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Abstract

In this paper, the properties of Mn atoms doped in various Si hosts and
their effects to the transport properties are investigated. For the for-
mer, DLTS, ESR, SIMS, PL and DC measurements are utilized, and for
the latter, the cyclotron resonance measurement is done. The samples
were prepaired by thermal diffusion technique after the deposition of Mn.
The samples are quénched after diffusion to avoid the precipitation of Mn
atoms. It is known that Mn atoms in n or p-type Si compensate the shal-
low impurities and ionize itself, and that a Mn atom easily form a complex
with an acceptor. On the other hand, Mn atoms in pure Si retain their
neutral feature because of the absense of shallow impurities and they are
easy to form Mmn4 clusters while Coulomb repulsion prevents the cluster-
ing of Mn atoms in the n or p-type Si host. The ESR signal intensity of
interstitialy configured Mn atoms are found to decrease rapidly for first
100 days even when the samples are put in room temperature while the
density of Mny clusters do not change so much. This decreasing feature
seems due to the precipitation of Mn atom onto surface. The concentra-
tion of Mny cluster is obtained to be under 10®¢cm =3 by executing the Hall
measurement, and its activation energy is found to be 227meV.

The width of the cyclotron resonance line for Si:Mn sample exhibits the
remarkable broadening compared to host Si. This broadening is mainly
due to Mn4 formation because the line width do not decrease propotionaly
to the concentration of interstitial Mn which is obtained by ESR measure-

ment. But the width shows the initial decrease according to the decrease



of the ESR signal intensity of interstitial Mn atom. It is concluded that
the scattering is mainly caused by Mn4 cluster and partly by interstitial
Mn atom. The temperature dependence of the line width is obtained to
be about Tz, which is ascribed to the potential narrowing compared to
that of the‘shallow impurities. The scattering by such narrow potential is
treated by analogy with the scattering by the square well potential or the

hard core potential.
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1 Introduction

Investigations of carrier scattering in materials have been widely done since
the earliest stages of solid state physics. When semiconductor devices such
as the transistor were invented, it became essential to get improved knowl-
edge of the scattering mechanisms of carriers to control the mobility and
the conductivity which decide the response speed of the device. This need
prompted mény researchers to investigate the carrier scattering properties
of semiconductors. Besides the technological requirement, pure physical
interest also exist in the semiconductor scattering problem. The scattering
problem is quantum mechanically expressed using the formalism of con-
tinuum eigenvalue problem and its study. made rapid progress after the
Lipmann-Schwinger formalism was developed.

Cyclotron resonance is one of the most useful techniques to investigate
the scattering process in semiconductors. Cyclotron resonance in material
was first predicted by W.Schockley [1] theoretically and observed by B.Lax
[2] and G.Dresselhans et. al. [3] experimentally. This technique initially
exhibited its usefulness in investigations of band structure as an almost
unique method to decide the details of the band structure. After that,
as the measurement technique improved, other applications of cyclotron
resonance were developed. One of these is the application for investigation
of scattering mechanisms of current carriers and another is to study the
transient behavior of non equilibrium carrier systems. The former utilizes
the fact that the cyclotron resonance line width is proportional to the

inverse momentum relaxation time of the carrier. When the resonance



signal is measured using a fixed radio frequency and with varying magnetic
field, the resonance line width is expressed as AB = 2B, /wT where T is the
momentum relaxation time of the carrier which is related to the differential

scattering cross section o(6, ¢) by the formula,

-i- = Nvoy, = Nv [(1 = cos8)o (6, $)dQ2 (1.0.1)
where N is the number of scatterers and v is the velocity of the elec-
tron. Usually, 0(6, ¢) can be calculated by the Born approximation or by
partial wave approximation techniques, and justified by comparing with
experimental results. On the other hand, the transport properties are in-
vestigated by DC measurements in many cases. One of the advantages of
using cyclotron resonance in investigating the transport properties com-
pared to DC measurements is that cyclotron resonance does not require
electrodes which may damage the sample surface. The presence of the
electrodes also causes uncertainty in the measurements when the ohmic
contact is not reliable, as is often the case in measurements on semiconduc-
tor at low temperatures. Moreover, when the carrier density is sufficiently
small, the cyclotron resonance line width is almost independent of carrier
density and it makes a more accurate determination of momentum relax-
ation time possible while DC measurements yield uncertainty caused by
combining Hall and resistivity measurements.

The scattering mechanism of electrons by lattice vibrations have at-
tracted attention and have been widely studied not only in semiconductors
but also in metals because it is the most essential factor to decide high

temperature resistivity in both cases. The process of this scattering was
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first described by Bardeen and Shockley using their formulation of defor-
mation potential, and showed that the inverse relaxation time of electrons
is linearly dependent on temperature in metals and has T%/? dependence
in semiconductors respectively. The main difference between scattering
in semiconductors and metals is band degeneracy. In the case of non
dégeneréte semiconductors, almost all electrons participate in the scatter-
ing process and the change of Boltzmann distribution with temperature
also changes the mean scattering probability of electrons. This results
in the factor T' multiplying the inverse relaxation time. On the other
hand, in metals, electrons which may undergo scattering are restricted to
only those that occupy states around the Fermi level due to its s'trong
degeneracy. Therefore, the scattering probabilities for one scatterer are
in many cases independent of temperature. The fact that only electrons
around the Fermi level suffer scattering leads to the enhancement of the
Shubnikov-de-Haas effect, and Kondo effect in the special case of metals
with magnetic impurity. |

The most interesting scattering problem in semiconductors is the case
where the effective mass approximation may be used to describe the scat-
terer. In this case, the scattering problem can be handled as if electrons
and scatterers were simply in vacuum. It is firstly justified by Erginsoy in
the neutral impurity scattering case. He utilized Massey and Moiseiwitch’s
calculation of cross section for the scattering of an electron by a hydrogen
atom in vacuum and derived the scattering cross section in a semiconduc-

tor by substituting the dielectric constant with that in the semiconductor,



and the electron mass with its effective mass. The effective mass approx-
imation can equally well be applied to potential scattering and was used
for the ionized impurity scattering problem where incident electrons can
be regarded as electron plane wave. Conwell and Weisskopf (C-W) con-
structed a forfnula for ionized impurity scattering by setting a limi for the
minimum scattering angle to avoid divergence in the integration of the
cross section, and well explained experimental results. Brooks and Her-
ring (B-H) used a screened coulomb potential for the scattering potential
instead of C-W’s physically unrealistic truncated potential, and extended
the applicable region of C-W formula as a result.

As described above, the effective mass technique solved most scattering
problems in semiconductors. However in the region where the effective
mass approximation is not applicable, there are only a few articles which
discuss the scattering problems.

In general, the effective mass approximation is good when the spatial
extent of the impurity potential is large compared to the 1ai‘:tice constant,
and can be described by a small number of Fourier components. If the
impurity potential varies as rapidly as the lattice potential, the effective
mass approximation is no longer applicable. The impurity level will de-
viate from the energy calculated by the effective mass theorem, and may
construct a deep lying level in the band gap in many cases. The applica-
tion of an effective-mass-like approach for such deep levels needs a large
number of Fourier components to construct its potential. As a result it

may need tens of thousands of Bloch functions to construct its wave func-



tion, Whefeas the usual effective mass approximation needs only one Bloch
function. There are two usual approaches to the deep level problefn. One
starts from the theory for an extended potential, and the other starts
from the localized features of the potential. In the former, an effective
mass theory is evolved using bases which contain the localized feature
such as Wannier functions instead of Bloch functions to expand the impu-
rity Green’s function. This enables us to construct impurity states with
much smaller number of bases. The pioneering work for this method was
done by Koster and Slater. Recently, this method was much advanced
and led to an impurity Green’s function method which includes a first
principles calculation. This was applied to several types of point defects
in Si such as lattice vacancies and gave substantial understanding to en-
ergy level, formation energy and so on. The second approach starts from
localizability of the potential and can be represented by a cluster method
which utilizes the shortness of the effective range of the impurity poten-
tial, and calculates the whole energy of the small cluster inciuding a finite
number of host atoms and an impurity. This method sometimes succeeds,
but its results may be strongly affected by boundary conditions at the
cluster surface which make the problem very difficult. Even in the case
where the effective mass approximation is generally usable, the impurity
potential often deviates from an ideal coulomb potential near the atom.
This deviation is referred to as the central cell correction. If the impurity
ground state energy lies near an energy where such corrections affect the

coulomb potential, the ground state energy will be affected by the central



cell potential. Generally speaking, excited states are less affected by the
central cell potential.

If we define a-deep.impurity as an impurity in which the ground state
energy is dominated by a central cell potential, the effective mass approx-
imation is no longer applicable. However, its ground state energy is not
always deep and can have a shallow or even positive energy level. A posi-
tive energy state is referred to as the resonant state. Hjalmarson revealed
theoretically that in the case of substitutional isoelectric deep impurities,
the impurity binding energy is almost independent of band structure and
only depends on the difference of atomic energy of the impurity to host
atom. In the case of nitrogen impurities in GaAs,P;_,, the band edge
energy of the I' and X points move up and down ‘a,ccording to the com-
position z, but the impurity state energy follows neither of these band
energies and changes like a dangling bond energy. The nitrogen impu-
rity binding energy can in fact be shallow with an appropriate value of
z. If impurity energy goes into band continuum, it can :;10t exist as a
pure bound state and forms a resonant state. This state is also referred
to as a virtual bound state and has rather localized feature around the
impurity at‘om compared to an extended Bloch state. The energy of the
resonant state is expressed mathematically in the complex plane and its
imaginary part expresses the lifetime of the electron trapped to the local-
ized states around the impurity. This resonant state efficiently scatters
electrons whose energy coincides with the resonant state according to the

Breit-Wigner formula. Sankey and Dow showed theoretically that this res-



onant scattering can occur, and dominates the low temperature mobility
in the case of defects in GaAs. Fisher, Adams and O'Reilly feported that
they observed resonant scattering by the central cell potential of Si and
Sn impurities in Al;_;Ga,As. They applied hydrostatic pressure to the
sample to change the band edge energy, and observed the change of mo-
bility with pressure caused by relative position of ifnpurity level to band
edge energy. They used the DC techniquéto observe such scattering, but
it is likely that cyclotron resonance measurements may give more explicit
results.

It is possible that both the ideal coulomb potential and the central cell
potential equally affect the impurity scattering of electrons. El-Ghanem
and Ridley calculated the scattering cross section and mobility analytically
for a combined potential, but it has not yet been observed explicitly.

Besides the above described substitutional isoelectronic iinpurity, other
types of impurities put into interstitial sites also form deep states in the
band gap. Among them, transition metal impurities in Si ‘have been in-
vestigated for a long period. DLTS and ESR measurements have revealed
their energy level, spin state and hyperfine interactions with nuclei and so
on. Unfortunately, theoretical treatment of these impurities lags behind
experiment. Recent rapid progress using super computers now make first
principle calculations possible. These calculations yield the results which
explain the experimental data in certain problems. Zunger and Yoshida
calculated the various characteristic values of transition metal impurities

in Si using an impurity Green’s function method, and explained the ex-



perimental result.

When a transition metal atom is put into vacuum, its d-electrons are
configured according to the Fund’s rule and tend to maximize their total
spin. however if they are put into a material, the circumstance is different
due to the existence of the crystal field. There are two approaches for
the splitting of spin multiplets of d-electrons in the crystal field and they
are generally complicated. One is called the weak crystal field method
and the other is called the strong crystal field method. In general, if
the crystal field energy is greater than the exchange energy among the
d-electrons, the low spin state should be favorable because they tend to
lower the crystal field energy by making their spins parallel each other
even though it raises the exchange energy. On the other hand, if the
crystal field energy is weaker than the exchange energy, the higher spin
state becomes favorable. If transition metals are put into a semiconductor
with high covalency such as Si, the crystal field energy is enhanced due to
the hybridization of the metal d state and the semiconduct;)r o) sfate. On
the other hand, p-d hybridization expands the d-electron wave function
and therefore lowers the exchange energy. As a result, transition metal
impurities ténd to have low spin state compared to those in ionic crystals.
Table 1 shows the spin state for various transition metal in Si interstitial
sites given by Yoshida. Many of them are observed by ESR measurement.
Another characteristic feature of transition metals in Si is that they can
have many charge states. For example, it is known from calculation that

interstitial Mn can exist with several charge states from Mn?** to Mn~ (



Mn?** has not yet been observed ) by changing the Fermi level in the band
gap. This behavior is caused by the strong covalency of Si. Because the d-
electron wave function is extended due to the p-d hybridization caused by
covalency, the correlation energy of d-electrons become as small as 0.1 eV
~ 0.2 eV. The effects of these transition metal impurities on the scattering
prbperties for conduction electrons have not been revealed yet.

Besides investigating the scattering properties, there is an approach to
investigate the interaction of transition metal impurities in Si with con-
duction electrons, namely spin relaxation by conduction electrons. The
excited spin state of a transition metal impurity relaxes when collisions
with electrons occur. In general, spin-spin relaxation overwhelms the spin—
lattice relaxation, and spin relaxation by collision with electrons may de-
tected by ESR measurement when the number of conduction electrons is
large enough. Vikhnin, Deigen, Semenov and Shanina calculated the spin
relaxation rate for Fe impurities in Si by using the s-d exchange interac-
tion formalism and by calculating the exchange integral. It'is well known
that the s-d spin exchange interaction causes the Kondo effect in 3d-spin
doped metal. Similarly, spin-spin interaction can also cause momentum
relaxation of electrons. Its cross section generally depends on the mag-
nitude of spins and the exchange integral. The exchange integral can be
deduced to be small in the case of deep impurities because of their local-
1zed feature. Vikhnin’s calculation implies about 10~7 s relaxation time
for s-d interaction caused momentum relaxation.

Calculations by Zunger and Yoshida showed the general low spin state



for transition metal impurities in Si, but they also showed that impurities
such as Mn and Cr can have a high spin state.

As described above, transition metals in Si have two physical aspect.
One is a deep impurity and the other is spin impurity. This work examines
the electronic state of transition metal impurities in Si with special atten-
tion to Mn, and its effect on the electron scattering process by studying
the cyclotron resonance line width and combined with other experimental

methods.
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Charge Sc Ti Cr Mn Fe Co Ni Cu

3+ NM H/L H/L H NM
2+ H/L H/L H H L |
+ H/L HL H H H H/L NM
0 H/L L H H H/L H/L NM

- L H/L NM

2- NM

Table 1: Spin states calculated by Yoshida for various transition metals in Si interstitial
site. NM means nonmagnetic, H means a high spin state and L. means a low spin state.

H/L means that either of a high or a low spin states can exist.
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2 Theoretical Background

2.1 Cyclotron resonance in the classical region

When magnetic ﬁeld H is applied to an electron, it is affected by the
Lorentz force of k = —v X H and moves on the spiral trajectory. In solid
state, electron group velocity is expressed as v = %VkE(k) so that the
time variation of k must be perpendicular to both H and normal vector of
iso-energy plane. Therefore the motion of electron in k-space is bound in
the closed curve on the iso-energy surface cut by the plane perpendicular
to the magnetic field. If electron do not suffer any scattering, the period

of motion is

dk dk ok dk
= —_— = = — ) 2 .
T f f ivH sin 8 eH ( 1 1)

where 6 is the angle of v and H. Cyclotron frequency is deﬁned as we = o7
If we define the cyclotron effective mass as m} = &%, it becomes

, el T
mH—c 2

R dk
o
12 dE -1
_ %}%dm) dk (2.1.2)

where we used the relation v, = %gg—. In the case of free electron in

vacuum where £ = g ok 1 =k, the cyclotron mass 1s the same to bare

electron mass.

h mo

If the oscillating electric field is applied on such system, and if its frequency

coincides to w,, electron resonantly absorb the energy of electric field and
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will be accelerated. This is the so-called cyclotron resonance.

First, we should start from the classical Boltzmann equation to han-
dle the statistical behavior of carriers. We can think of the distribution
function f(k,r,t). The Boltzmann equation is the equation represents the

static state of the distribution function, therefore it is expressed as

on L on L on
ot dif fuse ot field ot scatter

Making use of the Liouville’s theorem, we can assume f(k,r,t)= f(k,r—

vgt,0). Then the diffusion term becomes,

g} = —vp - Vo f(k,r,t) (2.1.5)
ot dif fuse

When external field is applied, electron momentum changes due to Lorentz
force of k = £(E + vy x H). Again, Liouville’s theorem allows us re-

garding f(k,r,t) = f(k — kt,r, 0). Then the field term becomes,

of | .
— = —k-Vi.f(k,rt
Ot | fieta e ) ;

= 4B+ %'v x H) - Vif(k,r,1) (2.1.6)

Distribution change also occurs when electrons are scattered by lattice
or other scattering center. The way this happens accords the transition
matrix element Wy, and distribution function of initial and final states of

scattering.

o
at scatler

where

= 12 (Wi f (K'Y [1 = F(R)] = Wi f(R) [1 = F(EN)]}  (2.1.7)

2T
Wi = = (K| T |k) |*6(E; — Ey) (2.1.8)

13



In the case of semiconductor, we can assume that the condition f(k) < 1

is satisfied, the scattering term becomes

0 /
Eﬂ eattor % {Winf (K) = Wi £ (R)} (2.1.9)

In the equilibrium condition which we represent by fy(k), the number of
transition k — k' is equal to that of k' — k transition. This is called as

the detailed balance and expressed by

Wk’kf()(kl> - Wkk/f()(k) (2110)
which leads to
f] Wik piq }
— = W1 ¥ k — k
] = SV {0 - s
fO(k) ! }
= Y Wi (R — k 2.1.11
S 1) - 2500} @1
If we assume that all scattering processes is elastic, that is, |k| = [k' ] and

fo(k) = fo(K') is satisfied, the scattering term becomes

o !
—égjl scatter - %’: Wkkl {f(k) - f(k )}

_ ‘;)3 7 R Wi (£ (k) - fo(k)}

(2
o {f(k) — fo(k) + fo(k) — f(k/)]
f(k) — fo(k)
_ _9k) .
= T8 | (2.1.12)
where,
gk) = f(k)— fo(k) (2.1.13)
1 V ) p k'

" @ /_mdekk’( —Qg%> (2.1.14)
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7(k) is referred to as the momentum relaxation time. g(k) is the devia-
tion of distribution function from the equilibrium. When g(k) is small,

g(k")/g(k) can be approximated by cos where 6 is the scattering angle.

1
T(k) (27r

E / dk'Wi (1 — cos 6) (2.1.15)

In the constant relaxation time approximation, it is assumed that the
relaxation time is independent of k. The distribution function attempt to

recover the initial distribution with single exponential decay.

g(k,t) = g(k, 0) exp (—;) (2.1.16)
and,
of 1
—B—t_ scatter - —_’/:g(k’ t> (2117)

Substituting (2.1.6) and (2.1.17) into (2.1.4), and neglecting spatial dis-
tribution, we obtain explicit expression of boltzmann equation for our

problem.

—%(E+va)-ka=—§ C (2.1.18)

Using the effective mass m* defined in section (2.4.2), we can use v = 2k

for electron velocity. The equation (2.1.18) becomes

he T 6f0
m*1+ (w.7)20F

g= —(B x E) + (”) (B- E)B} -k (2.1.19)

where w, = an

0o _Ofy
ka() —é*EVkE 9E h'l)k (2120)

was used.

Here we assume for the simplicity E = (F,, E,,0) and B = (0,0, B) and

15



express (2.1.19) as g = ¢ - k which leads to

( er T 3f0
= Ex — We E
Co m* 1+ (wcT)2gj1;7 [ wer By
EeT T 0
| 2.1.21
< m* 1+ (w.7)20F By + wer B ( )
¢ = 0

and

g = cgks+ cyky

_ 3fo T weT?
= “Y5E [1 e T T (wcT)2EyJ
dfo W, T2 T
+evy 5E [1 n (WCT)2E3 + 1T (or? (w67)2EyJ (2.1.22)

Using the obtained distribution function we can evaluate the current den-

sity.

= [ d*k(—ev)f (k)

(2m)3
[ d*kvg(k) (2.1.23)

(2)?

Substituting (2.1.22) into (2.1.23),
ne? | T weT? ]
J, = < >Ex - <-—-——> E,| (21249

m* |\1+ (w7)? 1+ (w,r)?
| ne’ [/  w.r? T ]
J, = c (T 2.1.2
Iy m* <1 T (wcT)2> By + <1 i (wc'r)2> Ey_ (2.1.25)

To evaluate the interaction of carrier with light field, we can think of the
simple vibrating field, E, = Eye“', E, = Ey,e*'. The light absorption

can be obtained using Joule’s formula.

P(w) = Re(J)-Re(E):%Re(J-E*)

ne? () 1

im0 e P A1 e )

Eg
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eB

Translating this into the function of magnetic field using w, =

m*’
P(B) = ne? (T)Eg 1 2 + 1 2
4m (B-Bp(<2) +1  (B+B.)(42) 42211 27)
where
B, ="~ (2.1.28)
(4

This shows the absorption peak at B = £ B, from which we can evaluate
the effective mass of carrier. Here we have the classical cyclotron resonance
absorption of light by carriers with a effective mass.

By observing the cyclotron resonance line width, we can evaluate the

momentum relaxation time by utilizing the relation

(2.1.29)

where AB is the half width of absorption curve.

2.2 General formulation of scattering relaxation time

In usual scattering theory, a scattering relaxation time for one particle is

expressed as
1

" Npwo

where IV is the number of scattering center, v the particle velocity and o

T (2.2.1)

the scattering cross sectior.

o = [o(6,4)d
= 2r [ |£(0)sin 60 (2.2.2)

17



where f(#) is the scattering amplitude and is appear in the boundary

condition for the Schrodinger equation in the scattering problem.
. eikr
f(6) can be expressed in the partial wave technique as
f(6)=> —2%(21 + 1) exp(26;) sin 6;P;(cos 6) (2.2.4)
=0

where Fj(cosf) is Legendre Polynomial. Substituting (2.2.4) into (2.2.2),
we get the total scattering cross section.

4 *

0=-3 Y (21 + 1) sin? § (2.2.5)
=0 '

where &; is referred to as the phase shift of I-th partial wave. The partial
wave approximation which omits the partial wave with large [ is only ap-
plicable when the Spatial extension of scattering potential is under several
times of electron de Bloglie wave length of the electron. That is the case
that electron velocity is so small. In the case of such low energy scattering,
cross section is usually concerned to a few of lowest /-th partial wave.

In the transport problem, the momentum transfer cross section o,, is

more important instead of (2.2.5)

Om = /(1 — cos8) | £(6)]* dQ2

47

= 5l IZ(:)(Z + 1) sin2(51 —-'.51_;_1) (2'2'6)

Indeed, in the case that electron velocity is very small as in the case of
low temperature electron scattering in semiconductor, ¢ and o,, can be

regarded to be the same since the condition 8.1 < & is satisfied. As the

18



velocity of electron rises, the partial wave technique becomes more difficult
and mstead, the Born approximation becomes applicable in which f(6) is

approximated using the transition matrix element.

£0) = (37 ) K]V 1K) (2.2.7)
where 6 is the angle between k' and k. This leads to the momentum
relaxation time expressed in (2.1.15) and usually easy to solve. But the
partial wave treatment using (2.2.6) is more accurate for scattering of slow
particle. |

In the non degenerate semiconductor where all of the electrons par-
ticipate in the scattering, it is necessary to take thermal average with
Boltzmann distribution to compare with the scattering relaxation time

obtained by experiment.

3 I5° e exp (——ij) dFE

(r) = - (2.2.8)
v Joo €z exp (— k;T) dF
when 7 is a power of €, that is, 7 = a€®, it becomes ,
I'(2+ s)
T = a kBT)S——-—2
(7 = ol
= L a(kyT)T (§+ ) (2.2.9)
T 3 /m VB g ¢ -

2.3 Various scattering process in semiconductor

Here we briefly survey the various scattering processes in semiconductor.

2.3.1 Acoustic deformation potential scattering

Acoustic phonon scattering problem is treated first in history among var-

lous scattering processes in solid, because for the most part it dominates

19



the room temperature mobility of metals and semiconductors.

Bardeen and Shockley [4] derived that the interaction of an electron with
acoustic phonon can be expressed as 8¢ = €, (V, - ér) where ¢, is the
acoustic deformation potential constant. The obtained relaxation time is

expressed by \ X
1 3m*2el (kgT)?

(r) 23Rt po?

where p is the crystal density, vs = %1 the sound velocity. This shows that

(2.3.1)

the cyclotron resonance line broadening caused by acoustic phonon scat-
tering has the temperature dependence of T'3. This partly comes from the
temperature dependence of the number of phonon that is proportional to
the temperature and partly from that of electron mean velocity according

to equation (2.2.1) which has the temperature dependence of T'z.

2.3.2 TIonized impurity scattering -

Ionized impurity scattering dominates the low temperatuie mobility of
semiconductors especially in the case that the compensa:cion is rather
stfong. The first formulation of this type of scattering has been done
by E.Conwell and V.F.Weisskopf.[5] They used the model potential in
which the bare coulomb potential is interrupted at the certain length to
avoid the divergence of the cross section at small scattering angle. They
set one-half the average distance between neighboring impurities as thé
cut-off length. They obtained the following formula based on the Born
approximation,

&2(2m*)%e%

= 2.3.2
! 7e!Nrln[l + (2ka)?(k2h%e/2m*e?)] ( )
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where NNy is the concentration of ionized impurities, x the dielectric con-
stant, € the electron energy, e the electronic charge and a the cut-off length

defined by
1

MW

This formula is applicable when the compensation is small and free carrier

(2.3.3)

density is relatively low. The threshold density for ionized impurities is
N1 = 10Ycm™3 in the case ot n-type Ge.

Brooks and Herring [6], on the other hand, suggested that instead of
the cut-off length, the screened coulomb potential should be used. They
obtained the formula based on the Born approximation.

K2(2m*)zer

T = . (2.3.4)
7T64NI {ln[l + (2]{3)\)2] - m/@k—)‘)z}
where A is the Debye-Hiickel screening length defined by
IikBT %
A= ( mzn) (2.3.5)

In either case above two formulas have the energy depéndence of €.
We can expect that the scattering rate thus, the line-broadening of the
cyclotron resonance has the T2 dependence by considering the equa-
tions (2.1.29) and (2.2.9). Brooks-Herring formula is widely used as the
standard formula for the ionized scattering in semiconductors. But it is
based on the Born approximation which is not applicable to low energy
scattering as in the case of the electron scattering at low temperature in
semiconductors. Sclar [7] derived another formulation by use of partial
wave method. He approximated the attractive and repulsive coulomb po-

tential by a square well with radius a and depth V and a square barrier
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with radius a and height V', respectively. He obtained the formula for the

répulsive potential

(2m*)ze3 (tanhaa )"%
= -1 3.
’ 87 Nia? aa (2.3.6)
where .
o= [k2 — (277;2V) a2} 2 (2.3.7)
and for the attractive potential
_ (2m*)ze2 (tanaa >—%
T = 87 N,a? o 1 (2.3.8)

It can be easily seen that these two formulas yields the Tz dependence of
cyclotron resonance line width both for the attractive and for the repulsive
~ potential.

While Sclar used the square potential approximation, Blatt [8] evaluated
the scattering rate for the ionized impurity based on the static screened
coulomb potential by partial wave method and obtained the numerical
result. After that, El-Ghanem and Ridley [9] developed tl'1e problem as
the scattering by the co-existing system, i.e., the coulomb potential and

the central cell potential.

2.3.3 Neutral impurity scattering

The neutral impurity scattering in semiconductors was firstly formulated
by Erginsoy [10] who utilized the result of numerical calculation of scat-
tering cross section on the electron-Hydrogen atom by Massey and Moisei-

witch [11] and extended it to the scattering problem in semiconductor by
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replacing electron mass with the effective mass and vacuum electric sus-
ceptibility with that of semiconductor. Massey and Moiseiwitsch’s result
for the scattering cross section is approximated by

O__QOCLB
Tk

(2.3.9)

where ag = i’%‘fgi is the Bohr radius of Hydrogen atom. Erginsoy derived
the following inverse relaxation time for electron-neutral donor scattering

by replacing ap with an effective Bohr radius ap = Bk

1_ Nyo — 20Nvaj
T k
20a% BN
= —O%— (2.3.10)
where v = % is used.

Erginsoy’s result holds true for the neutral donors which are well ap-
proximated by the effective mass theory. The extensions of Erginsoy’s
result to the impuritie‘s which deviate from the effective mass theory has
been tried by many researchers but there has not yet been ‘explicit agree-
ment with experiments. As for the usual shallow impurity scattering in
semicondﬁ_ctor, Erginsoy’s theory well accounts for the low temperature
mobility of Semiconductor under the condition that the number of ionized
impurities is negligible.

Erginsoy’s result is for neutral donors. In the case of scattering of elec-
tron by neutral acceptor, the situation is not the same. In the case of
donors, the particle bound by the impurity is an electron and the analogy
to e-H scattering is suitable where the electron-electron exchange inter-

action affect the cross section effectively. On the other hand, acceptor
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atom binds an hole and there is no exchange with an incident electron.
Its scattering process should be considered on the analogy of positron-
Hydrogen atom scattering instead of electron-Hydrogen atom scattering.
This problem is vigorously investigated by Otsuka et. al. [12] Their the-
oretical analysis based on Schwartz’s calculation for e™-H scattering cross
section and obtained the inverse relaxation time for electron neutral ac-
ceptor scattering as
1 o B
o7 = 34N (Qm*kB)

where N, is the density of neutral acceptors and ( ) means the thermal

19
8o

K2 -
ST 4 —— =2 .3.
(12 5T + 2m*k3a%) a’; (2.3.11)

average. This formula exhibits slight temperature dependence. For low

temperature limit,

L g4ltasla (2.3.12)

If the impurity is double donor or double acceptor, it can be treated on
the analogy of electron-Helium atom and positron-Helium atom scattering
respectively. Kestner et al. [13] calculated the cross section for e-He
and et-He séattering. The inverse relaxation time for low temperature

obtained from their result is; For e-He scattering,

1 3kpT\?
— = 22.5a3 N, : 3.
o = 22505 N, ( = ) (2.3.13)
and for e™-He scattering,
1 hax
= 0.25—B N, (2.3.14)
(1) m*
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2.3.4 Other scattering mechanisms

Besides the scattering mechanisms described above, there are many scat-

tering processes in semiconductor.

e Non-polar optical deformation potential scattering
The interaction energy of an electron with optical phonon is expressed
as,
be = Dér (2.3.15)
where D is the 6ptical deformation potential constant. The scattering
matrix element for this interaction is given by

(Ny+3F3)0 %
2pVwy

|Msqs]| = D [ (2.3.16)

where p is the density of crystal and N, is the mean number of phonon.
) -1
- for(2) -1

- [exp (-IQ,-) - ~1]_1 (2.3.17)

i

and O = E“ﬂ is the Debye temperature. ‘The result for the momentum

relaxation time is,

1 3miD?
where
T 2zydy
f (@> (2Z - / \/yT-}-e?zRe{\/_} (2.3.19)
S €

“Tor YT L0

Optical deformation potential scattering is not effective at low tem-

perature because the number of optical phonon is so small.
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e Piezo electric scattering
If a crystal has the piezo electricity, electron scattering caused by the
potential energy due to phonon polarization may occur. The potential

energy is expressed as

Ielepz
= re 2.3.2
be Py (V, - 6r) (2.3.20)

where e,, is the piezo electric constant, « the dielectric constant and
q is the phonon wave number. The matrix element for the scattering
is

| Hyr| = (2.3.21)

1 1
le] eps (kBT)5 _ (eK%kgT\?
kkog \2Ve) — \ 2V kkg?

where V' is the volume of unit cell, ¢; = pw?/q? the elastic constant

and

K? 612)
= z 2.3.22
1— K2 kkgq ( )

where K? is called as an electro-mechanical coupling coefficient. The

momentum rélaxation time is
1 3mie’K*(kpT)3 '
(ry 2%ﬁh2m&0

which has T’ dependence on temperature, but it is not effective for

(2.3.23)

‘the non-piezoelectric crystal like Si.

Polar optical deformation scattering

In the semiconductor with large ionicity, the interaction of carrier
with optical phonon is strong, and it yields Iarge deformation energy
and causes the scattering of carrier. The potential energy is expressed

as
_ lelE

q

be

(2.3.24)
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where E is the electric field caused by the polarization P, and

B P _ _ Nyecor
ko Kog

(2.3.25)

where IV, is the number of lattice poirit in the unit cell and e, is the

Callen effective charge

-1

1 M %
€0 = wy [“o(”"”t N“ ) ] (2.3.26)

where M is the reduced atomic mass.

The matrix element becomes

2g7rha(hw0)% 1 1
Hio il = . ( W+ = —) 2.3.27
| Heq k| Vb Nut 5 F5 ( )
where
o= TlelBo (2.3.28)
2z2m3(hwy)?

le| mkp® , _, -1

FEy = W(K’opt -k ) (2329)

o is referred to as the polar constant.

The momentum relaxation time is

1 hwoé a+1 © 1+5
=, [0 2 qn |2 2.3,
& awo( ; ) Nq[]na_1‘+exp(T>ln 1—bU (2.3.30)
where
Bt d b1 d
a= {1+—‘:9]2, b= Re [1 - —219]2 (2.3.31)

When T' < © is satisfied, the conditions € < Awy, b ~ 0, and N, ~

exp (-— —g):) are also satisfied. Then momentum relaxation time becomes

1

G 201w €xp (—9) (2.3.32)

T
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2.4 Deep impurities in semiconductor

2.4.1 Formulation of impurity model in semiconductor

The problem of impurities in solid state can be attributed to solve an

static Schrodinger equation.

H|¢) = E|¢) (2.4.1)
H =Ho+ U(r) (2.4.2)

where H, is the host crystal Hamiltonian which includes the kinetic energy
of electron (or hole) and periodic lattice potential, and U(r) is the addi-
tional potential energy due to the existence of impurity. Now we expand
|¢) with complete set of Bloch function |k) which is eigen states of Hj,
that is, Hy |k) = Ey |k).

|6) = 2 k) (Fk|g) = 2 |k) ¢(k) (2.4.3)

Here, We call ¢(k) "Bloch representation of |¢)”. Equation(2.4.1) be-

%Ek |k} (k) + U(r) 2; k) ¢(k) = E ; k) 6(k) (2.4.4)

multiplying <k’| from the left hand side of the equation (2.4.4) and replac-
ing k and K/,
(By, — E)Yo(k) + S Uk, K)$(K) = 0 (2.4.5)
k/
where U(k, k') = (k|U(r) |k'> This equation is to be applied to all ap-
propriate k exists. So, this is the set of linear equation about ¢(k)’s and

has nonzero solution when the secular determinant of equations (2.4.5)
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vanishes. And this restriction leads eigenenergy E, and set of eigenvector

{#n(k)}. For the bound state, expectation value of the velocity must be

zero, that is,

Then, nonzero ¢(k) constructing ¢(r) must be taken from the area cen-
tered at critical point of k space. It may be maximum (M;), minimum
(M3) or saddle (M3) point. So, we should divide k—space into subzone Q;
centered at ¢th critical point.

In the region k € €;, equation (2.4.5) becomes
(B — E)pu(k) + 22 3 Usi(k,kE')$(K') =0 (2.4.6)
J k’EQj
Where,
¢1(k) for ke

d(k) =3 ¢o(k) For ke Qy

In general case, |¢) may be expressed as .

[6) =22 > |k)o(k) (2.4.7)

i kIEQj
If the intervallay transition matrix element U;;(k,k') is very small com-

pared to internal matrix element, we can neglect U;;(i # j), equation(2.4.6)

becomes,

(Ep — E)¢i(k) + X Ua(k, K )$Y(K") =0 (2.4.8)
ke .

from which we can obtain solutions EY, and ¢J (k) for the first approxi-

mation. @Y,(k) should taken to be normalized and orthogonalized.

Z ¢?n(k)¢?n'(k) = Onn’ (249)

keQ;
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To estimate the effect of intervalley inixing, ¢i(k) can be expanded using
Pin(k), |
#i(k) = 3 Cind%o () (2.4.10)

and substituting this into equation (2.4.6), we get
(B = B) S Cdla(k) + 5 ¥ Uy(k,K) S Cind, (k) =0 (2.4.11)
n J kIEQj n
By utilizing the relation (2.4.8), this equation becomes,
Y (B}, = E)Cindl(k) + S X Cin X Uik, K)¢(k) =0 (2.4.12)
n i#j n kIEQj
Multiplying Skeq, ¢%,(k) from left hand side of the equation and using the

orthogonality of ¢? (k) and replacing n and n/,

(Etn — BE)Cin 4+ 3 Y Cinttinj = 0 (2.4.13)
i#5 ™ |
where,
Uinjw = 3, 3 $i(k)Uij(k, K) s (K) (2.4.14)
ke k'€ ’

secular determinant equation of (2.4.13) becomes,
(B — B)Sizénn’ + (1 — 6ij)ttinjw| = 0 (2.4.15)

which leads to solution Ej, and set of eigen vector {C;,}. Finally, here
we have the complete representation of global impurity problem. If the
transition matrix element U(k, k') is confined into the narrow region of
Brillouin zone, and the secular determinant has small dimension accord-
ing to the equation (2.4.5), This problem become easy to solve. But, once
U(k, k') spread widely in the k-space and include the intervalley scatter-

ing (U # 0) in worse case, |¢) need to consists of thousands of bloch
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states and the secular determinant becomes too big to solve even with a

help of the super computer.

2.4.2 Effective mass approximation

In the absence of intervalley scattering, equation which represent the im-
purity system simply becomes,

(Be - BY$(k) + [, , Uk, K)SI(K) =0 (2.4.16)
If we define Uy;(k, k') =0 for k ¢ Q; or k' ¢ €, we can expand integration

region to whole k-space.

Writing Uj;(k, k') in more explicit manner, we get
Ualle, ) = (KU &)
| = [dr (klr)U(r) {r|K')
— [ drg U he(r) (2417
Because the Bloch function must be in the form of i (r) =,uk (7) exp(ik -

r), Usi(k, k') becomes,
Uik, k') = [ drexp [—i(k — k') - ] U(r)up(r)uy(r) (2.4.18)

As ug(r) has the translation symmetry same to that of lattice, u},(r)ug (r)

can be expanded by reciprocal lattice vector.
ug(rYuy(r) = 5 Cr(k, k') exp(—ih - ) (2.4.19)
h
Therefore, U;;(k, k') becomes

Usi(k, k') = > Culk, K') [ dr exp[—i(k — k' + h) - r]U(r)
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= Y Cn(k, KUk —k'+ h) (2.4.20)
h

where U(k) is the Fourier transform of U(r). If U(r) varies very slowly
compared to host lattice period, U(k) has significant value only for |k| <
|h|. Now k and k' are confined in the region ;, k — k' is much smaller

than h. So, h must be zero. Then Uj;(k, k') becomes
Uik, k") = Co(k, KUk — E') (2.4.21)

Moreover, if one approximate Cy(k, k') by Coy(ko, ko), normalization con-
dition Iuk0[2 = 1 forces Cy(kg, ko) = 1 where kg is the central critical point
of ;.

Expanding F}, around the critical point kg, the first term vanishes and

E}, becomes
1
B = B, + 5 {(k = ko) - Vit P By + -+ (2.4.22)
Now we can define inverse effective math tensor. ,

(2.4.23)

- 1 ) = 1 [ O’E }
m* h 8182816_7 i =123
If we choose the principal axis appropriately to diagonalize the effective

mass tensor, (2.4.23) becomes,

3 B2
Ep = By, + 3 — (ks — kos)? (2.4.24)
s=1 s

Substituting this into (2.4.16), we get

3 j2
{z (k= kos)? — (B - E)} bik) + [ dRT(k — K)gi(k) = 0
i s (2.4.25)
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Simply translating the origin,

{i W o (E - EO)} filk) + [dKU(k —K) fi(K) =0  (2.4.26)

s=1 2m§ °
where fi(k) = ¢i(k + ko).
Usual Fourier transform technic translate this into r-representation. The

result is,

s=1 277'2: al'g

2
=i| 2m?Ox?

This is referred to as the effective mass equation. In the Fourier transfor-

{ $ [_ n& } + U(r)} Fi(r) = (E — By F(r) (2.4.28)

mation procedure, the following formula is used.

n

 \m n d
.,/dk exp(ikz)k" f(k) = (—1) g
[ dkexp(ikz) [ dtf(k - t)g(t) = F(z)G(=) (2.4.30)

where F'(z) and G(z) are the Fourier transform of f(k) and g(k) respec-

F(x) (2.4.29)

tively.

The wave function is of the form,

$(r) = [ dku(r)d(k)
~ [ dkug, exp(ik - ) fi(k — ko)
= ugy(7) exp(iko - 1) [ dkfi(k — ko) expli(k — ko) - 7]
= Y, (r)F(r) -, (2.4.31)

Effective mass approximation neglects the following points.

¢ Non parabolicity of band structure which emerges from the higher

order in the expansion of energy around critical point (2.4.22)

33

{ > [ B & } _(B- EO,-)} F(r)+ UMF(r) =0  (2.4.27)




o h # 0 term in the expansion of Uj;(k, k').
¢ Effect of intervalley scattering or scattering into higher excited states
(Usj)-
And therefore the effective mass approach to the deep impurity problem

will start from the procedure which extend above points.

2.4.3 Scattering state in crystal

Scattering state of impurity is expressed by the Lipmann-Schwinger equa-

tion with the incident Bloch function. In the Bloch representation, it is

o(k) = 6(k — k) — LI UK, "’"),fj(k") (2.4.32)
€ —€—1
¢) = [dk|k) (k) |
_ - n_ Jdk" (k| U(r) [K") (K"|$)
= /dklk)[é(k—k) P p——
= [¥) - [dk—=_=-U()19)
= [¥') - Go(6 ( ) |¢> (2.4.33)

- Multiplying (r| from the left hand side and using [dv' |r') (v/| = 1,

¢(r) = (rl¢)
- <r|k'> /dr [ arELER ) 11
= Wp(r)— [ dr'Gy(r, r)U(r) ( 5 (2.4.34)
where
Go(r,r') = [ dk‘f:f)f’_fm (2.4.35)
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This is the Lippman-Schwinger equation in r-representation for the scat-
tering problem. If we omit the incident Bloch function \I!"i,(r), this is

equivalent to the equation for the bound state (2.4.5).

2.5 Transition metals in silicon

2.5.1 Localized (3d) states in the crystal field

For simplicity, we treat (3d)! case where many body effect is cannot be
found. If (3d)-atom exists in the absence of crystal field, the system Hamil-
tonian has the full rotational group symmetry and the electron wave func-
tion with an angular momentum [ is the basis of corresponding irreducible
representation DY) and which has (21 4 1)-folded degeneracy. But, if one
put the (3d)-atom into the crystal field, symmetry of the system Hamil-
tonian will be redﬁced to that of crystal field. If the group of symmetry
operation that conserves the crystal field Hamiltonian is expressed by G,
(20 +1) folded states are separated into the levels which correspond to the
irreducible representation of G. This is equivalent to reducing D® into

the irreducible representation of G (Ta,IT'g,--+ ), which is expressed by,
DO G=Ta+Ts+-- (2.5.1)

Here we treat the case of interstitial Mn in Si for instance which we now
mostly intefested in. In crystal Si, it is said that Mn favors the interstitial
position and surrounding Si atoms are tetrahedraly configured around Mn.
Therefore d-electron of Mn suffers the crystal field of Ty-symmetry and its

irreducible representation can be reduced using the character table of T},
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that is,
DO | Ty=T,+E - (2.5.2)

If the crystal field is strong enough to neglect the many body effect, elec-
trons start occupying from the lower energy level of the two representation
of (2.5.2). In this case, total spin becomes minimum because the electrons
with an up-spin and with a down-spin occupy the same level. When the
crystal field is weak and the coulomb interaction among the d-electrons is
relatively strong, electrons tend to satisfy Fund’s rule and arrange their
spins and as a result, the total spin is enhanced. In the case of transition
metal in Si, the total spin is said to be generally lowered because of the

covalent nature and the strong crystal field [14, 15, 16].

2.6 Scattering of electron by deep level center

2.6.1 Quantum well scattering and zero energy resonance

Schrédinger equation for scattering problem is »

H3M(r) = B8 (2.6.1)
A,
= - 2. .
H=—5-V"+V(r) | (2.6.2)

Expanding <I>£,+) with spherical function,

8 =5 5 CnB()Yin(6,4) (2.6.3)

=0 m=~I

and substituting this into (2.6.1), we get

B2 (1d (ad) 10+1)] +) +)
g [ ()~ O+ VOIRD () = B0
(2.6.4)
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d?
dr?

where u(r) = rR(+)(r) E, = ﬁzkz and V = & Z_7J. Here we assume that the

+ k- l(l:; b _ U(r) u,’(r) =0 (2.6.5)

potential is the square well with the radius a and the depth V. Because
u; must smoéthly smoothly at the surface of the well even though the

potential is discontinuous, the following equations should hold.

. duz‘n duout
in — ,0ut { — { 2.6.6
u"(a) = u™(a), ar | _. ar | _, ( )
Therefore,
(+)in (+)out
(+)in __ p(+H)out dR] . dRI
Rl' (a’) - Rl (a)’ d?" ~ - dr _ (2'6‘7)

This leads to the continuous condition of logarithmic derivative,

Rl(-l-)z'n dr . Rl(+)0ut dr . e

If we define fi* as

1] 1 4gRM™
m=_ ' 2.6.
SHa =l 09

and substituting into equation (2.6.8), we get

kfin B 1 dR§+)out
I — Rl(-l—)out dr .

(2.6.10)

At the outer side of the well, the potential is zero and the equation (2.6.4)

yields the solution,
R (2 oc maV (kr) + AP (kr) (2.6.11)

where hgl)(k'r‘) and h§2)(kr) are the Hankel function of the first and the
second kind, and n = exp(2i6;) where §; is the phase shift for the l-th
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partial wave. Substituting (2.6.11) into (2.6.10),

o _ bt (ka) + B (ka)
in
mhi?(ka) + k{7 (ka)

(2.6.12)

Solving this for n;, we get
WY (ka) £ — 1 (ka)

, , 2.6.13
W (ka) fir — B (ka) (26:12)

m=

We can get solution 771(6) for the hard core potential by extrapolating Vy —
oo, which corresponds to R{® = 0, and f{* = oo, and

(e) _ _h§2)(ka)

2.6.14
{ hgl) (ka) ( )
Relation 7 = exp(2i6;) yields
1 _ *
tan & = —n M (2.6.15)
v+ nf + 2

Therefore, we can determine the phase shift for the I-th partial wave con-.

cerned with the hard core scattering.

(o) _ Jilka) |
tan 6’ = ni(ka) (2.6.16)
For small ka, ji(ka) and m(ka) can be approximated by
| (ka)
ka) ~ ——t— .6.
(21 - 1!
and then the phase shift becomes
ka)2l+l
ban &) = - 6.
WO = TRl O — 1) (2:6.19)
This decreases rapidly with /. For s-wave,
tan 8 = —ka (2.6.20)
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This yields the inverse relaxation time of

1 3\/_N17r 202
(r)

This shows T'7 dependence on temperature according to the variation of

(k5T)? (2.6.22)

the mean thermal velocity of carriers.

(¢)

Using 7, , general representation of  becomes,

() flin — T[(kaT) + z'sI(ka)

= : 6.2
= (k) — 15 (ka) (26.23)
@ 2isi(ka) 5 6.94
= T ka) — i) (2624
where definitions, |
b (ka) .
——— = ri(ka) + is;/(ka 2.6.25
1D (ka) 1(ka) + isi(ka) ( )
r (ka) .
———-= = r1i(ka) — is;(ka 2.6.26
WP (ke i(ka) — isi(ka) ( )

are used.

For the scattering of s-wave (I = 0), the equation for u{*(r) becomes

A 0 T ) =0 (2627

Because R1(+) must have finite value at the origin, the condition u{*(0) = 0

should be satisfied. This restriction leads to the solution of the form

ui*(r) = Asinkr, (k = VE2 4+ Up) (2.6.28)
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therefore, R(()+) becomes

), _ ug(r) sinkr
RB{P(r) = 22 = 472 (2.6.29)
and ) |
w 1] 1 ar{P™] 1
0 =7 [R((,-{')in . } = Ta [ka cot ka — 1] (2.6.30)
Here we define »
Fy(ka) = kafi® — 1 = xacot ka | (2.6.31)
For s-wave and small ka, 6§09 = —ka, ro(ka) = —L and so(ka) = 1 are
satisfied. Then (2.6.24) becomes
. . Fo(ka) + tka |
mo = exp(—ZZka)FO(ka) ~ i (2.6.32)
By making use of the approximation exp(—2ika) ~ 1 — 2ika,
ka)? + [Fy(ka) — 1]
|1—770|2:4(ka)2( a)” + [Fo(ka) — 1] (2.6.33)

(ka)? + [Fo(ka)]?
For small ka, we can approximate Fy(ka) by Fp(0) when Fy(0) has a finite

value. Then the total cross section becomes

2
=—=|1- ~4 l1——— 2.6.34
o= =l = are 1 - (2,630

This cross section vanishes when Fy(0) approaches to unity. It is referred

to as Ramsauer-Townsend effect.

When F(0) = 0, we must expand Fy(ka) with (ka)?, and

Fy(ka) = Fy(0) + FV(0)(ka)? + -+

~ FD(0)(ka)? (2.6.35)
where
(1) ng(ka)
Ry = (kay (2.6.36)




then (2.6.33) becomes

> (ka)’ + [Fy " (ka)” — 1
(ka)? + [F5"(0) (ka)?P?

When ka approaches to zero, equation (2.6.37) approaches to 4, that is,

11— nof* ~ 4(ka) (2.6.37)

no — —1 and 8y — % which leads the total cross section

2
i1 9 47
U=ﬁ|1—770| =73 | (2.6.38)
This is referred to as zero energy resonance.
The wave function of the resonant state inside the well is also expressed
by (2.6.28). But it is not the perfect bound state and the wave function
oozes out of the well. If we assume this oozing as spherical wave of the

form u§*(r) = Bexp(ikr), the resonant state is constructed by connecting

uf® and ud* smoothly. The boundary condition is,

in out

g dr ug™ dr | _
The right hand side is identical to k. Multiplying a by the both side of
(2.6.39), the left hand side becomes Fy(ka) and (2.6.39) gives

Fy(ka) = ay/k? + Uy cot a/k? + Uy = ika - (2.6.40)

We can get k£ and € = A%k%/2m for the resonant state by solving this

equation. In the case that k = 0, this leads to the zero energy resonance.

In order to solve (2.6.40), we should firstly get the zero point of Fy(ka),

i.e., _
aVk?+ Uycotay/k2+ Uy =0 (2.6.41)
Then solution is
2
K2 = [%(Zn + 1)] ~ Uy (2.6.42)
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and ‘
I 1, KU

— R 2 ——
B = om 27;2&2(71 * 2) 2m
Bin? 1
= 5—+3)" -V (2.6.43)

Expanding Fy(E) = Fo(kd) around F,
| Fyka) = Fy(B) + FO(B)(E ~ B))+ 5FO(B)(E ~ B+
~ FE)(E - E,) (2.6.44)
Then (2.6.40) becomes to
FS(E)(E — E,) = ika (2.6.45)

Therefore the solution of (2.6.40) is approximated by

ik

B = Es_‘_(i')—a

Fy (Es)
— B, - %rs (2.6.46)

where
2%k
s= = (2.6.47)
Fy(Es)

Now we have the energy for the resonant state. Substituting (2.6.47) into
(2.6.44), we have

2ka
Fo(F)=— T (FE — E;) (2.6.48)
The total cross section is,
12
e 9 s . Fo(ka) + ika
=—|1- = —|1—- —2ik
c=gloml = gl ew(=2ike) m
i 2ika 2
= — |1 —exp(—2ik
g |1~ ee(=2ike) p e
T —I 2

= (E—E+ T, + 1 — exp(—2ika)| (2.6.49)
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The first term shows the resonant scattering and the second shows the
hard core scattering. If we neglect the hard core part, total cross section

becomes
vy I?

o= —
B (B - B + (%)

The resonant state appears dependent on the shape of potential. In the

(2.6.50)

solid, it also depends on the band structure and in general it easily ap-
pears than in vacuum ( see section 2.4.1 ). The simple calculation for
the resonant scattering is presented in Fig.33 which is derived by taking
the thermal average of relaxation time obtained using (2.6.50) It is noticed
from the figure that the temperature dependence of inverse relaxation time

is approximately T3

2.6.2 Spin scattering

The interaction of the localized spin with the spin of conduction electron

H

is:expressed by the s-d interaction model, i.e.,

H = —-2Jvé(r)s-S (2.6.51)
— Y exp(—ig-T)s- S ' (2.6.52)
N ‘g

where s is the spin of the conduction electron, S spin of the localized
magnetic impurity, v the volume per a lattice point and J is the exchange
integral. J is assumed to be less affected by k of electrons. Here we write

the transition matrix using T-operator, T'(eg, + iMk),

T(K',d',M';k,0,M) = (K,o', M'| T(er, + ing) |k, 0, M) (2.6.53)
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where o is z component of s and M is that of S. The scattering relaxation

time 7 of the electron is expressed by the golden rule.

1 2 '
=YY ¥ ZTE, o M ko, M) (e — ) (2.6.54)
T(k) k' o0 M,M' h

Because J is less affected by k, T' do not depend on k and 7(k) can be
regarded as the function of €;. Then (2.6.54) becomes

1 27
= Zpla)Swl  [T(ew, T, Mser, T, M) .,
M

T(ex) R
+ IT(Gk’a l)M + 1;€k7 TaM)Izkzek/}

(2.6.55)

where the inelastic scattering is neglected and only the elastic process is
considered. p(eg) is. the density of state at energy €, wjs the probability
in the case that z component of S is M. The term other than these two
are omitted because they do not preserve the total spin.

For the s-d exchange interaction, T-operator for the one electron scat-

tering can be written as,
T(e+in)=tle+in)+7(e+in)o- S (2.6.56)

- where t(e + i) is the part which do not contain spin flip, 7(€ + in) that

with spin flip. Making use of the relation, o+ S = Y(0,.5_+0_5,)+0.5,,
we can calculate the matrix element, i.e.,

T(ex, T, M;er, T,M) = t(ex)+ 7(ex) M (2.6.57)

T(ew, |, M + Tiex, 1,M) = 7(e)y/(S = M)(S + M+ 1) (2.6.58)

where in(e,) is omitted. We can calculate the inverse relaxation time by

substituting these into (2.6.55). When the magnetic field is not applied,

44




linear term on M is canceled out and we can get,

1
T(Ek)

— %ip(ek) {t(er) + [r(e)” S(S + 1)) (2.6.59)

In the first Born approximation, T'(e + in) |k) = V |k) can be assumed,

then
J
t = L) = ——— 2.6.60
() =0, 7o) =50 (26.60)
Therefore the inverse relaxation time is
1 o J \?
Using the density of states of the conduction band,
(2m*)3/2 V 1
pler) = =5 5og(er — &) (2.6.62)

and making thermal average of (2.2.8), we get the final result for the

relaxation time.

<i> = 3”;%4 { ( 2‘]7\7)25(5 + 1)} (kT): | (2.6.63)

Note that this has 7' dependence on temperature.

45




3 Experimental Procedures

3.1 Sample preparation

Samples are prepared by doping of transition metal impurity into FZ pure
Si single crystal with resistivity of ~ 3000€2 — cm. Residual shallow im-

purity is boron of which concentration is less than 10%2cm 3.

Doping of
transition metals was carried out by evaporation onto Si surface and dif-
fusing at high temperature of ~ 1100 °C. Firstly, host Si wafer with (100)
surface was prepared from 1 inch ingot. Before evaporation of metal, the
sample wafer was ultrasonically rinsed out by trichloroethylene and etched
by HF to remove the oxide layer. Transition metal was then evaporated
from the alumina coated tungsten basket or bare tungsten boat onto sili-
con surface under the vacuum of ~ 107° Torr. Deposition was continued
until the closely configured glass plate becomes perfectly opaque. The
evaporation chamber is not necessarily kept at a high vacuum, but the
main components of residual gases are expected to be oxyéen and water
vapor which have much less diffusivity in Si crystal compared to transition
metals and they should have less effect in diffusion process and measure-
ments. In the first place, we evaluate the diffusion depth based on the
following simple calculation.

Diffusion equation is,

-(?ﬁgt;t) = —div(an(r,t)) + DV?n(r,t) (3.1.1)

where n(r,t) is the density of impurity, D the diffusion constant and a is

the drift vector. For thermal diffusion, we assume a to be zero. Then in

46




one dimensional case, equation (3.1.1) becomes,

32 0

8 ——n(z,t) = tn(:c,t) . (3.1.2)
Because the quantity of deposited metal onto surface was so large in com-
parison with the maximum solubility of transition metal in Si ( usually of
the order of 101 cm™ at 1100 °C ), we can assume that the density of
metal at Si surface is constant. A solution of equation (3.1.2) under such

boundary condition is given by,

z
n(a,t) = mo[1-ent (7
o _ x
~ _—— 1.
BT exp{ 4Dt} (3.1.3)
where erf(z) is the error function.
erf(z) = / exp[— (3.1.4)
Vo -

In this case, the penetration depth of impurity can be regarded to be the

order of 2/ Dt. Table 2 shows the diffusion constant of various element in

Metal Temperature(C) D(cm?/s) Reference
Mn 1038 1.68 ~2.49 x 107%  Gilles [17]
Mn 854 23~84x1077  Gilles [17]
Mn 700 7x1078 ~5x107° Gilles [17]
Fe 920 1.7 x 1076 Gilles [17]
Co 700 2.4 x 1077 ~ 4 x 10711 Gilles [17]

Table 2: Diffusion Constant of various element in Si
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Si crystal from which we can evaluate the time for impurity perfectly to
- diffuse to opposite side of wafer. For the case of Mn element, the diffusion
constant is known as D = 2 x 107%m?/s at T=1100 °C. Assuming the
thickness of the wafer is 1mm, the time for Mn to diffuse to the back
surface is evaluated to be ~ 20 minutes. In the case of substitutional
shallow impurity such as B on the other hand, the diffusion constant is
“about D ~ 107 8cem? /s at T=1100°C [18] which is 10~7 times smaller than
that for transition metals and it will take 4.2 x 10® minutes to reach to the
back surface. In practice, samples are annealed for 8~24 hours at 1100°C
considering the surface barrier to penetrate into Si bulk such as silicide
formation and to obtain the uniform distribution of metal atom. For 24
hours annealing, substitutional shallow impurity will penetrate into Si for
only 2 um.

In the end of thermal diffusion, samples were dropped into glycerin
and quickly quenched to avoid the precipitation of metal impurity onto
surface. After quenching, sample surface was polished Wit]:; emery paper
to remove the surface metal layer, and etched by HF+NO3(HF:NO3=1:5)
solution. Diffusion of metal was confirmed by two methods, namely, SIMS
(Secondary Electron Mass Spectroscopy) and DLTS (Deep Level Transient
Spectroscopy). Procedure of DLTS measurement will be described later.
SIMS measurement was done by Matsushita Techno-Research Co. The
result is shown in Fig. 1. It can be seen that Mn of ~ 2 x 10%cm™3
has diffused uniformly except for near surface. Together with the Mn

diffusion, we acknowledge the co-diffusion of Cu of ~ 10%cm=3. But it
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will become clear in Section 4.2 that Cu is unimportant for the scattéring
of electrons. In addition, there can be seen the signals from Al and Na,
but they are not exceeding the lower detectable limit for Al and Na that
is about 3 x 10™cm™3 and 1 x 10%cm ™3, respectively. Furthermore, it
became clear in PL measurements that no shallow impurity such as Al
did not diffuse into specimen so much as to affect the electron scattering

and the fact supports our expectation.

3.2 Microwave Cyclotron Resonance

Figure 3 shows the experimental diagram of microwave cyclotron res-
onance. Prior to the measurements, a Vsample surface was washed by
trichloroethylene ultrasonically and etched again by HF+HNOj3 solution
for several seconds and set into the bottom of the wave guide with grease
an;'d then immersed into the liquid Helium. In the measurements, the
sainple was illuminated by Xe flash lamp through the glass lod to obtain
free carriers. The pulse width of Xe flash lamp is the orcier of sub pus.
In order to eliminate the high energy component which generates the hot
carrier and make carrier density high at near surface because of its high
absorption coefficient, and IR filter was emplayed. So, the light actually
used to excite the sample is which include the energy components near
band gap which has low absorption coefficient compared to higher energy.
Sample were expected to be uniformly excited. The pulse rate was set to
20Hz which may not raise the sample temperature. Microwave is gener-

ated at the Klystron and guided into 8mm siie wave guide through the
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attenuator and divided at magic-T. One part is gﬁided to sample direc-
tion and the other is guided to the opposite direction at where the phase
shifter was settled. Finally the divided two wave were again mixed at the
magic—T after the appropriate phase and amplitude matching operation
and reached to the GaAs diode detector. As the detector output is nearly
proportional to the square of the amplitude of electric field, We can obtain
power absorption directly from the detector output. The signal was then
put into two channel boxcar integrator equipped with two plug-in amplifier
gated at an arbitrary time position. Qutput from the boxcar integrator
was recorded using both of analog recorder and personal computer with
digital voltmeter equipped with GP-IB interface. The signal was taken
after the appropriate interval from the excitation to avoid the carrier—
carrier scattering contribution to line width. Usual sample temperature
was 4.2K cooled by liquid He. Temperature can be varied down to 1.5K
by evacuating liquid He, and up to about 12K by thermally shielding by
evacuating only around the sample and heating with ma,n‘ganine heater
near the sample. Sample temperature was measured using both of closely
settled carbon resistance and manometer ( only under 4.2K ). Magnetic
field up to 6000 gauss was applied using an ordinary split magnet. Mag-
netic field direction was perpendicular to the (100) direction and choosed
to separate the six-folded conduction band of Si into three two-folded ones

as depicted in the inset of the figure 3.
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3.3 Far Infrared Cyclotron Resonance

The experimental diagram of far-infrared ( FIR ) light cyclotron resonance
was depicted in Fig. 4. Sample was attached on the bake plate with GE
varnish and settled into the cryostat and immersed into the liquid helium.
Far infrared laser was optically pumped by electric discharge excitation
type CQO; infrared laser and generate the 513 um line. FIR light was
guided to sample by about 10mmé¢ light pipe. The light passed through the
sample was detected by the appropriately biased InSb detector where the
detection was realized using photothermal conduction mechanism. Sample
was illuminated by Xe flash lamp to generate the free carrier in the similar
way to microwave expériment. Minor difference is that in the FIR case
the glass lod is slightly bent due to the existence of FIR light pipe which
coilsiderably lowered the excitation efficiency. Magnetic field was applied
using superconducting magnet up to 5 Tesra. This time the magnet is in
(100) direction which is perpendicular to the sample surface and pallarel
to. the FIR light propagation vector (Faraday configuration). The sample
temperature was fixed to 4.2K all the time by immersing the cryostat into
the liquid helium directly. The signal from the detector was put into two
channel boxcar integrator also in the similar way to microwave experiment

and recorded and treated in the personal computer.

3.4 Deep Level Transient Spectroscopy

DLTS measurement was firstly introduced by D.V.Lang [19] and until now,

1t 1s widely used to characterize the deep level traps in the semiconductor.
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Wide properties of deep traps such as activation energy, concentration
profile and capture cross-section can be obtained by this method. This
method is based on the thermal emission properties of traps which is
almost unique to each traps. So, DLTS can be the powerful method to
distinguish the various traps in semiconductors. Here we present the brief
description of the DLTS measurement process.

DLTS measurement is done by utilizing the transient change of the
~capacitance of the depletion layer of Schottky barrier or p-n junction.
Here we assume the n-type semiconductor case where the current carrier
is electrons and Schottky barrier is for electrons. Capacitance of Schottky

barrier as a bias voltage is approximated by the formula,

Ny 2 ET\ ™
(9 farn- )

(M

where €, is the dielectric constant of the sample, Ny the shallow donor
concentration, V; is the reverse bias and Vy is the diffusion voltage at
zero bias. DLTS measurement is usually executed under the reverse bias
condition where the most shallow impurities existing near surface are ion-
1zed and depletion layer is so wide and capacitance is rather small. When
sufficiently long forward pulse voltage is applied to the junction, the shal-
Tow impurities are fully neutralized and the capacitance becomes large. At
the same time, if there exist the deep electron traps, they are also filled.
After the pulse voltage is finished to apply and initial reverse bias is re-
covered, shallow impurities are ionized again and depletion layer is also
widen again. But the deep trap filled by the pulse bias takes rather much

time to release electrons compared to shallow ones according to their large
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activation energy, which prevent the concurrent recovering of capacitance
and causes the time dependent capacitance change in the Schottky bar-
rier. Such time dependence is related to the activation energy and capture

cross-section of deep trap and expressed by

C@t,T) = C(0,T)— ACyexp [—en(T)1] (3.4.2)
en(T) = Nyv,o,exp [— 5—1:] (3.4.3)

where IV, is the effective density of states of conduction band, v, is the
thermal velocity of electron and o, the electron capture cross section of

impurity considered here. They are,

27Tm*kT 2
3KT\ ?
Uy = (m:) (3.4.5)
Ep
Opn = Ooo€XD (—ﬁ) (3.4.6)

Slibstituting (3.4.4), (3.4.5) and (3!4.6) into (3.4.3), explicit temperature

dependence of e, can be obtained as,

en(T) = CT? exp (— M) (3.4.7)
kT
and \
21k)imiv/300
¢ = Grh)miv3s (3.4.8)

B3
Measuring capacitance at two different time ¢; and ¢ after the injection

of a pulse, one can get,
S(T) = C(t,T) — C(t1,T)
= ACy{exp[—en(T)ti] — exp[—en(T)ta]}  (3.4.9)
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For temperature which maximize S(T'), it needs %JQIT," = 0, we obtain
the equation,

Int; —Int
ﬁ-—? = en(Thm) (3.4.10)
17— 42

Notation a is referred to as rate window. By plotting 722 /a against 1/T,,

a

one can get F; + Ep from its slope according to the relation (3.4.7). Here
we must remind the capacitance of Schottky barrier is expressed by the
equation (3.4.1). If there are considerable amount of deep electron traps,
the same amount of charges of ionized shallow impurity are canceled out

until the traps release their charges. It leads the modification of capaci-

tance,
1 1.1 ET\ "3 ,
ACy = —3(g0)I N AN, (vdo +V, - —q—) (3.4.11)
then,
aC _ AN,
C 2N
Ng = AN, = 2N3—AEC—Q : (3.4.12)

One can get Ny by measuring the capacitance - reverse voltage relation
using (3.4.1). If we choose 10¢; for ¢g, S(T},,) simply becomes to 0.697TAC,

and the concentration of deep trap is,

Ny = 2.87Nss(gm)

Experimental block diagram of DLTS is depicted in Fig. 5. The sample is
settled into helium refrigerator unit and the sample temperature is stabi-
lized by computer controlled temperature controller. Capacitance signal

1s get by digital capacitance meter which can get the whole time variation
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of transient behavior of capacitance at one pulse. Pulsed reverse bias is
applied to the sample by utilizing the trigger output from the capacitance
meter which is once attenuated from 5V to one tenth of required voltage
and amplified 10 times by pulse amplifier. Impedance matching was made
by serially configured resistance. Temperature data from the temperature
control unit and transient capacitance data from digital capacitance meter

is obtained and treated by personal computer.

3.5 Electron Spin Resonance

Electron Spin Resonance measurements were examined at IPCR ( Institute
of Physical and Chemical Research ) in cooperation with Dr. Katsumata
and Dr. Hagiwara. Figure 6 shows the configuration diagram of our ex-
pefimental equipment. The sample is settled at the end of a quartz rod
ana put into a microwave cavity. The frequency of microwave was 9.21
GHZ and its power was usually 4mW. The usual modulation frequency
was 100kHz and its amplitude in magnetic field was 5G. Th;z sample tem-
perature Was controled by a heater coiled at the injector and changed from
4K to 300K.

For instance, we should handle the case of Mn in Si. Interstitial Mn
can exist in Si with five possible charge state according to the published
article [14, 15, 16] and four of five had been observed in ESR and DLTS
measurements. They are Mn~(3d)®,Mn°(3d)",Mn*(3d)® and Mn2*(3d)5.

Effective spin Hamiltonians of the system of total (3d)-spin interacting
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with external magnetic field and nuclear spin is,
H=gugH -S+IA4S (3.5.1)

where H is the static magnetic field and S is the total spin of unfilled 3d-
electron and T is nuclear spin and A4 is the hyperfine interaction constant.
If we choose the axis to diagonalize A and apply the magnetic field H =
(0,0, H,), equation (3.5.1) becomes,

H = gupS.H,+ A,LS, + A, LS, + A LS,
1
= gupS.H,+ A, LS, + Z(A” + A)ITST+1I°8%)
1
+Z(Agc —A)ITST+I757) (3.5.2)

Let us treat the case that Mn spin is S = % For almost all Mn exists,

nuclear spin is I = g—’, so the number of basis spin fu nction is 2 x 6 = 12.

Diagonalizing (3.5.2) leads to the energy,

gupH, mA, I(I+1)-—
E, =+ 4 +
. 2 2 8gupH,

m

4gNBHz

m2 .
(AZ+A2) Az A, (3.5.3)

where m is the nuclear spin quantum number ( I, |m) = m#|m) ) and an
approximation A < gugH, is used.

If the H, is small, S and I are not a good quantum number because of
the relatively large mixing term. The states will be specified by F' which
‘1s eigen value of F' = I + S. But, once H, become larger so that we can
neglect the last two term in (3.5.3), then energy becomes,

Hy mA,
g’““; o % m2 (3.5.4)

E:}:Nzl:

Energy diagram is depicted in Fig. 7. In zero magnetic field, Energy is
separated in 7-fold states (F'=3) and 5-fold sates (F'=2). As magnetic
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field is increased, the folded states become separated and quantum num-
ber I and S again become good number to specify states. Usual ESR
measurement satisfies the condition for large magnetic field and magnetic
transition occurs when the selection rule AS = +1 and AI = 0 are sat-
isfied. So, we can expect to observe six lines in the ESR measurement of

Si:Mn.

3.6 Photoluminescence

Configuration diagram for photoluminescence measurement is depicted in
Fig. 8. All measurements were done at helium temperature. Excitatién
light is Art laser (4880 A line) which is filtered to cut the light with
wave length above 6000 A and below 4000 A. PL light from the sample
is focused by lens and filtered to cut the light with wavelength below
65?0 A in front of the monochromater which has 600 mm ™ grating and
ab__’:out 2m radius. The monochromated light is detected by Ge-PIN diode
detector appropriately biased and cooled with liquid nitrogellfl. Signal from
the detector is processed by Lock-in Amplifier and its output is stored into

persdnal computer via digital voltmeter.

3.7 DC measurements

For Hall measurements, electrodes must be attached but we must not
apply any annealing treatment because of high diffusivity of transition
metals in Si crystal. Finally, for n-type Si, electrode was successfully made

by evapolating Al onto Si surface and for p—type Si, that was realized by
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rubbing In:Ga arroy. He refrigerator was used
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4 Experimantal Results

4.1 DLTS measurements

We firstly made the DLTS measurements on Mn doped n-type CZ-Si to
certify that aimed diffusion of Mn into Si host is achieved. Usual DLTS
measurements require the certain amount of shallow impurities to supply
free electron to fill up the deep level within the period the forward bias is
applied. So, we must use rather highly doped Si instead of pure one we

used in cyclotron resonance measurement. Table 3 shows the previously

Energy Level  Type Aésignment Ref

E.—0.12¢V  acceptor interstitial  [20, 21]
E,—0.27¢V  donor Mny [21]
E.—041eV  donor interstitial ~ [20, 21]

E.—0.51eV substitutional |
E,—0.54¢V  donor Mn-B pair |
E,+0.32¢V  donor interstitial ~ [20, 21]
E,+0.3%V  donor substitutional |

Table 3: Previously observed DLTS signal for Si:Mn

obtained DLTS signal for Si:Mn. The typical DLTS signal we obtained is
depicted in Fig. 9. The reverse bias is 5V, filling bias 0V, and rate window
ratio t9/t; = 0 for ¢; is 10 us to 10 ms. The injection pulse width is 1ms.

Making use of the standard rate window variation technic described in

section 3.4, we can obtain for E + FE;, E, — 0.11eV, E, — 0.20eV and
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Ec — 0.39¢V from Arrhenius plot as shown in Fig. 10. The temperature
dependence of capacitance is shown in figure 11 from which we can obtain
the trap density was obtained from temperature dependence of capacitance
by making use of the relation (3.4.13). The signal of E, — 0.39¢V is close
to the level position of interstitial Mn ( Mn? —Mn} ) shown in Table
3 and that of E, — 0.11eV is correspond to ( Mn; —Mn? ). We have
not succeeded in the assignment of E, —0.20eV signal. The signal appears
around this energy was attributed to Mny cluster [21, 20] or a defect signal
[24]. Mny signal is reported to have energy level at about E, — 0.27¢V.
The defect signal is reported to have signal at abour E,— 0.20eV and they
obserbed it in only quenched sample, too. But, we have not observed any
signal in only quenched sample.

DLTS measurement was also done using the back side surface of the
same sample, and almost the same result was obtained and the fact shows
uniform diffusion of Mn in host Si is achieved.

DLTS measurement for p-type Si doped with Mn in the‘sa,me way did
not succeed because of its high resistivity which is known as caused by the
coupling of Mn and shallow acceptor ( boron in this case ). Mn-B pair is
known to become donor with activation energy of E,—0.54eV. This pairing
not only reduce the density of acceptor boron but also compensate it. The
DLTS measurement for p-type Si:Mn requires the well controlled sample
preparation. If we want to observe the DLTS signal in p-type Si:Mn, the

sample with boron density higher than 10cm =3 will be required.
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4.2 Cyclotron resonance

The data obtained and stored into personal computer system were fit
nurﬁerically as superposition of several Lorentzian curves using the non-
linear minimum square technic referred to as the Gauss-Newton method
described in dppendix A and separated into each constituting Lorentzian
curve to obtain accurate line width. The typical result of fitting is de-
picted in Fig. 12. The rather broad peak at around B=1.9kG named as
HCR1 is light hole resonance and HCR2 is heavy hole resonance. Because
Si has the six fold degeneracy in conduction band and have three equiva-
lent pairs if ellipsoidal iso-energy surface is assumed, three resonance for
electron can be obtained. Magnetic field was applied to separate these
pé‘aks. We decided to evaluate the relaxation time of electron using ECR1
Which has cyclotron effective mass m*/my = 0.208 obtained from the ac-
tu?al resonance peak using the relation (2.1.28).

Figure 13 shows the time resolved microwave absorption for stepping

magnetic field drawn in three dimensional i)lot from which we obtain the

time resolved cyclotron resonance curves as shown in Fig. 14. We also get

the time resolved inverse relaxation time as depicted in Fig. 15. The ini-
tial enhancement of line width is due to momentum relaxation of electron
caused by carrier-carrier scattering and its decaying feature depends on
the carrier recombination process. The evaluation of line width was done
at time position where the broadening caused by carrier-carrier scatter-
ing become negligible. The final line width to be analysed was obtained

by averaging the several number of resonance curve obtained in the way
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described above and from which we can get the electron inverse relax-
ation time according to (2.1.29). Figure 16 shows the typical cycrotron
resonance line of FZ pure Si and that doped with Mn measured at lig-
uid He temperature. One can see the remarkable enhancement of line
width in Si:Mn sample compared to pure Si. Let us concentrate into the
peak named ECR1 as mentioned above. Figure 17 shows the obtained
temperature dependence of inverse relaxation time of FZ-Si doped with
various transition metal obtained from ECR1 peak. Straight line shows
the acoustic phonon contribution which has 72 dependence to tempera-
ture as described in section 2.3.1. Quenched Si has slightly broader line
width compared to pure host. We did not yet identified the origin of
this broadening, but it should be attributed to defect center or some deep
impurities entered at the annealing process, but not to shallow impurity.

The reason will become clear in the PL measurement where postannealing

procedure decreases the Si defect which act as nonradiative recombination

center. It can be seen that transition metal impurity other ‘than Mn have
line width almost same to quenched Si and do not significantly affect the
relaxation time of electron. It is notable that only Mn doped Si exhibits
extraordinary enhancement in inverse relaxation time among Si doped
with the transition metal impurity. We have not yet certified the diffu-
sion of these metal impurity other than Mn. There rest a little possibility
that these metals have not diffused in Si sufficiently. We only expected
the diffusion of these metal impurities by their diffusion constant in Si

comparable to Mn. Figure 18 shows the inverse relaxation time for Si:Mn
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and host Si where host Si contribution to line width which is expected to
contain acoustié phonon scattering only was subtracted. The temperature
dependence of 1/7 obtained by least square method is about 794!, Next,
we show the result of annealing effect on signal. Figure 19 shows the cy-
clotron resonance line of the sample which experienced various annealing
treatment. The sample named “Slowly cooled Si:Mn” is that experienced
no quenching process after the diffusion of Mn and naturally cooled with
the furnace. It takes about a half day to be cooled down to room temper-
ature. The sample named “Annealed Si:Mn” is a quenched one, but after
quenching it was annealed at 500°C for about 4 hours and cooled slowly.
“Quenched Si” is a non-doped one Which‘experienced the same process to
doped ones including quenching without Mn doping. We can see that Mn
doped Si has the large line width but Slowly cooled Si:Mn has as large
Width as pure Si. And even in the quenched Si:Mn, rather low tempera-
tﬁre annealing ( 500°C' ) made line width narrower to the size as narrow
as that of quenched Si. This result shows the precipitatioil of Mn atom
occurs even at 500°C' because of their high mobility and very low solubil-
ity in Si and make it sure that the broadening of cyclotron resonance line

width is caused by Mn doping.

4.3 ESR measurements

Typical ESR signal of Si:Mn obtained is depicted in Fig. 20. These signals
were not seen in host Si and Quenched reference sample. The correspond-

ing g-value calculated is ¢ = 3.375. This sigi’ial Is already attributed to |
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Mn®(S = 1/2) in the previous work as depicted in Table 4. The sample

state configuration spin g A
Mn2+ (3d)? 2 2.0066 -53.47
Mot (3d)° 1 301 738
Mn* (3d)¢ 2  1.68 46.1
Mn* (3d)8 3 1.34

Mn? (3d)7 3 3362 925
Mn? (3d)7 3 146

Mn ™ (3d)8 1 20104 -71.28

Table 4: Previously obtained ESR signal of interstitial Si:Mn

made using pure Si as host exhibits the strongest signal, while that made
using p-type Si shows weakest signal of the three. We could not get the
signal other than Mn{ in these three type sample. Figure 21 shows the
signal around g = 2.0. Quenched Si exhibits the remarkable structure at
g=2.076 and g=2.009 which is not seen in pure Si. Si:Mn exhibits the
similar behavior but not with sharp peak. This sharp signal is proba-
bly related to some kind of defect produced at the quenching procedure.
‘Therefore it may exist in the Si:Mn sample. This result implies that cer-
tain amount of coupling of Si defect center and Mn atom which produces
the ESR-inactive center and make the sharp signal decrease in Si:Mn sam-
ple. Figure 22 shows the temperature dependence of Mn?(S = 1/2) signal
at g=3.375. The steep decrease occurs when temperature is raised and

signal is almost hidden into noise at above 7 K. It is known that Mn} can
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exist with two spin states which has deferent g-value as shown in Table 4,
that is S=3/2 (g=1.46) and S=1/2 (g=3.362). It is also known that S=3/2
state is the excited state of S=1/2 state ( see section 3.5 ). This quenching
behaviour of ESR-signals seems to be caused by thermal excitation, but
the signal expected to grow at around g = 1.46 was not observed probably
because of weak signal intensity. Since the excited states generally has un-
stable feature, it is probable that such state is hard to observe compared
to the ground state.

Next, we examine the illumination effect on the ESR signal because
our cyclotron resonance measurement was always done under the condi-
tion that the excitation by the Xe flash .la,mp exist. Sample illumination
was made by use of Xe continuous lamp. Figure 23 shows the illumina-
tion effect on Mnl(g = 3.362) signal of Mn doped p-type Si. The signal
infensity was enhanced when the filtered light was illuminated on the sur-
féce. But without filter, the signal is weakened on the contrary. The
dependence of signal intensity on illumination intensity is ‘shown in Fig.
24. When weak illumination is applied, signal grows as illumination in-
tensity is raised. This enhaﬁcement with illumination can be recognized
even with the weakest illumination intensity we applied. On the contrary,
it is observed that much stronger illumination decreases the signal inten-
sity as shown in figure. Reminding the strong temperature dependence of
this signal, it may be caused by heating of the sample under strong pho-
toexcitation. Because our cooling system is the gas flow type, we can not

say 1t is much efficient under strong illumination. These illumination was
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also applied on Si:Mn made using pure Si and that made using n-type Si.
But Si:Mn with pure Si exhibits no detectable change in signal strength
except for damping caused by heating. The sample with n-type Si shows
the slight enhancement with illumination, but its not as large as that of
p-type Si:Mn.

Hlumination of continuous light on n-type Si:Mn yield the new peak at
- around g=2 which is shown in Fig. 25. This signal can be attributed to
neutral phospher. Phospher atom has the I=1/2 nuclear spin which yield
two peaks in ESR signal according to equation (3.5.4). Figure 26 shows the
dependence of peak to peak intensity of phospher signal on illumination
strength. The signal can be seen to be almost proportional to illumination.
This result implies that in n-type Si:Mn at low temperature, phospher
donors are fully compensated with certain acceptors created by thermal
treatment they are neutralized by photoexcitation. The signal appeared
in quenched Si at around g=2.0 showed no response to illumination except
for the growth of small signal at g=2.004 which should be‘ attributed to

free electron signal because of its g-value.

4.4 PL measurements

The result of photoluminescence is depicted in Fig. 27. The peak labeled
FE is free exciton luminescence and EHD means that of electron-hole drop.
BE denotes neutral donor bound exciton for n-type Si and neutral acceptor
bound exciton for p-type Si. Pure Si exhibits the well known peak of FE

and EHD due to the lack of luminescent center like shallow impurities.
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On the other hand, quenched Si and Si:Mn shows no luminescence with
detectable intensity which seems to be due to the defects introduced at the
quenching which act as the efficient non radiative recombination center.
And p-type Si and n-type Si exhibits the bound exciton luminescence
which feature is also well known. The points one should notice is that
Si:Mn sample which experienced the post annealing process of 500°C 4
hours recovers the FE and EHD feature and slowly cooled Si:Mn exhibits
the feature same as pure Si not as n-type or p-type Si. This means that
the Mn diffusion process at the temperature as high as 1100°C did not
introduce shallow impurities which usually act as luminescent center as
seen in n-type or p-type Si and that brdadening of cyclotron resonance
line width in Si:Mnr is not caused by such shallow impurities which are in
dahger of introduction by heat treatment and are usually hidden under

high compensation ratio.

4.-'5 DC measurements

The room temperature resistivity of various Si and Si:Mn sample measured
by usual four-point technic is shown in Table 5. It is seen that Si:Mn has
very low resistivity while pure Si and Quenched Si and slowly cooled Si:Mn
have high resistivity and that high resistivity‘ 1s recovered after post an-
néaling procedure. The remarkably high resistivity of p-type Si:Mn is due
to coupling of Mn and boron. Si-B complex 1s well known to become the
donor at around E, — 0.53eV. This donor level may compensate the shal-

low acceptor and donor itself is too deep to sﬁpply carriers to conduction
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band even at room temperature. This makes sample resistivity very high.
Figure 28 shows the temperature dependence of carrier density of Si:Mn
sample derived from Hall coefficient. Carrier type obtained is electron and
the activation energy is fit to 227meV . Donor density can not be obtained
straightforward by this figure because the temperature does not yet reach
to the extrinsic range even at room temperature. But slight bending at
‘near 300K allows us to estimate it to be order of 10%cm™3. Comparing
this with cyclotron resonance result and photoluminescence result, we can
say that this donor level related to Mn doping is the cause of CR line

width broadening.

4.6 FIR cyclotron resonance

We made the cyclotron resonance experiment at 4.2K using far infrared
laser to investigate the magnetic field dependence of inverse relaxation
time of electron. The results is depicted in Fig. 29 and 30. In Fig. 29,
it can be seen that Si:Mn has almost the same line width compared to
pure Si while micro wave mesurement shows the remarkable difference
between these two sample. Figure 30 shows the genuin inverse relaxation
time due to the Mn introduction which is derived by subtracting pure Si
component from the obtained bare line width. It can be seen that for
cyclotron resonance experiment under high magnetic field, the effect of
Mn introduction is reduced, that is similar to the case of scattering by

shallow impurities.

68




4.7 Room temperature postannealing

Because of their large diffusion constant, transition metal atoms easily
mo{/e around in Si crystal even at rather low temperature and precipitate
onto surface and which is the reason why we must quench samples into
liquid after Mn diffusion at high temperature. Figure 31 shows the room
temperature annealing effect on cyclotron resonance line width and ESR
signal intensity for Si:Mn. We prepared the several sample which were
made at different day to execute this exi)eriment. We decide the annealing
time to the days past from the day it made to the day it measured. The
sample which suffer longest annealing time is that of about 400 days. We
can immediately see the fact that inverse relaxation time is decreasd only
by: apploximately 40 % with annealing time while ESR signal is decreased
by 2 ~ 3 % in 100 days. ESR signal is saturated to decrease after 100 days
past This result apparently says that the origin of cyclotron resonance
liﬁe broadening and that of ESR signal are different. The similar fast
décreasing is obtained by Nakashima [20] for DLTS signal of interstitial
Mn.

4.8 Stress effect on line width of cyclotron resonance

Figure 32 shows the stress dependence of inverse relaxation timé for Si:Mn.
The stress was applied to < 111 > direction not to change the occupation
of the six equivalent valley relatively. In the case of p-type Si with shallow
acceptors, it is known that the electron momeﬁtum relaxation time at low

temperature is almost governed by the neutral acceptor bound exciton
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scattering. [25] Neutral acceptor has the smaller scattering cross section

compared to that of donor. But when it capture the exciton, it is known
that it turn to be donor like. This make cross section larger according to
the theory of neutral impurity scattering as described in section 2.3.3. It
is also known that the stress applied to lower the system symmetry makes
the generation of bound exciton difficult. Our result shows no damping of
.inverse relaxation time in increasing stress. And moreover no luminescence
line was observed near band gap energy. It is expected that some kind
off luminescence should be observed if the bound exciton exist because of
its high radiative recombination efficiency. Its energy is expected to be
one tenth of impurity binding energy (Heynes rule) less than free exciton
luminescence energy. Accordincly, in the present case we can say that the
bound exciton is not responsible for the broadening of cyclotron resonance

line width.
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Sample Resistivity (2-cm)
Pure FZ Si 3196
Quenched Si 3251
Si:Mn 106
Si:Mn (postannealed) 3951
Si:Mn (slowly cooled) 2569
n-type Si:Mn 6.78
p-type Si:Mn 27000

Table 5: four-probe resistivity
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5 Discussions

5.1 ESR, DLTS and DC measurements

It is known that transition metal in Si favour the interstitial site [14, 15,
16]. Mn in Si interstitial site can have four charge state according to the
theory. These are Mnj (3d)%,Mn?(3d)",Mn; (3d)® and Mn?*(3d)5. These
- Mn; state transferred initial 4s electrons into 3d orbital or other atom. In
n-type Si which have sufficient number of donor, Mn atom act as acceptor
and traps one electron from donor, compensate it and become Mn™ state.
The number of this Mn~ is owes to the number of Mn atom and donor atom
and to distribution function. If the number of donor atom is insufficient .
to fill all Mn atom, the rest remains neutral, that is, Mn® state exists in
the same time. When these negatively charged and neutral Mn atom is
put into depletion layer neighboring to the Schottky barrier interface, each
Mn atom will release one electron and become Mn® and Mn™ respectively.

So, we can observe following two process in DLTS results in such sample.

2

i1lin, _
Mn? filling Mni 0.11eV Mn®

and

Mn} filling Mn!? 2 Mn}
Energy diagram of interstitial Mn is depicted in Fig. 7. In p-type Si,
on the contrary,. Mn can act as donor and compensate acceptor. We can
expect two states, Mn* and Mn?* which are the states which traps one
and two holes respectively. The number of occupation of these states is

owing to the number of compensating acceptor. In actual, only Mn2+/*
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can observed in DLTS on p-type Si:Mn. It is,
Maf T NP+ 00 gyt

The transition Mn~/ is called as acceptor, Mn%+ as first donor and
Mn?*/* as second donor. We have observed the former two signal in
n-type Sample.

In ESR measurement, we have observed the strongest Mn! signal in the
sample with pure Si host. This is consistent with above description. In
n-type Si:Mn we observed the rather strong signal intensity of Mn). So, we
can say that the concentration of interstitial Mn exceeds that of shallow
phospher donor which amount is 3 x 104em™3. In p-type Si:Mn ESR result
shows that most of interstitial Mn is charged to Mnj and the signal inten-
sify of Mn? become least of the three type of sample we measured. But,
We observed the enhancement of Mn° signal when weak illumination was
anplied on p-type Si sample. This means that the neutralization of Mn;
by the carrier generated by illumina,tion- was occurred. It is remarkable
that even with the very weak illumination, signal enhancement occurred.
It is known that the pulse illumination applied to generate free carriers
necessary for cyclotron resonance neutralize almost all shallow impurities
and make it hard to observe the ionized impurity scattering at low tem-
perature. We can say that about the same situation occurs in our Si:Mn
case. Reflecting the occupancy of Mn? states, n-type Si:Mn exhibits the

weak response to illumination but signal is enhanced slightly. The appear-

ance and growth of phospher signal by illumination in n-type Si:Mn can |

be understood bye the assumption that the full compensation of donor by
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Mn acceptor occurs. This also support the excess of Mn concentration
to that of phospher. But the strongest illumination we applied could not
lead to the saturation of the signal intensity.

Room temperature DC measurement revealed the very low resistivity
of Si:Mn with pure Si host compared to other pure Si originated sample.
The conduction type of thié sample known from Hall measurement is n-
type and its activation energy is found to be about E, — 0.23eV and its
concentration is deduced to be 101* ~ 10%¢m~3. This value for activation
energy is slightly different from E, — 0.27eV which is assigned by Czaputa
et. al. [21] to be Mny cluster. But there is no energy level other than
Mny around this energy which is previously assigned as Mn related states
in Si. Our DLTS measurement shows the small peak at around 130K
which is assigned by Nakashima [20] as the Mny(E, — 0.27¢V) signal. He
observed the growth of this signal accompanied with the decreasing of the
signal of interstitial Mn in the long period room temperature annealing.
This behavior is to be attributed to the Mny cluster formaj;ion. In Si:Mn
with host Si doped to n-type or p-type, Mn is charged up because of the
compensation as described above. So, the clustering of Mn atom probably
prevented by coulomb repulsive force. It is known that Mny cluster is
formed easier in pure Si host [26] because it r>eta,ins the neutralized feature.
So we conclude that the Mny cluster is formed in very high concentration
in excess of 10*cm™3 in this type sample.

Room temperature resistivity for Si:Mn made using n-type Si exhibits

the value about the same but slightly smaller to initial value. We have
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seen that the phospher donor in this sample is fully compensated by Mn;,
but its activation energy is obtained from DLTS about E, —0.11eV which
is small enough to supply almost all electrons to conduction band. Indeed,
temperature dependence of resistivity exhibits steep rising at temperature
about 100K which is twice as high as initial n-type Si where shallow donor
has activation energy about 45meV and exhibits steep rising in resistivity

at temperature around 50K.

5.2 Cyclotron resonance

From Fig. 17, we see that only Mn diffusion affects inverse relaxation time
of electron significantly. DLTS, ESR and DC measurements revealed that
about 10cm~? interstitial Mn exist in sample with doped host Si. Com-
paiable amount of interstitial Mn also expected in sample with pure Si
ho':st. But it is also revealed that room temperature annealing process de-
creases the number of interstitial Mn significantly while invelzrse relaxation
time decreases only slightly. On the other hand, we see that Mny cluster
formation in excess of 1014em™3. We executed Hall measurement again on
the same sample after about 200 days of room temperature annealing, but
we observed no significant change in room temperature Hall coefficient.
Instead, it even looks increased slightly in cafrier concentration. So, we
conclude that this Mnyg cluster is responsible for broadening of electron
cyclotron resonance line width. It is peculiar fhat the room temperature
annealing effect for inverse relaxation time exhibits the slight decreasing

feature while Mny cluster density seems to remain constant. This can be
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justified by the assumption that interstitial Mn also affect the electron

relaxation time as well as Mny cluster.

5.3 Neutral impurity scattering

It is already known from the previous discussion that Mny as well as Mn;
may be neutralized under pulsed illumination in the cyclotron resonance
measurement. We must treat the neutral impurity scattering firstly. Be-
cause these center is deep and its Bohr radius of ground state is expected
to be very small, usual neutral impurity scattering treatment become no
longer applicable because its cross section becomes too small to affect the

line width.

5.3.1 Spin scattering

In the case of transition metal in semiconductor, it is known that Hund’s
rule is often broken if the p-d hyblidization is large compared to exchange
energy among (3d)-electron.[14, 15, 16] transition metal in Si is generally
the case because of strong covalency of Si. In Si, TM usually expected to
prefer the low spin ground state. But it is known that Cr and Mn can
have high spin state in Si according to the calculation. And five spin state
had observed for interstitial Mn and two for substitutional Mn as shown in
Table 4. In addition, Si:Mn shows the ESR signal of Mn4 cluster [21]. It
is probable that these spin can interact with conduction by the spin-spin

interaction expressed as

H= JSM - Se (5.3.1)
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where J is the exchange integral, Sy, the impurity spin, s, the spin of con-
duction electron. This interaction lead to the 7'z temperature dependence
of cyclotron resonance line width according to the discussion in section
2.6.2. Neutral impurity scattering case seems to be the special case of
spin scattering where J becomes large because of the widely extended
Bohr radius of effective mass impurity. Vikhnin et. al. calculated the
scattering cross section for the interstitial Fe in Si and conduction elec-
tron using the s-d exchange interaction approximation principally same to

the theory described in section 2.6.2. The result is

2l o om*?
where (1) = 3 |uz.()|? and ug(7) is a Bloch function of incident electron
and [ is the number of equivalent valley of conduction band. He obtained

the total cross section for the case of Fe in Si ((3d)8,5=1),
o =1.3 x 107 ¥em? ‘

This cross section leads to the inverse relaxation time for the impurities

of 10%cm™3 at T=4.2K,

1
Z=18x%x10"s7!
T R

Because the parameters emerged in Vikhnin’s theory are not expected to
differ so much in Mn case, this value seems too small to explain our Si:Mn
result for inverse relaxation time of about ~ 10!%s~!. The spin scattering
is treated by Kasuya et.al. in the case that spins are more concentrated

- such as the case of diluted magnetic semiconductor.
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5.3.2 Resonant scattering

For the next, we can imagine the case that resonant scattering play an
important role in the relaxation time of conduction electron. The square
well potential is known to have probability of generating a semi-localized
resonant states in the £ > 0 region which is originated in the steep change
of potential at the boundary (see section 2.6.1). In the solid state, this
“situation is enhanced by the band structure.[27] If there is remarkable
amount of intervalley transition, that is, U(k, k') has the applicable value
between the different valley, the bound state associated to one valley may
mix with the continuum state of another valley (valley orbit interaction)
which situation is depicted in Fig. 33. This mixed state resonantly scatters
the electron in that continuum states according to the manner of Breit—
Wigner scattering where the scattering cross section is of the order of the
square of electron De Broglie wave length. Therefore, if such resonant
state lies near the band edge of conduction band, this respnant scatter-
Ing is very much responsible in the electron relaxation time in the case of
non-degenerate semiconductor. Figure 34 shows our simple calculation of
the inverse relaxation time of electron for the resonant scattering with the
Breit-Wigner formula. They have about Tz dependence on temperature
at low temperature which originate in the fact that only electrons resonat-
ing is responsible to relaxation time and rising of temperature make the
population of electron occupies the resonant state high according to the
Boltzmann distribution. Further rising of temperatui'e lowers the occu-

pation of the resonant states on the contrary which yield the maximum.
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Sankey [28] ét. al. shows theoretically that the resonant scattering can
dominate the low temperature mobility in the case of sp-bonded substi-
tutional deep impurity in zincblende host. Its temperature dependence is
almost linear to T at low temperature while our simple calculation yields
the 77 dependence. It seems that the same situation can arise in deep
impurity in Si case where strong sp? hybridization exist. But our attempt
to detect the resonant state using FTIR measurement failed. And the

possibility of resonant scattering became much more controversial.

5.4 Ionized impurity scattering

We must not forget the case Mny are not fﬁlly neutralized. It is well known
that ionized impurities strongly affect the carrier mobility if they exist.
But there are only a few sufficient experimental result which detect the
ior;ized impurity scattering directly at low temperature such as T' < 10K ,
because of the difficulty for detection of such scattering a,t‘low tempera-
ture. One reason is that DC measurement fails at IOW‘ temperature where
no carrier is available for they are trapped to shallow impurity. Second,
even if one can avoid the shortage of carrier by illumination, as in the case
of cyclotron resonance, generated carrier immediately neutralize the ion-
1zed impurity even in the compensated samplé. There are no longer exist
ionized impurities enough to affect the mobility. In such circumstances,
Ohtsuka et. al. [29] succeed to detect the ionized impurity scattering by
use of cyclotron resonance. They made free carrier necessary for resonance

by illuminating sample with far infrared lightf‘ of energy adjusted to the

79




binding energy of the impurity. They obtained the scattering coefficient
two times less then that obtained from Conwell-Weisskopf ( C-W ) formula
and about ten times less then that from Brooks-Herring ( B-H ) formula.
It evidently demonstrate the collapse of Born approximation at low tem-
perature. The same can be said to our result if our measurement is that
capture the ionized impurity scattering. We firstly evaluate our result with
- B-H formula and C-W formula described in section 2.3.2 which are widely
used to evaluate the ionized impurity scattering. If we try to evaluate B-H
type scattering formula, it is necessary to evaluate the number of free elec-
tron concentration which screen the impurity Coulomb potential. From
the result of time resolved cyclotron resonance measurement depicted in
Fig. 15, we can evaluate the carrier-carrier scattering contribution. Since
other scattering probability is almost independent on carrier concentra-
tion, the decaying behavior can be entirely attributed to the contribution
of carrier-carrier scattering. Approximating this decaying behavior by
simple exponential decay with constant offset, we can get t;he inverse re-
laxation time due to carrier-carrier scattering to be 1/7 = 8.7x10%cm 3 at
just after the excitation. Here we can utilized the previous result done by
Kawamura et. al. who investigated the broadening of cyclotron resonance
Vline width caused by carrier-carrier scattering. They evaluated the carrier
concentration under the light illumination using the plasma shift of absorp-
tion peak. They obtained experimentally the value 1/7 = 1.8 x 101%(s71)

for Ge at 4.2K with the electron concentration of about 103cm 3. We
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here define the experimental condition parameter v as

I

w

Y= ——3%

—1 (5.4.1)

S

They obtained as the final result that inverse relaxation time caused by
carrier-carrier scattering is proportional to fyn% in the case where condition
kgT > hw is satisfied. Here n is the carrier concentration. We can evaluate

the value at same temperature,

¥Ge 1.03
Ysi

Because also in our case (T = 4.2K,w, = 35GH z) the condition kgT >
hw, is satisfied, we can evaluate the carrier concentration for just after the

excitation,

8.7 x 109 YSi
2.5 x 102em ™3

2
103 (1.8 x 10" 'yge)

Because the area under the resonance curve is proportional to carrier con-
centration participate in resonance, we can plot the time variance of elec-
tron concentration. This is shown in Fig. 35 from which we obtain the
electron concentration 20us after the excitation to be about 5 x 10'em 3.
We did not evaluate the carrier concentration for all measurement, and
this can vary with the experimental configuration or sample character, but
‘our measurement was always done under almost the same configuration
with weakest excitation as possible to extract this carrier-carrier effect, the

carrier concentration is expected to be same in order in each measurement.

Figures 36 and 37 show the calculated inverse relaxation time using B-H
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formula and C-W formula respectively for several impurity concentration.
For B-H formula, obtained carrier concentration is used to evaluate the
screening length but it is too small to affect the temperature dependence
of inverse relaxation time and appeared to have less meaning. It can be
seen for any impurity concentration, C-W formula and B-H formula don’t
explain the temperature depéndence of experimental data.

But after the work of C-W and B-H, several authors had proposed the
invalidity of Born approximation oriented theory such as C-W and B-H
in low energy scattering problem. Sclar’s theory [7] and Blatt’s calcula-
tion [8] both suggests the smaller cross section of ionized impurity for low
temperature such as T' < 20K than C-W and B-H theory. Moreover their
partial wave oriented theory suggests that the negative derivative of mo-
bility respect to temperature while high temperature mobility obeys to T 3
( see section 2.3.2 ). So, the ionized impurity scattering may explains our

slightly temperature dependent relaxation time if impurities are ionized.




6 Conclusions

We conclude that the bvroadening of the cyclotron resonance line in the Mn-
doped Si is mainly due to Mny clusters of density ~ 10em ™3 which have
the activation energy of ~ 230meV. In the n-type or p-type Si, Mn atoms
compensate shallow impurities and ionize themselves, then, the Coulomb
repulsion force makes it difficult for Mn atoms to form clusters. Moreover,
the ionized Mn atoms tend to couple with ionized shallow impurities. This
is remarkable in the case that shallow impurities are acceptors. In pure
Si, the Mn atoms hold their neutral feature and it may relatively easy
to form clusters. The Mn atoms which remain in the interstitial site
will move around even by the room temperature annealing, and some of
them precipitate to the surface and some of them form the M ng cluster
an_ﬂ others are found at other stable site. SIMS result at just after the
pr%epa.ration of sample showed the Mn density of ~ 2 x 10¥%¢m™=3 and it
bécame 5x10%cm ™3 ~ 1x 10¥%cm™3 after the room temperature annealing
of‘ ~ one year. The result of ESR measurement showed that the density

of interstitial Mn decreases rapidly for first 100 days and the ESR signal

becomes hard to observe. The Hall measurement showed the 230meV

donor with thé density of ~ 10°cm=3 which is ascribed to Mmny cluster,
and showed no decreasing after 200 days. By considering above results,
we can conclude that both the interstitial Mn atoms and the Mny4 clusters
are responsible for the scattering of electrons in the Mn-doped Si. The
initial density of the interstitial Mn is obtained to be ~ 10Mem™3 from

the DLTS measurements. It is probable that pure Si doped with Mn has
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less density of the interstitial Mn because of the Mn4 formation.

The scattering process should be treated by the formalism of the neutral
impurity scattering. ‘If we assume that the density of Mny cluster is ~
10Y%cm=3, the scattering coefficient (vo) becomes ~ 10~ %cm3s~!. It is
almost same order as the value for the case of Si:P which is a typical
shallow donor in Si. In general the wave function of a deep impurity
- 1s localized around the atom, and we can say the above coefficient is so
large in magnitude. The obtained temperature dependence of the inverse
relaxation time is 794!, This temperature dependence is explained by
assuming that the scattering is treated as the hard core scattering as the
potential become localized and deep.

In the case that (3d)-transition metal impurities have localized spins,
the s-d spin interaction can cause the scattering of conduction electrons,
and its temperature dependence in semiconductor is calculated to T7. But
the calculation of Vikhnin [30] implies that the inverse relaxation time of
'~ 107571 for N; = 10%¢em™3 at 4.2K. It is too small to affect‘ the cyclotron
resonance line width.

The deep impurity states are characterized by the shape of impurity
potential and the intervalley matrix element. If the energy of deep impu-
rity correspond to one valley coincides the band energy of another valley,
and if appropriate amount of invervalley matrix element exist, the reso-
nant state can exists in the band. This resonant state efficiently scatters
the band electrons if its energy is near the conduction band edge. The in-

verse relaxation time due to this resonant scattering is calculated to have
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the temperature dependence of T2. We can not neglect the possibility
that such resonant scattering occurs in Si:Mn, but our measurements of
the'infrared absorption and photo-conductivity spectroscopy showed no
evidence for such resonant state.

This work examined the scattering of electrons by deep impurities, and
it is probably the first one for Si. Even as a global scattering problem in
semiconductor, the investigation of the mechanism of the scattering caused
by the central cell potential is not enough. Recently, the first principle
calculations have gradually revealed the nature of deep impurity state
such as lattice defects, interstitial impurities, substitutional isoelectronic
impurities, DX centers and so on. Therefore, We can expect that the
scattering problem with these impurities will make progress. I hope this

Wdrl{ will become one of the helps for them.
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A Gauss-Neuton Fitting of resonance curve

Here we define the Error function,
E(p) =X(fi(p) —my) = 3 s; (A.0.2)
j j

5 = fi(p) = m; (4.03)
where f;(p) is the fitting function with parameter vector p, and m; is
experimentally obtained data point. If p is at minimum point of E(p),

the condition

{(p) = =0 (i=0,1,2,--9) (A.0.4)
Let us expand zi(p) around the initial parameter values Dy-
5 |
£(p) = E(po) +Z(Pk — Pok) g(p J
Pk
8 8
0s; 631

= QZsJ S >:<pk - poo—%] -

0s; 0s; 32
— ._-7 9 Do JY9j

If we set £(p) = 0, for ép = p — py,

633 9s; Os; B%s;
! =0 A.0.
Zs’ [apk Ip: "1 Opidp: (4.06)
The third term is negligible at around the minimum point, and
631 Js; 831
=0 A.0.
S i L D ong o (4.07)
if we define A;; = 3%, it becomes
2 8jAji+ 2.0 bprAjeAji =0 (A.0.8)
J kg
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Als+ A'Asp=0 (A.0.9)

therefore,

§p=—(A'A)"1A's (A.0.10)

The obtained parameters p, + ép is not the exact minimum point of E(p)
because of neglecting the third term of (A.0.6), but several iteration of

this procedure rapidly minimize it.
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Figure captions

Figure 1:

Figure 2:

Figure 3:

SIMS profile for Mn ddped FZ pure Si. It can be seen that
Mn of ~ 2 x 10¥%cm =3 has diffused uniformly except for near
surface. There can be seen the signals from Cu, Al and Na,
but Cu is unimportant for the scattering of electrons, and
Al and Na are not exceeding detectable limits which are

3 x 10%em™3 and 1 x 10™em™3, respectively.

The SIMS profile for Mn doped FZ pure Si after room tem-
perature annealing of about one year. The concentration
of Mn is decreased to ~ 1 x 10¥%cm ™3, but it do not have

changed more radically than expected.

Block diagram of microwave cyclotron resonance. The sam-
ple is set at the bottom of wave guide, and illuminated by a
Xe flush lamp through a glass lod. The light is'sometimes
filtered to cut high energy part not to make electrons hot
and to suppress the high density excitation near the sur-
face. Microwave is generated at the Klystron and guided to
sample with 8 mm wave guide. The phase matching is made
by Magic-T technique. The signal is put into two channel
boxcar integrator, and its output is stored into the personal
computer. Magnetic field up to 6000 Gauss is applied using

an ordinary split magnet.



Figure 4 :

Figure 5:

Figure 6 :

Block diagram of the far infrared cyclotron resonance. The
far infrared laser is optically pumped by electric discharge
excitation type CO, laser and generate the 523 pum line.
FIR light is chopped at frequency of 20 Hz before it is guided
to sample by about 10mm¢ light pipe.

Block diagram of DLTS measurements. The sample is set-
tled into helium refrigerator. Capacitance signal is get by
digital capacitance meter and stored into personal computer
and analysed. The capacitance meter can get whole time
variation of transient behavior at one pulse and therefore,
it needs only one temperature scanning for several DLTS
signal with different rate window which is necessary for ar-

rhenius plot.

Block diagram of ESR measurement. The sample was set-
tled at the end of quartz rod and cooled to 4 K b}; blowing of
He gas. The temperature is controlled by a heater coiled at
the injector and changed from 4K to 300K. The frequency
of microwave is 9.11GHz and its power is 4mW. The usual
modulation amplitude is 5G and its frequency is 100kHz.

The data is obtained in first derivative curve.
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Figure 7:

Figure 8:

Figure 9:

(a):High and low spin state and Energy diagram of Mn spin
in Si. If the exchange energy among d-electrons exceed the
crustal field energy, the high spin state is favored according
to the Hund’s rule. On the other hand, under strong crystal
field, electrons are tend to make pairs and lower the total
spin.

(b):The ESR absorption in the S=3 case of Mn. The num-
ber of six resonant lines are originated in the Mn nuclei spin

1=5,

Block diagram of photoluminescence measurement. Ar* ion
laser ( 4880 A)is used for excitation light. The light is fil-
tered to cut the plasma noise before illuminate the sample.
The luminescent light is also filtered to cut the laser line
scattered by the sample before entering into the monochro-
mater which has 600 mm™! grating and about 2 m radius.
The monochromated signal is detected by Ge-PIN diode de-
tector cooled with liquid nitrogen, and processed by lock-in

technique and stored into personal computer.

Obtained DLTS signal plot for various rate window. The
reverse bias was 5V, the filling bias 0V, and rate window

ratio 9/t = 10 where ¢; is varied 10 us to 10 ms.
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Figure 10 :

Figure 11 :

Figure 12 :

Arrhenius plot of DLTS peak of Fig. 9. We can obtain
activation energies for the peaks seen in Fig. 9 from their
slope in this figure. They are E,—0.39¢V, E,—0.20eV and
E,—0.11eV. The signals for F, —0.39¢V and E, — 0.11eV
can be attributed to interstitial Mn which were obtained
previously by sever‘al workers. The signal appears to around
E. — 0.20eV was attributed to Mny cluster [21, 20] or a
defect signal [24]. The defect signal should be found in any
quenched sample, but we have not observed any signal in

such samples.

Temperature dependence of capacitance of the Schottky
barrier formed to achieve the DLTS measurement. We can
obtain the density of the deep levels associated to the peak
using the relation (3.4.13) |

i

Typical result of cyclotron resonance measurement on Si
at 4.2K. "ECR” means the electron cyclotron resonance
and "HCR” means the hole cyclotron resonance. The mag-
netic field is applied from the direction which separates the
three peaks of electron resonance. The smooth solid lines
are result of fitting of folded resonance curve. To resolve
the folded curve, the non-linear minimum square method is

used.
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Figure13 :

Figure 14 :

Figure 15 :

Figure 16 :

Three dimensional plot of transient photoconductivity in
varying Magnetic field. The magnetic field step of the prac-
tically obtained data is about ten times finer than the figure.
We can get information from this figure about time resolved

change of resonance line width as shown in Figs. 14 and 15.

Time resolved cyclotron resonance curve obtained from fig-
ure 13. The line width of all resonance peak get narrower

as time passes.

Time resolved inverse relaxation time obtained from figure
14. The decaying feature is due to carrier-carrier scattering.
The line width is evaluated after 20 us where the broaden-
ing due to the carrier-carrier scattering become negligible.
Initial carrier concentration is deduced from this figure to

be 5 x 10" cm ™2 using the result of Kawamura, [31].

i

Cyclotron resonance curve for Si:Mn and host Si. Remark-
able broadening of line width is recognized in Si:Mn sam-
ple. Such broadening is not seen in Si:Cr or Si:Fe sample we
prepared. The difference in peak position is due to slight
deviation of the direction of magnetic field, and it do not af-
fect the line width analysis significantly when we use ECR1

for evaluation.
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Figure 17 :

Figure 18 :

Obtained temperature dependence of the inverse relaxation
time of Si doped with various transition metal impurities.
For the evaluation, the ECR1 peak in Fig.16 is used. The
inverse relaxation time for electrons in pure Si exhibits al-
most T2 dependence on temperature which is due to the
acoustic deformation potential scattering described in sec-
tion 2.3.1. The Mn doped sample shows the inverse relax-
ation time about an order larger than that of pure Si, but
Si:Cr and Si:Fe show the broadening almost the same to

only quenched Si sample.

Inverse relaxation time for Si:Mn sample subtracted with
the host Si contribution. The slope shows about 704 de-

pendence on temperature.
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Figure 19 :

Figure 20 :

Cyclotron resonance curve of sample suffered different an-
nealing process. Slowly cooled Si:Mn is a sample which is
doped with Mn without quenching. The Most of Mn atoms
are expected to precipitate onto surface and it exhibits al-
most the same line width to pure Si. Annealed Si:Mn is a
sample which experienced the post annealing of 500 °C for
about 4 hour. The Mn atom is also expected to precipi-
tate onto surface or moved to the site where Mn atoms are
electorically inactive. Quenched Si is a sample which expe-
rienced the annealing and the quenching but without Mn
doping. This sample is expected to include thermal defect

or unintentional Cu doping.

ESR signal of Mn{ of three types of Si:Mn sample. The
calculated g-value is 3.375. This signal is already attributed
to Mn{(S = 1/2) in previous work. The sample made using
pure Si host exhibits the strongest signal, while that made
using p-type Si shows weakest signal of the three. The
difference in signal intensity is mostly due to the position

of Fermi level, or compensation ratio in another word.
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Figure 21 :

Figure 22 :

Figure 23 :

Figure 24 :

ESR signal around g=2 for host Si, quenched Si and
Si:Mn. The quenched Si exhibits the remarkable structure
at g=2.076 and g=2.009 which is not seen in pure Si. This
signal is probably related to some kind of defect produced
at the quenching procedure. In Si:Mn sample, the defects
may passivated by coupling with Mn.

Temperature dependence of ESR signal of M n?. The signal

intensity steeply weakened as the temperature is raised.

Ilumination effect on Mn? signal of Mn doped p-type Si.
The weak illumination enhances the signal intensity, but
too much illumination weaken the signal. This weakening
is probably due to the heating of the sample. The sam-
ple made with pure Si exhibits no response to illumination
without weakening by heating. The sample ma},de with n-
type Si exhibits only weak response to illumination, and is

slightly enhanced.

Dependence of Mn! signal intensity of Mn doped p-type Si
on illumination intensity We observed that even very weak
illumination cause the enhancement of the signal intensity.
As illumination power is raised, the heating of the sample

weaken the signal intensity steeply.
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-Figure 25 :

Figure 26 :

Figure 27 :

Donor ESR signal of P°(I=1/2,S=1/2). The signal is very
weak under no illumination. This means that phospher

atom is initially ionized, and neutralized by illumination.

Dependence of donor ESR signal intensity on the illumina-
tion intensity. The signal intensity is almost linear to the il-
lumination intensity. We see that even under the maximum

illumination we apply, the donors are not fully neutralized.

Photoluminescence of samples which suffered various an-
nealing treatment. Pure Si exhibits the typical free exci-
ton (FE) and electron-hole drop (EHD) luminescence. In
quenched Si and quenched Si:Mn, the peaks seen in pure
Si disappear due to the rapid non radiative recombination
through the defects made in the quenching process. Slowly
cooled Si:Mn may have no defects due to the ‘quenching,
and it exhibits the same luminescent feature to pure Si.
The n-type and the p-type Si exhibits the shallow impu-
rity bound exciton (BE) luminescence instead of FE. When
we post-annealed the quenched Si:Mn sample at 400°C for
about four hour, the FE and EHD feature are recovered by
a little amount. We see that the annealing and quenching
procedure do not introduce the shallow luminescent centers
which act as the efficient scatterers in the cyclotron reso-

nance measurement.
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Figure 28 :

Figure 29 :

Fi_éure 30 :

Hall measurement for Si:Mn sample made using pure host
Si. The carrier type is electron, and its activation energy
is about 227 meV. This donor can be attributed to Mny
cluster. The donor electron is not yet fully ionized even at
room temperature, but we can deduce the donor density is

under 10¥%em 3.

Far infrared cyclotron resonance for Si:Mn and pure Si at
4.2K. The line width of Si:Mn is broader than pure Si, but
its difference is not as large as in the case of microwave

resonance. The cyclotron resonance line width in quantum

limit is not accord to the classical description, but we can

say that the Mn contribution is small under high magnetic

field.

Inverse relaxation time subtracted with the host contribu-
tion for FIR and micro wave cyclotron resonance at 4.2K.
This figure shows the Mn contribution to the line width

under different magnetic field and different wave frequency.
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Figure 31 :

Figure 32 :

Figure 33 :

Room temperature annealing effect on the inverse relax-
ation time and the ESR signal intensity. The ESR signal
intensity rapidly decreases in 100 days, while the enhance-
ment of the inverse relaxation time due to the Mn doping
obtained from cyclotron resonance line width become about
a half of initial value after 400 days. This means the ori-
gin of cyclotron resonance is not only from the interstitial
Mn. The initial decrease in inverse relaxation time may be

related to interstitial Mn.

Stress effect on inverse relaxation time for Si:Mn. If the
scatterihg by the acceptor bound exciton is responsible to
the broadening of the cyclotron resonance line width, the
application of stress on the sample may reduce the line
width.[25] But our result shows no reduction of line width

even under the stress of ~ 1.5 x 108g/cm?. .

The conceptional figure of the resonant state originate in
band structure. If there is remarkable amount of intervalley
transition matrix element, the bound state associated to
valley 7 may mix with the continuum state of valley 7. This
resonant state effectively scatters the conduction electron

according to the Breit-Wigner formula.
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Figure 34 :

Figure 35 :

Figure 36 :

Calculated inverse relaxation time of resonant scattering us-
ing Breit-Wigner formula. We can see that the temperature
dependence is ~ T at low temperature. When the mean
velocity of electrons exceeds the resonant energy, the mean
scattering cross section start decreasing, and it may emerge

in the decreasing in inverse relaxation time.

Time decay of carrier density after excitation derived from
the time resolved cyclotron resonance measurement by uti-
lizing the fact that the area under the resonance line is
proportional to the number of resonating electrons. The
number of electrons just after the excitation is determined
from the carrier-carrier scattering contribution to the line

broadening.

The temperature dependence of the inverse relaxation time
calculated using Brooks-Herring formula. The density of
conduction electron is set to 5 x 10tem ™ which is derived
from the carrier-carrier contribution to the line width at
the time where resonance is measured. The points in figure

show the experimental result for Si:Mn.
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Figure 37 : The temperature dependence of the inverse relaxation time
‘calculated using Conwell-Weisskopf formula. The inverse
relaxation time depends on the density of ionized impuri-
ties, but not on the carrier density in this formula. The

points in figure show the experimental result for Si:Mn.
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Derivative Absorption (arb.units)
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PL intensity (arb.units)
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Inverse Relaxation Time (s™)
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Inverse Relaxation Time (1/s)
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