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Chapter 1

Introduction

1.1 Historical overview

Electronic structure calculations by the density functional approach have

been popular for a long time. Even before Hohenberg and Kohn established

its theoretical basis[1], many calculations based on density functionals, such

as the Thomas-Fermi functional, were performed. It is because while the

wave function has as many set of space-time variables as the number of

electrons, the density is a function of a single coordinate: a theory based

only on a density can be more tractable than the one that deals with wave

functions.

The discussion by Hohenberg and Kohn1 consists of two parts. First,

they proved the existence of maps from the density of the ground state to

any quantities of the system such as the expectation value of an observable

Ô. In this sense, n0 can be regarded as a basic variable of physics.

n0 → 〈Ô〉 (1.1)

Second, they proved the existence of the so-called Hohenberg-Kohn energy

functional EHK[n, v] such that it has a minimum at the ground-state density

n0 and the minimum corresponds to the ground-state energy, provided that

v is fixed to the external potential V ext of the system. This establishes a

1Their theory can be extended easily to the spin-density functional theory (SDFT), in
which basic variables are the spin-densities [2, 3]. This thesis is devoted to the theoretical
development on, strictly speaking, the SDFT. However, in this section, I only describe
formulations in terms of density alone for simplicity.
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mapping:

V ext → n0 (1.2)

Therefore this functional would enable us to obtain the ground state den-

sity by minimizing EHK[n, V ext] if the form of this functional was explicitly

known. However, the exact expression of the Hohenberg-Kohn functional is

known only formally and it is virtually impossible to find out the ground-state

density using this exact functional.

Another popular approach to the electronic structure calculation is the

single electron approximation. Needless to say, the single electron problem

is much easier than most of many-body problems. There are some rational-

izations of replacing the many-body electron problem by a single electron

problem. Here I would like to introduce two of them related to the present

work.

The first one is Slater’s approach[4] to the Hartree-Fock problem. Instead

of solving the Hartree-Fock equation directly, he proposed an approximate

equation in which all the orbitals of single electrons move in the same local

potential. The Slater’s paper itself is devoted to a further approximation as

follows. First, the exchange charge density of the state i

ρx
i (r1, r2) ≡ −2

∑

k

ψ∗i (r1)ψi(r2)ψ
∗
k(r2)ψk(r1)

ψ∗i (r1)ψi(r1)
(1.3)

in the Hartree-Fock equation is averaged with the weight of density:

ρx
i (r1, r2) ∼ ρS(r1, r2) ≡

∑
i

ρi(r1)

ρ(r1)
ρx
i (r1, r2). (1.4)

Using this approximation, the Hartree-Fock equation becomes

[−∇2 + V ext(r) + V Hartree(r) + V S(r)
]
ψi(r) = εiψi(r), (1.5)

where

V Hartree(r) ≡
∫
dr′

ρ(r′)
|r − r′| (1.6)

V S(r) ≡
∫
dr′

ρS(r′)
|r − r′| . (1.7)

Now, these potentials are local. Second, in addition to this, he claimed that

the leading contribution of the exchange potential should be determined as
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a function of the charge density, thus the value evaluated using results of

free-electron gas of the local charge density will not be very different from

the exact one. Therefore,

V S(r) ∼ 1

V

∫
dr V S,hom(n(r)) = 2εhom

x , (1.8)

where εhom
x is the exchange-energy density of the homogeneous system.

In a comment for Slater’s paper, Sharp and Horton[5] gave a variational

approach to Slater’s problem. They thought that the uni-potential intro-

duced by Slater should be determined so that the Slater determinant that

consists of orbitals in a uni-potential gives a minimum of the Hartree-Fock

energy. They also derived an equation that the uni-potential should obey

according to this principle. Later, Talman and Shadwick[6] derived the same

equation and applied it to calculations of atoms. Today, this variational ap-

proach is often mentioned as the optimized effective potential (OEP) method

following Talman and Shadwick.

The other single-electron approach I would like to introduce here is the

Kohn-Sham scheme [7]. They connected the many-body problem and the

single-electron model in terms of the ground-state density. They assumed

that there is a non-interacting auxiliary system that reproduces the ground-

state density of the many-body system. Under this assumption, they derived

a single-electron equation based on the Hohenberg-Kohn theorems.

This scheme itself is exact. However, the lack in the knowledge of the

exact form of Hohenberg-Kohn energy functional still prevent practical use

of the theory. Thus, Kohn and Sham proposed an approximation to the

functional so as to make their scheme into practice. First, they defined the

so-called Kohn-Sham energy functional.

EKS[n, v] ≡ T [n]− Taux[n] + Eint[n]− EHartree[n]

+ Exc[n] +

∫
dr v(r)n(r) (1.9)

= EHK[n, v], (1.10)

where Taux is the kinetic energy of the auxiliary system, the EHartree is the

Hartree energy given by the density n, and the Kohn-Sham’s exchange-

correlation functional Exc is defined so that EKS becomes identical to EHK.

This exchange-correlation functional is to be approximated, and the efficiency
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of an approximation to this exchange-correlation energy Exc determines the

precision of the whole calculation.

In their theory, the equations that determine the density of the ground

state are

[−∇2 + Vext(r) + VHartree(r) + Vxc(r)
]
ψi(r) = εiψi(r), (1.11)

Vxc(r) ≡ δExc

δn(r)
, (1.12)

n(r) =
∑
i

ψ∗i (r)ψi(r). (1.13)

Then they claimed that if the n(r) is sufficiently slowly varying, one can

approximate Exc using the exchange-correlation energy density εhom
xc of the

homogeneous system, which is a function only of the density:

Exc[n] ∼
∫
dr n(r)εhom

xc (n(r)). (1.14)

This approximation is called local density approximation (LDA). In practice,

some of parameterizations of εxc based on Monte Carlo simulations are usually

used.

It is worth mentioning that there is a discrepancy between the Kohn-

Sham scheme and Slater’s method even when the homogeneous system is

considered within an exchange-only approximation. In this case, one can see

Vxc(r) =
4

3
εhom
x , (1.15)

which is inconsistent with the equation (1.8).

Though the “slow varying” assumption of the LDA is not always very

convincing, the LDA gives adequate results in predicting properties of wide

range of materials. Today, it is known that the LDA happens to be better

than expected at birth, and calculations based on the Kohn-Sham scheme

with the LDA are now very popular. However, the more systems were inves-

tigated using the LDA, the more interesting systems turned out not to be

described by the LDA well. Thus, many other approximations are devised to

go beyond the LDA and applied. Let us further review the development of

the approximation of Exc in order to make our purpose of research clearer.



9

In order to extend the LDA, it would be most natural to take account

of the effects of the gradient of the density ∇n. One might expand Exc as

follows:

Exc[n] =

∫
dr

[
n(r)εxc(n(r)) + |∇n(r)|2Bxc(n(r)) + · · · ] . (1.16)

This approach is called the gradient expansion approximation (GEA). How-

ever, it was reported by several authors that finite additional terms to the

LDA easily introduced a significant error [8, 9]. The GEA seems not to be

practical because the summation up to infinite order must be performed to

restore the precision of the LDA. Thus, one need to introduce some artifices

to devise a new approximate energy functional starting from the LDA.

The generalized gradient approximations (GGAs) (e.g. [10, 11, 12, 13,

14]) are approximations, which still take the effect of the density gradient

into account:

EGGA
xc [n] =

∫
dr f(n,∇n) (1.17)

≡
∫
dr n(r)εxc(n(r))Fxc(n,∇n). (1.18)

The GGAs are usually determined to satisfy Fxc(n, 0) = 1 and some other

relations that the exact exchange-correlation functional should obey. (Note

that the LDA is exact when the system is homogeneous (∇n = 0 every-

where).) For example, relations of the exchange-correlation hole, scaling

relations, and so on, can be taken into account in the GGA, while the finite

order GEA violates them.

Perdew and Zunger [15] focused on the errors come from the self-interaction.

The Hartree energy contains the self-interaction terms:

EHartree[ni] ≡
∫
dr

∫
dr′

niσ(r)niσ(r
′)

|r − r′| , (1.19)

which is unphysical, and must be canceled by the exchange term. How-

ever, approximated exchange term by the LDA may fails to have this fea-

ture. Thus, they proposed to subtract the self-interaction terms in both

the Hartree energy and the exchange energy. This self-interaction-corrected

(SIC) functional is

ESIC
xc [n] = EDFA

xc [n]−
∑
i

(EHartree[ni] + EDFA
xc [ni]), (1.20)
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where DFA denotes density functional approximations, such as the LDA or

the GGAs. One of the problems in this functional is that it is no longer

invariant under the unitary transformation of the orbitals. For this reason,

extra treatments are needed during the minimization of the energy functional.

Using hybrid functionals is another way to take the non-local effect into

account. Becke[16] was first to justify the use of hybrid functions based on

the adiabatic connection approach of the density functional theory developed

by several authors [17, 18, 19, 20]. In their adiabatic connection theory, the

Kohn-Sham’s auxiliary system and the many-body system under considera-

tion are connected using integration of the coupling constant of the coulomb

interaction. The exchange-correlation functional can be expressed as

Exc =

∫ 1

0

dλ 〈ψλ|Ĥint|ψλ〉, (1.21)

where the |ψλ〉 is the eigen-function of the Ĥλ = Ĥ0+λĤint+V̂ (λ) , and V̂ (λ)

is an external potential chosen so that V̂ (1) = V̂ ext and that the density of

|ψλ〉 becomes always identical to that of |ψ1〉. Note that 〈ψ0|Ĥint|ψ0〉 is just

the exchange energy of the slater determinant composed of the Kohn-Sham

orbitals:

EEXX =
∑
i,j,σ

∫
dr

∫
dr′

ψ∗iσ(r)ψiσ(r
′)ψ∗jσ(r

′)ψjσ(r)

|r − r′| . (1.22)

Becke discussed the application of the LDA to the integrand of (1.21) and

claimed that it seems adequate around λ = 1 while invalid at λ = 0. On this

ground he proposed to use the LDA value of 〈ψλ|Ĥint|ψλ〉 at λ = 1, the exact

value at λ = 0, and to approximate the integrand by linear interpolation for

0 < λ < 1. Becke later proposed another hybrid model of function including

three semi-empirical parameters a0, ax, ac:

EB3PW91
xc = ELDA

xc + a0(EEXX − ELDA
x ) + axE

B88
x + acE

PW91
c . (1.23)

In this expression, EB88
x and EPW91

c denote a exchange part of the GGA func-

tional called B88([8]) and a GGA correlation functional called PW91([13]),

respectively. B3PW91 means “Becke’s 3-parameter hybrid functional using

the PW91 correlation functional.” An alternative version, called B3LYP, us-

ing the LYP functional ([12]) instead of the PW91 is also used in literatures.
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A rationale for this kind mixing (EEXX plus EDFA) were given by Perdew,

Ernzerhof and Burke[21]. They approximated the integrand of (1.21) using

a power function:

Exc,λ ≡ 〈ψλ|Ĥint|ψλ〉 ∼ EDFA
xc,λ + (EEXX − EDFA

x,λ )(1− λ)n−1, (1.24)

This is an interpolation between EEXX at λ = 0 (Note that EDFA
c,0 =0.) and

EDFA
xc,1 at λ = 1 as in Becke’s justification. The resulting energy functional is

EPEB
xc (n) = EDFA

xc +
1

n
(EEXX − EDFA

x ). (1.25)

This includes one parameter, n, and is identical with the EDFA in the limit

of n→∞. Thus, the best choice of n must improve (or give the same results

as) the DFA.

These three kinds of energy functionals, (1.20), (1.23) and (1.25), are all

dependent on orbitals explicitly. How can one solve the Kohn-Sham problem

for them? Minimizing them with respect to the orbitals is one possible way.

The resulting equation includes non-local potentials, which depends on the

orbitals to be determined, like the Hartree-Fock potential. Therefore, this

method is no longer regarded as a Kohn-Sham scheme2. One might consider

this as an extended Kohn-Sham theory in which Kohn-Sham’s effective po-

tential is generalized to non-local one. However, this is not well-established

theoretically. Thus, we would not adopt this method in this thesis.

Another possible approach is to constrain the trial orbitals to be single

particle solutions for a uni-potential. The uni-potential at the minimum

point is nothing but the OEP mentioned above. This constrained search may

seem to introduce further reduction of precision to the Kohn-Sham scheme.

However, it is not the case. It is because one can treat energy functionals

expressed explicitly in terms of orbitals perfectly within the framework of

the Kohn-Sham theory, and the resulting equation is almost identical to the

OEP method. This will be discussed in detail in Chapter 2.

The importance of the OEP method can be explained also by the adiabatic

connection theory of the DFT. The resulting equation (1.21) can be written

also as

Exc =

∫ 1

0

dλ

λ
〈ψλ|λĤint|ψλ〉. (1.26)

2Some authors (e.g. [22]) refer to this as “Hartree-Fock-Kohn-Sham” scheme.
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Because 〈ψλ|λĤint|ψλ〉 can be expanded in terms of |ψ0〉 using the diagram-

matic technique of the many-body perturbation theory and |ψ0〉 is a slater

determinant of the Kohn-Sham’s auxiliary system, this gives another starting

point, which is different from the LDA, of constructing an exact exchange-

correlation functional. Thus, one can exploit more sophisticated approxi-

mations to the exchange-correlation functional if one uses the OEP method.

For example, Kotani used the RPA-level correlation functional with the ex-

act exchange energy[23]. Though the calculation was very time-consuming,

this functional is self-interaction free, unitary-invariant, and derived by a

diagrammatic technique.

The OEP method is thus promising as a way to go beyond the LDA.

However, there are two main obstacles to this method so far. One is its

theoretical ambiguity in spin-polarized systems, and the other is its heavy

time consumption.

Krieger et al. made a perceptive discussion concerning the first problem

based on an analysis of an asymptotic behavior of the highest-occupied or-

bital at r → ∞ [24, 25]. They also showed that if one accepted the use of

this prescription, it would resolve the discrepancy between (1.8) and (1.15),

and that the exchange-only OEP obeyed (1.15). However, in their argument,

the system was assumed to be isolated, and the energy functional could be

constructed only from occupied orbitals. Thus the validity of the technique

in extended systems such as solids was not clear. This is one of the reason

why analyses using the OEP method on spin-polarized solids have not been

reported so often.

The other problem is its computational time. Krieger et al. also proposed

the so called KLI approximation to the OEP equation. It was important

because solving the OEP equation is one of rate-determining processes of

calculation. Though there are several ways to justify the KLI approximation

[24, 25, 26], the simplest one is replacing the denominator of the Green’s
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function in the OEP equation by a constant ∆:

G(r, r′, E) =
∑

{i|εi 6=E}

ψ∗i (r)ψi(r
′)

E − εi
(1.27)

∼ 1

∆

∑

{i|εi 6=E}
ψ∗i (r)ψi(r

′) (1.28)

=
1

∆


δ(r − r′)−

∑

{i|εi=E}
ψ∗i (r)ψi(r

′)


 , (1.29)

where ψi’s are the Kohn-Sham orbitals of the system, and εi’s are their energy

eigenvalues. In the resulting KLI equation, the constant ∆ vanishes and no

extra parameter remains. The original paper of this method itself reported

its application to atoms with a SIC functional [24]. The authors also reported

the application to the exact-exchange functional[25]. Grabo and Gross have

performed the calculation for atoms, taking account of the correlation using

the Colle-Salvetti functional[27, 28]. To the solids, there are series of reports

by Bylander and Kleinman [29, 30, 31, 32]. All of these reports concluded

that the precision was satisfactory.

1.2 Present work

In this research, we set our goal to developing a practical and precise method

with a sophisticated approximation going beyond the LDA. The meaning of

“practical” should be explained according to the concept of the computa-

tional materials design, for which our method is supposed to be used. In

Figure 1.1, a model of the computational materials design is depicted. The

green, blue, and red gears denote three key activities, and they are linked to

the two others by yet other three gears representing analyses (yellow, pur-

ple, and light-blue ones). In order to facilitate in this processes, a quantum

simulator must have three features, which correspond to the three key activ-

ities. First, the quantum simulator itself should be fast enough to be used

iteratively in the process. Second, the precision of the simulator must be

guaranteed by clear theoretical bases to make the analyses of the results and

finding the mechanisms of phenomena possible. Third, the simulator must

be versatile enough to verify functionalities of any new systems.

As mentioned in the previous section, the OEP method is very promising
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Figure 1.1: The materials design model, used by several authors [33, 34]

(This picture itself is painted by the author of this thesis, he referring to the

literatures.)

to realize such an ideal quantum simulator. Because this method is appli-

cable to any energy functional expressed in terms of Kohn-Sham orbitals in

principle, it is possible to choose any functionals based on clear theoretical

reasons. Thus, we adopt the OEP method and have developed several new

techniques related to the calculation. There are three main findings in the

present work.

1. New equation for OEP The OEP equation known so far has one

indefinite constant for a potential in each spin direction (let us call this

“SHTS equation” after Sharp and Horton [5], Talman and Shadwick [6]).

However, it is clear that the degree of freedom allowed for the potential

should be single, corresponding to the choice of the origin of energy. We

have derived a new equation that fixes the indefiniteness and completes the

description of the OEP.

2. Modification of KLI approximation The KLI method reduces com-

putational tasks greatly and has been reported to be precise enough in many
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cases. However, their way to fix the indefiniteness of the SHTS equation

depends on the physical situation which is not always applicable. This of-

ten causes serious problems in realistic calculations of solids. Therefore, yet

adopting their way to approximate the SHTS equation, we introduce an exact

way to fix the indefiniteness.

3. Technique for double energy integration We have developed an

efficient way to calculate a double integral with respect to energy variables

which is related to the calculation of RPA-level correlation. This reduces the

computational time greatly. This is very important because the process is

one of the rate-determining processes of the whole calculation.

We have developed a code that can calculate the exact-exchange and an

RPA-level-correlation functional using the above method. This program

is based on the Korringa-Kohn-Rostoker (KKR) Green’s function method

which has advantages in precision, time consumption, and, more over, in

application of our technique to the calculation of the RPA-level correlation

energy.

In Section 2, the basic theory of the DFT and the Kohn-Sham theories are

given. After that I will show how the equations of the OEP including a new

additional equation are derived from the basic theories. The explanation of

the modified KLI method and the technique for the calculation of the RPA-

level correlation follow them. The results of our program using those theories

and techniques are shown in Section 3. Finally, in Section 4, we conclude.





Chapter 2

Theory

2.1 Density functional theory

2.1.1 Hohenberg-Kohn theorem I

The density functional theory developed by Hohenberg and Kohn[1] contains

two propositions. In this section we concern ourselves with the first one. The

second one will be discussed in the subsequent section. The first one is on

the existence of maps from the ground-state density to any kinds of physical

quantity of the system including those related to excited states of the system.

The existence of these maps follows from the first Hohenberg-Kohn theorem,

which concerns the uniqueness of the external potential. Here we assume

that the other part of the Hamiltonian is given.

For the sake of the following discussion, we separate the Hamiltonian into

two terms:

H = Hcom(r1, · · · , rN) +
N∑
i=1

V ext(ri) (2.1)

Using the Born-Oppenheimer approximation, one may adopt

Hcom(r1, · · · , rN) = −
N∑
i=1

∇2
i +

N∑
i=1

N∑
j=1
j 6=i

V 2−body(ri, rj) + C (2.2)

with the external potential V ext produced by nuclei, constant C from nucleus-

nucleus interactions and V 2−body(ri, rj) = 1
|ri−rj | of the electron-electron in-

teraction. The Hohenberg-Kohn theorem for non-interacting system will be

17
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also useful later. In this case we will make V 2−body(ri, rj) = 0 and substitute

the so called Kohn-Sham potential for V ext.

Besides this Hamiltonian, it is convenient to define another Hamiltonian

which is different from H only in the external potential:

H ′ = Hcom(r1, · · · , rN) +
N∑
i=1

V ′ext(ri) (2.3)

In addition to these, we suppose the followings for the Hamiltonians:

• V ext and V ′ext have a common domain of definition D ⊂ Rd, where d

is the dimension of the space.

• Both two Hamiltonians H and H ′ transform functions whose domain

is D ⊂ RdN to functions that has the same domain D.

• Both V ext and V ′ext are differentiable on D.

This does not exclude the use of the delta function or the theta function as

external potentials. The value of these functions at their singular point is

regarded as undefined in our treatment.

In the original proof demonstrated by Hohenberg and Kohn, lack of de-

generacies in the system is assumed for the simplicity of the argument. They

only mentioned that the same theorem is also valid even when there are some

degeneracies in the system.

With the non-degeneracy assumption, it is clear that

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉, (2.4)

where Ψ is the ground state of H and Ψ′ is a state different from the ground

state of H. This relation is a key point of the proof of the theorem. Kohn[9]

later give a proof of the same relation (2.4) based on the conjecture that any

wave functions can not be an eigenfunction of two different Hamiltonians

simultaneously.

This is almost true. However, at the same time, there is a simple coun-

terexample: a one-dimensional non-interacting system with the external po-

tential

V ext(x) =





E (x < −ε)
∞ (−ε ≤ x ≤ 0)

x2 (0 < x)

(ε > 0). (2.5)
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�

Figure 2.1: An exceptional case that one wave function is allowed by more

than two different external potentials. The height of green box can be

changed without affecting the shape of the wave function which is non-zero

only in x > 0.

This system has a solution Ψ(x) ∝ θ(x)xe−x
2
whatever value E is (see fig.2.1),

and it is clear that this violates the conjecture. Thus, clarifying the condition

of the uniqueness of the external potential still remains undone. The next

lemma will give us one of such conditions.

Lemma I If a wave function Ψ(r1, r2, · · · , rN) is an eigenfunction of both

two Hamiltonians H and H ′ simultaneously, and if {r, r, · · · , r} is a limit

point of DΨ = {{r1, · · · , rN} ∈ D|Ψ(r1, · · · , rN) 6= 0} for all r ∈ D, the

external potentials of these two Hamiltonians are different from one another

only by a constant.

Proof By the first premise of the lemma,

HΨ(r1, r2, · · · , rN) = EΨ(r1, r2, · · · , rN), (2.6)

H ′Ψ(r1, r2, · · · , rN) = E ′Ψ(r1, r2, · · · , rN), (2.7)

where E and E ′ are c-numbers. Thus, for all r1, r2, · · · , rN
[H −H ′ − (E − E ′)] Ψ(r1, · · · , rN)

=

[
N∑
i

{
V ext(ri)− V ′ext(ri)

}− (E − E ′)

]
Ψ(r1, · · · , rN)

= 0. (2.8)
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Substituting f(r) = V ext(ri)− V ′ext(ri) and ε = E − E ′,

[
N∑
i=1

f(ri)− ε

]
Ψ(r1, · · · , rN) = 0. (2.9)

It follows from the second premise that for any open set O ⊂ D that

includes {r0, · · · , r0} ∈ D, O∩DΨ 6= ∅. Thus, there exists a set of {∆i} such

that ∆ ≡ |{∆i}| =
√
|∆1|2 + |∆2|2 + · · ·+ |∆N |2 < δ and {r0 + ∆1, r0 +

∆2, · · · , r0 + ∆N} ∈ DΨ for any δ > 0 because a ball in D whose radius is

δ, having its origin at {r0, r0, · · · , r0}, is an open set.

It results from (2.9) that

N∑
i=1

f(r0 + ∆i)− ε = 0 (2.10)

for such {∆i}. Since f(r) is differentiable in D, one can utilize the mean

value theorem for functions of several variables. Therefore, there exists a

certain θ in 0 < θ < 1, for which

N∑
i=1

[f(r0) + ∆i · ∇f(r0 + θ∆i)]− ε (2.11)

=
N∑
i=1

[∆i · ∇f(r0 + θ∆i)] +Nf(r0)− ε = 0 (2.12)

is satisfied. In the limit of δ → 0, the first term goes zero. Thus, Nf(r0)−ε =

0 must be hold, and this is true for any r0 ∈ D. Therefore,

V ext(r)− V ′ext(r) = const. (2.13)

for all r ∈ D. Q.E.D.

The second premise of this lemma would be true or convincing for most

cases, because there might be a tunneling amplitude in any finite region of

the configuration space, no matter how high (but finite) potentials exist in

the space. On the other hand, it is easy to make exceptional situation us-

ing the infinitely high external potentials with a finite width. In this case,

violation of the conclusion of the lemma is rather reasonable, since any val-

ues of external potential can be allowed in the region where the particles
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are perfectly excluded. However, the same conclusion as that stated in the

lemma can hold even if the interaction contains some infinite hight regions

and violates the second premise. For example, hardcore interactions clearly

prohibit particles from gathering at one point and keep every particles out of

a certain finite region around other particles, which is against the premise of

the lemma. The next lemma which we are going to show reveals that some

kinds of hardcore interactions keep the same conclusion as that of the lemma

I undamaged.

Before moving on to the lemma II, it may be useful to introduce a set of

slices of DΨ (closure of DΨ) restricted to D:

S
i,r1,··· ,rN−1

Ψ = {r ∈ D | {r1, · · · , ri−1, r, ri, · · · , rN−1} ∈ DΨ}, (2.14)

and related notions. Let S̃Ψ denote the set that consists of all S
i,r1,··· ,rN−1

Ψ

above. We may think of the following relation between S1 and Sn: Suppose

that there is a sequence of sets S1, S2, · · ·Sn ∈ S̃Ψ and Sk ∩ Sk+1 6= ∅ (∀k ∈
{1, 2, · · · , n−1}). Then let us denote the binary relation between S1 and Sn

by the symbol ∼: S1 ∼ Sn. In addition to this, it is convenient to append

∅ ∼ ∅ to the definition as a special case in order for all the elements S ∈ S̃Ψ

to satisfy the reflexivity: S ∼ S. The symmetry ∀S, T ∈ S̃, S ∼ T ⇒ T ∼ S

and the transitivity ∀S, T, U ∈ S̃, S ∼ T, T ∼ U ⇒ S ∼ U of the relation

are also clear. Thus, one can see that this is a equivalence relation and that

[S] = {X|X ∼ S} is an equivalence class.

Lemma II If a wave function Ψ(r1, r2, · · · , rN) is an eigenfunction for

both two Hamiltonians H and H ′ simultaneously, for all r ∈ D[S] ≡ {r |X ∈
[S], r ∈ X}

V ext(r)− V ′ext(r) = C [S], (2.15)

where C [S] is a common c-number to all the point in D[S].

Proof In the same way as the proof of the lemma I up to the (2.9), one

can see [
N∑
i=1

f(ri)− ε

]
Ψ(r1, · · · , rN) = 0. (2.16)
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For r ∈ D[S], there exists X ∈ [S] and r ∈ X = S
i,r1,··· ,rN−1

Ψ . Since

{r1, · · · , ri−1, r, ri, · · · , rN−1} is a limit point of DΨ, one reaches

f(r) = ε−
N−1∑
i=1

f(ri) (2.17)

≡ CX . (2.18)

in a similar manner to the remaining part of the proof of the lemma I. The

right hand side of this equation is a c-number and common to all the elements

of X. This is also common to all the element Y ∈ S̃Ψ such that X ∩ Y 6= ∅
because if there exists r ∈ X ∩ Y then CX = f(r) = CY .

It follows from this and the definition of the equivalence relation that this

constant is also common to any Y ∈ [S]. It is because if Y ∈ [S] there is a

sequence of set S1, · · · , Sn such that

X ∩ S1 6= ∅, (2.19)

Sk ∩ Sk+1 6= ∅ (∀k = {1, · · · , n− 1}), (2.20)

Sn ∩ Y 6= ∅. (2.21)

Therefore, CX = CS1
= · · · = CSn

= CY ≡ C [S]. Q.E.D.

Corollary If there exists S ∈ S̃Ψ such that D ⊂ D[S], two Hamiltonians

are different from one another only by a constant.

Thus, we obtain two conditions of the virtual uniqueness of the Hamilto-

nian for a wave function Ψ:

1. For all r ∈ D, {r, · · · , r} is a limit point of DΨ,

2. There exists S ∈ S̃Ψ such that D ⊂ D[S].

The difference of these two conditions can be seen from an example DΨ:

DΨ = {(−∞, 0)× (0,∞), (0,∞),×(−∞, 0)} (2.22)

in a one-dimensional system of two particles (see fig.2.2) with D = (−∞,∞).

Only the second condition may survive while the first fails. As seen in this

example, the first conditions does not cover all the conditions of the second

ones.
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Figure 2.2: Two kinds of DΨ in a one-dimensional two-particle system

that has the same slice of region S̃ = {(−∞, 0], [0,∞)}. The gray areas

denotes a forbidden (undefined) region of DΨ. (Left): DΨ = {(0,∞) ×
(0,∞), (−∞, 0) × (−∞, 0)}, which satisfies the premise of the lemma I.

(Right): DΨ = {(0,∞) × (−∞, 0), (−∞, 0) × (0,∞)} which does not sat-

isfy the premise of lemma I. In both cases the premise of the lemma II is

fulfilled.

As mentioned above, the first condition seems valid in most realistic

Hamiltonians, which contains no finite undefined region but only undefined

points. The second condition can play an important role if there is a finite

undefined region. One example is a hardcore interaction:

V 2−body(x, y) =

{ ∞ (|x− y| ≤ ε)

0 (|x− y| > ε)
(2.23)

and another is a selective wall for the particle indicated by x (two different

particles in one-dimensional space):

V 2−body(x, y) =

{ ∞ (|x| ≤ ε)

0 (|x| > ε)
(2.24)

In both cases, the slices of the domain of V 2−body are overlapped one another

and all points in the space are covered by the slices (see figure 2.3). In the

example of hardcore interaction, if the kind of two particles is different from

each other, DΨ is further restricted. It is because the particles can not change

the position due to the hardcore interaction and the one dimensionality of

the space. As for the selective wall, DΨ is definitely restricted to either
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Figure 2.3: DΨ’s in (left) the hardcore interaction of (2.23) and (right) the

selective wall of (2.24) . Each V 2−body keeps particles out of the Gray region.

Due to the one-dimensionality, DΨ’s may be further restricted to either red

or green region. However, DΨ still satisfies the condition of the lemma II.

x > 0 or x < 0. However, still DΨ satisfies the second condition. Thus the

Hohenberg-Kohn theorem, which we discussed later, can be used in these

systems.

Hereafter, we suppose that all the wave functions of the system satisfy ei-

ther or both these conditions. To the extent of this assumption, the following

statement is justified as a corollary of the lemmas.

Corollary If the difference between H and H ′ is more than a constant,

and Ψ and Ψ′ are the ground state of these two Hamiltonians respectively

then

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉. (2.25)

Because if equality held, Ψ′ should be an eigenfunction of H, but this violates

the lemmas.

Now we are ready for moving on to the first Hohenberg-Kohn Theorem.

Hohenberg-Kohn theorem I If the ground states Ψ and Ψ′ of H and

H ′ respectively has a common density n0(r), the external potentials of these

two Hamiltonians are different from one another only by a constant.
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Proof Let E and E ′ denote the eigenvalue of Ψ for H and Ψ′ for H ′,
respectively. It follows from the corollary,

E = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (2.26)

= 〈Ψ′|H ′|Ψ′〉 − 〈Ψ′|{H −H ′}|Ψ′〉 (2.27)

= E ′ −
N∑
i=1

∫
dr1 · · · drN |Ψ(r1, · · · , rN)|2 {

V ext(ri)− V ′ext(ri)
}

(2.28)

= E ′ −
∫
dr n0(r)

{
V ext(r)− V ′ext(r)

}
, (2.29)

where n0 is the density of Ψ. To prove the theorem by contradiction, suppose

n0 is also the density of Ψ′. In the same way, one has

E ′ < E −
∫
dr n0(r)

{
V ′ext(r)− V ext(r)

}
. (2.30)

Adding each side of (2.29) to the same side of (2.30), one reaches

E + E ′ < E + E ′. (2.31)

This is a contradiction. Q.E.D.

Thus, the theorem has been proved without the assumption of nonexis-

tence of degeneracy in the system. The situation is illustrated in fig.2.4.

This theorem is the basis of the density functional theory. Given a com-

mon part of the Hamiltonian Hcom in (2.1), it follows from this theorem that

we can restore the remaining part of the Hamiltonian V ext only from the

information of the ground-state density n0 in principle. Since Hamiltonian

can be regarded as a functional of the ground-state density, it proves the

existence of ways to infer any kinds of physical quantity of the system from

the ground-state density. In other words, every observables is a functional of

the ground-state density and is universal in the sense that these functionals

is exact for any external potentials. Note that observables that are related

to excited states of the system can also be regarded as a functional of the

ground-state density. It is because excited states of the system can be ob-

tained from the information of the density-functional of Hamiltonian H[n],

solving the Schrödinger equation i ∂
∂t

Φ = HΦ.



26

Figure 2.4: Left: The external potential V ext corresponds to two or more

ground-state densities when there is degeneracy in the ground states of the

system. Right: According to the first Hohenberg-Kohn theorem, no density

n0 can be the ground-state density of two different systems (except difference

by a constant) simultaneously.

However, it should be noticed that the domain of these functionals is re-

stricted to the densities that have a corresponding ground state of a systems.

Only in this case, n can represent an external potential. Thus, this feature

of the density is sometimes called V-representability.

2.1.2 Hohenberg-Kohn theorem II

The second Hohenberg-Kohn theorem is concerned to the determination of

the ground-state density for a given external potential. In the ordinary

scheme of the quantum mechanics, the Schrödinger equation is solved in

order to determine the ground-state density. The second Hohenberg-Kohn

theorem offers possibility of an alternative approach. This theorem tells that

there exists a (non-universal) functional of density n for each external poten-

tials that is minimized only when n is the ground-state density. This gives

us a density-functional approach to the problem.

It is the key point to use the variational principle:

〈Ψ0|H|Ψ0〉 ≤ 〈Ψ|H|Ψ〉, (2.32)

where Ψ0 is one of the ground states of H, and Ψ is a different state from

Ψ0. To the extent of our assumption, the both sides are equal to one another

only if Ψ is also a ground state of H.
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The left-hand side of this inequality can be expressed by the universal

density functional of the ground-state energy E0[n0], where n0 is the density

constructed from Ψ0. However, the right-hand side is not such simple as to

be expressed as a density functional. It follows from the first Hohenberg-

Kohn theorem that the Hamiltonian H[n] can be regarded as a universal

functional of the ground-state density, but there are infinitely many possible

ways to define the density functional of a state |Ψ[n]〉. It might be easiest

to define |Ψ[n]〉 by a representative of the ground-states of H[n] for our

purpose because we are going to construct a density functional of n that

becomes identical to 〈Ψ0|H|Ψ0〉 only when n is the ground-state density of

H[n0]. This definition imposes a restriction on the trial state |Ψ〉, but it does

not change the relation (2.32). In order to remind readers this definition

and situation, let |Ψ0[n]〉 denote this density functional of state. Thus, the

following functional is suitable for our purpose:

ẼHK[n, n0] = 〈Ψ0[n]|H[n0]|Ψ0[n]〉 (2.33)

It is clear from the variational principle that ẼHK[n0, n0] ≤ ẼHK[n, n0] and

the equality holds only when n is the ground state of H[n0]. However, this

ẼHK is not useful in order to determine the ground-state density because this

minimization itself needs direct information of n0.

Actually, Ẽ[n, n0] can be transformed into a functional of the trial density

n and a fixed external potential V ext. It follows from H[n0] = Hcom+V ext[n0]

that

ẼHK[n, n0] = 〈Ψ0[n]|Hcom|Ψ0[n]〉+ 〈Ψ0[n]|V ext[n0]|Ψ0[n]〉 (2.34)

= 〈Ψ0[n]|Hcom|Ψ0[n]〉+

∫
dr V ext[n0](r)n(r). (2.35)

The first term is often denoted by FHK[n]. Note that FHK[n] is a universal

functional as well as Ψ0[n] defined above. Using EHK[n, V ext] ≡ FHK[n] +∫
dr V ext(r)n(r) instead of E[n, n0], we see that

EHK[n0, V
ext] ≤ EHK[n, V ext], (2.36)

and that the equality holds only if n is a ground-state density of H[n0]. Now

we need only V ext during the minimization. This is the second Hohenberg-

Kohn theorem, which is summarized in the following.
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Hohenberg-Kohn theorem II The Hohenberg-Kohn functional EHK:

EHK[n, v] = FHK[n] +

∫
dr v(r)n(r) (2.37)

has the following properties:

• Given a fixed V ext, EHK[n, V ext] has minimum points only at n = n0,

where n0’s are the ground-state densities.

• Given a V ext, the global minimum of EHK[n, V ext] with respect to n

is identical to the ground-state energy of the system with the external

potential V ext.

We have derived the second Hohenberg-Kohn theorem from the variational

theorem. In the above discussion, we constrained the trial state |Ψ〉 to be a

ground state of a system. As a result, the domain of the Hohenberg-Kohn

functional EHK[n, v] is restricted to V-representable density n.

Levy [35, 36] and Lieb[37] have pointed out that this restriction can be

relaxed, by replacing FHK with the Levy-Lieb functional

FLL[n] = min
Ψ→n

〈Ψ|Hcom|Ψ〉, (2.38)

where Ψ → n means that Ψ runs over every state that has a fixed density n.

Operating minΨ→n to the right-hand side of (2.32), one obtains

〈Ψ0|H[n0]|Ψ0〉 ≤ min
Ψ→n

〈Ψ|H[n0]|Ψ〉 (2.39)

= FLL[n] +

∫
dr V ext[n0](r)n(r), (2.40)

and sees that the equality holds only when n is a ground state density of

H[n0].

This FLL[n] is defined only when there exists a state that produces the

density n. In many-electron systems, this is not a trivial problem because

wave functions are somehow constrained by the anti-symmetry condition of

electrons. The capability of a density to bring itself back to a corresponding

N-particle wave function is called N-representability. Fortunately, the N-

representability of densities is much more likely than the V-representability

[38].
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2.1.3 Kohn-Sham theory

The second Hohenberg-Kohn theorem gives us the density-functional ap-

proach to the determination of the ground-state density n for a given external

potential V ext. However, because the explicit form of the Hohenberg-Kohn

functional is not known, this can not be made into practice as it is. There-

fore, Kohn and Sham[7] proposed a scheme that is in particular suitable

for approximations to the problem. First, they supposed that there is a non-

interacting auxiliary system that can reproduce the density of the many-body

system, second they derived an equation that the non-interacting system

should obey. Finally, they proposed approximations for this non-interacting

equation.

Non-interacting system Before moving on to the Kohn-Sham scheme, let

us introduce non-interacting system and related notions. The Hamiltonian

of the auxiliary system can be expressed as

Haux = −
N∑
i=1

∇2
i +

N∑
i=1

V eff(ri), (2.41)

where V eff is the effective potential, the external potential of the auxiliary sys-

tem. Since the Hohenberg-Kohn theorem holds also in the non-interacting

Hamiltonian, there exists Hohenberg-Kohn functional of the auxiliary sys-

tem:

Eaux
HK [n, V eff ] = T aux[n] +

∫
dr V eff(r)n(r), (2.42)

where T aux[n] is the kinetic-energy functional, which corresponds to FHK[n]

in the general argument above. According to the second Hohenberg-Kohn

theorem for non-interacting systems, variation of Eaux
HK with respect to density

n(r) gives the equation that the ground-state density should satisfy. The

resulting equation is

δEaux
HK

δn(r)
=
δT aux

δn(r)
+ V eff(r) = 0, (2.43)

which must be identical with the ordinary scheme to determine the ground-

state density, in which we solve the single-particle Schrödinger equation:

[−∇2 + V eff(r)
]
ψi(r) = εiψi(r) (2.44)
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and then construct the ground-state density n0 using

n0(r) =
∑
i

′
ψ∗i (r)ψi(r), (2.45)

where the prime symbol denote summation for occupied states. Thus, we

can use (2.44) and (2.45) in order to solve the equation (2.43).

Kohn-Sham theory Now what we really want to obtain is the ground-

state density of

H = −
N∑
i=1

∇2
i +

N∑
i=1

N∑
j=1
j 6=i

V el−el(ri, rj) +
N∑
i=1

V ext(ri). (2.46)

(2.47)

It will be convenient for the following discussion to define T and Hint as

T = −
N∑
i=1

∇2
i , (2.48)

Hint =
N∑
i=1

N∑
j=1
j 6=i

V el−el(ri, rj), (2.49)

so that H = T +Hint +
∑N

i=1 V
ext(ri).

We are now to derive a non-interacting equation that reproduce the den-

sity of the interacting system. The equation (2.43) give us a clue to the

derivation. If the Hohenberg-Kohn functional EHK[n, v] of the interacting

system is transformed into the form EHK[n, v] = T aux[n] +Erem[n, v], we can

exploit (2.44) and (2.45) with V eff(r) = δErem

δn(r)
. Based on this idea, Kohn and

Sham divided the Hohenberg-Kohn functional as follows:

EKS[n, v] = T aux[n] + EHartree[n] +

∫
dr v(r)n(r) + Exc[n] (2.50)

≡ EHK[n, v], (2.51)

where

EHartree[n] =

∫
dr

∫
dr′

n(r)n(r′)
|r − r′| , (2.52)
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Exc[n] = T [n] + Eint[n]− T aux[n]− EHartree[n]. (2.53)

This Exc is called exchange-correlation functional. The EKS can be de-

fined only when n is V-representable for both non-interacting and interacting

Hamiltonian.

Thus, EKS can not be minimized to the ground-state density of the in-

teracting system if the ground-state density of the interacting system is not

V-representable for non-interacting Hamiltonian. This is the reason why the

assumption of existence of the auxiliary system that reproduces the ground-

state density of the interacting system have to be premised.

Using these, the variation of EKS with respect to the density gives

δEKS[n, V
ext]

δn(r)
=
δT aux

δn(r)
+ VHartree(r) + V ext(r) +

δExc[n]

δn(r)
= 0, (2.54)

where

VHartree(r) = 2

∫
dr′

n(r′)
|r − r′| . (2.55)

Thus, the effective potential of the auxiliary system must be

V eff(r) = VHartree(r) + V ext(r) +
δExc[n]

δn(r)
, (2.56)

and one can obtain the ground state density using (2.45).

Local density approximation To the extent of our assumptions, the

Kohn-Sham theory is an exact theory that can determine the ground-state

density of interacting systems. However, it is still not practicable as it seem-

ingly is because the explicit form of Exc[n] is unknown. The local density

approximation (LDA) is an approximation to the Exc[n] proposed by Kohn

and Sham[7]. They claimed that when the density is enough slowly-varying,

Exc[n(r)] defined by (2.53) can be approximated efficiently by integration of

a function only depends on the density such as Exc[n] ∼ ∫
drf(n(r)) without

any information of the first and higher-order gradients of n. The following

notation is preferred in literatures:

ELDA
xc [n] =

∫
dr n(r)εxc(n(r)) (2.57)

This is the local density approximation, and εxc is called exchange-correlation

energy density. Because this functional should be universal, εxc must be
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common to all the system as long as the LDA is valid. Thus, εxc is usually

determined from the calculated results of homogeneous systems using, for

example, Monte Carlo methods. This gives a practical way to calculate the

ground-state density of interacting systems.

Alternative approach to obtain Vxc In the above discussion to derive

the form of Vxc, we have exploited the ordinary scheme of quantum mechanics

to solve (2.43). The derivation can be performed from another viewpoint.

In the alternative approach, the set of (2.44) and (2.45) is the starting

point, i.e., these equations are thought to be an ansatz of the ground state.

In order to state the scope of the summation clearly, let us replace (2.45)

with

n0(r) =

∫ µ

−∞
dE

∑
i

ψ∗i (r)ψi(r)δ(E − εi), (2.58)

where µ is to be determined so as to make the integral
∫
dr n0(r) be identical

to the number of electron N . We assume that the set of densities that

takes the form of (2.45) and (2.58) contains the ground-state density of the

interacting system. To the extent of the assumption, it is enough to think

only this set of densities during minimization of EKS[n, v] for a fixed v.

According to (2.44) and (2.58), the density is perfectly determined from

the information of ψ’s, ψ∗’s, and µ. Thus, one can minimize the Kohn-

Sham energy EKS[n, v] for fixed v with respect to ψ’s, ψ∗’s, and µ with the

constraint that the integral of n0 over the whole space become the number of

electrons N instead of minimization with respect to n without constraints.

The Lagrange multiplier method is convenient for this purpose. Letting ξ

denote the Lagrange multiplier, we transform the problem into minimization

of

I = EKS[n, v] + ξ

[∫
dr

∫ µ

−∞
dE

∑
i

ψ∗i (r)ψi(r)δ(E − εi)−N

]
(2.59)

with respect to ψ’s, ψ∗’s and µ, which should be regarded as independent

variables during the minimization.

Let Ṽxc(r) denote

Ṽxc(r) ≡ Veff(r)− VHartree(r)− V ext(r) (2.60)

Then, one can see that the equation δI
δψ∗i

= 0 gives

θ(µ− εi)

[
ξ − Ṽxc(r) +

δExc[n]

δn(r)

]
ψi(r) = 0, (2.61)
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and δI
δψi

= 0, the complex conjugate of the equation (2.61). ∂I
∂µ

= 0 gives

∫
dr

[
ξ − Ṽxc(r)

] (∑
i

δ(µ− εi)ψ
∗
i (r)ψi(r)

)
+
∂Exc[n]

∂µ
= 0. (2.62)

It follows from (2.61) that

ξ − δExc[n]

δn(r)
+ Ṽxc(r) = 0, (2.63)

which is different from (2.56) only by an additive constant ξ, the freedom of

which we just ignored in the previous discussion.

In this case, only the equation (2.61) is significant because substituting
∂Exc[n]
∂µ

=
∫
dr δExc[n]

δn(r)
∂n(r)
∂µ

into (2.62) one obtains

∫
dr

[
ξ − Ṽxc(r) +

δExc[n]

δn(r)

] (∑
i

δ(µ− εi)ψ
∗
i (r)ψi(r)

)
= 0, (2.64)

which is automatically satisfied due to (2.63).

Adiabatic connection The adiabatic connection approach to derive the

Kohn-Sham functional gives another important perspective [17, 18, 19, 20].

In this scheme, the external potential Vλ is also varied along with the the

electric charge parameter, while only the coupling constant is changed in the

ordinary scheme of adiabatic connection.

We consider the following Hamiltonian:

Hλ = T + λHint + V ext
λ , (2.65)

where V ext
λ is a shorthand of

∑
i V

ext
λ (ri). In this formalism V ext

λ is taken so

as to keep the density

nλ(r) ≡ 〈Ψλ|ψ̂†(r)ψ̂(r)|Ψλ〉 (2.66)

of a parametrized state |Ψλ〉 independent on λ, i.e., nλ(r) = n1(r) for all λ

in 0 ≤ λ ≤ 1, where ψ̂(r) is the field operator. Thus, V ext
1 corresponds to the

external potential of the (fully) interacting system, while V ext
0 corresponds

to the effective potential of the auxiliary system.
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The total energy of |Ψ1〉 of the interacting system is given as follows:

〈Ψ1|H1|Ψ1〉 = 〈Ψ0|H0|Ψ0〉+

∫ 1

0

dλ
∂

∂λ
〈Ψλ|{λHint + V ext

λ }|Ψλ〉 (2.67)

= 〈Ψ0|T |Ψ0〉+

∫
dr V ext

1 (r)n(r) +

∫ 1

0

dλ

λ
〈Ψλ|λHint|Ψλ〉

(2.68)

Using the variational principle, the Kohn-Sham energy functional can be con-

structed from this equation. The resulting exchange-correlation functional

is

Exc =

∫ 1

0

dλ

λ
〈Ψλ|λHint|Ψλ〉 − EHartree[n], (2.69)

which is useful to examine the exact exchange-correlation functional.

2.1.4 Spin-density functional theory

The density functional theory can be extended to the spin-density functional

theory (SDFT) [2, 3]. Though the DFT itself is exact within the limit of our

assumption, the SDFT is more efficient than the DFT in practical terms.

To extend the theory, the Zeeman term is introduced to the Hamiltonian:

H = Hcom +
∑
i

V ext(ri) +
∑
i

Hext(ri)σz, (2.70)

where the quantization axis is chosen to be z-direction and σz is the z-

component of the Pauli matrix:

σz =

(
1 0

0 −1

)
(2.71)

The wave function can be expressed as

Ψ(r1, r2, · · · , rN) =

(
Ψ↑(r1, r2, · · · , rN)

Ψ↓(r1, r2, · · · , rN)

)
. (2.72)

In this case, the total energy can be written in the following form:

〈Ψ|H|Ψ〉 = 〈Ψ|Hcom|Ψ〉+

∫
dr V ext(r)(n↑(r) + n↓(r))

+

∫
dr Hext(r)(n↑(r)− n↓(r)) (2.73)

= 〈Ψ|Hcom|Ψ〉+

∫
dr Vext

↑ (r)n↑(r) +

∫
dr Vext

↓ (r)n↓(r) , (2.74)
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where

Vext
↑ (r) ≡ V ext(r) +Hext(r), (2.75)

Vext
↓ (r) ≡ V ext(r)−Hext(r), (2.76)

The proof of the SDFT analogue of the Hohenberg-Kohn theorem is al-

most the same as the original theorem. One can see that if n↑ and n↓ are

spin densities for the ground state, no other pair of potentials V↑ and V↓ can

produce the same ground-state spin-densities. Thus, V ext
σ and Hext

σ are also

uniquely determined by n↑ and n↓. Therefore every physical quantity can be

regarded as a functional of n↑ and n↓ in this formalism.

As for the Kohn-Sham scheme, the auxiliary system is chosen as follows:

[−∇2 + Veff,σ(r)
]
ψiσ(r) = εiσψiσ(r), (2.77)

and V eff
σ are found to be

V eff
σ (r) = VHartree(r) + V ext(r) +

δExc[n↑, n↓]
δnσ(r)

(2.78)

in a similar way to that of the Kohn-Sham equation of the DFT. In the

following, we will discuss all theories within the SDFT.

2.2 Optimized effective potential

According to the equation (2.69), the exact exchange-correlation energy can

be expressed formally in terms of Kohn-Sham orbitals, orbitals of a non-

interacting auxiliary system, because one can expand 〈ψλ|λHλ|ψλ〉 in (2.69)

in terms of the Kohn-Sham orbitals using the perturbation theory.

Thus, it is important to know a correct way to minimize such an exchange-

correlation functional in terms of the Kohn-Sham orbitals. Sharp and Horton[5],

and Talman and Shadwick[6] (SHTS) found that it is convenient to minimize

such functionals with respect to the effective potential, and derived an equa-

tion that the resulting effective potential should obey. This potential is called

optimized effective potential (OEP) following Talman and Shadwick.

However, this alone is not sufficient to obtain the effective potential. The

proper treatment provided us with another necessary equation that is missing

SHTS, which was first pointed out by the author and Akai[39]. The first

subsection is dedicated to this subject.
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2.2.1 Derivation of OEP equations

First, we define the auxiliary system of the Kohn–Sham scheme [7] as follows:

[−∇2 + V eff
σ (r)

]
ψiσ(r) = εiψiσ(r), (2.79)

nσ(r) =

∫ µσ

−∞
dE

∑
i

ψ∗iσ(r)ψiσ(r)δ(E − εiσ). (2.80)

In the previous section, we performed minimization of EKS with respect to

the Kohn-Sham orbitals, {ψ}, {ψ∗} and the upper boundary of the energy

integral µ. Here we are going to minimize EKS with respect to V eff
σ and

µσ This is possible because nσ is a functional of V eff
σ and µσ, which fol-

lows from that the choice of the effective potential determines ňσ(r, E) ≡∑
i ψ

∗
iσ(r)ψiσ(r)δ(E − εiσ) perfectly. As in the previous section we use a

Lagrange multiplier to ensure that the total number of electrons is N :

I = EKS + ξ

[∑
σ

∫ µσ

−∞

∫
ňσ(r, E) dr dE −N

]
(2.81)

Although this approaches should yield the same result as the variation

with respect to {ψ}, {ψ∗} and µσ, which yield (2.78), the variation with

respect to V eff
σ , δI

δV eff
σ (r)

= 0, yields a seemingly different Euler–Lagrange

equation known as the OEP equation:

∑
i

∫
dr′[Vxc,σ(r

′)− vxc,iσ(r
′)]Giσ(r

′, r)ψ∗iσ(r
′)ψiσ(r) + c.c. = 0, (2.82)

where

Giσ(r, r
′) =

∑

{j|εjσ 6=εiσ}

ψ∗jσ(r)ψiσ(r
′)

εiσ − εjσ
, (2.83)

Vxc,σ(r) = V eff
σ (r)− VHartree(r)− Vext(r), (2.84)

VHartree(r) = 2
∑
σ

∫
dr′

nσ′(r
′)

|r − r′| , (2.85)

vxc,iσ(r) =
1

ψ∗iσ(r)

δExc

δψiσ(r)
. (2.86)

Equation (2.82) has degrees of freedom that correspond to the choice of

the energy origin for each spin. That is, if Vxc,σ is the solution of the equation,
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so is Vxc,σ + ασ, where ασ is an arbitrary constant. Note that α↑ and α↓ are

independent of each other, and hence, as things stand, we would have two

degrees of freedom.

On the other hand, ∂I
∂µσ

= 0 yields

∫
dr {ξ − Vxc,σ(r)} ňσ(r, µσ) +

∂Exc

∂µσ
= 0. (2.87)

Once a set of Vxc,↑ and Vxc,↓ that satisfies both equation (2.82) and equation

(2.87) is fixed for a given ξ, there exists no other degrees of freedom that may

give rise to a new solution for (2.87). Therefore it is clear that (2.87) fixes

the difference between the additive constants that are permitted in (2.82).

A possible procedure determining Vxc,σ is the following: Let us denote one of

sets satisfying (2.82) by V ′
xc,σ. The difference between Vxc,σ and V ′

xc,σ must

be a constant ασ, i.e., Vxc,σ = V ′
xc,σ+ασ. Substituting these into (2.87) yields

equation determining ασ.

In the exact-exchange (EXX) case,

EEXX
xc = −

∑
σ

∫ µσ

−∞
dE

∫ µσ

−∞
dE ′

∫
dr dr′

ňσ(r, r
′, E)ňσ(r

′, r, E ′)
|r − r′| , (2.88)

(here, ňσ(r, r
′, E) ≡ ∑

i ψ
∗
iσ(r)ψiσ(r

′)δ(E − εiσ)), equation (2.87) becomes

∑
i

δ(µσ − εiσ)

∫
dr {ξ − Vxc,σ(r) + vxc,iσ(r)}ψ∗iσ(r)ψiσ(r) = 0. (2.89)

This equation is identical to the one proposed by Krieger, Li, and Iafrate[25]

if the highest occupied orbital is not degenerate. In this case, ξ is equal to

the so-called KLI constant of the highest occupied orbital. In the degenerate

case, however, ξ is the average of the KLI constants of the highest occupied

orbitals. According to Eq. (2.89), ξ should be common to both the spin di-

rections. Equation (2.89) holds whenever the exchange-correlation functional

satisfies the relation

∂Exc

∂µσ
=

∑
i

δ(µσ − εiσ)

∫
dr vxc,iσ(r)ψ∗iσ(r)ψiσ(r). (2.90)

Another example of the exchange-correlation functional that satisfies the

above relation (2.90) is the one used by Kotani [23] wherein the static RPA

level approximation was used for the correlation energy, which we will discuss

later.
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2.2.2 Modified KLI method

In the following calculations, we used the KLI approximation proposed by

Krieger, Li, and Iafrate [24, 25] to solve equation (2.82). Among the several

ways to reach their results, the most easiest one is to replace the denominator

in the definition of the Green’s function (2.83) with a constant ∆:

Giσ(r, r
′, E) =

∑

{j|εj 6=εi}

ψ∗jσ(r)ψjσ(r
′)

εiσ − εjσ
(2.91)

∼ 1

∆

∑

{i|εj 6=εi}
ψ∗jσ(r)ψjσ(r

′) (2.92)

=
1

∆


δ(r − r′)−

∑

{i|εj=εi}
ψ∗jσ(r)ψjσ(r

′)


 (2.93)

For the sake of simplicity of the argument, we only deal with a non-degenerate

case until we reach the KLI equations. In the presence of degeneracy, the

resulting equation can be transformed into the same form as non-degenerate

case with a transformation of states to the principle axis (see appendices of

[25]). To the extent of this assumption, the Green’s function is approximated

by

Giσ(r, r
′, E) ∼ 1

∆
[δ(r − r′)− ψ∗iσ(r)ψiσ(r

′)] . (2.94)

Substituting this into (2.82), one obtains

∑
i

{
niσ(r)

(
V KLI

xc,σ (r)− vxc,iσ(r)− V KLI
xc,σ + vxc,iσ

)}
+ c.c. = 0, (2.95)

where V KLI
xc is the exchange-correlation part of the approximated OEP, niσ(r)

denotes

niσ(r) ≡ ψ∗iσ(r)ψiσ(r), (2.96)

and the averages indicated by an overbar are defined as

V KLI
xc,iσ ≡

∫
dr ψ∗iσ(r)ψiσ(r)V S

xc,iσ(r), (2.97)

vxc,iσ ≡
∫
dr ψ∗iσ(r)ψiσ(r)vxc,iσ(r). (2.98)

When the approximated Kohn-Sham functional does not depend on un-

occupied states, the summation in (2.95) is taken only for occupied states. In
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this case the KLI potential can be expressed as a modification to the Slater

potential V S
xc, which is defined [4] as

V S
xc,σ(r) ≡

∑′
iσ niσ(r)vxc,iσ(r)∑′

iσ niσ(r)
. (2.99)

(The summation with a prime symbol is for the occupied states.)

Using V S
xc, it follows from (2.95) that

V KLI
xc,σ (r) = V S

xc,σ(r) +

∑′
iσ niσ(r)Ciσ∑′
iσ niσ(r)

, (2.100)

where Ciσ represents V KLI
xc,iσ − vxc,iσ, the so-called KLI constant for the state

iσ. An equation that determines Ciσ can be obtained by integrating (2.95)

over whole the space. One reaches

∑
i

′
(δji −Mji,σ)Ciσ = (V S

xc,jσ − vxc,jσ), (2.101)

where M is defined by

Mji,σ ≡
∫
dr

njσ(r)niσ(r)∑′
k nkσ(r)

. (2.102)

Equation (2.101) still has an additional degree of freedom inherent in

equation (2.82). If a set of Ciσ is a solution for the equation, so is a set of

Ciσ + ασ where ασ is an arbitrary constant. It is easy to deduce that this

corresponds to

V KLI
eff,σ (r) → V KLI

eff,σ (r) + ασ. (2.103)

It can also be seen that there is no other degree of freedom in the KLI

equation. In order to prove this, we can make use of the fact that, by adjust-

ing the free constant indicated in (2.103), it is possible to obtain a solution

whose last component is zero. Let A denote a matrix whose components are

Aij = δij −Mij,σ. The equation that determines the rest of the components

is an N × (N − 1) linear equation, where N is the size of the square matrix

A. That is



A11 · · · A1,Nσ−1

...
. . .

...
...

. . .
...

ANσ ,1 · · · ANσ,Nσ−1







x1

...

xNσ−1


 =




0
...
...

0







Nσ. (2.104)
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If there is any extra freedom, the corresponding homogeneous equation

should have solutions other than the trivial one. A necessary condition for

this is that the matrix I −M ′ is singular, where M ′ is formed by removing

the last row and column from M . In the matrix form,



A11 · · · A1,Nσ−1

...
. . .

...

ANσ−1,1 · · · ANσ−1,Nσ−1







x1

...

xNσ−1


 =




0
...

0


 . (2.105)

Now, consider a matrix F =
∑∞

n=0M
′n. Since

[
maxj

∑
iM

′
ji

]−1
> 1, F is

finite. However, F is nothing but the inverse of the matrix I −M ′ as long as

F converges, and hence, I −M ′ cannot be singular. This proves that there

is no extra degree of freedom other than the one implied by (2.103).

The original KLI scheme contains a method to fix this degree of free-

dom. Although, from the viewpoint of the equation (2.87), their method is

not always correct. However, replacing their method with correct one using

(2.87) does not introduce any difficulty in practical calculations. To obtain a

solution that satisfies (2.101) and (2.87) simultaneously, we solve (2.101) un-

der the condition that one of the components of the solution is fixed. Then,

we choose the additive constants ασ such that the solution satisfies equation

(2.87) with ξ → 0. In this limit, and under the condition that the equation

(2.90) holds and the highest occupied orbital is not degenerate, our scheme

is identical to the KLI approximation [25].

2.2.3 RPA-level correlation

Using the approach of the adiabatic connection of the DFT, the exact exchange-

correlation functional is expressed as (2.69),

Exc =

∫ 1

0

dλ

λ
〈Ψλ|λHint|Ψλ〉 − EHartree. (2.106)

The first term can be expanded in terms of Kohn-Sham orbitals using the

perturbation theory, and the diagrammatic analysis is available to treat this

problem. As in the many-body electron analysis, the random phase approx-

imation will be a good starting point to analyze the correlation energy in

extended system such as solids. Thus, we use the RPA diagram as follows.

ERPA
c =

∫ 1

0

dλ

λ

[ ]

λ

, (2.107)
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where the subscript λ means that every wavy line, which indicates the inter-

action, is accompanied by a single coefficient λ.

It will be helpful to define a product of functions. We use 4-component

space-time variable in the following, like x ≡ (r, t). Using this, the product

of f(x, x′) and g(x, x′) is define as

fg(x1, x2) ≡
∫
dx′f(x1, x

′)g(x′, x2). (2.108)

The identity function 1(x, x′) is defined as 1(x, x′) = δ(x − x′) so as to

f1 = 1f , and a superior −1 is used for indicating the inverse of a function

f : ff−1 = f−1f = 1.

Trace of a function is also useful. Let Tr denote

Tr[f ] =

∫
dxf(x, x). (2.109)

It is easy to see that

Tr[fg] =

∫
dxdx′f(x, x′)g(x′, x) (2.110)

=

∫
dx′dx g(x′, x)f(x, x′) = Tr[gf ], (2.111)

thus a product of functions can be cyclically exchanged without changing the

value of the trace as in the trace of matrices.

The solid lines in (2.107) all form a ring diagram. Using notations of the

Appendix B.1, the ring polarization insertion can be expressed as

D(x, x′) = (2.112)

=
∑
σ

D0
σ(x, x

′). (2.113)

The formula for the bare coulomb interaction v, which is denoted by wavy

line in diagrams, can be written as

v(x, x′) =
2

|r − r′|δ(t− t′). (2.114)
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Then, let us define the screened coulomb interaction W as

W = (2.115)

= [1− vD]−1 v − v (2.116)

= [1− vD]−1vDv. (2.117)

Using these, ERPA
c can be expressed as

ERPA
c =

∫ 1

0

dλ

λ

[ ]

λ

(2.118)

=

∫ 1

0

dλ

λ
Tr [WλD] . (2.119)

This expression will be useful when we discuss the static approximation for

the variation of ERPA
c later. The integration with respect to λ can be per-

formed beforehand, using

∫ 1

0

dλ

λ
WλD =

∫ 1

0

{
(1− λvD)−1 − 1

}
vD dλ (2.120)

= − log(1− vD)− vD, (2.121)

where the logarithm is defined by log(1−A) = −∑∞
n=1

An

n
. Thus, ERPA

c can

be also expressed as

ERPA
c = −Tr[log(1− vD) + vD]. (2.122)

Before moving on to the approximation, let us consider variation of the

ERPA
c with respect to D and derivative with respect to λ . For this purpose,

it is helpful to use Xλ = vλD. Using this, WλD can be expressed as

WλD = (1−Xλ)
−1X2

λ. (2.123)

First, let us consider the variation of B = (1− A)−1 when A is varied as

A→ A+ δA. It is easy to verify

δB = B(δA)B, (2.124)

seeing that (1 − A − δA)(B + δB) = (B−1 + δA)(B + δB) = 1 holds up to

the first order of variations.
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As for the derivative with respect to A, one obtains

dB = B(dA)B (2.125)

in a similar way to that of the variation.

Using these and (2.111), the variation of the trace of WλD is expressed

as

δTr [WλD] = Tr
[
δ(1−Xλ)

−1X2
λ + (1−Xλ)

−1δX2
λ

]
(2.126)

= Tr
[{

(1−Xλ)
−2X2

λ + 2(1−Xλ)
−1Xλ

}
δXλ

]
. (2.127)

As for the derivative, we need not to take the trace in order to arrange

terms as in (2.127) because dXλ = Xdλ commutes with Xλ. Thus,

d
[
(1−Xλ)

−2X2
λ

]
=

{
(1−Xλ)

−2X2
λ + 2(1−Xλ)

−1Xλ

}
dXλ (2.128)

=
{
(1−Xλ)

−2X2
λ + 2(1−Xλ)

−1Xλ

}
dλX. (2.129)

Noting that Xλ=0 = 0, it is seen that the integration over 0 ≤ λ ≤ 1 yields

(1−X)−2X2 =

∫ 1

0

{
(1−Xλ)

−2X2
λ + 2(1−Xλ)

−1Xλ

}
dλX. (2.130)

Therefore, using these and δXλ = λδX,

δERPA
c =

∫ 1

0

dλ

λ
δTr [WλD] (2.131)

=

∫ 1

0

dλ

λ
Tr

[{
(1−Xλ)

−2X2
λ + 2(1−Xλ)

−1Xλ

}
δXλ

]
(2.132)

=

∫ 1

0

dλTr
[{

(1−Xλ)
−2X2

λ + 2(1−Xλ)
−1Xλ

}
XX−1δX

]
(2.133)

= Tr [(1−X)−1XδX] (2.134)

= Tr [WδD]. (2.135)

Thus, all δD’s in the variation are arranged and put together to only one δD.

In addition, it is seen that the integral of λ in (2.131) have not to be performed

when calculating only the correlation part of the OEP, V RPA
c = δERPA

c

δn
.

Static approximation However, calculation based directly on the equa-

tion (2.135) still takes too much computational time for our purpose because
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we need to construct the OEPs many times until the potential converges and

satisfies both (2.82) and (2.87).

Therefore, we adopt the static approximation, which greatly reduces the

computational time. Let the tilde symbol denote a Fourier transform of time

domain (A.3) of a function like f̃(ω). If W̃ varies slowly enough with respect

to ω, W can be approximated accurately as

W (r, r′, τ) =
1

2π

∫
dωe−iωτW̃ (r, r′, ω) (2.136)

∼ W̃ (r, r′, 0)

∫
dω e−iωτ (2.137)

= W̃ (r, r′, 0) δ(t− t′). (2.138)

Using this, the variation of the correlation energy becomes

δEsRPA
c = Tr

[
W̃ (r, r′, 0)δ(t− t′)δD(r′, r, t′ − t)

]
(2.139)

=

∫
dr dr′W̃ (r, r′, 0)δD(r′, r, 0). (2.140)

Within this approximation, all the integrations with respect to time and fre-

quency vanish. Thus, hereafter, let the integrations indicated by the product

of the functions and Tr be performed only for the space, and omit the time

and frequency variables whenever they are zero, so that

δEsRPA
c =

∫
dr

∫
dr′W̃ (r, r′, 0)δD(r′, r, 0) = Tr

[
W̃ δD

]
. (2.141)

It can be seen that only ω = 0 component of the polarization insertion

D̃(r, r, ω) is included in W̃ above. It follows from the relation of a Fourier

transform of a convolution that

W̃ (r, r′) =
(
[1̃− ṽD̃]−1ṽD̃ṽ

)
(r, r′), (2.142)

where D̃ denotes the function D̃(r, r′, 0) along to the notation we have just

made. Therefore, the equation (2.141) contains two kinds of the polarization

insertion, D and D̃. Calculations of both two are summarized in the appendix

B.1. It can be seen from (B.12) thatD depends only on density of the system.

Therefore, the numerical calculation related to D is not very difficult because

it consists of the occupied orbitals. Note that the variation of the correlation

energy is attributed only to δD in (2.141). Therefore, the use of the KLI

approximation for this functional is justified and one can see that the relation

(2.90) holds for the correlation as well as EXX.
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Static polarization insertion However, as for D̃ we need to devise a

efficient way to calculate. It follows from (B.21) that

D̃σ(r, r
′) = 2

∑
i,j

θ(εiσ − εF )θ(εF − εjσ)

εjσ − εiσ + iη

× ψiσ(r)ψ∗iσ(r
′)ψ∗jσ(r)ψjσ(r

′) (2.143)

=

∫ ∞

εF

dE

∫ εF

−∞
dE ′ 2

E ′ − E + iη
ňσ(r, r

′, E) ňσ(r
′, r, E ′) (2.144)

= 2

∫ εF

−∞
dE ′ ňσ(r′, r, E ′)

∫ ∞

εF

dE
ňσ(r, r

′, E)

E ′ − E + iη
(2.145)

= 2

∫ εF

−∞
dE ′ ňσ(r′, r, E ′) f(r, r′, E ′), (2.146)

where f is defined as f(r, r′, E ′) =
∫∞
εF
dE ňσ(r,r′,E)

E′−E+iη
. Due to the existence of

f , it seems that the calculation of D̃ must involve unoccupied Kohn-Sham

orbitals, which can cause problems if there is no clear criterion of choosing

finite set of the unoccupied orbitals that are taken into account. This can be

avoided as follows. First, f is transformed as

f(r, r′, E ′) =

∫ ∞

εF

dE
ňσ(r, r

′, E)

E ′ − E + iη
(2.147)

=

∫ ∞

−∞
dE

ňσ(r, r
′, E)

E ′ − E + iη
−

∫ εF

−∞
dE

ňσ(r, r
′, E)

E ′ − E + iη
(2.148)

= GR
σ (r, r′, E ′) +

∫ εF

−∞
dE

ňσ(r, r
′, E)

E − E ′ − iη
. (2.149)

Second, in order to deform the path of the integration of the second term onto

upper half of the complex plane, one can use ňσ(r, r
′, E) = − 1

π
ImGR(r, r′, E)

and the following relation:

Im

[
z

ε+ iη

]
=

Imz

ε− iη
− z

η

ε2 + η2
(2.150)

→ Imz

ε− iη
+ iπzδ(ε) (η → 0). (2.151)



46

Finally, using these, f becomes

f(r, r′, E ′) = GR
σ (r, r′, E ′)− 1

π
Im

∫ εF

−∞
dE

GR
σ (r, r′, E)

E − E ′ + iη

−
∫ εF

−∞
dE δ(E − E ′)GR

σ (r, r′, E) (2.152)

= GR
σ (r, r′, E ′)− 1

π
Im

∫ εF

−∞
dE

GR
σ (r, r′, E)

E − E ′ + iη

− θ(εF − E ′)GR
σ (r, r′, E) (2.153)

= θ(E ′ − εF )GR
σ (r, r′, E ′)− 1

π
Im

∫ εF

−∞
dE

GR
σ (r, r′, E)

E − E ′ + iη
. (2.154)

Now, the first term does not contribute to (2.146), and it seems possible to

deform the path of the second term onto the upper half-plane.

However, there are two points of which we should be careful concerning

the second term. First, if η in the second term is the same variable as the

infinitesimal energy shift of GR
σ in the denominator, the integrand of this term

has poles of 2nd order, and thus the integral can not be defined. This ill-

behavior is due to the addition of
∫ εF
−∞

ňσ(r,r′,E)
E−E′+iη dE in (2.148) and replacing ň

with− 1
π
ImGR

σ . However, this η does not have to be identical with that of the

Green’s function because (2.147) itself is independent from the infinitesimal

variable in the Green’s function which corresponds to the ň as long as the

additional term converges to
∑

i θ(εF − εiσ)
niσ(r,r′)
εiσ−E′+iη . Thus, use of a path in

upper analytic half-plane that detour the poles is justified because all the

poles can be regarded as of first order.

Second, the numerical treatment of the second term is difficult when dealt

as a function of E ′. This is because the singular function 1
εiσ−E′+iη will be left

after integration with respect to E due to ňσ which is contained in GR
σ . This

problem will be solved if the path of E ′ in the equation (2.146) is deformed

so as to detour the poles on the real axis of E ′. However, deformation of a

path is allowed only when the integrand is analytic in a region that covers

the trace of deformed path. Therefore, we have to replace the integrand with

an analytic continuation of itself in order to deform the path.

We have found such an analytic continuation as follows. First, an imag-

inary part of a function g(x) can be expressed as Im[g(x)] = g(x) − g(x)

when x is real. Think of g(z) that is a continuation of g(x) and analytic

in the upper half-plane. Using g(z) which is defined and analytic in lower

half-plane, this is expressed as Im[g(x)] = limz→x+i0 g(z) − g(z). Thus, the
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Figure 2.5: The paths of the integral in (2.156). When g(z) is analytic in a

region in the upper half-plan, g(z) is defined in the conjugate region in the

lower half-plane and one can show that this function is also analytic in the

domain. Thus, the value of the integrals does not depend on the paths as

long as both the region cut by C ′1 and real axis (pink region) and the region

cut by C ′2 and real axis (light blue region) do not contain any singularities of

the functions.

integration of g(x) for A < x < B can be transformed into the sum of the

two integrals along C ′1 and C ′2 that are on the upper and lower half-plane

respectively, and that start from point A and end at point B (See fig.2.5):

Im

∫ B

A

g(x)dx = lim
z→x+i0

{
g(z)− g(z)

}
(2.155)

=

∫

C′1

g(z)dz −
∫

C′2

g(z)dz. (2.156)

The direct application of this to the second term of (2.154) gives

− 1

2i

[∫

C1

dE
GR
σ (r, r′, E)

E − E ′ + iη
−

∫

C2

dE
GR
σ (r, r′, E)

E − E ′ − iη

]
, (2.157)

which itself is not an analytic function of E ′. However, it is clear that the

following function

F (r, r′, E ′) ≡ − 1

2i

[∫

C1

dE
GR
σ (r, r′, E)

E − E ′ + iη
−

∫

C2

dE
GR
σ (r, r′, E)

E − E ′ − iη

]
(2.158)

is analytic as a function of E ′ and identical with the (2.154) on the real axis

of E ′, where C1 is a path from −∞ (which can be replaced with any energy

below the energy of the lowest occupied orbital) to εF on the upper-half plane

and C2 on the lower-half plane.
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Figure 2.6: The paths in (2.162) projected to one complex plane.

Using F (r, r′, E ′) and noting that this function is real when E ′ is real,

the equation(2.146) can be transformed to the following expression:

D̃σ(r, r
′) = 2

∫ εF

−∞
dE ′ ňσ(r′, r, E ′)F (r, r′, E ′) (2.159)

= − 2

π

∫ εF

−∞
dE ′ Im

[
GR
σ (r′, r, E ′)

]
F (r, r′, E ′) (2.160)

= − 2

π
Im

[∫ εF

−∞
dE ′GR

σ (r′, r, E ′)F (r, r′, E ′)
]
. (2.161)

Now, we are prepared for deforming the path of this integral. The path should

not cross C1 projected to the complex plane of E ′ because F (r, r′, E ′) is

singular at the crossing point, and simultaneously the path should be on the

upper-half plane because the integral contains the retarded Green’s function

(See fig.2.6). Let C3 denote one of such a path, then finally we obtain

D̃σ(r, r
′) =

1

π
Re

[∫

C3

dE ′GR
σ (r′, r, E ′)

×
{∫

C1

dE
GR
σ (r, r′, E)

E − E ′ + iη
−

∫

C2

dE
GR
σ (r, r′, E)

E − E ′ − iη

}]
. (2.162)

The path C2 can be chosen to be identical with the conjugate path of C1. In

this case, the integral in the curly brackets need only the information of the

values of GR on C1. The integral with respect to E ′, however, involves GR on

the different path C3. Therefore, we need the values of GR on two paths on

the upper-half plane. The Korringa-Kohn-Rostoker(KKR) Green’s function

method is convenient for this purpose because it can directly calculate the

retarded Green’s function of complex energies on the upper-half plane.
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Energy calculation Besides the ground-state density, the ground-state

energy is another quantity that the Kohn-Sham scheme enables us to calcu-

late. Thus, it is also important to calculate the ERPA
c itself in order to obtain

the total energy. In the following calculation, we applied (2.138) also to the

ERPA
c , i.e.,

EsRPA
c =

∫ 1

0

dλ

λ
Tr

[
W̃λD

]
. (2.163)

It should be remarked that one can not obtain (2.141) from this equation

because variation of this involves both the variation of D and D̃. However, as

far as the static approximation to the screened Coulomb interaction is valid,

this approximation is also efficient and this does not harm to the results of

the calculation very much.

An approximation to the expression (2.122) of ERPA
c may be also possible.

However, we adopted the direct calculation of (2.163) in the following. There

are three main reasons for this. First, it seems difficult to devise a simple and

physically transparent approximation to (2.122), which must be consistent

with the approximation for the variation of the correlation energy. Second,

the λ-dependence of the integrand of (2.69) is an interesting information of

the system. For example, the hybrid functional methods can be theoreti-

cally justified as approximations to the integrand as mentioned in the first

chapter. Third, it is easy to implement the method because one can reuse

the module that generates W̃ with a little modification in order to calculate

W̃λ. Admittedly, it takes long time to calculate many Wλ’s for various λ

in 0 ≤ λ ≤ 1. However, this calculation is performed once for all after the

convergence of the potential, and it will take much less time than the whole

calculation process. Thus, one may put higher priority on the reliability over

the efficiency of the calculation.





Chapter 3

Results

3.1 Exact exchange

First, we apply the method described in the previous chapter to crystalline

alkali metals with the exchange-only Exc using the atomic sphere approxima-

tion (ASA) for the shape of the effective potentials. The results of the calcu-

lation without correlation terms may not be very different from those which

includes the correlation energy for such systems. This provides a stringent

test for the method because the incorrect treatment of the additive constants

can easily yield an artificial magnetic field. This occasionally allows an un-

physical magnetization to remain after the convergence of a self-consistent

procedure.

The total density of states (DOS) of Li, Na, and K are shown in figure3.1.

As expected, all of them are nonmagnetic. We confirmed that neither the

local nor the global energy minima existed for any magnetic solutions.

We also calculated the electronic structures of ferromagnetic Fe and anti-

ferromagnetic MnO within the same framework. The results can be compared

with those obtained by Kotani and Akai [40], who performed calculations

using the KKR–EXX method.

Figure 3.2 shows the exchange potential obtained by the present scheme.

The Vx graphs have shallow dips around r = 0.5 (a.u.), which corresponds

to exchange holes. The dip turns out to be shallower than that obtained in

[40].

The total DOS of these systems are shown in figure 3.3. Although the

exchange splitting of our results seems slightly smaller than those in [40], the

overall agreement between the two is satisfactory. This implies that, at least

51
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Figure 3.1: Total DOS of Li, Na, and K calculated by using modified KLI

method (see 2.2.2) in combination with the KKR method within the frame-

work of the EXX.
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for these systems, using the KLI method does not affect the features of the

OEP significantly.
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Figure 3.2: Exchange potentials of Fe and MnO calculated by the modified

KLI method (see 2.2.2) within EXX.
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Figure 3.3: Total DOS of Fe and MnO calculated by the modified KLI method

(see 2.2.2) within EXX.
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3.2 Test calculation of technique for static

RPA-correlation-energy

We performed test calculations in order to see the efficiency of our new

method to calculate the static polarization insertion. As representative ex-

amples, we chose two model Green’s functions.

The first model Green’s function is

G1(E) =
1

E + A+ iη
+

1

E − A+ iη
, (3.1)

whose imaginary part consists of two delta-functions (See figure 3.2):

ň1(E) = ImG1(E) = − 1

π
{δ(E − A) + δ(E + A)}. (3.2)

The second one is

G2(E) = log

(
E +B + C

E −B + C

)
+ log

(
E +B − C

E −B − C

)
, (3.3)

whose imaginary part consists of two box-shaped functions (See figure 3.2):

ň2(E) = ImG2(E)

= − 1

π
[{θ(E +B + C)− θ(E −B + C)}

+ {θ(E +B − C)− θ(E −B − C)}]. (3.4)

Figure 3.4: The imaginary part of the model Green’s function of (3.1) (Left)

and of (3.3) (Right). In the calculations, the green region was treated as

occupied states, and red as unoccupied.



57

Using these, the calculations based on (2.162) (hereafter, “new method”)

are compared with those based on (2.145) (hereafter, “direct method”). The

values A = 0.5, B = 0.5 and C = 0.55 are used and the Fermi energy

is set εF = 0 in the calculation. For the direct method, the path of the

integral is shifted upward by 10−3 in order to detour poles of the integrand.

Correspondingly, the end point of the path of the integral for new method is

also shifted by 10−3.

The model Green’s functions are simple enough to calculate the exact

value of the polarization insertion D̃ using (2.145). Thus relative errors of

each calculations are also available. The log-log graphs in figure 3.5 shows

that the relative error decreases as the number of energy mesh used in the

numerical integration increases.

The top graph in figure 3.5 is of the model Green’s function G1. Both

methods reduce the relative error, as the number of mesh increases. However,

it can be seen that the new method is much more efficient than the direct

method. This is not surprising because the integration of δ-function along

near the real axis is extremely hard.

On the contrary, the imaginary part of the second model Green’s function

is smooth along the real axis. However, as shown in the bottom graph in

figure 3.5, the new method is still more efficient than the direct method. This

is because new method can use mesh, which is fine near the real axis and

coarse far from the real axis. This feature greatly improves the precision of

the integration because all poles are located on the real axis in the calculation.

3.3 EXX+RPA

We have also implemented the RPA-level calculation in the KKR code using

the new method to calculate the polarization insertion. During the construc-

tion of the correlation functional, the Kohn-Sham orbitals are coarse-grained

in order to accelerate the calculation. We found that the loss of precision

was insignificant for final results when the number of the radial mesh was

reduced from 400 to 200. Thus, we applied this to all the calculations in the

following.

The figure 3.6 shows comparison of the total DOS of ferromagnetic Fe

with that of the LDA, which is considered to be accurate enough for this

system. The result can be also compared with that of the EXX calculation,

which is given in the top graph of figure 3.3. The results of EXX calculation
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shows that the splitting of up- and down-spin states are too large compared

with that of the LDA. Our new method (EXX+RPA), which takes account

of the RPA-level correlation, produces a similar result as that of the LDA.
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Figure 3.6: Total DOS of Fe calculated within (Top) EXX+RPA and (Bot-

tom) LDA.

The table 3.1 shows the calculated magnetic moments for Fe, Co, Ni

within the EXX+RPA, EXX, and LDA. In addition, we compare them with

the magnetic moments calculated by Kotani [23] and those obtained by ex-

periments [41, 42, 43]. It is a common tendency seen in all our results in the

table that the exchange-splittings, which are overestimated in the EXX, are
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(µB) EXX+RPA EXX LDA Kotani[23] Exp. [41, 42, 43]

Fe 2.60 3.38 2.28 2.05 2.12

Co 1.50 2.26 1.60 1.57 1.59

Ni 0.61 0.82 0.59 0.57 0.56

Table 3.1: The predicted magnetic moments of ferromagnetic Fe, Co and Ni

obtained by our KKR-OEP-KLI code, those of Kotani’s direct OEP calcula-

tion [23], and those from experiments [41, 42, 43].

reduced considerably within the EXX+RPA. However, the predicted mag-

netic moments are still larger than that of the EXX+RPA results by Kotani,

the experimental values, and that of the LDA. These discrepancies can at-

tributed to the use of the KLI approximation because our methods are con-

sidered theoretically more accurate than that of Kotani’s except the point

that we use the KLI approximation.

3.4 Total energy

The total energy calculations were also performed for non-magnetic Na and

ferromagnetic Fe. Based on the equation (2.163), we used 240 mesh for the

lambda integration in the following results.

We found that the numerical integration along the real axis is virtually

impossible due to singular behavior of the integrand along the real axis. The

figure 3.7 shows the behaviors of the integrands of Fe and Na. These singular-

ities are due to (1̃−λṽD̃)−1 in the expression (2.142) of the screened coulomb

interaction (v must be accompanied by λ in the calculation of (2.163)).

Thus, we deformed the path of λ to detour the poles, which could be

justified as follows. In the formalism of the adiabatic connection, what we

really want to know is the difference of the values of anti-derivative at the

ends of path,λ = 0 and λ = 1. If there is no pole the integral gives the

correct difference. However, the presence of poles may introduce ambiguities

of the integral. Fortunately, ṽD̃ is a real function. Thus, if there is a pole of

(1̃ − λṽD̃)−1 on the real axis of λ, and the pole is of first order, the residue

of the pole must be real. In this case, it contributes only imaginary part of

the integral. On the other hand, we know that the difference must be real.
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in order to serve a guide to the eye.

Thus, just dropping the imaginary part after integration will give the correct

difference.

The path of the λ integral is illustrated in the figure 3.8 with the value

of the integrand for both Fe and Na case. The lambda runs along the three

sides of the rectangle which height is 0.1 and width is 1. It can be seen that

the integrands are smooth enough to be numerically integrated along the

path.
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Two graphs in the figure 3.9 shows the variation of the total energy with

respect to the lattice constant of the ferromagnetic Fe and non-magnetic Na

respectively. The table 3.2 compares the estimated lattice constants with
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that from the experiments and that from the LDA calculations. Though the

EXX+RPA scheme predicts smaller values than those obtained by experi-

ments, it falls closer than those of the LDA.

(a.u.) Exp. EXX+RPA LDA

Fe 5.42 5.30 5.24

Na 7.99 7.82 7.68

Table 3.2: The calculated lattice constants calculated by the KKR-OEP-KLI

code compared with the experimental values.
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Chapter 4

Conclusions

We have proposed a new scheme of calculating the optimized effective po-

tential. This includes several fundamental findings on the OEP theory. The

OEP must be determined according to the set of two equations:




∑
i

∫
dr′[Vxc,σ(r

′)− vxc,iσ(r
′)]Giσ(r

′, r)ψ∗iσ(r
′)ψiσ(r) + c.c. = 0

∫
dr {ξ − Vxc,σ(r)} ňσ(r, µσ) +

∂Exc

∂µσ
= 0

(4.1)

The first equation is derived by Sharp and Horton [5], and Talman and

Shadwick [6] (appeared as (2.82) in chapter 2), and the second (2.87) is

given by the author and Akai [39]. The new technique to calculate the RPA-

level correlation is also demonstrated. The static polarization-insertion is

analytically transformed into the other expression (2.162), which is more

convenient in numerical calculations.

These techniques are implemented in the KKR code with the modified

KLI approximation, which is constructed in accordance with (2.87) by the

modification. For the calculation within the framework of the EXX, the use

of the KLI seems adequate. However, there are yet discernible discrepancies

between results obtained by our code and results of the direct method re-

ported by Kotani [23]. We also proposed the approximate way to calculate

the correlation energy, which is needed for the total energy calculation. It is

remarked that our scheme with the modified KLI method still seems to have

an advantage in predicting lattice constants over the LDA.

The disagreement of our method with the direct OEP calculation should

be attributed to the use of the KLI approximation. Thus, another approx-
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imation going beyond the KLI approximation or efficient way to calculate

the OEP directly should be investigated as our further steps. Fortunately,

most of our findings are independent from the KLI approximation. There-

fore, we believe that they are also useful in future developments based on the

optimized effective potential theory.



Appendix A

Notations and formulae

In this appendix, several definitions and formulae used in this thesis are

listed.

A.1 Definitions

Rydberg Units (Slater Units) The Rydberg units are used through

this thesis. These units are defined by the following relation of the physical

constants:

~ = 2me =
e2

2
= 4πε0 = 1, (A.1)

where, ~ is the Dirac constant, me is the mass of the electron, e is the electric

charge of the electron, and ε0 is the dielectric constant of vacuum.

Fourier transforms The Fourier transforms are defined as follows. Note

that there is a slight difference between those of time and space.

f(x) =
1

2π

∫
dk eik·xf̃(k) (A.2)

f(t) =
1

2π

∫
dω e−iωtf̃(ω) (A.3)

Heisenberg representation The Heisenberg representation is denoted by

subscript of H, and the Schroödinger representation S. The states and oper-

ators of these two are related to one another as:

|ΨH〉 = eiĤt|ΨS〉 (A.4)
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ÔS ≡ eiĤtÔSe−iĤt, (A.5)

where Ĥ is the Hamiltonian, |ΨS〉 is a state and ÔS is an operator in the

Schrödinger representation. The states and operators without both superiors

denotes that of Schrödinger representation.

T-product T-product is defined as

T{A(r, t)B(r′, t′)} =





A(r, t)B(r′, t′) (t > t′)

−B(r′, t′)A(r, t) (t < t′)
. (A.6)

It is enough because we only apply T-product on the anti-commuting oper-

ators.

A.2 Formulae

Fourier transforms of θ-function The Fourier transforms of θ-function

appears several times in the text. Letting η denote a infinitesimal real value,

the following relation can be seen:

θ(t− t′) =
1

2π

∫
dω e−iω(t−t′)

[
i

ω + iη

]
, (A.7)

θ(t′ − t) =
1

2π

∫
dω e−iω(t−t′)

[ −i
ω − iη

]
. (A.8)

Therefore, one obtains

θ(t− t′)e−iα(t−t′) =
1

2π

∫
dω e−iω(t−t′)

[
i

ω − α+ iη

]
, (A.9)

θ(t′ − t)e−iα(t−t′) =
1

2π

∫
dω e−iω(t−t′)

[ −i
ω − α− iη

]
. (A.10)



Appendix B

Green’s function of

non-interacting system

In this thesis, two kinds of the Green’s function, the causal and retarded

Green’s function, are utilized. In general, they are defined as follows.

Causal Green’s function

iGσσ′(x, x
′) ≡ 〈gH|T{ψ̂H

σ (x)ψ̂†Hσ′ (x
′)}|gH〉, (B.1)

Retarded Green’s function

iGR
σσ′(x, x

′) ≡ θ(t− t′)〈gH|ψ̂H
σ (x)ψ̂†Hσ′ (x

′)|gH〉, (B.2)

where |gH〉 is the ground state of the system, ψ̂H
σ is the field operator, both in

the Heisenberg representation, and four-dimensional space-time-coordinate

variables such as x ≡ (r, t) are used.

This appendix summarizes useful formulae related to the Green’s function

of non-interacting systems. In this thesis, we deal with the Green’s function

many times, but all of them are those for non-interacting systems. In this

case, it can be seen that the spin off-diagonal part of these Green’s functions

vanish. Thus, it is convenient to let Gσ denote the diagonal component of

Gσσ′ :

Gσσ′(x, x
′) = δσσ′Gσ(x, x

′), (B.3)

and GR
σ the counterpart of GR

σσ′ . We use these notation throughout in this

thesis.
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The first section of Appendix B is devoted to a summary of calculations

related to the ring diagram, which appears in section 2.2.3. The second and

third sections describe the relations used in the construction of the Korringa–

Kohn–Rostoker (KKR) Green’s function method (see Appendix C).

B.1 Ring polarization insertion

In this section, quantities related to the following ring polarization-insertion

D are calculated. In non-interacting systems,

D(x, x′) = (B.4)

= −i
∑

σσ′
Gσσ′(x, x

′)Gσσ′(x
′, x) (B.5)

= −i
∑
σ

Gσ(x, x
′)Gσ(x

′, x) (B.6)

=
∑
σ

Dσ(x, x
′), (B.7)

where Dσ is defined as

Dσ(x, x
′) ≡ −iGσ(x, x

′)Gσ(x
′, x). (B.8)

In section 2.2.3, the value of Dσ(x, x
′) = Dσ(r, r

′, t − t′) at t = t′ and the

frequency component of the Fourier transform of Dσ at ω = 0 play important

roles. Thus, we calculate both two in this section.

In order to calculate Dσ(r, r
′, 0) we calculate the value of Green’s func-

tions Gσ(r, t, r
′, t′) when the difference between t and t′ is infinitesimally

small. Let t+ denote t+ = t+ 0. Then,

iGσ(r, t, r
′, t+) = −〈gH|ψ̂†σH(x′)ψ̂σH(x)|gH〉

= −
∑

i:occupied

ψ∗iσ(r
′)ψiσ(r) (B.9)

≡ −nσ(r′, r), (B.10)

where ψiσ(r) is the ith eigen-function of the non-interacting system, which

has the spin σ. In a similar way, one obtains

iGσ(r, t
+, r′, t) = 〈gH|ψ̂σH(x)ψ̂†σH(x′)|gH〉

= −nσ(r′, r) + δ(r − r′). (B.11)
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Therefore, one reaches

iDσ(r, t, r
′, t+) = iDσ(r, t

+, r′, t)

= nσ(r)δ(r − r′)− |nσ(r, r′)|2. (B.12)

Next, we move on to the Fourier component of Dσ. Let D̃σ(r, r
′, ω) denote

the frequency component of the Fourier transform of Dσ(r, r
′, t− t′) and G̃σ

the frequency component of Gσ.

Let us begin with 〈gH|ψ̂H
σ (x)ψ̂H†

σ (x′)|gH〉 in the expression of the causal

Green’s function. Letting |nS〉 denote an energy eigenstate in Schrödinger’s

representation, one obtains

〈gH|ψ̂H
σ (x)ψ̂H†

σ (x′)|gH〉 =
∑

|n〉
〈gH|ψ̂H

σ (x)|nS〉〈nS|ψ̂H†
σ (x′)|gH〉 (B.13)

=
∑

|n〉
e−i(En−E0)(t−t′)〈gS|ψ̂S

σ(x)|nS〉〈nS|ψ̂†Sσ (x′)|gS〉,

(B.14)

where En is the energy of |n〉 and E0 is the that of |g〉. The contributions

comes only from |n〉 that is different from |g〉 by one extra orbital |n〉, and the

other terms vanish due to orthogonality between the states. Consequently,

this can be expressed in terms of ψiσ, its energy eigenvalue εiσ, and the Fermi

energy, εF , of |g〉:

〈gH|ψ̂H
σ (x)ψ̂†Hσ (x′)|gH〉 =

∑
i

e−i(εiσ−εF )(t−t′)θ(εiσ − εF )ψiσ(r)ψ∗iσ(r
′). (B.15)

By a similar analysis, one finds

〈gH|ψ̂†Hσ (x′)ψ̂H
σ (x)|gH〉 =

∑
i

ei(εiσ−εF )(t−t′)θ(εF − εiσ)ψiσ(r)ψ∗iσ(r
′). (B.16)

The causal Green’s function is constructed from these two expression:

iGσ(x, x
′) = θ(t− t′)〈gH|ψ̂σH(x)ψ̂†σH(x′)|gH〉

− θ(t′ − t)〈gH|ψ̂†σH(x′)ψ̂σH(x)|gH〉
= θ(t− t′)

∑
i

e−i(εiσ−εF )(t−t′)θ(εiσ − εF )ψiσ(r)ψ∗iσ(r
′)

− θ(t′ − t)
∑
i

ei(εiσ−εF )(t−t′)θ(εF − εiσ)ψiσ(r)ψ∗iσ(r
′). (B.17)
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Therefore, the polarization insertion can be expressed as

Dσ(x, x
′) = i× iGσ(x, x

′)× iGσ(x
′, x) (B.18)

=
∑
i,j

{θ(t− t′)θ(εiσ − εF )θ(εF − εjσ)

− θ(t′ − t)θ(εF − εiσ)θ(εjσ − εF )}
× e−i(εiσ−εjσ)(t−t′)ψiσ(r)ψ∗iσ(r

′)ψ∗jσ(r)ψjσ(r
′), (B.19)

which follows from the definition. Using (A.9) and (A.10) in Appendix A,

we finally obtain the Fourier transform of Dσ(x, x
′) as for t− t′:

D̃σ(r, r
′, ω) =

∑
i,j

{
θ(εiσ − εF )θ(εF − εjσ)

ω − (εiσ − εjσ) + iη
− θ(εF − εiσ)θ(εjσ − εF )

ω − (εjσ − εiσ)− iη

}

× ψiσ(r)ψ∗iσ(r
′)ψ∗jσ(r)ψjσ(r

′). (B.20)

Substituting ω = 0 as a special case, we obtain

D̃σ(r, r
′, ω = 0) = 2

∑
i,j

θ(εiσ − εF )θ(εF − εjσ)

εjσ − εiσ + iη

× ψiσ(r)ψ∗iσ(r
′)ψ∗jσ(r)ψjσ(r

′). (B.21)

B.2 Dyson equation

In this section, a relation between two different Green’s functions is dis-

cussed. One is a Green’s function of Ĥ0 and the other Ĥ, where these two

Hamiltonians are connected by a relation:

Ĥ = Ĥ0 + V̂ . (B.22)

Here, only the relations between the retarded Green’s functions of two

systems are discussed because they are enough to cover the scope of this

thesis.

It is convenient to begin with the following expressions of the Green’s

functions:

ĝ(E) =
(
E − Ĥ0 + iη

)−1

, (B.23)

Ĝ(E) =
(
E − Ĥ + iη

)−1

, (B.24)
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which are true for the retarded Green’s functions of non-interacting systems

in the frequency domain. Here, η is a real positive number, which should be

taken η → 0 at the end of the calculations.

These two Green’s functions are connected by the Dyson equation:

Ĝ(E) = ĝ(E) + ĝ(E)V̂ Ĝ(E). (B.25)

A proof is given by a simple transformation of the right hand side.

(r.h.s.) = ĝ(E) + ĝ(E)
[
Ĥ − Ĥ0

]
Ĝ(E) (B.26)

= ĝ(E) + ĝ(E)
[
(E − Ĥ0 + iη)− (E − Ĥ + iη)

]
Ĝ(E)(B.27)

= ĝ(E) + ĝ(E)
[
ĝ−1(E)− Ĝ−1(E)

]
Ĝ(E) (B.28)

= Ĝ(E). (B.29)

The following relation also be given by a similar transformation.

Ĝ(E) = ĝ(E) + Ĝ(E)V̂ ĝ(E) (B.30)

These relations hold for any η common to the both Green’s functions. If one

use different infinitesimal value from one another, say η and η′, the Dyson

equation can be justified at the limit of η, η′ → 0.

B.3 Lippmann-Schwinger equation

Wave-functions of two systems can be related by the Green’s function via

following Lippmann-Schwinger equation. Let |φi〉 denote an eigenfunction of

Ĥ0, whose eigenvalue is Ei, then

lim
η→0

Ĥ
[
1 + Ĝ(Ei)V̂

]
|φi〉 = Ei

[
1 + Ĝ(Ei)V̂

]
|φi〉. (B.31)

Thus in the limit of η → 0,
[
1 + Ĝ(Ei)V̂

]
|φi〉 can be regarded as an eigen-

function of Ĥ, whose eigenvalue is Ei. Though this relation can be derived

more algebraic manner, existence (or non-existence) of
[
1 + Ĝ(Ei)V̂

]
|φi〉 can

be seen clearly if one use the eigenfunction expansion of Green’s function:

ĝ(E) =
∑
i

|φi〉 1

E − Ei + iη
〈φi|, (B.32)

Ĝ(E) =
∑
i

|ϕi〉 1

E − Ei + iη
〈ϕi|, (B.33)
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where eigenfunctions of Ĥ are denoted by |ϕi〉. It follows from (B.30) that

1 + Ĝ(E)V̂ = Ĝ(E)ĝ−1(E). Using these, one can see

[
1 + Ĝ(Ei)V̂

]
|φi〉 = Ĝ(Ei)ĝ

−1(Ei)|φi〉 (B.34)

=
∑

j,k

Ei − Ek + iη

Ei − Ej + iη
|ϕj〉〈ϕj|φk〉〈φk|φi〉 (B.35)

=
∑
j

iη

Ei − Ej + iη
|ϕj〉〈ϕj|φi〉 (B.36)

−−→
η→0

∑
j

δEi,Ej
|ϕj〉〈ϕj|φi〉. (B.37)

Thus (B.31) always holds. Note that we used the common infinitesimal

value η for both ĝ and Ĝ, and the resulting relation holds only when the way

taking the limit is correctly chosen. This arbitrariness was not found in the

derivation of the Dyson equation.



Appendix C

Korringa-Kohn-Rostoker

Green’s function method

The Korringa-Kohn-Rostoker(KKR) Green’s function method is a way to

construct a Green’s function of a non-interacting system from the Green’s

function of the free space. This method is established by Korringa [44] and

Kohn and Rostoker [45]. In this scheme, the space is divided into cells. Then

the single scattering problem of the each divided potential is solved. It is

one of advantages of the method that one can construct the Green’s function

of the whole system from such separated information of each solution that

is obtained without considering the connection of the orbitals to that of the

neighboring cells.

In terms of the Kohn-Sham scheme, the KKR method offers a way to

obtain the ground-state density n0(r) of the Kohn-Sham system by the re-

lation,

n0(r) = − 1

π
Im

∫ εF

−∞
dE G(r, r, E), (C.1)

where G(r, r′, E) denotes the retarded Green’s function in the position rep-

resentation and εF is the Fermi energy. This relation itself holds in general.

However, it will be enough to confirm this from (B.33), which is valid only
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in non-interacting systems:

− 1

π
Im

∫ εF

−∞
G(r, r, E) = − 1

π

∫ εF

−∞
Im

∑
i

〈r|ϕi〉〈ϕi|r〉
E − Ei + iη

(C.2)

=
∑
i

∫ εF

−∞
δ(E − Ei) |p〈ϕi|r〉|2 (C.3)

≡ n0(r). (C.4)

Appendix C is devoted to deriving the KKR equation, which gives the

way to construct the Green’s function in such a way as mentioned above.

C.1 Cell division

In this section we are going to discuss the KKR’s construction of Green’s

function in somewhat a generalized way. First, we introduce “cell” restriction

operators P̂m, which satisfy the following relations.

P̂ †m = P̂m (C.5)

P̂mP̂n = δm,nP̂m (C.6)∑
m

P̂m = 1 (C.7)

For example, let us think of dividing the space into cells. One can verify

operators defined by

Pm =

∫
dr Θm(r)|r〉〈r| (C.8)

satisfy (C.5)-(C.7), where Θm(r), the shape function, is a unity when r is in

the mth cell, zero otherwise.

Then, we define the single-scattering Hamiltonian of mth “cell” using cell

restriction operators.

Ĥs
m = Ĥ0 + V̂m, (C.9)

where V̂m ≡ P̂mV̂ P̂m, and we also let Ĝs
m denote Green’s function of this

Hamiltonian. Now we assume that V̂ in the Hamiltonian H = Ĥ0 + V̂

satisfies

P̂mV̂ P̂n = δmnP̂mV̂ P̂m. (C.10)
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This relation holds, for example, when one uses (C.8) as the cell-restriction

operators and the V̂ is local (when the potential is expressed as V (r) in the

position representation). Note that it follows from (C.7) that

V̂ =
∑
mn

P̂mV̂ P̂n =
∑
m

V̂m. (C.11)

In the following section, we also use cell-restricted solutions. For example,

let |Ji〉 denote a solution of the Ĥ0, then the restricted solutions to the mth

“cell” is defined as

|J̃m,i〉 ≡ P̂m|Ji〉. (C.12)

Note that |J̃m,i〉 is not necessarily a solution of the each corresponding Hamil-

tonian because P̂m do not always commute with the Hamiltonian.

As for solutions of Ĥs
m, it follows from the Lippmann-Schwinger equation

(B.31) that
[
1 + Ĝs

mV̂m

]
|Ji〉 can be regarded as a solution of Ĥs

m, where

V̂m ≡ P̂mV̂ P̂m. Thus, letting |Jm,i〉 ≡
[
1 + Ĝs

mV̂m

]
|Ji〉, we define a restricted

solutions of Hamiltonian Ĥs
m to the mth “cell” as

|J̃m,i〉 ≡ P̂m|Jm,i〉 (C.13)

= P̂m

[
1 + Ĝs

mV̂m

]
|Ji〉. (C.14)

C.2 KKR ansatz

In this section the Green’s function Ĝ is constructed on the assumption that

Ĝ can be expressed as follows:

Ĝ =
∑
m

P̂mĜ
s
mP̂m +

∑
ijmn

|J̃i,m〉Gij
mn〈J̃j, n|. (C.15)

The first term consists of cell-restricted Green’s functions of the single-

scattering Hamiltonians. Thus, this term has singular behaviors asymptoti-

cally as same as those of the Green’s function of Ĥ. The remaining part of

the Green’s function may well be expanded in terms of the regular solutions

of Ĥ. In this expression, thus, the coefficient Gij
mn are to be determined. A

similar assumption is applied to Green’s function ĝ:

ĝ =
∑
m

P̂mĝ
s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n| (C.16)
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ĝs
m in this expression has not been defined yet. We consider one that

satisfies

ĝs
m = ĝs

m + ĝs
mV̂mĜ

s
m. (C.17)

For example, if one use ĝs
m = ĝ, the last equation becomes nothing but the

Dyson equation for the Hamiltonian (C.9). This choice is preferred when the

free-space Hamiltonian is used as H0. Besides this, one can relate Green’s

functions of two different Hamiltonians that have H ′
0 in common, say, Ĥ0 =

Ĥ ′
0 + V̂1 and Ĥ = H ′

0 + V̂2. In this case, the Green’s function of a single-

scattering Hamiltonian Ĥs
0,m = Ĥ ′

0+V̂1,m can be used as ĝs
m, which is different

from ĝ. It can be seen that (C.17) holds with V̂ = V̂2 − V̂1.

The KKR equation relates Gij
mn of the expansion of Ĝ to the coefficient

gijmn. In order to derive the equation, the Dyson equation (B.25) is exploited.

Let us begin with the right-hand side of (B.25). Substituting (C.15) and

(C.16) to ĝ + ĝV̂ Ĝ, one obtains

ĝ + ĝV̂ Ĝ

=
∑
m

P̂mĝ
s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|

+

[∑
m

P̂mĝ
s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|
]

×
[∑

k

V̂k

][∑
p

P̂pĜ
s
mP̂p +

∑
pqrs

|J̃p, r〉Gpq
rs〈J̃q, s|

]
. (C.18)

It follows from the relation (C.6) that this equals

=
∑
m

P̂mĝ
s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|

+

[∑
m

P̂mĝ
s
mV̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|V̂n
]

×
[∑

p

P̂pĜ
s
mP̂p +

∑
pqrs

|J̃p, r〉Gpq
rs〈J̃q, s|

]
(C.19)
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=
∑
m

P̂mĝ
s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|

+
∑
m

P̂mĝ
s
mV̂mĜ

s
mP̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|V̂nĜs
nP̂n

+
∑
ijmn

P̂mĝ
s
mV̂m|Ji,m〉Gij

mn〈Jj, n|

+
∑
ijmn

∑
pqs

|J̃i,m〉Gij
mn〈J̃j, n|V̂n|Jp, n〉Gpq

ns〈Jq, s| (C.20)

It follows from the Lippmann-Schwinger relation for restricted solutions (C.14)

and (C.6) that P̂mĜ
s
mV̂m|J̃i〉 = |J̃i〉−|J̃i〉 . Exchanging the role of the referred

and referring Hamiltonian for one another, it is also seen that P̂mĝ
s
mV̂m|J̃i〉 =

|J̃i〉 − |J̃i〉 . Using these,

=
∑
m

P̂m

{
ĝs
m + ĝs

mV̂mĜ
s
m

}
P̂m +

∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|

+
∑
ijmn

|J̃i,m〉gijmn
{
〈J̃j, n| − 〈J̃j, n|

}

+
∑
ijmn

{
|J̃i,m〉 − |J̃i,m〉

}
Gij
mn〈Jj, n|

+
∑
ijmn

∑
pqs

|J̃i,m〉Gij
mn〈J̃j, n|V̂n|Jp, n〉Gpq

ns〈Jq, s|. (C.21)

Here we utilize the equation (C.17) and reach

=
∑
m

P̂mĜ
s
mP̂m

+
∑
ijmn

|J̃i,m〉gijmn〈J̃j, n|

+
∑
ijmn

{
|J̃i,m〉 − |J̃i,m〉

}
Gij
mn〈Jj, n|

+
∑
ijmn

∑
pqs

|J̃i,m〉Gij
mn〈J̃j, n|V̂n|J̃i, n〉Gpq

ns〈J̃q, s| (C.22)

=
∑
m

P̂mĜ
s
mP̂m +

∑
ijmn

|Ji,m〉Gij
mn〈J̃i,m|

+
∑
iqms

|J̃i,m〉
[
giqms +

∑
jnp

gijmn〈J̃j, n|V̂n|J̃p, n〉Gpq
ns −Giq

ms

]
〈Jq, s|. (C.23)
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In order to get this expression identical with (C.15), the expression in the

square brackets in the last line must be zero. This gives the recursive equation

to determine the coefficient in (C.15):

Gij
mn = gijmn +

∑

kpq

gikmp〈J̃k, p|V̂p|J̃q, p〉Gqj
pn, (C.24)

which is called KKR equation. According to this, Green’s function G can

be constructed from the cell-restricted solutions of both two systems and the

information of gijmn. In practice, the free-space Hamiltonian is often used as

H0 and cell-division is defined as (C.8) with conveniently chosen Θm(r) and

the value of 〈J̃k, p|V̂p|J̃q, p〉 is calculated from the phase shift of the single-

scattering Hamiltonians.
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