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Chapter 1

Introduction

1.1 Historical overview

Electronic structure calculations by the density functional approach have
been popular for a long time. Even before Hohenberg and Kohn established
its theoretical basis[1], many calculations based on density functionals, such
as the Thomas-Fermi functional, were performed. It is because while the
wave function has as many set of space-time variables as the number of
electrons, the density is a function of a single coordinate: a theory based
only on a density can be more tractable than the one that deals with wave
functions.

The discussion by Hohenberg and Kohn' consists of two parts. First,
they proved the existence of maps from the density of the ground state to
any quantities of the system such as the expectation value of an observable
O. In this sense, ng can be regarded as a basic variable of physics.

no — (O) (1.1)

Second, they proved the existence of the so-called Hohenberg-Kohn energy
functional Eyk[n,v] such that it has a minimum at the ground-state density
no and the minimum corresponds to the ground-state energy, provided that
v is fixed to the external potential V' of the system. This establishes a

!Their theory can be extended easily to the spin-density functional theory (SDFT), in
which basic variables are the spin-densities [2, 3]. This thesis is devoted to the theoretical
development on, strictly speaking, the SDFT. However, in this section, I only describe
formulations in terms of density alone for simplicity.



mapping:

Ve — g (1.2)
Therefore this functional would enable us to obtain the ground state den-
sity by minimizing Eyx[n, V'] if the form of this functional was explicitly
known. However, the exact expression of the Hohenberg-Kohn functional is
known only formally and it is virtually impossible to find out the ground-state
density using this exact functional.

Another popular approach to the electronic structure calculation is the
single electron approximation. Needless to say, the single electron problem
is much easier than most of many-body problems. There are some rational-
izations of replacing the many-body electron problem by a single electron
problem. Here I would like to introduce two of them related to the present
work.

The first one is Slater’s approach[4] to the Hartree-Fock problem. Instead
of solving the Hartree-Fock equation directly, he proposed an approximate
equation in which all the orbitals of single electrons move in the same local
potential. The Slater’s paper itself is devoted to a further approximation as
follows. First, the exchange charge density of the state ¢

pi(ry, re) = QZw )Y :i)ﬁkgjiqﬂk(ﬁ) (1.3)

in the Hartree-Fock equation is averaged with the weight of density:

i\r
pr(rL2) ~ pP (11, 7s) Zp ) PO (i) (1.4)

Using this approximation, the Hartree-Fock equation becomes
[=V2+ V) + VIR (r) - VE(r)] () = efi(r), (1.5)

where

VHartree(,r,) = /d,r.’ p(’f‘/) (16)

r— |
VS(r) = /d ’ﬁfr),' (1.7)

Now, these potentials are local. Second, in addition to this, he claimed that
the leading contribution of the exchange potential should be determined as



a function of the charge density, thus the value evaluated using results of
free-electron gas of the local charge density will not be very different from
the exact one. Therefore,

VS(r) ~ %/d’r VS’hom(n(T)) = 2620“1, (1.8)

hom

2°M is the exchange-energy density of the homogeneous system.

where €

In a comment for Slater’s paper, Sharp and Horton[5] gave a variational
approach to Slater’s problem. They thought that the uni-potential intro-
duced by Slater should be determined so that the Slater determinant that
consists of orbitals in a uni-potential gives a minimum of the Hartree-Fock
energy. They also derived an equation that the uni-potential should obey
according to this principle. Later, Talman and Shadwick[6] derived the same
equation and applied it to calculations of atoms. Today, this variational ap-
proach is often mentioned as the optimized effective potential (OEP) method

following Talman and Shadwick.

The other single-electron approach I would like to introduce here is the
Kohn-Sham scheme [7]. They connected the many-body problem and the
single-electron model in terms of the ground-state density. They assumed
that there is a non-interacting auxiliary system that reproduces the ground-
state density of the many-body system. Under this assumption, they derived
a single-electron equation based on the Hohenberg-Kohn theorems.

This scheme itself is exact. However, the lack in the knowledge of the
exact form of Hohenberg-Kohn energy functional still prevent practical use
of the theory. Thus, Kohn and Sham proposed an approximation to the
functional so as to make their scheme into practice. First, they defined the
so-called Kohn-Sham energy functional.

EKS [n, U] = T[?’L] - Taux[n] + Eint [n] - EHartree [n]
+ Fye[n] + /dr v(r)n(r) (1.9)
= EHK{TL, U}, (110)

where T, is the kinetic energy of the auxiliary system, the Eyairee iS the
Hartree energy given by the density n, and the Kohn-Sham’s exchange-
correlation functional F.. is defined so that Exg becomes identical to Fuk.
This exchange-correlation functional is to be approximated, and the efficiency



of an approximation to this exchange-correlation energy F,. determines the
precision of the whole calculation.
In their theory, the equations that determine the density of the ground

state are
[~V + Vst (1) + Vitartree (1) + Ve ()] () = etii(r), (1.11)
V() = 5575):)7 (1.12)

n(r) = _vi(r)gi(r). (1.13)

Then they claimed that if the n(r) is sufficiently slowly varying, one can
approximate Fy. using the exchange-correlation energy density €™ of the
homogeneous system, which is a function only of the density:

Eofn] ~ / dr n(r)ehom (n (). (1.14)

This approximation is called local density approximation (LDA). In practice,
some of parameterizations of €, based on Monte Carlo simulations are usually
used.

It is worth mentioning that there is a discrepancy between the Kohn-
Sham scheme and Slater’s method even when the homogeneous system is
considered within an exchange-only approximation. In this case, one can see

4

Vie(r) = 562"‘“, (1.15)

which is inconsistent with the equation (1.8).

Though the “slow varying” assumption of the LDA is not always very
convincing, the LDA gives adequate results in predicting properties of wide
range of materials. Today, it is known that the LDA happens to be better
than expected at birth, and calculations based on the Kohn-Sham scheme
with the LDA are now very popular. However, the more systems were inves-
tigated using the LDA, the more interesting systems turned out not to be
described by the LDA well. Thus, many other approximations are devised to
go beyond the LDA and applied. Let us further review the development of
the approximation of FE.. in order to make our purpose of research clearer.



In order to extend the LDA, it would be most natural to take account
of the effects of the gradient of the density Vn. One might expand Ei. as
follows:

Eyc[n] = /dr [n(r)exc(n(r)) + [Vn(r)|*Bye(n(r)) + - -] . (1.16)

This approach is called the gradient expansion approximation (GEA). How-
ever, it was reported by several authors that finite additional terms to the
LDA easily introduced a significant error [8, 9]. The GEA seems not to be
practical because the summation up to infinite order must be performed to
restore the precision of the LDA. Thus, one need to introduce some artifices
to devise a new approximate energy functional starting from the LDA.

The generalized gradient approximations (GGAs) (e.g. [10, 11, 12, 13,
14]) are approximations, which still take the effect of the density gradient
into account:

ESCAn) = /d'r f(n,Vn) (1.17)

/dr n(r)éxe(n(r)) Fxc(n, Vn). (1.18)

The GGAs are usually determined to satisfy Fy.(n,0) = 1 and some other
relations that the exact exchange-correlation functional should obey. (Note
that the LDA is exact when the system is homogeneous (Vn = 0 every-
where).) For example, relations of the exchange-correlation hole, scaling
relations, and so on, can be taken into account in the GGA, while the finite
order GEA violates them.

Perdew and Zunger [15] focused on the errors come from the self-interaction.
The Hartree energy contains the self-interaction terms:

Eitartree|[1i] = / dr / dﬂw, (1.19)

v

which is unphysical, and must be canceled by the exchange term. How-
ever, approximated exchange term by the LDA may fails to have this fea-
ture. Thus, they proposed to subtract the self-interaction terms in both

the Hartree energy and the exchange energy. This self-interaction-corrected
(SIC) functional is

EE({C [n] = E)ICDCFA [n] — Z(EHartree (] + E}I()CFA [ni]), (1.20)

)
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where DFA denotes density functional approximations, such as the LDA or
the GGAs. One of the problems in this functional is that it is no longer
invariant under the unitary transformation of the orbitals. For this reason,
extra treatments are needed during the minimization of the energy functional.

Using hybrid functionals is another way to take the non-local effect into
account. Becke[16] was first to justify the use of hybrid functions based on
the adiabatic connection approach of the density functional theory developed
by several authors [17, 18, 19, 20]. In their adiabatic connection theory, the
Kohn-Sham’s auxiliary system and the many-body system under considera-
tion are connected using integration of the coupling constant of the coulomb
interaction. The exchange-correlation functional can be expressed as

1
Eye :/ AN (x| Hing|1h2), (1.21)
0

where the [1,) is the eigen-function of the Hy = Hy+AHi+V(A) , and V())
is an external potential chosen so that V(l) — Ve and that the density of
|1x) becomes always identical to that of [i;). Note that <¢o\ﬁim|¢o> is just
the exchange energy of the slater determinant composed of the Kohn-Sham
orbitals:

Bpxx =) / ir / ay Ve TN (M)0iolr) = g

v
Becke discussed the application of the LDA to the integrand of (1.21) and
claimed that it seems adequate around A = 1 while invalid at A = 0. On this
ground he proposed to use the LDA value of (5| Hin|t)2) at A = 1, the exact
value at A = 0, and to approximate the integrand by linear interpolation for
0 < A < 1. Becke later proposed another hybrid model of function including
three semi-empirical parameters ag, a,, a.:

E)]?C3PW91 — E}I:CDA + G/O(EEXX _ E}I:DA) + GIEESS + QCEEWQI. (123)

In this expression, E2% and EYW9! denote a exchange part of the GGA func-
tional called B88([8]) and a GGA correlation functional called PW91([13]),
respectively. B3PW91 means “Becke’s 3-parameter hybrid functional using
the PWO1 correlation functional.” An alternative version, called B3LYP, us-
ing the LYP functional ([12]) instead of the PW91 is also used in literatures.
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A rationale for this kind mixing (Egxx plus EP¥) were given by Perdew,
Ernzerhof and Burke[21]. They approximated the integrand of (1.21) using
a power function:

Exen = (ol Hinttha) ~ Bk + (Bexx — Egy ) (L= 2", (1.24)

xc,

This is an interpolation between Egxx at A = 0 (Note that EDF*=0.) and
EDFA

xc,1

at A = 1 as in Becke’s justification. The resulting energy functional is

1
EfFP(n) = EDM™ + —(Epxx — EY™). (1.25)
n
This includes one parameter, n, and is identical with the Eppa in the limit

of n — oco. Thus, the best choice of n must improve (or give the same results
as) the DFA.

These three kinds of energy functionals, (1.20), (1.23) and (1.25), are all
dependent on orbitals explicitly. How can one solve the Kohn-Sham problem
for them? Minimizing them with respect to the orbitals is one possible way.
The resulting equation includes non-local potentials, which depends on the
orbitals to be determined, like the Hartree-Fock potential. Therefore, this
method is no longer regarded as a Kohn-Sham scheme?. One might consider
this as an extended Kohn-Sham theory in which Kohn-Sham’s effective po-
tential is generalized to non-local one. However, this is not well-established
theoretically. Thus, we would not adopt this method in this thesis.

Another possible approach is to constrain the trial orbitals to be single
particle solutions for a uni-potential. The uni-potential at the minimum
point is nothing but the OEP mentioned above. This constrained search may
seem to introduce further reduction of precision to the Kohn-Sham scheme.
However, it is not the case. It is because one can treat energy functionals
expressed explicitly in terms of orbitals perfectly within the framework of
the Kohn-Sham theory, and the resulting equation is almost identical to the
OEP method. This will be discussed in detail in Chapter 2.

The importance of the OEP method can be explained also by the adiabatic
connection theory of the DFT. The resulting equation (1.21) can be written
also as

LdA A
EXC :/0 7 <77Z))\|)\Hint|¢>\>' (126)

2Some authors (e.g. [22]) refer to this as “Hartree-Fock-Kohn-Sham” scheme.
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Because <1/J,\‘)\]:[int‘w,\> can be expanded in terms of |¢y) using the diagram-
matic technique of the many-body perturbation theory and |i¢y) is a slater
determinant of the Kohn-Sham’s auxiliary system, this gives another starting
point, which is different from the LDA, of constructing an exact exchange-
correlation functional. Thus, one can exploit more sophisticated approxi-
mations to the exchange-correlation functional if one uses the OEP method.
For example, Kotani used the RPA-level correlation functional with the ex-
act exchange energy[23]. Though the calculation was very time-consuming,
this functional is self-interaction free, unitary-invariant, and derived by a
diagrammatic technique.

The OEP method is thus promising as a way to go beyond the LDA.
However, there are two main obstacles to this method so far. One is its
theoretical ambiguity in spin-polarized systems, and the other is its heavy
time consumption.

Krieger et al. made a perceptive discussion concerning the first problem
based on an analysis of an asymptotic behavior of the highest-occupied or-
bital at r — oo [24, 25]. They also showed that if one accepted the use of
this prescription, it would resolve the discrepancy between (1.8) and (1.15),
and that the exchange-only OEP obeyed (1.15). However, in their argument,
the system was assumed to be isolated, and the energy functional could be
constructed only from occupied orbitals. Thus the validity of the technique
in extended systems such as solids was not clear. This is one of the reason
why analyses using the OEP method on spin-polarized solids have not been
reported so often.

The other problem is its computational time. Krieger et al. also proposed
the so called KLI approximation to the OEP equation. It was important
because solving the OEP equation is one of rate-determining processes of
calculation. Though there are several ways to justify the KLI approximation
24, 25, 26], the simplest one is replacing the denominator of the Green’s



13

function in the OEP equation by a constant A:

G(r,v'\E) = > % (1.27)
{ilei#E} !
~ Y ) (1.28)
{ilei#E}
1 / * /
= 2 5(?“—1“)—{2::]5}%(7“)%(?“) , (1.29)

where 1);’s are the Kohn-Sham orbitals of the system, and ¢;’s are their energy
eigenvalues. In the resulting KLI equation, the constant A vanishes and no
extra parameter remains. The original paper of this method itself reported
its application to atoms with a SIC functional [24]. The authors also reported
the application to the exact-exchange functional[25]. Grabo and Gross have
performed the calculation for atoms, taking account of the correlation using
the Colle-Salvetti functional[27, 28]. To the solids, there are series of reports
by Bylander and Kleinman [29, 30, 31, 32]. All of these reports concluded
that the precision was satisfactory.

1.2 Present work

In this research, we set our goal to developing a practical and precise method
with a sophisticated approximation going beyond the LDA. The meaning of
“practical” should be explained according to the concept of the computa-
tional materials design, for which our method is supposed to be used. In
Figure 1.1, a model of the computational materials design is depicted. The
green, blue, and red gears denote three key activities, and they are linked to
the two others by yet other three gears representing analyses (yellow, pur-
ple, and light-blue ones). In order to facilitate in this processes, a quantum
simulator must have three features, which correspond to the three key activ-
ities. First, the quantum simulator itself should be fast enough to be used
iteratively in the process. Second, the precision of the simulator must be
guaranteed by clear theoretical bases to make the analyses of the results and
finding the mechanisms of phenomena possible. Third, the simulator must
be versatile enough to verify functionalities of any new systems.

As mentioned in the previous section, the OEP method is very promising
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Figure 1.1: The materials design model, used by several authors [33, 34]
(This picture itself is painted by the author of this thesis, he referring to the
literatures.)

to realize such an ideal quantum simulator. Because this method is appli-
cable to any energy functional expressed in terms of Kohn-Sham orbitals in
principle, it is possible to choose any functionals based on clear theoretical
reasons. Thus, we adopt the OEP method and have developed several new
techniques related to the calculation. There are three main findings in the
present work.

1. New equation for OEP The OEP equation known so far has one
indefinite constant for a potential in each spin direction (let us call this
“SHTS equation” after Sharp and Horton [5], Talman and Shadwick [6]).
However, it is clear that the degree of freedom allowed for the potential
should be single, corresponding to the choice of the origin of energy. We
have derived a new equation that fixes the indefiniteness and completes the
description of the OEP.

2. Modification of KLI approximation The KLI method reduces com-
putational tasks greatly and has been reported to be precise enough in many
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cases. However, their way to fix the indefiniteness of the SHTS equation
depends on the physical situation which is not always applicable. This of-
ten causes serious problems in realistic calculations of solids. Therefore, yet
adopting their way to approximate the SHTS equation, we introduce an exact
way to fix the indefiniteness.

3. Technique for double energy integration We have developed an
efficient way to calculate a double integral with respect to energy variables
which is related to the calculation of RPA-level correlation. This reduces the
computational time greatly. This is very important because the process is
one of the rate-determining processes of the whole calculation.

We have developed a code that can calculate the exact-exchange and an
RPA-level-correlation functional using the above method. This program
is based on the Korringa-Kohn-Rostoker (KKR) Green’s function method
which has advantages in precision, time consumption, and, more over, in
application of our technique to the calculation of the RPA-level correlation
energy.

In Section 2, the basic theory of the DFT and the Kohn-Sham theories are
given. After that I will show how the equations of the OEP including a new
additional equation are derived from the basic theories. The explanation of
the modified KLI method and the technique for the calculation of the RPA-
level correlation follow them. The results of our program using those theories
and techniques are shown in Section 3. Finally, in Section 4, we conclude.






Chapter 2

Theory

2.1 Density functional theory

2.1.1 Hohenberg-Kohn theorem I

The density functional theory developed by Hohenberg and Kohn[1] contains
two propositions. In this section we concern ourselves with the first one. The
second one will be discussed in the subsequent section. The first one is on
the existence of maps from the ground-state density to any kinds of physical
quantity of the system including those related to excited states of the system.
The existence of these maps follows from the first Hohenberg-Kohn theorem,
which concerns the uniqueness of the external potential. Here we assume
that the other part of the Hamiltonian is given.

For the sake of the following discussion, we separate the Hamiltonian into
two terms:

N
H:Hcom<r17... 7rN)+ZVeXt(’I“Z‘) (21)
i=1
Using the Born-Oppenheimer approximation, one may adopt

N N N

HOMry, - ey) ==Y Vit y > VEP¥rr)+C (22)
i=1 i=1 j=1
J#i

with the external potential V*** produced by nuclei, constant C' from nucleus-

nucleus interactions and VP (p, r;) = ﬁ of the electron-electron in-
i—Tj
teraction. The Hohenberg-Kohn theorem for non-interacting system will be

17
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also useful later. In this case we will make V27P°% (y; 7;) = 0 and substitute
the so called Kohn-Sham potential for V&,

Besides this Hamiltonian, it is convenient to define another Hamiltonian
which is different from H only in the external potential:

N
H = H%ry, - ry) + Y V() (2.3)
i=1

In addition to these, we suppose the followings for the Hamiltonians:

o Ve and V'™ have a common domain of definition D C R%, where d

is the dimension of the space.

e Both two Hamiltonians H and H' transform functions whose domain
is ©® C R to functions that has the same domain D.

e Both V' and V'** are differentiable on D.

This does not exclude the use of the delta function or the theta function as
external potentials. The value of these functions at their singular point is
regarded as undefined in our treatment.

In the original proof demonstrated by Hohenberg and Kohn, lack of de-
generacies in the system is assumed for the simplicity of the argument. They
only mentioned that the same theorem is also valid even when there are some
degeneracies in the system.

With the non-degeneracy assumption, it is clear that

(WIH|W) < (W|H V), (2.4)

where VU is the ground state of H and V' is a state different from the ground
state of H. This relation is a key point of the proof of the theorem. Kohn|[9]
later give a proof of the same relation (2.4) based on the conjecture that any
wave functions can not be an eigenfunction of two different Hamiltonians
simultaneously.

This is almost true. However, at the same time, there is a simple coun-
terexample: a one-dimensional non-interacting system with the external po-
tential

E (z < —¢)
VeXt(,CE) — 00 (—E <z < O) (6 > O) (25)
z? (0 < x)
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Figure 2.1: An exceptional case that one wave function is allowed by more
than two different external potentials. The height of green box can be
changed without affecting the shape of the wave function which is non-zero
only in z > 0.

—X

This system has a solution W (z) o 6(z)ze™* whatever value E is (see fig.2.1),

and it is clear that this violates the conjecture. Thus, clarifying the condition
of the uniqueness of the external potential still remains undone. The next
lemma will give us one of such conditions.

Lemma I If a wave function (7,79, -+ ,7y) is an eigenfunction of both
two Hamiltonians H and H' simultaneously, and if {r,r,---  r} is a limit
point of Dy = {{ry,--- ,rn} € D|V(ry,--- ,7ry) # 0} for all » € D, the
external potentials of these two Hamiltonians are different from one another
only by a constant.

Proof By the first premise of the lemma,

H\Il('rh’r%'” 7TN) - E\Ij(rb,r%'” 7TN)7
HI\IJ(TMT%"' 7TN) = E/\If<7'1,7‘2,"' 7TN)7

where E/ and E’ are c-numbers. Thus, for all 7,79, -+ , 7y

[H—H — (E—EN]¥Y(ry, - ,7n)
— Z{vext(ri) — V() } — (B~ E)| U(ry, -, y)

= 0. (2.8)
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Substituting f(r) = V=(r;) — V'**(r;) and e = E — E',

N

> ) —e

=1

\IJ(’I"l,"' ,’I”N) =0. (29)

It follows from the second premise that for any open set O C ® that
includes {rg, -+ , 70} € ©, ONDy # (). Thus, there exists a set of {A;} such
that A = {A} = /1A +|Axf + - +] Ay < 8 and {ro+ Ap, 7o+
Ay, -, 19+ An} € Dy for any § > 0 because a ball in ® whose radius is
J, having its origin at {7y, 7o, -, 70}, is an open set.

It results from (2.9) that

N

> flro+A)—e=0 (2.10)
i=1
for such {A;}. Since f(r) is differentiable in D, one can utilize the mean
value theorem for functions of several variables. Therefore, there exists a
certain 6 in 0 < # < 1, for which

Z [f(ro) + Ai- Vf(ro+ 0A;)] — ¢ (2.11)
=D (A V(o +0A)] + Nf(ro) —c=0 (2.12)

is satisfied. In the limit of § — 0, the first term goes zero. Thus, N f(rg)—e =
0 must be hold, and this is true for any ry € D. Therefore,

Ve (r) — V') = const. (2.13)

for all » € D. Q.E.D.

The second premise of this lemma would be true or convincing for most
cases, because there might be a tunneling amplitude in any finite region of
the configuration space, no matter how high (but finite) potentials exist in
the space. On the other hand, it is easy to make exceptional situation us-
ing the infinitely high external potentials with a finite width. In this case,
violation of the conclusion of the lemma is rather reasonable, since any val-
ues of external potential can be allowed in the region where the particles
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are perfectly excluded. However, the same conclusion as that stated in the
lemma can hold even if the interaction contains some infinite hight regions
and violates the second premise. For example, hardcore interactions clearly
prohibit particles from gathering at one point and keep every particles out of
a certain finite region around other particles, which is against the premise of
the lemma. The next lemma which we are going to show reveals that some
kinds of hardcore interactions keep the same conclusion as that of the lemma
[ undamaged.

Before moving on to the lemma II, it may be useful to introduce a set of
slices of Dy (closure of Dy) restricted to D:

Sfl}rl""’rN’l ={reD|{r, - ,ri1,r7i - ,Pny_1} € Dy}, (2.14)
and related notions. Let Sy denote the set that consists of all Sy ™
above. We may think of the following relation between S* and S™: Suppose
that there is a sequence of sets S*,52,--- 5" € Sy and S¥ N S*1 £ () (Vk €
{1,2,--+ ,n—1}). Then let us denote the binary relation between S* and S™
by the symbol ~: S! ~ S". In addition to this, it is convenient to append
0 ~ 0 to the definition as a special case in order for all the elements S € Sy
to satisfy the reflexivity: S ~ S. The symmetry VS, T € S, ~T =T ~ S
and the transitivity 9,7, U € S,8 ~ T,T ~ U = S ~ U of the relation
are also clear. Thus, one can see that this is a equivalence relation and that
[S] = {X|X ~ S} is an equivalence class.

Lemma II If a wave function W(7ry, 7y, -+ ,7y) is an eigenfunction for
both two Hamiltonians H and H’ simultaneously, for all » € DIl = {r | X €
[S],r e X}

VeXt(’l") _ V/ext(,r.) — 0[5]7 (2.15)

where C!¥! is a common c-number to all the point in D!,

Proof In the same way as the proof of the lemma I up to the (2.9), one
can see

U(ry,---,ry) =0. (2.16)

[Z fr:) —e
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For r € DIS), there exists X € [S] and » € X = Sy™""™ ' _ Since

{ry, -, 71,7, 7y -+ ,rN_1} is a limit point of Dy, one reaches
N-1
fr)=e=> f(r) (2.17)
i=1
= CX. (2.18)

in a similar manner to the remaining part of the proof of the lemma I. The
right hand side of this equation is a c-number and common to all the elements
of X. This is also common to all the element ¥ € Sy such that X NY #£ 0
because if there exists » € X NY then CX = f(r) = CY.

It follows from this and the definition of the equivalence relation that this
constant is also common to any Y € [S]. It is because if Y € [S] there is a

sequence of set S!,---,S™ such that
Xnst#£0, (2.19)
SPASHL A0 (Tk={1,--- ,n—1}), (2.20)
S*NY 0. (2.21)
Therefore, CX = C5' = ... = 5" = Y = 9. Q.E.D.

Corollary If there exists S € Sy such that D ¢ DI/, two Hamiltonians
are different from one another only by a constant.

Thus, we obtain two conditions of the virtual uniqueness of the Hamilto-
nian for a wave function W:

1. Forall r € D, {r,--- ,r} is a limit point of Dy,
2. There exists S € Sy such that D ¢ DI,

The difference of these two conditions can be seen from an example Dy:
Dy = {(—00,0) x (0,00), (0,00), x(—00,0)} (2.22)

in a one-dimensional system of two particles (see fig.2.2) with D = (—o0, 00).
Only the second condition may survive while the first fails. As seen in this
example, the first conditions does not cover all the conditions of the second
ones.
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Figure 2.2: Two kinds of Dy in a one-dimensional two-particle system
that has the same slice of region S = {(—00,0],[0,00)}. The gray areas
denotes a forbidden (undefined) region of Dy. (Left): Dy = {(0,00) x
(0,00), (—00,0) x (—00,0)}, which satisfies the premise of the lemma I.
(Right): Dy = {(0,00) x (—00,0), (—00,0) x (0,00)} which does not sat-
isfy the premise of lemma I. In both cases the premise of the lemma II is
fulfilled.

As mentioned above, the first condition seems valid in most realistic
Hamiltonians, which contains no finite undefined region but only undefined
points. The second condition can play an important role if there is a finite
undefined region. One example is a hardcore interaction:

o (lz -yl <€)

0 (e—yl>o (2.23)

VEPW (g, y) = {
and another is a selective wall for the particle indicated by x (two different
particles in one-dimensional space):

oo (2] <e)

0 (2| > o (2.24)

Vi o) = {

In both cases, the slices of the domain of V27P°% are overlapped one another
and all points in the space are covered by the slices (see figure 2.3). In the
example of hardcore interaction, if the kind of two particles is different from
each other, Dy is further restricted. It is because the particles can not change
the position due to the hardcore interaction and the one dimensionality of
the space. As for the selective wall, Dy is definitely restricted to either
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Figure 2.3: Dy’s in (left) the hardcore interaction of (2.23) and (right) the
selective wall of (2.24) . Each V27P°% keeps particles out of the Gray region.
Due to the one-dimensionality, Dy’s may be further restricted to either red
or green region. However, Dy still satisfies the condition of the lemma II.

x > 0 or x < 0. However, still Dy satisfies the second condition. Thus the
Hohenberg-Kohn theorem, which we discussed later, can be used in these
systems.

Hereafter, we suppose that all the wave functions of the system satisfy ei-
ther or both these conditions. To the extent of this assumption, the following
statement is justified as a corollary of the lemmas.

Corollary If the difference between H and H’ is more than a constant,
and ¥ and V¥’ are the ground state of these two Hamiltonians respectively
then

(U|H|T) < (V|H|T'). (2.25)

Because if equality held, ¥’ should be an eigenfunction of H, but this violates
the lemmas.

Now we are ready for moving on to the first Hohenberg-Kohn Theorem.

Hohenberg-Kohn theorem I If the ground states ¥ and ¥’ of H and
H' respectively has a common density ng(r), the external potentials of these
two Hamiltonians are different from one another only by a constant.
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Proof Let E and E’ denote the eigenvalue of ¥ for H and ¥’ for H’,
respectively. It follows from the corollary,

E = (U[H|V) < (V|H|V") (2.26)
= (VH'|V) — (V'[{H — H'}T') (2.27)

=F - Z/dﬁ coedry [U(r, - ,'T'N)|2 {VeXt(ri) — V’eXt(ri)}
: (2.28)
= F — / dr no(r) {Vo(r) = V'™(r)}, (2.29)

where nyg is the density of W. To prove the theorem by contradiction, suppose
ng is also the density of W'. In the same way, one has

F' < F - /dr no(r) {V'*(r) = V=(r)}. (2.30)

Adding each side of (2.29) to the same side of (2.30), one reaches
E+E <E+E. (2.31)

This is a contradiction. Q.E.D.

Thus, the theorem has been proved without the assumption of nonexis-
tence of degeneracy in the system. The situation is illustrated in fig.2.4.
This theorem is the basis of the density functional theory. Given a com-
mon part of the Hamiltonian Hey, in (2.1), it follows from this theorem that
we can restore the remaining part of the Hamiltonian V' only from the
information of the ground-state density ngy in principle. Since Hamiltonian
can be regarded as a functional of the ground-state density, it proves the
existence of ways to infer any kinds of physical quantity of the system from
the ground-state density. In other words, every observables is a functional of
the ground-state density and is universal in the sense that these functionals
is exact for any external potentials. Note that observables that are related
to excited states of the system can also be regarded as a functional of the
ground-state density. It is because excited states of the system can be ob-
tained from the information of the density-functional of Hamiltonian H[n],
solving the Schrodinger equation i%@ =Ho.
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Figure 2.4: Left: The external potential V' corresponds to two or more
ground-state densities when there is degeneracy in the ground states of the
system. Right: According to the first Hohenberg-Kohn theorem, no density
no can be the ground-state density of two different systems (except difference
by a constant) simultaneously.

However, it should be noticed that the domain of these functionals is re-
stricted to the densities that have a corresponding ground state of a systems.
Only in this case, n can represent an external potential. Thus, this feature
of the density is sometimes called V-representability.

2.1.2 Hohenberg-Kohn theorem II

The second Hohenberg-Kohn theorem is concerned to the determination of
the ground-state density for a given external potential. In the ordinary
scheme of the quantum mechanics, the Schrodinger equation is solved in
order to determine the ground-state density. The second Hohenberg-Kohn
theorem offers possibility of an alternative approach. This theorem tells that
there exists a (non-universal) functional of density n for each external poten-
tials that is minimized only when n is the ground-state density. This gives
us a density-functional approach to the problem.
It is the key point to use the variational principle:

(Wo| H|Wo) < (V|H|Y), (2.32)

where W, is one of the ground states of H, and V¥ is a different state from
V,. To the extent of our assumption, the both sides are equal to one another
only if ¥ is also a ground state of H.
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The left-hand side of this inequality can be expressed by the universal
density functional of the ground-state energy FEy[ng|, where ng is the density
constructed from ¥y. However, the right-hand side is not such simple as to
be expressed as a density functional. It follows from the first Hohenberg-
Kohn theorem that the Hamiltonian H[n] can be regarded as a universal
functional of the ground-state density, but there are infinitely many possible
ways to define the density functional of a state |¥[n]). It might be easiest
to define |¥[n]) by a representative of the ground-states of H[n] for our
purpose because we are going to construct a density functional of n that
becomes identical to (Wo|H|¥o) only when n is the ground-state density of
H{np]. This definition imposes a restriction on the trial state |[¥), but it does
not change the relation (2.32). In order to remind readers this definition
and situation, let |¥y[n]) denote this density functional of state. Thus, the
following functional is suitable for our purpose:

Erxe[n, no] = (Wo[n]| H[no] | ¥o[n]) (2.33)

It is clear from the variational principle that Fyk [10, no) < Fruk [n, ng| and
the equality holds only when n is the ground state of H[ng]. However, this
Euk is not useful in order to determine the ground-state density because this
minimization itself needs direct information of ng.

Actually, E [n, ng| can be transformed into a functional of the trial density
n and a fixed external potential V. It follows from H[ng] = H™+V**[n]

that

Eyig[n, no] = (Woln]| H*" [Wo[n]) + (Wo[n] |V no][Wo[n]) (2.34)
= (Uy[n]|H™[Po[n]) + /dr V™*nol(r) n(r). (2.35)
The first term is often denoted by Fpk[n]. Note that Fyux[n| is a universal

functional as well as Wo[n] defined above. Using Epk[n, V™| = Fuk[n] +
[ dr Ve=t(r)n(r) instead of E[n,no), we see that

FEux[no, V'] < Euk[n, V], (2.36)

and that the equality holds only if n is a ground-state density of H[ny]. Now
we need only V' during the minimization. This is the second Hohenberg-
Kohn theorem, which is summarized in the following.
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Hohenberg-Kohn theorem II The Hohenberg-Kohn functional Eyk:
Brln, v] = Faxln] + / dr v(r)n(r) (2.37)

has the following properties:

e Given a fixed V™' FEyg[n, V'] has minimum points only at n = ny,
where ny’s are the ground-state densities.

e Given a V' the global minimum of Eyk[n, V'] with respect to n
is identical to the ground-state energy of the system with the external
potential Ve,

We have derived the second Hohenberg-Kohn theorem from the variational
theorem. In the above discussion, we constrained the trial state |¥) to be a
ground state of a system. As a result, the domain of the Hohenberg-Kohn
functional Eyk|n,v] is restricted to V-representable density n.

Levy [35, 36] and Lieb[37] have pointed out that this restriction can be
relaxed, by replacing Fyk with the Levy-Lieb functional

Fia[n] = min (9| H*"|0), (2.38)

where ¥ — n means that ¥ runs over every state that has a fixed density n.
Operating ming_,,, to the right-hand side of (2.32), one obtains

(Wol Hno]|¥o) < gg%(MH[”oH‘I’) (2.39)
= Fiu[n] + /dr Vne) (r)n(r), (2.40)

and sees that the equality holds only when n is a ground state density of
H{[ny).

This Fyp[n| is defined only when there exists a state that produces the
density n. In many-electron systems, this is not a trivial problem because
wave functions are somehow constrained by the anti-symmetry condition of
electrons. The capability of a density to bring itself back to a corresponding
N-particle wave function is called N-representability. Fortunately, the N-

representability of densities is much more likely than the V-representability
38].
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2.1.3 Kohn-Sham theory

The second Hohenberg-Kohn theorem gives us the density-functional ap-
proach to the determination of the ground-state density n for a given external
potential V., However, because the explicit form of the Hohenberg-Kohn
functional is not known, this can not be made into practice as it is. There-
fore, Kohn and Sham[7] proposed a scheme that is in particular suitable
for approximations to the problem. First, they supposed that there is a non-
interacting auxiliary system that can reproduce the density of the many-body
system, second they derived an equation that the non-interacting system
should obey. Finally, they proposed approximations for this non-interacting
equation.

Non-interacting system Before moving on to the Kohn-Sham scheme, let
us introduce non-interacting system and related notions. The Hamiltonian
of the auxiliary system can be expressed as

N N
H™ ==Y Vi+> Vi), (2.41)
=1 =1

where V°f is the effective potential, the external potential of the auxiliary sys-
tem. Since the Hohenberg-Kohn theorem holds also in the non-interacting
Hamiltonian, there exists Hohenberg-Kohn functional of the auxiliary sys-
tem:

EiZn, VEH] = T"[n] + /dr Veﬁ(r)n(r), (2.42)

where T%"[n] is the kinetic-energy functional, which corresponds to Fyk|[n|
in the general argument above. According to the second Hohenberg-Kohn
theorem for non-interacting systems, variation of Ej* with respect to density
n(r) gives the equation that the ground-state density should satisfy. The
resulting equation is

OERY  oT™™
on(r)  on(r)

+ Veli(r) =0, (2.43)

which must be identical with the ordinary scheme to determine the ground-
state density, in which we solve the single-particle Schrodinger equation:

[=V2+ V()] g(r) = etpi(r) (2.44)
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and then construct the ground-state density ng using
/
no(r) = Y i (r)i(r), (2.45)

where the prime symbol denote summation for occupied states. Thus, we
can use (2.44) and (2.45) in order to solve the equation (2.43).

Kohn-Sham theory Now what we really want to obtain is the ground-
state density of

N N N N
H==Y Vi+> Y V" r )+ > V(ry). (2.46)
i=1 =1 j5=1 =1

J#i
(2.47)

It will be convenient for the following discussion to define T" and Hj,; as

N
T=-> Vi (2.48)
=1

N N
Hin, = Z Z Ve, r)), (2.49)

i=1 j=1

J#i

so that H =T + Hiy + Zfil Vet (p,).

We are now to derive a non-interacting equation that reproduce the den-
sity of the interacting system. The equation (2.43) give us a clue to the
derivation. If the Hohenberg-Kohn functional Fyk[n,v] of the interacting
system is transformed into the form Eyg[n,v] = T**[n] + E™™[n,v], we can
exploit (2.44) and (2.45) with V°(r) = ‘;’2(:; Based on this idea, Kohn and
Sham divided the Hohenberg-Kohn functional as follows:

Exs[n,v] = T*[n] + FHartree[n] + /d'r v(r)n(r) + Ex[n] (2.50)

= Fyk|n,v], (2.51)

where

Erucln] = [ dr [ v % (2.52)
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Eyc[n] = Tn| + Ei[n] — T*[n] — Fuartree|[1]- (2.53)

This FE,. is called exchange-correlation functional. The Fkg can be de-
fined only when n is V-representable for both non-interacting and interacting
Hamiltonian.

Thus, Fks can not be minimized to the ground-state density of the in-
teracting system if the ground-state density of the interacting system is not
V-representable for non-interacting Hamiltonian. This is the reason why the
assumption of existence of the auxiliary system that reproduces the ground-
state density of the interacting system have to be premised.

Using these, the variation of Fxg with respect to the density gives

dFExs[n, V] §Tax . dExe[n]
= Wi artree Vex - 0, 2.54
on(r) on(r)  Vitartree (1) + (r) + on(r) ( )

where
, n(r)

VHartree<r> = Q/d’l" ‘7’ — ’l"/’ . (255)

Thus, the effective potential of the auxiliary system must be

0F .

V() = Viartree(T) + V(1) + ) (2.56)

on(r)’

and one can obtain the ground state density using (2.45).

Local density approximation To the extent of our assumptions, the
Kohn-Sham theory is an exact theory that can determine the ground-state
density of interacting systems. However, it is still not practicable as it seem-
ingly is because the explicit form of Ey.[n] is unknown. The local density
approximation (LDA) is an approximation to the E,.[n] proposed by Kohn
and Sham([7]. They claimed that when the density is enough slowly-varying,
Eyc[n(7)] defined by (2.53) can be approximated efficiently by integration of
a function only depends on the density such as Ex.[n] ~ [ drf(n(r)) without
any information of the first and higher-order gradients of n. The following
notation is preferred in literatures:

EgCDA[n} = /dr n(r)exe(n(r)) (2.57)

This is the local density approximation, and €., is called exchange-correlation
energy density. Because this functional should be universal, e¢,. must be
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common to all the system as long as the LDA is valid. Thus, €. is usually
determined from the calculated results of homogeneous systems using, for
example, Monte Carlo methods. This gives a practical way to calculate the
ground-state density of interacting systems.

Alternative approach to obtain V,. In the above discussion to derive
the form of V., we have exploited the ordinary scheme of quantum mechanics
to solve (2.43). The derivation can be performed from another viewpoint.

In the alternative approach, the set of (2.44) and (2.45) is the starting
point, i.e., these equations are thought to be an ansatz of the ground state.
In order to state the scope of the summation clearly, let us replace (2.45)
with

mir) = [ 4B witr)ursE - q), (259

where p is to be determined so as to make the integral [ drng(r) be identical
to the number of electron N. We assume that the set of densities that
takes the form of (2.45) and (2.58) contains the ground-state density of the
interacting system. To the extent of the assumption, it is enough to think
only this set of densities during minimization of Fxg[n,v] for a fixed v.

According to (2.44) and (2.58), the density is perfectly determined from
the information of ¢’s, ¥*’s, and p. Thus, one can minimize the Kohn-
Sham energy Fkg[n,v] for fixed v with respect to ¢’s, ¢*’s, and p with the
constraint that the integral of ny over the whole space become the number of
electrons IV instead of minimization with respect to n without constraints.

The Lagrange multiplier method is convenient for this purpose. Letting &
denote the Lagrange multiplier, we transform the problem into minimization
of

I = FExs[n,v] +¢&

/dr /M dE Zw;‘(rm(r)aw— €) —N] (2.59)

with respect to ¥’s, ¥*’s and p, which should be regarded as independent
variables during the minimization.
Let Vic(r) denote

f/XC(Ir> = ‘/ef-f(’l“) - VHartree(r) - VeXt(T) (260)
Then, one can see that the equation 5‘% = 0 gives
~ dEyc[n]

O — €i) |§ = Vae(T) + bi(r) =0, (2.61)

on(r)
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and 55[ = 0, the complex conjugate of the equation (2. 61) u = 0 gives

[ar [e-vatr }(Zé (sl >> Lo e

It follows from (2.61) that

5Exc [n]

ey V) =0 (2.63)

f_

which is different from (2.56) only by an additive constant &, the freedom of
which we just ignored in the previous discussion.

In this case, only the equation (2.61) is significant because substituting
aE"C OBxclnl — [ g 5E"“ "] a" ’") into (2.62) one obtains

/d’l" |:€ - f/;(c(r) 7; :| (Zé - ez ),lvbz( )) = 0’ (264)
which is automatically satisfied due to (2.63).

Adiabatic connection The adiabatic connection approach to derive the
Kohn-Sham functional gives another important perspective [17, 18, 19, 20].
In this scheme, the external potential V) is also varied along with the the
electric charge parameter, while only the coupling constant is changed in the
ordinary scheme of adiabatic connection.

We consider the following Hamiltonian:

Hy =T + M, + VI, (2.65)

where V™' is a shorthand of >, Vi&™*(r;). In this formalism V™' is taken so

as to keep the density

nA(r) = (A0 (r) ¢ (r) [ 0y) (2.66)

of a parametrized state |V,) independent on A, i.e., ny(r) = ny(r) for all A
in0 <\ <1, where 1&(7‘) is the field operator. Thus, V™ corresponds to the
external potential of the (fully) interacting system, while V™' corresponds
to the effective potential of the auxiliary system.
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The total energy of |W;) of the interacting system is given as follows:

1
0
(U | H | 0y) = (| Ho| o) +/ AN S (A i+ VEHE) (267)
0
ext ! d)\
= <\I[0|T|‘1/0> + dr Vvl (’r)n(’r) + 7<\IJA|/\Him|\I/)\>
0

(2.68)

Using the variational principle, the Kohn-Sham energy functional can be con-
structed from this equation. The resulting exchange-correlation functional
is

Lax
EXC = / 7<\IIA|>\Hjm|\IJ)\> - EHartree[n]a (269>
0

which is useful to examine the exact exchange-correlation functional.

2.1.4 Spin-density functional theory

The density functional theory can be extended to the spin-density functional

theory (SDFT) [2, 3]. Though the DFT itself is exact within the limit of our

assumption, the SDFT is more efficient than the DFT in practical terms.
To extend the theory, the Zeeman term is introduced to the Hamiltonian:

H=H®" 4> "V™(r)+ Y H™(r;o., (2.70)

where the quantization axis is chosen to be z-direction and o, is the z-
component of the Pauli matrix:

5. — ( (1) _(1) ) (2.71)

The wave function can be expressed as

\If (Tl T2, - ’I“N)
/] = 7L T2 ’ ) 2.72
(7'1,7'2, 7TN) ( \1’1(7'1,7‘2,--- 7rN) ( )

In this case, the total energy can be written in the following form:

(VHIE) = (W) + [ dr V() ) + ()
+ [ B )y (r) = () (2.73)

= (U|H®™|¥) +/drV§Xt(r)nT(T) —i—/derXt(r) ny(r), (2.74)
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where

V?Xt (r)
Vf"t (r)

Vest(p) 4+ HO (), (2.75)
Ve (r) — H™(7), (2.76)

The proof of the SDFT analogue of the Hohenberg-Kohn theorem is al-
most the same as the original theorem. One can see that if n; and n| are
spin densities for the ground state, no other pair of potentials V; and V| can
produce the same ground-state spin-densities. Thus, V. and HZ* are also
uniquely determined by n; and n|. Therefore every physical quantity can be
regarded as a functional of n; and n| in this formalism.

As for the Kohn-Sham scheme, the auxiliary system is chosen as follows:

[_VQ + ‘/eﬂ",a(lrﬂ %‘a(”’) - Eiol/}io(,r)a (277)
and VT are found to be

(SEXC[TLT, ’I”Ll]
Ing(r)

in a similar way to that of the Kohn-Sham equation of the DFT. In the

V(1) = Vitartree (1) + V(1) + (2.78)

following, we will discuss all theories within the SDFT.

2.2 Optimized effective potential

According to the equation (2.69), the exact exchange-correlation energy can
be expressed formally in terms of Kohn-Sham orbitals, orbitals of a non-
interacting auxiliary system, because one can expand (\|A\H|¢,) in (2.69)
in terms of the Kohn-Sham orbitals using the perturbation theory.

Thus, it is important to know a correct way to minimize such an exchange-
correlation functional in terms of the Kohn-Sham orbitals. Sharp and Horton[5],
and Talman and Shadwick[6] (SHTS) found that it is convenient to minimize
such functionals with respect to the effective potential, and derived an equa-
tion that the resulting effective potential should obey. This potential is called
optimized effective potential (OEP) following Talman and Shadwick.

However, this alone is not sufficient to obtain the effective potential. The
proper treatment provided us with another necessary equation that is missing
SHTS, which was first pointed out by the author and Akai[39]. The first
subsection is dedicated to this subject.



36

2.2.1 Derivation of OEP equations

First, we define the auxiliary system of the Kohn—Sham scheme [7] as follows:

(= V2 + V()] Yo () = €thio(T), (2.79)

ny (r) = / B S 0 ()i ()S(F — ). (2.80)

In the previous section, we performed minimization of Fkg with respect to
the Kohn-Sham orbitals, {¢'}, {¢/*} and the upper boundary of the energy
integral u. Here we are going to minimize Ekg with respect to VT and
1t This is possible because n, is a functional of V(fﬁ and p,, which fol-
lows from that the choice of the effective potential determines n,(r, £) =
Yo UE (P)is(1)d(E — €4) perfectly. As in the previous section we use a
Lagrange multiplier to ensure that the total number of electrons is N:

Z/_:/m(r,E)drdE—N

Although this approaches should yield the same result as the variation

with respect to {¢}, {¢*} and p,, which yield (2.78), the variation with

respect to Ve, Wf—é(r) = 0, yields a seemingly different Euler—Lagrange

I =Fxs+¢ (2.81)

equation known as the OEP equation:
> / Ar' [Vieo (7)) = Vgeio (1)) Gio (7, )L (P )i (1) + c.e. = 0, (2.82)

where

Gig(r,r') = ) M (2.83)

Gleotew} 0 7
V;(C#T(r) - V:H(T) - VHartree(r) - ‘/ext(r>, (284)
N (1T")
VHartree<T) =2 ; / d’l“/ ”l" — 7’/|7 (285)
1 OF
Vge,io\T) = —5 . 2.86
") = G ) (280

Equation (2.82) has degrees of freedom that correspond to the choice of
the energy origin for each spin. That is, if V., is the solution of the equation,
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50 18 Vie s + a», Where o, is an arbitrary constant. Note that oy and « are
independent of each other, and hence, as things stand, we would have two

degrees of freedom.
On the other hand, 8871 = ( yields

OFy.
Oy

[ (€ = Viealr)} o) + 52 =0 (2.87)
Once a set of Vic; and Vi that satisfies both equation (2.82) and equation
(2.87) is fixed for a given &, there exists no other degrees of freedom that may
give rise to a new solution for (2.87). Therefore it is clear that (2.87) fixes
the difference between the additive constants that are permitted in (2.82).
A possible procedure determining V., is the following: Let us denote one of
sets satisfying (2.82) by V. . The difference between V.., and V]

XC,0 " XC,0

must
be a constant ay, i.e., Vic o VX’C -+ . Substituting these into (2.87) yields
equation determining a,.

In the exact-exchange (EXX) case,

o o B B
EEXX _ Z/ dE/ dE’/drd’ (r,7, B)io (', B) o g

[ — |

(here, n,(r,r', E) =Y. 0 (7)¢ir(r)0(E — €5)), equation (2.87) becomes
LR / 01 {€ = Vieo (1) + teso ()} 05 (P)ibio () = 0. (2.89)

This equation is identical to the one proposed by Krieger, Li, and Iafrate[25]
if the highest occupied orbital is not degenerate. In this case, £ is equal to
the so-called KLI constant of the highest occupied orbital. In the degenerate
case, however, £ is the average of the KLI constants of the highest occupied
orbitals. According to Eq. (2.89), £ should be common to both the spin di-
rections. Equation (2.89) holds whenever the exchange-correlation functional
satisfies the relation

%i): ;5 — €io / Ar Vsc,io (T) V5 (1) io (7). (2.90)

Another example of the exchange-correlation functional that satisfies the
above relation (2.90) is the one used by Kotani [23] wherein the static RPA
level approximation was used for the correlation energy, which we will discuss
later.
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2.2.2 Modified KLI method

In the following calculations, we used the KLI approximation proposed by
Krieger, Li, and Iafrate [24, 25] to solve equation (2.82). Among the several
ways to reach their results, the most easiest one is to replace the denominator
in the definition of the Green’s function (2.83) with a constant A:

Gio(r, 7' E) = Z —w}‘g("'“)wja‘("“) (2.91)
{j|€ﬂé€z} €ic — 6]0
N_ Z djjo' w]U ) (292)
{%lﬁﬁéﬁz}
1
=3 [0 =7) = D U () (2.93)
{ilej=ei}

For the sake of simplicity of the argument, we only deal with a non-degenerate
case until we reach the KLI equations. In the presence of degeneracy, the
resulting equation can be transformed into the same form as non-degenerate
case with a transformation of states to the principle axis (see appendices of
[25]). To the extent of this assumption, the Green’s function is approximated
by
1
Gig(r, ', E) o~ L [0(r = 1) =0y ()i ()] (2.94)
Substituting this into (2.82), one obtains

57 (i) (VIS ) = o)~V 75 b e =0, (299)

i

where VEM is the exchange-correlation part of the approximated OEP, n;, (1)

denotes
Nio (1) = Vi (1) his (1), (2.96)
and the averages indicated by an overbar are defined as
VI = [ dr o))V, (r) (297)
ch,ia = /dr w;‘ko(r)wia(,r)vxc,w(r)- (298)

When the approximated Kohn-Sham functional does not depend on un-
occupied states, the summation in (2.95) is taken only for occupied states. In



39

this case the KLI potential can be expressed as a modification to the Slater
potential V3 which is defined [4] as

XC)
Z;g Nis (r)vxc,ia (T)

Vao(r) = 2.9
XC,0 (T) Z;U nio—("') ( )
(The summation with a prime symbol is for the occupied states.)
Using V3, it follows from (2.95) that
! Nig\T Cz
V) = V3, )+ 2 2100

> Nio(r)

— Uxe.io» the so-called KLI constant for the state

VKLI

XC,i0

where (), represents
io. An equation that determines C;, can be obtained by integrating (2.95)
over whole the space. One reaches

!
Z <5J - Mji,J)CZ‘U - (V;(SCJU - ch,ja)v (2101)

where M is defined by

My, = [ g el lT) (2.102)
>k Mo (T)

Equation (2.101) still has an additional degree of freedom inherent in
equation (2.82). If a set of Cj, is a solution for the equation, so is a set of
Cis + a, where «, is an arbitrary constant. It is easy to deduce that this
corresponds to

VEE(r) — VS (r) + . (2.103)
It can also be seen that there is no other degree of freedom in the KLI
equation. In order to prove this, we can make use of the fact that, by adjust-
ing the free constant indicated in (2.103), it is possible to obtain a solution
whose last component is zero. Let A denote a matrix whose components are
A;; = d;j — M. The equation that determines the rest of the components
is an N x (N — 1) linear equation, where A is the size of the square matrix
A. That is
Ay 0 Ain,a 0
. . . T .
— || PN, (2.104)

. $Na—1
An,1 o AN, N, -1 0
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If there is any extra freedom, the corresponding homogeneous equation
should have solutions other than the trivial one. A necessary condition for
this is that the matrix I — M’ is singular, where M’ is formed by removing
the last row and column from M. In the matrix form,

An - AN, T 0
—|: . (2.105)

An,—10 - An,—in,—1 TN, , 0

Now, consider a matrix F' = >">° M™. Since [max; ), MJ’-i]_l >1, Fis
finite. However, F' is nothing but the inverse of the matrix I — M’ as long as
F' converges, and hence, I — M’ cannot be singular. This proves that there
is no extra degree of freedom other than the one implied by (2.103).

The original KLI scheme contains a method to fix this degree of free-
dom. Although, from the viewpoint of the equation (2.87), their method is
not always correct. However, replacing their method with correct one using
(2.87) does not introduce any difficulty in practical calculations. To obtain a
solution that satisfies (2.101) and (2.87) simultaneously, we solve (2.101) un-
der the condition that one of the components of the solution is fixed. Then,
we choose the additive constants a, such that the solution satisfies equation
(2.87) with £ — 0. In this limit, and under the condition that the equation
(2.90) holds and the highest occupied orbital is not degenerate, our scheme
is identical to the KLI approximation [25].

2.2.3 RPA-level correlation

Using the approach of the adiabatic connection of the DFT, the exact exchange-
correlation functional is expressed as (2.69),

Lax
Exc - T<@A|>\Hint|qj>\> - EHartree' (2106)
0

The first term can be expanded in terms of Kohn-Sham orbitals using the
perturbation theory, and the diagrammatic analysis is available to treat this
problem. As in the many-body electron analysis, the random phase approx-
imation will be a good starting point to analyze the correlation energy in
extended system such as solids. Thus, we use the RPA diagram as follows.

EgpA_/Ol%{m+@+®+©+...L, (2.107)
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where the subscript A means that every wavy line, which indicates the inter-
action, is accompanied by a single coefficient A.

It will be helpful to define a product of functions. We use 4-component
space-time variable in the following, like x = (r,t). Using this, the product
of f(z,z") and g(x,2’) is define as

fo(zy,20) = /dx’f(xl,x')g(x’,xg). (2.108)

The identity function 1(z,z’) is defined as 1(z,2') = dé(x — ) so as to
f1 =1f, and a superior —1 is used for indicating the inverse of a function
fidft ==

Trace of a function is also useful. Let Tr denote

T[] = / def(z,z). (2.100)

It is easy to see that
Telfg] = / dada' (v, 2')g (2! ) (2.110)
_ /d:c'd:cg(:c’,:c)f(x,:c’) — Tegf]. (2.111)

thus a product of functions can be cyclically exchanged without changing the
value of the trace as in the trace of matrices.

The solid lines in (2.107) all form a ring diagram. Using notations of the
Appendix B.1, the ring polarization insertion can be expressed as

D(x,x') = O (2.112)

=> D)(x,a). (2.113)

The formula for the bare coulomb interaction v, which is denoted by wavy
line in diagrams, can be written as

2

e

v(z,2") o(t —t). (2.114)
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Then, let us define the screened coulomb interaction W as

W:m+ﬂ+ﬁ+___ (2.115)

= [1—UD]_1U—U (2.116)
= [1 —vD] 'wDw. (2.117)

RPA
E c

Using these, can be expressed as

EEPA:/;% {w+@+®+©+..k (2.118)

_ / 1 %Tr WD, (2.119)

This expression will be useful when we discuss the static approximation for
the variation of ERPA later. The integration with respect to A can be per-
formed beforehand, using

1 1
%WAD = / {(1 = D)™ =1} vDdA (2.120)

0 0
= —log(l1 —vD) —vD, (2.121)

where the logarithm is defined by log(1 — A) = — > | 4. Thus, EXPA can

n=1
be also expressed as

ERPA — _Trllog(1 — vD) 4 vD]. (2.122)

Before moving on to the approximation, let us consider variation of the

ERPA with respect to D and derivative with respect to A . For this purpose,

it is helpful to use X, = v, D. Using this, W, D can be expressed as
Wi\D = (1 - X)) 'X3. (2.123)

First, let us consider the variation of B = (1 — A)~! when A is varied as
A — A+ 0A. Tt is easy to verify

0B = B(5A)B, (2.124)

seeing that (1 — A — §A)(B+ dB) = (B™' + §A)(B + dB) = 1 holds up to
the first order of variations.
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As for the derivative with respect to A, one obtains
dB = B(dA)B (2.125)

in a similar way to that of the variation.
Using these and (2.111), the variation of the trace of W) D is expressed
as

STr [WyD] = Tr [§(1 — X)) ' X3 + (1 — X)) "6 X3] (2.126)
=Tr [{(1-X\)7°X5+2(1 - X)) ' X0} 0X)]. (2.127)

As for the derivative, we need not to take the trace in order to arrange
terms as in (2.127) because dX, = Xd\ commutes with X,. Thus,

d[(1-X)7X7] ={(1 - X))7°X7 +2(1 — X)) ' X, } dX,, (2.128)
={(1-X)7°X;+21 - X)) " XodA X, (2.129)

Noting that Xy—o = 0, it is seen that the integration over 0 < A <1 yields
1
(1—-X)2X? = / {(1-X)7°X7+2(1 - X)) ' Xo}dA X, (2.130)
0
Therefore, using these and X, = \o.X,
RPA b
OB = Y Tr [W)\D] (2.131)
0
tdA —2v2 ~1
=/ % Tr [{(1— X)) 7°X5+2(1 — X)) ' X)) 60X, (2.132)

— /1 dATr [{(1 - X)72X3 +2(1 - X)) 7' X XX 16X] (2.133)

=Tr[(1—X)'X6X] (2.134)
= Tr [WéD]. (2.135)

Thus, all §D’s in the variation are arranged and put together to only one §D.

In addition, it is seen that the integral of A in (2.131) have not to be performed
RPA _ OB
" .

when calculating only the correlation part of the OEP, =

Static approximation However, calculation based directly on the equa-
tion (2.135) still takes too much computational time for our purpose because
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we need to construct the OEPs many times until the potential converges and
satisfies both (2.82) and (2.87).

Therefore, we adopt the static approximation, which greatly reduces the
computational time. Let the tilde symbol denote a Fourier transform of time
domain (A.3) of a function like f(w). If W varies slowly enough with respect
to w, W can be approximated accurately as

W(r,r' 1) = %/dwe_iwl/f/(r,r’,w) (2.136)
~ W(r,r',0) / dw e~ (2.137)
= W(r,v,0)6(t —t'). (2.138)
Using this, the variation of the correlation energy becomes
SESRPA — Ty [W(r, ' 0)8(t — t')5D(r' v, — t)] (2.139)
= /dr dr'W (r,7',0)6D (', r,0). (2.140)

Within this approximation, all the integrations with respect to time and fre-
quency vanish. Thus, hereafter, let the integrations indicated by the product
of the functions and Tr be performed only for the space, and omit the time
and frequency variables whenever they are zero, so that

s [ [ e 0D e 0) =T (WD) (2141

It can be seen that only w = 0 component of the polarization insertion
D(r,r,w) is included in W above. It follows from the relation of a Fourier
transform of a convolution that

W(r,v') = ({1 - 5D) 5D (r,7), (2.142)
where D denotes the function D('r, r’,0) along to the notation we have just
made. Therefore, the equation (2.141) contains two kinds of the polarization
insertion, D and D. Calculations of both two are summarized in the appendix
B.1. It can be seen from (B.12) that D depends only on density of the system.
Therefore, the numerical calculation related to D is not very difficult because
it consists of the occupied orbitals. Note that the variation of the correlation
energy is attributed only to 6D in (2.141). Therefore, the use of the KLI
approximation for this functional is justified and one can see that the relation
(2.90) holds for the correlation as well as EXX.
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Static polarization insertion However, as for D we need to devise a
efficient way to calculate. It follows from (B.21) that

’I”T’ _22 : Eza EF F_Eja)

v — €io + 17
><¢w )i (T ( )Y (1) (2.143)
/ dE/ dE' E+z77 ne(r, v, E)n, (', r, E')  (2.144)
_2/ dE'ng('r,r,E)/ dE% (2.145)
_z/éF B 7y (v v, B f(rov', B, (2.146)

where f is defined as f(r, 7', E') f dE Lﬂ Due to the existence of

f, it seems that the calculation of D must involve unoccupied Kohn-Sham
orbitals, which can cause problems if there is no clear criterion of choosing
finite set of the unoccupied orbitals that are taken into account. This can be
avoided as follows. First, f is transformed as

(o¢] ~ / E)
By = [ aplerrhE)
fr,r', B /EF E' — E +in

e ne(r, v, E) r Ne(r, v, E)
= A ————+ — dE ———FF+ 2.14
/_OO E' —FE+1in / - ' (2.148)

—0o0

:GUR(r,r’,E’)—I—/ dE

Second, in order to deform the path of the integration of the second term onto
upper half of the complex plane, one can use n,(r, 7', ) = —%Im GE(r,7r' E)
and the following relation:

I
m || =2, 1 (2.150)
€e+1in €—in €2 4+ n?
Imz

—

p— +imzd(€) (n — 0). (2.151)
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Finally, using these, f becomes

R(
fer, v B =G¥r v E) - Im/ dEGT—TE)

E—LE +in
€F

—/ dES(E — EGE(r, v, E) (2.152)

1 v GR(r,r' E)

— R /E/ | / j Diples U

GO’(T7T7 ) ﬂ_m _ood E_E/+ZT]

—0(ep — ENGE(r, 7', E) (2.153)
B( E

— O(E' — ep)GR(r, v E) Im/ dEg TET ) (2.154)

Now, the first term does not contribute to (2.146), and it seems possible to
deform the path of the second term onto the upper half-plane.

However, there are two points of which we should be careful concerning
the second term. First, if n in the second term is the same variable as the
infinitesimal energy shift of GX in the denominator, the integrand of this term
has poles of 2nd order, and thus the integral can not be defined. This ill-
behavior is due to the addition of [*F ”"(’;E’f f;) dE in (2.148) and replacing 7
with —LIm GI . However, this 17 does not have to be identical with that of the
Green’s function because (2.147) itself is independent from the infinitesimal

variable in the Green’s function which corresponds to the n as long as the
nig(r,r’)

Py
upper analytic half-plane that detour the poles is justified because all the

poles can be regarded as of first order.

additional term converges to ), 0(ep — €;5) Thus, use of a path in

Second, the numerical treatment of the second term is difﬁcult when dealt
T will be left
after integration with respect to E due to 7, which is contained in G®. This
problem will be solved if the path of £’ in the equation (2.146) is deformed

so as to detour the poles on the real axis of E’. However, deformation of a

as a function of £’. This is because the singular function

path is allowed only when the integrand is analytic in a region that covers
the trace of deformed path. Therefore, we have to replace the integrand with
an analytic continuation of itself in order to deform the path.

We have found such an analytic continuation as follows. First, an imag-
inary part of a function g(z) can be expressed as Im[g(z)] = g(z) — g(z)
when z is real. Think of ¢g(z) that is a continuation of g(x) and analytic
in the upper half-plane. Using ﬁ which is defined and analytic in lower
half-plane, this is expressed as Im[g(z)] = lim,_, 10 9(2) — ¢(Z). Thus, the
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Figure 2.5: The paths of the integral in (2.156). When g¢(z) is analytic in a
region in the upper half-plan, ﬁ is defined in the conjugate region in the
lower half-plane and one can show that this function is also analytic in the
domain. Thus, the value of the integrals does not depend on the paths as
long as both the region cut by C] and real axis (pink region) and the region
cut by €% and real axis (light blue region) do not contain any singularities of
the functions.

integration of g(z) for A < x < B can be transformed into the sum of the
two integrals along (' and C that are on the upper and lower half-plane
respectively, and that start from point A and end at point B (See fig.2.5):

Im /ABg(x)dx = lim {g(z) — @} (2.155)

z—x+10
= / g(z)dz — / g(Z)dz. (2.156)
c cy
The direct application of this to the second term of (2.154) gives
1 Rr,r' E R(r,r' E
—— / dEGO'(T7T7 )_/ dE GU(T? )
2i | Joy, E—-FE +1in Cy E—E —in

which itself is not an analytic function of E’. However, it is clear that the

!
1

, (2.157)

following function

R ! #
F(r,r' E') = 1 [/ dEM—/ dEM
c C

i 2.158
21 . E—FE +in E—FE —in ( )

is analytic as a function of £’ and identical with the (2.154) on the real axis
of E', where C is a path from —oo (which can be replaced with any energy
below the energy of the lowest occupied orbital) to ez on the upper-half plane
and C5 on the lower-half plane.
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Figure 2.6: The paths in (2.162) projected to one complex plane.

Using F'(r,r’, E') and noting that this function is real when E’ is real,
the equation(2.146) can be transformed to the following expression:

~ eF
Dy(r,7r') = 2/ dE' 0, (r',r,E") F(r,v' E') (2.159)
o [
:__/ dE'Im [G}(r', v, E')| F(r,7',E') (2.160)
™ —0oQ
2 er
= —=Im U dE' GR(r',r, E'YF(r,7 E')| . (2.161)
™ —00

Now, we are prepared for deforming the path of this integral. The path should
not cross C) projected to the complex plane of E’ because F(r,r', E’) is
singular at the crossing point, and simultaneously the path should be on the
upper-half plane because the integral contains the retarded Green’s function
(See fig.2.6). Let C5 denote one of such a path, then finally we obtain

Do’ (7'7 T/) = lRe |:/ dE/ G?(TJ? r, El)
™ Cs3

R B R 1B
" /dEGa(T,'f‘, ')_/ IE Go—(r,'lr', ')
o, E—FE +in Oy E—FE —in

The path 5 can be chosen to be identical with the conjugate path of C. In

(2.162)

this case, the integral in the curly brackets need only the information of the
values of G® on C,. The integral with respect to E’, however, involves G® on
the different path Cs. Therefore, we need the values of G on two paths on
the upper-half plane. The Korringa-Kohn-Rostoker(KKR) Green’s function
method is convenient for this purpose because it can directly calculate the
retarded Green’s function of complex energies on the upper-half plane.
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Energy calculation Besides the ground-state density, the ground-state

energy is another quantity that the Kohn-Sham scheme enables us to calcu-

RPA
E c

late. Thus, it is also important to calculate the itself in order to obtain

the total energy. In the following calculation, we applied (2.138) also to the

RPA :
E" e,

A

It should be remarked that one can not obtain (2.141) from this equation

1
ESRPA / A, [WAD]. (2.163)
0

because variation of this involves both the variation of D and D. However, as
far as the static approximation to the screened Coulomb interaction is valid,
this approximation is also efficient and this does not harm to the results of
the calculation very much.

ERPA may be also possible.

An approximation to the expression (2.122) of
However, we adopted the direct calculation of (2.163) in the following. There
are three main reasons for this. First, it seems difficult to devise a simple and
physically transparent approximation to (2.122), which must be consistent
with the approximation for the variation of the correlation energy. Second,
the A-dependence of the integrand of (2.69) is an interesting information of
the system. For example, the hybrid functional methods can be theoreti-
cally justified as approximations to the integrand as mentioned in the first
chapter. Third, it is easy to implement the method because one can reuse
the module that generates W with a little modification in order to calculate
Wy. Admittedly, it takes long time to calculate many W)’s for various A
in 0 < XA < 1. However, this calculation is performed once for all after the
convergence of the potential, and it will take much less time than the whole
calculation process. Thus, one may put higher priority on the reliability over
the efficiency of the calculation.






Chapter 3

Results

3.1 Exact exchange

First, we apply the method described in the previous chapter to crystalline
alkali metals with the exchange-only FE,. using the atomic sphere approxima-
tion (ASA) for the shape of the effective potentials. The results of the calcu-
lation without correlation terms may not be very different from those which
includes the correlation energy for such systems. This provides a stringent
test for the method because the incorrect treatment of the additive constants
can easily yield an artificial magnetic field. This occasionally allows an un-
physical magnetization to remain after the convergence of a self-consistent
procedure.

The total density of states (DOS) of Li, Na, and K are shown in figure3.1.
As expected, all of them are nonmagnetic. We confirmed that neither the
local nor the global energy minima existed for any magnetic solutions.

We also calculated the electronic structures of ferromagnetic Fe and anti-
ferromagnetic MnO within the same framework. The results can be compared
with those obtained by Kotani and Akai [40], who performed calculations
using the KKR-EXX method.

Figure 3.2 shows the exchange potential obtained by the present scheme.
The V, graphs have shallow dips around r = 0.5 (a.u.), which corresponds
to exchange holes. The dip turns out to be shallower than that obtained in
[40].

The total DOS of these systems are shown in figure 3.3. Although the
exchange splitting of our results seems slightly smaller than those in [40], the
overall agreement between the two is satisfactory. This implies that, at least

51
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Figure 3.1: Total DOS of Li, Na, and K calculated by using modified KLI
method (see 2.2.2) in combination with the KKR method within the frame-

work of the EXX.
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for these systems, using the KLI method does not affect the features of the
OEP significantly.
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Figure 3.2: Exchange potentials of Fe and MnO calculated by the modified
KLI method (see 2.2.2) within EXX.
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Figure 3.3: Total DOS of Fe and MnO calculated by the modified KLI method
(see 2.2.2) within EXX.
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3.2 Test calculation of technique for static
RPA-correlation-energy

We performed test calculations in order to see the efficiency of our new
method to calculate the static polarization insertion. As representative ex-
amples, we chose two model Green’s functions.

The first model Green’s function is

1 1

Gi(FE) = 3.1
1(B) ExAtin E—Atig (3:1)

whose imaginary part consists of two delta-functions (See figure 3.2):

1
ni(E) =ImGy(F) = —;{5(E—A)+5(E+A)}. (3.2)
The second one is
E+B+C EFE+B-C
E)=1 S 1 - )

GuB) = tos (5 ) s (Fop=g). (9)

whose imaginary part consists of two box-shaped functions (See figure 3.2):

= {8(E+B+C) —0(E~ B+C))
+{0(E+B-C)—6(E—B-C)}] (3.4)

§(E + A) §(E — A)

-4 0 A ~(B+0) B-C C-B B+C

Figure 3.4: The imaginary part of the model Green’s function of (3.1) (Left)
and of (3.3) (Right). In the calculations, the green region was treated as
occupied states, and red as unoccupied.
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Using these, the calculations based on (2.162) (hereafter, “new method”)
are compared with those based on (2.145) (hereafter, “direct method”). The
values A = 0.5, B = 0.5 and C = 0.55 are used and the Fermi energy
is set ez = 0 in the calculation. For the direct method, the path of the
integral is shifted upward by 1072 in order to detour poles of the integrand.
Correspondingly, the end point of the path of the integral for new method is
also shifted by 1073,

The model Green’s functions are simple enough to calculate the exact
value of the polarization insertion D using (2.145). Thus relative errors of
each calculations are also available. The log-log graphs in figure 3.5 shows
that the relative error decreases as the number of energy mesh used in the
numerical integration increases.

The top graph in figure 3.5 is of the model Green’s function GG;. Both
methods reduce the relative error, as the number of mesh increases. However,
it can be seen that the new method is much more efficient than the direct
method. This is not surprising because the integration of -function along
near the real axis is extremely hard.

On the contrary, the imaginary part of the second model Green’s function
is smooth along the real axis. However, as shown in the bottom graph in
figure 3.5, the new method is still more efficient than the direct method. This
is because new method can use mesh, which is fine near the real axis and
coarse far from the real axis. This feature greatly improves the precision of
the integration because all poles are located on the real axis in the calculation.

3.3 EXX-+RPA

We have also implemented the RPA-level calculation in the KKR code using
the new method to calculate the polarization insertion. During the construc-
tion of the correlation functional, the Kohn-Sham orbitals are coarse-grained
in order to accelerate the calculation. We found that the loss of precision
was insignificant for final results when the number of the radial mesh was
reduced from 400 to 200. Thus, we applied this to all the calculations in the
following.

The figure 3.6 shows comparison of the total DOS of ferromagnetic Fe
with that of the LDA, which is considered to be accurate enough for this
system. The result can be also compared with that of the EXX calculation,
which is given in the top graph of figure 3.3. The results of EXX calculation
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Figure 3.5: The log-log plots of the relative errors of the calculated polariza-
tion insertion versus the number of mesh for numerical integration. In the
calculation, (top) the model Green’s function G; and (bottom) G5 are used.
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shows that the splitting of up- and down-spin states are too large compared
with that of the LDA. Our new method (EXX+RPA), which takes account
of the RPA-level correlation, produces a similar result as that of the LDA.

ESN " TotalDOS —— 1

Majority Spin(states/Ry)

Minority Spin

35 | | | 1 i

Total DOS ——

Majority Spin(states/Ry)

Minority Spin

Figure 3.6: Total DOS of Fe calculated within (Top) EXX+RPA and (Bot-
tom) LDA.

The table 3.1 shows the calculated magnetic moments for Fe, Co, Ni
within the EXX+RPA, EXX, and LDA. In addition, we compare them with
the magnetic moments calculated by Kotani [23] and those obtained by ex-
periments [41, 42, 43]. Tt is a common tendency seen in all our results in the
table that the exchange-splittings, which are overestimated in the EXX, are
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(up) EXX+RPA EXX LDA Kotani[23] Exp. [41, 42, 43]

Fe 2.60 3.38 2.28 2.05 2.12
Co 1.50 226  1.60 1.57 1.59
Ni 0.61 0.82 0.59 0.57 0.56

Table 3.1: The predicted magnetic moments of ferromagnetic Fe, Co and Ni
obtained by our KKR-OEP-KLI code, those of Kotani’s direct OEP calcula-
tion [23], and those from experiments [41, 42, 43].

reduced considerably within the EXX+RPA. However, the predicted mag-
netic moments are still larger than that of the EXX+RPA results by Kotani,
the experimental values, and that of the LDA. These discrepancies can at-
tributed to the use of the KLI approximation because our methods are con-
sidered theoretically more accurate than that of Kotani’s except the point
that we use the KLI approximation.

3.4 Total energy

The total energy calculations were also performed for non-magnetic Na and
ferromagnetic Fe. Based on the equation (2.163), we used 240 mesh for the
lambda integration in the following results.

We found that the numerical integration along the real axis is virtually
impossible due to singular behavior of the integrand along the real axis. The
figure 3.7 shows the behaviors of the integrands of Fe and Na. These singular-
ities are due to (I—A0D)~! in the expression (2.142) of the screened coulomb
interaction (v must be accompanied by A in the calculation of (2.163)).

Thus, we deformed the path of A to detour the poles, which could be
justified as follows. In the formalism of the adiabatic connection, what we
really want to know is the difference of the values of anti-derivative at the
ends of path,A = 0 and A = 1. If there is no pole the integral gives the
correct difference. However, the presence of poles may introduce ambiguities
of the integral. Fortunately, 9D is a real function. Thus, if there is a pole of
(1 — A0D)~" on the real axis of A, and the pole is of first order, the residue
of the pole must be real. In this case, it contributes only imaginary part of
the integral. On the other hand, we know that the difference must be real.
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Integrand (Ry)
Integrand (Ry)

06 08 1 1) 02 04
A A

Figure 3.7: The green crosses indicate the value of the integrand of (2.163)
along with the real axis of A\. The red line connects neighboring points just
in order to serve a guide to the eye.

Thus, just dropping the imaginary part after integration will give the correct
difference.

The path of the A integral is illustrated in the figure 3.8 with the value
of the integrand for both Fe and Na case. The lambda runs along the three
sides of the rectangle which height is 0.1 and width is 1. It can be seen that
the integrands are smooth enough to be numerically integrated along the
path.

Real Part - Fe —— eal
Imaginary Part - Fe
Projected path {0 bottom plane -------

Integrand (Ry) Integrand (Ry)

Real Part -Na ——
Imaginary Part - Na
Projected path to bottom plane -

2
15
1
05
0
05
-1
15

Figure 3.8: The real part (red) and the imaginary part (green) of the inte-
grand of (2.163) on the deformed path of A, which is shown as the blue lines
on the bottom plane of the graphs.

Two graphs in the figure 3.9 shows the variation of the total energy with
respect to the lattice constant of the ferromagnetic Fe and non-magnetic Na
respectively. The table 3.2 compares the estimated lattice constants with
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that from the experiments and that from the LDA calculations. Though the
EXX+RPA scheme predicts smaller values than those obtained by experi-
ments, it falls closer than those of the LDA.

(a.u.) Exp. EXX+RPA LDA

Fe 5.42 5.30 5.24
Na  7.99 7.82 7.68

Table 3.2: The calculated lattice constants calculated by the KKR-OEP-KLI
code compared with the experimental values.
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Figure 3.9: Variations of the total energy of (top) Fe and (bottom) Na
with respect to the lattice constant calculated within the framework of the
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Chapter 4

Conclusions

We have proposed a new scheme of calculating the optimized effective po-
tential. This includes several fundamental findings on the OEP theory. The
OEP must be determined according to the set of two equations:

22 ] AT Vaeo (') = Vxeio (7)) Gio (7', )15, (P )i (r) + .. = 0

(4.1)
8ijc
Oy
The first equation is derived by Sharp and Horton [5], and Talman and
Shadwick [6] (appeared as (2.82) in chapter 2), and the second (2.87) is

given by the author and Akai [39]. The new technique to calculate the RPA-
level correlation is also demonstrated. The static polarization-insertion is

[ dr {& = Vieo(r)} 110 (7, o) + —0

analytically transformed into the other expression (2.162), which is more
convenient in numerical calculations.

These techniques are implemented in the KKR code with the modified
KLI approximation, which is constructed in accordance with (2.87) by the
modification. For the calculation within the framework of the EXX, the use
of the KLI seems adequate. However, there are yet discernible discrepancies
between results obtained by our code and results of the direct method re-
ported by Kotani [23]. We also proposed the approximate way to calculate
the correlation energy, which is needed for the total energy calculation. It is
remarked that our scheme with the modified KLI method still seems to have
an advantage in predicting lattice constants over the LDA.

The disagreement of our method with the direct OEP calculation should
be attributed to the use of the KLI approximation. Thus, another approx-
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imation going beyond the KLI approximation or efficient way to calculate
the OEP directly should be investigated as our further steps. Fortunately,
most of our findings are independent from the KLI approximation. There-
fore, we believe that they are also useful in future developments based on the
optimized effective potential theory.



Appendix A

Notations and formulae

In this appendix, several definitions and formulae used in this thesis are
listed.

A.1 Definitions

Rydberg Units (Slater Units) The Rydberg units are used through
this thesis. These units are defined by the following relation of the physical

constants: )

h=2m, = % = 4meg = 1, (A.1)

where, h is the Dirac constant, m, is the mass of the electron, e is the electric
charge of the electron, and ¢ is the dielectric constant of vacuum.

Fourier transforms The Fourier transforms are defined as follows. Note
that there is a slight difference between those of time and space.

1 ikx [
fl@) =5 / dk e f (1) (A2)
£0) = 5 / duo e () (A3)

Heisenberg representation The Heisenberg representation is denoted by
subscript of H, and the Schroodinger representation S. The states and oper-
ators of these two are related to one another as:

[TH) = 1) gS) (A.4)
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08 = eimOASe_im, (A.5)

where H is the Hamiltonian, |US) is a state and OS is an operator in the
Schrodinger representation. The states and operators without both superiors
denotes that of Schrédinger representation.

T-product T-product is defined as

A, B ¢) (> 1)
T{A(r,t)B(r', )} = . (A.6)
B Y A(r,t) (t<t)

It is enough because we only apply T-product on the anti-commuting oper-
ators.

A.2 Formulae

Fourier transforms of f-function The Fourier transforms of 6-function
appears several times in the text. Letting n denote a infinitesimal real value,
the following relation can be seen:

ot — 1) — 2i / dwei“’(tt/)[ L } (A7)

T W+
1 , , —1
0t —t) = — [ dwe ™" : A.
( ) 27 / we w —1n (A-8)
Therefore, one obtains
H(t t/) —ia(t—t") _ i dw efiw(tft/) s (A 9)
27 w—a+in|’



Appendix B

Green’s function of
non-interacting system

In this thesis, two kinds of the Green’s function, the causal and retarded
Green’s function, are utilized. In general, they are defined as follows.

Causal Green’s function
iGoor (2, 2) = (g T{E ()00 (/) Ha™), (B.1)
Retarded Green’s function

iG L (x,2") = 0(t — ) {g" |5 ()01 (2)]g"), (B.2)

where [g") is the ground state of the system, @ZE is the field operator, both in
the Heisenberg representation, and four-dimensional space-time-coordinate
variables such as x = (7, t) are used.

This appendix summarizes useful formulae related to the Green’s function
of non-interacting systems. In this thesis, we deal with the Green’s function
many times, but all of them are those for non-interacting systems. In this
case, it can be seen that the spin off-diagonal part of these Green’s functions
vanish. Thus, it is convenient to let G, denote the diagonal component of
GUUIZ

Goor(2,1") = 0,5 Gy (x,2"), (B.3)

and G the counterpart of G ,. We use these notation throughout in this
thesis.
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The first section of Appendix B is devoted to a summary of calculations
related to the ring diagram, which appears in section 2.2.3. The second and
third sections describe the relations used in the construction of the Korringa—
Kohn-Rostoker (KKR) Green’s function method (see Appendix C).

B.1 Ring polarization insertion

In this section, quantities related to the following ring polarization-insertion
D are calculated. In non-interacting systems,

/

D(z,2") = O (B.4)

— Z Goor (2, 2')Gyor (2, ) (B.5)

where D, is defined as
D,(z,2") = —iG,(x,2")G, (2, x). (B.8)

In section 2.2.3, the value of D,(z,2") = D,(r,r',t —t') at t = t' and the
frequency component of the Fourier transform of D, at w = 0 play important
roles. Thus, we calculate both two in this section.

In order to calculate D,(7,7',0) we calculate the value of Green’s func-
tions G, (7,t,7’',t') when the difference between t and ¢ is infinitesimally
small. Let ¢t* denote ¢t = ¢ + 0. Then,

Gy, t, 7 t+) = —<gH!1@T (') don(x)|gu)
Z Vi (r ww T) (B.9)

i:occupied
= _na(rla T)v (BlO)

where 1;,(7) is the ith eigen-function of the non-interacting system, which
has the spin . In a similar way, one obtains

iGo(r,t", 7' t) = (gl Vo (2)¥ ]y (2") gn)
= —ny(r',r)+(r—71). (B.11)
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Therefore, one reaches

iDy(r,t, v t7) =iD,(r, t* v t)
=n,(r)d(r — ') — [n,(r, 7). (B.12)
Next, we move on to the Fourier component of D,. Let D, (7,7, w) denote
the frequency component of the Fourier transform of D, (r,7/,t —t') and G,
the frequency component of G, .
Let us begin with (g%|{5(2)yH (2/)[g") in the expression of the causal

Green’s function. Letting [n®) denote an energy eigenstate in Schrodinger’s
representation, one obtains

(g (@) ()] g") = Z( M8 () [n®) (45 (') g (B.13)
_Ze—z (En—Ep)(t—t') < S‘qvb ( )|nS><nS‘¢$S(x/)|gS>’

(B.14)

where FE, is the energy of |n) and Ej is the that of |g). The contributions
comes only from |n) that is different from |g) by one extra orbital |n), and the
other terms vanish due to orthogonality between the states. Consequently,
this can be expressed in terms of 1, its energy eigenvalue ¢;,, and the Fermi

energy, e, of |g):

(g3 ()i ()] g") = Y e om0 e — ep) o (r) 05, (7). (B.15)
By a similar analysis, one finds

(G ()l () Z =~ e — €4,)bio (T)U5 (1), (B.16)

The causal Green’s function is constructed from these two expression:

iGo(,2") = 0t = ') (gutlon ()P (") | gur)
=0t — t){gul Ol (') on(2)lgur)
=0(t—t) Z e om0 (e, — €p) i (T)07, ()

G(t’ . t) Z el’(em*éF)(t*t')Q(EF — Ew)wig(r)w;(’r/)_ (B17)
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Therefore, the polarization insertion can be expressed as
Dy(x,2') =i X iGy(x,2") X iGy (2, ) (B.18)
= {0(t — t)0(eie — e7)0(er — €o)
i,J
— Q(t' — t)Q(EF - Eig)Q(EjU — EF)}
e (1) (1), (e (), (BL9)

which follows from the definition. Using (A.9) and (A.10) in Appendix A,
we finally obtain the Fourier transform of D, (x,z’) as for t — ¢

Do w) = Y O(civ — €r)0(er — €j5)  Oler — €is)0(€jo — €F)
o\, T, v w — (Eia — Ejo‘) + ”7 W — (Ejo' — Eio’) — 277

X i (r)1hi (r' )15, (1) Yo (7). (B.20)

Substituting w = 0 as a special case, we obtain

Do‘('r'y 'I"/’w — O) -9 Z 0(@0’ - EF)9<€F _ Eja)

€jo — €io + ”7

Z'7j

X Wio (1) 5 ()15, ()0 (1) (B.21)

B.2 Dyson equation

In this section, a relation between two different Green’s functions is dis-
cussed. One is a Green’s function of Hy and the other H, where these two
Hamiltonians are connected by a relation:

H=Hy+V. (B.22)

Here, only the relations between the retarded Green’s functions of two
systems are discussed because they are enough to cover the scope of this
thesis.

It is convenient to begin with the following expressions of the Green’s
functions:

9(E)

G(E) = (E —H+ m) - (B.24)

N —1
(E ~Hy+ m) : (B.23)
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which are true for the retarded Green’s functions of non-interacting systems
in the frequency domain. Here, 7 is a real positive number, which should be
taken n — 0 at the end of the calculations.

These two Green’s functions are connected by the Dyson equation:

G(E) = §(E) + g(E)WG(E). (B.25)

A proof is given by a simple transformation of the right hand side.

(ths) = §(E)+ §(E) H - ﬁo} G(E) (B.26)
= 4(E)+ §(E) :(E ~Hy+in) — (E—H+ m)} G(E)(B.27)
= §(B)+3(B) [§7(B) - G(B)| G(E) (B.28)
— G(B). (B.29)

The following relation also be given by a similar transformation.
G(B) = §(E) + G(E)Vi(E) (B.30)

These relations hold for any 7 common to the both Green’s functions. If one
use different infinitesimal value from one another, say n and 7', the Dyson
equation can be justified at the limit of n,7" — 0.

B.3 Lippmann-Schwinger equation

Wave-functions of two systems can be related by the Green’s function via
following Lippmann-Schwinger equation. Let |¢;) denote an eigenfunction of
Hy, whose eigenvalue is E;, then

lim A |1+ G(E)V] |6) = B L+ G(E)V] I6.). (B.31)

Thus in the limit of n — 0, [1 + (A}’(El)f/] |¢;) can be regarded as an eigen-

function of H, whose eigenvalue is F;. Though this relation can be derived
more algebraic manner, existence (or non-existence) of [1 +G (EZ)V] |¢;) can
be seen clearly if one use the eigenfunction expansion of Green’s function:
1
§(E) = i) —=—————— (], B.32
a(E) ;rmE_Eﬁmw (B.32)

G(B) = X I =g (o (B.33)
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where eigenfunctions of H are denoted by |¢;). It follows from (B.30) that
1+ G(E)V = G(E)§~'(E). Using these, one can see

[HG(EZ-)V] 6:) = G(E)G(E)|e) (B.34)
= SRR Lol 35
- Tppraeen G
p—~ Z5Ei,Ej|¢j><s0jl¢i>- (B.37)

Thus (B.31) always holds. Note that we used the common infinitesimal
value n for both ¢ and G, and the resulting relation holds only when the way
taking the limit is correctly chosen. This arbitrariness was not found in the
derivation of the Dyson equation.



Appendix C

Korringa-Kohn-Rostoker
Green’s function method

The Korringa-Kohn-Rostoker(KKR) Green’s function method is a way to
construct a Green’s function of a non-interacting system from the Green’s
function of the free space. This method is established by Korringa [44] and
Kohn and Rostoker [45]. In this scheme, the space is divided into cells. Then
the single scattering problem of the each divided potential is solved. It is
one of advantages of the method that one can construct the Green’s function
of the whole system from such separated information of each solution that
is obtained without considering the connection of the orbitals to that of the
neighboring cells.

In terms of the Kohn-Sham scheme, the KKR method offers a way to
obtain the ground-state density ng(r) of the Kohn-Sham system by the re-
lation,

no(r) = —%Im/ dEG(r,r, E), (C.1)

where G(r, 7', E') denotes the retarded Green’s function in the position rep-
resentation and ep is the Fermi energy. This relation itself holds in general.
However, it will be enough to confirm this from (B.33), which is valid only

1)
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in non-interacting systems:

rloi) (pilr)
——Im/ (r,r,E) = / ZE ot in (C.2)

= > [T mein? ©3
no('r). (04)

Appendix C is devoted to deriving the KKR equation, which gives the
way to construct the Green’s function in such a way as mentioned above.

C.1 Cell division

In this section we are going to discuss the KKR’s construction of Green’s
function in somewhat a generalized way. First, we introduce “cell” restriction
operators P,,, which satisfy the following relations.

= P (C.5)
SmnPrm (C.6)

S =1 )

For example, let us think of dividing the space into cells. One can verify
operators defined by

P = /dr Om(r)|r) (7| (C.8)

satisfy (C.5)-(C.7), where ©,,(r), the shape function, is a unity when 7 is in
the mth cell, zero otherwise.

Then, we define the single-scattering Hamiltonian of mth “cell” using cell
restriction operators.

HS = Hy+V,,, (C.9)

where Vm = ﬁmf/ﬁm, and we also let @fn denote Green’s function of this
Hamiltonian. Now we assume that V in the Hamiltonian H = Hy + V
satisfies

P.VP, =6,,P.VP,. (C.10)
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This relation holds, for example, when one uses (C.8) as the cell-restriction
operators and the V' is local (when the potential is expressed as V() in the
position representation). Note that it follows from (C.7) that

V= P.VP=> V. (C.11)

mn

In the following section, we also use cell-restricted solutions. For example,
let |J;) denote a solution of the Hy, then the restricted solutions to the mth
“cell” is defined as

Note that |J~mz> is not necessarily a solution of the each corresponding Hamil-
tonian because P,, do not always commute with the Hamiltonian.
As for solutions of H , it follows from the Lippmann-Schwinger equation

(B.31) that [1 + anf/m} |J;) can be regarded as a solution of H?,, where
Vin = P,V P,,. Thus, letting | Tmi) = [1 + éinf/m} |.J;), we define a restricted

solutions of Hamiltonian ﬁ; to the mth “cell” as

= P |14 G| 1), (C.14)

C.2 KKR ansatz

In this section the Green’s function G is constructed on the assumption that
G can be expressed as follows:

=S PGP+ 3 15 mYG (T (C.15)

iymn

The first term consists of cell-restricted Green’s functions of the single-
scattering Hamiltonians. Thus, this term has singular behaviors asymptoti-
cally as same as those of the Green’s function of H. The remaining part of
the Green’s function may well be expanded in terms of the regular solutions
of H. In this expression, thus, the coefficient G¥  are to be determined. A
similar assumption is applied to Green’s function ¢:

0= Pugpbn+ > |Jim)gd,(J;.nl (C.16)

igmn
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g5, in this expression has not been defined yet. We consider one that
satisfies

0= 05+ VG (C.17)

For example, if one use g}, = ¢, the last equation becomes nothing but the
Dyson equation for the Hamiltonian (C.9). This choice is preferred when the
free-space Hamiltonian is used as Hy. Besides this, one can relate Green’s
functions of two different Hamiltonians that have H| in common, say, Hy =
HY + Vi and H = H}, + V,. In this case, the Green’s function of a single-
scattering Hamiltonian HS = H +Vi .m can be used as gm, which is different
from §. It can be seen that (C.17) holds with V =V, — V4.

The KKR equation relates G%  of the expansion of G to the coefficient

g4 . In order to derive the equation, the Dyson equation (B.25) is exploited.
Let us begin with the right-hand side of (B.25). Substituting (C.15) and

(C.16) to § 4 gV G, one obtains

g+gve
=S PP+ S 1 m)gh (sl
m ymn

ZPGb B+ 1T )G jq,s|] . (C.18)

pgrs

It follows from the relation (C.6) that this equals

Z mng + Z "]Um gmn ijn|

iymn
iymn

X ZPGS Py 4> T ) GR jq,s\] (C.19)
pgars
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- Z mgmp + Z |J2am gmn Jj7n|

ymn
3 PG VG P+ Y [T mgi (T, nl VG P
m ymn
+ Y B Vinl T m) G (T
ymn
+ N T m)GEL (V| Ty ) GRL Ty 8] (C.20)
ymn pqs

It follows from the Lippmann-Schwinger relation for restricted solutions (C.14)
and (C.6) that PG5 V,,|Ji) = |7;)—|J;) . Exchanging the role of the referred
and referring Hamiltonian for one another, it is also seen that ngi’,lf/m|i> =
|7} — |J;) . Using these,

zzﬁm{gfnwm }P + > i m)gd, (i nl

iymn
+ 3 i, m) gmn{ (Fion| — <jj,n|}
iymn
£ 3 {1Fm) = Jm) } G (Tl
iymn
+ Z Z |J’“m GW JJ’”‘V |\7p7 >qu <u7q; S| (021)
ijn pgs

Here we utilize the equation (C.17) and reach
= Z PG Py,

+ Z |Jl’m gmn ¥7]7n|

ymn

+ > {1im) — 13 m) } G, (Tl
ymn

+ 3 1 m)GE Ly |Vl T ) GR( T, s (C.22)
iymn pgs

—ZP G P + > T )G, (Tim)

iymn
+ Y |Jim)

qgms

g+ g (Tl Val Tpun)GRL — G2 | (T8l (C.23)

Jjnp
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In order to get this expression identical with (C.15), the expression in the
square brackets in the last line must be zero. This gives the recursive equation
to determine the coefficient in (C.15):

Go= g, + > gk (V| Ty 0) G, (C.24)

kpq

which is called KKR equation. According to this, Green’s function G can
be constructed from the cell-restricted solutions of both two systems and the
information of g% . In practice, the free-space Hamiltonian is often used as
Hj and cell-division is defined as (C.8) with conveniently chosen ©,,(r) and
the value of (Ji,p|V,|J,, p) is calculated from the phase shift of the single-
scattering Hamiltonians.



Acknowledgment

This research has been supervised by Prof. Hisazumi Akai. I would like to
express my sincere appreciation for his kind instructions. I also appreciate
Prof. Tetsuo Ogawa, Prof. Kenichi Asano, Prof. Koun Shirai and Prof.
Keith Martin Slevin for their supervision on the dissertation committee.

[ am grateful to Prof. Yoshio Kitaoka and the project lead by him, the
Global COE program ‘Core Research and Engineering of Advanced Materials
— Interdisciplinary Education Center for Material Science’, MEXT for their
support.

I warmly thank the former and present staffs of the Akai group, Prof.
Wilson Agerico Dino, Prof. Masaaki Geshi, Prof. Yoshifumi Sakamoto, and
Prof. Masako Ogura for their valuable advice and kind help.

I would like to thank also Ms. Toshiko Yura and Ms. Etsuko Hazama,
secretaries working for the Global COE program, Ms. Yukiko Kajimoto,
the former secretary of the Akai group, and Ms. Tomoko Shimokomaki, the
present secretary of the Akai group for their great help.

[ am greatly indebted to Dr. Nguyen Hoang Long for his warm encour-
agement and sound advice during the time we shared the office.

I owe much gratitude to Mr. Takahiro Nishinaka, one of friends since
we were undergraduates, for fruitful discussions on my description of the
Hohenberg-Kohn theorems, and pointing out some errors in it.

It is a great pity that I can not give all the name of the people I owe
gratitude to. I beg their pardon.

Finally, I wish to thank my parents Shoji and Yoko Fukazawa for giving
birth to me and growing me up. If they had not been, this thesis would not
exist. Thus, if this thesis has some good points hopefully, I owe it to them.

81






Bibliography

1]

2]

[10]

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rewv.,
136(3B):B864-B871, Nov 1964.

U. Barth and L. Hedin. A local exchange-correlation potential for the
spin polarized case. i. Journal of Physics C: Solid State Physics, 5:1629,
1972.

A. K. Pant et al. Theory of inhomogeneous magnetic electron gas. Solid
State Communications, 10(12):1157-1160, 1972.

J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev.,
81(3):385-390, Feb 1951.

R. T. Sharp and G. K. Horton. A variational approach to the unipoten-
tial many-electron problem. Phys. Rev., 90(2):317, Apr 1953.

James D. Talman and William F. Shadwick. Optimized effective atomic
central potential. Phys. Rev. A, 14(1):36-40, Jul 1976.

W. Kohn and L. J. Sham. Self-consistent equations including exchange
and correlation effects. Phys. Rev., 140(4A):A1133-A1138, Nov 1965.

D. J. W. Geldart and M. Rasolt. Exchange and correlation energy
of an inhomogeneous electron gas at metallic densities. Phys. Rev. B,
13(4):1477-1488, Feb 1976.

W. Kohn. Density functional theory: Fundamentals and applications. In
Highlights of Condensed-Matter Theory International School of Physicsh
Enrico Fermi, pages 1-15, 1985.

John P. Perdew and Wang Yue. Accurate and simple density functional
for the electronic exchange energy: Generalized gradient approximation.

Phys. Rev. B, 33(12):8800-8802, Jun 1986.

83



84

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. D. Becke. Density-functional exchange-energy approximation with
correct asymptotic behavior. Phys. Rev. A, 38(6):3098-3100, Sep 1988.

Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the
colle-salvetti correlation-energy formula into a functional of the electron
density. Phys. Rev. B, 37(2):785-789, Jan 1988.

John P. Perdew and Yue Wang. Accurate and simple analytic representa-
tion of the electron-gas correlation energy. Phys. Rev. B, 45(23):13244—
13249, Jun 1992.

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized
gradient approximation made simple. Phys. Rev. Lett., 77(18):3865-
3868, Oct 1996.

J. P. Perdew and Alex Zunger. Self-interaction correction to density-
functional approximations for many-electron systems. Phys. Rev. B,
23(10):5048-5079, May 1981.

A. D. Becke. A new mixing of Hartree—Fock and local density-functional
theories. The Journal of Chemical Physics, 98:1372, 1993.

J. Harris and R. O. Jones. The surface energy of a bounded electron
gas. Journal of Physics F: Metal Physics, 4:1170, 1974.

O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms,
molecules, and solids by the spin-density-functional formalism. Phys.
Rev. B, 13(10):4274-4298, May 1976.

David C. Langreth and John P. Perdew. Exchange-correlation energy of
a metallic surface: Wave-vector analysis. Phys. Rev. B, 15(6):2884-2901,
Mar 1977.

J. Harris. Adiabatic-connection approach to kohn-sham theory. Phys.
Rev. A, 29(4):1648-1659, Apr 1984.

J. P. Perdew, M. Ernzerhof, and K. Burke. Rationale for mixing ex-
act exchange with density functional approximations. The Journal of
Chemical Physics, 105:9982, 1996.

R. G. Parr and W. Yang. Density-functional theory of atoms and
molecules. Oxford University Press, USA, 1994.



23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

85

T. Kotani. An optimized-effective-potential method for solids with exact

exchange and random-phase approximation. J. Phys.: Condens. Matter,
10:9241-9261, 1998.

J. B. Krieger, Yan Li, and G. J. Iafrate. Derivation and application of
an accurate Kohn-Sham potential with integer discontinuity. Physics
Letters A, 146(5):256 — 260, 1990.

J. B. Krieger, Y. Li, and G. J. lafrate. Construction and application
of an accurate local spin-polarized Kohn-Sham potential with integer
discontinuity: Exchange-only theory. Phys. Rev. A, 45(1):101-126, Jan
1992.

J. B. Krieger, Y. Li, and G. J. lafrate. Systematic approximations to the
optimized effective potential: Application to orbital-density-functional
theory. Physical Review A, 46(9):5453-5458, 1992.

R. Colle and O. Salvetti. Approximate calculation of the correlation
energy for the closed shells. Theoretical Chemistry Accounts: Theory,
Computation, and Modeling (Theoretica Chimica Acta), 37(4):329-334,
1975.

R. Colle and O. Salvetti. Approximate calculation of the correla-
tion energy for the closed and open shells. Theoretical Chemistry Ac-
counts: Theory, Computation, and Modeling (Theoretica Chimica Acta),
53(1):55-63, 1979.

D. M. Bylander and Leonard Kleinman. Optimized effective potentials
for semiconductors. Phys. Rev. B, 52(20):14566-14570, Nov 1995.

D. M. Bylander and L. Kleinman. Optimized effective-potential calcu-
lations of Ge and GaAs. Physical Review B, 54(11):7891-7896, 1996.

D. M. Bylander and Leonard Kleinman. Energy gaps and cohesive en-
ergy of Ge from the optimized effective potential. Phys. Rev. Lett.,
74(18):3660-3663, May 1995.

D. M. Bylander and Leonard Kleinman. Energy gaps and cohesive en-
ergy of Ge from the optimized effective potential (erratum). Phys. Rev.
Lett., 75(23):4334, Dec 1995.



86

[33]

[34]

H. Akai, A. Oshiyama, T. Oguchi, H. Kasai, S. Tsuneyuki, T. Fuji-
wara, and H. Katayama-Yoshida, editors. Special issue on Computa-

tional Nano-Materials Design (in Japanese). AGNE Gijutsu Center,
2004.

H. Kasai, H. Akai, and H. Katayama-Yoshida, editors. Introduction to
Computational Material Design (in Japanese). Osaka University Press,
2005.

M. Levy. Universal variational functionals of electron densities, first-
order density matrices, and natural spin-orbitals and solution of the
v-representability problem. Proceedings of the National Academy of Sci-
ences of the United States of America, 76(12):6062, 1979.

Mel Levy. Electron densities in search of hamiltonians. Phys. Rev. A,
26(3):1200-1208, Sep 1982.

E. H. Lieb. Density functionals for Coulomb systems. International
Journal of Quantum Chemistry, 24(3):243-277, 1983.

T. L. Gilbert. Hohenberg-kohn theorem for nonlocal external potentials.
Phys. Rev. B, 12(6):2111-2120, Sep 1975.

T. Fukazawa and H. Akai. A new practical scheme for the optimized
effective potential method. Journal of Physics: Condensed Matter,
22:405501, 2010.

T. Kotani and H. Akai. Optimized effective potential method for exact
exchange energy applied to solids. Physica B: Physics of Condensed
Matter, 237:332-335, 1997.

R. A. Reck and D. L. Fry. Orbital and spin magnetization in fe-co, fe-ni,
and ni-co. Physical Review, 184(2):492-495, 1969.

H. Danan, A. Herr, and AJP Meyer. New determinations of the sat-
uration magnetization of nickel and iron. Journal of Applied Physics,
39:669, 1968.

M. J. Besnus, AJP Meyer, and R. Berninger. Magnetic moment mea-
surements on fcc Co—Cu alloys. Physics Letters A, 32(3):192-193, 1970.



87

[44] J. Korringa. On the calculation of the energy of a Bloch wave in a metal.
Physica, 13(6-7):392-400, 1947.

[45] W. Kohn and N. Rostoker. Solution of the Schrdodinger equation in pe-
riodic lattices with an application to metallic lithium. Physical Review,
94(5):1111-1120, 1954.



