT の様子を撮影した TEM 像と、この TEM 像を元に行った MWNT の直径分布解析の結果を示す。

図 4.9 TEM 観察による MWNT 直径分布解析 (a) TEM 像, (b) MWNT 直径分布解析

図 4.9(a)の TEM 像で観測されている多数の直線状の構造物は MWNT である。TEM 像では金属触媒やアモルファスカーボンの塊、MWNT の側面への不純物の吸着などは観測さ れず、購入した試料が精製済みで、純度の高い試料であることがわかる。ただし、直径が 100 nm を超え、さらに中心が中空になっていないようなカーボン・グラス・ファイバー[59] に近いものが幾分含まれている。また、MWNT の直線性は低く、多くの欠陥、または層数 が途中で変化するもの、屈曲している MWNT などが多く観測されている。MWNT の直線 性、結晶性に優れているとされるアーク放電法によって作製された試料としては予想以上 に結晶性の低い MWNT が多く含まれている。

TEM 像に見られる MWNT の凝集の様子は、1本1本の MWNT が複雑に絡まりあって いるといった様子はなく、それぞれの MWNT がある程度の直線性を保ったまま、または他 の MWNT をまたぐ様にグリッド上に横たわっている。これらのことから、粉末状態であった MWNT は 2 時間の超音波分散によってエタノール溶媒中に十分に分散されており、グリッド上に分散液を滴下し、エタノール溶媒が蒸発する間(高々数秒)に大部分の MWNT が 凝集していると考えられる。

図 4.9(b)は TEM 像を元に行った MWNT の直径分布を調べた結果である。この結果は、 総数 448 本の MWNT の直径分布を示すヒストグラムである。この直径分布解析の結果か ら、本実験に用いた試料に最も多く含まれるのは直径約 20 nm の MWNT であることがわ かる。MTR 社の公称値である 7~12 nm の MWNT はほとんど観測されず、実際のチュー ブ直径の分布は 10~50 nm であると考えられる。その他チューブ長さ、チューブ層、純度 に関しては妥当な値であると考えられる。

次に、STM 観察、STM 発光分析を行うための試料作製手順と、HOPG 基板上に滴下した MWNT の SEM 観察結果を図 4.10 に示す。

図 4.10 試料作製手順と SEM 観察結果 (a) 試料作製手順, (b) HOPG 基板上の MWNT の SEM 観察結果

図 4.10(a)に示すように、STM 観察、STM 発光分析では HOPG を基板として用いた。ス テンレス製のサンプルホルダー上に導電性接着剤(銀ペースト)を用いて HOPG を固定し、 MWNT 分散液を滴下する直前に HOPG の劈開を行った。

図 4.10(b)は作製した試料の SEM 観測結果である。観測した試料は、TEM 像で観察され た直径 100 nm を越える大きな MWNT を取り除くために、MWNT 分散液を遠心分離機に かけ、その上澄み液をマイクロシリンジで HOPG 上に 1 滴(約 10 µl)滴下後、大気中で 乾燥させることで作製した試料である。分散液の濃度は 0.2 mg/ml とし、超音波分散は MWNT を十分にエタノール中に分散するために 2 時間行った。遠心分離は 12000 rpm で 15 分行った。図 4.10(b)で観察されている MWNT には TEM 観測に比べ直径の細い MWNT が多い。過去の研究[60]にあるように、遠心分離によって不純物が取り除かれ、さらには直 径の太い MWNT を沈殿させることができたと考えられる。また、TEM 観察と同様、SEM 観察においても MWNT は HOPG 表面上で凝集していることが確認できる。特に、MWNT の凝集は HOPG 基板の端、または MWNT 溶液を滴下した時の HOPG 基板上の液滴の端 の部分などで多く観察される。このような凝集を避けるためには、スピンコート法を用い た MWNT 分散液の滴下も有効であった。実験ではスピンコート法を用いずとも、基板の中 央部分では比較的凝集は少ないので、STM 観測、STM 発光測定はこのような MWNT の凝 集部分を避け、孤立した MWNT の測定を行った。

4.4.2 多層カーボンナノチューブの STM 観察

HOPG 基板上の MWNT の STM 観察では、TEM、SEM 観察と同様、多様な長さ、直径 を持つ MWNT が観測された。図 4.11(a)に 0.4 mg/ml の MWNT エタノール分散液を 3 時 間超音波分散し、HOPG 表面にマイクロシリンジで分散液を 1 滴滴下、乾燥させて作製し た試料の STM 像を示す。MWNT の STM 観察では、HOPG 表面に特有のアーティファク ト[61]などと誤認しないよう、注意して観察を行った。図 4.11(b)には MWNT の原子像観 察結果、図 4.11(c)には比較のために HOPG 表面の原子像観察結果を示す。

図 4.11 HOPG 基板上の MWNT の STM 観察結果 (a) HOPG 基板上の MWNT の STM 像 (Vs= -1.0 V, It= 25 pA, Scan area: 1.5×1.5 µm²), (b) STM 像中の断面プロファイル, (c) MWNT の原子像観察 (Vs= +15 mV, It= 2.5 nA, Scan area: 2×2 nm²), (d) HOPG の原子像観察 (Vs= +20 mV, It= 2 nA, Scan area: 2×2 nm²) Nanoscope Ⅲa 標準コントローラー使用 図 4.11(a)の STM 像では TEM、SEM 観察と同様、MWNT が凝集している様子が観察さ れている。また、HOPG 上の MWNT の STM 観察では、青色の点線で囲った部分のように、 MWNT を STM の探針で走査範囲から掃き出してしまうことが頻繁に観測される。MWNT はファン・デル・ワールス力によって HOPG 表面に物理吸着しているが、その相互作用力 が弱いため、STM 探針によって物理的に走査領域から掃き出されてしまうためである。そ のため、HOPG 上の MWNT の観察では、スキャン速度を遅くするか、トンネル電流を小 さくし、フィードバック・ゲインを大きくして測定することが必要である。図 4.11(a)は Scan rate を 0.2 Hz(5 sec/line (600 nm/s) × 256 lines =1280 sec/image)とし、フィード バック・ゲインを大きくして観察を行った結果である。

図 4.11(c), (d)は MWNT と HOPG 基板表面の原子像観察の結果である。これらの像は全 て高さ一定モード (Constant height mode) で取得したトンネル電流像である。図 4.11(d) の HOPG の原子分解能像では、ピエゾ素子較正基準値である最近接炭素原子間距離: 2.55 Å、 第二近接炭素原子間距離: 4.33 Å、 第三近接炭素原子間距離: 6.66 Å に近い像が取得できて いる。HOPG 表面の原子像は、最表面の六角形の原子像が見えるのではなく、実際は下の 層との相互作用によるβサイトに対応する個々の輝点が観測される。それに対して MWNT では下の層との相互作用が少ないため[62]、図 4.11(c)のように MWNT の最外層の六角形の 構造が観測される。原理的にはこの観察によって MWNT の最外層の CNT のカイラリティ を決定することが可能である。しかし、本システムでは広範囲の原子像取得が困難であり、 カイラリティの決定は不可能であった。

図 4.11(b)には STM 像中に示した青線部分の断面プロファイルを示した。それぞれの MWNT 高さは約 50 nm、幅約 80 nm となっている。高さと幅を比較すると、STM 像では MWNT が円筒状ではなく、楕円形に観察されている。これは STM の探針が有限の曲率半 径を有することに起因する。

図 4.12 STM 探針の曲率半径による STM 像への影響

図 4.12 のように、MWNT の半径よりも探針の曲率半径の方が大きい場合、STM 像に現 れる MWNT の幅には探針の先端形状の影響が含まれる。しかし、STM 像から得られる高 さ情報は MWNT の直径をある程度正確に反映している。探針と MWNT のトンネルギャッ プの距離を差し引いた長さが観察している MWNT の直径となる。

4.4.3 多層カーボンナノチューブのフォトンマップ分析

図 4.13 には MWNT のフォトンマップ分析の結果を示す。図 4.13(a), (b)は HOPG 基板 上に孤立した1本の MWNT のフォトンマップ分析結果である。試料は0.5 mg/mlの MWNT エタノール溶液を2時間超音波分散し、12000 rpm で 15 分間遠心分離にかけた後、その上 澄み液をマイクロシリンジで微滴量 HOPG 上に滴下、乾燥させたものである。図 4.13(c), (d) は遠心分離を行っていないエタノール溶液を滴下した試料を用いた結果であり、MWNT が バンドルしているように見える場合のフォトンマップ分析結果である。

図 4.13 MWNT のフォトンマップ分析結果

(a) 1本の MWNT の STM 像, (b) フォトンマップ像, R649S 使用
Vs = +2.4 V, It = 30 nA, Scan size: 500×500 nm² (128 × 128 pixels), Scan rate: 60 nm/s
(c) バンドル状 MWNT の STM 像, (d) フォトンマップ像, R649S 使用
Vs = +2.5 V, It = 50 nA, Scan size: 500×2000 nm² (32 × 128 pixels), Scan rate: 100 nm/s

図 4.13(a)の STM 像では、"C"の形をした 1 本の MWNT が観測されている。それに対して、同時に取得した図 4.13(b)のフォトンマップ像では、STM 像の"C"の形に対応した 発光がはっきりと観測されている。MWNT からの発光に比べ、HOPG 基板からの発光は小 さく、フォトンカウンティングのバックグラウンドレベルの発光しか観測されていない。 このフォトンマップ分析では、1本の MWNT において、その全体からほぼ一様な発光が観 測されている。これにより、両端の観測されている1本の MWNT において、MWNT の特 定の場所にかかわらず全体から同程度の強度を持つ発光が観測されるということがわかる。 この実験結果は、観測されている発光が MWNT の先端や欠陥などの特異領域に関連する局 所的な電子準位にかかわる発光ではなく、MWNT 全体にわたって存在する電子準位が関係 する発光であることを意味している。

図 4.13(c)の STM 像では中心に高さ約 100 nm、幅約 250 nm 程度の非常に大きな MWNT が観測されている。また、その周りには中心の MWNT に付随するように比較的細い複数の MWNT が非常に密に並んでおり、バンドル状に MWNT が観測されている。TEM、SEM 観察ではこのような構造の MWNT は観測されなかったため、これは Pt/Ir 探針の先端の形 状の非対称性に起因する Multi-tip 効果[63]によるものと考えられる。図 4.12 に示したよう に、Pt/Ir 探針が有限の大きさを持ち、先端の形状が非対称な形状を有する場合、図 4.13 の ように大きな MWNT の周りには像が重なるようにして多数の MWNT が観測される。

図 4.13(d)のフォトンマップ分析では、図 4.13(b)のフォトンマップ分析の結果と同じく、 HOPG 基板からの発光は観測されず、一部の MWNT からの発光が観測されている。STM 像とフォトンマップ像を比較すると、発光領域は MWNT の軸に沿って一様に分布している。 この結果から、図 4.13(b)の結果と同じく、MWNT からの発光は MWNT 状の先端などのよ うな特殊な領域とは関係なく、全体にわたって一様な発光が得られることが分かる。さら に、図 4.13(d)では見かけ上、発光が観測される MWNT と発光が観測されない MWNT が 存在していることが分かる。しかし、この STM 像は 1 本の MWNT を Pt/Ir 探針の Multi-tip で観測したものであると考えられるので、同じ MWNT からの発光では観測する探針が異な れば発光強度が異なるということが理解できる。

4.4.4 多層カーボンナノチューブの発光スペクトル分析

ここではバンドル状に観測されている MWNT、または1本の孤立した状態で観測されて いる MWNT など、さまざまな MWNT から観測された発光スペクトルについて述べる。そ れぞれの発光スペクトルは、MWNT 上の微小領域(約7×7 nm²)を遅いスキャン速度(約 1.4 nm/sec)で観察しながら発光を誘起し、露光時間を2分として得た。MWNT の発光ス ペクトルは測定する MWNT によってその特徴が異なるが、さまざまな MWNT 上で得られ た発光スペクトルを分類した結果、発光スペクトルは2種類に分類できた。図4.14 には正 のサンプルバイアスにおける MWNT の2種類の代表的な発光スペクトルと、HOPG 表面 の発光スペクトル測定結果を示す。

図 4.14(a)下の黒線は、HOPG 表面の発光スペクトル測定結果である。この結果から、基板の HOPG 表面からは発光が観測されないことがわかる。この結果はフォトンマップの結

果と一致する。それに対して、HOPG 基板上の個々の MWNT からは、発光が観測される MWNT と、観測されない MWNT が存在した。これは、MWNT には発光を生じるものと 発光を生じない 2 種類の MWNT が存在するか、図 4.13(c), (d)のフォトンマップ分析にお いて確認された探針に依存する MWNT の発光の有無、この 2 種類の要因が考えられる。

図 4.14 MWNT から観測される 2 種類の発光スペクトル (a) Type A (Vs = +2.4 V, It = 50 nA, 露光時間: 120 sec, 500 nm Blaze 使用), 同条件で取得した HOPG からの発光スペクトル (下-黒線), (b) Type B (Vs = +2.2 V, It = 50 nA, 露光時間: 120 sec, 500 nm Blaze 使用)

MWNTの発光スペクトルの特徴は、まず量子カットオフ条件(式(2-14))を必ず満た すということである。観測される発光は、このカットオフ波長から、分光器のグレーティ ングによって検出感度が下がる約 1000 nm にかけての可視光域〜近赤外領域全体にわたっ て観測される。さまざまな MWNT からの発光スペクトルを取得した結果、個々の MWNT から観測される発光スペクトルは、図 4.14(a)のように 700 nm と 900 nm 付近に 2 つ、ま たはそれ以上のピークがはっきりと区別できるものと、図 4.14(b)のように明確なピークが 存在せず、1 つのブロードなピークを持つこの 2 種類に大別できることがわかった。以後、 前者を Type A、後者を Type B の発光スペクトルと称する。また、MWNT からの発光は、 サンプルバイアスが負の場合にも同様に観測される。

図 4.15 に、観測される発光スペクトルの特徴が個々の MWNT 固有のものであるかどう かを調べるために、同一の MWNT上の異なる2点で発光スペクトルを取得した結果を示す。 フォトンマップの結果では、1 本の MWNT では場所に関係なくほぼ同じ強度の発光が MWNT 全体から観測されていた。しかし、フォトンマップの結果は、光電子増倍管の感度 波長域全体で観測されるフォトンの積分値であるので、検出波長域のフォトンの相対強度 が変化しているかどうかは判断できない。そこで、発光スペクトル測定が必要となる。

図 4.15 発光スペクトルの MWNT 依存性

(a) バンドル状 MWNT の STM 像 (Vs = +0.6 V, It = 0.15 nA, Scan size: 370×740 nm²),
(b) STM 像(a)中の a-1, a-2 で取得した発光スペクトル,

(c) バンドル状 MWNT の STM 像 (Vs = +0.6 V, It = 0.15 nA, Scan size: 370×740 nm²),
 (d) STM 像(c)中の b-1, b-2 で取得した発光スペクトル,

発光スペクトルは全て V_S = +2.2 V, I_t = 50 nA, 露光時間: 120 sec, 500 nm Blaze で取得 (それぞれのグラフは見やすいように offset を施した)

図 4.15 に示した発光スペクトルから、同じ MWNT 上では同じ特徴を有するスペクトル が観測されることがわかる。図 4.15(a)の MWNT 上の異なる 2 点では、Type A の発光スペ クトルが観測されており、発光スペクトル中の約 710 nm、約 900 nm にある 2 つのピーク 位置は変化していない。また、図 4.15(c)の MWNT 上の異なる 2 点では、Type B の発光ス ペクトルが観測されており、同じブロードな発光スペクトルが観測されている。このよう に、発光スペクトルは個々の MWNT によって異なるが、同じ MWNT 上では場所による変 化は見られず、発光スペクトルは個々の MWNT の特徴を反映した情報を与えている。

次に、発光スペクトルのバイアス電圧依存性、バイアス電圧の極性依存性について調べた結果を示す。発光スペクトルのバイアス電圧、極性依存性測定の結果は MWNT からの発 光のメカニズムを議論する上で重要な情報である。

図 4.16 発光スペクトルのバイアス電圧・極性依存性測定結果 (a) バンドル状MWNTのSTM像 (V_s=+0.6 V, I_t=0.15 nA), (b) STM像(a)中のMWNT上の1点でバイアス電圧を変化させて取得した発光スペクトル V_s=+2.4, 2.2, 2.0 V, I_t=50 nA, 露光時間: 120 sec, 同一の Pr/Ir 探針で測定, (c) バンドル状MWNTのSTM像 (V_s=+0.6 V, I_t=0.15 nA), (d) STM像(c)中のMWNT上の1点でバイアス電圧を反転させて取得した発光スペクトル V_s=+2.2, -2.2 V, I_t=30 nA, 露光時間: 120 sec, 500 nm Blaze, 同一の Pr/Ir 探針で測定 (それぞれのグラフは見やすいように offset を施した)

図 4.16(a)に示した MWNT では Type A の発光スペクトルが観測されている。3 種類の正 のサンプルバイアス (Vs = +2.4, 2.2, 2.0 V)の変化に対して、それぞれの発光スペクトル は量子カットオフ条件を満たしており、黒色の矢印で示したカットオフ波長をスペクトル の立ち上がりとしている。このバイアス電圧の変化(カットオフ波長のシフト)に比べ、2 つの約 680 nm と約 920 nm のピーク位置の変化はなく、ピーク位置がバイアス電圧の変化 に対して動かないことが確認できる。この結果は、発光スペクトルのピーク位置がトンネ ル電子のエネルギーとは関係なく、個々の MWNT に特有の電子準位間の遷移による発光で あることが示唆される。

さらに、図 4.16(c), (d)に示したように、MWNT からの発光スペクトルは、サンプルバイ アスの極性に依存せず、正バイアスと、負バイアスの時に同じスペクトルが観測される。 これらの発光特性は有機分子からのSTM発光で観測される蛍光・燐光発光と類似している。

4.4.5 発光量子効率の見積り

ここで、本実験において観測された MWNT の発光のメカニズムを決定するために重要と なる、MWNT の発光量子効率の見積りについて述べておく。

図 4.13 のフォトンマップ分析の結果では、最大 7.7 cps の発光強度が観測されている。 この発光強度から MWNT の発光の量子効率を見積ると次のようになる。

第3章で述べたように、本実験における1本の光ファイバによる集光率は約1.1%、PMT への光の接続効率は約73%である。次に、本実験で用いた PMT (R649S)の量子効率は図3.8に示した通りであるが、ここでは簡単のために波長700nmにおける量子効率2%を検出波長全体の平均量子効率として考え、計算を行う。

放出されるフォトン数は

 $7.7 / (0.02 \times 0.011 \times 0.73) = 4.8 \times 10^4$ (photons/sec)

となる。測定条件は 50 nA なので、単位時間当たりに注入される電子は

 $(50 \times 10^{-9}) / (1.602 \times 10^{-19}) = 3.12 \times 10^{11} \text{ (electrons/sec)}$

となる。これらにより、MWNT からの発光の量子効率は以下のように求まる。

 $(4.8 \times 10^4) / (3.12 \times 10^{11}) = \Re 1.5 \times 10^{-7}$ (photons/electron)

次に、確認のために発光スペクトルから計算した量子効率も計算方法と共に示しておく。 図 3.11 に示したように、波長 700 nm における CCD 検出器、グレーティングのそれぞれ の量子効率は 85 %、55 %である。また、分光器を構成する 3 枚のミラーによって CCD 検 出器への光の接続効率は約 51.2 % (80 %の 3 乗)である。発光スペクトルの発光強度は図 4.14(a)の積分値 10000 counts (120 sec) で計算を行う。

放出されるフォトン数は

 $10000 / (0.011 \times 120 \times 0.85 \times 0.55 \times 0.512) = 3.2 \times 10^4$ (photons/sec)

となる。同じく測定条件は 50 nA なので、量子効率は以下のように求まる。

 $(3.2 \times 10^4) / (3.12 \times 10^{11}) = \text{ } 1.0 \times 10^{-7} \text{ (photons/electron)}$

以上のように、MWNTのSTM発光の量子効率は、約1.0~1.5×10⁻⁷ (photons/electron) と求められる。このように、本実験において観測されているMWNTからの発光の量子効率 は、これまでに報告されている表 2.1 に示したどのSTM発光の量子効率よりも低い。

4.4.6 発光メカニズムに関する考察

以上の実験によって得られた MWNT の STM 発光特性にもとづき、個々の MWNT から 観測される発光が MWNT のどのような性質を反映しているのかを理解するため、その発光 メカニズムについて考察する。まずは第2章、図2.5に示した4つの STM 発光の発光メカ ニズムと比較することによって考察を進める。

▶ TIP による発光の可能性について

観測された MWNT からの発光を TIP からの発光として説明するためには、その表面プ ラズモンのエネルギーを考える必要がある。表面プラズモンのエネルギーは、おもに電子 エネルギー損失分光法 (Electron Energy-Loss Spectroscopy; EELS) によって調べられて いる。基板として用いた HOPG、すなわちグラファイトのプラズモンのエネルギーは、そ のフェルミ準位付近での低い状態密度によって 0.1 eV 以下であることが知られており [64]、 HOPG 表面から TIP 発光が観測されないことと一致する。また、CNT の π プラズモンの エネルギーも同じように EELS により測定されており、5.2 eV または 6.4 eV にピークを持 つ[65]。したがって、今回の MWNT からの可視光領域の発光を説明することはできない。 しかし、TIP は探針と試料間のトンネル接合の形状によって変化するので、条件によっては 発光が観測される可能性もある。しかし、TIP による発光の量子効率は QE=約 1×10⁻⁴ ~ 10⁻³

(photons/electron) と、STM 発光の中では比較的高いことが知られているのに対して、
 先にも述べたように、観測された MWNT からの発光の量子効率は、QE=約 1.0~1.5×10⁻⁷

(photons/electron)と非常に小さい。このことから、MWNT からの発光が TIP による発 光であるとして説明することは難しい。

▶ 電子-正孔再結合による発光の可能性について

図 4.6 に示したように、HOPG 基板が半金属的な電子構造を持つのに対して MWNT は 状態密度中に vHs を有し、半導体的性質を持つ MWNT ではバンドギャップを有する。図 4.17 には、HOPG 基板と MWNT、Pt/Ir 探針のエネルギーダイアグラムを示す。ここで、 MWNTの電子状態はトンネル電子が注入される最外層のCNTの電子状態を想定している。

図 4.16(a), (b)で述べたように、バンドギャップ間の遷移のような特定の電子準位間の遷移による発光では、印加するサンプルバイアス電圧の変化に対して発光スペクトルのピーク位置が変化しないということをうまく説明できる。

半導体的な性質を示す MWNT は、通常大気中では空気中の酸素の影響によって、p型の 半導体になることが知られている[66]。Pr/Ir 探針から弾性トンネルによって注入された電 子は、熱やフォノンなどによって伝導帯の下端までエネルギーを失った後、MWNT 中の正 孔とバンドギャップ間で再結合を起こして発光を生じる。本実験の場合、半導体的な CNT のバンドギャップはその直径に反比例し、例えば直径 10 nm の CNT ではバンドギャップ は約 0.1 eV になる[67]。本実験で使用している MWNT の直径から考えると、本実験にお ける検出波長域に観測される発光を生じさせるにはバンドギャップが小さすぎる (0.1 eV は波長に換算すると 12400 nm)。

バンドギャップ間の遷移による発光との類推として、注入された電子が熱やフォノンな どによって伝導帯の下端までエネルギーを失う前に、そのまま MWNT 中の正孔と再結合す ることが考えられる。この場合、MWNT 中の正孔との再結合は状態密度の大きい vHs との 間で起こることが考えられ、発光スペクトルには vHs を反映した発光ピークが観測される はずである。しかしこのメカニズムではサンプルバイアスが負の場合の発光を説明するこ とが難しい。MWNT は HOPG 上に吸着している状態にあり、サンプルバイアスが負の時 には HOPG と MWNT のフェルミ準位はほぼ揃っている状態になっているはずである。こ のような状態で MWNT の伝導帯の空準位にトンネル電子を注入することは難しい。

▶ 探針-試料間の双極子遷移による発光の可能性について

図 4.18 では、Pt/Ir 探針のフェルミ準位近傍の電子軌道から、MWNT の vHs へと電子が 直接遷移することによる発光のメカニズムを示す。この場合にも、MWNT の電子状態はト ンネル電子が注入される最外層の CNT の電子状態を想定している。

図 4.18 探針ー試料間の双極子遷移による発光の可能性について

図 4.18 には、サンプルバイアスが正の場合における発光メカニズムを示している。HOPG 基板と、Pr/Ir 探針の間に示した MWNT の状態密度には規則的に並んだ vHs が描かれてい る。Pr/Ir 探針先端の電子軌道と、MWNT の特定の vHs との間で電子の双極子遷移が起こ ることによって発光が生じる。しかし、このメカニズムではバイアス電圧を変化させると 発光のピーク位置がバイアス電圧と共に変化する。これは図 4.16(a), (b)で示したような印 加するサンプルバイアス電圧の変化に対して発光スペクトルのピーク位置が変化しないと いう実験結果と矛盾する。

▶ 分子の電子準位間の遷移による発光の可能性について

有機分子などからの STM 発光では、分子の電子準位間の遷移による蛍光、または燐光発 光などが観測される。この発光では、分子特有の発光が観測されるため、バイアス電圧の 大きさ、極性などに依存しない。発光スペクトルのバイアス依存測定などの結果から、 MWNT から観測される発光はこの分子からの発光に近いことが推測できる。

図 4.19 MWNTのSTM発光のメカニズム (a) エネルギーダイアグラム, (b) 状態密度の模式図

MWNT の場合、特有の電子準位は vHs であり、vHs 間の電子遷移による発光を観測し ていることが考えられる。図 4.19(a)は IET 過程によって励起された MWNT の vHs 間の遷 移による発光のメカニズムの図を示している。この発光のメカニズムでは発光スペクトル のバイアス電圧依存性、極性依存性の結果を上手く説明することができる。

その発光メカニズムは次の通りである。まず、探針、または基板側からの IET 過程によ り、MWNT の価電子帯の電子は伝導帯へ励起される。励起される CNT は MWNT の最外 層の CNT である。IET 励起は特定の電子準位間の電子励起を起こすのではなく、さまざま な準位間の電子励起を起こすことが可能である。次に、MWNT からの発光の過程では、光 学遷移の選択則[68]を満たすため、フェルミ準位に対して対称な位置にある vHs にある電 子と正孔の間での再結合が起こり、発光が生じる(図 4.19(b))。発光スペクトルで観測され るピーク位置は特定の vHs 間での遷移による発光に相当するので、それぞれの MWNT 固 有の直径、カイラリティに依存した発光スペクトルが観測されることになる。 また、探針の違いなどによって MWNT の発光の有無が観測されることは、それぞれの探 針における IET 励起効率が異なることや、MWNT の HOPG 基板への吸着状態の違いによ って説明できる。

4.4.7 2種類の発光スペクトルに関する考察

図 4.19(a)に示した発光メカニズムを考慮すると、今回得られた 2 種類の Type A と Type Bの発光スペクトルはそれぞれ金属的ナノチューブ、または半導体的ナノチューブからの発 光であることが予測できる。CNT は、理論的にも実験的にも CNT のカイラリティに依存 して、金属的になったり半導体的になったりするという極めて特異な電気特性を持つこと が確認されている[69]。そして、vHsの現れるエネルギー準位が金属的 CNT の場合と半導 体的 CNT の場合で異なっていることが知られている。金属的 CNT の vHs は、フェルミ準 位に近い方から順に、E^M1=±3dnn y o/d、E^M2=±6dnn y o/d、E^M3=±9dnn y o/d...のエネルギ 一位置に現れることが分かっている[70]。ここで、dnn=1.42 Åは最近接炭素原子間距離、 γ ₀=2.9 eV は C-C の結合エネルギーに対応する最近接相互作用[71]、d はカーボンナノチ ューブの直径を示している。光学遷移の選択則により、vHs 間の遷移は、フェルミ準位に 対して対称な位置にある vHs 間の遷移のみが許容となり、発光のエネルギーに対応する vHs 間のエネルギーは、 $\Delta E^{M_{11}} = 6d_{nn} \gamma_{0}/d$ 、 $\Delta E^{M_{22}} = 12d_{nn} \gamma_{0}/d$ 、 $\Delta E^{M_{33}} = 18d_{nn} \gamma_{0}/d$...と 表される。これに対して、半導体的 CNT の場合は、E^{S1} =±dnn γ o/d、E^{S2} =±2dnn γ o/d、 E^S3=±4dnn y o/d、E^S4=±5dnn y o/d...のエネルギー位置に現れる。これによって、発光のエ ネルギーに対応する vHs 間のエネルギーは、 $\triangle E^{S_{11}}=2d_{nn}\gamma_{0}/d$ 、 $\triangle E^{S_{22}}=4d_{nn}\gamma_{0}/d$ 、 $\triangle E^{S_{33}}$ $=8d_{nn} \gamma_{0}/d$ 、/E^S₄₄=10d_{nn} γ_{0}/d ...と表される。

図 4.20 には、上記の式をもとにして作製した金属的 CNT と半導体的 CNT に現れる vHs 間の発光のピーク位置に相当するエネルギーと、CNT の直径との関係を示した。

図 4.20 の関係により、同じ直径の CNT を想定した場合、発光のエネルギーに対応する vHs 間のエネルギーの間隔が金属的 CNT に比べて半導体的 CNT の方が狭いということが 分かる。この違いが MWNT から観測された発光スペクトルの Type A と Type B の違いに 現れていることが考えられる。

図 3.14(a)で観測されている 2 つのピーク位置は、MWNT の直径を d=7.0 nm と仮定した 場合の $\angle E^{M_{44}}$ =1.41 eV (\Rightarrow 880 nm), $\angle E^{M_{55}}$ =1.76 eV (\Rightarrow 705 nm) (図 4.20(a)黒丸) に 近い。それに対して、同じ直径 7 nm の半導体的 CNT を想定した場合、同じ波長域に現れ る vHs 間のエネルギーの間隔は、非常に狭い物となる (図 4.20(b)黒丸)。

図 4.21 2種類の発光スペクトルのピーク位置の割り当て (a) Type A: 金属的CNT(直径7 nmの金属的CNTのvHs間のエネルギーを示す), (b) Type B: 半導体的CNT(直径7 nmの半導体的CNTのvHs間のエネルギーを示す)

図 4.21 には実際の発光スペクトルと、同じ直径 7 nm の CNT を想定した場合の理論計算 結果を示す。図 4.21(a)の Type A の発光スペクトルではピーク値が計算値とよく一致して おり、これは金属的 CNT からの発光であると考えられる。図 4.21(b)の Type B の発光スペ クトルは複数のピークが重なった結果、単一のブロードなピークに見えてしまう半導体的 CNT からの発光であることが考えられる。実際の測定では、ピーク間隔が狭いということ に加え、各ピークが非常にブロードであることがそれぞれのピークの分離を難しくしてい る。ピークがブロードになる理由は以下の 2 点が挙げられる。1 つはフォトンの集光効率を 上げるために分光器の入射スリットを広く開けているために生じる約 30 nm 幅の分解能低下である。もう1つは、vHs が実際には有限のエネルギー幅を持つためである。vHs がエネルギー幅を持つ理由にはLifetime-broadening[72]と基板との相互作用によるvHsの広がりなどが挙げられる[73]。

以上のように、2種類の発光スペクトルは個々の MWNT の最外層の CNT が金属的、または半導体的性質を持つことに起因していることが分かった。また、発光スペクトル中の ピーク位置はフェルミ準位に対して対称な位置にある vHs 間のエネルギーを反映している ことがわかった。これらの結果は、STM 発光分析によって MWNT の発光特性評価を行う と同時に、個々の電子状態を評価できることを示している。

4.5 結言

第4章では、ナノスケール構造の物性計測・機能評価の一例として、代表的な量子材料として知られる CNT からの STM 発光分析を行った結果について述べた。以下に本章の要点をまとめる。

- (1) CNT が炭素ネットワークの僅かな構造の違いによって金属的、または半導体的性質を示すことを示した。CNT の光デバイスへの応用を考える上で、個別の CNT からの発光を評価し、その発光特性と関連付けて個々の電気特性を明らかにすることが重要であることを述べた。
- (2) TEM 観察による MWNT の直径分布解析によって直径 11~20 nm の MWNT が最も多 く含まれていることがわかった。また、HOPG 基板上での MWNT の分散状況に関し て SEM 観測を行い、STM 観察に適した MWNT の展開方法を決定した。
- (3) HOPG 基板上に孤立した1本の MWNT のフォトンマップを取得した。MWNT からの 発光は、MWNT の先端などのような特殊な領域とは関係なく、1本の MWNT 全体に わたって均質に存在する電子状態が関わっていることが明らかになった。
- (4) さまざまな MWNT の発光スペクトルを分析することにより、MWNT の発光は2種類 に分類できることが明らかになった。また、MWNT の発光スペクトルは個々の MWNT に固有の特徴を有すること、発光スペクトルに現れるピーク位置が STM バイアス電圧 の変化、電圧の極性反転に対して変化しないことが明らかになった。
- (5) フォトンマップ分析、発光スペクトル分析の結果にもとづき、MWNT から観測される 発光のメカニズムを解明した。これにより、発光スペクトル分析において観測される2 種類の発光スペクトルがそれぞれ金属的、あるいは半導体的な性質を有するナノチュ ーブからの発光である可能性が示唆された。以上の結果により、STM 発光分光法を用 い、個々の MWNT の発光特性評価と、それぞれの MWNT の電子状態を同時に評価可 能であることを示した。

第5章 フタロシアニン薄膜からの

STM 発光分光分析

5.1 緒言

半導体素子の高集積化・高性能化の限界を回避するため、近年、ナノテクノロジーを用 いた多様な革新的デバイスが提案されている。CNT を利用したカーボンナノテクノロジー と並んで期待されているのが分子ナノテクノロジーである。分子ナノテクノロジーは分子 一つ一つに機能を持たせ、電子デバイスや非常に微細な機械の機能ブロックとして動作さ せることを目標としている。分子ナノテクノロジーによって作り出される分子エレクトロ ニクスデバイスの歴史は 1974 年の Aviram と Ratner [74] により提案された分子整流素子の 概念に遡ることができる。分子デバイスではデバイスの大きさを極限的には単一分子スケ ールである1nm 程度まで小さくすることが可能であり、デバイスに必要とされる整流、記 憶、スイッチングなどの機能は本質的に分子の性質により支配される。最近では、有機分 子合成技術の向上により所望の機能を有する分子を設計・合成することも可能になってき ている。有機材料を用いたエレクトロニクスデバイスとしては、有機薄膜を利用した有機 電界発光素子(Organic Light-Emitting Diode; OLED)[75]、有機電界効果型トランジス タ (Organic Field Effect Transistor; OFET) [76]などが実用化の段階にあり、大面積、フ レキシブルといった有機材料に特有の機能を有することで注目を集めている。Si 半導体の 歩んできた革新的発展の歴史と同様、有機材料を用いたエレクトロニクスデバイスは現在 素子の微細化への方向に向かい、真の分子ナノテクノロジー実現に向けて盛んに研究が行 われている。

単一分子スケールのデバイスの機能を評価する上で、高い空間分解能を有する STM 発光 分光法は有機分子の光機能を評価する手法として期待される。しかし、CNT からの発光と 同様、有機分子からの発光の量子効率は非常に小さく、STM 発光分光法の適応できる分子 の種類が限られる。そこで本研究では有機分子からの発光の量子効率を改善する手法とし て、表面プラズモンによるプラズモン増強効果に着目した。STM 探針直下に誘起される表 面プラズモンによってプラズモン増強効果を引き出し、STM 発光の量子効率を改善するこ とによって STM 発光分光法において測定可能な有機分子の種類の幅を広げると共に、STM 発光分光法の高感度化を目指した研究を行った。

表面プラズモンとは、金属と誘電体界面に存在する金属自由電子の電子密度波のことで あり、通常、光励起による近接場などの電磁波と相互作用を起こすことによって金属表面 近傍に共鳴状態を形成する。この表面プラズモンが励起された表面では、非常に強い電場 の増強が起こり、表面における有機分子からのラマン散乱、蛍光発光、光吸収などといっ たさまざまな光学現象を強める効果が得られることが知られている[77]。この増強効果を利 用した、表面プラズモン共鳴法や表面増強ラマン散乱分光法などの極微量測定・表面分析手 法が分子認識やバイオセンサーとしてすでに実用化されている[78]。

本研究では、この表面プラズモンによる蛍光発光の増強効果を STM 探針の先端のナノス ケール領域で発現させる手法を考案し、その効果を検証した。図 5.1 には、外部からの光励 起によって得られる表面プラズモンと、STM のトンネル電流の IET 励起によって誘起され る TIP を模式図で示す。

図 5.1 光励起による表面プラズモンと IET 励起による TIP の模式図

光励起による表面プラズモンは、全反射条件に近い角度で金属-誘電体(空気)界面に 照射された光によって誘起される近接場光(エバネッセント波)を利用して励起される。 そのため、検出の空間分解能(ここでは面内分解能)は光の回折限界によって制限され、 PL 分析と同等かそれ以下である。しかし、STM の IET 励起よって誘起される表面プラズ モン、すなわち TIP は式(2-15)でも示したように、10 nm 程度の空間広がりしか持た ない局所プラズモンである。それ故、TIP を用いることにより、STM 発光分光法の持つ高 い空間分解能を損ねることなく、プラズモン増強効果による STM 発光分光法の高感度化を 実現することが可能である。

本研究では、TIPによるプラズモン増強効果の検証を行うために、プラズモン励起特性の 異なる数種類の基板を用い、代表的な有機半導体薄膜として知られるフタロシアニン薄膜 からの STM 発光特性を評価した。また、プラズモン増強効果の導入によって観測可能にな ったアップコンバージョン発光の特性解析を行い、この特異な発光現象を利用した蛍光発 光イメージング実験も行った。

図 5.2 STM 発光分光法によるフタロシアニン薄膜の発光特性評価の模式図

5.2 フタロシアニン薄膜について

フタロシアニンはポルフィリンの類縁体であるテトラベンズテトラアザポルフィン (H2Pc)、およびその中心に金属を持つ金属フタロシアニン(MPc)を含めた化合物の総称 である。

図 5.3 フタロシアニンの分子構造(左から、H2Pc, ZnPc, CuPc の分子構造)

中心に金属を有する MPc はその構造に起因する特異な物理的特性を有しており、その製法、機能に関する広範な研究が行なわれている。1907 年、o-シアノベンズアミドを加熱して微量の青色物質を得たという Brown らの報告がフタロシアニン出現の最初の記録とされている。その後、1923 年には o-ジブロモベンゼンとシアン化銅からフタロニトリルを合成しようとして 23 %の収率で青色物質を得たとの報告がある。顔料としての登場は、1928 年 Scottish Dye 社でフタルイミドの製造中、グラスライニング反応器のひび割れ部分に生成した青色の副産物が注目されたことに始まる。この年にロンドン大学の Linstead らによる研究が始まり、1933~34 年にかけて構造解析を含む詳細な報告がなされた。フタロシアニン (Phthalocyanine; Pc) の名称もこのとき Linstead によって命名された。

MPc はテトラアザポルフィン環の大きなπ電子系を有しており、光機能材料として多方 面で研究され、多くの分野で実用化されている。例えば、耐蝕性に優れた青や緑の顔料、 光電効果を応用した光電子機能材料として光ディスク(CD-R)、発光デバイス、太陽電池 等が挙げられ、中でも電子写真感光体のキャリア発生層として既に実用化されている[79]。 また、MPc は酸化還元特性を有しており、触媒としての用途の他、印加電位の変化により 可逆的に変色する現象を応用したエレクトロクロミック素子[80]として、さらに、中心金属 の選択やペンダント型高分子化により消臭、抗菌剤として実用化されている[81]。この他に も MPc 誘導体によるガスセンサー[82]、液晶、癌の光化学治療[83]等の研究事例が多数存 在する。

フタロシアニンの多くは熱に対して極めて安定で、温度を上げると融点を示さずに昇華 する。CuPc分子では380 ℃付近から徐々に昇華が始まり、550 ℃で急速になる。600 ℃ を越えると分子の分解が始まる。分子の昇華を利用することにより、真空蒸着法による薄 膜の形成が容易である。このような特性を利用し、フタロシアニン薄膜は p 型の有機半導 体薄膜として OFET に用いられ、また、OLED では正孔輸送層としても用いられている。 フタロシアニンの導電性、光機能等はポルフィン環のπ電子系に由来するが、中心金属 によって変化させることができる。特に、中心金属の影響はフタロシアニンの発光特性に 顕著に表れ、蛍光、燐光発光の量子効率が異なることが知られている。

ここで H₂Pc、ZnPc、CuPc のモノマー状態の 3 種類のフタロシアニン分子の蛍光・燐光 発光特性の違いについて述べておく。過去に、溶液中に分散した H₂Pc、ZnPc、CuPc のモ ノマー分子状態からの蛍光発光を PL 測定によって観測した報告がある[84]。それによると、 フタロシアニン分子における蛍光発光の量子効率は H₂Pc が 0.7、ZnPc が 0.3、CuPc では 1×10⁻⁴ 以下でほとんど観測されない。量子効率の違いは中心金属の影響によって説明され ている。次の図 5.4(a)には一般的な有機分子からの蛍光、燐光発光過程を説明するためのヤ ブロンスキーダイアグラムを示す。また、図 5.4(b)にはフタロシアニン分子の蛍光、燐光発 光特性に関してまとめた表を示す。

図 5.4 フタロシアニン分子の発光特性 (a) ヤブロンスキーダイアグラム, (b) 蛍光・燐光発光特性

図 5.4(a)は PL 測定における有機分子の発光までの過程を示している。基底状態 (Ground state; So) の分子は光によって一重項状態 (Singlet state; S1) へと励起される。S1 状態から S0 状態へとエネルギー緩和する際に放出される光が蛍光発光である。一方、S1 状態から スピン反転を伴う項間交差によって三重項状態 (Triplet state; T1) へと緩和し、その後に S0 状態へとエネルギー緩和する際に燐光が放出される。

中心に金属を持たない H₂Pc では、S₁から T₁へのスピン反転を伴う項間交差がほとんど 起こらないため、観測される発光はS₁からS₀に戻る際の蛍光発光がほとんどである。蛍光 発光の量子効率は 0.7 であり、残りの 0.3 は熱などの発光以外のエネルギーに変換される。 そのため、燐光発光はほとんど観測されない。

ZnPc では、フタロシアニンの π 電子がZn 原子の影響を受け(heavy atom effect による スピン軌道相互作用)、スピン反転を許容して項間交差が少し起こる。そのため、燐光発光 が少し観測され(量子効率 1×10⁻⁴)、その分、蛍光発光の量子効率(0.3)が低くなる。

CuPc では Cu 原子の d 電子がフタロシアニンの π 電子に影響するため、S₁ と T₁間での スピン禁制が破れ、S₁の CuPc 分子のほとんどは T₁へと遷移する。(厳密には CuPc 分子 の T₁状態は T₂ と T₄に分裂しているが、両者のエネルギー差はほとんど無く、以下では簡 単のため、T₁状態とする)その結果、蛍光発光はほとんど観測されず(量子効率 1×10⁻⁴以 下)、燐光発光(量子効率 2×10⁻³)のみが観測される[85]。

5.3 実験

本実験では、フタロシアニン薄膜を真空蒸着法によって作製した。使用したフタロシア ニンは関東化学株式会社製で、フタロシアニン(H₂Pc)の純度は93%(分子量:514.54)、 亜鉛フタロシアニン(ZnPc)の純度は98%(分子量:577.91)、銅フタロシアニン(CuPc) の純度は95%(分子量:576.08)である。薄膜の作製は1×10⁻⁵~10⁻⁴ Paの高真空中で、 アルミナの坩堝に入れたフタロシアニン粉末をWバスケットで通電加熱することによって 行った。また、蒸着直前にはフタロシアニン分子の昇華温度よりも低い温度で数時間、予 備加熱を行うことにより、フタロシアニン粉末中に含まれる低分子量の不純物や吸着水分 を十分に除去した。薄膜の作製では水晶振動子モニタ(CRTM-6000: ULVAC 社製)により 膜厚の制御を行った。蒸着速度は約0.5 nm/minの一定速度で蒸着を行った。膜厚の較正は AFM を用いてフタロシアニン薄膜の膜厚を計測することによって行った。

実験ではまず、各フタロシアニン薄膜の可視光吸収分光測定を行った。測定には分光光 度計 U-3010(株式会社日立ハイテクノロジー)を使用した。吸収スペクトル特性を評価す ることによって、フタロシアニン薄膜の可視光領域における光吸収特性と、薄膜の結晶性 についての情報が得られる。

次に、フタロシアニン薄膜の発光特性を調べるために PL 分析を行った。励起光源には He-Ne レーザー(HN-550R:ネオアーク株式会社)の 632.8 nm の光を使用した。基板に は HOPG 基板と Au(111)基板の 2 種類の基板を用いて約 100 nm の膜厚のフタロシアニン 薄膜の測定を行った。

STM 発光測定では、HOPG 基板と Au(111)基板の 2 種類の基板を用いた。両基板の TIP 特性を評価するために、まずフタロシアニンを蒸着する前の清浄表面での STM 発光特性評価を行った。STM の探針には Pt/Ir 探針を用いた。CNT の実験でも述べたように、HOPG 基板からは STM 発光が観測されない。一方で Au(111)からは TIP 発光が観測され、Au(111) 基板からの TIP 発光についてはバイアス電圧依存測定を行い、TIP 発光特性評価を行った。

次に、H₂Pc、ZnPc、CuPc 薄膜それぞれのフタロシアニン薄膜について STM 発光特性 評価を行った。HOPG 基板と Au(111)基板の 2 種類の基板を用いて実験を行い、TIP の存 在によるプラズモン増強効果について検証した。

次に、観測される発光についてバイアス電圧依存性を計測した結果、量子カットオフ条件を満たさない特異な発光(アップコンバージョン発光)を観測した。実験ではその発光 特性を詳細に評価するため、バイアス電圧依存測定、電圧極性依存性を取得した。また、 Ag 基板、MoS2 基板上の CuPc 薄膜の発光スペクトルも取得した。

次に、発光強度とバイアス電圧の関係をグラフ化し、発光メカニズムを決定した。最後 に、プラズモン増強効果の導入により観測可能となったアップコンバージョン発光を用い た蛍光発光イメージング実験を行った。

5.4 結果と考察

以下の項では、フタロシアニン薄膜の可視光吸収スペクトル分析、PL 測定、HOPG 基板 と Au(111)基板の STM 発光スペクトル分析、フタロシアニン薄膜の STM 発光スペクトル 分析、フタロシアニン薄膜の発光メカニズムに関する考察、アップコンバージョン発光に よる蛍光発光イメージング実験の結果について述べる。

5.4.1 フタロシアニン薄膜の可視光吸収スペクトル

図 5.5 に石英ガラス基板上に蒸着した CuPc 薄膜の可視光吸収スペクトルの測定結果を示 す。測定では膜厚の異なる 3 種類の CuPc 薄膜(それぞれの膜厚は 10 nm、20 nm、30 nm) について可視光吸収スペクトルを取得した。

図 5.5 石英ガラス基板上の CuPc 薄膜の吸収スペクトル測定結果

CuPc 薄膜の吸収スペクトルは、可視光領域と紫外領域の 2 つの波長領域に特徴的な吸収 を示す。紫外領域で観測されるピークは B band、N band、C, L band などと呼ばれ、特に B band は Soret band などと呼ばれる。フタロシアニン分子の光学特性を支配するのはお もに 600 ~ 700 nm の可視光領域の Q band と呼ばれる吸収ピークである[86]。ここで、Q band が 2 つのピークに分裂しているのはダビドフ分裂によるものである[87]。ダビドフ分 裂とは、有機結晶の単位格子中に励起子(フレンケル励起子)の存在する場所が複数ある 場合に励起子バンドが分裂する現象のことであり、この 2 つの吸収ピーク強度の相対強度 を比べることによって薄膜の結晶状態が評価できる。図 5.5 の CuPc 薄膜の吸収スペクトル では、短波長側の吸収ピークが長波長側の吸収ピークよりも強い吸収を持つ。これは α 型 のフタロシアニン結晶に特有の吸収スペクトルである[88]。フタロシアニン分子の結晶はそ の他に β 型の結晶が存在するが、 β 型の吸収スペクトルではこの 2 つの吸収ピーク強度の 関係が反転する。通常、昇華した CuPc を温度が室温の基板で捕集した場合には α 型の結晶 が得られ、基板を高温にして捕集した場合には β 型の結晶が得られるため、結晶の種類は 基板の種類とは関係ない[89]。また、図 5.5 の吸収スペクトルでは、膜厚の増加に対して吸 収スペクトルの形状は変化せず、吸収強度のみが単調に増加している。このことから、α 型の結晶を含んだ CuPc 薄膜が基板上に均質に形成され、膜厚は nm のオーダーで正確に制 御できていることが分かる。

図 5.6 に H₂Pc、ZnPc、CuPc、それぞれのフタロシアニン薄膜の吸収スペクトル測定結 果を示す。示した結果は石英ガラス基板上に蒸着した膜厚 10 nm の測定結果である。比較 のために、短波長側の吸収ピーク値を 1 として規格化を施し、フタロシアニンの可視光領 域の光学特性を支配する Q band 付近を拡大して示している。また、それぞれの分子によっ て膜の密度が異なり、水晶振動子に表示される膜厚が実際の膜厚とは異なるため、AFM を 用いた膜厚の較正はそれぞれの分子ごとに行った。

図 5.6 各種フタロシアニン薄膜の吸収スペクトルの比較

図 5.6 の吸収スペクトルの特徴から、3 種類の薄膜は全て a 型の結晶を有していることが 分かる。それぞれのピーク位置はほとんど変化がなく、中心金属の種類が光の吸収過程に 及ぼす影響はほとんど無い事が確認できる。

5.4.2 フタロシアニン薄膜のフォトルミネッセンス発光分析

図 5.7 に本実験で使用した PL 測定における各種フィルターの配置写真を示す。

図 5.7 PL 測定における光学フィルター配置写真

測定では、5 mWのHe-Neレーザー(632.8 nm)を励起光源とし、試料に垂直な方向から光を入射する。PL発光の検出にはSTM発光分析と同じく光ファイバを用い、試料に垂直な方向から45度の位置に光ファイバを配置している。PL測定ではレーザーの反射光などによる迷光がスペクトル測定に悪影響を及ぼすため、分光器の入射スリットを0.1 mm(通常のSTM発光スペクトル測定時は1.25 mm)に絞り、露光時間を1 secと短くすることによって迷光の影響を低減している。また、レーザーの632.8 nm以外の光をカットするためのレーザーラインフィルター(FL632.8-10: THORLABS)と、レーザー反射光をできるだけ分光器に導入しないための短波長カットフィルター(SCF-66R:シグマ光機(カットオフ波長 660 nm))を使用している。

図 5.8 に H₂Pc、ZnPc、CuPc の 3 種類のフタロシアニン薄膜の PL 測定結果を示す。基 板には HOPG 基板と Au(111) 基板の 2 種類の基板を使用し、それぞれの基板上に膜厚約 100 nm の薄膜を真空蒸着によって作製し、PL 測定を行った。

(a) H₂Pc 薄膜, (b) ZnPc 薄膜, (c) CuPc 薄膜, それぞれの膜厚は約 100 nm

まず、HOPG 基板上での結果(発光スペクトル:黒)を比較すると、H₂Pc、ZnPcでは約 900 nm に発光が観測されていることがわかる。フタロシアニン薄膜の発光特性には薄膜中 での結晶状態、分子間相互作用などが影響するために非放射性遷移の確率が増え、発光の 量子効率が減少する[90]。また、発光のピーク位置もモノマー状分子からの発光とは大きく 異なる。そのため、図 5.4(b)で示した H₂Pc、ZnPc の約 700 nm における蛍光発光はほどん ど観測されず、約 900 nm に蛍光発光が観測される。一方で、量子効率の傾向はモノマー状 態の PL 量子効率と同様である。図 5.8 の PL 測定では H₂Pc>ZnPc>CuPc の順に発光強 度が小さくなっており、発光ピークの最大値は H₂Pc で約 350 counts、ZnPc で約 125 counts であり、CuPc では発光が全く観測されていない。この結果は図 5.4(b)に示した H₂Pc(0.7)、 ZnPc (0.3)、CuPc (1×10⁻⁴以下)分子の量子効率と同じである。

次に、HOPG 基板上と Au(111) 基板上(発光スペクトル:赤)の PL 測定結果を比べると、 Au(111) 基板上での PL 強度が大きいことが分かる。発光強度の増加は H₂Pc、ZnPc 薄膜で 観測され、CuPc 薄膜では発光が観測されていない。この結果は、Au 基板と HOPG 基板に よって形成される分子薄膜中の Photonic Mode Density (PMD)の違い[91]と、金属基板 と有機薄膜の界面近傍に特有の金属増強蛍光発光 (Metal Enhanced Fluorescence; MEF) の効果[92]によって説明される。詳細なメカニズムは後述するが、この PMD の違いと MEF の効果により、図 5.8 では Au(111)基板上の H₂Pc、ZnPc 薄膜において HOPG 基板上の約 4 倍の PL 強度が観測されている。一方、CuPc で発光が観測できなかったのは、CuPc の 元来の蛍光発光の量子効率が低すぎるためと考えられる。

5.4.3 基板のプラズモン励起特性評価

図 5.9 にフタロシアニン薄膜蒸着前の、HOPG 表面と Au(111)表面のプラズモン励起特 性の評価を行うために、STM 発光分析による発光スペクトル分析を行った結果を示す。

図 5.9 HOPG 表面、Au(111)表面の STM 発光スペクトル (a) HOPG 表面の STM 像 (Vs=-1.0 V, It=1 nA, Scan area: 1×1 µm²), (b) HOPG 表面の STM 発光スペクトル (Vs=+2.0 V, It=10 nA, 露光時間: 120 sec), (c) Au(111)表面の STM 像 (Vs=+0.5 V, It=1 nA, Scan area: 1×1 µm²), (d) Au(111)表面の STM 発光スペクトル (Vs=+2.0 V, It=10 nA, 露光時間: 120 sec)
図 5.9(a)の HOPG 表面の STM 像では HOPG のステップが幾つか観察され、テラス部分 は原子レベルで平坦な形状をしている。図 5.9(b)の Au(111)表面の STM 像では Au(111)表 面に特有の三角形のテラス構造が観測されており、HOPG 表面と同様、表面の凹凸が数 nm 程度の原子レベルで平坦なな形状をしていることが確認できる。図 5.9(b), (d)の発光スペク トルは、STM の像観察範囲と同じ 1×1 µm²の領域を走査しながら CCD 露光時間を 120 sec として得たものである。探針には Pt/Ir 探針を用いている。

図 5.9(b)に示すように、HOPG 表面からは発光が観測されない。この結果から、HOPG 基板と Pt/Ir 探針によって形成される TIP は観測している波長領域に励起モードを持たない ことがわかる。一方、図 5.9(c)に示すように、Au(111)表面上では強い TIP 発光が観測され る。TIP 発光は式(2-14)に示した量子カットオフ条件を満たし、ここではバイアス電圧 Vs=+2.0 V(波長に換算すると 620 nm)よりも低エネルギーの波長領域に発光が観測され ている。また、観測される TIP 発光には明確なピークが存在しない。このことから、Au(111) 基板と Pt/Ir 探針によって形成される TIP は、バイアス電圧によって決まるカットオフ波長 よりも長波長領域において、複数の励起モードが存在していることが分かる。測定では、 約 950 nm よりも長波長領域の CCD 分光器の検出感度が小さいため、見かけ上、発光強度 が低下しているように観測されている。

次に、Au(111)表面において観測される TIP 発光の発光特性を詳細に評価するために、図 5.10(a)に TIP 発光のバイアス依存性を調べた結果を示す。測定はトンネル電流 It=10 nA を 一定にして、バイアス電圧を Vs=+1.6 V、+1.4 V、+1.2 V と変化させ、それぞれ CCD 露 光時間 120 sec として発光スペクトルを取得した。

図 5.10 Au(111)基板上の TIP 発光のバイアス電圧依存測定 (a) Au(111)基板上の TIP 発光のバイアス依存測定結果 I_t=10 nA(固定), V_S=+1.6, 1.4, 1.2 V と変化させて測定, (b) Au(111)表面と Pt/Ir 探針間に誘起される TIP の模式図

図 5.10(a)では、バイアス電圧を小さくするにつれて発光のピーク位置が長波長側にシフトしていることが分かる。バイアス電圧が Vs=+1.6 V のときは 1.6 eV 以下のエネルギー、 すなわち 775 nm 以上(図中の矢印で示す)の波長領域でフォトンが放出される。同様に Vs=+1.4 V では 886 nm、Vs=+1.2 V では 1033 nm 以上の波長領域で発光が観測され、 Au(111)表面の TIP 発光は式(2-14)に示した量子カットオフ条件を満たしている。

TIP からの発光は図 5.10(b)に示すように、STM 探針直下に存在する TIP が、トンネル 電子の IET 過程によって励起され、元の基底状態に戻る際に発光が生じる。また、TIP 発 光はバイアス電圧の極性によらず、バイアス電圧が負の場合にも同様の発光が観測される。 図 5.10(a)の発光スペクトルでは、近赤外領域の発光は観測されていない。しかし、これは 上でも述べたように約 950 nm 付近から近赤外領域にかけて CCD 分光器の検出感度が下が っているためであり、実際にはこの近赤外領域にも TIP 発光が生じていると推測される。

5.4.4 フタロシアニン薄膜の STM 発光スペクトル分析

H₂Pc **ZnPc** CuPc (a) (b) (C) HOPG 100 nm 100 nm 100 nm 0 nm 50 nm 0 nm 30 nm 0 nm 30 nm (d) (e) (f) Au(111) 100 nm 100 nm 100 nm 0 nm 30 nm 0 nm 30 nm 0 nm 30 nm

以下に、フタロシアニン薄膜の STM 発光スペクトル分析の測定結果を示す。

図 5.11 H₂Pc、ZnPc、CuPc 薄膜の HOPG、Au(111)基板上の STM 像 (a) HOPG 基板上の H₂Pc 薄膜(Vs=-3.0 V, It=80 pA, Scan area: 1×1 µm²), (b) HOPG 基板上の ZnPc 薄膜(Vs=-3.0 V, It=100 pA, Scan area: 1×1 µm²), (c) HOPG 基板上の CuPc 薄膜(Vs=-3.0 V, It=40 pA, Scan area: 1×1 µm²), (d) Au(111)基板上の H₂Pc 薄膜(Vs=-3.0 V, It=80 pA, Scan area: 1×1 µm²), (e) Au(111)基板上の ZnPc 薄膜(Vs=-3.0 V, It=100 pA, Scan area: 1×1 µm²), (f) Au(111)基板上の CuPc 薄膜(Vs=-3.0 V, It=40 pA, Scan area: 1×1 µm²),

図 5.11 に、STM 発光スペクトル分析に使用したフタロシアニン薄膜の STM 像を示す。 図 5.11(a), (b), (c)は HOPG 基板上のフタロシアニン薄膜の STM 観察結果、図 5.11(d), (e), (f) は Au(111)基板上のフタロシアニン薄膜の STM 観察結果である。フタロシアニン薄膜の STM 発光スペクトル測定では、H2Pc、ZnPc、CuPc 薄膜の膜厚は 10 nm とした。フタロ シアニン薄膜の膜厚を厚くした場合、膜厚が約 50 nm よりも厚くなると STM 探針の表面 へのアプローチが困難になる(トンネル電流を正確に検出できず、探針が基板に接触する)。 これは、有機薄膜が金属や半導体などの固体表面と比較して導電性が低いため、膜厚が大 きな場合にはトンネル電流が流れにくくなるためである。しかし、膜厚を 10 nm 程度に小 さくすると、フタロシアニン薄膜にはバイアス電圧による高電界が印加され、膜を通した トンネル電流を流すことが可能になる。図 5.11の測定では、バイアス電圧を Vs=-3.0 V と し、トンネル電流を可能な限り小さい電流に設定した。上で述べたように、有機薄膜は金 属や半導体などに比べて導電性が低いために、大きなトンネル電流を流すことが困難であ る。そのため、トンネル電流を増加させる際、有機薄膜中を流れる電流の許容値を超える と、STM 探針は薄膜表面に接触する。この時、STM 探針は薄膜表面を正確に画像化するこ とが難しくなり、膜構造を乱しながら画像を取得する状況になる(詳しくは図 5.13 に示す) ため、薄膜の STM 観察を行う場合、トンネル電流は小さい方が良い。このように、フタロ シアニン薄膜の STM 観察では、薄膜の形状像を正確に取得するために、薄膜と探針の接触 を避けるなどの注意が必要である。これは一般的な有機薄膜の STM 観察に共通して言える ことである。

図 5.6 の吸収スペクトル測定で述べたように、真空蒸着によって作製したフタロシアニン 薄膜は基板温度が室温の場合には α型の結晶を有する。このことから、図 5.11 で観測され ている個々の粒子はフタロシアニンの α型の結晶であると考えられ、フタロシアニン薄膜 は多数の微結晶によって形成されていることが分かる。また、図 5.11(a), (b), (c)の HOPG 基板上のフタロシアニン薄膜は、図 5.11(d), (e), (f)の Au(111)基板上のフタロシアニン薄膜 の形状に比べ、個々の粒子が大きく、異方性を有した形状をしている。これは、フタロシ アニンの結晶成長様式がそれぞれの基板の影響を受けて変化したためと考えられる。異な る基板上へのフタロシアニン分子の吸着、結晶成長様式は過去にさまざまな手法で調べら れている[93]。それによると、サブモノレイヤーからモノレイヤー程度の薄膜(約 0.5 nm) ではフタロシアニンは基板に平行に吸着する。この初期成長層を越えると、基板とフタロ シアニン分子の相互作用よりもフタロシアニン分子同士の相互作用の方が優位となり、π ーπ相互作用による α型の微結晶を形成するようになる。HOPG 基板上では、表面の炭素 原子の並びを反映しながら結晶が成長するため、薄膜の初期成長層において Au(111)基板よ りも大きな結晶が形成され、それ以降の薄膜の形成に影響を与えていると考えられる。

次の図 5.12 には、フタロシアニン薄膜からの STM 発光スペクトル分析の結果を示す。 図 5.12(a), (b), (c)は HOPG 基板上のフタロシアニン薄膜の発光スペクトル分析結果、図 5.12(d), (e), (f)は Au(111)基板上のフタロシアニン薄膜の発光スペクトル分析結果を示して いる。H₂Pc、ZnPc、CuPc 薄膜は STM 観察と同じ膜厚 10 nm である。測定はサンプルバ イアス Vs=+1.8 V、トンネル電流 It=10 nA に設定し、STM 観察と同じ 1×1 µm² 領域を走 査しながら CCD 露光時間 120 sec として測定を行っている。

図 5.12 H₂Pc、ZnPc、CuPc 薄膜の HOPG、Au(111)基板上での STM 発光スペクトル 測定は全て Vs=+1.8 V, It=10 nA, 露光時間 120 sec で 1×1 µm²領域を走査しながら取得

発光スペクトルの測定では、発光量をできるだけ多く得るために、スペクトル測定時の トンネル電流は STM 像観察条件よりも大きな値、It=10 nA としている。上にも述べたよう に、トンネル電流を大きくすると STM 探針はフタロシアニン薄膜と接触する。図 5.12 で 得た発光スペクトルは全て、このような STM 探針とフタロシアニン薄膜が接触した状況で 得られたスペクトルである。そのため、発光スペクトル測定時には薄膜の形状を正確に測 定することはできない。測定では、薄膜と探針が接触した状況であるにもかかわらず、ト ンネル電流は STM のフィードバックによって設定電流の 10 nA を保っていた。これは薄膜 の導電性が低く、薄膜が誘電体として振舞うためと考えられる。

図 5.13 には、STM 像取得時(トンネル電流:小)と発光スペクトル取得時(トンネル電流:大)の STM 探針と CuPc 薄膜、基板の関係を示す模式図を示す。図 5.11 の STM 像は、 トンネル電流を可能な限り小さくして取得している。これは Pt/Ir 探針と薄膜との接触を防 ぐためであり、この場合、トンネルギャップは図 5.13(a)に示したように CuPc 薄膜上の大 気中に存在する。これにより、薄膜表面の形状を正確に測定することが可能となっている。

図 5.13 STM 探針、CuPc 薄膜、基板の関係を示す模式図 (a) STM 像取得時(トンネル電流:小),(b)発光スペクトル取得時(トンネル電流:大)

一方、発光スペクトル測定時にはできるだけ多くの発光量を得るためにトンネル電流は 10 nA に設定している。この場合、CuPc 薄膜は 10nA という大きなトンネル電流を流すほ どの十分な導電性は無く、STM 探針は CuPc 薄膜と接触する。STM 探針は CuPc 薄膜に接 触後、10 nA のトンネル電流が得られるようになるまで基板に接近する。この時、図 5.13(b) に示すように STM 探針と接触する CuPc 薄膜の一部分は誘電体として振舞い、CuPc 薄膜 中にトンネルギャップを形成する。この場合、STM 探針は薄膜の構造を乱しながら画像を 取得することになる。

次に、発光スペクトルの考察について述べる。図 5.12(a), (b), (c)に示すように、HOPG 基板上のフタロシアニン薄膜からの発光は観測されていない。これは、PL測定などに比べ、 STM 発光測定では STM 探針直下の局所領域の少数分子を励起しているということや、 STM による有機分子の励起効率が低いこと、励起分子と基板間でのエネルギー移動による 消光などが影響し、分子の発光強度が小さく、本システムの発光検出システムでは発光を 捉えられていないということが考えられる。 一方、 図 5.12(d), (e), (f)に示すように、 Au(111) 基板上のフタロシアニン薄膜からは発光が観測されている。それぞれの発光スペクトルに は2つのピークが存在し、図 5.12(d)の H2Pc 薄膜では約 720 nm と約 950 nm、図 5.12(e) のZnPc薄膜では約700 nmと約850 nm、図5.12(f)のCuPc薄膜では約720 nmと約900 nm にピークが観測される。ここで観測されている発光のピークのうち、短波長側の約 700 nm 付近に観測される発光ピークはフタロシアニン薄膜蒸着前の清浄な Au(111)表面からは観 測されないため、フタロシアニン分子に由来するものと考えられる。一方、約 900 nm 付近 に観測されている発光は Au(111)基板に由来する TIP 発光である。HOPG 基板上では観測 されなかった分子からの発光が、Au(111)基板上では TIP 発光と共に観測されるということ から、この実験結果により TIP によるプラズモン増強効果が得られていることが確かめら れる。分子からの発光は、HOPG 基板上では量子効率が低いために観測されないが、Au(111) 基板上ではプラズモン増強効果を得ることによって量子効率が改善し、観測可能になった と考えられる。詳細な発光メカニズムは後述するが、この結果は、プラズモン増強効果の 導入によって STM 発光分光法の高感度化に成功したということを示している。

図 5.12(d), (e)で観測されている H₂Pc 薄膜の約 720 nm、ZnPc 薄膜の約 700 nm におけ る発光は、図 5.4 に示したモノマー状態の H₂Pc、ZnPc 分子からの蛍光発光の波長とほぼ 同じであり、図 5.8 に示した H₂Pc、ZnPc 薄膜の PL 測定結果とは大きく異なっている。こ の結果は、STM 発光測定が PL 測定とは異なり、STM 探針直下において励起された分子は 周りの分子の影響を受けず、モノマー分子の励起状態に近い状態で発光を生じているとい うことを示している。詳細は後述するが、この発光特性の違いはプラズモンの存在によっ て生じる現象であると考えられる。

図 5.12 の発光スペクトル測定の結果において最も特筆すべき事は、これまでにモノマー 状態、または薄膜状態のいずれにおいても観測することのできなかった CuPc からの発光を 観測しているということである。ここで、CuPc 薄膜から観測された発光を詳細に調べるた め、次の図 5.14 には CuPc 薄膜からの発光スペクトルについてバイアス電圧依存性を取得 した結果を示す。

図 5.14 Au(111)基板上の CuPc 薄膜の発光スペクトルのバイアス電圧依存測定
 (a) I_t=10 nA(固定), Vs=+2.2, 2.0, 1.8 V と変化させて測定,
 (b) 比較のために図 5.5 の吸収スペクトルを再度示した

図 5.14(a)では、サンプルバイアスの変化に対して約 720 nm の発光ピーク位置がほとん ど変化していないことが分かる。これは、この発光が CuPc 分子内の特定の電子準位間の遷 移によって生じた発光であることを示している。図 5.14(b)の吸収スペクトルの測定結果に おいて、約 720 nm は吸収スペクトルの低エネルギー側の立ち上がりの位置に一致する。吸 収スペクトルのピークは CuPc 分子の S₀状態から S₁状態への励起エネルギーに対応してい ることから、観測している発光は CuPc 分子の S₁状態から S₀状態へのエネルギー失活の際 に生じる蛍光発光であることが分かる。この結果は、量子効率が低く、これまでに観測さ れたことのなかった CuPc からの蛍光発光を初めて観測した結果である。

5.4.5 フタロシアニン薄膜からのアップコンバージョン発光

ここで、TIPによるプラズモン増強効果によって観測が可能となった蛍光発光において、 量子カットオフ条件を満たさない特異な発光が観測されたことについて説明する。

図 5.15 に、Au(111)基板上の H₂Pc、ZnPc、CuPc のフタロシアニン薄膜について、観測 された蛍光発光 (約 720 ~ 700 nm: 約 1.7 ~ 1.8 eV) よりも低いバイアス電圧で測定した 発光スペクトルを示す。図 5.15(a)には Au(111)基板上の H₂Pc 薄膜において、バイアス電 圧 Vs=+1.5, 1.3, 1.1, 0.9 V で測定した発光スペクトルを示す。これまでの発光スペクトル と同じく、トンネル電流は I_t=10 nA に設定し、STM 観察と同じ 1×1 µm²領域を走査しな がら CCD 露光時間を 120 sec として測定を行っている。図 5.15(b), (c)は同様にして ZnPc 薄膜、CuPc 薄膜についてバイアス電圧 Vs=+1.6, 1.4, 1.2, 1.0 V として測定を行った結果で ある。

図 5.15 Au(111)基板上のフタロシアニン薄膜の発光スペクトルバイアス依存測定結果
 (a) H₂Pc 薄膜, (b) ZnPc 薄膜, (c) CuPc 薄膜

図 5.15 中に示した矢印は、バイアス電圧によって与えられるトンネル電子の持つエネル ギー(式 (2-14) によって与えられる量子カットオフ波長)を示している。それぞれの薄 膜において観測される蛍光発光は、この矢印よりも短波長側で観測されており、量子カッ トオフ条件を満たしていない。図 5.12 に示した発光スペクトルと同様、H₂Pc 薄膜では約 720 nm、ZnPc 薄膜では約 700 nm、CuPc 薄膜では約 720 nm に蛍光発光が観測されてお り、バイアス電圧の変化に対して発光のピーク位置は変化していない。一方、矢印よりも 長波長側に観測されている発光は TIP 発光であるため、図 5.10 に示した Au(111)の清浄表 面において観測される TIP 発光の特徴と同様、それぞれの測定において量子カットオフ条 件を満たしている。

図 5.15 において観測されているフタロシアニン薄膜からの蛍光発光は、量子カットオフ 条件を満たしていない。つまり、注入するトンネル電子の持つエネルギーよりも大きなエ ネルギーを持つ光が誘起されている。このような発光では、薄膜へのトンネル電子注入か ら発光に至る過程において、エネルギーの上方変換(アップコンバージョン)過程が含ま れていると推測される。また、このアップコンバージョン発光の発光強度は、バイアス電 圧を減少させると共に発光強度が小さくなっている。図 5.12(a)に示した H₂Pc 薄膜の測定 では、バイアス電圧 Vs=+0.9 V においてアップコンバージョン発光が観測されなくなって いる。同様に、ZnPc 薄膜では Vs=+1.0 V、CuPc 薄膜では Vs=+1.0 V において発光が観測 されなくなっている。このように、発光スペクトルのバイアス電圧依存測定により、アッ プコンバージョン発光には発光のしきい値電圧が存在することがわかる。

また、アップコンバージョン発光はバイアス電圧の極性を反転した場合においても観測 される。図 5.16 に示したのは、Au(111)基板上の CuPc 薄膜のバイアス電圧の極性依存を調 べた結果である。

図 5.16 Au(111)基板上の CuPc 薄膜の発光スペクトルバイアス極性依存測定結果 Vs=+1.4, -1.4 V, It=10 nA, 露光時間: 120 sec

図 5.16 に示すように、バイアス電圧 Vs=+1.4, -1.4 Vの両極性バイアス電圧において、約 720 nm の CuPc からの蛍光発光が観測される。発光強度は異なるものの、発光のピーク位 置は変化していないため、バイアス電圧を反転させた場合でも同じ発光メカニズムによっ て発光が誘起されていることが推測される。

5.4.6 発光メカニズムに関する考察

ここでは、STM 発光分光法において観測されるフタロシアニン薄膜からの発光の発光メ カニズムに関する考察について述べる。

本研究において観測されたフタロシアニン薄膜からのSTM発光は、バイアス電圧の変化、 または極性の反転に対して発光のピーク位置が変化しないということから、図 2.5 に示した 分子軌道間の電子遷移に伴う分子からの蛍光発光であると考えられる。この発光メカニズ ムでは、分子の励起は IET 励起によって行われるが、測定では有機薄膜を試料として用い ていることから、分子のエレクトロルミネッセンス(Electroluminescence; EL)が観測さ れている可能性が存在する。ここではまず始めに、この EL 発光の可能性について検討する。

有機薄膜を 2 枚の金属基板で挟んだ構造に電圧を印加すると、一方の電極から電子が注入され、もう一方の電極からは正孔が注入されるために電流が流れる。注入された電子と 正孔は電子・正孔対を形成し、有機分子を励起する。この励起分子からの発光が EL 発光と 呼ばれる現象である。通常、CuPc は EL 発光を示さないが、本実験では TIP の存在によっ て EL 発光が増強されて観測されていることが考えられる。観測された発光が EL 発光かど うかを確かめるためには、EL 発光の発光強度を左右する仕事関数の異なる基板を用いて測 定・評価する必要がある。そこで、図 5.17 には、観測された CuPc 薄膜からのアップコン バージョン発光に関して、HOPG、Au(111)基板以外の Ag 基板、MoS² 基板上で測定した発 光スペクトルを示す。

図 5.17 CuPc 薄膜の発光スペクトルの基板依存性測定 (a) Ag 基板上での測定結果, (b)MoS2 基板上での測定結果

使用した金属基板の仕事関数は、順番に Au(111): 5.3 eV>MoS₂: 5.0 eV>HOPG: 4.8 eV >Ag: 4.3 eV[94]となっている。EL 発光では、仕事関数の大きい方が CuPc 薄膜中へのホ ール注入効率が良く、発光強度が強いという結果が得られるはずである。しかし、得られ た結果は Au(111)、Ag 基板では発光が観測され、MoS₂、HOPG 基板では発光が観測され ない。この結果により、ここで観測されている CuPc からの発光は仕事関数の大きさに左右 されることはなく、EL 発光によるものではないことが分かる。また、Ag 基板は Au(111) 基板と同様に、観測領域に TIP 励起モードを有する基板であることから、観測している発 光は、分子からの発光をプラズモン増強効果によって増強することによって観測可能にな った発光であるというこれまでの議論を強く裏付ける結果となっている。

次の図 5.18 には、フタロシアニン薄膜からの発光のメカニズム説明するために、PL 測 定とSTM発光分析における発光過程を示すヤブロンスキーダイアグラムを示す。ここでは、 本研究によって初めて観測が可能になった CuPc 分子からの発光について説明する。

図 5.18 CuPc 薄膜の発光メカニズムの比較 (a) PL 発光の発光メカニズム, (b) STM 発光の発光メカニズム

図 5.18(a)に示すように、PL 測定では So 状態の CuPc 分子は光励起によって S1 状態に励起される。S1 状態の CuPc は、図 5.4 で述べたように項間交差によって T1 状態に遷移し、その後、燐光発光を生じるため、S1-So 遷移による蛍光発光の量子効率は非常に低くなっている。また、CuPc の T1 状態のエネルギーは約 1.1 eV (波長に換算すると約 1100 nm) であることが知られているが、本実験で使用した検出器はこの波長領域に感度を持たないため、今回の実験では観測されていない。

前述したように、PL 測定では PMD の違いと MEF の効果によって HOPG 基板上と Au(111)基板上での結果が異なる。PMD とは、入射光(PL 測定では励起光)と金属基板に よる反射光、または分子からの発光と金属基板による分子発光の反射光との相互作用によ って形成される光電場の密度変化のことを示す。そのため、PMD は基板からの距離、また は金属の反射効率によって変化する。そして、分子の発光効率はこの PMD の変調に伴って 増減するため、HOPG 基板上と Au(111)基板上では PL 発光強度が異なる。また、PMD の の変化は基板から数百 nm の範囲の比較的広範囲に影響が及ぶ。PMD による影響に加え、 図 5.8 に示した薄膜の PL 測定では、金属基板と有機薄膜の界面近傍に特有の MEF が及ぼ す影響が大きい。金属基板と有機薄膜の界面近傍では、以下の2つの現象が同時に起こる ため、分子からの発光の物理的メカニズムは複雑になる。まず、金属基板上の分子では、 分子の励起エネルギーが金属基板へとエネルギー移動を起こすことによる消光を考慮する 必要がある。このエネルギー移動は蛍光共鳴エネルギー移動(Förester (Fluorescence) Resonance Energy Transfer; FRET) と呼ばれ、基板からの距離の3乗に比例して影響が 小さくなる。次に、励起光、または励起分子からのエネルギー移動によって誘起される金 属基板上の表面プラズモンによる電場増強を考慮する必要がある。理論的には、平坦基板 上に直接入射した光による表面プラズモン励起は起こらない。しかし、実際の金属基板に は表面に凹凸が存在するため、そのような場所には局所プラズモンが誘起される。このよ うにして励起されたプラズモンは、金属基板と有機薄膜の界面近傍に電場増強をもたらし、 分子の S₀-S₁遷移(励起) 効率、もしくは S₁-S₀遷移(発光) 効率を飛躍的に増強する。 また、誘起されるプラズモンは近接場光の一種であるため、プラズモンによってもたらさ れる電場増強効果は金属基板からの距離に対して指数関数的に減少する。以上のように、 金属基板と有機薄膜の界面近傍(約 20 nm 程度の範囲)では分子の消光現象、または分子 発光の増強が同時に起こっており、どちらの効果が優位に現れるかによって分子の発光強 度が決まる。Au や Ag、Cu などの貴金属表面では後者の分子発光の増強が優位に現れるた め、これらの基板上で観測される発光増強は特にMEFと呼ばれる。HOPG基板上とAu(111) 基板上ではプラズモンの励起特性が異なり、Au(111)基板上では MEF が観測されるため、 発光の増強が起こる。上述したように、図 5.8 では以上の PMD の違いと MEF の効果によ って Au(111) 基板上の H₂Pc、ZnPc 薄膜において HOPG 基板上の約 4 倍の PL 強度が観測 されている。一方、CuPc で発光が観測できなかったのは、CuPc の元来の蛍光発光の量子 効率が低すぎるためと考えられる。

図 5.18(b)は、STM 測定における CuPc 分子からの発光過程を示している。ここでは、バ イアス電圧が CuPc の蛍光発光エネルギーよりも大きな場合(|Vs|>1.7 V)における発光 過程を示している。この場合、HOPG 基板上では発光が観測されず、Au(111)基板上ではト ンネル電子の IET 励起による TIP 発光と、分子からの蛍光発光が同時に観測される。以下 に、その発光のメカニズムと、プラズモン増強効果の詳細について述べる。

ここではまず、分子の励起過程においてプラズモン増強効果が及ぼす影響について述べ る。HOPG 基板上の CuPc 薄膜の測定では、CuPc 分子の S₀状態から S₁状態への励起はト ンネル電子の IET 過程によって行われる。一方、Au(111)基板上の CuPc 薄膜の測定では、 S₀状態から S₁状態への励起には 2 種類の励起過程が存在すると考えられる。1 つは、図 2.5 に示したトンネル電子の IET 過程によって行われる励起である。もう 1 つは、トンネル電 子の IET 過程によって励起された TIP が CuPc 分子にエネルギーを移すことによって起こ る励起である。このようなプラズモンによる分子励起は、エバネッセント波によって誘起 された表面プラズモンが、ポルフィリン分子の蛍光発光を誘起するという実験によって実 証されており[95]、本実験においても十分起こり得る励起過程である。また、PL 測定にお ける MEF との類推から、TIP による電場増強によって CuPc 分子の IET 励起(S₀-S₁遷 移)確率が増加しているということも推測される。このように、Au(111)基板上では HOPG 基板上に比べ、励起過程の経路が増え、全体としての励起効率が増加している。

次に、CuPc 分子の発光過程においてプラズモン増強効果が及ぼす影響について述べる。 STM 発光の測定では有機薄膜の膜厚は 10 nm 以下であるため、FRET 効果による分子の消 光が優位に起こり、HOPG 基板上では発光が観測されない。一方、Au(111)基板上では FRET 効果による分子の消光より、プラズモン増強効果による発光増強が優位に起こっているた めに発光が観測されている。ここで考えられる発光増強には以下の2 つの要因が考えられ る。まず、STM 発光測定では探針直下に TIP が誘起されており、TIP による電場増強によ って CuPc の蛍光発光(S1-S0遷移)の確率が増強していると考えられる。しかし、蛍光 発光の確率が単純に増強されると仮定すれば、PL 測定結果と同様、分子本来の量子効率を 反映し、H₂Pc、ZnPc、CuPc 薄膜の順に発光強度が減少するはずである。しかし、図 5.12 の測定結果では蛍光発光強度は 3 種類の薄膜においてほぼ同様であるか、むしろ CuPc か らの発光が最も大きい。よって、単純な蛍光発光の確率増加ではこの発光を説明すること は困難である。もうひとつの要因は、CuPc 分子の励起状態が、TIP へとエネルギー移動を 起こし、TIP が発光する経路が存在することである。 フタロシアニン分子を含む一般的な芳 香族化合物の蛍光寿命は nsec ~ psec であるのに対して、プラズモンの励起寿命は約 10 fsec であるとされている[96]。このため、S1状態の励起分子は容易に TIP へとエネルギーを移 し、TIP が発光する。MEF の実験においてもこのような見かけ上の蛍光寿命の短縮が多数 観測されており[97]、観測している発光はプラズモンからの発光である可能性が高い。この 場合、観測される発光の発光強度は約 700 nm、または約 720 nm 付近に存在する TIP モー ドの発光効率によって決まるため、3 種類の薄膜から観測される蛍光発光強度が分子本来の 量子効率に影響されることはない。このため、本来、量子効率が低いはずの CuPc 分子から の蛍光発光は、見かけ上の量子効率が飛躍的に増強されたように観測されているのである。

また、STM 発光において観測される蛍光発光のピークがモノマー分子からの発光に近い という結果は、上記の TIP を経由した発光によって以下のように説明がつく。PL 測定にお いては、薄膜内での分子間相互作用によって発光ピークが長波長側にシフトした。しかし、 STM 発光において観測される発光はモノマー分子からの発光とほぼ同様である。これは、 S₁状態の励起分子が薄膜内での分子間相互作用の影響を受ける前に TIP にエネルギーを移 し、発光を生じるからである。

以上のように、Au(111)基板上の STM 発光測定では、IET 過程によって誘起された TIP と、分子の S₁状態がエネルギーを交換しながら共鳴状態を形成することにより、発光が生 じる。発光のエネルギーは分子の S₁状態、すなわち、ストークスシフトの存在しないモノ マー状態からの発光と同じである。また、見かけ上の量子効率は TIP の発光効率に依存す るため、量子効率の増強効果は本来の量子効率が低い分子において特に顕著に表れる。 次に、今回観測されたフタロシアニン薄膜からのアップコンバージョン発光の発光メカ ニズムに関する考察について述べる。既に述べたように、観測した発光はバイアス電圧の 低下と共に、発光強度が弱くなる特徴を持つ。これにより、フタロシアニン薄膜からの発 光の強度と、バイアス電圧の関係を調べることによって、発光メカニズムに関する手掛か りを得ることができる。図 5.19 には、CuPc の約 720 nm の発光ピーク強度とバイアス電 圧の関係と、そこから得られる情報を元に決定した発光メカニズムの模式図を示す。バイ アス電圧 Vs=+1.0 ~ 1.6 V の低バイアス領域(アップコンバージョン発光)の発光強度は図 5.15(c)から得たものである。一方、バイアス電圧 Vs=+1.8 ~ 2.2 V の領域では、約 720 nm の発光には CuPc からの発光と、TIP からの発光が混在していることが考えられるので、約 900 nm に観測されている発光強度を元に、TIP 発光の発光強度を差し引いた値を使用して いる。順番に、Vs=+2.2 V では 45 counts、Vs=+2.0 V では 35 counts、Vs=+1.8 V では 25 counts の TIP 発光を差し引いた結果である。

図 5.19 バイアス電圧と発光強度の関係と発光メカニズム

(b) 三重項-三重項消滅による蛍光発光の模式図, (c) CuPc の STM 発光メカニズム

図 5.19(a)の結果から、アップコンバージョン発光が起こるしきい値電圧が 1.1 V である ことが分かる。この結果は、発光が起こる最初の過程として CuPc の S₀状態から T₁状態へ の励起が起こっていることが推測できる。通常、PL 測定などの光励起では、S₀状態から T₁状態への励起はスピン禁制過程であるため励起が起こらないが、STM による IET 励起で は光の選択則が崩れ、励起可能となる。このような励起は非弾性トンネル分光測定によっ

⁽a) バイアス電圧と発光強度の関係,

て CuPc 薄膜でも観測されており、過去の報告においても電圧約 1.2 V での励起が可能という報告が成されている[98]。

バイアス電圧が CuPc の蛍光発光エネルギーよりも大きな場合($|V_{S}| > 1.7 V$)における 発光過程では、IET によって励起された TIP が CuPc 分子を励起する過程が起こり得るこ とを述べた。バイアス電圧が Vs=+1.0~1.6 V の低バイアス領域においても同様にして TIP からのエネルギー移動により T₁状態の CuPc 分子が誘起されることが考えられるが、上で 述べたように So 状態から T₁状態への励起はスピン禁制過程であるため、この励起過程は存 在しない。よって CuPc 分子の T₁状態への励起は IET 過程のみによって行われる。

 T_1 状態の CuPc 分子から、 S_1 - S_0 遷移の蛍光発光を誘起するために、ここでエネルギー アップコンバージョン遷移が起こる。 T_1 状態の CuPc 分子は、三重項-三重項消滅

(Triplet-Triplet Annihilation; TTA) と呼ばれる分子間相互作用によってエネルギーが引き上げられる[99]。このTTA 過程は2分子過程であり、図5.19(b)のように記述される。STM 探針直下のCuPc 薄膜中には、IET 励起によって複数のT1分子が励起される。最低2個のT1分子同士の相互作用(TTA)によって、一方の分子はSo状態へと戻り、もう一方の分子はS1状態より高エネルギー状態のSn状態へと励起される。Sn状態のCuPc分子は非放射性失活によってS1状態までエネルギーを失う。そして次にS1状態のCuPc分子はTIP へとエネルギー移動を起こし、最終的にTIPからの発光が観測される。上で述べたのと同様に、このTIPからの発光は見かけ上、分子の蛍光発光と同じである。

2 分子過程である TTA プロセスは、二光子励起、二電子励起などアップコンバージョン 過程に比べ比較的効率の良いプロセスである。例えば、光励起を用いた場合、数 Wcm⁻²の レーザーや、太陽光でさえも観測される現象であることが知られている。また、近年、S. Baluschev らによってこの TTA プロセス効率がプラズモンの存在によって向上するという 報告が成されている[100]。バイアス電圧 Vs=+1.2 V(波長に換算すると 1033 nm)での測 定では TIP 発光は観測されていないが、これは CCD 分光器の検出感度が小さいためであり、 実際には 1000 nm 付近の近赤外領域にも TIP が励起されていると考えられる。この TIP の存在により、TTA プロセスの効率が増強されていると考えられる。すなわち、このアッ プコンバージョン発光はプラズモン増強効果が存在することによって検出可能となった発 光であると言える。

また、図 5.19(a)では約 1.7 Vを境にして発光強度が急激に上昇していることが分かる。 これは、約 1.7 Vを境にして S₀状態から S₁状態への励起が始まったことに対応しており、 図 5.18(b)において述べた蛍光発光の経路が増えたことによって発光強度が上昇していると 考えられる。

以上の議論は CuPc だけでなく、H₂Pc、ZnPc にも適応できる。次の図 5.20 には、ZnPc、H₂Pc に関して発光強度とバイアス電圧の関係を調べた結果を示した。

(a) ZnPc 薄膜, (c) H₂Pc 薄膜

図 5.20(a)に示したのは ZnPc 薄膜の発光スペクトルにおける約 700 nm の発光ピーク強度とバイアス電圧(低バイアス領域)の関係である。CuPc と同じく、発光のしきい値電圧は約 1.1 V付近に存在していることが分かる。図 5.4(b)に示したように、ZnPc の T₁状態は約 1.1 eV(約 1100 nm)であり、ここで観測される発光も ZnPc の T₁状態を経由したアップコンバージョン発光であることが分かる。

一方、図 5.20(b)に示したのは H₂Pc 薄膜における約 720 nm の発光ピーク強度とバイアス電圧(低バイアス領域)の関係である。ここでは発光のしきい値は約 0.9 V(約 1400 nm) であることがわかる。H₂Pc では燐光発光が観測されないために、T₁状態のエネルギーはこれまで不明とされてきたが、今回の実験により、T₁状態のエネルギーは約 0.9 eV であることが明らかとなった。

5.4.7 アップコンバージョン発光による蛍光発光イメージング

ここでは CuPc 薄膜で観測されたアップコンバージョン発光を利用し、STM 発光分光法 を用いた蛍光発光イメージングを試みた結果について述べる。これまでに述べたように、 TIP によるプラズモン増強効果を用いることによって、CuPc からのアップコンバージョン 発光が検出できることが明らかになった。この新しい発光の特徴は、量子効率の低い分子 からの蛍光発光を引き出すことができるという点と、これまでの STM 発光分光法において 観測されてきた有機分子からの発光とは異なり、TIP による発光と分子からの蛍光発光が発 光スペクトル中でエネルギー的に重なり合って観測されるのではなく、適当な波長フィル ターを用いることによって完全に分離可能である(分子からの蛍光発光以外の迷光が存在 しない)という点である。これらの 2 つの特徴は、分子の蛍光発光イメージング実験にと って最適な条件である。

図 5.13 で述べたように、CuPc 薄膜からのアップコンバージョン発光を観測している時 には、STM 探針は CuPc 薄膜に接触している。そのため、残念ながら分子像を正確に捉え ることは不可能である。そこで、分子からの蛍光発光イメージを取得するため、基板に工 夫を加えた。図 5.21 には、今回の蛍光発光イメージング実験に用いた基板の作製法をす。 基板には図 3.15 で示したように HOPG、MoS2 基板と同じく観測領域に TIP 発光を持たな い ITO 基板を使用している。図 3.14 で示した NSL 法を用い、Au 薄膜中にナノスフィアに よる円形のパターンを刻んだ基板を作製している。

図 5.21 NSL 法による Au 基板の作製 (a) NSL 法による Au 基板の作製手順, (b) ITO 基板上の Au 基板の STM 像 (V_S=+1.5 V, I_t= 0.8 nA, Scan area: 3×3 µm², Pt/Ir tip)

本実験では、ナノスフィアの濃度を下げ、Au 基板領域が多く露出するように基板を作製 した。図 5.21(b)には作製した基板の STM 像を示す。STM 像では暗く凹んだ部分がナノス フィア球のあった場所で、ITO 基板が露出している部分である。それ以外の部分は膜厚約 15 nm の Au で覆われている。このように作製した基板では、ITO 表面と Au 表面が 2 つの 領域に区切られ、TIP によるプラズモン増強効果が得られる場所(Au 表面)と得られない 場所(ITO 表面)が存在することになる。このような基板上に CuPc 薄膜を蒸着し、STM 発光分析を行うことによって分子の蛍光発光のコントラストを得ることが今回の実験の目 的である。

まず初めに、図 5.22 に CuPc 蒸着前の基板の STM 発光分析を行った結果を示す。

図 5.22 Au パターン基板の STM 発光分析結果 (a) Au パターン基板の STM 像, (b) フォトンマップ (Vs=+2.0 V, It= 10 nA, Scan area: 1.5×1.5 µm², Pt/Ir tip, 64×64 pixels, 250 ms/pixel, R943-02 使用), (c) STM 像、フォトンマップにおける断面プロファイルの比較, (d) フォトンマップ取得中、約 36 分間の積算発光スペクトル

図 5.22(a)では、図 5.21(b)で観測した Au パターン基板と同様の像が確認されている。図 5.22(b)のフォトンマップ分析により、Au 基板のみから発光が観測されていることがわかる。 図 5.22(c)の断面プロファイルからは、STM 像とフォトンマップで同程度の空間分解能が得られていることが分かる。図 5.22(d)の発光スペクトルから、Au 領域で観測されている発 光が Au の TIP 発光であることが確認できる。次の図 5.23 には、作製した Au のパターン 基板上に 10 nm の膜厚の CuPc 薄膜を蒸着した試料について STM 発光分析を行った結果 を示す。

図 5.23 Au パターン基板上の CuPc 薄膜の STM 発光分析結果 (a) STM 像, (b) フォトンマップ (Vs=+1.4 V, It= 10 nA, Scan area: 1.5×1.5 µm², Pt/Ir tip, 64×64 pixels, 1 s/pixel, R943-02 使用), (c) STM 像、フォトンマップにおける断面プロファイルの比較, (d) フォトンマップ取得中、約 137 分間の積算発光スペクトル

図 5.23(a)には、膜厚 10 nm の CuPc 薄膜蒸着後の STM 像を示す。STM 像では、CuPc 薄膜蒸着後であるのにもかかわらず、図 5.22(a)の STM 像と同様の像が観測され、残念な がら CuPc 分子を観測することはできない。この測定では、微弱なアップコンバージョン発 光を長時間ため込むために、各ピクセルで 1 秒間のフォトンカウンティング時間を設けて いる。そのため、図 5.13(b)に示したような STM 探針の膜への進入が基板表面の近傍まで 進み、結果的に CuPc 分子が観測されなかったと考えられる。しかしながら、フォトンマッ プ分析、発光スペクトル測定では CuPc 分子からのアップコンバージョン発光を検出するこ とに成功している。図 5.23(d)の発光スペクトル測定では、強い TIP 発光が観測される一方 で、弱いアップコンバージョン発光を捉えている。このアップコンバージョン発光を、波 長フィルターを通して二次元マッピングした結果が図 5.23(b)のフォトンマップ像である。 次の図 5.24 には使用した波長フィルターの特性と、図 5.23(d)の発光スペクトルに波長フィルターをかけたスペクトルを示す。

図 5.24 波長フィルター特性とフィルター透過後の発光スペクトル
(a) 図 5.23(b)のフォトンマップ分析において使用した波長フィルター特性,
(b) 図 5.23(d)の発光スペクトルに波長フィルターを掛けたスペクトル

使用した波長フィルターは、約810 nm 以降の長波長の光をカットする長波長カットフィ ルターである。フォトンマップ分析では、このフィルターを図3.8 に示した2枚の集光レン ズの間に挟み、フォトンカウンティングを行っている。例として、図5.24(b)には観測した 発光スペクトルに図5.24(a)のフィルター特性を掛けた結果を示した。フィルターを通すこ とによって TIP 発光が排除され、アップコンバージョン発光のみが透過する。発光スペク トル分析では、入射スリットが有限の幅を持ち(ここではスリット幅: 1.25 mm)、波長分 解能が低下している(図5.23(d)に波長のぼやけ幅を示した)。そのため、図5.24(b)の計算 では約800 nm 付近の TIP 発光が少し検出されるように見えている。しかし、実際のフォ トンカウンティングではこのような波長のぼやけは存在せず、約720 nm の CuPc からのア ップコンバージョン発光のみを検出している。

図 5.23(b)のフォトンマップ分析結果では、図 5.24(a)の STM 像に対応し、ITO 基板の部 分が暗くなって観測されている。図 5.23(c)の断面プロファイルの結果から、ITO 基板上で はフォトンカウンティングのノイズレベルの発光しか観測されていないのに対して、Au 基 板領域ではアップコンバージョン発光が捉えられている。この測定では約 100 nm 程度の空 間分解能しか得られていないが、この結果は STM 発光分光法としては初めてとなる蛍光発 光マッピング実験である。原理的には、このアップコンバージョン発光を利用した蛍光発 光マッピングでは単分子レベルの空間分解能が得られるはずであり、今後の発展が期待さ れる。

5.5 結言

第5章では、STM発光分光法における発光の量子効率向上による高感度化を目指し、STM の探針直下にプラズモン増強効果を導入した STM 発光分光法について述べた。測定試料に はフタロシアニン薄膜を用い、観測した発光について発光特性評価を行った結果について 述べた。以下に本章の要点をまとめる。

- (1) 分子ナノテクノロジーの実現のため、STM 発光分光法は単一分子の光機能を評価する 手法として有用であることを述べ、発光の量子効率の低さが今後克服すべき問題点で あることを指摘した。また、固体表面における分子認識やバイオセンサーなどの高感 度測定に用いられるエバネッセント波による表面プラズモン励起と、貴金属表面にお いて STM 探針からのトンネル電子によって励起される TIP との空間的な広がりの違 いについて述べ、TIP によってもたらされるプラズモン増強効果を利用した STM 発光 分光法の高感度化について述べた。
- (2) 測定試料として用いた H₂Pc、ZnPc、CuPcの3種類の分子の光学特性がフタロシアニン分子のπ電子に由来していることを述べ、中心金属の影響による発光特性の違いについて述べ、蛍光発光の量子効率がH₂Pc、ZnPc、CuPcの順に低くなることを示した。
- (3) H₂Pc、ZnPc、CuPcのそれぞれの薄膜について行った可視光吸収スペクトル測定では 大きな違いはなく、作製した薄膜が α型の結晶によって形成されていることを示した。 また、プラズモン励起特性の異なる HOPG 基板と Au(111)基板上に作製した 3 種類の フタロシアニン薄膜に関して行った PL 測定結果を示し、Au(111)基板上の H₂Pc、およ び ZnPc 薄膜では PMD の違いと MEF の効果によって発光強度が増強されることを確 認した。3 種類のフタロシアニン薄膜では、モノマー分子の蛍光発光の量子効率と同様、 H₂Pc、ZnPc、CuPc の順に発光量子効率が低くなり、CuPc 薄膜では HOPG 基板上、 Au(111)基板上の両方の基板上で発光が観測されないほど量子効率が低いことを示し た。
- (4) HOPG 基板と Au(111)基板上での STM 発光分光測定の結果を示し、HOPG 基板では TIP 発光が観測されず、Au(111)基板では TIP 発光が観測されることを示した。また、 HOPG 基板と Au(111)基板上に作製した 3 種類のフタロシアニン薄膜に関して行った STM 発光分光測定の結果を示し、HOPG 基板上では観測されなかった発光が Au(111) 基板上では観測されることを示した。可視光吸収スペクトルとの比較により、観測さ れる発光はフタロシアニン薄膜からの蛍光発光であることを示し、プラズモン増強効 果による STM 発光分光法の高感度化に成功したことについて述べた。さらに、観測さ れたプラズモン増強効果による蛍光発光は、注入するトンネル電子のエネルギーが放 出される蛍光発光のエネルギーよりも低い条件においても観測され、プラズモン増強 効果を導入することによって、エネルギー・アップコンバージョン発光が検出可能にな ることを示した。

- (5) STM 発光分光法によって観測される Au(111)基板上のフタロシアニン薄膜からの発光 のメカニズムを示した。Au(111)基板上の STM 発光測定では、IET 過程によって誘起 された TIP と、分子の S₁状態がエネルギーを交換しながら共鳴状態を形成することに よって発光が生じることを示した。また、発光のエネルギーは分子の S₁状態、すなわ ち、ストークスシフトの存在しないモノマー状態からの発光と同じであることを示し た。さらに、見かけ上の量子効率は TIP の発光効率に依存するため、量子効率の増強 効果は本来の量子効率が低い分子において特に顕著に表れることを述べた。
- (6) アップコンバージョン発光の発光強度とバイアス電圧との関係を調べることにより、 観測される発光は分子の三重項状態を経由し、複数の分子間での相互作用の結果引き 起こされる TTA 過程によるエネルギー・アップコンバージョンを経た発光であること を示した。
- (7) アップコンバージョン発光の生じる STM バイアス電圧のしきい値を求めることにより、H2Pcの三重項状態のエネルギーは約 0.9 eV であることを明らかにした。H2Pc では燐光発光が観測されないために、三重項状態のエネルギーはこれまで不明とされてきたが、今回の実験によりその値を求めることに成功した。
- (8) 観測されたエネルギー・アップコンバージョン発光を利用することによって、STM 発 光分光法を用いた蛍光発光のフォトンマップ分析、すなわち、ナノスケール領域での 蛍光発光イメージングが可能であることを示した。NSL 法を用いた ITO 基板上の Au のパターン基板を用い、CuPc 分子の蛍光発光イメージの取得に成功し、プラズモン増 強効果を用いた STM 発光分光法の新たな可能性を示した。

第6章 総括

本研究では、STM 発光分光法を用いたカーボンナノチューブ、およびフタロシアニン薄 膜の発光特性に関する研究を行った。まず、STM 発光分光システムの構築においては、実 際の電子デバイス評価する上で重要となる、室温・大気中で駆動する STM 発光分光システ ムを新たに立ち上げた。このシステムは2本の光ファイバを同時に使用することによって、 フォトンマップ分析と発光スペクトル分析の同時取得ができるユニークなシステムである。 この2 種類の発光分析を同時に行うことにより、ナノスケール構造の特に可視光領域の発 光特性を多角的に評価することが可能である。システムの評価・動作確認では ITO 基板上 に作製した Au ナノ構造からの TIP 発光特性を評価し、本システムで 10 nm 以下の発光検 出空間分解能が得られることを確認した。また、単一の Au ナノ構造の発光特性評価を行い、 フォトンマップ分析とスペクトル分析を同時に実行できることを確認し、本システムがナ ノスケール構造の発光特性を評価する手法として十分な性能を有していることを確認した。

次に、CNT からの STM 発光分析では、個別の1本の CNT からのフォトンマップ、発光 スペクトルの取得に成功し、発光スペクトル分析によって個々のナノチューブの電子状態 解析を行い、金属、半導体ナノチューブを区別することに成功した。この成果は個別のナ ノチューブについて、発光特性と電子状態評価を行った初めての研究例である。

次に、フタロシアニン薄膜からの STM 発光分析では、プラズモン増強効果を利用した STM 発光分光法の高感度化に成功した。これにより、これまで量子効率が低いために観測 されたことのない、CuPc からの蛍光発光検出に初めて成功した。また、注入するトンネル 電子のエネルギーよりも大きなエネルギーの光が放出されるという特異な現象を観測した。 本研究ではこの発光のメカニズムを解明し、プラズモン増強効果によって観測可能となる CuPc 薄膜中の分子間相互作用によるアップコンバージョン発光であると結論した。この結 果、燐光発光が観測されないためにこれまで不明とされてきた H2Pc の三重項状態のエネル ギーを約 0.9 eV であると決定した。また、アップコンバージョン発光を利用することによ り、TIP 発光を完全に排除した条件で純粋な分子発光を検出できることを示した。これを利 用することによって、STM 発光分光法としては初めてとなる蛍光発光イメージングに成功 し、STM 発光分光法の新たな可能性を開拓した。

本研究の成果により、STM 発光分光法を高感度化する方法を明確に示した。このプラズ モン増強効果を利用した量子効率の改善方法は有機、無機材料を問わず幅広い試料に適応 可能であり、今後ナノスケールの光機能測定法として更なる成果が期待できる。この手法 により、STM 発光分光法がナノエレクトロニクスの発展を支える基盤計測技術として発展 することを期待する。

謝辞

本研究を遂行するにあたり、その機会を与えていただき、懇切なる御指導、ご鞭撻を賜 りました大阪大学大学院工学研究科 精密科学・応用物理学専攻 桑原裕司教授に深甚なる 謝意を表します。また、本論文をまとめるにあたり、有益な御指導を賜りました大阪大学 大学院工学研究科 精密科学・応用物理学専攻 安武潔教授、森田瑞穂教授、片岡俊彦教授、 山内和人教授、広瀬喜久治特任教授、大阪大学大学院工学研究科 生命先端工学専攻 渡部 平司教授、大阪大学大学院工学研究科附属 超精密科学研究センター 遠藤勝義教授に心よ り謝意を表します。

本研究の日々の遂行ならびに本論文をまとめるにあたり、研究会などにおいて有益な御 助言、ご討論を頂きました大阪大学大学院工学研究科 精密科学・応用物理学専攻 齋藤彰助 教、赤井恵助教に心より感謝します。また、貴重な御時間の中、御指導、御鞭撻を賜りま した独立行政法人 物質・材料研究機構 青野正和フェロー、櫻井亮主幹研究員には深く感謝 いたします。本研究期間中、独立行政法人 物質・材料研究機構 NIMS ジュニア研究員と して経済的な援助を受けました。ここに感謝いたします。

大阪大学大学院工学研究科 精密科学・応用物理学専攻 桑原研究室(旧青野研究室)の諸 先輩方、特に、STM 発光分光システムの初期設計に携わった山口晋一氏には深く感謝しま す。そして、日頃研究に御協力下さいました高見和宏博士、古本雅子氏、中野剛志氏、藤 喜彩氏をはじめ、研究室の皆様に感謝します。

最後に、本研究を行うにあたって、日常生活における経済的、精神的支援を頂いた家族、 友人に対して心より感謝いたします。

以上

平成 20 年 3 月 大阪大学大学院工学研究科

精密科学·応用物理学専攻

植村 隆文

研究業績

(1) 査読付き原著論文

- T. Uemura, S. Yamaguchi, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara, "Tunneling-Current-Induced Light Emission from Individual Carbon Nanotubes", Surface Science, 600, pp. L15-L19 (2006).
- T. Uemura, M. Furumoto, T. Nakano, M. Akai-Kasaya, M. Aono, A. Saito and Y. Kuwahara,
 "Tunneling-Current-Induced Light Emission from Copper Phthalocyanine Thin Films", e-Journal of Surface Science and Nanotechnology, 4, pp. 559-562 (2006).
- [3] T. Uemura, M. Furumoto, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "Local-Plasmon-Enhanced Up-Conversion Fluorescence from Copper Phthalocyanine", Chemical Physics Letters, 448, pp. 232-236 (2007).
- [4] T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "Spatially Resolved Detection of Plasmon-Enhanced Fluorescence using Scanning Tunneling Microscopy",

Surface and Interface Analysis, accepted.

(2) 国際会議における発表

◆ 口頭発表・査読あり ◆

- T. Uemura, M. Aono and Y. Kuwahara,
 "Tunneling-Current-Induced Light Emission from Individual Carbon Nanotubes", 8th International Conference on Nanometer-Scale Science and Technology (NANO8), vol. 1, pp. 723-724, Cinema Festival Palace, Venice, Italy, 28 June - 2 July, 2004.
- [2] T. Uemura, M. Furumoto, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,

"Tunneling-Current-Induced Light Emission from Copper Phthalocyanine Thin Films", International Symposium on Surface Science and Nanotechnology (ISSS-4), p. 13, Omiya Sonic City, Saitama, Japan, 14-17 November, 2005.

[3] T. Uemura, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,"Plasmon-Enhanced Forbidden Fluorescence from Copper Phthalocyanine Thin Films

Induced by a Scanning Tunneling Microscope",

4th International Workshop on Nanoscale Spectroscopy and Nanotechnology, (NSS4), p. 14, Rathen, Germany, 17-21 September, 2006.

[4] T. Uemura, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
"Plasmon-Enhanced Forbidden Fluorescence from Phthalocyanine Molecules Induced by a Scanning Tunneling Microscope",
14th International Colloquium on Scanning Probe Microscopy (ICSPM14), p. 29,

Atagawa Heights, Shizuoka, Japan, 7-9 December, 2006.

◆ ポスター発表・査読あり ◆

 T. Uemura, M. Furumoto, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,

"Tunneling-Current-Induced Light Emission from Copper Phthalocyanine Thin Films", Handai Nanoscience and Nanotechnology International Symposium, p.108, Osaka University, Osaka, Japan, 30 January-1 February, 2006.

 T. Uemura, M. Akai-kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "Tunneling-Current-Induced and Plasmon-Enhanced Fluorescence from Copper Phthalocyanine Thin Films",

International Conference on Nanoscience and Technology NANO9 meets STM'06 (ICN&T2006), p.181, Basel, Switzerland, 30 July - 4 August, 2006.

 [3] T. Uemura, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "Tunneling-Current-Induced and Plasmon-Enhanced Fluorescence from Copper Phthalocyanine Thin Films",

International 21st Century COE Symposium on Atomistic Fabrication Technology, pp. 131-132, Osaka University, Osaka, Japan, 19-20 October, 2006.

- [4] T. Uemura, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "A Study of Upconversion Fluorescence in Phthalocyanine Molecules Using a Scanning Tunneling Microscopy",
 Handai Nanoscience and Nanotechnology International Symposium, p. 87, Nakanoshima Center, Osaka, Japan, 20-22 November, 2006.
- T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono and Y. Kuwahara,
 "Spatially-Resolved Detection of Plasmon-Enhanced Fluorescence using Scanning Tunneling Microscopy",
 International 21st Century COE Symposium on Atomistic Fabrication Technology 2007,
 pp. 205-206, Osaka University, Osaka, Japan, 15-17 October, 2007.

(3) 国内学会・シンポジウム等における発表

◆ 口頭発表・査読あり ◆

- [1] 植村隆文,高見和宏,赤井恵,齋藤彰,桑原裕司,青野正和, "カーボンナノチューブからのトンネル電流誘起発光", 2003 年度 精密工学会関西地方定期学術講演会,講演論文集 pp. 105-106, 摂南大学, 2003.8.4~5.
- [2] 植村隆文,高見和宏,赤井恵,齋藤彰,桑原裕司,青野正和,
 "個々の多層カーボンナノチューブからの発光特性解析",
 第23回表面科学講演大会,講演要旨集 p. 79, 2B25(S),早稲田大学, 2003.11.26~28.
- [3] 植村隆文,古本雅子,中野剛志,赤井恵,齋藤彰,桑原裕司,青野正和,
 "トンネル電流誘起発光解析による個々の多層カーボンナノチューブからの発光特性解析",
 2005 年春季 第 52 回応用物理学関係連合講演会,講演予稿集 No. 3, p. 1713, 1a-YF-3, 埼 玉大学, 2005.3.29~4.1.
- [4] 植村隆文,赤井恵,齋藤彰,桑原裕司,青野正和,
 "局所プラズモン増強効果を用いたフタロシアニン薄膜からの STM 誘起発光特性評価",
 2007 年秋季 第 68 回応用物理学関係連合講演会 講演予稿集 No. 3, p. 1241, 7p-B-5, 北海 道工業大学, 2007.9.4~8.

◆ 口頭発表・査読なし ◆

- [1] 植村隆文,古本雅子,中野剛志,赤井恵,齋藤彰,桑原裕司,青野正和,
 "トンネル電流誘起発光分析を用いたフタロシアニン薄膜の発光特性評価",
 2005 年度 関西薄膜・表面物理セミナー,兵庫県立西はりま天文台公園,2005.11.25~26.
- [2] 植村隆文,中野剛志,赤井恵,齋藤彰,桑原裕司,青野正和,
 "トンネル電流誘起発光分析を用いたフタロシアニン薄膜の発光特性評価",
 平成19年度 日本真空協会 関西支部 第2回講演会,大阪大学,2007.5.10.
- [3] 植村隆文,赤井恵,齋藤彰,桑原裕司,青野正和,
 "STM 発光分光法を用いた CNT およびフタロシアニン薄膜の発光特性に関する研究",
 2007 年度 関西薄膜・表面物理セミナー,グリーンビレッジ交野,2007.11.30~12.1.

◆ ポスター発表・査読あり ◆

[1] 植村隆文,高見和宏,赤井恵,齋藤彰,桑原裕司,青野正和,
 "個々の多層カーボンナノチューブからの発光特性解析",
 分子スケールエレクトロニクス研究会,要旨集 P-20,岡崎コンファレンスセンター,
 2004.4.8~9.

[2] 植村隆文,古本雅子,中野剛志,齋藤彰,赤井恵,桑原裕司,
 "トンネル電流誘起発光分析を用いたフタロシアニン薄膜の発光特性評価",
 日本表面科学会関西支部講演大会,予稿集 P49,大阪大学,2005.10.28.

◆ その他 口頭発表 ◆

- T. Uemura, M. Akai-kasaya, A. Saito, M. Sakurai, Y. Kuwahara, M. Aono,
 "Tunneling-Current-Induced Light Emission from Individual Carbon Nanotubes",
 2nd IRC/NIMS Nanotechnology Summer School, IRC in Nanotechnology, Cambridge,
 United Kingdom, 11-15 July, 2005.
- [2] T. Uemura, M. Akai-kasaya, A. Saito, M. Sakurai, Y. Kuwahara, M. Aono,
 "Plasmon-Enhanced Forbidden Fluorescence from Copper Phthalocyanine Thin Films Induced by a Scanning Tunneling Microscope",

3rd NIMS/IRC Nanotechnology Summer School, NIMS, Tukuba, Japan, 10-14 July, 2006.

参考文献

- [1] http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
- [2] http://www.nec.co.jp/press/ja/0312/2604.html
- [3] H. Kawaura, T. Baba, Jpn. J. Appl. Phys., 42, 351 (2003)., H. Kawaura, T. Sakamoto and T. Baba, Appl. Phys. Lett., 76, 3810 (2000).
- [4] J. K. Gimzewski, B. Reihl, J. H. Coombs, R. R. Schlittler, Z. Phys. B: Condens. Matter, 72, 497 (1988).
- R. Berndt, *in Scanning Probe Microscopy*, edited by R. Wiesendanger, Springer, Berlin, Heidelberg, New York, 1998.
- [6] S. Iijima, Nature, **354**, 56 (1991).
- M. J. O'Connell *et al.* Science, **297**, 593 (2002)., J. A. Misewich, R. Martel, Ph. Avouris,
 J. C. Tsang, S. Heinze, and J. Tersoff, Science, **300**, 783 (2003).
- [8] JIS 規格, JIS Z 8120:2001.
- [9] E. Abbe, Arch. Mikrosk. Anat., **9**, 413 (1873).
- [10] J. W. Goodman, Introduction to Fourier Optics, Chap. 2, McGraw-Hill, San Francisco, 1968.
- [11] 曽我部正博・臼倉治郎, バイオイメージング, 共立出版, 1998.
- [12] E. H. Synge, Philos. Mag., 6, 356 (1928).
- [13] 斎木敏治・戸田泰則, ナノスケールの光物性, オーム社, 2004.
- [14] 日本表面科学会 編, ナノテクノロジーのための走査電子顕微鏡, 丸善, 2004.
- [15] G. Binnig and H. Rohrer, Helvetica Phys. Acta., 55, 762 (1982)., G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).
- [16] J. Tersoff and D. R. Hanmann, Phys. Rev. Lett., 50, 1998 (1983)., J. Tersoff and D. R. Hanmann, Phys. Rev. Lett., 31, 805 (1985).
- [17] M. Sakurai, C. Thirstrup, M. Aono, Appl. Phys. A, 80, 1153 (2005).
- [18] R. W. Rendell and D. J. Scalapino, Phys. Rev. B, 24, 3276 (1981).
- [19] B. N. J. Persson and A. Baratoff, Phys. Rev. Lett., 68, 3224 (1992).
- [20] R. Berndt, J. K. Gimzewski and P. Johansson, Phys. Rev. Lett., 67, 3796 (1991).
- R. Berndt, J. K. Gimzewski and P. Johansson, Phys. Rev. Lett., 71, 3493 (1993)., R.
 Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlitter and M.
 Tschudy, Phys. Rev. Lett., 74, 102 (1995).
- [22] P. Johansson, R. Monreal and P. Apell, Phys. Rev. B, 42, 9210 (1990).
- [23] P. Johansson, Phys. Rev. B, 58, 10823 (1998).

- [24] J. Aizpurua, S. P. Apell and R. Berndt, Phys. Rev. B, 62, 2065 (2002)., G. Hoffmann, J. Aizpurua, S. P. Apell and R. Berndt, Surf. Sci. 482-485, 1159 (2001)., Y. Uehara, Y. Suda, S. Ushioda and K. Takeuchi, Appl. Phys. Lett., 79, 1718 (2001)., K. Meguro, K. Sakamoto, R. Arafune, M. Satoh and S. Ushioda, Phys. Rev. B, 65, 165405 (2002).
- [25] J. Aizpurua, G. Hoffmann, S. P. Apell and R. Berndt, Phys. Rev. Lett., 89, 156803 (2002).
- [26] G. V. Nazin, X. H. Qiu and W. Ho, Phys. Rev. Lett., 90, 216110 (2003).
- [27] R. Berndt and J. K. Gimzewski, Phys. Rev. B, 48, 4746 (1993)., A. Downes and M. E. Welland, Appl. Phys. Lett., 72, 2671 (1998)., Y. Uehara, T. Fujita and S. Ushioda, Phys. Rev. Lett., 93, 2445 (1999)., G. Hoffmann, J. Kröger and R. Berndt, Rev. Sci. Instrum., 73, 305 (2002)., G. Hoffmann, T. Maroutian and R. Berndt, Phys. Rev. Lett., 93, 076102 (2004).
- [28] D. L. Abraham, A. Veider, C. Schönenberger, H. P. Meier, D. J. Arent and S. F. Alvarado, Appl. Phys. Lett., 56, 1564 (1990).
- [29] T. Tsuruoka, Y. Ohizumi, S. Ushioda, Y. Ohno and H. Ohno, Appl. Phys. Lett., 73, 1544 (1998).
- [30] T. Tsuruoka, Y. Ohizumi, R. Tanimoto and S. Ushioda, Appl. Phys. Lett., 75, 2289 (1998).
- [31] D. Fujita, K. Onishi and N. Niori, Nanotechnology, 15, S255 (2004).
- [32] A. Downes and M. E. Welland, Phys. Rev. Lett., 81, 1857 (1998)., C. Thirstrup, M. Sakurai, K. Stokbro and M. Aono, Phys. Rev. Lett., 82, 1241 (1999)., M. Sakurai, C. Thirstrup, and M. Aono, Phys. Rev. Lett., 93, 046102 (2004).
- [33] R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider and M. Tschudy, Science, 262, 1425 (1993)., R. Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlittler and M. Tschudy, Appl. Phys. A, 57, 513 (1993)., R. Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlittler and M. Tschudy, Surf. Sci., 307-309, 1033 (1994).
- [34] G. Hoffmann, L. Libioulle and R. Berndt, Phys. Rev. B, 65, 212107 (2002)., I. I.
 Smolyaninov, Surf. Sci., 79, 364 (1996)., S. Evoy, F. D. Pardo, P. M. S. John and H. G.
 Craighead, J. Vac. Sci. Technol. A, 15, 1438 (1997)., G. E. Poirier, Phys. Rev. Lett., 86, 83 (2001).
- [35] A. Campion, A. R. Gallo, C. B. Harris, H. J. Robota and P. M. Whitmore, Chem. Phys. Lett., 73, 447 (1980)., P. Avouris and B. N. J. Persson, J. Phys. Chem., 88, 837 (1984).
- [36] X. H. Qiu, G. V. Nazin, W. Ho, Science, 299, 542 (2003).
- [37] Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S.

Yokoyama and S. Mashiko, Phys. Rev. Lett., 92, 086801 (2004)., X.-L. Guo, Z.-C. Dong,
A. S. Trifonov, K. Miki, S. Mashiko, T. Okamoto, Nanotechnology, 15, S402 (2004).,
X.-L. Guo, Z.-C. Dong, A. S. Trifonov, S. Mashiko, T. Okamoto, Appl. Phys. Lett., 84,
969 (2004)., E. Ćavar, M.-C. Blüm, M. Pivetta, F. Patthey, M. Chergui, W.-D. Schneider,
Phys. Rev. Lett., 95, 196102 (2005)., H. W. Liu, Y. Ie, T. Yoshinobu, Y. Aso, H. Iwasaki
and R. Nishitani, Appl. Phys. Lett., 88, 061901 (2006)., H. W. Liu, R. Nishitani, Y. Ie, T.
Yoshinobu, Y. Aso and H. Iwasaki, Jpn. J. Appl. Phys., 44, L566 (2005)., H. W. Liu, R.
Nishitani, Y. Ie, K. Sudoh, M. Nowicki, T. Yoshinobu, Y. Aso and H. Iwasaki,
Ultramicroscopy, 106, 785 (2006).

- [38] B. N. J. Persson, Solid State Commun., 57, 769 (1986)., A. Downes, M. E. Taylor and M. E. Welland, Phys. Rev. B, 57, 6706 (1998).
- [39] D. Tománek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz, and J. Clarke, Phys. Rev. B, 35, 7790 (1987).
- [40] G. Hoffmann, J. Kröger and R. Berndt, Rev. Sci. Instrum., 73, 305 (2002).
- [41] D. Fujita, T. Ohgi, W.-L. Deng, H. Nejo, T. Okamoto, S. Yokoyama, K. Kamikado and S. Mashiko, Surf. Sci., 454-456, 1021 (2000)., S. Sasaki and T. Murashita, Jpn. J. Appl. Phys., 38, L4 (1999).
- [42] R. Arafune, K. Sakamoto, K. Meguro, M. Satoh, A. Arai and S. Ushioda, Jpn. J. Appl. Phys., 40, 5450 (2001).
- [43] 野島 博 編, 顕微鏡の使い方ノート~光学顕微鏡から CCD カメラまで~, 羊土社, 1997.
- [44] J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A, 13, 1553 (1995)., C. L.
 Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001).
- [45] M. M. J. Bischoff, M.C.M.M. van der Wielen, H. van Kempen, Surf. Sci., 400, 127 (1998).
- [46] M. E. Brennan, J. N. Coleman, A. Drury, B. Lahr, T. Kobayashi and W. J. Blau, Optics Letters, 28, 266 (2003).
- [47] Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C.
 Wang, and X.-C. Zhang, Appl. Phys. Lett., 81, 975 (2002).
- [48] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris, Nano Lett., 3, 1067 (2003).
- [49] M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and Ph. Avouris, Nano Lett., 4, 1063 (2004).
- [50] X. Cai, S. Akita and Y. Nakayama, Thin Solid Films, 464-465, 364 (2004).
- [51] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, Science 298, 2361 (2002)., S. Suzuki, Y. Watanabe, T. Ogino, Y. Homma, D. Takagi, S.

Heun, L. Gregoratti, A. Barinov and M. Kiskinova, Carbon, 42, 559 (2004).

- [52] J. M. Bonard, T. Stockli, F. Maier, W. A. de Heer, A. Chatelain, J. P. Salvetat and L. Forró, Phys. Rev. Lett., 81, 1441 (1998).
- [53] R. Coratger, J.-P. Salvetat, A. Carladous, F. Ajustron, J. Beauvillain, J.-M. Bonard and L. Forró, Eur. Phys. J., Appl. Phys., 15, 177 (2001).
- [54] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamyde la Chapelle, S. Lefrant, P. Deniard, R. Leek and J. E. Fischerk, Nature, 388, 756 (1997).
- [55] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y.H. Lee, S. G. Kim A.G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E. Smalley, Science, 273, 483 (1996).
- [56] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K.A. Smith, and R. E. Smalley, Chem. Phys. Lett., 313, 91 (1999).
- [57] R. Saito, G. Dresselhaus and M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes*, Imperial College Press (1998).
- [58] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 60, 2204 (1992).
- [59] A. Oberlin, M. Endo, and T. Koyama, Carbon, 14, 133 (1976).
- [60] S. Bandow, S. Asaka, X. Zhao and Y. Ando, Appl. Phys. A, 67, 23 (1998).
- [61] J. Sun, X. Xiao, C. Chen, J. Hu, M. Li, Z. Wang and F. Gan, Materials Characterization, 48, 237 (2002).
- [62] A. Hassanien, A. Mrzel, M. Tokumoto and D. Tomanek, Appl. Phys. Lett., 79, 4210 (2001).
- [63] L. P. Biro, S. Lazarescu, Ph. Lambin, P. A. Thiry, A. Fonseca, J. B. Nagy and A. A. Lucas, Phys. Rev. B, 56, 12490 (1997).
- [64] E. T. Jensen, R. E. Palmer, W. Allison and J. F. Annett, Phys. Rev. Lett., 66, 492 (1991).
- [65] R. Kuzuo, M. Terauchi, M. Tanaka and Y. Saito, Jpn. J. Appl. Phys., 33, L1316 (1994).
- [66] V. Derycke, R. Martel, J. Appenzeller and Ph. Avouris, Nano. Lett., 1, 453 (2001).
- [67] C. H. Olk and J. P. Heremans, J. Mater. Res., 9, 259 (1994).
- [68] T. Ando and H. Ajiki, High Magnetic Fields in Semiconductor Physics II, (World Scientific, Singapore 1997) pp. 915-926., Hiroshi Ajiki and Tuneya Ando, Physica B, 201, 394 (1994).
- [69] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett., 60, 2204 (1992)., J. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Nature, 391, 59 (1998).
- [70] J.-C. Charlier and Ph. Lambin, Phys. Rev. B, 57, R15037 (1998).
- [71] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. B, 61, 2981 (2000).

- [72] T. Hertel, R. Fasel, and G. Moos, Appl. Phys. A: Mater. Sci. Process., 75, 449 (2002).
- [73] P. Kim, T. W. Odom, J.-L. Huang, and C. M. Lieber, Phys. Rev. Lett., 82, 1225 (1999).
 L. C. Venema, J. W. Janssen, M. R. Buitelaar, J. W. Wildöer, S. G. Lemay, L. P. Kouwenhoven, and C. Dekker, Phys. Rev. B, 62, 5238 (2000).
- [74] A. Aviram and M. A. Ratner, Chem. Phys. Lett., 29, 277 (1974).
- S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 15 (1996)., S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
- [76] G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao and C. R. Fincher, Appl. Phys. Lett. 82, 463 (2003).
- [77] M. Moskovits, Rev. Mod. Phys., 57, 783 (1985).
- [78] J.R. Lakowicz, Anal. Biochem., 298, 1 (2001).
- [79] D.Wohrle, 金子正夫, 有機合成化学, 45, 837 (1987).
- [80] B. Schumann, D.Wohrle and N. I. Jaeger, J. Electrochem. Soc., 132, 2144 (1985).
- [81] 小林長夫, 化学と工業, **52**, 968 (1999).
- [82] W. R. Barger, A. W. Snow, H. Wohltjen and L. Jarvis, Thin Solid Films, 133, 382 (1985).,
 A. W. Snow, W. R. Barger and M. Klusty, Langmuir, 2, 513 (1986).
- [83] 坂本恵一, 色材, 75, 286 (2002).
- [84] P. S. Vincett, E. M. Voigt, and K. E. Rieckhoff, J. Chem. Phys., 55, 4131 (1971).
- [85] K. Yoshino, M. Hikida, K. Tatsuno, K. Kaneto and Y. Inuishi, J. Phys. Soc. Jpn., 34, 441 (1973).
- [86] M. Gouterman, *The Porphyrins*, edited by D. Dolphin., Academic Press, New York, 1978.
- [87] A. S. Davydov, *Theory of molecular excitons*, Plenum Press, New York, 1971.
- [88] E. Jungyoon, S. Kim, E. Lim, K. Lee, D. Cha and B. Friedman, Appl. Surf. Sci., 205, 274 (2003).
- [89] H. Peisert, T. Schwieger, J. M. Auerhammer, M. Knupfer, M. S. Golden, J. Fink, P. R. Bressler, and M. Mast, J. Appl. Phys., 90, 466 (2001).
- [90] Y. Sakakibara, R. N. Bera, T. Mizutani, K. Ishida, M. Tokumoto and T. Tani, J. Phys. Chem. B, 105, 1547 (2001).
- [91] W. L. Barnes, J. Mod. Opt., 45, 661 (1998).
- [92] C. D. Geddes and J. R. Lakowicz, J. Fluoresc., 12, 121 (2002)., J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A.Wokaun. Mol. Phys., 80, 1031 (1993)., K. Sokolov, G. Chumanov and T. M. Cotton. Anal. Chem., 70, 3898 (1998)., J. R. Lakowicz, Anal. Biochem., 298, 1 (2001)., J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski. Anal. Biochem., 301, 261 (2001)., T. Neumann, M. L.

Johansson, D. Kambhampati, and W. Knoll, Adv. Funct. Mater., **12**, 575 (2002)., R. W. Gruhlke, W. R. Holland, and D. G. Hall, Phys. Rev. Lett., **56**, 2838 (1986)., T. Neal, K. Okamoto and A. Scherer, Opt. Express, **13**, 5522 (2005).

- [93] S. Tokito, J. Sakata and Y. Taga, Thin Solid Films, 256, 182 (1995).
- [94] Herbert B. Michaelson, J. Appl. Phys., 48, 4729 (1977)., M. Shirasaki and M. Ata, Carbon., 39, 1913 (2001)., J. C. McMenamin and W. E. Spicer, Phys. Rev. B, 16, 5474(1977).
- [95] A. Ishida and T. Majima, Nanotechnology, 10, 308 (1999).
- [96] M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg and A. Liebsch, Appl. Phys. B, 73, 305 (2001).
- [97] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, Curr. Opin. Biotechnol., 16, 55 (2005).
- [98] S. de Cheveigné, J. Klein, A. Léger, M. Belin and D. Défourneau, Phys. Rev. B, 15, 750 (1977).
- C. A. Parker, *Photoluminescence of Solutions*, Elsevier, Amsterdam, 1968., R. S.
 Becker, *Theory and Interpretation of Fluorescence and Phosphorescence*,
 Wiley(Interscience), New York, 1969., J. B. Birks, *Photophysics of Aromatic Molecules*,
 Wiley(Interscience), New York, 1970.
- [100] S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda and G. Wegner, Phys. Rev. Lett., 97, 143903 (2006)., S. Baluschev, F. Yu, T. Miteva, S. Ahl, A. Yasuda, G. Nelles, W. Knoll and G. Wegner, Nano Lett., 12, 2482 (2005).