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Borna Disease Virus (BDV) is a neurotropic virus that causes a persistent infection in the 

central nervous system (CNS) of many vertebrate species. Although a severe reactive gliosis 

is observed in experimentally BDV-infected rat brains, little is known about the glial reactions 

contributing to the viral persistence and immune modulation in the CNS. In this regard, we 

examined the expression of an astrocyte-derived factor, S100B, in the brains of Lewis rats 

persistently infected with BDV. S100B is a Ca2+-binding protein mainly produced by 

astrocytes. A prominent role of this protein appears to be the promotion of vascular 

inflammatory responses through interaction with the receptor for advanced glycation 

endproducts (RAGE). Here we show that the expression of S100B is significantly reduced in 

BDV-infected brains despite severe astrocytosis with increased glial fibrillary acidic protein 

immunoreactivity. Interestingly, no upregulation of the expression of S100B, or RAGE, was 

observed in the persistently infected brains even on incitation with several inflammatory 

stimuli, including lipopolysaccharide. In addition, the expression of the vascular cell adhesion 

molecule, VCAM-1, as well as the infiltration of encephalitogenic T-cells, was significantly 

reduced in persistently infected brains in which an experimental autoimmune 

encephalomyelitis was induced by immunization with myelin-basic protein. Furthermore, we 

demonstrated that the continuous activation of S100B in the brain may be necessary for the 

progression of vascular immune responses in neonatally infected rat brains. Our results 

suggested that BDV infection may impair astrocyte functions via a downregulation of S100B 

expression, leading to the maintenance of a persistent infection. 
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Astrocytes are activated in response to damage to the central nervous system (CNS) caused by 

ischemia, trauma, neurodegenerative disorders, autoimmunity, and infectious diseases (35). 

The process by which reactive astrocytes are recruited to the injured CNS remains rather 

obscure, but astrocytosis is postulated to play an important role in the maintenance of 

homeostasis in the CNS (5). Reactive astrocytes show higher levels of adhesion molecules 

and also increase the production of a variety of cytokines, chemokines, growth factors, and 

neuropeptides (35), consequently eliciting a brain inflammatory response. Although the 

modulation of CNS-based immune responses followed by astrocytosis seems to be engaged in 

negative effects on the injured brain, reactive astrocytes are nevertheless essential for the 

repair of damage to immune privileged organs attacked by pathogens (5,7,35). 

Infections by neurotropic viruses generally reactivate glial cells in infected brains. 

Borna disease virus (BDV) is a highly neurotropic virus that causes severe neurological 

disorders in many vertebrate species (18,38). Like many pathogens targeting the CNS, BDV 

strongly induces glial reactivation in the brains of experimentally infected animals (16,39,50). 

BDV characteristically establishes a persistent infection without any cytopathic effects in 

brain cells (8,12,14,39), and so studies on this virus provide a good understanding of the 

modulation of the brain immune response during the persistence of CNS pathologies. 

Numerous studies have demonstrated that persistent infections of BDV induce a chronic 

astrocytosis, as well as a stable upregulation of the expression of proinflammatory cytokines, 

such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α, in the brain (16,31,39). 

Despite such lasting inflammatory responses, this virus efficiently maintains the infection and 

has a life-long survival in the CNS. At present, modulation of the immune responses, such as 
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Th1-specific T-cell tolerance, has been proposed as a mechanism for the maintenance of BDV 

persistence in mice (8,12,14). Although reactive astrocytes appear to be involved in the 

homeostatic preservation of infected brains, little is known about the glial reactions 

contributing to the persistence of CNS pathologies or to the regulation of the inflammatory 

responses in damaged brains.  

In this study, we examined the expression of an astrocyte-derived factor, S100B, in rats 

persistently infected with BDV to understand the glial reactions during a chronic viral 

infection. S100B is an EF-hand Ca2+-binding protein mainly produced by astrocytes that 

exerts auto and paracrine effects on neural cells, stimulating cellular survival, proliferation, 

and differentiation (1,3,6,32,40). A prominent role of this protein appears to be the promotion 

of inflammatory responses, as a cytokine, through the binding to its cellular surface receptor, 

RAGE (receptor for advanced glycation endproducts) (36,37,51). Here we demonstrate that 

the expression of S100B is significantly reduced in persistently infected brains despite severe 

astrocytosis with increased glial fibrillary acidic protein (GFAP) immunoreactivity. 

Interestingly, no upregulation of the expression of S100B, or RAGE, was found in the brains 

of persistently infected rats exposed to a bacterial lipopolysaccharide (LPS) and immunized 

with myelin-basic protein (MBP), suggesting a constitutive downmodulation of S100B in the 

persistently infected brains. Furthermore, expression of the vascular cell adhesion molecule 

(VCAM-1) in the vascular endothelium and the subsequent vasodilatation were 

downregulated in the infected rat brains sensitized with MBP. We also showed that S100B 

signaling may be necessary for the development of mononuclear cell infiltrates via the 

activation of vascular immune responses in neonatally infected rat brains. Our findings may 
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provide a novel mechanism by which chronic viral infections abrogate vascular inflammatory 

responses through the downregulation of an astrocyte-derived cytokine, S100B, leading to a 

persistent infection. 

 

Materials and Methods 

Preparation and inoculation of the virus.   A viral stock was prepared from the 

homogenate of rat brains infected with BDV strain huP2br (25), and the titer of the BDV 

source was measured, as described previously (49). Briefly, semiconfluent monolayers of C6 

cells were inoculated with serial ten-fold dilutions of the cell-free BDV stock. Three days 

after the inoculation, the cells were fixed with 4% paraformaldehyde and subjected to 

immunofluorescence staining. The viral titer was calculated as focus forming units (FFU) per 

milliliter of cell-free BDV stock.  

For viral infection, Lewis rats (SLC, Shizuoka, Japan) within 24 h after birth (neonate) 

and at 4 weeks (wks) old (adult) were intracranially inoculated into the left-brain hemisphere 

with 2,000 and 20,000 FFU of BDV stock per animal, respectively. 

 

Administration of LPS.   BDV-infected and uninfected rats were injected intraperitoneally 

with 200 or 500 µg/kg of LPS (E. coli strain O111:B4; Sigma-Aldrich, St. Louis, MO) at 5 

wks postinfection (p.i.). The rats were sacrificed at 24, 48 and 72 h after the injection. As 

age-matched controls, animals were injected with phosphate-buffered saline (PBS) and 

sacrificed at 72 h after the administration. 
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Induction and clinical evaluation of EAE.   Experimental autoimmune encephalomyelitis 

(EAE) was induced in at least 7 Lewis rats in each BDV-infected and uninfected group by 

subcutaneously injecting 100 µg of MBP (Sigma-Aldrich) in the lateral left upper leg. The 

injected emulsion contained 2 mg of MBP in 1 ml of PBS mixed with 1 ml of complete 

Freund’s adjuvant (CFA, Wako Junyaku, Osaka, Japan). For immunohistochemical (IHC) 

analysis, animals were sacrificed at 14 days after the sensitization, at which time the clinical 

symptoms of EAE reached a peak in the uninfected controls. Animals were scored daily for 

clinical signs of disease on a severity scale ranging from 0 to 6: 0, normal; 1, limp tail; 2, hind 

limb weakness; 3, unilateral hind limb paralysis; 4, bilateral hind limb paralysis; 5, bilateral 

hind limb paralysis and incontinence and 6, moribund. The results are presented as the mean 

daily clinical score of each experimental group. 

 

Inoculation of recombinant BDV N antigen.   The recombinant BDV nucleoprotein (N) 

protein was produced as reported previously (48). Briefly, the cDNA encoding BDV N was 

inserted into the plasmid pGEX, and the recombinant protein was expressed in E. coli as a 

fusion construct with glutathione S-transferase (GST) and then purified by using glutathione 

sepharose 4B. The purified protein was cleaved by Factor Xa to remove the GST, and the 

endotoxin in the protein solution was removed by a polymyxin B-coupled matrix (Bio-Rad 

Laboratories Inc., Hercules, CA). The recombinant N (rN) was analyzed using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). For sensitization, 50 µg of 

BDV rN was injected into rats at 3 wks after the inoculation of BDV.  
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Inoculation of soluble form of RAGE.   To block S100B signaling, a soluble form of 

RAGE (RAGE-Fc; R&D Systems Inc., Minneapolis, MN), which is a recombinant, truncated 

form of rat RAGE, spanning the extracellular domain and serving as a decoy (34), was 

employed. Rats received 100 µg/kg of RAGE-Fc at 2-day intervals by intraperitoneal (i.p.) 

injection starting from the day of immunization with the rN.  

 

Immunoblotting analysis.   Brain extracts of Lewis rats were prepared by sonication in 

lysis buffer (1% NP-40, 50 mM Tris-HCl pH7.5, 1 mM EDTA, 100 mM NaCl) with a 

protease inhibitor cocktail (Nacalai Tesque Inc., Kyoto, Japan). The aliquots were resolved in 

SDS-PAGE sample buffer. Equal amounts of total protein were subjected to 12% SDS-PAGE. 

and transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA). 

The membranes were blocked with 5% skimmed milk in PBS-0.1% Tween20 (PBST). The 

membranes were reacted with antibody against RAGE (1:100, Santa Cruz Biotechnology Inc., 

Santa Cruz, CA), HMGB1 (20) (1:1,000), tubulin (1:4,000, Sigma-Aldrich) at room 

temperature, or S100B (1:2,000, BD Bioscience, San Jose, CA) at 4 ºC. After being washed, 

the membranes were incubated with horseradish peroxidase-conjugated secondary antibodies 

(Jackson Immunoresearch Laboratories, West Grove, PA) for 1h at 37 ºC. Reacted proteins on 

the membrane were then visualized using the enhanced chemiluminescence system (ECL 

Western Blotting kit; Amersham Pharmacia Biotech, Uppsala, Sweden). The intensity of each 

band was quantified using NIH image software. 

 

Histological and immunohistochemical analyses.   Rat brains were fixed in 4% 



 8

paraformaldehyde in PBS and embedded in paraffin. Deparaffinized sections (5 µm) were 

stained with hematoxylin and eosin (H & E). For IHC analysis, thin sections (4 µm) were 

incubated with trypsin solution (0.1% trypsin, 0.1% CaCl2, and 0.05 M Tris-HCl, pH 7.6) for 

15min at 37 ºC. Endogenous peroxide was quenched with 0.5% HIO4. After a blocking step, 

the sections were incubated with rabbit anti-GFAP mouse antibody (1:1,000, Lab Vision, 

Fremont, CA), anti-GFAP rabbit antibody (1:1,000, Chemicon, Temecula, CA), anti-rat CD68 

(ED-1) (1:100, Serotec Ltd., Kidlington, Oxford, UK), anti-CD4 (1:100, Serotec Ltd.), 

anti-VCAM-1 (1:200, BD Bioscience), anti-RAGE (1:1,000) and/or anti-S100B (1:2,000, BD 

Bioscience) antibodies. After several washes, primary antibodies were detected by incubation 

with a biotinylated goat anti-biotin peroxidase complex (1:200, Vector, Burlingame, CA). 

Thereafter, the sections were incubated with the avidin-biotin peroxidase complex (1:125, 

Vector). Specific reactions were visualized with 3’,3’-diaminobenzidine-tetrahydrochloride 

(DAB). For immunofluorescence analysis, fluorescein-conjugated streptavidin (Vector) was 

used instead of the ABC kit. Alexa Fluor 555-conjugated secondary antibodies (Invitrogen, 

San Diego, CA) and 4’,6’-diamidino-2-phenylindole (DAPI) were used for counterstaining. 

Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) was 

performed using an in situ cell death detection kit (Roche Molecular Diagnostics, Pleasanton, 

CA). For IHC analysis, polyclonal antibodies to human RAGE were generated by 

immunization of a rabbit with recombinant RAGE peptide (amino acid 102 to 346) expressed 

by E. coli. 

 

Quantification of VCAM-1 expression in rat brains.   For a quantitative analysis of 
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VCAM-1 levels in the brain, an image of the area of interest was captured using a Nikon 

E600 microscope and charge-coupled device camera (Hamamatsu Photonics Inc., Hamamatsu, 

Japan) under the same optical and lighting conditions. The average of the optical density of 

positive signals was measured in four different fields of the cerebellum in each section for 

four animals by using Photoshop and NIH image software. Using the software, the pixel 

intensity of DAB staining was extracted above the threshold to determine the optical density. 

 

Semiquantitative RT-PCR for chemokine expression.   Total RNA was extracted from rat 

brain homogenates by using the RNA isolation reagent TRIzol (Invitrogen). First-strand 

cDNAs were synthesized from aliquots of 2 µg of total RNA by the Thermoscript RT-PCR 

System (Invitrogen). PCR primers used were as follows: macrophage-inflammatory protein 

(MIP)-1β-sense, 5’-ATG AAG CTC TGC GTG TCT GCC TTC-3’; MIP-1β-antisense, 

5’-TCA GTT CAA CTC CAA GTC ATT CAC-3’; monocytes chemoattractant protein 

(MCP)-1-sense, 5’-ATG CAG GTC TCT GTC ACG CTT CTG GGC-3’; MCP-1-antisense, 

5’-CTA GTT CTC TGT CAT ACT GGT CAC-3’; GAPDH-sense, 5’-ACC ACA GTC CAT 

GCC ATC AC-3’; GAPDH-antisense, 5’-TCC ACC ACC CTG TTG CTG TA-3’. PCR was 

performed in a total volume of 25 µl containing 1 µl of cDNA and 2U of Taq polymerase 

(TaKaRa Ex taq; Takara Bio Inc., Siga, Japan). The PCR was performed at 94 ºC for 30s, the 

annealing temperature for 30s, and 72 ºC for 30s. The optimal number of amplification cycles 

and annealing temperature were changed for each primer.  

 

Quantification of proinflammatory cytokines in rat brain.   Estimations of the 
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expression levels of proinflammatory cytokines, IL-1β and TNF-α, in BDV-infected rat brains 

were performed by using enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems 

Inc.), following the manufacturer's directions. Plates were analyzed at 492 nm, and levels of 

IL-1β and TNF-α were determined by comparison to a standard curve. The data were 

normalized to the amount of total protein used for the analysis. 

 

Statistical analysis.   Data were expressed as means +SEM. Statistical analyses were 

performed using unpaired Student’s t-test or one-way analysis of variance followed by post 

hoc Dunnett’s test compared with the control group. An n=4 was used for each treatment 

group in statistical analyses, except indication. 

 

Results 

Reduced expression of S100B, but not GFAP, in persistently infected rat brains.   To 

understand the environment in the CNS during a persistent infection of BDV, neonatal (NBI) 

or 4-wks old adult BDV-infected (ABI) Lewis rats were sacrificed at 5 wks p.i.. As shown in 

numerous studies (21,39), no significant immune cell infiltration was observed in NBI rats, 

whereas ABI rats showed a slight encephalitis with perivascular mononuclear cell infiltrates. 

Furthermore, a marked astrocytosis, as well as microgliosis, was observed in both NBI and 

ABI rat brains at 5 wks p.i. and was present during the persistent stage of BDV infection in 

the rats (data not shown).  

S100B is a Ca2+-binding protein mainly produced by astrocytes in the CNS (35,37). The 

expression level of S100B is most likely to be correlated with brain injuries, as well as the 
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degree of astrocytosis (37,44,51), suggesting that the expression level may be a biomarker for 

the activity of astrocytes in inflamed brains. We therefore monitored the expression of S100B 

in persistently infected with BDV, in addition to the expression of GFAP, which is also 

specific to astrocytes. The immunoreaction of S100B is mainly found in the GFAP-positive 

astrocytes in the rat brain (Fig. 1A). In both NBI and ABI rat brains, a marked increase of 

GFAP staining was demonstrated at 5 wks p.i. (Fig. 1B). In contrast, immunoreactivity of 

S100B appeared to be weaker in the persistently infected brains than uninfected brains in both 

the cerebral cortex and cerebellum (Fig. 1B). We estimated GFAP and S100B levels by 

Western immunoblotting at 5 wks p.i.. As shown in Fig. 1C, although persistent infections 

induced an upregulation of GFAP expression in association with the astrocytosis, interestingly, 

the expression of S100B was significantly reduced at 5 wks p.i. in both NBI and ABI rat 

brains.  

 

No upregulation of S100B or RAGE expression in the brains of persistently infected rats 

administered LPS.   To understand whether the expression of S100B is constitutively 

reduced in the persistently infected brain, we intraperitoneally injected LPS into NBI rats at 5 

wks p.i., owing to previous studies demonstrating that the i.p. injection of LPS rapidly 

induces the release of proinflammatory cytokines, such as IL-1β and TNF-α, in the brain, and 

subsequently upregulates the expression of S100B (19,43). We used NBI rats in the 

subsequent experiments, since the expression of S100B represents an intense increase in the 

brains from the second postnatal week onwards (45), suggesting that it could be difficult to 

detect the upregulated level of S100B by additional inflammatory stimuli in ABI rat brains. In 
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addition, the inflammatory responses by the stimuli could be easy to detect in the NBI rat 

brains in which the background infiltrations developed by the initial infection are lacked. On 

the injection of LPS, the expression of IL-1β was induced in both infected and uninfected rat 

brains, although more so in the NBI than mock-infected rats (Fig. 2A). In contrast, the 

expression of S100B was slightly reduced in the cerebellum of NBI rats at 48 h after the 

injection of LPS, while it was significantly increased in the uninfected rats (Fig. 2B). To 

confirm the distinct reactivation of S100B in the brain, we performed an IHC analysis using 

antibodies against the glial antigen. Consistent with the immunoblotting, no upregulation of 

S100B expression was observed in the cerebellum of LPS-injected NBI rats, rather levels 

appeared to be slightly reduced in the infected brains (Fig. 2C).  

That there was no upregulation of the expression of S100B in persistently infected 

brains suggested that the amount of this protein that is secreted may be also reduced in the 

CNS. To examine the secretion of S100B in the brain, we investigated the induction level of 

an S100B receptor, RAGE, in BDV-infected rat brains, owing to the fact that the expression 

of RAGE is upregulated by the direct interaction of S100B with RAGE (51). On the 

administration of LPS, the expression of RAGE was significantly upregulated in the 

cerebellum of uninfected rats by 48 h postinjection, whereas no expression of RAGE was 

induced in the persistently infected brains (Fig. 2D). It is worth nothing that the expression of 

an alternative RAGE ligand, HMGB1, was upregulated in both infected and uninfected rat 

brains by LPS (data not shown), indicating that the unresponsiveness of RAGE expression is 

likely to be correlated with the decrease in the secretion of S100B in the infected brain.  
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Reduced stress resistance of brain cells in persistently infected NBI rats.   The 

downregulation of S100B and RAGE expression suggested that the functions of S100B may 

be impaired in the NBI brains. Thus, we examined the vulnerability of neural cells under a 

stressful environment because previous reports demonstrated that S100B expression prevents 

neural cell apoptosis at an appropriate concentration via interaction with RAGE (17). In this 

regard, we estimated apoptotic cell death in the LPS-injected NBI rat brains, which show a 

decrease in the level of both S100B and RAGE reactivities (Fig. 2). The administration of 

LPS is known to upregulate production of nitric oxide in the brain, showing that LPS 

contributes to the development of a stressful environment within the CNS (42). We observed 

the immunoreactivity of GFAP, as well as conducted TUNEL staining. As shown in Fig. 3A, 

the reaction level of GFAP seems to be slightly reduced by the injection of LPS in 

BDV-infected brains at 48 h after the injection, although uninfected rats exhibited 

significantly enhanced GFAP expression in the brain. The immunoblot data also verified the 

reduced expression of GFAP in the NBI cerebellum (see Fig. 2B), suggesting that the number 

of astrocytes may decrease in the infected brain on the injection of LPS. In addition, the 

largest numbers of TUNEL-positive cells were found in the LPS-injected NBI rats at 5 wks 

p.i., whereas the uninfected rat brains rarely contained positive cells (Fig. 3B). The 

TUNEL-positive cell population in the NBI brains contained both GFAP-positive and 

negative cells in the cerebellum (Fig. 3B). These results indicated that S100B signaling may 

be disturbed in the persistently infected NBI rat brains. 

 

Reduced vascular inflammatory responses in the brains of persistently infected rats 
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immunized with MBP.   S100B signaling is also known to induce inflammatory reactions 

through the activation of adhesion molecules on vascular endothelial cells via binding to 

RAGE (4,15,46,51). The inhibition of RAGE signaling is also known to suppress EAE via a 

selective blockage of encephalitogenic T-cell infiltration in the mouse CNS (51). These 

findings give rise to the possibility that brains persistently infected with BDV may have 

attenuated vascular inflammatory responses to inflammatory stimuli. To understand this, we 

examined the development of EAE in NBI rats immunized with MBP. We focused on the 

cerebellum region because this region showed relatively clear vascular inflammatory 

responses in control rat brains by MBP-injection. Following immunization at 7 wks p.i., NBI 

rats exhibited a delayed progression of EAE and appeared to induce a significantly less severe 

EAE than MBP-immunized, mock-infected rats over the observation period (Fig. 4A). We 

detected the expression of S100B, as well as RAGE, in the cerebellum at 14 days after the 

sensitization. As shown in Fig. 4B and C, no upregulation of both S100B and RAGE 

expressions was detected in the MBP-immunized, NBI rat cerebellum, while a significant 

increase in levels of the proteins was detected in the mock-infected rat brains. The H & E 

staining revealed that the EAE-developed, mock-infected rats had an apparently increased, in 

terms of number and diameter, cerebellar vascularity compared with the MBP-sensitized NBI 

rats (Fig. 4D, arrows). The IHC revealed that the immunized, mock-infected rats showed 

strong reactivity to S100B, RAGE and VCAM-1 in the perivascular area or vascular 

endothelium in comparison with BDV-positive rats (Fig. 4E, arrows and F). Furthermore, a 

large number of CD4-positive cells were found around the neovessels in mock-infected 

animals (Fig. 4E, arrow). This observation suggested that the persistent infection may prevent 
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the adhesion molecule being expressed on vascular endothelial cells through the 

downregulation of S100B expression, resulting in reduced responses during vascular 

inflammation in the brain. 

 

S100B signaling is necessary for the development of mononuclear cell infiltrates in NBI 

rat brains.   The results above suggested that the downregulation of S100B expression may 

be responsible for the elimination of the vascular inflammatory responses, as well as the 

infiltration of encephalitogenic T cells, in persistently infected NBI brains. Therefore, we 

sought to determine whether the expression level of endogenous S100B is associated with the 

development of the mononuclear cell infiltrates in the NBI brain. Previous studies have 

demonstrated that immunization of the viral antigen into BDV-infected animals maintains 

inflammatory responses in the brains (9,12). Thus, we immunized NBI rats with rN antigen at 

3 wks p.i. to continuously stimulate the activation of astrocytes, as well as expression of 

S100B, in the brain. The immunization at 3 wks p.i successfully revealed enhanced 

immunoreactivity of S100B in the perivascular CNS areas even at 5 wks p.i. compared with 

non-immunized NBI rats (Fig. 5A and E, arrows). On the other hand, the expression levels of 

several chemokines and proinflammatory cytokines were quite similar between the 

rN-immunized and non-immunized, BDV-infected rat brains at 5 wks p.i. (Fig. 5B and C). In 

the immunized rat brains, however, an apparently extensive vasodilatation along with intense 

immunoreactivity of RAGE and VCAM-1 in the vascular endothelium was found (Fig. 5A, 

arrows and D). In addition, the immunoreactivity of ED-1 was found in the rN-injected 

animals both in the perivascular and parenchyma (Fig. 5E, arrows). To understand the role of 
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S100B signaling in the development of the vascular responses, we blocked the S100B-RAGE 

interaction by injecting RAGE-Fc at 2-day intervals from the day of immunization with rN. 

Previous studies have demonstrated that a low level of endogenous soluble RAGE exits in 

normal plasma, and the injection of rat RAGE-Fc does not induce any immune responses 

(34,51,52). Interestingly, interference of S100B-RAGE interaction by the repeated i.p. 

injection of RAGE-Fc drastically repressed the vascular responses, as well as the 

vasodilatation, in the rN-inoculated rats (Fig. 5A and D), indicating that the S100B signaling 

may be important for the progression of vascular inflammation in NBI rat brain. 

 

Discussion 

In the present study, we demonstrated that the expression of an astrocyte-derived factor, 

S100B, is reduced in both the cerebral cortex and cerebellum of Lewis rat brains persistently 

infected with BDV. Although the level of S100B secreted within the rat CNS could not be 

determined in this experiment, the immunoreactive level appears to correlate with the amount 

of this protein secreted in the brain (30). The downregulation of S100B expression is likely to 

affect the expression of RAGE in the persistently infected brains, suggesting that the secretion 

of S100B could be also disrupted in the CNS. On the other hand, a significant upregulation of 

GFAP expression, as well as the chronic production of proinflammatory cytokines and 

chemokines, was demonstrated in the persistently infected brains, indicating that the 

downregulation of S100B expression is not due to the deletion of astrocytes in the CNS.  

A decreased level of S100B is observed in both NBI and ABI brains, suggesting that the 

downregulation may be associated with the duration of CNS inflammatory responses in the 
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CNS, such as a chronic expression of inflammatory mediators. A recent study found that 

treatment with an inflammatory cytokine, IFN-γ, which has been shown to activate astrocytes 

to acquire immune functions, downregulates S100B gene expression in primary mouse 

astrocytes by using a microarray (11). This observation suggested that a negative regulatory 

effect of cytokines to immune responsive cells contributes to the downregulation of S100B in 

the brains. In addition, it has been reported that reactive astrocytes are regulated by the signal 

transducer and activator of transcription 3 (STAT3) and the protein suppressor of cytokine 

signaling 3 (SOCS3) (27). Considering that the expression of S100B is also controlled by the 

STAT3-SOCS3 signaling in the CNS (13), the downregulation of S100B may be caused by 

the aberration of the signaling via sustained activation of astrocytes. It has been also reported 

that continual release of S100B during chronic brain stresses directly causes S100B 

deprivation within astrocytes (10), suggesting that depletion of S100B protein may occur in 

astrocytes of the persistently infected brains. Further study will be needed to elucidate the 

regulatory mechanism underlying S100B downregulation in the persistently infected brain. 

Our analysis using immunoblotting demonstrated that the reduction of S100B level in 

the persistently infected brains is statistically significant, but the overall difference seems to 

be modest. The NBI rats showed about 30% reduction of S100B in both the cerebral cortex 

and cerebellum. A previous study revealed that prenatal stresses induce a 25% reduction in 

hippocampal S100B content in rats, leading to abnormal postnatal brain development (47). In 

addition, a significant suppression of S100B (a 24% decrease) by arundic acid, ONO-2506, in 

the brain of transgenic mice, which overproduce a mutant from of amyloid precursor protein, 

was markedly ameliorated in β-amyloid plaque burden and amyloid-β peptide levels (24). In 
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these experiments, although expression levels of many other genes associated with 

neurodevelopment or brain damages could be also changed in the brains, some correlations 

are observed between expression level of S100B and specific neurological effects in the 

animals (24,26,47). These observations suggested that even in a moderate level, altered 

expression of S100B could affect astrocyte activities, resulting in specific biological effects in 

the brains. On the other hand, in this study we examined the effects of S100B in the brains of 

NBI rat exposed to LPS or MBP. Interestingly, no upregulation of S100B expression was 

found in the NBI rat brains by the injection of the immune stimuli, while the protein increases 

about a 75% in mock-infected brains (Figs. 2B and 4B). Along with the modest reduction of 

S100B at the basal level, the unresponsiveness of S100B expression indicated that the level of 

this protein is considerably lower in the brains of stimulated NBI rats than control rats, 

suggesting that the reduced level of S100B has potentially important implications for 

biological significances found in the NBI brains. 

S100B is an EF-hand type Ca2+-binding multifunctional protein in the CNS. This 

protein exerts auto and paracrine effects on neurons and glia and is involved in a variety of 

cellular responses, such as protein phosphorylation, cell proliferation and differentiation, the 

structural organization of membranes, cytoskeleton modifications, intracellular Ca2+ 

homeostasis, and the promotion of cell survival (1,37,40,41). In this experiment, we found 

that the administration of LPS at 5 wks p.i. does not enhance the expression level of S100B in 

NBI rat brains and causes significant cell death of both neurons and glia in the cerebellum. 

The administration of LPS is known to induce CNS stress responses via upregulation of the 

production of proinflammatory cytokines and nitric oxide (19,42). The studies using S100B 
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transgenic and knockout mice demonstrated that S100B play a role in astrocyte proliferation 

under stressful conditions (3,6,32). Considering the neurotrophic effects of reactive astrocytes 

in inflamed CNS (5,27,35), the downregulation of S100B may induce neural cell death as a 

consequence of impairing astrocyte proliferation in NBI rat brain. In addition, the level of 

S100B is also known to be directly linked with cellular survival by preventing apoptosis 

(1,17,37,41). In either mechanism, the brains with downregulated S100B expression might 

succumb to the stressful environment and cause the apoptosis of neural cells. Previous studies 

demonstrated that in BDV-infected neonatal rat brains, reactivation of glial cells may be 

associated with specific neuronal cell apoptosis rather than viral tropism and virus-specific 

immune responses (29,50). These studies support our hypothesis that sustained activation of 

astrocytes in the persistently infected brains may exhaust the glial functions concerning 

cellular survival. Elucidation of how the downregulation of S100B expression is involved in 

the functional exhaustion of astrocytes may be important to understanding the pathology of 

neurodegenerative disorders. 

A prominent role of this protein seems to be the promotion of inflammation through 

binding to RAGE as an inflammatory cytokine (36,37,46,51). Expression of S100B is 

associated with the activation of astrocytes followed by damage to the CNS, during which 

production of proinflammatory cytokines, such as IL-1β, is increased (6,22). Stimulation of 

RAGE signaling through the binding of S100B can lead to the activation of MAP kinase and 

increased NF-κB activity (17,22). The RAGE-S100B interaction was confirmed to induce 

MCP-1 expression, which is often associated with localized inflammation (2,46). Furthermore, 

the signaling also enhances the expression of cell adhesion molecules, including VCAM-1, on 
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vascular endothelial cells at inflammatory sites, which is recognized by the integrin VLA-4 

expressed on lymphocytes and monocytes, resulting in infiltration by the cells (15,46,51). 

Thus, there is a large body of evidence suggesting that S100B is involved in the development 

and/or amplification of CNS-based inflammatory responses via modification of the expression 

of the molecules on the vascular endothelium (46,51), indicating that the regulation of S100B 

expression in the injured CNS plays a key role in determining the severity of inflammation in 

the brain. We found that the downregulation prevents severe EAE in MBP-injected, NBI rats. 

In the rat brain, no significant immunoreactivity of S100B or RAGE was observed in the 

perivascular areas and vascular endothelium, respectively. The lack of vascular inflammatory 

reactions may result in a reduction in vascularity and mononuclear cell infiltration in the NBI 

rat brain. This observation strongly suggests that the activation of S100B is required for the 

progression of the vascular inflammatory responses followed by encephalitogenic T cell 

infiltration in MBP-immunized rat brains. 

In contrast with the MBP-immunization, the rN-injected NBI rat brains developed 

severe vasodilatation and mononuclear cell infiltration in the cerebellum with the expression 

of RAGE and VCAM-1 on the vascular endothelium. The role of S100B in the inflammatory 

reactions in the rN-injected rats was confirmed by the experiment that the binding of S100B 

to RAGE was interfered with following repeated administration of RAGE-Fc. These results 

also implied an important role for S100B signaling in the progression of the vascular 

inflammatory reaction in the NBI rat brain. Intriguingly, the rN-injection into NBI rats 

successfully upheld the strong immunoreactivity of S100B in the perivascular areas of the 

cerebellum at 5 wks p.i.. This may be that upon the injection of rN at 3 wks p.i., astrocytes 
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can continue to retain a phenotype characteristic of astrocytosis with the reactivity of S100B 

in the rat brains. On the other hand, the MBP-immunization at 7 wks p.i. could not reactivate 

the astrocytes and S100B expression in the NBI brains. These results may indicate that 

continuous stimulation with initial antigens is necessary to maintain intact astrocyte activation 

in the brains. This hypothesis is under investigation using NBI rats at 3 wks p.i. and 

immunization with several different antigens.  

Our results strongly suggested that downregulation of S100B in NBI rat brains is 

considerably responsible for the neural cell death and reduced vascular inflammatory 

responses found in the brains. It should be noted that, however, a large number of different 

genes could be also altered in BDV-infected rat brains. These altered factors could make it 

difficult to assess the effects related only to expression level of S100B in the brains. On the 

other hand, in this study we focused on NBI brains, instead of ABI, to observe the effects of 

S100B downregulation. This is because vascular inflammatory responses by additional 

stimuli could be easy to detect in NBI brains, in which background infiltration and vascular 

immune response are totally lacked. As described above, however, it is also certain that NBI 

rat brain shows a complex environment with alteration of many different factors associating 

with abnormal neurodevelopment (16,53). A comprehensive analysis using proteomics 

technique and/or a comparative experiment between NBI and ABI rat brains would be helpful 

for further evaluation of biological importance of S100B downregulation in the persistently 

infected brains. Such studies will be challenged in the future. 

In conclusion, we demonstrated that the expression of an astrocyte-derived 

inflammatory cytokine, S100B, was downregulated in rat brains persistently infected with 
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BDV. At present, we can only speculate as to the impact of this downregulation, owing to the 

multiple functions of this protein in the CNS. However, our results are consistent with 

observations in previous reports that the expression of S100B is involved in the induction of 

vascular immune responses and the infiltration of encephalitogenic T-cells in the CNS of 

experimental animals (46,51), implying that BDV may evade CNS-based immune responses 

through the regulation of astrocyte functions by downregulating the expression of S100B in 

the brain, resulting in a persistent infection. Given that the downregulation of S100B 

expression is established as a common course of chronic activation of astrocytes in viral 

infected brain, the phenomenon may also be involved in the mechanism of persistent infection 

of other CNS viruses, such as lymphocytic choriomeningitis virus (28). Interestingly, in 

patients of human immunodeficiency virus and human T cell leukemia virus type 1 infections, 

both of which show severe degenerative effects on the brain functions, an increased level of 

S100B release from activate astrocytes is observed (33,44). These findings may represent a 

depletion of S100B protein in the reactive astrocytes of patient brains. The analysis of the 

regulation of S100B expression in astrocytes would be important to understand the role of this 

protein in the neuropathogenesis of persistent viruses. Recently, a remarkable therapeutic 

approach, referred to as immunocytotherapy, is discussed to eliminate persistent viral 

infection from the CNS (23). Although the direct role of S100B in the regulation of T-cell 

responses has remained to be elucidated, it might be possible that the abnormal level of 

S100B influences antiviral functions of transferred T lymphocytes in the CNS 

immunocytotherapy. Further experiments would be necessary to understand the involvement 

of the downregulation of S100B in the persistent mechanism of CNS viruses, as well as the 
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therapeutic approach for persistent viral infection, in the brains. 
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Figure legends 

Fig. 1. Downregulation of S100B expression in BDV persistently infected brain.   (A) 

S100B expression in BDV persistently infected Lewis rat brain. The cerebellum region of 

NBI rat were strained by anti-GFAP (red) and anti-S100B (green) antibodies at 5 wks p.i.. The 

overlap in the distribution of GFAP and S100B is revealed in the merged image. The 

immunoreaction of S100B is mainly found in the GFAP-positive astrocytes. (B) Expressions 

of GFAP and S100B were detected in the cerebral cortex and cerebellum persistently infected 

with BDV. Brain sections from NBI and ADI rats at 5 wks p.i. were immunostained with 

anti-GFAP and anti-S100B antibodies. Magnification: x 200. Mock; age-matched, 

mock-infected rats. (C) Expression of S100B and GFAP proteins. The brain homogenates 

were obtained from the cerebral cortex and cerebellum regions of 5 wks p.i. rat brains and 

subjected were immunoblotting. The quantitative analysis of S100B expression is also shown. 

The band intensities were determined by NIH image. n=6 and n=3 were used for the statistical 

analyses for NBI and ABI rats, respectively. Values were normalized to tubulin level (*P < 

0.05 with mock-infected, age-matched control rats). 

 

Fig. 2. LPS administration does not induce S100B expression in persistently infected 

brain.   LPS was intraperitoneally administrated into BDV-infected rats at 5 wks p.i., and 

the brains were collected at 24 or 48 h after the injection. (A) Induction of IL-1β expression in 

LPS-injected bat brains. Amount of IL-1β was measured by ELISA kit. Ct; PBS-injected 

control rats, Mock; age-matched, mock-infected rats. An n=3 was used for the statistical 

analyses. (B) Expressions of S100B and GFAP were detected by immunoblotting. The brain 



 33

homogenates were obtained from the cerebellum regions at 48 h after LPS injection. The 

quantitative analysis of S100B expression is also shown. The band intensities were 

determined by NIH image. Values were normalized to tubulin level. (*P < 0.05 with 

PBS-injected control [Ct] rats). (C) Immunohistological analysis of S100B expression in the 

cerebellum regions of LPS- or PBS-treated (control) rats. Magnification: x 200. Mock; 

age-matched, mock-infected rats. (D) RAGE expression in LSP-injected animal brains. The 

quantitative analysis of RAGE expression is also shown. The band intensities were 

determined by NIH image. Values were normalized to tubulin level. (*P < 0.05 with 

PBS-injected, control [Ct] rats). 

 

Fig. 3. Induction of neural apoptosis in LPS-injected persistently infected rat brains.   

(A) Immunohistological analysis of GFAP expression in the cerebellum regions of LPS- or 

vehicle-treated (Control) rats. Brain sections were obtained at 48 h after the injection and 

stained with anti-GFAP antibody. Magnification: x 200 (x 1,000 in boxes). (B) TUNEL 

staining of LPS-treated NBI and mock-infected rats. The cerebellum areas at 48 h 

postinjection are shown. Arrows indicate apoptotic cells (green). GFAP-positive cells are 

shown by red. Counter staining is done with DAPI (blue) for nuclear staining. Magnification; 

x 100 (x 1,000 in box). Mock; age-matched, mock-infected rats. An apoptosis-induced, 

GFAP-positive glial cell is shown in box.  

 

Fig. 4. Vascular inflammatory responses in EAE-induced rat brains.   (A) Clinical 

symptoms of EAE. The mean of daily clinical score are shown (see Materials and Methods). 
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Expressions of S100B (B) and RAGE (C) in the cerebellum of the BDV-infected rats at 14 

days after the MBP-injection. The quantitative analyses of the expressions are also shown. 

The band intensities were determined by NIH image. Values were normalized to tubulin level. 

(*P < 0.05 with PBS-injected, age-matched control [Ct] rats). Mock; age-matched, 

mock-infected rats. (D) Neuropathological analysis of MBP-injected rats. Brain sections were 

strained with H & E. Arrows indicate the regions of vasodilatation in the cerebellum of 

mock-infected, EAE-induced rat. (E) IHC analysis of EAE-induced rat brains. Serial brain 

sections from the cerebellum regions were stained with anti-S100B, RAGE, VCAM-1 and 

CD4 antibody. Magnification: x 200. Arrows indicate positive signals in the perivascular 

regions. (F) Quantification of VCAM-1 expression in rat brains. For a quantitative analysis of 

VCAM-1 levels in the brain, the optical density of positive signals was measured as described 

in the Materials and Methods. All optical density measurements were performed under the 

same optical and lighting conditions. The relative pixel intensities to PBS-injected, control 

animals are shown. (*P < 0.05) 

 

Fig. 5. Expression of S100B is involved in vascular inflammatory responses in 

BDV-infected neonatal rat brains.   (A) IHC analysis of rN-immunized rat brains. The 

immunized NBI rats were treated with or without RAGE-Fc and sacrificed at 14 days after the 

immunization (5 wks p.i.). Serial brain sections from the cerebellum regions were stained 

with anti-S100B, RAGE, and VCAM-1 antibody. Magnification; x 100. Arrows indicate 

positive perivascular regions. Chemokine (B) and cytokine (C) expressions in rN-immunized 

rat brains. Expressions of MIP-1β and MCP-1 were monitored in the cerebellum by 
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semiquantitative RT-PCR at 14 days after the rN-immunization. The band intensities were 

determined by NIH image, and values were normalized to GAPDH mRNA level. (C) Levels 

of IL-1β and TNF-α expression in the cerebellum were estimated by ELISA kits at 14 days 

after the rN-immunization. (D) Quantification of VCAM-1 expression in rat brains. The 

relative pixel intensities to 5 wks p.i. NBI animals are shown. (E) Induction of mononuclear 

cell infiltration by rN-immunized rat cerebellum. Infiltrated mononuclear cells positive for 

ED-1 are found in perivascular areas (arrows). IHC results of S100B and RAGE are also 

shown.  

 

 


