|

) <

The University of Osaka
Institutional Knowledge Archive

Title ORIENTED BORDISM MODULES OF S1-AND (Z2)k-ACTIONS

Author(s) |Komiya, Katsuhiro

Citation |KFRKZ, 1974, HIHmX

Version Type|VoR

URL https://hdl. handle.net/11094/2215

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



ORIENTED BORDISM MODULES OF Sl- AND (Zz)k-ACTIONS

Katsuhiro KOMIYA

Introduction

In [2] P.E.Conner and E.E.Floyd demonstrated the effective-
ness of bordism methods in the studies of group actions. After-
wards, using the bordism methods, many topologists obtained
various results in the area. The central tools in these studies
are the bordism modules of group actions.

Let G be a compact Lie group, and F, F' be families of
subgroups of G such that F D F'. We may define the oriented
bordism module .§?*(G ; F,F'), over the oriented cobordism ring
§Q*, which consists of bordism classes of (F, F')-free oriented
G-manifolds. In this paper we are concerned with the module
structure of S:?*(G ; F, F'Y. If F' is empty, then We denote
this module by Q*(G ;F). Let FA be the family of all

subgroups of G. Then S;?*(G ; F.) is the bordism module of

A
all closed oriented G-manifolds. Especially we are interested
in the module structure of gp*(G P Fade

A
module on even dimensional generators when G 1is a finite

R.E.Stong [7] has shown that g?*(G : F,) 1is a free gp*-

p-primary abelian group for odd prime p. Recently E.R.Wheeler
[8] has shown that Q*(G i Fa) @ Ry is a free Q* ® R,-module

on even dimensional generators when G is a certain finite cyclic



group, where R, = Z[%] .
We study the cases in which G is the circle group S:L or

k

(2 = 22 ® - @ Z2 (k times). We obtain that both

2)
Q*(Sl i Fp) ® R, and Q*((Zz)k i F) ® R, are free

Q* & R,-modules on even dimensional generators. In fact we
prove such "freeness" theorems for more general families, as
stated in Theorem 2-1-1 and Theorem 3-1-1.

Our main tools are the Conner-Floyd exact sequences and the
fact that Q*(G ;i F, F') can be interpreted as (direct sum of)
singular bordism modules of adequate spaces when F = F' consists
of a single element H. When G is Sl or (Zz)k, this
interpretation involves a difficulty for the sake of non-
orientability of normal bundles of H-stationary point sets. We

overcome this difficulty by a modification of the methods due

to E.Ossa [5; Lemma 1-2-5]}[6; Lemma 4], (see Lemmas 2-2-3,3-2-4).



Chapter 1. Preliminalies

In this chapter we give common preliminaries for Sl- and
(Zz)k-actions. Throughout this chapter, G denotes a compact

abelian Lie group.

1-1. Bordism of G-manifolds

A family F in G 1is a collection of closed subgroups of
G such that if He P and if K is a closed subgroup of H
then K& F.

Being given families F, F' in G with FDF', ah (F, F')~-
free G-manifold M is a compact differentiable manifold M with
differentiable G-action such that for all x € M the isotropy
groups I(x) belong to F and for all x € 9M I(x) belong
to F'. An (F, F')-free oriented G-manifold M 4is an (F, F')-
free G-manifold M such that M is an oriented manifold and
the G-action preserves the orientation of M. If F' is empty,
then necessarily oM ==t>.

Being given an (F, F')~free oriented G-manifold M, we define
-M to be the (F, F')-free oriented G-manifold whose manifold

| underlying
and G-action are same as M but orientation is reversed. We
also define oM to be the (F',P)-free oriented G-manifold
whose G-action is the restriction of the G-action on M and
orientation is given by inward normal vectors.

Two (F, F')-free oriented G-manifolds M, M' are bordant,
if there are an (F', F')~free oriented G-manifold V and anp

(f, F)-free oriented G-manifold W such that

(1-1-1) oV is diffeomorphic, as oriented G-manifolds,



to the disjoint union of ©OM and -9M', and

(1-1-2) oW is diffeomorphic, as oriented G-manifolds, to
the manifold MVVV-M' obtained by glueing the boundaries.

This relation "bordant" is an equivalence relation on the
set of all (F, F')~-free oriented G-manifolds. An equivalence
class by this relation is called an (F, F')-free bordism class.

The set of all (F, F')-free bordism classes of (F, F')-free
oriented G-manifolds forms an abelian group with the operation
induced by disjoint union, and this group will be denoted by
Qex(G ; F, F'). S?n(G : F, F') denotes the summand consisting
of (F, FP')-free bordism classes of (F, F')-free oriented G-
manifolds of dimension n.

When F' 1is empty, S?*(G ; F, F'),%(G ; F, P') are
denoted by Q*(G : F),S?n(G ; F) 1in brief.

For a representative N of any element in the oriented
cobordism ring 52* we can see N to be an oriented G-manifold
by giving the trivial G-action. Therefore 52*4(6 ;: F, F') |is
a module over ga* by the cartesian product. |

Being given families F, F', P in G with F OO F'D F",

we have ‘.Q*-module homomorphisms

i, : Qu (e ; F', F") — S, (G ; F, F")

*

Ju : QWG ; F, F') —> G2 (G ; F, F')

obtained by considering (F', F")-free (or (F, F")-free) bordism
classes as (F, F")-free (or (F, F')-free) bordism classes. We

also have an Q*-mod'ule homomorphism



Dw : G0k(G ; F, ) —Q, (G ; F', F")

of degree -1 obtained by sending the class of M to the class
of OM.

Then

Theorem l1-1-3, The sequence

i,81
Q6 B, QR ——G) (65 F, FIQR,
3@ 1 2,91

L 6 F, FIQR, ——N\0 (G5 B, FIQR, >

is exact, where R2 is the subring of the rationals given by

R, = Z[—%-].'

2

Proof. The sequence obtained from the above sequence by
taking away Qsz is a Conner-Floyd's exact sequence [3 ; (5.3)].

Since R2 is torsion free, the above sequence is also exact. ¢g.e.d.

1l-2. Bordism of G-vector bundles

A differentiable vector bundle E — X is called a G-vector
bundle, when the total space E is an oriented manifold on which
G acts as a group of bundle maps preserving the orientation of
the manifold E. |

Let H be a closed subgroup of G. A G-vector bundle E —

X is called to be of type (r, s, H), if E - X is an r-
dimensional G-vector bundle over an s-dimensional compact manifold
X such that for any vector e € E the isotropy group I(e) is

a subgroup of H and I{(e) is equal to H if and only if' e

is a zero vector.



Being given a G-vector bundle E —% X, we define =-(E — X)
to be the G-vector bundle obtained from E —> X by reversing
the orientation of the total space E.

Two G-vector bundles E —> X, E'— X' over closed manifolds
of type (r, s, H) are bordant, if there is a G-vector bundle
F—> Y of type (r, s+l, H) such that the restriction F|QY
—> 2Y is isomorphic, as G-vector bundles, to the disjoint
union of E—X and ~-(E'—X'").

This relation "bordant" is an equivalence relation on the
set of G-vector bundles over closed manifolds of type (xr, s, H).
The set of equivalence classes of G-vector bundles over closed
manifolds of type (r, s, H) forms an abelian group with the
operation induced by disjoint union, and this group is denoted

by Br's(G ; H).

1

We note that for G =S (G ; H) = 0 by orientation

B2r+l,s
reason.

For a closed oriented manifold N of dimension n and a
G-vector bundle E— X of type (r, s, H) we obtain a G-vector
bundle NXE —-NXX of type (r, s+n, H) by a natural way.
This makes the direct sum @ ngBr,s(G ; H) a module over
Q-

Let F be a family in G and H be a maximal element in
F. Let M be an (F, F-{H})-free oriented G-manifold and My
be the set of all points x € M whose isotropy groups are equal
to H. Then the normal bundle [JH(M)-9 M of MH in M ds

H
a G-vector bundle over a closed manifold M-



Lemma 1-2-1. The correspondence Mr++vL%(M)—e~MH induces

an SZ,-module isomorphism

Ce, (¢ : F, F - {H}) ¥ @n=r+sBr's(G ; H).

The inverse isomorphism may be obtained by corresponding a

G-vector bundle E —- X to the associated disc bundle D(E).

The proof is easy.

.1-3. Homology interpretation of the singular bordism groups
For later uses we present this interpretation in the follow-

ing fashion.

Theorem 1-3-1. If X is a CW-complex such that for each
n Hn(x ; 2) 1is finitely generated and has no odd torsion,

then there is an S, ® R,-module isomorphism

QU (X) ® R, ¥ H, (X ; R,) ®R2(§Lk Q@ R,)

of degree 0.

Proof. Since H,(X ; Z) has no odd torsion, the Thom

homomorphism
M Qe (X) — H (X ; 2)

is epic by Conner-Floyd [2 ; Theorem 15. 2]. Hence
M1 SL(X) @ R, — H, (X ; 2) @ R,

is epic. As in [2 ; Theorem 17. 1] we obtain the desired

isomorphism. g.e.d.



Chapter 2. Bordism of Sl-actions

In this chapter we consider the case in which G is the
circle group Sl. For any positive integer i we define a

1 to be the family of all closed subgroups

family Fi in 8
whose orders are at most i. We also define a family F_ to
be the family of all proper closed subgroups of Sl, i.e.,

Foo = Ui?.l Fi, and a family F to be the family of all closed

A

1 7 _ 1
subgroups of S, i.e., FA = F”V{S }

2-1. The main theorem and the key lemma

Main Theorem 2-1-1. (1) Both S?_*(Sl ; Fi) ® R, (for any
i 21) and g?_*(sl ; E,) ® R, are free 92, Q R,-modules on
odd dimensional generators.

(2) SP_*(S]‘ ; FA) @ R, is a free S-Z*®R2—module on even

dimensional generators.

1 \._CLV
Key Lemma 2-1-2. (1) S2,(s™ ; F.,F. ) @ R, isYEree GI, @ R,-
module on odd dimensional generators.
(2) SE*(S]' ; FA' Foo) ® R, is a free SE*®R2-module on even

dimensional generators.

The key lemma will be proved in the following sections. We
may prove the main theorem by using the key lemma as follows.

First we obtain

Proposition 2-1-3. S?_*(Sl : Fl)® R2 is a free Q*®R2-

module on odd dimensional generators.

Proof. _q,E*(S:L i F;) 1is the bordism group of all fixed



point free closed oriented Sl-manifolds.‘ By corresponding a
fixed point free closed oriented Sl—manifold M to a classifying
map of the principal Sl-bundle M-—)M/Sl, we obtain an gz*-module

isomorphism

S, (st F) ¥ 2, (BsT)

of degree ~-1. Since Sﬁ*(BSl) is a free SE*—module on even

dimensional generators, the proposition follows. g.e.d.

Proposition 2-1-4. S?even(sl ; Fi) ® R2 = 0 for all 1i.

, 1 _ C
Proof. First G2 __ (s ; F;) @R, = 0 by Proposition
2-1-3.

By applying the exact sequence of Theorem 1~1-3 to the case
in which (F, F', F") = (F,, Fi_l,C}D ) and using Lemma 2-1-2 (1),

we see that the canonical homomorphism
S (st F_D®R, —P_ (s FHOQR
ev fTi-1 2 ev ! 2

is epic. Then the proposition follows by the induction for i.

qg.e.d.
Lemma 2-1-5. We obtain a split short exact sequence
1 1 1
08, (57 ; Fi_N@R, SN, (57 5 FHOR, S (s” 5 F,F,_)OR,>0
of G2, ® R,-modules.

Proof. Lemma 2-1-2 (1) and Proposition 2-1-4 make the exact
sequence of Theorem 1-1-3 for the families FiD Fi-l D&Jl) to

the above sequence. g.e.d.



From this lemma
1. ~ 1, 1,
R (87 7 FP@Ry ¥ SL(ST 1 Py IOR, @SR (87 7 FiuF; ) )OR,.

By Lemma 2-1-2, Proposition 2-1-3 and using the induction for
i we may assert that SE*(S]‘ i Fy) ® R, is a free QR ® R,-
module on odd dimensional generators.

Clearly

Q.utst i 5) ®ry ¥ 1in QR (st ; F) O R,

i»> 0

Since the image of the canonical homomorphism
1 1
Gox(s 5 F,_ ) O R, —>Q (" ; F;) Or,

splits by Lemma 2-1-5, G,?_,((Sl i Fy) ® R, is a free S, ®R2-
module on odd dimensional generators.

By Ossa [6 ; Satz 2], the canonical homomorphism
) (st )@ R, —> S2. (st 5 F@ R
* ' Teo 2 * " TA 2

is the zero homomorphism. Then the exact sequence of Theorem
1-1-3 for the families FAD Fpo > + becomes a short exact

sequence
1 1 1

0> QRu(S™ 3 FR@R,—C2, (57 5 Fo EJQR,—Qu (57 ; Fo)® Ry—>0
of 5. ¥ R,-modules. Since Q,,(S:L ; B @ R, is a free
Clx ® Rz-module, this short exact sequence is split. Therefore

1 . . 1
Qe (S™ ; FA) ® R, is a direct summand of SP,(S” ; FA,F“,) X R,
which is a free S, Q@ R,-module on'even dimensional generators
by Lemma 2-1-2 (2). Hence SZ*(Sl i Fp) Q R, 1is a projective

QR.D R,-module. Moreover it is a free 2, ®@ Rz-module by

10
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Conner-Smith [4 ; Proposition 3.2].
Thus Theorem 2-1-1 is obtained from Lemma 2=1-2.
The remaining sections in this chapter will be devoted to

the proof of Lemma 2-1-2.

2-2. Oriented Sl-vector bundles

Let H be a closed subgroup of Sl, and P(H) be the set
of equivalence classes of (real) representations of H which
do not contain a direct summand of trivial actions and on which
H acts orientation preservingly. For an element J°<E‘P(H)
we denote a representative of J° by the same letter ,f> as
long as it causes no confusion.

For an element ~f’€ P(H), a differentiable vector bundle
E— X 1is called to be an oriented Sl-vector bundle of type
(r, s, H,j‘), if E—X is an oriented wvector bundle and an
Sl—vector bundle of type (r, s, H) and the H-action on any
fibre of E is equivalent to /9 .

Two oriented Sl—vector bundles E — X, E'—» X' over closed
manifolds of types (r, s, H,f’) are bordant, if there is an
oriented Sl-vector bundle F —2>Y of type (r, s+l, H,j°) such
that the restriction F|oY—3Y is isomorphic, as oriented
Sl-vector bundles, to the disjoint union of E—2X and -(E-—
X'), where =-(E'—X') is the oriented Sl-vector bundle obtained
from E'— X' by reversing only the orientation of the total

space.
4

o (S1 ;

By this relation we may define a bordism group Br s
14
1

H,‘f) of all oriented S”-vector bundles over closed manifolds
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of type (x, s, H,)D). We note that for odd «r 80 (Sl ; H,f )
| r,s
= 0 by orientation reason. The direct sum @ 80 (sl ; H,
sz0r,s

f ) 1is a module over Qp, by the usual way.

We also define BS S(S1 ; H) to be the direct sum
. ’

0]
<>feP(H)Br,s

Let (G, G') denote one of (Fi' Fi_l) and (FA, Qo),

(s* i m, p).

and K be the subgroup which belongs to G - G'. Let M be

a (G, G')-free oriented Sl—manifold and My, be the set of all
points x € M whose isotropy groups are egqual to K. When

the normal bundle [JK(M)—9 My of M, in M is oriented, M

is called to be a (G, G')-free oriented Sl—manifold with oriented
normal bundle.

Two (G, G')-free oriented Sl-manifolds M, M' with oriented
normal bundles are bordant, if there are a (G', G')-free oriented
Sl—manifold V and (G, G)-free oriented Sl-manifold W satisfy-
ing the conditions (1-1-1), (1-1-2), and if the two oriented
Sl—vector bundles [/K(M), ZUK(M') are bordant by the oriented
sl-vector bundle L)x(W). By this relation we then define a
bordism group 528(81 ; G, G'Y of all (G, G')-free oriented
Sl—manifolds with oriented normal bundles. By the cartesian
product S?_S(Sl ;: G, G') becomes a module over S?_*.

' Then we obtain an analogue of Lemma l1-2-1.

Lemma 2-2-1. The correspondence Mi—)Z)K(M)—>MK induces

an Qp,-module isomorphism

0,1 o 1
S-En(s ; GI G') I=V ®n=2r+SB2r,S(s ! K)o

The inverse isomorphism may be obtained by cdresponding an
V)
Y



oriented Sl—vector bundle E —=>X to the associé.ted disc bundle

D(E) .

The proof is as easy as the proof of Lemma 1-2-1.

Lemma 2~2-2. (1) QS(Sl , F., P, 1) ® R, is a free R, ®
Rz-module on odd dimensional genei:ators.

(2) Qg(sl i Fpr Fy) " R, is a free Gg2, ®R2—module on
even dimensional generators.

This lemma will be proved in the next section 2-3.

Lemma 2-2-3. There are S¢, @ R,-module homomorphisms £

and g of degree O
Geost ; G')®R2<_‘L___?S7.*(sl ; 6, ¢ @ R,
g
satisfying £ o g = identity.
This lemma will be proved in the section 2-4.

These lemmas assu,&e of Lemma 2-1~2 as follows. By Lemma
2-2-3 S?_‘*(Sl : 6, G Q® R, is a direct summand of 522(51 ;

G, 6" Q R,. Since S.ES(SI i 6, 6 ® R, is a free G, ®R2'

module by Lemma 2~2-2, S?,‘,(Sl ; G, G Q® R, is a free SE_* ®R2

module by Conner-Smith [4 ; Proposition 3.2]. The dimensions

of generators are obtained from Lemma 2~2-2 as desired.
Thus Lemma 2-1-2 is proved.

Now the remaining subjects to prove the main theorem are to

prove Lemmas 2-2-2 and 2-2-3.

2-3. The proof of Lemma 2-2-2

13
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Let H be a closed subgroup of Sl. An element jD'e P (H)

gives a homomorphism

Jo : H—>S0(2r).

We denote the centralizer of the image of Jo in S0(2r) by

C(f). And we set

A={m, pm)|[hen].

This is a normal subgroup of Sl

X C(/°).

Let E X be an oriented Sl-vector bundle representing

0 1
2r,s

S0(2r) ~bundle associated to E —X. By the natural way E is

a class in B (s™ ; H,J°), and %‘—9X be the principal

given a left Sl—action and a right SO(2r)-action. We set

]
I\
~n
(1)
m
e}
o g
6
It

e- (h)  for all he H}.

The left Sl—action on B induces a left Sl-action on PF. The

~S

right SO(2r)-action on E also induces a left C(j°)—action

defined by Y e = e°7—l for Y € C()o).» So we have a left

Sl X C(/D)-action on F, and all isotropy groups of points in

F are equal to A . Then we have a principal Sl R C(j°)/23-
bundle |
1 1
F—F/(S™ X C(f)/A) = X/S”.
Then

Lemma 2-3-1 (Conner-Floyd (3], Ossa [5]). By corresponding

E—>X to F-—=>X/Sl we obtain an S;i*—module isomorphism

0 1 ns 1
Byr,s(S" # Hi Y ¥ Sl i 4 BST X Clp)/an).

For the proof of Lemma 2-2-2, it suffices to prove the
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following lemma.

Lemma 2-3-2. For any closed subgroup H of Sl and any

fGP(H), S'P_,.,(B(Sl S C(f’ )/Aa)) @ R, 1is a free 9_*@) R,-module

on even dimensional genrators.

Proof. Considering Sl to be the unit sphere in Cl, we

let
py = st—>u()

1

be the representation of S defined by

Pytz) = (29, =z est.

Let

i:H—sY, and 1 : U(L)—>0(2)

be the natural inclusions. Then

{zfjilﬁiféjgg-(%)-:-l-}

gives a complete set of{(rﬁal) irreducible representations of
non-trivia '
H if the order o(H) of H 1is odd or H is equal to Sl.

For H of even order we let
N\ ¢ H— 0(1)
be the representation of H defined by
A = (n°F/2) e,
Then
(gl Bsy oo}

gives a complete set ofr(real) irreducible representations of
non- tw‘v»‘a( .
H of even order.
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From the above remarks and elementary computations we see

that for any f’ € P(H) C(f) is isomorphic to
Ulry)X =-° XU(r__;) X 80(r,)

a-1
for some sequence (r,,-++, r ¥ ) with dimf = ZZ r.
1 a-1 a j=1 ]
+ ra. Moreover we see that r, = 0 if H is of odd order
or Sl.
For 1$b S a let

Pp * H—>U(ry) (or 50(r)) 4if b = a)

be the composition
N proj
g L ClpL) 2 UlrdX X Ur_ _,) X 80(r,)) —— Ulry) (or sO(r,)).
Then Py, is extendable to Sl such that if b ¥ a the image
of_ pb lies in the center of U(rb) , and we denote this exten-

sion by the same symbol Py - We set

A = {(h, py(n)) | h e H}

Then there is an epimorphism from S:L X C(f’) to U(rl)x
X Ulr,_4) X (st x sO(x_)/A"') which sends (z, %y,°°°, X;) to
(pl(z)'lxl,u-, pa_l(z)-lxa_l, [z, xa]) . and the kernel of this

homomorphism is 4\ . So we obtain an isomorphism

(2-3-3) st x C(jo V/a FUlrg) X -+ X U(r,_q) X (Slx SO(r)/a’').

(1) The case in whieh H is of odd order or Sl: We obtain

Q2 « ® Ry-module isomorphisms

QRu(BISTX C(P)/A)) ® Ry YR (BX) ® R,
Y H(BX 7 R) @ Q. BR,),
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where BX = B(U(rl) Roeoe X U(ra_l) X (Sl/H)) . The first isomorphism
is obtained from (2-3-3), and the last one is obtained from
Theorem 1-3-1. Since H_(BX ; R2) is a free R2—module on even
dimensional generators, g*(B(SlX C(f’)/A)) ) R, is a free

52* & Rz-module on even dimensional generators.

(2) The case in which H 1is of even order (The following
method is largely due to Ossa [5],[6]): We set

1

A" ={(1, 1, (-1, -1)} C s7x50(x,).

Then we obtain an isomorphism

(2-3-4) stxso(r))/a' ¥ stx so(z)/a".

1

Let T' be a maximal torus in 87X So(ra) such that T

contains A". Then T =T'/A" 1is a maximal torus in stx
so(r, ) /.
H*(sTX S0(r_)/A" 7 2) and H*((s'x sO(x))/A™/T ; 2)

have no odd torsion. So the canonical homomorphism

* 1 "y . .
H*(B(S"X SO(r,)/A") ; 2,) = H*(BT ; 2)

is injective for any odd prime p by Borel [l; Proposition 29.2].
Hence H*(B(SlX SO(ra) /") : 2) has no odd torsion and

1 " - . - .
Hodd(B(S X SO(ra)/A ) ; Z2) is a 2-torsion group.

We obtain 51* 4) Rz-module isomorphisms

Qu(B(sTx c(p)/n)) O Ry & Ry (BY) ® R,
¥ H,(BY ; R,) ®R2(SE*®R2),

where BY = B(U(r))X =++X U(r__) X (STX80(r))/A")). The first

isomorphism is obtained from (2-3-3) and (2-3-4), and the last
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one is obtained from the above argument and Theorem 1-3-1.
. = ] l "o, : .
Hogq(BY 7 Ry) = 0 since H_,.(B(S™X sO(r)/A" i 2) is a
2-torsion group. Then SE*(B(SIX c(j> Y/A)) & R2 is a free

SE*QQRQ-module on even dimensional generators. g.e.d.
Thus Lemma 2-2-2 is completely proved.

2-4, The proof of Lemma 2-2-3

First we obtain

Lemma 2-4-1 (Ossa [5][6]). For an Sl-vector bundle E —X
(X closed ) of type (r, s, H) there exists an oriented Sl-
vector bundle E(l)——?x(l) of type (r, s, H) such that

2[E —x] = EV— xB) ) in B_ st om.

Proof. Let TU : X ——9X/S1 be the natural projection.
Let Y' be a minimal l-codimensional submanifold of X/S'l
which represents the first Stiefel-Whitney class of x/sl, and
set Y =1T_1(Y'). Then Y is a minimal l-codimensional
invariant closed submanifold of X such that X - ¥ is orient-
able.

Let U be an invariant closed tubular neighborhood of Y
in X, and set Xl = X - int U. Considering U as a disc
bundle over Y, (E|Y) ® U is equivariantly diffeomorphic to
Efu. So the antipodal involution on U induces an involution
T on E|U, which is equivariant with the Sl-action and reverses
the orientation of E|U.

Using the involution T we may obtain an Sl-vector bundle

W—V of type (r, s+l, H) as follows. W is formed from two
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copies {0}xExXxI and {1}XxEXI of EXI by identifying
(0, e, 0) with (1, T(e), 0) for all e < E|U, and V is
formed from two copies {0}XXXI and {1}X XXI of XXI
by identifying (0, x, 0) with (1, T(x), 0) for all x & U,
where I is the interval {0, 1].

Let E(l)—-> X(l) be the subbundle of W-—>V defined by

(2-4-2) E'Y =0} x (E|x) x{o} \J {1} % (%)) x {0}, ana
(2-4-3) xP) ={o}x xy % {03\ /o 12} % %, % {0}.

(1) (1)

Then E —> X is an Sl—vector bundle of type (r, s, H),

and is bordant to 2(E—X) by the bordism W-—V.

Xl is an orientable manifold. We orient the two copies

in (2-4-3) so that those orientations are reverse each

(1)

of xl

other, then X(l) is oriented since Y is minimal. So E

——>X(l) is an oriented Sl—vector bundle. g.e.d.

We may construct S?_* (\%) Rz—module homomorphisms £ and g

£
o 1. — 1.
Br's(s 7 H)® RZ(—;—Br,s(S ’ H)®R2

satisfying feg = identity. Then Lemma 2-2-3 follows from Lemma
1-2-1 and Lemma 2-2-1.
First we define f by f = £'® 1 where

1
P H) —B, (5" ; B)

6]
.
£' Br's(S

1

is the canonical homomorphism forgetting orientation of bundles.

Next we define g as follows. Let E—X be an Sl-vector

bundle over a closed manifold X of type (r, s, H), and E(l)
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(1) be an oriented Sl-vector bundle constructed by Lemma

(1)

—>X
2-4-1. We must note that E(l)~—9x can not be canonically
oriented.

< (1)

We devide into the connected components,

x) - T SAVARRAV /. N
Each A, (1 £% < n) is invariant under the Sl-action, and
E(l)lAq-—>Ad is an orientable Sl—vector bundle of type (r, s,
H). Since Ay 1is connected, E(l)lA“——>A¢_ is given exactly
two orientations. Let a%E(l)|A¢-7A¢) be the class in
BS’S(S1 ; H) which is represented by the sum of the two kinds
of oriented S'-vector bundles obtained from .E(l)]A“——aAﬁ. Then
we define cN(E(l)——9x(l)) to be the sum of a~(E(l” Ay—Ay),
A=1,***, n. We see that

g oEMox)) cuEox in s 51 om.

So we define g by

g(E~>x] @ x) = e sxP) @ X x e n,.

This is a well-defined homomorphism and satisfies feog = identity.

Chapter 3. Bordism of (Zz)k-actions

In this chapter we consider (Zz)k—actions.

We remark that

(1) any subgroup of (Zz)k is isomorphic to (Zz)a for
some a £ k, and

(2) for any subgroup H of (Zz)k, there exists a "comple-

k

¢ )%,

ment" H such that H @ ES is equal to (Z

2



For each H we fix one complement 5 throughout this chapter.

3-1 The main theorem and the key lemma

Main Theorem 3-1-l1l. For any family F in (Z_z)k, S?_*((Zz)

; F) @R, is a free S2, @ R,-module on even dimensional

generators.
Let

Hl’Hz'.oo' Ha

be a sequence of all subgroups belonging to F such that the
order o(Hi) of H; is larger than or equal to the order

o(Hi_l) of H: 4 for any i = 2,**-, a. Then the collection

Fi={Hjljéi}

k

is a family in (Zz) for alt i=1,2,"**, a, and Fa = F.

k .
Key Lemma 3-1-2. S?*((Zz) ; Fi’Fi—l)ép R, is a free S7,

@Rz-module on even dimensional generators.

This key lemma will be proved in the following sections.
We may prove the main theorem by using the key lemma as follows.

First we obtain

Proposition 3-1-3. S?_*((Zz)k i Fy) X R, is a free QL.

GD:RZ-module on a 0O-dimensional generator.

Proof. As the proof of Lemma 2-1-3 we obtain an SE*-module

21

k
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isomorphism

Q2" 5 P v QL B(2)F)

of degree 0. Since Q*(B((Zz)k)) ® R, is a free Q ,®OR,-
module on a O-dimensional generator, the proposition follows.

g.e.d.

We also obtain the following proposition and lemma by the

similar ways to Proposition 2-1-4 and Lemma 2-1-5.
Proposition ‘3—1—4 SZ ((z )k i F.O® R, = 0 for all i
* odd 2 - | 2 *
Lemma 3-1-5. We obtain a split short exact sequence

k k
0592, ((2)% 5 F,_)® R, 2R ((2)" ; F,) ® R,
——)Sl*((zz)k ; F P _) ® R,~0

of S . ® R,-modules.

From this lemma we obtain an _C,E*® Rz-module isomorphism
k k k
Q120" FOOR, ¥Q((2)%; F._OR, ®Q,((2)%; F,F,_OR,.

By Lemma 3-1-2, Proposition 3-1-3 and using the induction for i
k .
we may assert that Qp,((z,)" ; F,) ® R, is a free G2, ®R,-
module on even dimensional generators for all 1i.
Thus Theorem 3-1~1 is obtained from Lemma 3-1-2. The follow-

ing sections will be devoted to the proof of Lemma 3-1-2.

3-2. Special (Zz)k-vector bundles

Let H Dbe a subgroup of (Zz)k, and {Vl,.-..’ Vq} be a
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complete set of non-~trivial (real) irreducible representation
spaces of H. We note that any Vj (1L£ 3£ q) is a l-dimensional
vector space and q 1is equal to o(H) - 1, o(H) the orxder of

H.

Then we obtain

Lemma 3-2-1. For any (Zz)k-vector bundle E —>X of type
(r, s, H) we have a canonical equivariant decomposition of E
by (Zz)k—vector bundles Ej (3 =1,+-+, q)

q
EX® E,
i=1 3
such that the H~action on any fibre of Ej is equivalent to

Vj for j=1,-, q.

Proof. Let

V. = V. X X—X
=3 J

be the product bundle over X. Giving the trivial HE®-action on
Vj’ we may regard Vj as a (Zz)k-vector space. We define a
(Zz)k—action on ¥, by the diagonal action.
Let HomH(gj, E) be the bundle of H-equivariant homomorphisms.
For any element £ € HomH(yj, E) and g ¢ (22)k we define
g-f € HomH(zj, E). to be the composition
-1 £ g"

g .
V- ; V- 7E ——-eE.
=J =J

. . k .
This defines a (Z,) "-action on HomH(zj, E).
Let Ej be the (Zz)k—vector bundle :ZjQD HomH(yj, E). Then

the direct sum of the canonical homomorphisms



24

gives an equivariant isomorphism

q
® E,—E,
j=1 7

since all Vj's are l-dimensional. g.e.d.

A (Zz)k-vector bundle E=-X of type (r, s, H) is called
to be a special (Zz)k-vector bundle, if in the canonical decompo-
sition

q
Ex® E.
j=1 -
each Ej is an oriented vector bundle and the Hc-action on Ej
preserves the orientation of the bundle Ej.

Let V be a representation space of H which has no direct
summand of trivial action, then V 1is isomorphic to Vil ®---
@V;q for some ry,°-, ry: For any x € H we set

J(x) = {j | x non-trivially acts on Vj (1 £ 3¢ q).} '

And we denote the number of the elements of the set
J(x)(\{j]rj isodd (1€ 3 < q@.}

by O(X(V).

We define S(H) to be the set of equivalence classes of
representation spaces V of H which satisfy that ch(V) is
even for all x € H. We denote an equivalence class and its
representative by a same letter V as long as it causes no'

confusion. We note that the H-action on V is orientation

preserving for any V € S(H).



25

For V € S(H) a (Zz)k-vector bundle E — X 1is called to
be of type (r, s, H, V), if E -—>X 1is a (Zz)k-vector bundle
of type (r, s, H) and the H-action on any fibre of E 1is
equivalent to V.

Two special (Zz)k-vector bundles E —X, E->X' over closed
manifolds of type (r, s, H, V) are bordant, if there is a
special (Zz)k—vector bundle F—Y of type (r, s+l1l, H, V) such
that the restriction F|9Y—>90Y is isomorphic, as special
(Zz)k-vector bundles, to the disjoint union of E-—>X and
-(E'—>X'), where =(E'—»X') is the special (Zz)k-vectorAbundle
obtained from E'—5X' by reversing only the orientation of the
total space.

By this relation "bordant" we may define a bordism group
Bi,s((zz)k ; H, V) of all special (Zz)k-vector bundles over
‘closed manifolds of type (r, s, H, V). The direct sum
® s;OBi,s((Zz)k ; H, V) is a module over SP.* by the usual
way. We also define Bi’s((zz)k ; H) to be the direct sum
@veS(H)BzS:,s((Zz)k P H, V)

Let M Dbe an (F., Fi_l)-free oriented (Zz)k-manifold and
MHi be the set of all points x € M whose isotropy groups

are H;. When the normal bundle /4, (M)—>M, of M in
i i

1 H Hy

M is a special (Zz)k—vector bundle, M is called to be an
(Fy, Fi_l)-free oriented (Zz)k—manifold with special normal

bundle.
Two (F;, F;_,)-free oriented (Zz)k—manifolds M, M' with
special normal bundles are bordant, if there are an (Fi—l' Fi_l)-

free oriented (Zz)k—manifold V and an (Fi, Fi)-free oriented
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(Zz)k-manifold W satisfying the conditions (1-1-1),(1-1-2),
and if the two special (Zz)k—vector bundles [, (M), Ly (M)
i i

are bordant by the special (Zz)k-vector bunlde ZUH.(W)' By
i

this relation we may define a bordifly group Sﬁii((zz)k ; F.

ll

s k . .
F,_q) of all (F,, F,_q)-free oriented (Z,) -manifolds with
special normal bundles. By the cartesian product Eﬁlf((zz)k :

F.» F becomes a module over SE*.»

i-1)
Then we obtain an analogue of Lemma 1-2-1 (or Lemma 2-2-1).

Lemma 3-2-2., The correspondence 'Mf~%'Lh,(M)——7M%. induces
i i

an 92*—modu1e isomorphism

e

S k .
@ B ((Zz) ; Hi).

s X
G2 )™ 5 Fyy By ) n=r+str,s

The inverse isomorphism may be obtained by corresponding a
special (Zz)kevector bundle E—-~—>X +to the associated disc

bundle D(E).

S k ' .
Lemma 3-2-3. 52*((22) i Fyo Fi_l)® R, is a free Q,,@Rz-
module.

This lemma will be proved in the next section 3-3.

Lemma 3-2-4. There are .SB*GDRZ-module homomorphisms £

and g of degree 0
QLR ((2)7 ; Fy, Fi_l)®R2e_g___SE*((Zz) i Fio Fy_)®R,
satisfying

(1) fog = identity, and

(2) £(RS

k =
oaa((2)” & Fio Fy 1) @ Ry) = 0.
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This lemma will be proved in 3-4.

These lemmas assure of Lemma 3-1-2 as follows. By Lemma
3-2-4 S'P_,,‘((Zz)k i Fio F;_{)® R, is a direct summand of
S?,‘:f((zz)k i Fyo F,_1) ® Ry. Since SE?((zz)k i Fyo Fi_l)® R,
is a free S2,@R,-module by Lemma 3-2-3, S, (2,0 ; F,, F,_))
& R, is a free SE.*Q()Rz-module by Conner-Smith [4 ; Proposition
3.2]. The dimensions of generators are obtained from Lemma 3~
2-4 (2) as desired.

Thus Lemma 3-1—2 is proved.

Now the remaining subjects to prove the main theorem are to

prove Lemmas 3-2-3 and 3-2-4.

3-3. The proof of Lemma 3-2-3

k

Let H Dbe a subgroup of (Zz) and {Vl,“', Vq} be a

complete set of non-trivial irreducible representation spaces

(g = o(H) - 1). For any element V € S(H) we set
So(V) = SO(rl)X e X SO(rq)

where ryett*y rq are defined by
~ rl [ B B ) r
VIV ® O] qu.
Lemma 3-3-1. There is an Sg,-module isomorphism

S k ~ c
By g((Z2)" 5 H, V) 2 QR (B(H X s0(V))).

By Theorem 1-3-1 &, (B(H®X s0o(V))) ® R, is a free .0

. . c
R,-module isomorphic to H,(B(H X SO(V)) ; R2)®R2(SE*® R,) .

Hence we obtain Lemma 3-2-3 from Lemmas 3-2-2, 3-3-1.
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Proof of Lemma 3-3-1. Let E—>X be a special (Zz)k-vector
(r, s, H, V). We obtain the canonical equivariant

q
Exy @ E.

bundle of type

decomposition of E by (Zz)k-vector‘bundles
j=

is an oriented vector

from Lemma 3~2-1.
gC freely acts on X, and each E.
acts orientation preservingly. Let
and

bundle on which Hc
x/H¢ — BHC

h
: X/HS —> BSO(r )
X — x/u°

and the

h.
3

be classifying maps of the principal bundle
oriented vector bundles Ej/Hc-—éx/Hc, respectively. Then h

and hj (j =1,--+, q) define a map
hj : X/H"—>BH X TT BSO(r.)a B(H X so(V)).

= j=l
By corresponding E —X to h)(TThj we obtain a homomorphism

hxTT
j=1

J
BS ((2,)% ; B, v) —Q_(B(E % s0(W))
r’s 2 ' L4 S hd

Let

The inverse homomorphism is obtained as follows.
h : M —B(H X s0(V))
represent a class in QES(B(HCX SO(V))). Then h defines maps

h : M—> BHE® and
(j =

: M———)BSO(rj)

hj l ’ ¢ o 0 ’ q) N
M—M be the principal BE°~ bundle induced by h,

T

Let
and E.—¥M be the oriented vector bundle induced by h_.o7L,
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We may define a (Z,) K _action on C)quEj-?M so that the bundle
is a special (Zz)k-vector bundle of type (xr, s, H, V) and the

correspondence h to GD q Ej—f>M defines the desired inverse

homomorphism. g.e.d.

3-4., The proof of Lemma 3-2-4

For the proof we need the following lemma.

Lemma 3-4-l1l. For a (Zz)k—vector bundle E —X (X closed )

of type (r, s, H) there exists a special (Zz)k-vector bundle

E(q __>qu) of type (r, s, H) such that

q _ e (Q) (q) - k |
2% [E—X] = [E'¥—Xx'?] in Br,s((zz) H) ,

’

where g = o(H) - 1.

Proof. We have the canonical decomposition

EY¥®. _13

by Lemma 3-2-1.
For 0£mg g let D(m) be the following statement:
There exists a (Zz)k-vector bundle E(m)—~>x(m) of type
(r, s, H) such that

(1) in the canonical decomposition

(m)
®313

the direct summands Eim),"', Eém) are oriented vector bundles
on which H® acts orientation preservingly, and

(20 2"E—=x] = E™-x™] a0 B _((2)% ; m).
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We may prove Lemma 3-4-1 by the induction for m. The
statement D(0) is trivially valid. 1In the following we show
that the statement D(m) implies the statement D(m + 1l).

. c (m) (m)

Since H freely acts on X ' Em+l

a vector bundle. Let Y' be a minimal l-codimensional sub-

(m)

/Hc——)x(m)/Hc is also

/Hc which represents the first Stiefel-Whitney

class of the vector bundle Eéfi/Hc-—ax(m)/Hc, and set Y =

11-1(Y') where U : x(m)--—’zx(m)/Hc is the natural projection.

manifold of X

Then Y is a minimal l-codimensional invariant closed submanifold

(m) (m)

of X m+l
(m)

satisfying that the restricted vector bundle of E

on X - Y 1is orientable so that g® acts orientation

preservingly.

Let U Dbe an invariant closed tubular neighborhood of Y

in X(m), and set X1 = X(m)- int U, Considering U as a disc

bundle over Y, (E(m)fY) @ U is equivariantly diffeomorphic to
E(m)lU. So the antipodal involution on U induces an involu-

(m) lu.

tion T on E As in the proof of Lemma 2-4~1, pasting

two copies of E(m)lx1 each other by T, we may construct a

(m+1)

new (Zz)k-vector bundle E(m+l)-—>x of type (r, s, H)

such that
2( ™o x My o (gmHl)_p(mel)y 5y B, (20" ; m).

Then

2™ ey = (5P x (D),

by the statement D(m).
In the canonical decomposition

q
E (m+1) x @ B (ra+1)

=173
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each E§m+l) is equivariantly isomorphic to the bundle

(m) (m)
(3-4-2) (B lxl)\/T<Ej | %))

For 1< j$m we give a same orientation to the two copies

of the vector bundle Egm)txl in (3-4-2), then E§m+l) is

an oriented vector bundle on which H® acts orientation preserv-
ingly. For 3j =m ; 1l we orient the two copies of Eém)lxl

in (3—442) such that those orientations are reverse each other,

then E§m+l) is an oriented vector bundle since Y is minimal,

and H® acts orientation preservingly on E§m+l).
Thus the statement D(m) implies the statement D(m + 1).

g.e.d.

We may construct SE*GQRz—module homomorphisms £ and g

N

S k k
Br,s((zz) ; H)Q9R24-;—-Br’s((zz) ; HIQR,

satisfying that

(3-4-3) fog = identity, and

(3-4-4) if r + s 1is odd, £ is the zero homomorphism.

Then Lemma 3-2-4 follows from Lemma 1-2-1 and Lemma 3-2-2.

First we define f by £ = £'Q 1 where
VoL oS k | k |
f : Br’s((zz) K H) -ﬁBr,S<(ZZ) H H)

is the canonical homomorphism forgetting the "speciality" of

bundles. Then we obtain

Lemma 3-4-5. If r + s is odd, every element in

f'(Bi s((Zz)k ; H)) is of order 2. So the statement (3-4-4)
I 4
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follows.
Proof. Let V be any element in S(H), and
K 85 _((z,)% ; 1, v) r Q@ _(B(H®X 50(V)))
° Tr,s 2 v = s

be the isomorphism obtained by Lemma 3-3-1. And let x be
any element in Bi,s((zz)k ; H, V). If s is odd, then %Jx)
is of order 2, and f'(x) 1is so.

If r+ s is odd and s 1is even, we may construct an

element x € BS ((Zz)k ; H, V) such that
r,S

i

(3-4-6) x + x = 0, and

i

(3-4-7) £'(x) £1(x).

Then f'(x) is of order 2.

x 1s constructed as follows. Let E —X be a representa-

tive of x, and

E ¥ «_aB.
© 52155
be the canonical decomposition. We define an oriented vector

bundle Ej such that if dim Ej is even Ej is Ej’ and if

dim By is odd Ej is the oriented vector bundle obtained from
E. by reversing the orientation. Let X be the class represent-

J

ed by ®&® k! ﬁj—A?X which is given the same orientation of the
J=1

total space as E.
The number of j's with dim Ej = odd 1is odd since r is

odd. From this fact the condition (3-4-6) follows. The condition

(3-4-7) follows easily. g.e.d.
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Next we define g as follows. Let E—X be a (Zz)k-
vector bundle over a closed manifold X of type (r, s, H),

and E(q)-%>x(q) be a special (Zz)k-vector bundle constructed

by Lemma 3-4-1, Let

(@) a .(q)
E @ 521E5

be the canonical decomposition. We must note that E(qx—e>x(q)
can not be canonically "specialized", i.e., each qu) can not

be canonically oriented. We devide X(q) into the form
X(q) = Al\/ --- \Un
n

such that each A, (1 £ & £ n) is invariant under the (Zz)k-
action and each Au/(Zz)k is connected. Then each E(q)IAd

—>Ay 1is a (Zz)k-vector bundle, and specialized to exactly

29 kinds of special (Zz)k-vector bundles. We sum up the 24

special (Zz)k-vector bundles obtained from E(q)lAdjﬁ>Ad, and
denote the class of the sum in B‘:,s((zz)k ; H) by
D] a a0,
And we set
o~E (V- x (@ =Zo(21 ~EDn,— 2y,
Then we see that
£1( (e P x (D) = 229y,
So we define g by
GE—X] @ x) = o+ P—x (D) ® %/2%9, x ¢ R,.

This is a well-defined homomorphism and satisfies (3-4-3).

Osaka University
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