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     oRrENTED BoRDzsM MoDuLEs oE sl- AND (z2)k-AcTxoNs

                    Katsuhiro KOMZYA

    Zntroduction

    In [2] P.E.Conner and E.E.FZoyd demonstrated ehe effective-

ness of bordisrn rnethods in the studies of group actions. After-

wards, using the bordisrn methods, raany topologists obtained

various resuZts in the area. The central' tools in these studies

are the bordisrn rnodules of group actions.

    Let G be a cornpact Lie groupt and F, F' be farnilies of

subgroups of G such that F )F'. We may define the oriented
bordisrn module R*(G ;F,F'), over the oriented cobordism ring

S'2)*, which consists oÅí bordisrn classes of (F, F'>-free oriented

G-manifoids. rn this paper we are concerned with the module •'
structure of Sl?*(G ;F, F'). rf F' is ernpty, then we denote

this module by S?*(G ;F). Let FA be the famiZy of ali

subgroups of G. Then 9*(G ; FA) is the bordisrn module of

all closed oriented G--rnanifolds. Especialiy we are interested
in the rnodule structure of !gl>*<G ; FA).

    R.E.Stong [7] has shown that S;?*(G;FA) isafree !2.-

                                                          'module on even dimensional generators when G is a finite
                                                           '
p-primary abelian group for odd prirne p. Recently E.R.Wheeler
[s] has shown that 9.(G;FA) cg> R2 isafree 9. bo R2-moduie

on even diraensional generators when G is a certain finite cyclic
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g'roupt where R2 = Z[21].

    we study the cases in which G is the circze group sl or

    k(Z2) = Z2 e ''' e Z2 (k times). We obtain that both
S;?.(sl ; FA) (8) R2 and S?.((z2)k;FA) (8) R2 are free .

S?* Cl> R2-'modules on even dimensional generators. Zn fact we

prove such "freeness" theorerns for rnore generai farniliest as

stated in Theorern 2-1-•1 and Theorem 3-1-1.

    Our main tools are the Conner-Fioyd exact sequences and the
fact that S:?.(G ; F, F') can be interpreted as <direct sum of)

singuZar bordism modules of adequate spaces when F -'F' consists
ofasingle elernent H. when G is sl or (z2)k, this

interpretation involves a difficulty for the sake of non-

orientability of norrnal bundies of H-stationary point sets. Wg

overcome this difficulty by a modification of the rnethods due

to E.Ossa [5; Lemrna 1-2-5][6; Lernrna 4], (see Lernmas 2-•2-3,3-2-4).
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    Chapter l. Prelindnaiies
                                                  '
    rn this chapter we give commen preiindnaries for si- and

(z2)k-actions. Throughout this chapter, G denotes a compact

abelian Lie group.

    I-l. Bordisrn of G-manifolds

    A,family F in G is a coilection of closed subgroups of

G such that if HeF and if K isaciosed subgroup of H

then Ke F.
    Being given farnilies F, E' in G with F )F', an (F, F')-

free G•-manifoid M is a compact differentiable rnanifold M with

differentiabie G-action such that for all x e M the isotropy

groups r(x) beiong to F and for ali xE)M r<x) belong
to F'. An (F, F')-free oriented G-rnanifold M is an (F, F')-

free G-manifoid M such that M is an oriented rnanifold and

the G-action preserves the orientation ef M. :f F' is empty,
then necessarily OM=b.

    Being given an (F, F')-free eriented G-manifoid Mt we define

-M to be the (Ft F'>-free oriented G-manifoXd WhOStcendle:"eXvunsManifOld

and G-action are same as M but orientation is reversed. We
als6 define )M to be the (F't(i))-•free oriented G-manifoid

whose G-action is the restriction of the G-action on M and

orientation is given by inward nermal vectors.

    TWo (Ft F')-free oriented G--manifolds M, M' are bordant,

if there are an (F', F')-free oriented G-manifold V and a;i

<F, F)-free oriented G-manifold W such that

    (i-1-1) bV is diffeomorphic, as oriented G-rnanifoZds,
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to the disjoint union of bM and -eM', and

    <1-1-2) bW is diEfeomorphic, as oriented G-rnanifolds, to

the rnanifold MVVV-M' obtained by glueing the boundaries.

    This relation "bordant" is an eguivalence relation on the

set of all (F, F')-•free oriented G-•rnanifolds. An equivalence

class by this relation is called an (Fr Ei)-free bordism class.

    The set of all (F, F'>-free bordism classes of (F, F')-free

oriented G-manifolds forms an abelian group with the operation

induced by disjoint uniont and this group will be denoted by

Sll.*(G ; Ft F'). S')n<G ; F, F') denotes the summand consisting

of (F, F')-free berdism classes oE (F, F'>-free oriented G-

rnanifolds of dimension ri.

    when F' is emptyt S?*(G ; Ft F'),(SZh(G i F, F') are

denoted by S2.(G ; F),S?n (G ; F> in brief.

    For a representative N of any element in che oriented
cobordisrn ring S2* we can see N to be an oriented G-manifoid

by giving the trivial G-action. Therefore S2.,(G ; F, F') is

a module over S2-* by the cartesian product.

    Being given famiiies Ft F't F" in G with F>F' )F",
we have ,.S2L*-rnodule hemornorphisms

           i. : SZ,.(G ; F,, F") - S2..(G ; F, F")

           j. : SZ.(G ; F, F")- .S2..(G ; F, Ft)

obtained by considering (Y', F")-•Eree (or (F, F")-free) bordism

cZasses as (F, F")--free (or (F, F')-free) bordism classes. We
also have an st*-rnodule homomorphisrn



                                                               5

             D. : S'Z.(G ; F, F') -i)•S}i.(G 1 F,, F")

of degree -1 obtained by sending the class oE M to the class

of DM.
    Then

    Theorem 1-1-3. The sequence

                           i.Q i
''' D!{Z,n(G ; E't Fb')XR2 -SZ.n(G ; F' F")oo R2

                                                            '2-l'!82-L>Q 1 Si?.(G ; Ft F')oo R2 2Z'E'Siil-iL)Q1 <Siln.1(G ; F'' F")(5b R2 -)''''

 '

is exact, where R2 is the subring of the rationals given by
R2 = z[l].'

    Proof. The sequ'ence obtained from the above sequence by

taking away (g>R2 is a Conner-Floyd's exaet sequence [3 ; (5.3)1.

Since R2 is torsion freet the above sequence is alse exact. q.e.d.

    1-2. Berdism of G-vector bundles

    A differentiable vector bundZe E -"X is called a G--vector

bundle, when the total space E is an oriented rnanifold on which

G acts as a group of bund:e maps preserving the oxientation of

the manifoid E.

    Let H be aclosed subgroup of G. AG-vector bundle EO
X is called to be of type (r, s, H), if E-7X is an r-

dirnensional G-vector bundle over an s.dimensional cQmpact mamiÅíoZd

X such that for any vector eeE the isotropy group r<e) is
asubgxoup of H and T(e) is egual to H if and oniy if' e

.zs a zero vector.
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    Being given a G-vector bundle E sS Xi we define -(E -- x>

to be the G-•vector bundXe obtained from E-X by reversing

the orientation of the total space E.

    Two Gevector bundies E --) X, E'-) X' over ciosed rnanifolds

of type (rt st H) are bordant, if there is a G-•vector bundle

F-)Y of type (ri s+1, H> such that the restriction F'lbY
                                                 '
-- ) DY is isomorphic, as G-vector bvindles, to the disjoint

union of E-X and -(E'-X').
    This relation "bordant" is an equivalence reiation on the

set of G-vector bundies over closed rnanifoids of type <rr sr H).

The set of equivalence classes of G-vector bundles over closed

manifolds of type (rt st H) forms an abeiian group with the

operation induced by disjoint union, and this group is denoted

    we note that for G = sl'B2r+z,s(G ; H) = O by orientation

                                                               'reason.

    For a closed oriented mani'fold N of dimension n and a

G-vector bundle EDX oE type (r, sr H) we obtainaG-hvector

bundle NxE---)NXX of type (rt s+n, H) byanatural way.
This makes the direct sum eskoBr,s(G;H) amodule over

    Let F be afaniiy in G and H be amaximai element in
F. Let M be an (F, F-ÅíH})-free oriented G-manifold and IYiH

be the set of ail points x<i M whose isotropy groups are equal

to H. Then the normal bundle ,eL2H(M>--ÅÄ> MH oE MH in M 'iS

a G-vector bundie over, a closed manifold MH.
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    Lemma i-2-X. The correspondence MP UH(M) --> MH induces
an Sil,k'module isomorphism

           S'iiln(G ; F' F- {H}) or' (EE)n=r+sBx,s(G ; H)' ,

The inverse isornorphism may be obtained by corresponding a

G-vector bundle EDX 'te the associated dise bundle D(E).

 '    The proof is easy.

                     '
    l-3. Hornology interpretation oÅí che singular berdisrn groups

    For later uses we present this interpretation in the follow-

ing fashion.

    Theerern 1-3-i. Xf X is a CW-complex such that for each

n Hn(X ; Z) is finitely generated and has no odd toxsion,
then there is an Sil-* 61) R2•-module isomorphism

                                      '           Sli.(x) & R2 Y- H.(x ; R2) Cg> R2 (<Sil-. (g) R2)

of degree O.

    Proof. Since H*(X ; Z) has no odd'torsiont the Thorn

                                          ' '                  /l,C : Sll,.(x) ---)) H.(x ; z) '

is epic by Conner-Floyd [2 ; Theorem Z5. 2]. Hence

             /UQ1 : SZ,,(x) (ii) R2 --> H.(x ; z> <2il> R2

is epic. As in [2 ; .Theorern 17. 1] we obtain the desired
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                           1.    Chapter 2. Bordisrn of S                            -actzons

    Zn this chapter we consider the case in which G is the
circie group si. For any positive integex i we define a

            'ifamily Fi xn S to be the famiZy of aii elosed subgroups

whose orders are at most i. We also define a farnily F.e to
be the famUy of ali proper closed subgroups of sl, i.e.,

Foe" Vi>-1 Fit and a family FA to be the farn"y of aU cZosed
subgroups of si, i' .e., FA = Fo.V{sl}.•

    2-1. The main theorem and the key lemma

    Main Theorem 2-1-1. (1) Both 9.(Sl ; Fi)O R2 <Eer any

i) i) and gi?l.(Si ; F..>Q R2 are free S).(29 R2-rnodules on

odd. diraensional generators.
    <2) SEL.<sl ; FA) Qi) R2 is a free S;Z.QR2--module on even

dimensional generators.
                                               tt
    Key Lemma 2-i-2. (z) S2.(si ; Fi,Fi..i) <g> R2 z>FsSd?Kafree R. (g) R2-

module on odd dimensional generators.
    <2) Si?*(Sl ; FA, Fao) (D R2 is a free st. ($) R2-module on even

dimensional generators. '
                                                           '
    The key lemma wiZl be proved in the foilowing sections. We

may prove the main theorem by using the key lemma as Eoilows.

    First we obtain

    proposition 2-i-3. st.(si ; Fi) (5b R2 is a free {iZ* (g>R2-

rnodule on odd dimensionai generators.

    preof. S;2.(sl;Fz> is the bordism group oE au fixed
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point free closed oriented sl-manifolds. By corresponding a

fixed point free closed oriented sl-manifold M to a classifying

map of the principai sl-bundie MDMIsl, we obtain an S2*-moduze

isomorphism
                                                       '                  SiL.(sX ; Fl> 1;t, st.(Bsl)

of degree -1. since Sll*(Bsl) is a free Sl*-module on even

dimensionai generatorst the proposition follows. q.e.d.

    proposition 2-1-4. Sl)even(sl; Fi) <g) R2 =O for all i.

    PrOOf. FirSt S;1?even(Sl ; Fz) <X) R2 = O bY PrOPOSitiOn

2-Z-3.

    By applying the exact seguence of Theorem 1-1-3 to the case
in which (F, F', F") = (Fit Fi-ltCl)) and using Lemma 2-i-2 (1>,

we see that the canonica; homomorphism

         stev(SZ ; Fi-1> Q R2 S<Silev(Si ; Fi) (ii) R2

is epic. Then the proposition follows by the induction for i.

                                                          q.e.d.

    Lemma 2-1-5. We obtain a split short exact sequence

o --)b Sl?. (sl ; Fi-i) Q R2 ->Sll. (sl ; Fi> Q R2 o SSII. (sl ; Fi fFi-i) {SD R2--> o

of 9.(SD R2-modules.

    Proof. Lemma 2-1-2 (1) and Proposition 2-1-4 make the exact
sequence of frheorern 1-1-3 for the farnilies Fi> Fi-z><i> tO

the above sequence. q.e.d.
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    From this lemma

se.(s1 ; Fi)<*) R2 Y 9.(si ; Fi.z)(g> R2 (EE) (S2.(sZ ; Fi,Fi-l)<g) R2•

By Lemma 2--l-2, Proposition 2-i-3 and using the induction for
i we may assert that 9.(si ; Fi) El) R2 is a frd'e SZ* E9 R2r

rnodule on odd dirnensiona-1 generators.

    ClearZy

          SR"(Sl ' Foo) QR2 or .1•,i,'M,.{i?t"(Si ' Fi) Q R2'

Since the image of the canonical homornorphism

      ' g.(si ; Fiei) CD R2 -ÅÄ>g.(si ; Fi) Q9 R2

splits by Lemma 2-l-s, {;2,,(sl ; Fo,) (g) R2 is a free S2.* (29 R2-

rnodule on odd dimensional generators.

    By Ossa [6 ; Satz 2]t the canonical homornorphism

             g.(si ; F..) <g> R2 --> Sit.(si ; FA) <Sb R2

is the zero homornorphisra. Then the exact sequence of Theorem

1-1-3 Eor the fa:niZies FA) Fe. >ci> becornes a short exact

sequence
Ob !;2 * (Sl ; FA) CES> R2 -'`>!SZ* (SZ ; FA t Feo)X R2 '--5"Sll;Ae (Sl 7 Foo)X R2S O

of Sil.Q R2-rnodules. since 9.(sl ; F..)Q R2 is a free

S;?t.(g) R2-module, this short exact sequence is split. Therefore
(Sil.(sl ; FA) <g) R2 is a direct summand of 9.(sl ; FA,Foo) (*) R2

which is a free Sll.*<*) R2-moduie on even dimensional generators
by Lemma 2-1-2 (2). Hence S2:.(Sl ; FA) (SD R2 is a projective

9.Q R2-module. Moreover it is a free Sil.. oo R2-module by
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Conner-Smith [4 ; Propositien 3.2].

    Thus Theorern 2-1-1 is obtained frorn Lemma 2-Z-2.

    The remaining sections in this chapter will be devoted to

the proof of Lemma 2-1-2.

    2-2. 0riented SZ-•vector bundles

    Let H be aclosed subgroup of sl, and p(H) be the set

oE equivalence ciasses of (reaZ) representations of H which

do not contain a direct summand of trivial actions and on which

H acts orientation preservingly. For an eiement .iO<EiÅÄ'P(H)

we denote a representative of f by the sarne letter f as

iong as it causes no eonfusion.

    For an eiement ./O <i P(H), a diEferential)le vector bundle
E->x is caued to be an oriented sl-vector bundle of type

(rt s, Ht]"), if E-i>Å~ is an oriented vector bundle and an
sl-vector bundle of type (r, s, H) and the H-actÅ}on on any

fibre of E is equivalent to /O .
    [[Wo oxiented SZ--vector bundles EoXt E'--i) X' over closed

rnanifolds of type, (rt s, HtlO) are bordant, if there is an

orzentedS -vector bundle F-Y of type (rr s+1, Ht.JO) such
that the restrictien Flby-Dy is isoTnorphict as oriented
sl-vector bundlesi to the disjoint union of EDX and -(E'"eb

x'), where -(E'-)x') is the oriented sl-vector bundie obtained

frorn E'-)X' by reversing only the orientation of the total

space.
                                                          s    By this relation'we may define a bordism group BOr,s(sl ; '

H, Jo) of alZ oriented Sl-vector bundles over closed manifolds
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of type (r, st H,f). We note that for odd r BOr,s(Si;H,.f)

= o by orientation reason) The direct sum (il) s->oB9,s(si ; H,

JO) is a moduZe over S2.. by the usual way.
    we aiso define BO (sl ; H) to be the direct sum
<IDfep(H)B9,.(si ; Hif';.

    Let (G, G') denote one of (Fit Fi-1) and (FAt Foo),

and K be the subgreup which belongs to G- G'. Let M be
a (G, G')-free oriented Sl-rnanifold and MK be the set of all

points xGM whose isotropy groups are equal to K. When

the normal bundle lIK(M)-) 1!lk of MK in M is orientedt M
is called te be a (G, G')-free oriented sl-manifoid with oriented

normal bundle.
    7?wo <Gt G')-free oriented Si-manifolds M, M' with oriented

norrnal bundles are bordant, if there are a (G't G')-free oriented
sl-manifold v and (G, G)-free oriented Si-manifold W satisfy--

ing the conditions (1-1-1>, (1•-i-•2), and if the two oriented
sl-vector bundles LIK(M), "K(M') are bordant by the oriented

SZ-vector bundle PK(W). By this relation we then define a
                                                              'bordisrn group SZ9(si;G, G') of au (G, G')-free oriented

sl-manifozds with oriented normaz bundles. By the 'cartesian

product Sil.9(sl ; G, G') becornes a moduze over Sll.de.

  '    Then we obtain an analogue of Lemma Z--2-1.

                                  '
    Lemma 2-2-1. The correspondence MD"K(M)->1!EK induCeS

an S?*-module isomorphis•m

       . SilR(si ; G, Gi) y G) ..2x+.Bgr,s(sZ ; K).

The inverse isornorphism rnay be obtained by cflltlEesponding an
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                                                          '
eriented sl-vector bundie E->x to the associtited disc bundZe

    5?he proof is as easy as the proofi of Lemma 1-2-1. '

    Lernma 2•-2-2. a) <SZ9(sl ; Fi, k-i)Q R2 is a free9.Cig)

R,--ra ?gyie{I;ioln?(ggd,dii!en;,i,9nQabZ.ge"2.ga:e;2g.' siiL. ,Eg .2..,,.duze on

even diraensional generators.

    This iernma will be proved in the next section 2-3.

   'Lemma 2•-2-3. There are SZ*<)R2-rnodule homornorphisms f

and g of degree O
      ft.., 9(sZ ; G, Gt) <iB) R2 ,-,e--....--....f S-it.(si ; G, Gt) Cii) R2

                             g
satisfying f o g = identity.

    This lemrna wiU be proved in the section 2-4.

    These lernmas assdie e5 Lemma 2-1-2 as follows. By Lemma

2-2-3 S;il.(sl ; G, G')Q R2 is a direct sumand of Sil.9(sl ;

G, G') <g) R2. since Slt9(si ; G, G') (*) R2 is a iree Sl:* Q R2-

rnodule by Lemma 2-2-2t S?.(sl ; G, G')Q R2 is a free Sil.* <D R2-

module by Conner-Smith [4 ; Proposition 3.2]. The dimensions

of generators are obeained frorn Lemma 2-2-2 as desired.

    Thus Zemma 2-l-2 is proved.

    Now the remaining subjects to prove the Tnain theerem are to

prove Lemmas 2-2-2 and 2-2-3.

    2-3. The proof of Lemma 2-2-2
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                                      1    Let H be aciosed subgroup of S. An elernent .e (P(H)
gives a homornorphisrn

                     f : H -- SO(2r) .

We denote the centraZizer of the irnage of yo in SO(2r) by

C(f). And we set

                 As = {(h, ]o(h))lh < H }.

This is a normal subgroup of SXx C(lo).

    Let E-->x be an oriented sl-vector bundle representing

aciass in B2r,s(sZ;H,f)t and lfgx be the principai

sO(2r)-bundle associated to E-->X. By the natural way ilf is
given a ieft SZ-action and a right SO(2r)-action. We set

       F = {e e ilf l h•e = e• 10 (h) for all he H}.

                                                            'The ieft sl-action on ilf induces a ieft sl--action on F. The

                       tvright SO(2r)-action on E also induces a ieEt C(.tO)-action
de fined by 2r•e = e. ')'-Z for ')' -S C(,to ) . So we have a le#t

Si  Å~ C(f)-action on F, and all isotrepy groups of points in
E are equal to A . Then we have a prineipal Si XC(.IO)/zfis-

                                   '               F.F/(siÅ~ c(f )IA) = x!si.

    Then

    Lemma 2-3•-i (Conner--Fioyd [3], Ossa [5]). By corresponding
E--t>x ' to Fgxlsl we obtain an st*--module isomorphism

      Bg. ,. (si ; H, Jo) 2 st..di. Hei (B (si Å~ c(f )/` s)).

    For the proof of Lemma 2-•2-2, it sufEices to prove the
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foZiewing lemma.

    Lemma 2-3-'2. For any closed subgroup H of sl and any

 ,R (iP(H), SiZ*(B<S1X C(,R >/A)) (2) R2 is a free g;il..Q R2-rnodule

on even dirnensional genxators.

    proof. considering si to be the unit sphere in ci, we

let
                       ej : si --> ua)

b.e the representation ef sl defined by

                    Pj<z) " (zj), z <i sl.

              ,1                         , and t : U(1) ---> O(2)              x:H -S

be the natuta1 inclusions. Then

                   { zfjilb s j s o(H,) -i}

 '
giVes a complete setmoonerri(v\aetal) irreducible representations of

H if the order o(H) of H is odd or H is equal to sl.

    For H of even order we let

                      X : H --e, o<1)

be the representation ef H defined by

                 x(h) . (ho(H)12), hc H.

                                  'Then
                {ieji, )vl isjsO(,") -i}

giVeS a Complete setrtoonf>.rt5irvfaai) irreducibZe representatiens of

H of even order.
                                       '
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    From the above 'remarks and elementary computations we see

that for any ,iO <P<H) C(10) is isornoFphic to

                U(rl)X ''' XU(ra-1) X SO(ra)

                                                      a-X
for  sorne sequgnce (rl,•..t ra-l, ra) with dim,j' =2Zj.zrj

      Moreover we see that r =O if H is of odd order+r   a'                            a     1•or S.
    For 1f-g.b5a let
    Pb ;H -) U(rb) (or SO <r.> if b= a)

be the cornpesition

                                             , H JZ) C< JO ) bl- u( rl) Å~ • e e X U( r.. 1) X SO (ra) U'O] U( rb) (OX SO(r.) ) •

 '
Then pb is extendable to Si such that if bIa the image

of pb lies in the center of U(rb), and we denote this exten.

sion by the sarae syrrzbel pb. We set

                 Ai -- {<h, P. <h)) lh e H}e

Then there is an epimorphisrn from SlÅ~ c(,R) to u(rl)x...

Å~u(ra.1> x (slX so(ra)IA') which sends (z, xl,.''t xa) to

                      -z      -1                        Xa-lt tZ, Xa])t and the kerenel eE this        xii...t pa"i(z)(Pi(z)

hornemorphism is 4 . So we obtain an isomorphism

    (2-3-3) slx c(f )/A !\ u(rl) x ••• x u<r..1) Å~ <S lx sO <r.) /A ')•

    (1) The case in which H is of odd order or Si: We obtain

st* (g> R2-rnodule igomorphisms

 ' sz. (B (six c( Jo )/,A)) <g) R2 ;;;' sc <BX) Q R2

                            ty. H.(Bx ; R2) (DRi9.. (8) R2),
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where BX = B(U(rl)X '''X U(ra-i) X (Sl/H)). The first isomorphisrn

is obtained frorn (2-3-3), and the iast one is obtained frorn

CDheorern i-3-1. Since H.(BX; R2) is a free R2-rnoduie on even
dimensional generatorst SIL.(B(slx c(?)IA)) G9 R2 is a free

Set* Cg) R2-rnodule on even dirnensional generators.

    (2) The case in which H is of even order (The foliowing

method is largeiy due to Ossa [5]t[6]): We set

             A" "{(1, 1)t (-Z, -1)} C SIx so(ra)•

Then we obtain an isomorphism
                               '
    (2--3-4) six so(ra) /A' 2 six so(ra) /A"•

    Let T' be a rnaxirnal terus in slx so(ra) such that T'

contains 4". Then T=T'!A" isamaximal torus in SZX

     )/A".so(r    a
    H*(SiX SO(ra)/A" ; Z) and H"((SiX SO(ra)/A")IT ; Z)

have no odd torsion. So the canonicai homomorphism

          H*(B(SIX SO(ra)/A") ; Zp> -> H"(BT ; Zp)

is injective for any odd prime p by Borel [1; Proposition 29.2].
Hence H*(B(slx so(ra)/z s") ; z) has no odd torsion and

Hodd(B(SlX SO(ra>IA") ; z) is a 2-torsion group.

    We obtain 9.k pa R2-moduZe isomorphisms

   Slt.(B(six c(Jo )/A)) Q R2 cr- Sll.*(BY) (2i) R2

                            Y' H*(BY ; R2) (ES)R2<SlnRe Q R2>'

where BY = B(U(rl) X '''X U(ra"z) Å~ (Slx sO (ra) /A")). The first

isornorphism is obtained from (2-3-3) and (2-3-4), and the last
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one is obtained frorn the above argument and Theorem l-3-1.
    H.dd(BY ; R2) =O since Hodd(B(SIX sO(ra)/A"; z) is'a

2-torsion group. Then S).(B(slx c(LR)14)) (Eg> R2 is a free

SZ*Q R2-rnodule on even dimensional generators. q.e.d.

    Thus Lemma 2-2-2 is cornpletely proved.

    2-4. The proof of Lemma 2-2-3

    First we obtain

                           '    zjemma 2-4-1 (ossa [s][61). For an sl-vector bundle E-->x
                                                       '(x closed) of type (rt s, H) there exists an oriented sl-

vector bundie E(i)-x(i) of type (r, s, H) such that

         2[E ->x] = [E(i)--7 x(i)] in B (si ; H).
                                       rts

    Proof. Let tTt : X-X/Si be the natural projection.

Let y' be a minimaz 1-codirnensional submanifoid of x/sl

                                                       1which represents the first StiefeZ-Whitney class of X/S , and
set y ='Tt-1(y'). Then y is a rninimal 1-codimensional

invariant closed submanifold of X such that X-Y is orient-

able.

    Let U be an invariant closed tubular neighborhood of Y

in X, and set Xi = X - int U. Considering U as a disc
bundle over Y, (EIY) (E}>U is equivariantly diffeornorphic to

El'U. So the antipodal involution on U induces an involution
T on Elut which is equivariant with the sl-action and reverses

the orientation oi EiU.

    using the involution T we may obtain an sl-vectox bundle

W-V of type (r, s+lt H) as foliows. W is formed from two
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copies {O}xExr and {1}XEx: of ExZ by identifying
(O, e, O) with (lt T(e), O) for aXl eGEIU, and V is

forrrted from two copies {O}XXxr and {1}Xxxr of XXZ

by identifying ('Ot xt O) with (1, T(x), O) for all x(' Ut

where : is the interval [O, 1]. •
          <1)                 (1)                      be' the subbundie of W-V defined by    Let E             -x

    (2-• 4-2) E(1) ={o} >< <El xl) x{o} VT {1} Å~ <E lxi) X {O}t and

    (2.-4-3) x(1) = {O} X XI X {O} VT {1} X XI X {O)•

Then E(i)---)x(i) is an si-vector bundie of type (r, s, H),

and is bordant to 2(E-X) by the bordi-srn W--)V.

    Xl is an orientable manifold. We orient the two copies

of Xl in (2-4-3) so that those orientations are reverse each
other, then x(Z) is oriented since y is rninimal. so E(1)

-)x(1) is an oriented si•-vector bundle. qee.d.

    We may construct Sil..oo R2-module homomorphisms f and g

           B2,s<si;H)Q R2 i-i ;Br,s(si;H) (g> R2 ,

satisfying fog = identity. Then Lemma 2-2-3 follows from Lemma

i-2--i and Lemma 2-2-1.

    Firstwe define f by f=f'Ql where
              f' : BOi ,s(Sl ; H) -'->Br,s(Sl ; H)

is the canonical homomorphism forgetting orientation of bundies.
    Next we define g as fonows. Let E->x be an sl-vector

                                                           (1)bundle over a closed rttanifold X of type (r, s, H)t and E



                                                             20

                                                            '-)x(1) be an oriented sl-vector bundle constructed by Lemma

                            (1)                                   (l>2-4-1. We must note that E                                       can not be canonically                              9X
oriented.-
                (1)    We devide X                     into the connected components,

                      a)                     x =AIV•••VA.•

Egch A. (1 S OC g n> is invariant undex the Si--action, and

E(i)IA.(->Act is an orientable sl-vector bundle oE type (r, st

H>. Since Ac>( is connected, E(i)iAct->A.c is given exactiy

two orientations. Let a'<E(1)lAct-7A.<) be the class in

B9,s(Si ; H) which is represented by the sum oE the two kinds

of oriented sl-vector bundles obtained from •E(1)IAct-A.c• Then
                                                    'we de fine ev <E (i) ->x( i)) to be the sum of a' (E (i>l Aec -`)Ax)t

ct= 1,'''t n. We see that

       f'( e'(E(2>D x(i))) =4[E •->x] in B (si ; H).
                                         rts

So we define g by
         g"E -. x] @ x) = c7"(E (1:)--) x(l) ) Qb lit x E R2 •

This is a weli-defined homornorphisrn and satisfies fog = identity.

                              k,    Chapter 3. Bordisrn of (Z2)                               --actzons

    zn this Åëhapter we consider (z2)k--actions.

    We rernark that
    (l) any subgroup of (z2)k is isomorphic to (z2)a for

some a <- k, and

                                     k,    (2) for any subgroup H of (Z2) ,                                        there ex:sts a "eomple•-
ment" HC such that HeHC is equal to (z2)k.



                                    cFor each H we fix one cornplernent H                                       throughout this chapter.

                                                           '    3-i The main theorern and the key lemma

    Main Theore:n 3-1-1. For any fa:nily F in (Z2)k, S2.*((Z2)

; F) <g> R2 is a free S;?* pa R2-module on even dirnensional

generators.

    Let

                    HlrH2t'''t Ha '
be a sequence of all subg=oups beionging to F such that the

order o(Hi) of Hi is larger than or egual to the order

O(Hi-1) Of Hi.i for any i= 2,'''t a. Then the collection

                   Fi ={Hj j 4= i}

is a fainily in (z2)k for alZ i = lt2t'''t ar and Fa = F.

    Key Lemma 3--1-2. Sl?.((z2)k 7 Fi,Fi.1)(8) R2 is a free S'il•*

(2) R2-rnoduZe on even dimensienal generators.

    This key lemma wiZl be proved in the foZiowing sections.

We may prove the main theorern by using the key lemma as follows.

    First we obtain '
    proposition 3-1--3. SZ,((z;)k 7 Fi) (Z) R2 is a free S?t*

(5D R2-rnoduie on a O-dimensional generator.

    Pxoof. As the proof of Lernraa 2--1-3 we obtain an 9*-rnoduXe

21

k
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isornorphisrn

               S2.*((z2)k ; Fx) y. 9.(B((z2)k))

of degree o. since 9.(B((z2)k))XR2 is a free S).61>R2"

moduie on a O-dirnensienaZ generator, the proposition follows.

                                                        q.e.d.

    We also obtain the foZiowing propositien and lemma by the

sirnilar ways to Proposition 2-1-4 and Lemma 2-Z-5.

    proposition 3-1-4. S}lodd<(Z2>k; Fi) <g) R2 =O for ali i.

    Lemma 3-1-5. We obtain a split short exact sequence

       o-9.((z2)k ; Fi-z)Q R2->S?*((z2)k ; Fi) (g) R2

                      --) st. ((z2) k ; Fi,Fi-l) E9 R2 "> O

of SIL*<El)R2-modules.

    From this iemma we obtain an 9t(g>R2-moduie isornorphisrn

sz. ( ( z2) k; Fi) (*) R2 y!{l, ( < z2) k; Fi.i) (g) R2 @!Sll,, ( (z2) k; Fi tFi-i) (*) R2 •

By Lemma 3-1-2, Proposition 3-1-3 and using the induction for i
we rnay assert that S?..((z2)k ; k) <$) R2 is a free .9*(E9R2'

rnodule on even dimensionaZ generators for ali i.

    Thus Theorern 3•-1-i is obtained frorn Lemma 3-1--2. [Vhe follow-

ing sections will be devoted to the proof of Lemma 3-i-2.
 '

                      k    3-2. Special (Z2)                       -vector bundles

    Let H be a subgroup of <Z2)k, and {Vz,.'', vg} be a
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complete set of non-trivial (reai) irreducibie representation

spaces of H. We note that any Vj (ZSjS q) is a i-dimensional

vector space and q is equal to o(H) - 1, o(H) the order of

H.

    Then we obtain

    Lemma 3-2-Z. For any (Z2)k-vector bundZe E->X of type

(r, s, H) we have a canonical eguivariant decomposition oE E
by (z2)k-vector bundZes Ej (j = 1,..., q)

                            q                      Exe E.
                            i=1 )

such that the H-action on any fibre of E j is equivalent to

Vj for j= Z,..., g.

    ProoE. Let

                 v, = v. x x -->x                 -) )
be the product bundle over X. Giving the trivial HC-action on

vjt we may regard vj as a (z2)k--vector space. we define a

(z2)k-action on yj by the diagonal action.

    Uet Homu(Yjt E) be the bundle of H-eguivariant homornoxphisms.
For any eiernent feHornH(51j, E) and gG (Z2)k we define

g.f E Horrha(Yj, E), to be the composition

                    g-Z. f g.
                V, - V, --->E -E.                -J                         -)
[vhis defines a (z2)k-action on Horrbe(Yj, E).

    Let Ej be the (Z2)k-bvector bundle YjQHomH(Yj,E)• Then

the direct sum of the canonicaZ homomo=phisms
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                   Ej -'-> Et j = lt'''r q

                                      '
gives an equivariant isornerphism

                   @q
                        E. --> E,
                     j=1 J

since all V j's are l-dimensionai. q.e.d.
    A (Z2)k-vector bundie E--)x of type (rt s, H) is caUed

to be a speciaZ (z2)k-vector bundie, if in the canonical decompo-

sition
                          q
                   Ege E,                         j=1 ]

each E, is an oriented vector bundle and the HC-action on E,
                   '                                                         'preserves the orientation of the bundie Ej.

    Let V be a representation space of H which has no direct
summand of trivial action, then v is isomorphic to vll e'...

OVEq for sorne rl,'!', rq. For any x(H we set '

    J<x) ={jlx non--trivially acts on Vj <1 Sj Spt g) .} ,

and we denote the nurnber ef the eZernents of the seg

             J(x>A{jlrj is odd (i S" ]' S- q).}

by O( .<V) •

    We define S(H) to be the set of eguivalence classes of

representation spaces V of H which satisfy that ctx(V> is

even for alZ x ( H. We denote an equivalence class and its

representative by a sarne letter V as long as it causes no'

confusion. We note that the H-action on V is orientation

preserving for any V <l S(H).
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    For VES(H) a (z2)k-vector bundle E.X is called to
be of type (r, s, Ht v), if E-x is a (z2)k-vector bundle

of type <r, s, H) and the H-action on any fibre oE E is

                   k    Two special (Z2)                    -vector bundles EoXt E'-X' over closed
manifolds of type (rt s', H, V) are bordantt if there is a
special (z2)k-vector bundXe F--e,Y of type (r, s+1, Hr V) such

that the restriction Flby--->by is isornorphic, as special
(z2)k-vector bundles, to the disjoint union oE E->X and

-(E'"x'), where -(E'-")px') is the special (Z2)k-vector' bundle

obtained frorn E'->X' by reversing only the orientation of the

total space.

    By this relation "bordant" we may deÅíine a bordism group
B9,s((z2)k; H, v) of au speciai (z2)k-vector bun(\ies over

'closed rnanifolds of type (rt st H, V). The direct sum
<S) sloBSr,s((Z2)k; H, V) is a moduie over S]).. by the usual

way. we azso define B9,s((z2)k i H) to be the direct sum

(El) vEs(H>BSr,s((Z2)k ; Hr V) •

    Let M be an (Fi, Fi-1)-free oriented (Z2)k-manifold and

MHi be the set of ali points xGM whose isotropy groups

are Hi. When the normal bundle UHi(M>'-i,MHi Of MHi in
M is a special (Z2)k--vector bundie, M is called to be an

(Iit Fi"i)-free oriented (Z2)k--manifold with special norrnal

bundle.
    Two (Fi, Fi-.1)-free oriented (Z2)k-manifolds M, M' with

special normal bundies are bordant, if there are an (Fi-1, Fi-1)-
free oriented (z2)k-manifoid v and an (Fi, Fi)-free eriented
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(Z2)k-rnanifoid w satisfying the conditions (i--1-1),(iel"2),

                           kand if the two speciaX (Z2)                            -vector bundles "Hi(M), PHi(M')

are bordant by the special (Z2)k-vector bunlde "Hi(W). BY

this relation we rnay define a bordi(fi"s group 9?((z2>k ; Fi,

Fi.i) of ali (Fi, Fi.1)-free oriented (Z2)k-rnanifolds with

special normal bundles.• By the cartesian product S2.f((z2)k ;

Fi, Fi-1) becomes a module ovex st*.

    Then we obtain an anaiogue of Lemma i-2-1 (or Lemma 2-2-1).

    Lemma 3-2•-2. The correspondence M-->"Hi(M)"MHi induCeS
an !!IZ*-module isomorphisrn

    S'Zfi((Z2)k ; Fi, Fi-1) g Gi> n.r+sBSr,s((Z2)k ; Hi)'

The inverse isomorphism may be obtained by corresponding a
special (z2)k"vector bundle E"x eo the asseciatpd ctise

bundle D(E).
                                      '
    Lemma 3-2-3. 9.S((z2>k; Fi, Fi-i> (Eb R2 is a free S2L*(8>R2-

module.

    This lernma will be proved in the next section 3-3.

    Lemma 3--2-4. There are Sl).(DR2--module homornorphisms f

and g of degreeO
                                      '- S'B9((z2)k ; Fi, Fi.1)<DR2teS?.((z2)k ; Fii Fi-l)<D R2

satisfying

    (1) fog = identity, and

    (2) f(Sbgdd((z2)k ; Fi, Fi-1) <g> R2) = O•
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    This lemma will be proved in 3-4.

    These lemmas assure "i Lemma 3-1-2 as foilows. By Lemma
3-2-4 9.((z2)k; Fi, Fi-i> <g> R2 is a direct sumand oE

S;ILfi((z2)k ; Fi, Fiei) X> R2• since SZ9((z2>k ; Fi, Fi-i) (D R2

is a free 9.(g) R2-module by Lemma 3-2-3, R.((Z2)k; Fi, Fi-1)

 op R2 is a free S?..QR2-module by Conner-Smith [4 ; Proposition

3.2]. The dirnensions of generators are obtained from Lemma 3-

2-4 (2) as desired.

    Thus Lemma 3-Z-2 is proved.

    Now the remaining subjects to prove the rnain theorem are to

prove Lemmas 3-2-3 and 3-2-4.

    3•-3. The proof of Lemma 3-•2-3

    Let H be asubgroup of (Z2)k and {Vl,''', Vq} be a

complete set of non-trivial irreducible representation spaces

 (g =o(H) - l). For any element VGS(H) we set

                 SO(V) = SO(rl)Å~ '''X SO(rq)

where rl,..., rq are defined by

                     v or. vEi <fE) ••• O vliq•

    Lemma 3-3-1. There is an SU*-rnodule isomorphism

           BSr ,s( (z2)k 7 H, v) or Sil.. (B (HCx so (v) ) ) .

    By Theorern 1-3-Z SI.(B(HCx SO(V>)) QD R2 is a free SZ*CD
                                                          , R2 -rnoduZe isomorphic to H* <B (HCX SO (V) ) ; R2 > Q R2 ( ft*<El> R2 ) .

Hence we obtain Lemma 3-2-3 frorn Lemmas 3-2-2, 3-3-1.
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    Proof of Lemma 3-3-1. Let E-)x be a speciai (Z2)k•-vector

bundle of type (r, st H, V). We obtain the canonical equivariant
deceiRposition of E by (Z2>k-vector bundles

                             q                      E or <Sl> E,
                             j=x )

frorrt Lernma 3-2-1. •
    HC freeZy acts on X, and each E, is an oriented vector
                                     ]
bundZe on which HC acts orientation preservingly. :Jet

                  h: X!HCDBHC and

                 hj : x/HC----l> Bso(rj)

be classifying raaps of the principai bundle X->X/HC and the

oriented vector bundles Ej/HC--)X/HC, respectively. Then h

and h j (j =- 1,..., q) define a rnap

    hX'n-jS.ihj : x/HCo BHCx ITjS-IBso(rj> ',vv B(HCx so(v)).

    By corresponding E"X to hXTrhj we obtain a homomorphisrn

           BSr,s((z2)k; H, v> -t,S2s(B(HC>< so(v))).

    The inverse hornomorphism is obtained as follows. Let

                    E , M -> B(HCx so (v) )

representaclass in 9s(B(HCX sO(V))). Then fi defines maps

            h:M---> BHC and

           hj : M----) BSO(rj) (j = 1,''', q).

                  'Let 'Tt : G)foM be the principal HC"bundie induced by h,

and Ej-'7S( be the oriented veator bundle induced by hjo'ST.
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We may define a (z2)k-action on OjSiEjgM so that the bundle

is a speciai <z2)k•-veetor bundle of tyr)e (r, s, H, V) and the

correspondence il to <EE>j[illEj-->3a deEines the desired inverse

    3-•4. The proof of•Lemma 3-2-4

    For the prooi we need the foilowing lemma.

    Lernma 3-4-i. For a <Z2)k-vector bundle E -->X (X closed )

                                              kof type (tt, st H) there exists a special (Z2>                                               -vectox bundle
E(q)---)x(q) ef type (r, s, H) such that

        2q [E gx] = [E (q)-> x(q)] in Br ,s((Z2)k ; H) ,

                                             'where g = e(H) -- l.

                                                    '
                                                 '    Proof. We have the canonical decomposition

                           q                     E:-Yej.IEj •

by Lemma 3-2-1.

    For OS rnSq let D(rn) be the follewing statement:
    There exists a (Z2)k-vector bundle E(M)---g,x<rn)                                                    of type

<r, st H) such that

    (1) in the canonical decomposition
                     E (m) 2 e jglE i, m>

the direct summands E{M),''', EikM) are oxiented vector bundles

on which HC aets orientation preservingly, and
                                                         '    (2) 2M [E -X] = [E (M)-> X<M>] in Br,s ((Z2)k ; H)• '
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    We may prove Lemma 3-4--1 by the induction for m. The

statement D(O> is trivially valid. rn the foliowing we show

that the staternent D(m) impiies the statement D(m + 1).
    since HC freeiy acts on x(rn), Erkli)llHC-->x(M)IHC is azso

a vector bundXe. Let Y' be a rninirrtal Z-codirnensionaX sub"
rnanifold of X(M)/HC which represents the first StiefeX•-V"hitney

class of the vector bundle ErglPl/HC-->x(rn)/HCt and set y =

-n-1(y') where rrr : x(rn)-x(rn>/HC is the natural projection.

Then Y is a minirnal i-eodirnensional invqriant closed subrnanifoid
of x(M) satisfying that the restricted vector bundie of ErklPl

on x(rn) -y is orientable so that HC acts orientation

preservingly.

  '    Let U be an invariant closed tubular neighborhood of Y
in X<rn), and set Xl =X(rn)- int U. Considering U as a disc

bundze over y, (E(in)iy) ([Du is equivariantly diffeornorphie to

E(M)lu. so the antipodal involution on u induces an involu-

tion T on E(rn)IU. As in the proof oE Lernma 2-4-1, pasting

two copies of E(M)IXI each other by T, we may construct a

new (z2)k--vector bundie E(M+i>-->x(M+i) of type <r, s, H)

such that
                                                   '
    2[E(rn>-x(rn)] .-. [E(rn+i)ox(M+i)] in Br,s((z2>k; H).

Then
                2M+1 [E -. x] . [E (m+1).-i, x (m+1) ]

by the statement D(m).

    Tn the canonical decomposition

                   E(m+1) N ojSIES,M+1>
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       (m+1)each Ej is equivariantly isornorphic to the bundle

    (3-4-2> (E i, M) I XI) VT (E i• M) I XI) •

For 1SjS rn we give a same orientation to the two copies
of the vector bundle E)(,M)IXI in (3-4-2), then Ei.M+i) is

an oriented vector bundle on which HC acts orientation preserv-

ingly. For j = rn \ X we orient the two copies of Ei, M)i Å~1

in (3-4-2) such that those orientations are reverse each other,
then E(rR+1) is an oriented vector bundle since y is rninimal,
       J
and HC acts orientation preservingiy on ES,M+i).

    Thus the staternent D(m) impZies the statement D(m + 1).

                                                       g.e.d.

    We may construct S2.(*>R2-rnodule homomorphisms f and g

           B; ,s( (Z2) k ; H> (29 R2 ;gÅ} 2E Br ,. ( (Z2) k ; H) <Eg> R2

satisfying that

    (3-4-3) fog = identity, and

    (3-4-4) if r+s is oddt f is the zero homomorphism.

Then Lemma 3-2-4 fellows frorn Lemma 1-2-Z and Lemma 3-2-2.

    First we de fine f by f = f'<g) Z where

           f' : B;,s((Z2)k ; H)9Br,s((Z2)k ; H)

is the canonical hornomorphisrn forgetting the "speciality" of

bundles. Then we obtain

    Lemma 3--4-5. !f r+s is odd, every elernent in .
f'(BSr,s((Z2)k ; H)) is of order 2. so the statement (3-4-4)
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follows.

    Proof. Let V be any elernent in S(H), and

   ' >v: Bi,.((Z2)k;H, v) 1\ 9.(B(HCx so(v)))

be the isornorphism obtained by Lemma 3-3-Z. And Zet x be
any element in Bi,s((Z2)k ; H, v). xf s is odd, then )k(x)

is of order 2t and f'(x) is so.

    rf r+s is odd and s is event we may construct an
elernent 2eBi,s((z2)k7Ht v) such that . •

    <3-4- 6) x + x = O, and

    (3'4-7) f'(x> = f'<x).

Then f'(x) is of order 2.

    x is constructed as foilows. Let E-->X be a representa-

tive of x, and
                            g                    E y. (EE) j.IEj

be the canonicaZ decomposition. We define an oriented vector

bundle E, such that if dirn E, is even E, is E,, and if
                                                  3
dim E, is odd E"' , is the oriented vecter bundZe obtained fxorn     ]1Ej by xeversing the orientation. Let x be the class represent-
ed by (EE) qE,-X which is given the same orientation of the
          j=1 )

total space as E.

    The nuraber of j's with dim Ej = odd is odd since r is

odd. From this Åíact the condition (3-4-6) follows. The condition

(3-4-7) follews easily. q.e.d.
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                                                       k    Next we define g as follows. Let E-')X be a (Z2) --

vector bundie over a closed manifold X of type (rt st H)r
and E(q)-->X<q) be a special (z2)k-vector bundie constructed

by Lemma 3-4-1. Let

                    E(g) 1.: o js.iES•q)

be the canonical decomposition. We Tnust note that E<q)ox(q)

                                                  (g)can not be canonically "specialized"t i.e.t each E j                                                      can not
be canonicalZy oriented. We devide X(g) into the form

                   x(q) = AIV ••• VA.

such that each A. (i -< oC S n) is invariant under the (z2)k-

action and each Act/(z2)k is connected. Then each E(q)IAof

">Aor is a (z2)k-vector bundle, and specialized to exactly

2q kinds of speciaZ (z2)k-vector bundles. we sum up the 2q

special (z2)k-vector bundles obtained frern E(g)lA,<gAct, and

denote the class of the surn in BS r,s((z2)k ; H) by

                    c7-(E (q) l A,.- A.) .

And we set
          o-(E (q).x (q) ) = Z,c 2i a(E (g) l A,,g A.,) •

                                            '    Then we see that •
              ft ( o• (E (g)- Å~(g) ) > = 22q [E ->xl .

So we define g by
       g"E-.x] (i) .). = o-(E(q)-`>x(q)) <g> x/22q, x c R2.

This is a well-defined hornomorphisrn and satisfies (3-4-3).

    Osaka University
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