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ABSTRACT

Using the (3+1) formalism in general relativity, we perform the post-Newtonian (PN)
approximation to clarify what sort of gauge condition is suitable for numerical analysis of
coalescing compact binary neutron stars and gravitational waves from them. We adopt a
kind of transverse gauge condition to determine the shift vector. On the other hand, for
determination of the time slice, we adopt three slice conditions (conformal slice, maximal
slice and harmonic slice) and discuss their properties. It is found that the conformal slice
seems appropriate for analysis of gravitational waves in the wave zone and the maximal
slice will be useful for describing the equilibrium configurations. Using these conditions,
the PN hydrodynamic equations are obtained up through the 2.5PN order including the
quadrupole gravitational radiation reaction. In particular, it is shown that we can solve
the 2PN tensor potential by the method used in the Newtonian hydrodynamics. The PN
approximation in the (3+1) formalism will be also useful to perform numerical simulations
using various slice conditions and, as a result, to provide an initial data for the final
merging phase of coalescing binary neutron stars which can be treated only by fully
general relativistic simulations.

We also present a formalism to obtain equilibrium configurations of uniformly rotating
fluid in the second post-Newtonian approximation. In our formalism, we need to solve 29
Poisson equations, but their source terms decrease rapidly enough at the external region of
the matter (i.e., at worst O(r~*)). Hence these Poisson equations can be solved accurately
as the boundary value problem using standard numerical methods. This formalism will
be useful to obtain nonaxisymmetric uniformly rotating equilibrium configurations such

as synchronized binary neutron stars just before merging and the Jacobi ellipsoid.
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I. INTRODUCTION

Kilometer-size interferometric gravitational wave detectors, such as LIGO (Abramovi-
ci et al. 1992; Thorne 1994; Will 1994) and VIRGO (Bradaschia 1990), are now under
construction aiming at direct detection of gravitational waves from relativistic astrophys-
ical objects or the early universe. Coalescing binary neutron stars are the most promising
sources of gravitational waves for such detectors. The reasons are that (1) we expect
to detect the signal of coalescence of binary neutron stars about several times per year
(Phinney 1991), and (2) the wave form from coalescing binaries can be predicted with a
high accuracy compared with other sources (Abramovici et al. 1992; Thorne 1994; Will
1994).

In the case when the orbital separation of each star is large compared with the radius
of neutron stars, i.e., in the so-called inspiraling phase, binary neutron stars are evolving
in the adiabatic manner due to gravitational radiation reaction with much longer time
scale than the orbital period. As for the inspiraling phase, the theoretical investigation is
usually done by the point particle approach using the post-Newtonian (PN) approximation
in general relativity (Lincoln and Will 1990; Blanchet 1993, 1995, 1996; Will 1994; Sasaki
1994; Tagoshi et.al. 1994a, 1994b, 1996). Since the separation is large compared with the
neutron star radius, the hydrodynamic effect is so small that we can regard each star of
binary as a point particle. Theoretical studies for such a phase is potentially important
because by comparing the observational signal with the theoretical prediction of the signal
of inspiraling binary, we may be able to know not only the various parameters of binary
(Cutler et.al. 1993; Cutler and Flanagan 1994), but also the cosmological parameters
(Schutz 1986; Markovic 1993; Finn 1996; Wang, Stebbins and Turner 1996).

After a long time emission of gravitational waves, the orbital separation becomes
comparable to the radius of the neutron star. Then, each star of binary neutron stars
begins to behave as a hydrodynamic object, not as a point particle, because they are

tidally coupled each other. Recently, Lai, Rasio and Shapiro (1993, 1994) have pointed



out that such a tidal coupling of binary neutron stars is very important for their evolution
in the final merging phase because the tidal effect causes the instability to the circular
motion of them. Also important is the general relativistic gravity because in such a phase,
the orbital separation is as large as about ten times of the Schwarzschild radius of the
system. Thus, we need not only a hydrodynamic treatment, but also general relativistic
one in order to study the final phase of binary neutron stars.

Fully general relativistic simulation is sure to be the best method, but it is also one of
the most difficult ones. Although much effort has been focused and much progress can be
expected there (Nakamura 1994), it will take a long time until numerical relativistic cal-
culations become reliable. One of the main reasons is that we do not know the behavior of
the geometric variables in the strong gravitational field around coalescing binary neutron
stars. Owing to this, we do not know what sort of gauge condition is useful and how
to give an appropriate general relativistic initial condition for coalescing binary neutron
stars.

The other reason is a technical one: In numerical relativistic simulations, gravitational
waves are generated, and in the case of coalescing binary neutron stars, the wavelength is
of the order of A ~ wR3?M~1/2 where R and M are the orbital radius and the total mass
of binary, respectively. Thus, we need to cover a region L > X\ oc R3/? with numerical grids
in order to perform accurate simulations. This is in contrast with the case of Newtonian
and/or PN simulations, in which we only need to cover a region A > L > R. Since
the circular orbit of binary neutron stars becomes unstable at R < 10M owing to the
tidal effects (Lai, Rasio and Shapiro 1993, 1994) and/or the strong general relativistic
gravity (Kidder, Will and Wiseman 1993a), we must set an initial condition of binary
at R > 10M. For such a case, to perform an accurate simulation, the grid must cover a
region L > A ~ 100M in numerical relativistic simulations. When we assume to cover each
neutron star of its radius ~ 5M with ~ 30 homogeneous grids (Oohara and Nakamura

1990, 1991, 1992; Shibata, Nakamura and Oohara 1992, 1993), we need to take grids of



at least ~ 5002, but it seems impossible to take such a large amount of mesh points even
for the present power of supercomputer. At present, we had better search other methods
to prepare a precise initial condition for binary neutron stars.

In the case of PN simulations, the situation is completely different because we do not
have to treat gravitational waves explicitly in numerical simulations, and as the result,
only need to cover a region at most L ~ 20— 30M. In this case, it seems that ~ 2003 grid
numbers are enough. Furthermore, we can take into account general relativistic effects
with a good accuracy: In the case of coalescing binary neutron stars, the error will be at
most ~ M/R ~ a few x 10% for the first PN approximation, and ~ (M/R)? ~ several %
for 2PN approximation. Hence, if we can take into account up through 2PN terms, we
will be able to give a highly accurate initial condition (the error < several %). For these
reasons, we present the 2.5PN hydrodynamic equations including the 2.5PN radiation
reaction potential in this thesis.

This thesis is divided into two parts (Part 1 and 2). The purpose of Part 1 is twofold:
One is to establish the basic formulation of the 2.5PN hydrodynamic equation, in partic-
ular taking into account the numerical application. The other is to investigate what kind
of gauge condition is appropriate for simulation of the coalescing binary neutron stars
and extraction of gravitational waves from them. As for the PN hydrodynamic equation,
Blanchet, Damour and Schéfer (1990) have already obtained the (142.5) PN formula.
In their formulation, the source terms of all Poisson equations take nonvanishing values
only on the matter, like in the Newtonian hydrodynamics. Although their formula is very
useful for PN hydrodynamic simulations including the radiation reaction (Oohara and
Nakamura 1990, 1991, 1992; Shibata, Nakamura and Oohara 1992, 1993; Ruffert, Janka
and Schéfer 1996), they did not take into account 2PN terms. In their formula, they
also fixed the gauge conditions to the ADM gauge, but in numerical relativity, it has not
been known yet what sort of gauge condition is suitable for simulation of the coalescing

binary neutron stars and estimation of gravitational waves from them. First, we develop



the formalism for the hydrodynamics using the PN approximation. In particular, we use
the (341) formalism of general relativity so that we can adopt more general class of slice
conditions. Next, we present methods to obtain numerically terms at the 2PN order. We
also investigate several gauge conditions using the (341) formalism in general relativity.

In Part 2, we consider the problem of how to construct close binary neutron stars
by taking them as uniformly rotating equilibrium configurations. Here, we mention the
importance of this investigation, though more detailed explanation is given in section 7.
To interpret the implication of the signal of gravitational waves, we need to understand the
theoretical mechanism of merging in detail. The little knowledge we have about the very
last phase of BNS’s is as follows: When the orbital separation of BNS’s is < 10GM/c?,
where M is the total mass of BNS’s, they move approximately in circular orbits because
the timescale of the energy loss due to gravitational radiation tgy is much longer than

the orbital period P as

tew ( dc? >5/2<M>
— ~1 — 1.1
P \10Gar 4p)’ (1.1)

where 1 and d are the reduced mass and the separation of BNS’s. Thus, BNS’s adiabati-
cally evolve radiating gravitational waves. However, when the orbital separation becomes
6 — 10GM/c?, they cannot maintain the circular orbit because of instabilities due to the
GR gravity (Kidder, Will and Wiseman 1993a) or the tidal field (Lai, Rasio and Shapiro
1993, 1994). As a result of such instabilities, the circular orbit of BNS’s changes into the
plunging orbit to merge. This means that the nature of the signal of gravitational waves
changes around the transition between the circular orbit and plunging one. Gravitational
waves emitted at this transition region may bring us an important information about the
structure of NS’s because the location where the instability occurs will depend on the
equation of state (EOS) of NS sensitively (Lai, Rasio and Shapiro 1993, 1994; Zhung,
Centrella and McMillan 1994). Thus, it is very important to investigate the location of
the innermost stable circular orbit (ISCO) of BNS's.

As mentioned above, the ISCO is determined not only by the GR effects, but also



by the hydrodynamic one. We emphasize that the tidal effects depend strongly on the
structure of NS. Here, NS is a GR object because of its compactness, Gm/c*R ~ 0.2,
where m and R are the mass and radius of NS. Thus, in order to know accurately the
location of the ISCO, we need to solve the GR hydrodynamic equations in general. A
strategy to search the ISCO in GR manner is as follows; since the timescale of the energy
loss is much longer than the orbital period according to Eq.(1.1), we may suppose that the
motion of BNS’s is composed of the stationary part and the small radiation reaction part.
From this physical point of view, we may consider that BNS’s evolve quasi-stationally, and
we can take the following procedure; first, neglecting the evolution due to gravitational
radiation, equilibrium configurations are constructed, and then the radiation reaction is
taken into account as a correction to the equilibrium configurations. The ISCO is deter-
mined from the point, where the dynamical instability for the equilibrium configurations
occurs. Hence, in Part 2, we develop a formalism to obtain equilibrium configurations of
uniformly rotating fluid in the 2PN order as a first step.

This paper is organized as follows:

Part 1 consists of sections from 2 to 6: In section 2 we present the (3+1) formalism of
the Einstein equation and the equations for the PN approximation. Several slice conditions
are discussed in section 3. The methods to solve the 2PN tensor potential are discussed
in detail for the sake of actual numerical simulations in section 4. In section 5, the
quadrupole radiation-reaction potential is calculated more easily in combination of the
conformal slice (Shibata and Nakamura 1992) and the transverse gauge. It is also shown
that the work done by the reaction force takes the form invariant for slice conditions under
the transverse gauge. We describe the 2PN expression of the conserved quantities, such
as the conserved mass, the ADM mass, the total energy and the total angular momentum
in section 6.

Part 2 consists of sections from 7 to 11: In section 7, we describe the approach to

construct the stationary close binary neutron stars, i.e. without gravitational radiation



reaction. Moreover, we discuss the importance of this approach by comparing Wilson’s
approach. In section 8, we review the basic equations up to the 2PN order in order to
obtain equilibrium configurations of uniformly rotating fluid in the 2PN order. In section
9, we rewrite the Poisson equation for potential functions, which are described in section
8, into useful forms in which the source terms of the Poisson equations decrease rapidly
enough (O(r™)). In section 10, we show a formulation to obtain numerically equilibrium
solutions of uniformly rotating fluid in the 2PN approximation. In particular, we rewrite
potentials defined in section 9 into a polynomial form in the angular velocity, 2. Then,
we transform the integrated Euler equation into the polynomial form in Q2 so that the
convergence property in iteration procedures can be much improved. For the sake of
analysis for numerical results, we describe the 2PN expression of the conserved quantities
for equilibrium configurations of uniformly rotating fluid in section 11.

Section 12 is devoted to discussion and summary. In appendix A, we transform the
equation of motion in the (3+1) formalism into the form in section 2. In appendix B, we
describe a method to derive the logarithmic kernel. We calculate some metric variables up
to the 2PN order in appendices C and D. The integration of Euler’s equation is done for
the uniformly rotating equilibrium configurations in appendix E. We mention tail terms
in appendix F. The brief history of the PN approximation is given in appendix G.

We use the units of ¢ = G = 1 in this paper. Greek and Latin indices take 0,1,2,3

and 1, 2, 3, respectively.
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Part 1

II. POST-NEWTONIAN APPROXIMATION IN THE (34+1) FORMALISM
A. (341) Formalism for Post-Newtonian Approximation

We consider the (3+1) formalism to perform the PN approximation. In the (3+1)
formalism (Arnowitt, Deser and Misner 1962; Wald 1984; Nakamura, Oohara and Kojima

1987), the metric is split as

G = Vv — T, (2.1)
and

iy = (—a, 0),

Al = (; —i) (2.2)

where o, * and 7;; are the lapse function, shift vector and metric on the 3D hypersurface,

respectively. Then the line element is written as
ds* = —(a? — B3;3Y)dt* 4 23dtdx’ + %jd:pidxj. (2.3)
Using the (3+1) formalism, the Einstein equation
G = 81T, (2.4)

is split into the constraint equations and the evolution equations. The formers are the

so-called Hamiltonian and momentum constraints which respectively become

trR — K;; K" + K* = 16mpy, (2.5)

DzKZ] - D]K = 87TJj, (26)

11



where K, K, trR and D; are the extrinsic curvature, the trace part of Kj;;, the scalar
curvature of 3D hypersurface and the covariant derivative with respect of ~;;. py and J;

are defined as

AUAY
pa = T,,ntn",

Ty = =Ty, (2.7)

Evolution equations for the spatial metric and extrinsic curvature are respectively

0 l
1
+(D;8") Ko + (Dif™) Kpmj + " Dy Kij — 8max (Sij + §7ij(PH - Slz))7 (2.9)
0 i
5,7 = 2/(—aK + DifF), (2.10)
0 2 7 j l

where R;;, v and S;; are, respectively, the Ricci tensor with respect of v;;, determinant of

vi; and

Sij =T (2.12)

Hereafter we use the conformal factor ¢ = /12

instead of v for simplicity.
To distinguish the wave part from the non-wave part (for example, Newtonian poten-
tial) in the metric, we use ;; = 1 ~*y;; instead of ~;;. Then det(7;;) = 1 is satisfied. We

also define flij as

i - _ 1
Ay = A = 4([(” — gfyin>. (2.13)

We should note that in our notation, indices of /Lj are raised and lowered by 7;;, so that
the relations, A ; = A and Al = p* A% hold. Using these variables, the evolution

equations (2.8-2.11) can be rewritten as follows;

12



o _ ﬁl 51 2 8ﬁl
on Vil = —2aA;; + %la +7 _]la i T 3G (2.14)
0 -~ 1 1 ~ 1. < 2 2. _u
%Aij = %[Q(Rij - g%jtfR) - (DiDja - g%‘jAOé> - E(w,z'a,j + P o — g%ﬂ 1/’,1&41)}
_ - op™ - 9p™ - 20B™ - a 1
! l
(2.15)
0 " o3
= “(—aK + 2= 2.1
anw 6 ( i 8x2) (2.16)
0 PO PR | 2 i
%K = a(AijA” + §K2) — %Aa 1/}57’“11#7;6041 +4ra(S"; + pu), (2.17)

where D; and A are the covariant derivative and Laplacian with respect to vij and

0
2 _ 2 _ g 2.18
on 8t & 8:5@ (2.18)
The Hamiltonian constraint equation is written as
Ao L5 5¢5~~ij22
Ay = cteRy — 2mpy)® g(AijA -3k ) (2.19)

where trR is the scalar curvature with respect to 7ij. Here we used the following relation

for the conformal transformation (For example, Wald’s General Relativity (1984))
1, - -
trR = %(Rzp — 8A4). (2.20)
The momentum constraint is also written as
g . 2 .

Now let us consider R;; in Eq.(2.15), which is one of the main source terms of the

evolution equation for flij. First we split R;; into two parts as

Ry = Ri; + R,

159

(2.22)

where Rij is the Ricci tensor with respect to 7;; and Rf’j is defined as

SRS 2
D; D],@Z} - 7’7’LjDkaw +

Rl = - = S (D) (Dyw) - W]wm)w 6. (223)

¢2

@\M
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Using the property of det(%;;) = 1, R;; is written as

~ 1r_. . B B B B B B ~ o~
Rij =35 7 B ar + e — Figaw) + 7 6 Gz + A g — Aig)| = ThyTh (2.24)

where ; denotes 9/dx" and f‘fj is the Christoffel symbol with respect to 7;;. We split 7;;

and 39 as 0;; + hy; and 6 + 9, where 6;; denotes the flat metric, and rewrite R;; as

1
Ri; = 5 [_hij,kk + hji + higy + fkl,k(hz]',i + huij — hiji)

+ M (g + hii o — hijaa)| — T Th (2.25)

In this paper, we consider only the linear order in h;; and f;; assuming |h;;|, |fi;| < 1.
(As a result, h;; = —f%.) Such an assumption is justified because in this paper, we
choose a gauge condition, in which h;; is a 2PN quantity (see below). This implies
that we neglect higher PN effects such as the non-linear coupling between gravitational
waves themselves, but does not imply that we neglect the non-linear coupling between
the Newtonian potentials themselves and between gravitational waves and the Newtonian
potentials. In other words, although we can not see the non-linear memory of gravitational
waves (Christodoulou 1991; Wiseman and Will 1991; Thorne 1992), we can see the tail
term of gravitational waves and can derive the exact quadrupole formula (see below).
Here, to guarantee the wave property of 7;;, we impose a kind of transverse gauge to h;;

as

hij; = 0. (2.26)

15,3

Hereafter, we call this condition merely the transverse gauge. This condition is guaranteed

by 3 which satisfies

- 5 - 2.
_ﬁ,kj%j,k = (—204141'3' + %zﬁlﬁj 4 %‘lﬁl,i _ g%‘jﬁl,l)f (2.27)
Using the above conditions, Eq. (2.25) becomes
g 1 )
R;; = _iAflathij +O(h7), (2.28)

14



where Ayq is the Laplacian with respect to d;;. Note that trR = O(h?) is guaranteed in
the transverse gauge because the traceless property of h;; holds in the linear order.
Finally, we show the equations for the perfect fluid. The energy momentum tensor for

the perfect fluid is written as
™ = (p+ pe + P)utv” + Pg", (2.29)

where u*, p, € and P are the four velocity, the mass density, the specific internal energy

and the pressure. Then we obtain

pu = (p+ pe + P)(au’)® — P,
Ji = alp + pe + P)ulu;,

The mass density obeys the continuity equation
Viu(put) =0, (2.31)

where V, is the covariant derivative with respect to g,,. The explicit form is

dp.  O(p
p+(pv)

T i 0, (2.32)
where p, is the conserved density defined as
0y = ath®pu®. (2.33)

The equations of motion and the energy equation are derived from

v, T" =0, (2.34)
Explicit forms of them become
> = —a’P; — aa ;S + S;F; — Tsosjswﬂ’ii, (2.35)

and

15



aa]j + a(a}i §j> - _P<8(a§;u0) + a(agz%j)» (2.36)
where
S; = ap®(p + pe + P)ulu; = p, (1 +e+ ];)uz(: Vo),
§" = 0o+ pe + PY(ulyt(= LT DT
H = ay®peu’ = p.e,
o i
wE;__@ 5 (2.37)

Finally, we note that in the above equations, only 3° appears, and 3; does not, so that,

in the subsequent section, we only consider the PN expansion of 3¢, not of f3;.

B. Post-Newtonian approximation in the (341) formalism

Next, we consider the PN approximation of the above equations. First of all, we review
the PN expansion of the variables. Each metric variable, which is relevant to the present

paper, is expanded as

=1+ +w¥+ev+tmony+...,
a=1+pga+ywa+eEat+mnat+...,
—1—U+(;+X)+@a+ma+”w
B =ubi+ebit+tesl+mnb+ebit. ..
hij = @hij + yhi; + .
AmZ@ﬂw+@Aw+@Am+~w

K=3K+5pK+eK+..., (2.38)
where subscripts denote the PN order(¢™") and U is the Newtonian potential satisfying

AﬂatU = —47Tp. (239)

16



X depends on the slice condition, and in the standard PN gauge (Chandrasekhar 1965),

we usually use ® = —X/2, which satisfies

5 P). (2.40)

1
— _ 2 - i
Ap® = 47rp(v +U+5e+ 3 ;
Note that the terms relevant to the radiation reaction appear in (7)), 7y, (8)5; and (s5)hj,

and the quadrupole formula is derived from 7y and (5)h;;.

The four velocity is expanded as

1 3, 5 1 ,
=1+ (§v2 +U) + (5v' + S0V + U + @i’ X) +0(c™),

8
up = —[1+ (;vz ~U)+ (2114 + ;)UzU + ;UQ +X)] +0(c),
u' = vz[l + (;U2 + U) + (Zv4 + 2U2U + ;U2 + 3B’ — X)] +0(c™),
u; = v’ + {(3)52‘ + Ui(;UZ + 3U>} + [(5)@' + (3)@'(;@2 + 3U) + @hijv’
+Ui(2v4 + ;U2U +4U% = X + 4 + @507 ) | + (@6 + mhyt!) + 0T, (241)
where v? = vv’. This expansion can be done as follows: The four velocity satisfies

—1 = g utu”
= (900 + 2goiv* + gz‘jUin) (UO)2

= —[(1—2U + 20 + 2X) — 28,0 — v*(1 + 2U) + O(c™*)| (u)*. (2.42)

Hence we obtain

1 3 5 1 ,
0_ 12 O 4, 92 9 L2 i -6
u f1+(2fu +U)+(8v + 50U + 53U + B X)+0(c™®). (2.43)
Next we obtain ug as
uy = goou” + goiut'
=1+ (1v2—U) + (§v4+§v2U—1—1U2+X)] +0(c7®) (2.44)
2 8 2 2 ' '
Finally, we obtain u; from

17



Here we used
3, s
9ij = [1 +2U + (§U + 4(4)@/}”5@* + @hij + (5yhij +O(c). (2.46)
The PN expansion of the relation u*u, = —1 becomes

(au’)? = 1+ uu;

=1+0" + 0! +4°U + 23 80" + O(c™®). (2.47)

Thus pg, J; and S;; are respectively expanded as

PH p[l + (1)2 + 5) + {U4 1 ? (4U +e+ 1:) + 2(3)ﬁﬂ)i} + 0(0*6)}7
Ji=p[v'(1+0*+3U +e+ ];) + 8+ 0(c™)],

Sij = p[(vivj + ];5@-) + {(v2 +6U + ¢+ i)vivj + 0’38 + v 30 + QU;D&-]}
+0(c7™)),
St = p[v2 + 35 + {2(3)ﬁivi + 02 (112 +4U + ¢ + l:)} + O(c’ﬁ)}. (2.48)

The conformal factor ¢)(and « in the conformal slice) is determined by the Hamiltonian

constraint. In the PN approximation, the Laplacian for the scalar is expanded as
A = Apiar — (yhij + (5)hij)0:0; + O(c™°). (2.49)
At the lowest order, the Hamiltonian constraint becomes
Afigr () = =2mp. (2.50)

Thus, @y = —2(2)9 = —U is satisfied in this paper. At the 2PN and 3PN orders, the

Hamiltonian constraint equation becomes, respectively,

Ay = =2mp(v* + e+ gU) (2.51)
and
A frare)) = —27Tp{v4 12 (5 i ]; T 123U) + 2380 + gaU T ;UZ + 5(4)¢}
+;(4)h,»jU,,;j - ;<(3)Az‘j(3)1‘~1ﬁj - 3(3)K2>- (2.52)

18



The term relevant to the radiation reaction first appears in (1) and the equation for it

becomes
1
Aflat(?)w = 5(5)hijU,ij- (2'53)

Hence, (7o may be also relevant to the radiation reaction and whether it may or not
depends on the slice condition.

From Eq.(2.27), the relation between (3)f~1ij and (3)3; becomes

N 2
—23)Aij + 305 + 3505 — 551'3'(3)5171 = 0. (2.54)

(3)121” must also satisfy the momentum constraint. Since (3)121” does not contain the
transverse-traceless (TT) part and only contains the longitudinal part, it can be written

as

2
@Aij = Wi + Wi — 5053 Wi (2.55)

3

where (3yW; is a vector on the 3D hypersurface and satisfies the momentum constraint at

the first PN order as follows;

1 2 :
Aﬂat(g)Wi + g(g)Wj’ji - g(g)K’l = 87’('/)1)@. (256)
From Eq.(2.54), the relation,
@0 = 2aWi (2.57)

holds and at the first PN order, Eq.(2.16) becomes
3U = =K + 301 , (2.58)
where U denotes the derivative of U with respect to time. Thus Eq.(2.56) is rewritten as
Aftar(s)Bi = 16mpv* + (13K = Uy). (2.59)

This is the equation for the vector potential at the first PN order.

19



From the next order, (,)3; is determined by the gauge condition, h;;; = 0. Making

use of the momentum constraint and the 2PN order of Eq.(2.16),
. 1 .
Gy = 3@AlUs = JUCEE +3U) + 5K = )00 (2.60)
the equation for (5)3; is written as
if )2 P A
Aflat(S)ﬁi = 167rp{v (U +2U 4+ e+ ;) + (3)52} — 8U7j(3)Aij
1 ) 1 .
- +(5)K,z - U(3)K’l + gU}Z(g)K - 2(4)w71 + Q(UU)”L + ((3)51[]71)71‘ . (261)
Since J; at the 1.5PN order vanishes, the merely geometrical equation for )03; is given by
Agiare)Bi = 6) K - (2.62)

Then, let us consider the wave equation for h;;. From Eqgs.(2.14), (2.15), (2.22) and

(2.28), the wave equation for h;; is written as

2 2 2
Ohy; = (1 ;)Aﬂathzj + (aan2 - gﬁ)hm
HE 2 (Db, - 3ud)e+ S5 (DD - DDt
~(D:D; - 3iA)a - = (DwDya + DyvDia - iy D vDia)]

+202 (K Ay — 243A)) + 20(87 Ay + 87 A - gg”jmﬁij)

o 1 . 0 o~ m o~ 2 - oo ~
—16W%(S¢j — 3% z) - %@ i mj 87 mi = 59 ,m%j> +25-Aij
= 7, (2.63)
where
82
0= 25+ Ajar (2.64)

We should note that (4y7;; has the TT property, i.e., 47;; = 0 and (47 = 0. This is
a natural consequence of the transverse gauge, h;j; = 0 and h;; = O(h2). Thus (4)h;; is

determined from
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Aﬂat(4)hij = 4)Tij- (2'65)

Since O(h?) turns out to be O(c™?), it is enough to consider only the linear order of h;; in
the case when we perform the PN approximation up to the 3.5PN order. We can obtain
(5)hi; by evaluating

1 0
)hij(t) = y @7 (ty)dy, (2.66)

and the quadrupole mode of gravitational waves in the wave zone is written as

I )Tt =[x —yl|,y)
hr“qd | ( J )
“ AT xlso |x —y|

d*y. (2.67)
In section 5, we derive the quadrupole radiation-reaction metric in the near zone using
Eq.(2.66).

Finally, we show the evolution equation for K. Since we adopt slice conditions which
do not satisfy K = 0 (i.e. the maximal slice condition), the evolution equation for K

is necessary. The evolution equations appear at the 1PN, 2PN and 2.5PN orders which

become respectively

P
oK = dmp(20® +e+2U + 35) — ApaX, (2.68)

o 0K = drp| 20" + 0 (6U + 2¢ + 21;) — (e + 35)(] — AU + 4yt + X + 4380

1
+@ i@ A5 + 30K = @hiyUs + ©Bie K
3
—§UU7kU7k - []’]g)(ilC + 2U,k(4)1/},k — Aflat(ﬁ)a + QUAﬂatX, (269)

0

a(G)K = _Aflat(7)a - (5)hijU,ij' (270)
We note that for the PN equations of motion up to the 2.5PN order, we need (50,

@ 6 (1, YV, U, 3B )5, 6)8i> @ hijs 6)hij, 3)K, 5K and K. Therefore, if

we solve the above set of the equations, we can obtain the 2.5 PN equations of motion.

Up to the 2.5PN order, the hydrodynamic equations become
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ot oxJ

=—(1+20+ ZUQ + 604yt + X ) P
+p, [U,i{l +e+ ]; + 21;2 ~ U+ Zv4 + 42U
+(‘;v2 ~U)(e+ ];) + 300}
~Xi(1+e+ ]; + U;) +20% ) — () — (1)
o7 3 854(1 +e + ]; + U; +3U) + 08+ ©81 ) + ©Bi)8s

1 .
+§U]Uk<(4)hjk7i + (5)hjk,i) + 0(0_8)}, (2.71)
OH  O(Hv)

ot oui

=—P[v/; + ;(;vz +3U) + ;xj{(;& +3U)0/} +0(c?)],  (2.72)

where we make use of relations

P vt 0? :
a8’ = p.[1+e+ SHg gt =)+ vt + 20°U + 5807 + +0(c™)],
, P ?
Si=pfoi(1+e+ SHgt 3U) + 8 + 0(c™)]. (2.73)
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III. SLICE CONDITIONS

In this section, we perform the PN analysis using the conformal slice (Shibata and
Nakamura 1992), maximal slice and harmonic slice (Bona and Masso 1992) which are
often used in 3D numerical relativity. Among them, we find that the conformal slice
seems most tractable and useful to estimate gravitational waves in the far zone, while the
maximal slice is suitable for describing the equilibrium configurations. Hence, first of all
we describe the property of the conformal slice and then mention the properties of other

slices.

A. Conformal Slice

The conformal slice (Shibata and Nakamura 1992) is defined as

23 25
a= exp(—2€ — g€ € ), (3.1)

where € = ¢) — 1. The lapse function is expanded in terms of € as
a=1—2¢+ 2% — 26+ 2" + O(6°). (3.2)
In the conformal slice, () becomes

@2 = =221,
@ = 2(@¥)* = 2,
6= —2(2¥)° + 4Pw¥ — 26 Y,

M= =2 (3.3)

Although in the usual PN approximation we need to solve the Poisson equation for the
lapse function, this slicing saves a procedure of solving it.

In the conformal slice, equations (2.15) and (2.17) are rewritten as
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8~. 1 «

2¢4 (14+e+e+e+eh)

A iy + 22 (DD - %ﬂ T3 pebtap) <

S

¢4
(Db - %]D%Dkw)

(3 + 66 + 66 + 66° + 6 4 126° + 10e° + 8¢” + 6€® 4 4¢” + 2610)}

wZ

y o _ y 9 y
+o(KA; — 21411141]-) + 8" Amj + B Ami — §ﬁnfmAZj

—87?154 (Sz‘j — ;%jsll>, (3.4)
and
0K
5= 2% [Ap(1+ €+ €') - WDWD%(Sé +260 + 267 + € + €°)|
—I—a(Aijflij + ;KQ) + 4na(SY, + pr), (3.5)

where we use the TT property as well as the linear approximation for h;; in the above
equation.
We shall consider the equation for h;;. The terms in Eq.(2.63) which contain explicitly

« are evaluated in the conformal slice as

Diov = —=2aDjtp(1 + €2 + €Y),
Aa = —2a(1+ &+ ¢H Ay

= +4a(Dp))(DF) (1 — € 4 26% — 26° + 3€* + 265 4 €%),
D;Dja = —20(1 + €2 + ") D; Djab

= +4a(Di)) (D) (1 — € + 26% — 26° + 3¢* + 25 4 €%). (3.6)

Then Eq.(2.63) is written as

2 02 0?
Oh;; = —(Z4 - 1>Aﬂathw + (8 2 @) J
ﬁ |(DiDj — ””D Dkw);(l tete+e 46

¢2 ( Z¢Dj¢ Vz]Dkl/}Dkqﬁ)

(34 6¢ + 66> + 6 + 6e" + 12¢° + 10€” + 8€” + 6¢® + 4¢” + 2¢1°)
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- L. - - D) -
+20°(K Ay — 243 A" ) + 20(B7 Ay + 57 Ai — gg”}nﬂzj)

o? 1 ; d /o - _— 2 Oa ~
—167% (Sij - g%’js z) - %(5 Ymg + B Ymi — 55 ,m%’j> + 2%14@'
where we use € =1 — 1 and v satisfies
5
Aol 5 Vi oqi 250
Ay = —2mpyp® — g(AijAﬂ -5k ). (3.8)

Eq.(3.7) is expanded as follows;
1
Dhi; = (UU; — 505U A iarll = 3U U5 + 05U kU )
S . .2 .
—167T(PU v — §5ijPU2) - ((3)@',3' + 3551 — gfsij(ii)ﬁk,k) +0(c™)
= @7 +0(c°), (3.9)

where we use € = 2U which holds in the PN approximation.

In the conformal slice, the asymptotic form of € becomes

Mapm
2r

€ ~

(3.10)

Thus « behaves as 1 — Mapy/r at spatial infinity. This means that in the conformal
slice, the metric at spatial infinity becomes the static Schwarzschild’s one. This property
seems helpful for discerning the wave part from the non-wave part in the wave zone in
numerical relativity.

Also, we have an advantage to derive simply the radiation reaction potential in this

slice; From a relation (;ya = —2(7% and Eq.(2.53), we have
Aflat(?)a = _(5)hz](t>U,ZJ (311)
Thus, the radiation reaction potential ()« is derived as
(535 (1)
(o= ﬁ/U@jdz”x. (3.12)

Finally, we comment on the following week point of the conformal slice; in the confor-

mal slice, the evolution equation for (3yK becomes
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. P 1

Since K does not vanish, K continues to change even in the case of a stationary spacetime.
Thus, it seems inconvenient to describe equilibrium configurations of stars and binary
systems in the conformal slice. To describe equiriblium configurations, we had better use

the slice, such as the maximal slice, where K = 0 is satisfied.

B. Maximal Slice

The maximal slice is given by
K =0, (3.14)
and this equation leads to the equation for o as
DiDFo = oA A7 + 4 (E + 5'))). (3.15)
At the first PN order, the equation becomes
Ama = 4n(2pv* + pe + pU + 3P) + U, U, (3.16)
Hence we obtain
A Xars = 4mp(20° + & + ?’;D +2U), (3.17)

where the subscript M.S denotes “maximal slice”. In the case of the conformal slice, the

following relation holds;

Xeos = —24)v, (3.18)

where C'S similarly denotes “conformal slice”. Using the above equation, we rewrite X,/g

as

Xuys = —2(4)1/1 +Y. (3.19)
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Then the equation for Y becomes
9 1
Aﬂdy:4w@v44Hr—§mQ. (3.20)

We should also note that by means of the virial theorem (Chandrasekhar 1969b), the

integration of the source term for Y can be written as

1 1.
/(pvz + 3P — §pU)d3£L' = 51”, (3.21)

where
L;(t) = /pxixjd3x. (3.22)

Hence, the behavior of Y far from the matter becomes

1 .
Y ~ ——1I. 3.23
i (323)

In total, the behavior of « in the wave zone becomes

a~1—i@%+;m) (3.24)

Therefore, contrary to the conformal slice, in the maximal slice, the spurious time-
dependent term is included in « in the wave zone. Since the metric does not approach
the static Schwarzschild metric even in spatial infinity, the maximal slice is inconvenient
to distinguish a wave part from non-wave parts such as the Newtonian potential.

At the 2PN order, the lapse function is given by

‘ U? P
Aflat(ﬁ)a = 47Tp(27j4 + 7U2U + 281)2 —eU + 21}2(3)51' + 7 + XMS + ;(21)2 — 5U))

(3.25)

In the case of the maximal slice, the equations for the shift vector are obtained by
simply taking K = 0 in Eqs.(2.59) and (2.61). Also, it is found that the equation for (o
is the same as that in the conformal slice: The right-hand side of Eq.(3.15) has no O(c¢™7")

terms. Therefore Eq.(3.15) becomes
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Aflat(?)Oé = _(5)hijU,ij~ (3'26)
Finally, we show the wave equation for h;; in the maximal slice as
1 1
Ohij = =2(Yi; = 5058 patY ) + (U4 = 505U Apll = 3UU 5 + 8,,UxU )

1 . . 2 . _
—167 (pvlvj — g(sijpvQ) - ((3)5i,j + 38, — géij(:a)ﬁk,k) + O(c 6)' (3.27)

C. Harmonic Slice

The condition for the harmonic slice is
Ot =0, (3.28)
which becomes in the (3+1) terminology,
a+a’K — Bla; =0. (3.29)
Differentiating this equation with respect to time, we obtain
a + 200K + o*K — fla,; — fla,; = 0. (3.30)

We use Eq.(2.17) in order to eliminate K in this equation. Hence the wave equation for

the lapse function is derived as

a? - 202 -, ~ 8a? -
Oa = 471'0(3(Sll — 3pH) — (%A — Aflat)af — ngleO[ — $A¢
3 ~ .~ .. .
200K + 2‘43 +oPK? 4+ 2B DK — fo, — Bloy
= A, (3.31)
where A, is expanded as follows,
P U U?
_ 2 - = - _ —6

Ao =dmp[1+ (v 32 2)] + A prae . 2) +0(c™). (3.32)

This equation is formally solved by using the retarded Green function and the Taylor

expansion. For example, we obtain the Newtonian and first PN order lapse function
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1 .
_—/d3 |X_y| ;/pd3y+0(r 2),

) (pv* +3P —3pU) 1
o= —; [ vyl [ &y —y T2l Y (3:33)

Thus, at the spatial infinity, we find the following behavior

3 ,. 1 .
W+ 2y ~ _47([,% - gnknllkl>, (3.34)

where n' = x'/r. From these equations we find that at the spatial infinity the lapse
function does not behave as 1 — M /r + O(r~2) unlike in the conformal slice, but behaves
as 1— (M + T(t))/r+O(r=2). Thus the harmonic slice is also inconvenient to distinguish
a wave part from non-wave parts.

The quadrupole radiation reaction potential takes the following rather lengthy form.

! a5/d3 X — y[* + — ag/d?’ Adlx — y[2 + — /d Aw
o0=-—— — — alX — — =
MDY= y8omar ] TP TYE T o ) Y@ Y'Y arar ) Y0
1 [ s ohyUsy
= @3y O 3.35
+47T/ Y Ix —y]| (3:35)

This expression is similar to Chandrasekhar and Nutku’s one (1969) in the harmonic
gauge and indicates that the fifth time derivative of the quadrupole moment appears in

the reaction force, which is not convenient to treat in numerical calculations.
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IV. STRATEGY TO OBTAIN 2PN TENSOR POTENTIAL

In this section, we describe methods to solve the equation for the 2PN tensor potential

(ayhij. Although Eq.(2.65) is formally solved as

1 (4);ij(t7)) 3
hii(t,x ———/7d , 4.1
(1l (£, ) 47 Ix —y| Y (4.1)

it seems difficult to estimate this integral in practice since (4y7;; — O(r?) for r — oo and
the integral is taken all over the space. Thus it is desirable to replace this equation by
some tractable forms in numerical evaluation. In the following, we show two approaches:
In section 4-A, we change Eq.(4.1) into the form in which the integration is performed
only over the matter distribution like as in the Newtonian potential. In section 4-B, we

propose a method to solve Eq.(2.65) as the boundary value problem.

A. Direct integration method

The explicit form of (47;; is

~ ~ o 1
(4)7'1']' = —28ZJ(X -+ 2(4)1#) + U@Z]U — 3U7,L'U7j + 5ijU,kU,k — 167T(pUZ’U‘7 — g(sijp’ljz)

. . 2 )
—((3)@',;‘ + 305 — gtsij(s)ﬁk,k), (4.2)
where
A 0? 1
8’LJ = W — gdijAflat' (43)

Although (4)7;; looks as if it depends on the slice condition, the independence is shown as

follows. Eq.(2.59) is rewritten as
Agar3)Bi = Apiapi + 3)K 4, (4.4)

where

0k L/,
b=t [ (Edy = ([ = vidy) (45)
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This is solved as

1 3K 3
@ =pi— (/ % —y] y)ﬂ. (4.6)

From Egs.(2.51) and (2.68), we obtain

. P U
@K = —Apa(X + 20) + 47TP(712 + 3; - 5)- (4.7)

Combining Eq.(4.6) with Eq.(4.7), the equation for () (3, is written as

pv® + 3P — pU/Z) d3

(3)@' =pi — (X +20¥); — [/ (

y| (4.8)
x -yl }
Using this relation, the source term, (4)7;;, is split into five parts
S U c v
@T = @y T Ty F T+ + ey, (4.9)
where we introduce
() i Lls
WTiy = —167T(pv v — géijpv ),
1
(4)7’1(;]) = UU’ij — gfsijUAflatU — SU’Z'U,J' + 5ijU,kU,k,
@7 =00 ) ey T o ey T 8%k ) ey Y
@y =0y /MX —yity,
2
v . pv* + 3P —pU/2) |

Thus it becomes clear that (4)h;; and (5)h;; as well as (4)7;; are expressed in terms of matter

variables only and thus do not depend on slicing conditions.

Then, we define Aﬂat(@hgf) = (4)7'@-(]-5), Aflat(4)hg‘] ) = (4)7'1'(jU)7 Aflat(4)hz(j0) - (4)71'(1‘0)’
A fiat(a) h,(?) = (4)@(;) ) and A Flat(4) hl(;/) = (4)71-(]-‘/), and consider each term separately. First,
since (4)7’1»(;9) is a compact source, we immediately obtain
i d 1§ )2
(%) (p” v T 3%6PY ) 3
ohS) = 4/ By, (4.11)
W x — vl

Second, we consider the following equation
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1
Aflon‘/CTY(}g Y1, Y2) = |X — y1HX _ y2| . (412>

It is possible to write (4)hg-] ) using integrals over the matter if this function, G, is used.
Eq.(4.12) has solutions (Fock 1959; Ohta, Okamura, Kimura and Hiida 1974; See also

appendix B),
G(x,y1,y2) = In(ry + ro £ 1r12), (4.13)

where

r = |X - y1’7

Ty = |X - y2’7

ri2 = [y1 — yal. (4.14)
Note that In(r + r2 — r12) is not regular on the interval between y; and ys, while In(r; +

r9 + r12) is regular on the matter. Thus we use In(r; + 75 + 7r12) as a kernel. Using this

function, UU ;; and U,;U ; are rewritten as

(92
UU;; = [(%:iaxj( I)f?’;’)lfdgyl)K |>I<d—y§’)2\d3y2)

0? ( 1 )
Oyidyl \x — y1l|x — ya
62
= Ajtar / d*y1d’ysp(y1)p(y2) 3001 In(ry + 7y +112),
1 1
_ 9 p(y1) 3 0 p(y2) 3
UlU]—(axZ |X—y1|d 1)(81‘] |X—y2|d y2)

— /d3y1d3y2p(Y1)P(Y2>

0? 1
= [ &y d® ——
/ n yQp(m)p(yz)ay{ayg (|X k= y2|)
2

0
= Aflat/d3y1d3y2p(y1)p(y2) —— (1) + 75+ 712). (4.15)
Y10y,

Thus we can express (4) hz(-jl-]) using the integral over the matter as

whi) = / Py d®yap(y1)p(y2)

0? 1 92 1
(Giat 3% = 3501 ~ 30l nlra bt ), (410)
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where we introduce

62
oytoyl’

62
Oyt oyl

Ay =

(4.17)

12 =

Using relations Agq|x —y| = 2/|x —y| and Apulx —y|* = 12[x—y|, ” , (4)h” and

() hij are solved as

B - 4 .
whi’ =25 / o) Ix =yl dy + 25— /(pv") x — yld’y + géij/p|X_Y|d3fU> (4.18)
1

B — / _yPddy — 751 / —yld® 419
whii =13 axzaxa pIx —yl°d’y i | Alx—yldy, (4.19)

o2 2 (pv2 + 3P — pU/Q)
p = / 3P — _yldy — 25, 4y, (4.20
(41 OriOxI (p + )|X yl 374 x—y]| y- ( )

In total, we obtain
S U C 1%

whij = wh + wh§ + wh + wh + @hi. (4.21)

B. Treatment as a boundary value problem

The above expression for (4)h;; is quite interesting because it only consists of integrals
over the matter. However, in actual numerical simulations, it will take a very long time
to perform the direct integration. Therefore, we also propose other strategies where
Eq.(2.65) is solved as the boundary value problem. Here, we would like to emphasize that
the boundary condition should be imposed at r(= |x|) > |y1],|y2]|, but r does not have
to be greater than )\, where A is a typical wave length of gravitational waves. We only
need to impose r > R (a typical size of matter). This means that we do not need a large
amount of grid numbers compared with the case of fully general relativistic simulations,
in which we require r > A\ > R.

First of all, we consider the equation
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S U S U
Agat(@wh + wh”) = wry + wry - (4.22)

Since its source term behaves as O(r~%) at r — oo, this equation can be accurately solved

under the boundary condition at r > R as

) o 275 1o s
@hi; "+ @hy " = ;(Iij - gfsijfkk)

+;2(nkjijk - ;%'nkfzm + 2nk(5ikj + S]m) - iéijnkslkl) + 0(7”73),
(4.23)
where
I, = /pxixja:kd?)x,
Sijk = /p (v'a! —va’)a da. (4.24)
Next, we consider the equations for 4 hw , h(p and (4 h Notlng the identity,
p=—(pv'); = (pv'v!) i + Apiar P — (pU,) 5 (4.25)

we find the following relations;
.. 3 5 Ty
/mx—ﬂdyz—/d% _ﬂ@v%

.. i‘$i—i xl — i i
/MX—W%%=3/fﬂmwﬂ é%y’ )+@P+m9—dux—yﬁk—yw

(4.26)

Using Eqs.(4.26), ( hzjc), (4)h(p) and (4 hgj in Eqgs.(4.18 — 4.20) can be rewritten as

v

R 4 ok oyt
hE. 2/ (pv?) d3y—|—2/ pv') Y By — =6;; [ (pv*) dy, (4.27
(4)"tig P . y| 3 J ( ) |X— y| ( )
1 37 —yk)(xl_yl) 3 1 k -xk_yk 3
h?) / d f@/ d
(4)"ig 4 axzax] pu |X _ yl Y+ J (p'U ) _ y’ Yy
20z m—w k—ﬂ
e /pU,xx e —yﬂ)dgy
8 k—ﬂ
SU]—Z/J 3 ka/ U(a:—y)3}
—— =7 . d 4.28
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PU)x“—y:fﬂ

SO Ay Py O p_tY
()N 2[(% (p +3 2)| —y|dy+8azj (pv +3 ) .
2 (pv2 +3P—,0U/2)
—751--/ &y, 4.29
3 J ’X—}’| Yy ( )
where P’ = P + pv?/4 + pU 1y /4. Hence, (4)h£jc), (4)h5 and (4)h Y) hecome
RO Z o[ (f (pv) dgy_/(pv / /(pv)y iy
o =2« [ == ey ST At
4 (pv*) (pv )y
- d —/ d*y
3 i |X—Y| |X—Y| }
2($ (S)P] + x] Qw) + 5@3 (% - xk(3)Pk)’
1 92 Vrulykyl
h(P k‘ l/ o / d3 / d3
4833@1,] p d*y — 22" [ p vt Py )
kY-, k
WL 5” / /(PU )y d3y)
\—yl \X—y
1,0 ol —yl —
(Z [P d /P’ i
+2<8a:2/ x —y| Y o Ix —y| )

_;{2(/pU’ji:zld3y+/pU’i |X:Z}/’Jd3y)

a;j—yf 0 -y
- y+aJ/PUk, g17)]

1 02 . . )
(Vk(lp Jokgl — 2Vk(p Ik 4 V(p”)) + 3(5” (q: 3y Px — (022%)

T 4011027
+;{ai (VP — V) ai (VP — v )

_;{Q(xivj(pU)_l_xiV V(pU V;%pU))
+$kaaxi(wjvk(pU) Vk(]PU)) + xkaaﬂ<xz‘/;€(PU) _ sz >}’
2 FE _/ (pv2+3]j_p2U)yjd3y)
x — |
o+ il ) @*y)]
x -y

0 pv? + 3P —
(+ / x -yl
0 v? + 3P —

+8:1:J'<x P |x—y| 2d3y—/

pv® +3P — 2d3
x -yl
()

_Yiowai oW o L o
= Q(Q + Q' — Q) — Qj,i) + g@ dij,

1
V)= 22
@ 2 bx’

_25”
(4.30)
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where

Agar () P = —47pu’,

A Q= 4 {ad (pv') + & (p?) |,
B gutQ =~ (po? + 3P = 50U,

Aflath(‘I) = —47T<p1)2 + 3P — ;pU>xz‘7
A fiatVij o) — = —4mpv'?,

AV = —dmpoiviad,

AV = —dmp(vl2?),

AflatV(P) = —4n P,

A Vi = —4nP'a,

Aflatvi(pU) = —4mpU;,

A ,atv = —dnpU 2. 4.31
f b

Therefore, (4)11 h(f ) and (1) hl(-;-/) can be derived from the above potentials which satisfy

ij
the Poisson equations with compact sources.
We note that instead of the above procedure, we may solve the Poisson equation for

(ayhi; carefully imposing the boundary condition for r > R as

1 1 2 3 i7(2 i (2
whi = {315 + 3 (WIS + L)
—g" nJI,gk) + 3" nin*n Ikl + 51]1% - ,@.jnknl]él)}
1 ) 2 1 )
+ﬁ[{_ﬁ ’“[fﬂz - ﬂ(n I(ki +n/ I + 8" n'(n' I(kg +nl 1)
7. 5
—gnln] k—[lgzz) + 3" indnn! nmI,gl,)n ﬂ@-jnk],gl) — géijnknlnm],g?n}
2 . . 4. -
+{§nk(5ikj + Sjri) — g(nlsjkk + 1/ Sigr)
+2nFnt ('S + n? Sig) + 2n'nIn® Spy + géijnkskll” +0(r™®).

(4.32)

It is verified that O(r~!) and O(r~?2) parts satisfy the traceless and divergence-free condi-
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tions respectively. It should be noted that (4)h;; obtained in this way becomes meaningless
at the far zone because Eq.(2.65), from which (4)h;; is derived, is valid only in the near

zone.
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V. THE RADIATION REACTION DUE TO QUADRUPOLE RADIATION

This topic has been already investigated by using some gauge conditions in previous
papers (Chandrasekhar and Esposito 1970; Schéifer 1985; Blanchet, Damour and Schéfer
1990). However, if we use the combination of the conformal slice and the transverse gauge,
calculations are simplified. This is why we briefly mention the derivation of the radiation

reaction potential in this section.

A. conformal slice

In combination of the conformal slice and the transverse gauge, Eq.(2.66) becomes

10 Ca 1
(S)hij(t) = E@ {—16%(/}@ vl — g(sij,OUQ)

1
(VU = 565Ul = 30U + 6,00 ) |dy
10

. . 2 . 3
5 (@8 + @ - §5ij<3>ﬁk,k)d Y- (5.1)

From a straightforward calculation, we find that the sum of the first and second lines
becomes —2%1(?) and the third line becomes 6%5’) /5, where JS-’) = d*+,;/dt®. (This
calculation is replaced by a fairly simple one when we use the transverse property of (4)7;;.

It is described in the appendix C.) Thus, (5)h;; in the near zone becomes

4

3
G hij = —5%2]‘)7 (5.2)
where
1
_]'ij = Iz‘j — g(glj‘[kk (53)

Since h;; has the transverse and traceless property, it is likely that (5h;; remains the
same for other slices. However it is not clear whether the T'T property of h;; is satisfied
even after the PN expansion is taken in the near zone and, as a result, whether (h;;

is independent of slicing conditions or not. The fact that slicing conditions never affect
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(5yhi; is understood on the ground that (4)7;; does not depend on slices, which have been
shown in the section 4.

Then the Hamiltonian constraint at the 2.5PN order, Eq.(2.53), turns out to be

2 1
Afarry) = —g%g)U,ij = g‘-]‘g)AflatX,z‘j : (5.4)

where x is the superpotential (Chandrasekhar 1965) and defined as

=~ [ plx = yld'. (5.5)

which satisfies the relation Agqx = —2U. From this, we find (7)) takes the following
form,
L 3 (@ =) 4
b= [, =),
v 57 [x —yl

I i ,Oz'yj
- ;U<_ JUHL/ d a3 ) 5.6
5 1] Z ) ‘ ’ y ( )

Therefore, the lapse function at the 2.5PN order, (7ya = =29, is derived from U and

U,, where U, satisfies (Blanchet, Damour and Schéfer 1990)
AU, = —4n £ p . (5.7)

Since the right-hand side of Eq.(2.70) cancels out, K disappears if the K does not
exist on the initial hypersurface, which seems reasonable under the condition that there
are no initial gravitational waves. Also, )3; vanishes according to Eq.(2.62). Hence, the
quadrupole radiation reaction metric has the same form as that derived in the case of the
maximal slice (Schéfer 1985; Blanchet, Damour and Schéfer 1990).

From Eq.(2.35), the PN equation of motion becomes

P;
=t U,i + F;IPN + F?PN 4 E2.5PN + 0(678)’ (58)

vt vt
P

J

where FM'N and FPN are, respectively, the 1PN and 2PN forces and conservative ones.

Since the radiation reaction potentials, 5)h;; and (7), are the same as those by Schéfer
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(1985) and Blanchet, Damour and Schéfer (1990) in which they use the ADM gauge, the

radiation reaction force per unit mass, F>5°N = F7 is the same as their force and

Fr = —((mhit?) + v 0@ + )

4 4 2 0 ok —yF) (2t —y
= {5<1T_() ) + 5%(3) vFud = ’ll(fl o p(t,y)( |X _)<y|3 )d3 } (59)

Since the work done by the force (5.9) is given by
W= /pF[vid?’x

4d

oL 1 .
= 5£(%$) /pvlvjdsx) - 5%5)%(3)”, (5.10)

we obtain the so-called quadrupole formula of the energy loss by averaging Eq.(5.10) with

respect to time as

dEN 1 (3) 1(3)ij —6

B. Radiation reaction in other slice conditions

In this subsection, we do not specify the slice condition. From Eq.(2.35), we obtain

the equation of motion as
p(i}i —I—"Ujvfj) = —P,+pU, +Fi1PN +F;PN +E2.5PN +O(C—8)_ (5'12)

We can obtain F25"N = FI by using )5 and (7ya, which are estimated from Eqgs.(2.62)
and (2.70) respectively, as

Ffzp[%

4 o o
5(%(3) VY + ZEQV — (e — 08 + e i — v g8 J} (5.13)

5
Here, (7ya corresponds to the slice condition. From Eq.(5.13), we obtain the work done
by the reaction force as
W = / Flo'd*x
3 J 40,5
= dxpv v>—|—5% v v
~mai— @ Vb i~ el ). (5.14)
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Explicit calculations are done separately: (1) For the first term of Eq.(5.14), we obtain

, 4d o
3 (3) (3) 3 i
/d xp % U] = [%ij /d xTpv vj}

4
—5%(3) 2dt/d3xpv v = /d%pv vj)

4 d 5. L@
= 5dt ij /d xpv vj} — 5% +;;
%<3> / Pp() / dgyp(y)W —y') (@) — 1)
x -yl
%(3)/d3xpv v, (5.15)

Here we used

. i iy (ad — o
K x —y]? ’

which is obtained by using the continuity equation and the Euler’s equation (For instance,
see Candrasekhar’s “Ellipsoidal Figures”.).

(2) For the second term of Eq.(5.14), we obtain
;l/d?’:cp%gj lelvl = f%l(?)/dgscpvl(vivj)l
= g%g’)/dgxp'vivj. (5.17)
(3) On the fourth term of Eq.(5.14). From Egs.(2.62), (2.70) and (5.2), we find the relation

3 0 e (2% — y¥) (2! — yl).

= o — f% 5.18
©)5 ) LTl ek e (5.18)
Using Egs.(5.14), (5.15), (5.17) and (5.18), we obtain
4 d IO [ i 1,0 1)

This expression for W does not depend on the slice condition. However, this never means
that the value of W is invariant for the slice condition, since the meaning of the time
derivative depends on the slice condition.

It is a matter of course that we can obtain the standard the quadrupole energy loss

formula by averaging Eq.(5.19) with respect to time as

(W) = —; (1) D7) +0(c™9), (5.20)
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VI. CONSERVED QUANTITIES

The conserved quantities are gauge-invariant so that, in general relativity, they play
important roles because we are able to compare various systems described in different
gauge conditions using them. From the practical view, these are also useful for checking
the numerical accuracy in simulations. Thus, in this section, we show several conserved

quantities in the 2PN approximation.

A. Conserved Mass And Energy

In general relativity, the volume integral of the mass density p does not conserve, and

instead we have the following conserved mass;

M, = /p*d?’:v. (6.1)

It is verified easily that M, conserves;

dM., Opx
= | =g
dt ot ¢ "

—0, (6.2)

where we used Eq.(2.32). In the PN approximation, p, is expanded as

Ps = p{l + (;1)2 + 3U>

3 7 15 ; _
—|—(§v4 + 50U+ U + Gyt + @Bv') + 0. + O], (6.3)

where (6)5* denotes the 3PN contribution to p,. This term (6)5* will be calculated later.
Then, we consider the ADM mass which is also the conserved quantity. Since the

asymptotic behavior of the conformal factor becomes

¢:1+Mng+O(1), (6.4)

r2

the ADM mass in the PN approximation becomes
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1
Mapm = _g/Aflat’l/Jd?).fC

= /d?’xp[{l + (v e+ ZU) + (' + 123ng + o+ ];?}2 + gUe + ZU2

| 1 2 .
5w ¥ + 2 00") |+ o (@ Aue Ay — 3K ?) + @dapa +O(cT)], (6.5)

where ()0 4par denotes the 3PN contribution. This term )0 apas Will be calculated later.

Using these two conserved quantities, we can define the conserved energy as follows;

E = Mspn — M,

= [@rol{(50* +< - 30)

5 P 5 5 i

+(§U4 + 302U + v%e + ;vz + §U€ — ZUQ — ¥+ @bv )}

L
167p

= En + Eipn + Eopn + -+ - (6.6)

((S)Aij(S)Am‘ - 2(3)K2> + ((6)5ADM — (6)5*) - O(c‘7)}

We should note that the following equation holds
~ ~ ) 2 .
/(3)Aij(3)Aijd3:E = —87r/pv’(3)ﬁ,~d3a: + /(5(3)K2 + 2U(3)K>d3l‘, (67)
where we use the identities derived from Egs.(2.58) and (2.59)

/(3)51‘,]'(3)@,]'61393 = —167T/pvi(3)ﬁid3x + /((3)K2 +2U 3 K — 3U%)d*x,

/(3)5i,j(3)ﬁj,id393 - /((3)K2 +6U ) K + 9U%)dx. (6.8)

Using these relations, we obtain the Newtonian and the first PN energies as

_ Ly 1 3
EN—/p(§v —|—5—§U)d x, (6.9)
and
5, 5 P 5 1 o~ 1.
= 4 2 2 2 _9%m2 o pod) b
Ele—/d x{p(gv +§v U+w 8—1—;7) +2U¢e 2U + 2(3)@@)4‘ 87TU(3)K}‘

(6.10)

E1py can be rewritten immediately in the following form used by Chandrasekhar (1969a);
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5) 5 P ) 1 .
Bipy = [ dap[ vt + S00 +0?(= + )+ 2e—3U = ovlal, (6.11)

where ¢; is the first PN shift vector in the standard PN gauge (i.e., 35/ = 0) and satisfies
Afrarqi = —16mpv’ + U, (6.12)

The total energy at the 2PN order Eypy is calculated from the 3PN quantities ().

and (60apn- First we consider (60,. We expand (omo)2 up to the 2PN order as
(au’)® =1+ 0>+ A+ A+ O0(c), (6.13)
where

(4)A = ’U4 + 4U2U + 2Ui(3)ﬁi,
15
A ="+ 80U + v (44 — 2X + EUQ)

+(4) hijUin + 4((3)62’01) ('U2 + U) + 2(5)ﬁﬁ}z + (3)6@(3)ﬁz (614)

Using this expansion of (au”)?, we obtain

1 1 1
(6)(ozu0) = 1—62)6 — 1’02(4)14 + 5(6)14 + 0(0_7). (615)
Hence we obtain )d, as
5 33 93 3 :
(6)5* = EUG -+ §U4U + v? (5(4)2/1 + §U2 + 5(3)@-01 — X)

+6(6)¢ + 15U (4y2p + ;U?’ + 7(3)ﬁiviU + ;(4)hijvivj + ;(3)@-(3)@- + (5)[32-21". (6.16)
Hence we obtain
M, = /P(6)5*d3$- (6.17)
Next, we consider 604pas. The Hamiltonian constraint at O(c™®) becomes

1
Aptar®)¥ — @hij@¥a — 50 iU
1

- —@(2(4)hkl,m(4)hkm,l + (4)hkl,m(4)hkl,m)
1 ~ - ) 1 ) ) 5 2
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where we define ()py, as

(G)pw = p[vﬁ + U4<€ + i + 221U) + U2{123U<€ + i) + 9(4)77/1 —2X + 20U2}
—|—€(5(4)1/J + 2U2) + 56y + 10U (99 + iU?’

o . P 13 ;
+(4)hijvlvj + 2(3)@1)’{21}2 +e+ ; + ?U} + 2(5)52'1)1 + (3)61'(3)52}. (6.19)
Making use of relations (4)h;;; = 0 and ()h;;,; = 0, we obtain

©6)Mapn = /d3$ 6)Pyp

L2
3
i -] vt~ Go koK)
2
o / d3yU( oA = S0 K?), (6.20)

where we assume g h;; — O(r1) as r — co. Although this assumption must be verified
by performing the 3PN expansions which have not been done here, it seems reasonable
in the asymptotically flat spacetime. From ) M4py and 6 M,, we obtain the conserved

energy at the 2PN order

Espn = 6)Maprr — (6) M

= [ ool +ot(e+ S+ F0)

13 P 67 -
+oH{dap = X + U (e + p) U (3%‘“2}
5 5)
+6<5(4)@/) + §U2) —@©Y — U — ZUS

1 o , P ]
+* 4)]’LUU1UJ + 2(3)ﬁi7jl (8 + ; + SU) + (5)ﬂﬂ]2 + 5(3)ﬁ1(3)ﬁz}]

N
3
8 /d oA A = 50K K)
2
/d3yU( 94 = wk?). (6.21)

When we use the relation, [ d*zpe)) = —5= [ d*xUA @)1, we obtain

Eopy = /d%p[iévﬁ + v < + i + 487U>

+U2{4(4)¢ - X+ 6U(5 + 1;) + ZJSU? + Z(g)ﬁivi}
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( w+ZU2)—125U w—fUS

P
+ (4)hiﬂﬂy] + 2(3)ﬁﬂ)z{<5 + ;) + 5U} 5)5{0 + ﬁ, ﬁz}
1 ~ ~ 2
+§ /ds hZ]UU” +@3 A Aij — 5(3)[((5)}(). (6.22)

Here we used Eq.(2.52) in order to eliminate (). Then, ((3)121,-j (3)flz-j— (3)K2> in Eq.(6.21)

wlro

cancels that in A)y.

B. Conserved linear momentum

When we use the center of mass system as usual, the linear momentum of the system
should vanish. However, it may arise from numerical errors in numerical calculation-
s. Since it is useful for investigation of the numerical accuracy, we mention the linear

momentum derived from

PZ-:i lim (K n’ —Kn)dS
T T—00
= ;ﬂ;li& (v Ay’ — gKn )ds, (6.23)

where the surface integrals are taken over a sphere of constant r. Since the asymptotic

behavior of flij is determined by

1 2 _
@3)Aij = 5((3)@‘,;‘ + 38 — gfsij(s)ﬁl,l) +0(r™?), (6.24)

and

1 2 ~ _
(5)Aij = 5((5)@4 + 5)8,i — 55@‘(5)51,1) + AL+ 00, (6.25)

the leading term of the shift vector is necessary. Using the asymptotic behavior

1 -2
@ ==-5 "3 +0(r™), (6.26)
the following relation is obtained
2 J
/((3)5@]‘ + (3)5]‘,2' - §5ij(3)ﬂl,l)n dS = 167le (627)
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Here we defined [; = [ pv'd®z and used

nind 47

r2

Therefore the Newtonian linear momentum is
Pyt= /d%pvi.

Similarly the first PN linear momentum is obtained as follows

9

Pipn' = /d3xp[vi<v2 +e+46U + ];) + (3)@]

We obtain Pypy ¢ by the similar procedure as

Pypn' = /dgxpvi [2(3)ﬁivi + 10w + (6U + vz) (5 + i)

67
JFZU2 + 10U +0* — X

47

]

(6.28)

(6.29)

(6.30)

(6.31)



Part 2

VII. MOTIVATION AND APPROACH

The last stage of coalescing binary neutron stars (BNS’s) is one of the most promising
sources for kilometer size interferometric gravitational wave detectors, LIGO (Abramovici
et.al. 1992; Thorne 1994; Will 1994) and VIRGO (Bradaschia 1990). When the orbital
separation of BNS’s becomes ~ 700km as a result of the emission of gravitational waves,
it is observed that the frequency of gravitational waves from them becomes ~ 10Hz. After
then, the orbit of BNS’s shrinks owing to the radiation reaction toward merging in a few
minutes (Cutler et.al. 1993). In such a phase, BNS’s are the strongly self-gravitating
bound systems, and gravitational waves from them will have various general relativistic
(GR) information. In particular, in the last few milliseconds before merging, BNS’s are
in a very strong GR gravitational field because the orbital separation is less than ten
times of the Schwarzschild radius of the system. Thus, if we could detect the signal of
gravitational waves radiated in the last few milliseconds, we would be able to observe
directly the phenomena in the GR gravitational field.

To interpret the implication of the signal of gravitational waves, we need to understand
the theoretical mechanism of merging in detail. The little knowledge we have about the
very last phase of BNS’s is as follows: When the orbital separation of BNS’s is < 10GM/¢?,
where M is the total mass of BNS’s, they move approximately in circular orbits because
the timescale of the energy loss due to gravitational radiation tgy is much longer than

the orbital period P as

tGW dC2 5/2 M
PN15(1OGM> (4u>’ (7.1)

where p and d are the reduced mass and the separation of BNS’s. Thus, BNS’s adiabati-
cally evolve radiating gravitational waves. However, when the orbital separation becomes

6 — 10GM/c?, they cannot maintain the circular orbit because of instabilities due to the
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GR gravity (Kidder, Will and Wiseman 1993a) or the tidal field (Lai, Rasio and Shapiro
1993, 1994). As a result of such instabilities, the circular orbit of BNS’s changes into the
plunging orbit to merge. This means that the nature of the signal of gravitational waves
changes around the transition between the circular orbit and plunging one. Gravitational
waves emitted at this transition region may bring us an important information about the
structure of NS’s because the location where the instability occurs will depend on the
equation of state (EOS) of NS sensitively (Lai, Rasio and Shapiro 1993, 1994; Zhung,
Centrella and McMillan 1994). Thus, it is very important to investigate the location of
the innermost stable circular orbit (ISCO) of BNS’s.

As mentioned above, the ISCO is determined not only by the GR effects, but also by
the hydrodynamic one. We emphasize that the tidal effects depend strongly on the struc-
ture of NS. Here, NS is a GR object because of its compactness, Gm/c*R ~ 0.2, where
m and R are the mass and radius of NS. Thus, in order to know the location of the ISCO
accurately, we need to solve the GR hydrodynamic equations in general. A strategy to
search the ISCO in GR manner is as follows; since the timescale of the energy loss is much
longer than the orbital period according to Eq.(7.1), we may suppose that the motion of
BNS’s is composed of the stationary part and the small radiation reaction part. From this
physical point of view, we may consider that BNS’s evolve quasi-stationally, and we can
take the following procedure; first, neglecting the evolution due to gravitational radiation,
equilibrium configurations are constructed, and then the radiation reaction is taken into
account as a correction to the equilibrium configurations. The ISCO is determined from
the point, where the dynamical instability for the equilibrium configurations occurs. It
may be a grand challenge, however, to distinguish the stationary part from the nonstation-
ary one in general relativity. As Detweiler (1994) has pointed out, a stationary solution
of the Einstein equation with standing gravitational waves, which will be constructed
by adding the incoming waves from infinity, may be a valuable approximation to physi-

cally realistic solutions. However, these solutions are not asymptotically flat (Detweiler
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1994) because GWs contribute to the total energy of the system and the total energy
of GWs inside a radius r grows linearly with r. The lack of asymptotic flatness forces
us to consider only a bounded space and impose boundary conditions in the near zone.
Careful consideration will be necessary to find out an appropriate boundary condition for
describing the physically realistic system in the near zone.

Recently, Wilson and his collaborators (Wilson and Mathews 1995; Wilson, Mathews
and Marronetti 1996) proposed a simirelativistic approximation method in order to cal-
culate the equilibrium configuration of BNS’s just before merging. In their method, they

assume the line element as
ds* = —(a® — 33" Edt* + 2Bicdtdx’ + p*da?, (7.2)

i.e., three metric 7;; is chosen as the conformal flat (i.e., v; = ¥0;;), and solve only
the constraint equations in the Einstein equation. In their approach, they claim that
they ignore only the contribution of gravitational waves, but it is not correct at all;
as shown in previous post-Newtonian (PN) analyses (Schéfer 1985; Asada, Shibata and
Fuatamase 1996; Asada and Shibata 1996; Rieth and Schifer 1996), the tensor potential
term exists in the three metric even if we ignore the radiation reaction of gravitational
waves (i.e., "%y # d;;). Since such a term appears from the second PN order in the
PN approximation, the accuracy of their results is less than the 2PN order: In reality,
from results by Cook, Shapiro and Teukolsky (1996) in which they obtain equilibrium
configurations of the axisymmetric NS using both the Einstein equation and Wilson’s
method, we can see that some quantities obtained from Wilson’s scheme, such as the
lapse function, the three metric, the angular velocity, and so on, deviate from the exact
solution by about O((Gm/Rc?)?). This seems to indicate that their approach for the
system of BNS’s is valid only at the 1PN level from the PN point of view. Furthermore,
the meaning of their approximation is obscure: It is not clear at all how to estimate errors
due to such an approximation scheme and in which situation but the spherical symmetric

system, the scheme based on the assumption of the conformal flatness is justified.
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In contrast with Wilson’s method, the meaning of the PN approximation is fairly clear:

In the PN approximation, the metric is formally expanded with respect to ¢!

assuming
the slow motion and weak self-gravity of matter. If we will take into account the next PN
order, the accuracy of approximate solutions will be improved. This means that we can
estimate the order of magnitude of the error due to the ignorance of higher PN terms.
Also, in the PN approximation, we can distinguish the radiation reaction terms, which
begin at the 2.5PN order (Chandrasekhar and Esposito 1970), from other terms in the
metric. Thus, it is possible to construct the equilibrium configuration of BNS’s in the
2PN approximation without the radiation reaction terms.

We describe schematically two approaches in Tables 1(a) and 1(b). As mentioned
above, in close binary of NS’s, it is important to take into account GR effects on orbital
motion as well as on the internal structure of each NS. As for the orbital motion, there
exist two parameters; one is the PN parameter v/c and the other is the mass ratio n of
the reduced mass p to the total mass M, and both parameters are less than unity. Thus,
the physical quantities such as the orbital frequency are expanded with respect to them.
In Table 1(a), we show schematically various levels of approximations in terms of v/c
and 7. If all terms in a level are taken into account in the 2PN approximation, we mark
P?N, while W means that all terms in the marked level are taken into account in Wilson’s
approach. From Table 1(a), we see that the 2PN approximation can include all corrections
in 7 up to the 2PN order in contrast with Wilson’s approach. On the other hand, Wilson’s
approach will hold completely in the test particle limit, i.e., at O(n°), whereas even in this
limit the 2PN approximation is not valid at higher PN orders. As for the internal structure
of each NS, there also exist two small parameters; one is the compactness Gm/c?R and
the other is the deformation parameter from its spherical shape, such as an ellipticity e.
In this case, the PN approximation becomes an expansion in terms of Gm/c*R. In Table
1(b), we also show various levels of approximation in terms of these parameters. Although

Wilson’s approach is exact for spherical NS’s; it is not valid in nonspherical cases even at
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the 2PN order. On the other hand, in the 2PN approximation, the spherical compact star
cannot be obtained correctly in contrast with Wilson’s approach. In this way, the 2PN
approximation has a week point: Although it can take into account all effects up to the
2PN order, it is inferior to Wilson’s approach when we take a test-particle limit, n — 0,
or we describe an exactly spherical NS. However, as shown below, the error due to the
ignorance of higher PN terms in those cases is not so large .

To estimate the error due to the ignorance of the higher PN terms, let us compare the
GR exact solutions with their PN approximations. First, we consider a small star of mass
w1 orbiting a Schwarzschild black hole of mass my, > p. In this case, we may consider
that the small star moves on the geodesic around the Schwarzschild black hole, and the

orbital angular velocity becomes (Kidder, Will and Wiseman 1993a)

Q:\/ ( G (7.3)

T+ Gmbhc*2)3

where 7 is the coordinate radius of the orbit in the harmonic coordinate. In the PN

approximation, Eq.(7.3) becomes

Q:

Gmyy, {1 B 3Gmy, E <Gmbh)2 + 0(0_6)}

7 27 c? 8\ 72 (7.4)
Comparing Eq.(7.3) with Eq.(7.4), it is found that the error size of the 2PN angular
velocity is ~ 0.3% at ¥ = 9Gmpc 2, and ~ 1% at ¥ = 6Gmy,c 2. Thus, the 2PN
approximation seems fairly good to describe the motion of relativistic binary stars just
before coalescence. Next, we consider a spherical NS of a uniform density in order to
investigate the applicability of the PN approximation for determination of the internal

structure of NS’s. In this model, the pressure, P, and the density, p =const., are related

with each other (Shapiro and Teukolsky 1983):

P (1 —2Gmr?/c2R3)Y? — (1 — 2Gm/c*R)"/?

0 3(1=2Gm/ER) — (1 — 2Gmr? [P RY)1/2
_1Gm r? G?*m? r? G3m? 17 1972 3t r6
(=) + o (1= ) (

=_— (1 -2 - (1= =5 - s s _ _'s O -8
ser ) T am U )t (5 sm tem am) T O,

(7.5)
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2

where 7, is the coordinate radius in the Schwarzschild coordinate and terms of order ¢—=,

c¢~* and ¢ % denote Newtonian, 1PN and 2PN terms respectively. In the second line in
Eq.(7.5), we expand the equation in power of Gm/c*R regarding it as a small quantity.
In Fig.1, we show the error, 1 — ﬁ/P, in Newtonian, 1PN and 2PN cases as a function
of ry for R = 5G'm/c*(solid lines) and 8Gm/c*(dotted lines), where P denotes the PN
approximate pressure. It is found that the discrepancy in the Newtonian treatment is
very large, while in the 2PN approximation the error is less than 10%. In this way, we
can estimate rigidly the typical error size in the 2PN approximation. Furthermore, the
accuracy is fairly good if the NS is not extremely compact; the 2PN approximation will
be fairly accurate if the radius of NS is larger than ~10km. Thus, in Part 2, we develop
a formalism to obtain equilibrium configurations of uniformly rotating fluid in the 2PN

order as a first step.
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VIII. FORMULATION

We write the line element in the following form;
ds* = —(a? — B;3")*dt* + 2B;cdtda’ + *5; da’ da?, (8.1)

where we define det(7;;) = 1. To fix the gauge condition in the time coordinate, we use the
maximal slice condition K,* = 0, where K,® is the trace part of the extrinsic curvature,
K;;. As the spatial gauge condition, we adopt the transverse gauge 7;;; = 0 in order
to remove the gauge modes from 7;;. In this case, up to the 2 PN approximation, each

metric variable is expanded as (Asada, Shibata and Futamase 1996)

1U 1
=1+ 23 + g(zl)l/} +0(c7?), (8.2)
11,0 1 .
a:l—gU+g(7+X)+E(6)a+O(c ), (8.3)
) 1 1 _
B = 0*3(3)@- + 5(5)@' +0(c™"), (8.4)
N 1 _
’Yz'j = 51’]’ + thw + O(C 5). (85)

As for the energy-momentum tensor of the Einstein equation, we consider the perfect

fluid as
T, = (,002 + pe + P)uﬂul, + Py (8.6)
For simplicity, we assume that the matter obeys the polytropic equation of state(EOS);
P= (T —1)pe=Kp", (8.7)

where [' and K are the polytropic exponent and polytropic constant, respectively. Up to
the 2PN order, the four velocity is expanded as (Chandrasekhar and Nutku 1969; Asada,
Shibata and Fuatamse 1996; Asada and Shibata 1996)

1,1 1,3, 5 1 |
=14 (G0 U) (Gt gotU U+ Bt = X) 0,

2 8
1,1 1,3 3 1 _
wo=[1t (507 = U) + (Gt + 30+ 50+ X) ]+ 0,

o4



' = 1;{1 L (;UZ +U) + 614(:@4 + ;v2U + ;UQ + @B’ — X)} +0(c7),
“i‘i*cla{ i+ (5024 30)} + {8+ (507 +30) + v
b (20t 4 LR AU - X 4 g+ B0) ] 4O, (88)

where v* = u'/u® and v? = v¥'. Since we need u’ up to 3PN order to obtain the 2PN
equations of motion, we derive it here. Using Eq.(8.8), we can calculate (cu®)? up to 3PN
order as

(au®)? = 1 + 57 uu,

v 1 ; 1 . -
=1+ = + E(Q(g)ﬁjvj + 4Uv* + 214) + 7{ 385335 + 8(3)8;v’ U + hjjv'v’

5

. 1
+2( 80" + (4807 + 4y + S0 - 2X )0 +8Uv" + 0%} + O(c™7),

(8.9)

where we use 9 = §;; — c"*h;; + O(c™5). Thus, we obtain u° up to the 3PN order as

uO:1+cl<;v +U) Cl(zv +51)2U+ U2 )ﬂivi—X)

1 1 '
+CG{ @+ 3 (3)5; 3)B; + hijv* U]) 5007 + 55 B;0°U — 2UX
7

3 2 5
( @B + 2y + 60 = SX)0? + TUG 20} 40T, (8.10)

Substituting PN expansions of metric and matter variables into the Einstein equation,
and using the polytropic EOS, we find that the metric variables obey the following Poisson

equations (Asada, Shibata and Futamase 1996);

AU = —4mp, (8.11)
AX = dmp(2v* +2U + (3T — 2)e), (8.12)
A = —27Tp(v2 +e+ ;U) (8.13)
A@)B; = 16mpv’ — Uy, (8.14)

A 2
A8 = 16mp {UZ <U2 +2U + Ff) + (3)@} —4U,; ((3)5@;‘ + 085 — géz‘j(?))ﬁk,k)

1.
—2w¥, + i(UU),i + (2U) 4, (8.15)
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Ahy; = (UU; — ;@szAﬂatU = 3UU; + 65U xU) — 167 (pv'v? — ;@jpv?)
—((S)Bi,j + (3)5;’,@' - géij(?))ﬁ.k,k) - 2((X + 2w),ij — ;%A(X + 2(4)%@)» (8.16)
Agyar = drp [2114 +202(5U 4+ T) + (3T — 2)eU + 4y + X + 4(3)@71’]
— hyUsj — 2UU,lU,l + U (240 — X)),

1 2
+ 5(3)@,]' ((3)@',3' + (3)5]',7; — géij(?;)ﬁk,k)y (8.17)

where A is the flat Laplacian, and the dot - denotes 0/0t.

Equations of motion for fluid are derived from

v, T" =0. (8.18)

v

In Part 2, we consider the uniformly rotating fluid around z-axis with the angular velocity

Q. ie.,
v = eVt = (—yQ, 2Q,0), (8.19)

where we choose 7 = (0,0,9) and €;;; is the completely anti-symmetric unit tensor. In

this case, the following relations hold;

0 0 0 0 0 0
(& T Q%)Q - (E + Q%)Qi = (§ + Q%>sz =0, (8.20)

where @), Q; and @);; are arbitrary scalars, vectors, and tensors, respectively. Then,
Eq.(8.18) can be integrated as (Lightman, Press, Price and Teukolsky 1975; See also

appendix E)

dP
- —hJ+C 8.21
/p02+ps+P e (8:21)

where C'is a constant. For the polytropic EOS, Eq.(8.21) becomes

'K

r—1 =1 0 292
CQ(F—l)p nu +C? (8 )

In {1 +
or
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'K
1 r-1_ 0 . 2
+ (T = 1>p u” exp(C) (8.23)

Using Eq.(8.10), the 2PN approximation of Eq.(8.22) is written as

H? H? 2 1 vt -
H- "4 -—=—4+U+—(200+—-X )
sz tza= g U+ ( v+ + (380
1 7 U3 i,,2 2
+3 ( 6)Oé+ 3)5i3) @'+4(3)ﬁiUU—F+(3)5¢UU + 20yv
15 1 1 o
+ ZUQU2 +2Uv* + 6’06 —UX —v’X + ) 30" + 2hijv’v3> + C,

(8.24)

where H = TKp' /(T — 1), v* = R?Q% and R* = 2 + y?. Here we used the Taylor

expansion of In(1 + z)
n(l+z) Z )" 1:70 (8.25)

Note that Eq.(8.24) can be also obtained from the 2PN Euler equation like in the first PN
case (Chandrasekhar 1967). If we solve the coupled equations (8.11-17) and (8.24), we

can obtain equilibrium configurations of the non-axisymmetric uniformly rotating body.
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IX. DERIVATION OF THE POISSON EQUATION OF COMPACT SOURCES

FOR hij, (35 and (50

In section 2, we derive the Poisson equations for metric variables. However, the source
terms in the Poisson equations for (3)3;, (5)3;, and h; fall off slowly as r — oo because these
terms behave as O(r—3) at r — oo. These Poisson equations do not take convenient forms
when we try to solve them as the boundary value problem in numerical calculation. Hence
in the following, we rewrite them into other convenient forms in numerical calculation.

As for h;;, first of all, we split the equation into three parts as (Asada, Shibata and

Futamase 1996)

ij

1
AR = U (U = 505A0) = 30U, + 0,UsUs = ~4mSL)) (9.1)
1
A} = _167r(m’2“3 - §5z’jP02), (9.2)
. : . 9 ,
Ahz(j = _((3)@}]' + )5 — §5z‘j(3)ﬁk,k)

— 2((X +20y¥) 45 — ;%A(X +2))- (9.3)

The equation for hz(;-g) has a compact source, and also the source term of hg»]) behaves as
O(r=%) at r — oo, so that Poisson equations for them are solved easily as the boundary
value problem. On the other hand, the source term of hEJG) behaves as O(r™3) at r — oo,
so that it seems troublesome to solve the equation for it as the boundary value problem.
In order to solve the equation for hz(-jG) as the boundary value problem, we had better
rewrite the equation into useful forms. As shown by Asada, Shibata and Futamase (1996),

Eq.(9.3) is integrated to give
/ Uj |d3 4 2i /( ’Ui).|X— |d3 +5/ ..|X_ |d3
by 8 (p y+255 [ Y|’y + 6y | plx —yld’y
0? pU
333 2 _ = _ 3
+1zaa;zaxa /”'X Yy + 5raw /(’”’ +3P = I = yld'y

2
2 pv® + 3P — pU/2

Using the relations

o8



vt =0, (9.5)

Eq.(9.4) is rewritten as

7 .Ii J_y]
hg@:[/ Vi) d3 + [ (o) dﬂ—@ / )

lk 9 kx]_y 8 kfi_ylz]
8" [(9x’/<pv>|x—y\dy 8j/(pv)|x—y|dy
170 pUNz? — 3y 4 0 pUN " — 3 3}
- p- | p-
+2L9 /(,0 +3 2)|X_y|dy+aj/<pv +3 2>‘ _y|dy
2 (pv2 + 3P — pU/2)
S &y, .
B R (96)

From Eq.(9.6), it is found that hl(-jG) is written as

7 . ) .
hz(»f) ( 7@ P+ 2 5 P — Qz(jT) - Qﬁ»?) — 62" 3) P

4

_85&{0 = @) + aaa( 9P = Qi )]

%;(w ) -] -Buen oo

where

A P, = —4mpv’, (9.8)
AQSjT) = —4rpv'a’, (9.9)
AQm:r%ﬂ@ﬁ+3P—;MQ, (9.10)
AQEI) = —47r(pv2 + 3P — ;pU)xi. (9.11)

Therefore, thG) can be deduced from variables which satisfy the Poisson equations with
compact sources.
The source terms in the Poisson equations for (3)3; and (55; also fall off slowly. How-

ever, if we rewrite them as (Asada, Shibata and Futamase 1996; See also appendix D)
1
@0 = — P—f@U Qi) (9.12)
1 i .
&0 = =4 P — ( x (4)¢ - 772')7 (9.13)
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where

Ag; = —4npa’, (9.14)

i 2
A(5)Pz' = —471',0 |:qﬂ (UQ -+ 2U0 + Fé) —+ (3)61‘:| + U,j ((3)67;,3' + (3)63’,1’ — géij(g)ﬁk,k)

1 . 1
- g(UU),z' - Z((S)BIU,I)J; (9.15)
5) )
Ay = —dmp(v? + 2+ 5U)a;’, (9.16)

then (3)3; and (5)3; can be obtained by solving the Poisson equations in which the fall-off
of the source terms is fast enough, O(r=%), for numerical calculation. Note that, using

the relation (3)P; = €;.,qx$2 and Eq.(8.20), (3)4; and (5)/3; may be written as

(3)@' = Q[_46iszk + ;(ﬁiUW - Qim)} = Q(3)Bz’7 (9-17)

00 = O~y Pt 3 (20 s — i) (9.18)

where

. . R R 9 .
A b = —dmp [Eizkxk (v* +20 +Te) + (3)@} + U (@855 + @8 — §5ij(3)6k,k)

1 1
+ 7(UU:90)77; - Z

3 (®)5kU k) i (9.19)
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X. DERIVATION OF BASIC EQUATIONS

In this section, we derive the basic equation which has a suitable form to construct
equilibrium configurations of uniformly rotating body in numerical calculation: Although
equilibrium configurations can be formally obtained by solving Eq.(8.24) as well as metric
potentials, U, X, v, ¢, 3)0i, (50; and hy;, they do not take convenient forms for
numerical calculation. Thus, we here change Eq.(8.24) into other forms appropriate to
obtain numerically equilibrium configurations.

In numerical calculation, the standard method to obtain equilibrium configurations is
as follows (Hachisu 1986; Oohara and Nakamura 1990);

(1) We give a trial density configuration for p.

(2) We solve the Poisson equations.

(3) Using Eq.(8.24), we give a new density configuration.

These procedures are repeated until a sufficient convergence is achieved. Here, at (3), we
need to specify unknown constants, 2 and C. In standard numerical methods (Hachisu
1986; Oohara and Nakamura 1990), these are calculated during iteration fixing densities
at two points; i.e., if we put p; and py at z; and x5 into Eq.(8.24), they become two
simultaneous equations for 2 and C. Hence, we can calculate them. However, the proce-
dure is not so simple in the PN case: € is included in the source of the Poisson equations
for the variables such as X, )¢, ), i, (5)152-, hl(-f), Qg), QY and QEI). Thus, if we
use Eq.(8.24) as it is, equations for 2 and C' become implicit equations for 2. In such
a situation, the convergence to a solution is very slow. Therefore, we transform those
equations into other forms in which the potentials as well as Eq.(8.24) become explicit
polynomial equations in €2.

First of all, we define g2, ¢2i, 4, qu, ¢e and g;; which satisfy

Agy = —4npR?, (10.1)

Agoi = —4mpR*z’, (10.2)
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Aq, = —4mpU,
Ag. = —4mpe,
Agy; = —4mpa'al.

Then, X, 47, QY. Qz([)a i (5)1%, QZ(]T), and h§f) are written as

X = —2¢,2 — 2q, — (3T — 2)qe,
@ = ;(QZQ2 + e + gQu>7
QY = 0 +3(' = 1)g — ;qu = 0% + QY
Q" = 420+ QF

i = g2 + nos,
6 P = €irqorQ® + (5)Poi,
Qz(-]r) = 6ilele>

1

hgf) = 402 <€izk6jzlqm - §5ijCI2),

where Qé?, noi and (5) Py, satisfy

AQ(()D = —47T<3P — ;pU)xi = —47Tp(3(F —1)e — ;U)xi,

7

Ang; = —47rp<€ + ;U)xi,

. . . 9 .
Ay Py = —4mp {eizkxk <2U + F5) + (3)@} + U, ((3)5@;‘ + 3854 — géij(S)ﬁk,k)

1 1 A
+ g(UUW)ﬂ' — 1((3)@{[]&)’1- = —47TSZ-(P).

(10.3)
(10.4)
(10.5)

(10.6)

(10.7)
(10.8)
(10.9)
(10.10)
(10.11)
(10.12)
(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

Note that (55; and hZ(jG) are the cubic and quadratic equations in €2, respectively, as

)8 = :_4(5)P0i + l{xz (qe + 5%)’@ - 770i,<p}] +O° {—461‘qu% + l(ﬂ%,@ - qﬁ,gpﬂ

2 2 2

110 /i) A 9 (inn A0y _ 4 S0
i T35 @(55@0 - oZ')"'?(l"]Qo _Q0j>_35ijQ0}

i (Ij(b - Q2j) - ;l%‘(h}

(10.18)



7, .
) k
_Z (:E €izklk, o xjeiszk,@ — €izkqkjo — Ejqum',go) 5ijx €k2141

1,8, 5
- j . . '
+8x {3xi (:c Chaldl Ekdqb’@) Oxd (1: Ckzllp Ekzl%,@) H

= hiY + h 02, (10.19)
Finally, we write o as
6@ = (6)00 + (622 — 2,Q", (10.20)
where ) and (g a2 satisfy
Ay = 47Tp[(3F —2)el — (37 — 4)q. + 3qu]

) (A) 3 9 ,9
_(hij + hy; )U,z'j — §UU,ZU,Z + U’l@(iq"

= —4g Sl (10.21)

+ (30 +1)q.)

- 4
A(@)Ozg = 87TpR2 <5U +T'e + 2(3)@)0) - (46¢zk€jzlqkl - §5iij + hz(f)>U,ZJ + 3q2,U;

1 . 2
*(3)@',3( @g + (3)531 - 13(3)5k k)

= —4r 52, (10.22)

Using the above quantities, Eq.(8.24) is rewritten as

H? H3 RS
H—- ——+-—=A+B2P+DQ"+ —-Q° 10.2
202+34 + + 6o +C, (10.23)
where
1 U3
A=U+ — (2% + (3l — 2)%) + g{—((s)ao % + U<2Qu + (3I' — 2)616>}>
R* 1, ., A 1 1 .~ - .
B = > + —(2R U+ 2q + (3)@;) + *{—( 6)02 + 5(3)@ 3B + 438, U
1
+(30 — 1)q.R? + unQ + U2R2 +20:U + 585" + 5 (R +hi) |,
R 2 7 2 4 ) 2
D=5+ 6—4{2q4 + 9)0,R? + @l +2UR" + 57 + 5(%0 +4R%gg) ). (10.24)

Note that in the above, we use the following relations which hold for arbitrary vector @);

and symmetric tensor ();;,
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Qso = _ny + nya
nggo = y2ch - 2$nyy + xQnya

RQQRR = sz:m: + Qnyxy + yQny- (1025)

We also note that source terms of Poisson equations for variables which appear in A,
B and D do not depend on € explicitly. Thus, Eq.(10.23) takes the desired form for
numerical calculation.

In this formalism, we need to solve 29 Poisson equations for U, q., qy, 4=, (5)Foxs (5)F 0y,
Mows Toys Qbes Qs QS @ar Goas oy Gons Gus Ges B, B B RO RO, g, Gy G,
Qyz, (6)Q0, (6)Cr2 and g4. In Table 2, we show the list of the Poisson equations to be solved.
In Table 3, we also summarize what variables are needed to calculate the metric variables
U, X, w¥, ), 3)8i: 55 hg-]), hgf), hgf) and hz(f). Note that we do not need (5., 7o,
and ¢.. because they do not appear in any equation. Also, we do not have to solve the

Poisson equations for h(Y) and ¢,, because they can be calculated from h(Y) = —h(V) —h(yg)

and qyy = G2 = Gaa-

In order to derive U, ¢;, g2, q2i, q4, ge and g¢;;, we do not need any other potential
because only matter variables appear in the source terms of their Poisson equations. On
the other hand, for ¢,, Q(()?, Noi and hg»]), we need the Newtonian potential U, and for
5)F0is (6)c0 and gy, we need the Newtonian as well as PN potentials. Thus, U, ¢;, g2,

)
ij

@2i, 94, ¢e and g;; must be solved first, and then g,, Q(()?y nois hij 5 (5)Foi and (6ycra should
be solved. (6o must be solved after we obtain g, because its Poisson equation involves
¢ in the source term. In Table 2, we also list potentials which are included in the source
terms of the Poisson equations for other potentials.

The configuration which we are most interested in and would like to obtain is the
equilibrium state for BNS’s of equal mass. Hence, we show the boundary condition at
r — oo for this problem. When we consider equilibrium configurations for BNS’s where

the center of mass for each NS is on the x-axis, boundary conditions for potentials at

r — 00 become
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1 x
= /pdV +0(r™?), (e = :—2 /px2dV +0(r ),

1 Yy
= [ PRV + 007, 4 =" [ pyPav +0(7),
1 z
- - /pgdv +0(r ), ¢ = % /pzde +O0(r™),
T T
1 1
== /pUdv +O@r™), w= /pR4dV +O(r ), (10.26)

x y
P =25 / SPzav + % / SPlydv + O(r),

nt ol e [ o) 3
5 Poy = ﬁ/Sy chV—i-ﬁ/Sy ydV +O(r?), (10.27)

Moz = &/px2(€+ ;U)dV +0(r ),

nY 5 B
oy =3 | Py 2=+ 5U)dv +O(r ), (10.28)
xT 1 x
=3 /pr(g(r - §U)dV +00r™),  gn= % /,ORQxQdV + O™,
ny 1 nY
Q) =75 [ (80— Dz = SU)AV 067, =g [ pRPaV + 067
Y 1 z
or = Z* p2(3(T = 1)e - §U)dV +0(r™),  qu= % /pR2z2dV +0(r™), (10.29)
Ty
) = / SWAV +O(r~3), B = 3 [ 8 ayav + 06,
r
Py = ;/S@SZJ AV +0(r™), WY = T/Sg)xzdv +0(r™), (10.30)

3nvn*
h;g) = ign /Ség)yde—I—O(r_E’)?

Gow = i/pchdV +0(r™), 0oy = 20 /pw?deV +0(r™),
Quz = s /px2z2dv+ O(r=?), Qy = 3nyn /py222dV +O0(r™®), (10.31)
1 _ 1 _
()00 = ;/S(QO)dV + 06, (602 = ;/S@)czv LOoEY,  (10.32)
where dV = d3z, and
nt = :'37 (10.33)

We note that at r — oo, S — O(r~?), S — O(r=F), $() — O(r—*) and 52 —

]

O(r™), so that all the above integrals are well defined.
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XI. CONSERVED QUANTITIES

In this section, we show the conserved quantities in the 2PN approximation because
they will be useful to investigate the stability property of equilibrium solutions obtained
in numerical calculations.

(1)Conserved mass (Asada, Shibata and Futamase 1996);
M, = /p*d?’x, (11.1)

where

ps = po’y’
1/1 1,3 7 15 ;
- p[1 + E(ivz +3U) + Cj(gv‘* + 50U+ U + 6t + @ Bv') + O(C—G)]. (11.2)
Equation (11.2) may be written as

1,1 1,3, 13 45 A
e = ,{1 1 5(502 +3U) + g(gv“ + 50U + U+ 3Ue + @ 0i0") + O(c—ﬁ)} (11.3)

(2)ADM mass (Wald 1984; Asada, Shibata and Futamase 1996);

1
MADM = —g/A@Dd?’(L‘ = /pADMd?’{L‘, (114)
where
B 1, , 5 1(, 13, , 5 5,
papu —p[1—|- g(v +5+§U) + 64{@ + 5 v°U +Tev® + SUe + SU + Sy
. 1 2 _
+2(3) 00" + 327@(3)5@]' ((3)@',]‘ + 35 — 35z‘j(3)5k,k)} +O(c 6)]7 (11.5)
or

1 2 5 1 4 2 2 35 2 3 %
pavss = p L+ (v 5U) + (08 90U + T 45U+ U7+ )

+O(c—6)]. (11.6)

(3)Total energy, which is calculated from Mapy — M, in the third PN order (Asada,
Shibata and Futamase 1996);
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E= /pEd3x, (11.7)

where
1 1 1/5 5 5 1 ,
o= p|(50" +e = 5U) + (ot + 5uU + T+ 20 — U7+ 2(3%”1)
1 (11 a7 41 Z.
+C4{16v6+v4(F5+8U> ( HY +6I'eU + 8U2 (3)@1} —X)

5 : .15 )
—§U3 + 2I3)Biv"e + Seyp + SU 3y Biv" — ?U(@w + iUza

11
+§hijv v+ 5(3)@'(3)@‘

U 2 _
Tomp (zhijU,ij + )05 (085 + )35 — 35ij(3)5k,k))} +0(c 6)]- (11.8)

It is noteworthy that terms including (5)3; cancel out in total.
(4)Total linear and angular momenta: In the case K;* = 0, these are calculated from

(Wald 1984)

= /(Jz + 7¢47Jk szk)¢6d3x7 <11’9>

where J; = (pc? + pe + P)au’u;. Up to the 2PN order, the second term in the last line of
Eq.(11.9) becomes

1
ﬁ/hjk,i(3)5j,kd3$,
1
= 16/{ ki3 53') — hjrin@) 05| d’x
_ 7}%?{@“ 3BmkdS =0, (11.10)

where we use hj, — O(r~') and (38, — O(r~?) at r — oo, and the gauge condition

hjrx = 0. Thus, in the 2PN approximation, F; becomes

P = /pid?’:l:, (11.11)
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where

i = p|:U + CQ{U (U2 +TI'e + 6U) + (3)61} + 04{}“3'”] + (5)52 + (3)61‘(?]2 + 6U + PET)
4 . 67
4m(m$@w+¢m®¢+6nik+4Lﬂ+raﬂ+1mnﬂ+v4—xj}+0@5@.

(11.12)

The total angular momentum J becomes

J:/mf% (11.13)

where p, = —yp, + Tpy.
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XII. DISCUSSION AND SUMMARY

In this thesis, we have developed the PN approximation in the (3+1) formalism of
general relativity. In this formalism, it is clarified what kind of gauge condition is suitable
for each problem such as how to extract the waveforms of gravitational waves and how to
describe equilibrium configurations. It was found that the combination of the conformal
slice and the transverse gauge is useful to separate the wave part and the non-wave part
in the metric variables such as h;; and ¢¥. We also found that, in order to describe the
equilibrium configuration, the conformal slice is not useful and instead we had better use
the maximal slice. Although we restricted ourselves within some gauge conditions in this
thesis, we can use any gauge condition and investigate its property relatively easily in
the (3+1) formalism, compared with in the standard PN approximation performed so
far (Chandrasekhar et.al. 1965, 1967, 1969, 1970). We have also developed a formalism
for the hydrodynamic equation accurate up to 2.5PN order. For the sake of an actual
numerical simulation, we carefully consider methods to solve the various metric quantities,
especially, the 2PN tensor potential (4)h;;. We found it possible to solve them by using
standard numerical methods. Thus, the formalism developed in this thesis will be useful
also in numerical calculations.

In section 3, we used several slice conditions and investigated their properties, but, as
for the spatial gauge condition, we fix it to the transverse gauge for the sake of convenience.
It is not clear, however, whether this is the best gauge condition in numerical relativity. In
numerical relativity, the shift vector plays a very important role to reduce the coordinate
shear. If we fail to choose the appropriate condition, the coordinate shear in the spatial
metric will continue to grow, and as a result, the simulation will break down. The minimal
distortion gauge which was proposed by Smarr and York (1978a, 1978b) is a candidate
which may reduce efficiently the coordinate shear. Even if we use this gauge condition in
the PN analysis, equations for 4hij, 5)hij, 3)5i, (50 and (6)5; remain unchanged, but

higher order terms of h;; and 3; may slightly change. If we investigate the effects due
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to the difference, we may be able to give some important suggestions about the gauge
condition appropriate for numerical relativity.

In Part 2, we have developed the formulation to obtain the nonaxisymmetric uniformly
rotating equilibrium configurations. It is generally expected that there exists no Killing
vector in the spacetime of coalescing BNS’s because such a spacetime is filled with gravi-
tational radiation which propagates to null infinity. However, we may consider coalescing
BNS’s as the almost stationary object from physical point of view as described in section
7. Motivated by this idea, we have developed a formalism to obtain equilibrium configu-
rations of uniformly rotating fluid up to the 2PN order using the PN approximation. The
concept of being “almost” stationary becomes clear in the framework of the PN approx-
imation and, in particular, the stationary rotating objects can exist exactly at the 2PN
order, since the energy loss due to the gravitational radiation does occur from the 2.5PN
order.

Here, we would like to emphasize that from the 2PN order, the tensor part of the
3-metric, 7,5, cannot be neglected even if we ignore gravitational waves. Recently, Wil-
son and Mathews (1995), Wilson, Mathews and Marronetti (1996) presented numerical
equilibrium configurations of binary neutron stars using a semi-relativistic approxima-
tion, in which they assume the spatially conformal flat metric as the spatial 3-metric, i.e.,
Vij = 0;5. Thus, in their method, a 2PN term, h;;, was completely neglected. However, it
should be noted that this tensor potential plays an important role at the 2PN order: This
is because they appear in the equations to determine equilibrium configurations as shown
in previous sections and they also contribute to the total energy and angular momentum
of systems. This means that if we performed the stability analysis ignoring the tensor
potentials, we might reach an incorrect conclusion. If we hope to obtain a general rela-
tivistic eqiulibrium configuration of binary neutron stars with a better accuracy (say less
than 1%), we should take into account the tensor part of the 3-metric. On the other hand,

Bonazzola, Frieben and Gourgoulhon (1996) obtained an approximate nonaxisymmetric

70



neutron star by perturbing a stationary axisymmetric configuration. That is to say, they
do not solve the exact 3D Einstein equation. Thus, it is important to reexamine their
result on the transition between configurations, which are approximately ellipsoids, by
other methods including the method presented here.

In our formalism, we extract terms depending on the angular velocity ) from the
integrated Euler equation and Poisson equations for potentials, and rewrite the integrated
Euler equation as an explicit equation in 2. This reduction will improve the convergence
in numerical iteration procedure. As a result, the number of Poisson equations we need to
solve in each step of iteration reaches 29. However, source terms of the Poisson equations
decrease rapidly enough, at worst O(r~1), in the region far from the source, so that we can
solve accurately these equations as the boundary value problem like in the case of the first
PN calculations. Thus, the formalism presented here will be useful to obtain equilibrium
configurations for synchronized BNS’s or the Jacobi ellipsoid. These configurations will

be obtained in future work.
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APPENDIX A: EQUATION OF MOTION

(1) The spatial component of the conservation law

T =0

1

is written explicitly for the perfect fluid as
{(p + pe + P)utu; + Pot'| = 0.
s
This is equal to
)b

Hence we obtain

ot oxJ

= —a)’P; + a®(p + pe + P)utu, I},
where
6 0 P 6
Si=a’(p+ pe + Puu; = P*(l +e+ ;)Uz(: Vo).
We evaluate the last term of the right hand side of Eq.(A4) as

02 | .0 Ak kl
ulu, Iy, = —ao;(u)” +w'ug 87 5 — QURY -

Thus we obtain the equation of motion as

85'@- 8(Swj) _ 6P 0 k 1Sksl .
ot T ow = —ay’P; — aa; 5" + Sif Ty Tg0 1w
where
6
S° = at(p+ pe + P)(u")* (= (pr + P)¢” W)

«
(2) Here we consider
u, T" ., = 0.
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—3% [al/)ﬁ(P + pe + P)U“Uz} L (p+ pe + P)utu, Iy, + P; = 0.

(A2)

(A3)

(A4)

(A7)

(A9)



If Egs.(Al) and (A9) are satisfied, then we obtain
Ty ., =0, (A10)
since u? does not vanish. Here we used the relation

u, T ., =T o + T (A11)

(2

Therefore the set of Eqgs.(Al) and (A9) is equivalent to the set of Eqs.(Al) and (A10),
i.e. the conservation law.

We return to Eq.(A9), which is rewritten as
(peu“);u = —Pull,. (A12)

Here we used the baryon number conservation (pu*),, = 0 and u,u” ., = 0. Eq.(A12) is

rewritten as

<\/—_gpeu“) :—P<\/—_gu“) : (A13)

o s

Hence we obtain

OH  9(Hv') Iap®u?)  O(aytu’e?)
T i A G T P (A14)
where
H = aypeu’ = p,e,
- ui i /YHS
v:@—ﬂﬁ%y] (A15)
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APPENDIX B: DERIVATION OF LOGARITHMIC KERNEL

We describe the derivation of the logarithmic kernel which works well at the 2PN

order. There are some methods to derive the logarithmic kernel (Fock 1959; Damour

1982). For instance, the direct integral may be performed. Among all, we explain the

method used by Ohta et.al. (1974b) who derived the Lagrangian for many bodies by

using the logarithmic kernel. In this method, the problem to find the kernel is reduced to

solving the ordinary differential equation. It has not been known which strategy works

well to search suitable kernels at higher PN orders (beyond 2.5PN order). Since this

method is one of candidates of the strategy, we describe it by taking into account the

extension for more general cases.

We begin by considering the following type of the equation

af = ratn)
TaTp
where a # b and n takes 0,1,2,---. Here r,, r, and r,, are defined as

Ta = |X_Ya|7
Ty = |X_yb|7

Tab = |Ya - Yb|

Since we can take f as f(ry, 7, 7a), We obtain

o ,0r, O ory, 0O
Af(ra,ro,Tap) = %%ﬂ. A + axiafm)f(ra,rb,rab)

:K82 82)+2(1 0 1 8>+2rir2 82

_ 4+ —— a
orz = or? T Orq Ty OTp

ToTy Ora 0Ty

We introduce a set of variables (s,t) in place of (r4,7,) as

§=Tq+ Ty,
t=1"Tq—Tp.
Then Eq.(B3) is rewritten as
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92 1 1\0 1 1\ 21k 9 P
2 ) ) T e gl

(B5)

Af(raro,ras) = | e e
a a

However, Eq.(B1) suggests that f is symmetric for r, and r,. Hence, since f does not

depend on ¢, f is simply written as f(s). Then Eq.(B1) becomes

2s d = s*—r% d

Af(s) = (——+

roTy ds rory  ds?

)£(s)

= (B6)

TaTy '

That is to say, the problem to find a solution of Eq.(B1) reduces to solving the following

ordinary differential equation

(260 s+ ran)(s = 7an) 55 () = " (B7)

This equation is rewritten as
d d
—((52 - rgb)—f) =s". (B8)

This is integrated as

df 1 s+ 8" g4+ C,
A + 5 5
ds n+1 S+ Tap s —r2

(BY)

where ] is a constant. We can take C; = 0. In the following, we consider two cases, odd

n and even n separately.

(1) odd n case

Here we consider the case of odd n. In this case, we obtain
ST 8" gy Ty = (5 rg) (8T A ST ). (B10)

Therefore, Eq.(B9) for C; = 0 becomes

ﬁ_l

n—1 n—3,.2 n—1
ds_7n+1(s + 5" ). (B11)
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Thus we obtain

1 1
f= (58" + 5" 2%+ srl ) + o (B12)

where Cy is a constant.

(2) even n case

Here we consider the case of even n. For even n, we obtain
S" S T g T = (5 ) (8T A S T sl ) (B13)

Thus, Eq.(B9) for C; = 0 becomes

af 1

n
1 T

= T S T sy —= B14
ds n+1(5 TS Tap e STy )+n+1s—|—7”ab (B14)
Thus we obtain
1 1, 1, 1, . .
f= n—i—l(ﬁs + m—r 2r2b+...+§52rab2—|—rabln(s+rab)) + Oy, (B15)

where (3 is a constant.
An alternative type of the kernel is obtained as follows: By using the nonvanishing

integral constant C, we rewrite Eq.(B9) as

a1 A B

n—1 n—3..2 n—2
_ B16
- n+1(s + 52, s >+s—rab+s+rab’ (B16)
where A and B denote
1( e C1
2\n+1  ru/’
— L —— B17
2 (TZ + 1 Tab> ( )
Hence we obtain
f= 1 (ls” + Ls”_zﬁ +-- 4 1527’"_2) + Aln(s —re) + Bln(s +ry), (B18)
n—+1\n n—2 ab 9”7 "ab “ wr

where constants A and B satisfy
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n

r
A+B=—%2_ B19
* n+1 ( )
At the 2PN order, we consider the case of n = 0, i.e.
1
Af = : (B20)
TaTp

Eq.(B18) becomes

f=Aln(s —ru) + Bln(s + r4), (B21)

where A + B = 1. Thus, we obtain f = In(s — r4) for A = 1 and f = In(s + ry) for
B=1.

It is worthwhile to mention that this method is not necessarily useful for more general
cases which may occur at higher PN orders: When the kernel does not satisfy the sym-
metric equation like Eq.(B1), we cannot replace the problem of finding the kernel with
that of solving the ordinary differential equation, as implied by Eq.(B5). Furthermore,
for more than three points, we cannot transform the Poisson equation for the kernel into
the ordinary differential equation in general. At the 3PN or higher PN orders, the method
described here may not be so useful, since contributions from many points on the matter

should appear in the source terms of the Einstein equation.
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APPENDIX C: CALCULATION OF 5)h;;

We make use of the transverse property of 7;;, which is guaranteed by the transverse

gauge condition, in order to obtain (5h,;. Using the following identity

@Tij = ((4)7_ik$j),k7 (Cl)

Eq.(2.66) can be rewritten in the surface integral form

10

Thus, we only need to estimate terms of O(r~?) in (4y7;;, which come only from the shift
vector in the conformal slice as

1, . 1. 1. 3 i i b n' _

where
Zii(t) = —4/pviyjd3x. (C4)

Here, note the following relations as

0

o5p % = 21y, (C5)

and
Therefore, the relevant terms of (4)7;; for the surface integral become

. ) 2 .
@Tij — (3)/82',]' + (3)/6]',1' — gé‘i]’(g)ﬁu
1 . A I N 9. o 155
— EH_S]M + 3<Iikn n’ + Ijpn n) - Elkkn n’ + ?Ikm n’n"n }
1 15 .. 27 ..
—*5@‘{—

k.l —4
. 5 A+ 55 Tan '} + 00, (C7)

Thus we obtain h;; at the 2.5PN order as
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10

. . ) ) ‘
e i i — 30 In*dS
197 ) (@0 + @i = S0mwbu)ain
4

=45 (1), (C8)

e hig =

This derivation seems fairly simple owing to the gauge condition. Thus, it is expected that

higher order calculations, say at 3.5PN order, may become easier in this gauge condition.
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APPENDIX D: CALCULATION OF (3)0;, (50

In this appendix, we briefly comment on a method to solve the Poisson equations for
@0 and (53, i.e., Eqs.(2.59) and (2.61). Since the source terms of them have terms
such as —Uz and —2(4)1% which behaves as O(T_Z) at r — o0, it seems that a technical
problem arises in solving these equations in numerical calculation. It should be noted
that in the Newtonian limit, —U, is O(r~%), but at the 1PN order, it becomes O(r?)
because [ pdV # 0. However, this is easily overcome in a simple manner. We consider
the case of the maximal slice for simplicity, but other cases may be treated similarly.

First of all, we write (33; and (5)3; as,

1.
@0 = =4 P+ 5X.

2
1 .
)0 = =4 P + @)X (D1)

2( )
where x and (3)P; satisfy Eq.(5.5) and the first equation of Eqs.(4.31), respectively. ()P

and (4)x satisfy the following Poisson equations;

4 P ~ 1, . 1
Aﬂat(5)P@- = —47Tp{1}Z <U2 +2U 4+ ¢+ ;) + (3)&1} + ZU,j(g)Ai]’ — g(UU),z — Z((g)ﬁlU’ﬂ’i s

AfZat(4)X = —4(4)¢~ <D2>
(1yX can be written as
WX = — /p4|x —yld*y, (D3)
where
9 5
p4=p(v +5+§U). (D4)

From Eqs.(5.5) and (D3), x; and (4)x,; become

x_
/ yp y iL‘U“‘Th,
\X—

—/dgym —
x —

y! = =22yt + (@yis (D5)
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where 7; and (4)n); satisfy

Aflamz' = —477,0$i7

Aflat(4)77i = —47Tﬂ4xi‘ <D6>
Hence,
3)52 = —4(3)PZ- — ; U — 7 ),
(
1/, .
)0 = =4 P; 5(293 @y — (4)771')- (D7)

Since the source terms of the Poisson equations for (3F;, (55, 7; and (4y7; behaves as
O(r~™), where n > 5, at r — oo, these vector potentials can be accurately obtained by
solving the Poisson equations for them under appropriate boundary conditions. It should
be noted that the non-compact sources of the Poisson equation for (5)F; may be regarded
as O(r~%) in the 2PN approximation because U is O(r~?) in the Newtonian order. Thus,
there is no difficulty to obtain (3)3; and (5)53;.

Finally, we note that the above method is not unique prescription. For example, (3)0;

in the first PN approximation may be expressed as (Blanchet, Damour and Schéfer 1990)

1
3B = —4) b+ 5 (((3)Pk$k),i — XZ,i)a (D8)
where y» satisfies

AflatXe = —47T,0Ui$i- (D9)
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APPENDIX E: INTEGRATED EULER’S EQUATION

Here we shall derive the integral form of the general relativistic Euler’s equation as

lnut:/dp. (E1)
p+pe+ P

The procedure to derive this equation can be divided into three parts, by following Light-

man, Press, Price and Teukolsky (1975).
(1)

Let us assume that there exists a timelike Killing vector £ so that the four velocity u*

1/2

can be expressed as £#/|€ - £]'/?. Then we obtain the four acceleration as

a=u'V,u"

1
= SV*Inlé-g], (k2)
where we defined |€ - {| = —&#, and used the Killing equation
V., + V.6, =0. (E3)

(2)
By acting the projection operator on the conservation law, we obtain
PopV, T = (p+ pe + PYuVgu + (VaP + uou’ V4 P)

o, (E4)
where the projection tensor P,z is defined as
Pag = Gop + U UG- (E5)

Here it is noteworthy that the geodesic equation is not used in order to derive this result.

(3)
Here we consider the uniformly rotating object. Then we can assume that the four

velocity is expressed as
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0 0
[ Y —
u u(8t+98¢)’ (E6)
where () is a constant. Then the timelike Killing vector is written simply as
0 0
FP=(=+Q—). E7
&= (5 9,) (E7)
From w*u, = —1, u' is written as
1
uh = ———. E8
R )
From Egs.(E2) and (E8), we obtain
u'V,ut = —Vinu', (E9)
Hence from Eq.(E4), we obtain
VP = (p+ pe+ P)V*Inu, (E10)
where we used
£V, P = 0. (E11)
Thus we obtain
dpP
Inu' = /7 (E12)
p+pe+ P
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APPENDIX F: TAIL
1. radiative moments including tail effects

(1) tail terms:

In the post-Minkowskian approximation, the background geometry is the Minkowski
spacetime where gravitational waves at the lowest order propagate (Thorne 1980; Blanchet
and Damour 1984a, 1984b, 1986). On the other hand, the gravitational waves propagate
on the true light cone. It is believed that the corrections to propagation of gravitational
waves can be taken into account if one performs the post-Minkowskian approximation up

to higher orders. That is to say, since the true wave operator is formally expanded as
Utrue = Dflat + GD(I) =+ G2D(2) oy (F]'>

all one must to do is to solve iteratively in terms of G

167G

Utrue hij = 1

T;. F2
Ty (F2)

In fact, Blanchet and Damour (1988, 1992) obtained the tail term of gravitational waves
as the integral over the past history of the source. They used the complex analytic
continuation in order to produce the so-called log term in the tail contribution. As a
result, it is not so physically transparent what is the origin of the tail term. As suggested
by Eq.(F1), the tail term originates from the difference between the flat light cone and the
true one which is due to the mass of the source GM/c? as the lowest order correction. In
this appendix, we wish to clarify that the tail term originates mostly from propagation of
gravitational waves on the light cone which deviates slightly from the flat light cone owing
to the mass of the source. For this purpose, we transform Eq.(2.63) into the following
form

4M\ O* 4M 0?2
[—(1 + 7)@ + A}h]k = Tik — T@h]k

= Fi. (F3)
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At the lowest order, we obtain (4)Tjr = (4)Tjk-

(2)Green function:

Let us consider the following tensor Green function

[—(1+ 41”) 8&; + A G pg (2, y") = _; (100kq + GjqBkp ) 0" (x — y). (F4)

The tensor Green function for M = 0 i.e. the Minkowski spacetime is written in many
papers (For instance, Thorne 1980). The following procedure used here is similar to that
by Thorne (1980) for the Minkowski background spacetime.

The Green function satisfying Eq.(F'4) can be constructed by using the homogeneous

solutions for the equation

where we defined

DM:{—(1+€\4)§;+A}. (F6)

The homogeneous solution of Eq.(F'5) takes a form of
e fulp) TN (6, 9), (F7)
where we defined
p=wr. (F8)

Here TAY!™ represents a kind of tensor harmonics (Mathews 1962; Campbell, Macek and

Morgan 1977; Thorne 1980) which satisfies
LQT)\Z’lm — l/(l/ + 1>T)\l’lm' (F9>

Here L? is an angular momentum operator defined as

0 4,0
L? = —1r* Ao + Erzg. (F10)
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. . ! . .
The tensor spherical harmonics 72" '™ is written as
14 2

720 = N ST (2w m | lm) Y e (F11)

m/=—l' m'"=-2

1
oM™ = ——y'm, F12
73 (F12)

where (I'2m’m” |l m) is a Clebsh-Gordon coefficient and I’ = [ £ (0,1, 0r 2). Here ¢™ and

0 denote symmetric basis tensors. In terms of Cartesian basis vectors e,, e, and e, these

tensor basis are written as

1 1

1 1.
til = :F§<ex e, +e, ex) - §Z(€y Qe +e8 69)7

\)

1

d=e, Re,+e,®e, +e,Qe,. (F13)
There is the orthonormal property between t™ and §

man*x __ cmn
m _

kb = 1, (F14)

where * denotes the complex conjugate. The tensor spherical harmonics has the orthonor-

mal property
/T)\lLMT)\’l/L/M/*dQ _ 5)\)\/5ll’5LL’6MM’- (F15)

Then the radial function fy(p) = pfy(p) must satisfy

e AMw V(' + 1)1 -
[din +1+ P }fl’(ﬂ) =0, (F16)
so that Eq.(F7) is a solution of Eq.(#'5). Thus we can obtain homogeneous solutions of

Eq.(F5) by choosing fi(p) as a kind of spherical Coulomb functions; ul(,i )(p; v), Eu(p;y)
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and Gy (p;7) with v = —2Mw. Here, we adopted the following definition of the spherical

Coulomb function (See Messiah’s “Quantumn Mechanics” )

Fy(p;iv) = ae®p™ F( 4+ 1+ iv|20 + 2| — 2ip),
u® = £2ieF 0P p W (14 1 % iv[20 + 2| F 2ip),

1 ] =) _—io,
Gilpi) = 5 (uy e e, (F17)

where ¢; and o; are defined as

o sl 1)
20+ 1)!
o =argl'(l + 1 +1i7). (F18)

Here, F' and W, are respectively the confluent hypergeometric function and the Whittak-

er’s function. These spherical Coulomb functions have asymptotic behavior as
for r — oo

1
F, ~ sin(p—yanp— ilﬂ—l-al),

1
Gy~ cos(p —vIn2p — ilﬂ' + al),

1
u™®) ~ exp {ii (p —~vIn2p— ilﬂ)]’ (F19)
and forr — 0
Fvl ~ Clpl+1
G ! - (F20)
Yl Da”

Thus we can express the Green function as

ijpq T y Z e zeol//dwsgn \I/ew)\l lm(I)\Ilqu)\l/lm*(y)e(T—7”/)
A'lm

FUSA @) e T ()O( —)], (F21)

where we defined \Ifg,;”l/lm(x) and \Iffk“”\l/lm(x) as
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ewAl'lm ’w’ —jwt —1_ (e "Im
WA (@) = [ T ) () TR

wAl'lm ’w’ —iwt _— "lm
Wi (@) =[G T R () T (F22)

We use G for the retarded Green function.

(3) waveform:
The waveform is expressed as
- T
W = = [ [ G, )y

1 m m m m 1
:7Z[I<l>l (t,r)]ﬁg'l 4+ g<i>t (t,r)Tﬁz‘l }4—0(72), (F23)

7ﬁlm

where the transverse and traceless tensor spherical harmonics 772!™ and T22!™ have

respectively an electric-type parity and magnetic-type parity. By using 7*"*™, the trans-

TE 2.0Im TB 2.0Im

verse and traceless tensor spherical harmonics and are written as

7}%2.[?71 — l(l - 1) T2l+2lm
2020 + 1)(20 + 3)

30 =1)(1+2) o
T m
\CENEE)
(+D)0+2) 99
T2i-20m F24
2@ )@+ ’ (F24)
@i?.lm:_i l_1T2l+1lm

20+1

. l+2 20—11
iy o2 pri-iim, F2
“Vars (F25)

Here 1< and S<>!™ are defined as

. —7 —_ _/
I<l>lm _ —8(—@)l+2/dwd4x'e tw(t—r—2M In 2wr—t’)

o | DU+ o1 aime :
o L(Ql—l)(ﬂﬂ)Tp‘; el

Cior | BU=D+2) ims ,
° $2(25—1)(2l+3)Tm Fwr)
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, (=1 s 1
1I14-2 m* Tpg.
e J 2(20 4+ 1)(21 + 3)qu Fiio(wr )] o (F26)

. —iw(t—r— —
S<l>lm — —8(—2 l+2/d(.dd4l'/€ tw(t—r—2M In 2wr—t’)

—zall /l+2 lllm*F u)’l“)
wzﬂ,/ 2itlmep (wr )} (F27)

It should be noted that < [ > becomes, at the Newtonian order, the [-th temporal deriva-

tive (1) (shown later), though it is not introduced to mean the I-th temporal derivative.

(4) slow-motion sources:
For slow-motion sources, we obtain the mass moment for the lowest-order source (474,

up to O(Mw) as

I<l>lm — (2[_?1)” l+2 /dwd4 ! —iw(t—r—2M In 2wr— t’)e—z’on
(+1)(+2) .
% w 220 — 1)(20 + 1)Tp2ql M (1 4+ mMw)(wr')'™ 2(4)qu}7 (F'28)

where we used the expansion of ¢; and o7 in Mw as

cq=1+rMw+ O(M?W?),
2Mw
s

!
o, =—-20Mw — Z

s=1

+ O(M?w?). (F29)

On the other hand, the mass moment becomes, at the Newtonian order (Thorne 1980),

lim B 8 e | T+ +2)
V"t =) = PR iz(m— )20 +1)

x/dwd%e iw(t—r— t)T2l QZm*(wr’)l_2(4)qu

o 167 (l+1)<l+2) dl Im=x_1 33
- (2z+1)!!J 21— 1)1 dtl/py ra (F30)

We evaluate the following integral in Eq.(F'28) up to O(Mw) as
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/dwd4x/e—iw(t—r—2M1n2wr—t’)e—w,,2(1 +ﬂ_Mw)(wr/)l—QTIJqu—le*(4)7_pq

_ /dwdtlefiw(t77“72Mlnrft’)w172 / d%’T;ql’?lm*(@qu
-2 1
x[1 4+ 7Mw + 2iMw(n2w + 3" = + C) + O(M*w?)]
s=1 S
_ /dwdtle—iw(t—r—ZMlnr—t’)wl—2 / d3$/T2l—2lm*(4)qu

xp—zMw{Qj +m@—7fmx)—umwpun}+omﬁwﬂ. (F31)

s=1 s
It is convenient to use the following formula (Gradshteyn and Ryzhik 1980; Blanchet and
Schéfer 1993) which will be proved later

! IAT . dr ™ .
)\/ dxInze” + 2/ ?e = —gsgn()\) —i(In ||+ C), (F32)
0

where C' is Euler’s number and sgn(\) is a sign of A. By using this formula, we can

evaluate Eq.(F'31) further as

/dwd4 ! —iw(t—r—2M In 2wr— t) —io]_ 2(1+7TM(,<))(WT,)Z_2T5ql_2lm*(4)qu
—/dwdte iw(t—r—2M Inr—t') l 2/d3 /T2l 2lm*(4)7—pq
. Ood{]j .
1 —2Mw{i(Y - +1n2 /dl iwa '/—W O(M?w?
x[ w{z(Z +n)+w zlnae™ +i [ e }+ ( w)}
s= 18
—|—/ dolnv IV (u = v) +/ Jj (u—v)}+O(M2w2)}

zl[ﬂmmm+mw/ doT O™ (u m@w+;s+m@}uwwwm (F33)

where w = t —r — 2M Inr. It is worthwhile to mention that In2 in Eq.(£33) can be
removed by using the degree of the freedom to translate the time coordinate. Here we

assumed
Iy V" (—00) =0, (F34)

which means that the system becomes static as it goes to the past infinity. Thus <>

is rewritten as
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1< () = 10" () + 2GM [ dol{" (@ — ) (Inw + Z ) +O0(G°M?).  (F35)
0

By using the post-Minkowskian approximation, Blanchet (1995) obtained the (radia-

tive) mass moment as
[<l>lm<u> _ [](\l]) lm(u) 1 2GM/ dv[](\l,+2) lm(u . v)(lnv + Kvl) + O(G2M2), <F36)
0

where

. _l§1+ 21 + 50 +4
T as T+ )+ 2)

(F37)
Eq.(F35) does not agree with Eq.(F£36). The reason for this is that in the derivation
of Eq.(F'35) we do not take into account all nonlinear terms in 7;;,. Some of nonlinear
terms in 7, take a form of M x I im Therefore, it must be important to calculate
the contribution from these nonlinear terms. Thus, the present approach may not be
considered as fairly simple compared with the post-Minkowskian approximation used by
Blanchet (1995). However, it is noteworthy that the luminosity of gravitational waves
obtained by the present approach agrees at the tail term i.e. O(c™3) with that by the
post-Minkowskian approximation.

The similar procedure can be used to calculate the (radiative) current moment. We

obtain S<I>!m ag

S () = S () + 2GM [T oS - (“““LZ 5) TOGM),  (F38)

where S (l)lm(t — r) is the [-th current moment at the Newtonian order defined as

SY"t—r) = -

327 J (1+2)(20+ 1)

Im * l 133
U+ DN\ 2(0—1)(1+1) ) /p(:‘qux pu?Y; d°x (F39)

Here €, is the Levi-Civita symbol in the 3D Euclid space. Here, lem is a vector spherical

harmonics defined as

U 1
yrim = 5" N U m"w! [Im)Y" e, (F40)

m/'=—l'm''=-1
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where I’ =1+ (1or0). Here {™ is the basis vector which is written, in terms of Cartesian

basis vectors e, e, and e, as

50 = €z,

£i1 - :F\}ﬁ(eac £ Z'ez)- <F41>

On the other hand, by using the post-Minkowskian approximation, Blanchet (1995) also

obtained the (radiative) current moment as

S Im(y) = Sj(\l,) lm(u) +2GM /OO de](\l,“) lm(u — v)(lnv + n;) + O(G*M?), (F42)
0

where
=1 I—1
A , F4
=2t (F43)

In total, it is found that the log term and the Y~ 1/s in the tail terms originate from
the propagation on the slightly curved light cone determined by Eq.(F6). In particular,
the operator defined by Eq.(F6) includes only the gravitational redshift effect. Tt is
worthwhile to point out the following fact: Only the log term has a hereditary property
expressed as the integral over the past history of the source, since the constant such as
> 1/s represents merely an instantaneous part after performing the integral under the

assumption that the source approaches static as the past infinity.

2. an integral formula

Here, we prove the useful formula (Gradshteyn and Ryzhik 1980; Blanchet and Schéfer

1993):

! AT [ dx AT m ;
)\/ drlnxe™® + 2/ e = —Esgn()\) —i(In ||+ C), (F44)
0 1

where C'is Euler’s number and sgn(\) is a sign of \. We evaluate separately the real and
imaginary parts of the left hand side (L) of Eq.(F44): First we evaluate the real part of
the left hand side of Eq.(F'44) as
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Re(L) = )\/ dxInx cos \x — / — sin Az
0 1T
T

= —§sgn()\), (F'45)

where we used

1 1
/0 dxInz cos \x = —|>\|(si(|/\|) + g),

<d(Me)
/M o Sl = —si(lA) (F46)

Here si is a sine integral function. Next the imaginary part of Eq.(F44) is obtained as

[m(L):)\/ da:lnx81n)\x+/ — cos A\
0 1T

=—C —1In|}|, (F47)
where we used

1
)\/ drInzxsin \x = —(C’+ In|A| — Ci(|)\|)),
0

~ d
/ & cos Az = —ci(|A]). (F48)
1

T

Here ci is a cosine integral function. Hence Eq.(F'44) is proved from Eqs.(F45) and (F47).
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APPENDIX G: BRIEF HISTORY OF POST-NEWTONIAN APPROXIMATION

Celestial mechanics in the universe is governed by general relativity. Since it is very
difficult to solve exactly Einstein equation for realistic astrophysical objects, we must use
some approximation schemes. The post-Newtonian approximation scheme is one of the
most useful and successful scheme. Einstein, Infeld and Hoffman (EIH 1938) initiated to
derive the equation of motion in general relativity using the post-Newtonian approxima-
tion. In their work, the equation of motion is derievd from the integrability condition
of the field equation (Einstein equation) without solving the conservation law. They ob-
tained the equation of motion at the so-called first post-Newtonian order. Bertotti and
Plebanski(1960), Havas and Goldberg (1957, 1962) used the post-linear approximation
in order to obtain the equation of motion. The theory of general relativity has a novel
property, a prediction of gravitational waves! As for this issue, long outstanding contro-
versy had been done (Ehlers, Rosenblum, Goldberg and Havas 1976; Walker and Will
1980a, 1980b; Damour 1982, 1987): Does a moving body radiate gravitatinal waves? Is
the motion of the body affected by the radiation reaction? There were a lot of arguments
about radiation damping or even radiation anti-damping. For the fluid, Chandrasekhar
(1965, 1967, 1969, 1970) started a series of calculations on the post-Newtonian approx-
imation up to the higher order than the 1PN order. At last, at 1970, Chandrasekhar
and Esposito obtained, at the 2.5PN order, the correct formula for the energy loss, the
so-called quadrupole formula. However, their calculation is rather complicated mainly
because the gauge condition and the expansion scheme change on the way of the itera-
tion of the post-Newtonian approximation scheme. Some authors (Anderson and Decanio
1975; Papapetrou and Linet 1981; Breuer and Rudolph 1981, 1982) performed a straight-
forward and systematic calculation up to the 2.5 PN order by using the Harmonic gauge
throughout the iteration.

Observationally, the celebrated event occurred at 1974. Hulse and Taylor (1975) dis-

covered a binary pulsar PSR1913+416. This binary pulsar, which is called Hulse-Taylor
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binary in honour of them, was soon realized to be the laboratory on the theory of general
relativity. The gravitational waves and the radiation reaction were verified by Taylor,
Fowler and McCulloch (1979) from the analysis of the secular motion of the Hulse-Taylor
binary. The accuracy of the analysis has been improved year by year and the observa-
tional value of the decay rate of the orbital period agrees wonderfully with that predicted
by the theory of general relativity (Will 1987; Taylor and Weisberg 1989; Damour and
Taylor 1991).

Conversely, this splendid discovery has stimulated the theoretical study of gravitation-
al waves physics. For example, many people (Ehlers, Rosenblum, Goldberg and Havas
1976; Walker and Will 1980a, 1980b; Damour 1982) reexamined the validity of derivations
of (1) the quadrupole formula and (2) the equation of motion with radiation damping,
both of which were obtained till those days (Landau and Lifshitz 1962; Peters and Math-
ews 1963; Chandrasekhar and Esposito 1970; Burke 1971; Misner, Thorne and Wheeler
1973). The equation of motion up to the 2.5PN order were derived by many people by
using some techniques (Hadamard’s renormalization, Riez kernel method etc. ) which
are necessary for treating the point particle (Damour 1982, 1987). Along the course of
renormalization for the point particle, Kimura, Ohata, Hiida and Okamura (1973, 1974a,
1974Db) derived the equation of motion up to the 2PN order, while Westpfahl et.al. (1979a,
1979b, 1980) obtained it. As a consequence of many arguments, it was concluded that
any satisfactorily rigorous derivation had not been done. Bel et.al. (1981) obtained the
equation of motion up to the 2PN order in more rigorous manner. At last, Damour and
Deruelle (1981a, 1981b, 1981c) derived the equation of motion up to the 2.5 PN order in
the more rigorous manner (Damour 1982, 1987). On the other hand, without using the
point particle, Grishchuk and Kopejkin (1983, 1985) derived the equation of motion by
using the hydrodynamical equation which was obtained by Chandrasekhar et.al. (1969,
1970) Their result agrees with that obtained by Damour and Deruelle.

In the usual post-Newtonian approximation, it is assumed that (1) the motion of bodies
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is slow and (2) the gravitational field is weak everywhere. However, since the compact
object including neutron stars and black holes has a strong internal gravitational field,
the second assumption of the everywhere weak field may not be appropriate. Thus some
authors argued whether the equations of motion obtained above are valid for the compact
binary system. Prior to Damour and Deruelle’s work, D’Eath (1975a, 1975b) proposed a
scheme to construct an equation of motion by applying the asymptotic matching method
to the Schwarzschild or Kerr metric. In fact, he obtained the equation of motion up to the
1PN order, which can describe the motion of compact spinning objects. Kates (1980a,
1980b) used this asymptotic matching method to verify the validity of the quadrupole
formula and the equation of motion for slow- motion compact objects. Thorne and Hartle
(1985) also argued the equation of motion using the EIH method and the asymptotic
matching method. By using this asymptotic matching, Mino, Tanaka and Sasaki (1997)
recently obtained the covariant form of the equation of motion up to the first order of
the mass ratio. Other methods to describe the motion of the compact binary have been
proposed by some people: For instance, Futamase and Schutz (1985), Futamase (1985,
1987) introduced a point particle limit and Anderson (1987) tried to extend the EIH
method. As for the equation of motion of bodies with higher multipole moments, some
arguments have been done at the 1PN order (Brumberg and Kopejkin 1989; Damour,
Soffel and Xu 1991, 1992, 1993; Damour and Vokrouhlicky 1995).

In the early 1980’s, there were many arguments on the higher order calculation of
the post-Newtonian approximation. Some people obtained the divergent integrals at the
3PN order (Kerlick 1980a, 1980b; Anderson et.al. 1982). This fact cast doubts on the
post-Newtonian approximation scheme itself (Damour 1982, 1987). Futamase and Schutz
(1983a, 1983b) proposed a new kind of scheme and argued that the divergent term forces
us to use the non-analytic term such as log term. The log terms at the external region of
the source are obtained explicitly as the tail term by Blanchet and Damour (1988, 1992)

who used the post-Newtonian approximation and the post-Minkowskian approximation
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(Blanchet and Damour 1984a, 1984b, 1986, 1988).

Here we shall return to gravitational waves. The gravitaional waves are believed to be
very weak in usual astrophysical context (Thorne 1980, 1987). However, Weber’s chal-
lenge to detect the gravitational waves (Weber 1959, 1960, 1967, 1969, 1980) stimulated
the theoretical study of gravitational waves from some astrophysical processes, for in-
stance orbital motion of binaries, collision of two bodies and so on. In these astrophysical
situations, the motion of the source is so slow that the post-Newtonian approximation
can work well to calculate the waveform from astrophysical sources. Epstein and Wag-
oner (1975) presented the formula for the waveform at the 1PN order. For two body
systems, Wagoner and Will (1976), Turner and Will (1978) calculated the waveform at
the 1PN order for circular orbits, gravitational bremsstrahlung and head-on collisions.
However, there remains a serious problem in the post-Newtonian waveform formula ob-
tained by Epstein and Wagoner. Among all, divergent terms appear in the derivation of
Epstein and Wagoner’s formula, though the transverse-traceless nature of the waveform
makes divergent terms in the waveform cancel out as a whole at the 1PN order. This is
partly because the post-Newtonian approximation makes use of the spatial hypersurface,
though the gravitational waves propagate on the light cone (null hypersurfaces). This
implies that it is necessary to estimate waveforms using the post-Newtonian approxima-
tion with great caution. This drawback prevented us from extending straightforwardly
Epstein and Wagoner’s approach to higher orders. Thorne and Kovacs developed another
formalism to obtain the waveform from weak-field sources (Thorne and Kovacs 1975; Ko-
vacs and Thorne 1977, 1978; Crowley and Thorne 1977). They used the slightly curved
wave operator in place of the wave operator in the Minkowski spacetime. However, it is
not clear whether their approach can be extended straightforwardly to the higher order.
At 1980, Thorne reviewed the gravitational waves physics till that time. He proposed
the systematic scheme of iteration in which one starts the flat spacetime and expands

the Einstein equation with respect to the gravitational constant . This scheme is now
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called the post-Minkowskian (PM) approximation. Blanchet and Damour developed the
systematic scheme to calculate the waveform at the higher order following the proposal
by Thorne (1980). In their scheme, the post-Minkowskian approximation plays a cru-
cial role in calculating the external field (outside the source), while the post-Newtonian
approximation is mainly used near and in the source.

Recently, it becomes very important to calculate the waveform from the binary up
to the higher PN order, since the interferometric gravitational waves detectors under
construction, such as LIGO and VIRGO, need the accurate template of the waveform in
order to apply the matched filtering method to gravitational waves with small signal-to-
noise (SN) ratio (Cutler et.al. 1993; Finn and Chernoff 1993; Cutler and Flanagan 1994;
Apostolatos et.al. 1994; Dhurandhar and Schutz 1994; Sathyaprakash 1994). Blanchet
and Damour (1988, 1992) found the tail term at the 1.5PN order compared with the
lowest (Newtonian) quadrupole waveform. Blanchet have obtained the waveform from
the compact binary up to the 2.5PN order (Blanchet 1993, 1995, 1996). Recently, Will
and Wiseman (1996) have developed the formalism to obtain the waveform by improving
the Epsein-Wagoner formalism. Their waveform agrees with that by Blanchet up to the
2PN order (Blanchet et.al. 1995). Kidder, Will and Wiseman (1993b), Kidder (1995)
considered the contribution of the spinning components of binaries to the energy flux
of gravitational waves. It is worthwhile to mention that it is necessary to derive the
equation of motion at the 3PN order at least for the quasi-circular orbiting binary in
order to evaluate the waveform at the 3PN order. Therefore, it is of great significance to
construct the eqaution of motion beyond the 2.5PN order.

Christdoulou (1991) found theoretically a new phenomena of gravitational waves which
is called nonlinear memory. The nonlinear memory of gravitational waves is ascribed
to the nonlinear nature of the general relativistic gravity. Wiseman and Will (1991),
Thorne (1992) independently argued the physical aspects and implications of the nonlinear

memory of gravitational waves. Nevertheless, no one has obtained this nonlinear memory
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of gravitational waves by the systematic scheme of the post-Newtonian approximation.
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Figure Captions

Fig. 1 Error of the pressure in the post-Newtonian approximation for the GR compact
star of uniform density as a function of the normalized areal radius(r/R). Solid
and dotted lines show the case R = 5Gm/c* and 8Gm/c?, where R and m are the

circumference raduis and the mass of star, respectively.
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Table 1 (a)

Various levels of approximation in terms of PN expansions (v?/c?) and mass ratio (n =
w/M; = reduced mass, M = total mass). We mark P?N if all terms in that level are
taken into account in the 2PN approximation, while W is marked if Wison’s approach
takes into account all terms in that level. The mark — means that the relevant term does
not exist and the levels taken into account by neither approaches are blank. We neglect
secular effects due to gravitational radiation reaction in Tables 1(a) and (b). It should
be noted that, at O(n°), Wilson’s approach produces exact GR solutions, but it is not

justified at the 2PN order even at O(n').

PN A7 U n U O(n*)
N PN, W - - -
1PN PN,W | P’N,W - _
2PN PN, W P’N PN -
>3PN W
Table 1 (b)

Various levels of approximation in terms of PN expansions (Gm/c?R) and ellipticity of
a NS (e). The meanings of P?N and W are the same as those in Table 1(a). Wilson’s

approach produces exact GR solutions in the case of the completely spherical star.

PN\ e e=0 e#0
N PN, W | PN, W
1PN PN, W PN, W
2PN P2N, W P2N
>3PN w




Table 2

List of potentials to be solved (column 1), Poisson equations for them (column 2), and
other potential variables which appear in the source term of the Poisson equation (column
3). Note that 7 and j run x,y, z. Also, note that we do not have to solve 1., (5 Foz, qyy,

q.. and h{0).

Pot. Eq. Needed pots. Pot. Eq. Needed pots.

U (2.11) None i (4.6) None

0 (3.14) None D (4.15) U

0 (4.1) None Noi (4.16) U

Goi (4.2) None ) Foi (4.17) U, ¢

@ | (43) None @ao | (421) | U, g qu by, QG
Qu (4-4) U (6)2 (4-22) U, @, G Gi, i
e (4.5) None hEJU) (3.1) U




Table 3

Variables to be solved in order to obtain the original metric variables.

Metric Variables to be solved see Eq.
u U (2.11)
(3)0i 4, U (3.17)
X Q2 Qus Ge (4.7)
@Y 92, Qus Ge (4.8)

(5)51'(A) (5)F0i> Mois Qus Ge (4.18)

8" 2ir G2 (4.18)
(6 6)0, (6)X2, qa (4.20)
hy) n (3.1)
hz(}q) Tij» G2 (4.14)
hiy Q5 dus g (4.19)
hz(‘f) Gij» 92, 42i, i (4.19)




