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Abstract 

In this paper, the properties of Mn atoms doped in various Si hosts and 

their effects to the transport properties are investigated. For the for-

mer, DLTS, ESR, SIMS, PL and DC measurements are utilized, and for 

the latter, the cyclotron resonance measurement is done. The samples 

were prepaired by thermal diffusion technique after the deposition of Mn. 

The samples are quenched after diffusion to avoid the precipitation of Mn 

atoms. It is known that Mn atoms in n or p-type Si compensate the shal-

low impurities and ionize itself, and that a Mn atom easily form a complex 

with an acceptor. On the other hand, Mn atoms in pure Si retain their 

neutral feature because of the absense of shallow impurities and they are 

easy to form Mn4 clusters while Coulomb repulsion prevents the cluster-

ing of Mn atoms in the n or p-type Si host. The ESR signal intensity of 

interstitialy configured Mn atoms are found to decrease rapidly for first 

100 days even when the samples are put in room temperature while the 

density of Mn4 clusters do not change so much. This decreasing feature 

seems due to the precipitation of Mn atom onto surface. The concentra-

tion of Mn4 cluster is obtained to be under  1015cm-3 by executing the Hall 

measurement, and its activation energy is found to be 227meV. 

  The width of the cyclotron resonance line for Si:Mn sample exhibits the 

remarkable broadening compared to host Si. This broadening is mainly 

due to Mn4 formation because the line width do not decrease propotionaly 

to the concentration of interstitial Mn which is obtained by ESR measure-

ment. But the width shows the initial decrease according to the decrease



of the ESR signal intensity of interstitial Mn atom. It is concluded that 

the scattering is mainly caused by Mn4 cluster and partly by interstitial 

Mn atom. The temperature dependence of the line width is obtained to 

be about  711, which is ascribed to the potential narrowing compared to 

that of the shallow impurities. The scattering by such narrow potential is 

treated by analogy with the scattering by the square well potential or the 

hard core potential.
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1 Introduction 

Investigations of carrier scattering in materials have been widely done since 

the earliest stages of solid state physics. When semiconductor devices such 

as the transistor were invented, it became essential to get improved knowl-

edge of the scattering mechanisms of carriers to control the mobility and 

the conductivity which decide the response speed of the device. This need 

prompted many researchers to investigate the carrier scattering properties 

of semiconductors. Besides the technological requirement , pure physical 

interest also exist in the semiconductor scattering problem. The scattering 

problem is quantum mechanically expressed using the formalism of con-

tinuum eigenvalue problem and its study. made rapid progress after the 

Lipmann-Schwinger formalism was developed. 

  Cyclotron resonance is one of the most useful techniques to investigate 

the scattering process in semiconductors. Cyclotron resonance in material 

was first predicted by  W.Schockley  [1] theoretically and observed by B.Lax 

[2] and  G.Dresselhaus et. al. [3] experimentally. This technique initially 

exhibited its usefulness in investigations of band structure as an  almost 

unique method to decide the details of the band structure. After that , 

as the measurement technique improved, other applications of cyclotron 

resonance were developed. One of these is the application for investigation 

of scattering mechanisms of current carriers and another is to study the 

transient behavior of non equilibrium carrier systems . The former utilizes 

the fact that the cyclotron resonance line width is proportional to the 

inverse momentum relaxation time of the carrier. When the resonance 
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signal is measured using a fixed radio frequency and with varying magnetic 

field, the resonance line width is expressed as  AB =  2B,/WT where  T is the 

momentum relaxation time of the carrier  which is related to the differential 

scattering cross section  a  (6  ,  0) by the formula, 

             —1 =  Nvo-n, =  Nv  (1 —  cos  6)o-  (0  ,  0)dQ (1.0.1) 

where N is the number of scatterers and v is the velocity of the elec-

tron. Usually,  a-(0,  0) can be calculated by the Born approximation or by 

partial wave approximation techniques, and justified by comparing with 

experimental results. On the other hand, the transport properties are in-

vestigated by DC measurements in many cases. One of the advantages of 

using cyclotron resonance in investigating the transport properties  com-

pared to DC measurements is that cyclotron resonance does not require 

electrodes which may damage the sample surface. The presence of the 

electrodes also causes uncertainty in the measurements when the ohmic 

contact is not reliable, as is often the case in measurements  on semiconduc-

tor at low temperatures. Moreover, when the carrier density is sufficiently 

small, the cyclotron resonance line width is almost independent of carrier 

density and it makes a more accurate determination of momentum relax-

ation time possible while DC measurements yield uncertainty caused by 

combining Hall and resistivity measurements. 

  The scattering mechanism of electrons by lattice vibrations have at-

tracted attention and have been widely studied not only in semiconductors 

but also in metals because it is the most essential factor to decide high 

temperature resistivity in both cases. The process of this scattering was 
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first described by Bardeen and Shockley using their formulation of defor-

mation potential, and showed that the inverse relaxation time of electrons 

is linearly dependent on temperature in metals and has T3/2 dependence 

in semiconductors respectively. The main difference between scattering 

in semiconductors and metals is band degeneracy. In the case of non 

degenerate semiconductors, almost all electrons participate in the scatter-

ing process and the change of Boltzmann distribution with temperature 

also changes the mean scattering probability of electrons. This results 

in the factor  T1 multiplying the inverse relaxation time . On the other 

hand, in metals, electrons which may undergo scattering are restricted to 

only those that occupy states around the Fermi level due to its strong 

degeneracy. Therefore, the scattering probabilities for one scatterer are 

in many cases independent of temperature. The fact that only electrons 

around the Fermi level suffer scattering leads to the enhancement of the 

Shubnikov-de-Haas effect, and Kondo effect in the special case of metals 

with magnetic impurity. 

  The most interesting scattering problem in semiconductors is the case 

where the effective mass approximation may be used to describe the scat-

terer. In this case, the scattering problem can be handled as if electrons 

and scatterers were simply in vacuum. It is firstly justified by Erginsoy in 

the neutral impurity scattering case. He utilized Massey and Moiseiwitch's 

calculation of cross section for the scattering of an electron by a hydrogen 

atom in vacuum and derived the scattering cross section in a semiconduc-

tor by substituting the dielectric constant with that in the semiconductor , 
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  and the electron mass with its effective mass. The effective mass approx-

  imation can equally well be applied to potential scattering and was used 

  for the ionized impurity scattering problem where incident electrons can 

  be regarded as electron plane wave. Conwell and Weisskopf  (C-W) con-

  structed a formula for ionized impurity scattering by setting a  limi for the 

  minimum scattering angle to avoid divergence in the integration of the 

  cross section, and well explained experimental results. Brooks and Her-

  ring (B-H) used a screened coulomb potential for the scattering potential 

  instead of C-W's physically unrealistic truncated potential, and extended 

  the applicable region of C-W formula as a result. 

    As described above, the effective mass technique solved most scattering 

  problems in semiconductors. However in the region where the effective 

  mass approximation is not applicable, there are only a few articles which 

  discuss the scattering problems. 

    In general, the effective mass approximation is good when the spatial 

  extent of the impurity potential is large compared to the lattice constant, 

  and can be described by a small number of Fourier components. If the 

 impurity potential varies as rapidly as the lattice potential, the effective 

  mass approximation is no longer applicable. The impurity level will de-

  viate from the energy calculated by the effective mass theorem , and may 

  construct a deep lying level in the band gap in many cases. The applica-

  tion of an effective-mass-like approach for such deep levels needs a large 

 number of Fourier components to construct its potential. As a result it 

 may need tens of thousands of Bloch functions to construct its wave func-

                              4



tion, whereas the usual effective mass approximation needs  only one Bloch 

function. There are two usual approaches to the deep level problem. One 

starts from the theory for an extended potential, and the other starts 

from the localized features of the potential. In the former, an effective 

mass theory is evolved using bases which contain the localized feature 

such as Wannier functions instead of Bloch functions to expand the impu-

rity Green's function. This enables us to construct impurity states with 

much smaller number of bases. The pioneering work for this method was 

done by Koster and Slater. Recently, this method was much advanced 

and led to an impurity Green's function method which includes a first 

principles calculation. This was applied to several types of point defects 

in Si such as lattice vacancies and gave substantial understanding to en-

ergy level, formation energy and so on. The second approach starts from 

localizability of the potential and can be represented by a cluster method 

which utilizes the shortness of the effective range of the impurity  poten-

tial, and calculates the whole energy of the small cluster including a finite 

number of host atoms and an impurity. This method sometimes succeeds, 

but its results may be strongly affected by boundary conditions at the 

cluster surface which make the problem very difficult. Even in the case 

where the effective mass approximation is generally usable , the impurity 

potential often deviates from an ideal coulomb potential near the atom. 

This deviation is referred to as the central cell correction . If the impurity 

ground state energy lies near an energy where such corrections affect the 

coulomb potential, the ground state energy will be affected by the central 
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cell potential. Generally speaking, excited states are less affected by the 

central cell potential. 

  If we define a deep impurity as an impurity in which the ground state 

energy is dominated by a central cell potential, the effective mass approx-

imation is no longer applicable. However, its ground state energy is not 

always deep and can have a shallow or even positive energy level. A posi-

tive energy state is referred to as the resonant state.  Hjalmarson revealed 

theoretically that in the case of substitutional isoelectric deep impurities , 

the impurity binding energy is almost independent of  band structure and 

only depends on the difference of atomic energy of the impurity to host 

atom. In the case of nitrogen impurities in  GaAssPi _x, the band edge 

energy of the  r and X points move up and down according to the com-

position x, but the impurity state energy follows neither of these band 

energies and changes like a dangling bond energy. The nitrogen impu-

rity binding energy can in fact be shallow with an appropriate value of 

 x. If impurity energy goes into band continuum, it can not exist as a 

pure bound state and forms a resonant state. This state is also referred 

to as a virtual bound state and has rather localized feature around the 

impurity atom compared to an extended Bloch state. The energy of the 

resonant state is expressed mathematically in the complex plane and its 

imaginary part expresses the lifetime of the electron trapped to the local-

ized states around the impurity. This resonant state efficiently scatters 

electrons whose energy coincides with the resonant state according to the 

Breit-Wigner formula. Sankey and Dow showed theoretically that this res-
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onant scattering can occur, and dominates the low temperature mobility 

in the case of defects in GaAs. Fisher, Adams and O'Reilly reported that 

they observed resonant scattering by the central cell potential of Si and 

Sn impurities in  Ali_xGazAs. They applied hydrostatic pressure to the 

sample to change the band edge energy, and observed the change of mo-

bility with pressure caused by relative  position. of impurity level to band 

edge energy. They used the DC  technique-to observe such scattering, but 

it is likely that cyclotron resonance measurements may give more explicit 

results. 

  It is possible that both the ideal coulomb potential and the central cell 

potential equally affect the impurity scattering of electrons. El-Ghanem 

and Ridley calculated the scattering cross section and mobility analytically 

for a combined potential, but it has not yet been observed explicitly . 

  Besides the above described substitutional isoelectronic impurity, other 

types of impurities put into interstitial sites also form deep states in the 

band gap. Among them, transition metal impurities in Si have been in-

vestigated for a long period. DLTS and ESR measurements have revealed 

their energy level, spin state and hyperfine interactions with nuclei and so 

on. Unfortunately, theoretical treatment of these impurities lags behind 

experiment. Recent rapid progress using super computers now make first 

principle calculations possible. These calculations yield the results which 

explain the experimental data in certain problems. Zunger and Yoshida 

calculated the various characteristic values of transition metal impurities 

in Si using an impurity Green's function method , and explained the  ex-
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 perimental result. 

  When a transition metal atom is put into vacuum, its d-electrons are 

configured according to the Fund's rule and tend to maximize their total 

 spin. however if they are put into a material, the circumstance is different 

due to the existence of the crystal field. There are two approaches for 

the splitting of spin multiplets of d-electrons in the crystal field and they 

are generally complicated. One is called the weak crystal field method 

and the other is called the strong crystal field method. In general , if 

the crystal field energy is greater than the exchange energy among the 

d-electrons, the low spin state should be favorable because they tend to 

lower the crystal field energy by making their spins parallel each other 

even though it raises the exchange energy. On the other hand , if the 

crystal field energy is weaker than the exchange energy, the higher spin 

state becomes favorable. If transition metals are put into a semiconductor 

with high covalency such as Si, the crystal field energy is enhanced due to 

the hybridization of the metal d state and the semiconductor p state. On 

the other hand, p-d hybridization expands the d-electron wave function 

and therefore lowers the exchange energy. As a result, transition metal 

impurities tend to have low spin state compared to those in ionic crystals . 

Table 1 shows the spin state for various transition metal in Si interstitial 

sites given by Yoshida. Many of them are observed by ESR measurement . 

Another characteristic feature of transition metals in Si is that they can 

have many charge states. For example, it is known from calculation that 

interstitial Mn can exist with several charge states from Mn3+ to  Mn- ( 
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 Mn3+ has not yet been  observed  ) by changing the Fermi level in the band 

gap. This behavior is caused by the strong covalency of Si. Because the d-

electron wave function is extended due to the p-d hybridization caused by 

covalency, the correlation energy of d-electrons become as small as 0 .1 eV 

,--, 0.2 eV. The effects of these transition metal impurities on the scattering 

properties for conduction electrons have not been revealed yet. 

  Besides investigating the scattering properties, there is an approach to 

investigate the interaction of transition metal impurities in Si with con-

duction electrons, namely spin relaxation by conduction electrons . The 

excited spin state of a transition metal impurity relaxes when collisions 

with electrons occur. In general, spin-spin relaxation overwhelms the spin-

lattice relaxation, and spin relaxation by collision with electrons may de-

tected by ESR measurement when the number of conduction electrons is 

large enough. Vikhnin, Deigen, Semenov and Shanina calculated the spin 

relaxation rate for Fe impurities in Si by using the s-d exchange  interac-

tion formalism and by calculating the exchange integral . It is well known 

that the s-d spin exchange interaction causes the Kondo effect in 3d-spin 

doped metal. Similarly, spin-spin interaction can also cause momentum 

relaxation of electrons. Its cross section generally depends on the mag-

nitude of spins and the exchange integral. The exchange integral can be 

deduced to be small in the case of deep impurities because of their local-

ized feature. Vikhnin's calculation implies about  10-7 s relaxation time 

for s-d interaction caused momentum relaxation . 

  Calculations by Zunger and Yoshida showed the general low spin state 
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for transition metal impurities in Si, but they also showed that impurities 

such as Mn and Cr can have a high spin state. 

  As described above, transition metals in Si have two physical aspect. 

One is a deep impurity and the other is spin impurity. This work examines 

the electronic state of transition metal impurities in Si with special atten-

tion to Mn, and its effect on the electron scattering process by studying 

the cyclotron resonance line width and combined with other experimental 

methods. 
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Charge Sc Ti Cr Mn Fe Co Ni Cu

3+ NM H/L  H/L H NM

2+ H/L  H/L H H L

H/L  H/L H H H  H/L NM

0  H/L L H H  H/L H/L NM

L  H/L NM

 2- NM

Table 1: Spin states calculated by Yoshida for various transition metals in Si interstitial 

site. NM means nonmagnetic, H means a high spin state and L means a low spin state . 

H/L means that either of a high or a low spin states can exist.
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2 Theoretical Background 

2.1 Cyclotron resonance in the classical region 

When magnetic field H is applied to an electron, it is affected by the 

Lorentz force of k =  iv x H and moves on the spiral trajectory. In solid 

state, electron group velocity is expressed as v = kVkE(k) so that the 

time variation of k must be perpendicular to both H and normal vector of 

iso-energy plane. Therefore the motion of electron in k-space is bound in 

the closed curve on the iso-energy surface cut by the plane perpendicular 

to the magnetic field. If electron do not suffer  any scattering, the period 

of motion is 

       dkdkchi ==  (2.1.1) 
                 kv H sin 0 eH f                                     ch 

where 0 is the angle of v and H. Cyclotron frequency is defined as  w, VT. 

If we define the cyclotron effective mass as  m*B-  A, it becomes 

 eH  T 
                              ,,*              '"H = —

271                   c  
h  dk 

 2r  Y  v1 

                 h2 dE)-1dk (2
.1.2)  = 2

7r IWki) 

where we used the relation v1 =  gkEi. In the case of free electron in 
vacuum where E = 2m.h2k2,k1=k,the cyclotron mass is the same to bare 

electron mass. 
 h  mo dk 

            mH=2
7r h2 k m0(2.1.3) 

If the oscillating electric field is applied on such system, and if its frequency 

coincides to  wc, electron resonantly absorb the energy of electric field and 
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will be accelerated. This is the so-called cyclotron resonance. 

  First, we should start from the classical Boltzmann equation to han-

dle the statistical behavior of carriers. We can think of the distribution 

function  f  (k, r, t). The Boltzmann equation is the equation represents the 

static state of the distribution function, therefore it is expressed as 

        of a f a f 1 
 =0 (2.1.4)  a

t J di f fuse+ at J •field+ at scatter 

Making use of the Liouville's theorem, we can assume  f  (k, r, t) =  f  (k, r  — 

vkt, 0). Then the diffusion term becomes, 

 a  fl                         =  —v  k  •  Vr  f  (  k  ,  r,  t) (2.1.5)  at  J  
diffuse 

When external field is applied, electron momentum changes due to Lorentz 

force of k = + x H). Again, Liouville's theorem allows us re-

garding  f  (k, r, t) =  f  (k — kt, r, 0). Then the field term becomes, 

       of  -k  •  Vk  f  (k ,  r,  t) 
 at field 

 =e(E  + —1v x H)  •  Vk  f  (k,  r,  t) (2.1.6) 

Distribution change also occurs when  electrons are scattered by lattice 

or other scattering center. The way this happens accords the transition 

matrix element  Wk'k and distribution function of initial and final states of 

scattering. 

  f         = E {Tv-k'k f (lc')  [1  —  f  (k)] —  Wkki  f  (k)  [1  — f (k)]} (2.1.7) 
    atscatter k' 

where 

 27r             Wkkr =  T1  (WI  T 1k)  12  6.  (Ei  E  f) (2.1.8) 
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In the case of semiconductor, we can assume that the condition  f  (k)  < 1 

is satisfied, the scattering term becomes 

         of 1 
         at —k 

                —E {wf (ki) Wkk'  f  (k)} (2.1.9)             Jscatter 

In the equilibrium condition which we represent by fo(k), the number of 

transition k  —> k' is equal to that of k' k transition. This is called as 

the detailed balance and expressed by 

 Wkikfo(ki)  = Wkk'fo(k) (2.1.10) 

which leads to 

        of                  = E wkk, w                      k k f (k.  f  (k)} 
         at scatter e Wke 

 E  Wkk'ff0(k)                       f(k)  f (k') (2.1.11)                           fo(k 

If we assume that all scattering processes is elastic, that is,  lk  I = and 

 fo(k) = fo(k') is satisfied, the scattering term becomes 

     a f 
                E-Wkki  ff  (k)  f  (k1)}  at Jscatter 

                V00 

                 (27)3 Lco  
 dk'Wkkff (k) — fo(k)} 

              x [f (k) — fo(k) +  fo(k) — f (k/ )  
                   f (k) fo(k) -

                  - 

 g  (k)                                                (2.1.12)                r(k) 

where, 

 9(k) =  f  (k) — fo(k) (2.1.13) 

           1  

        V  r
gk                    dk'Wkk,(1g((ki)))(2.1.14) 

           r(k) (27)3-00 
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 r(k) is referred to as the momentum relaxation time. g(k) is the devia-

tion of distribution function from the equilibrium. When g(k) is small, 

 g(k')/g(k) can be approximated bycos0 where 0 is the scattering angle. 

     1V, 

 r(k) (27)3-00dkWkk, (1 -  cos  0) (2.1.15) 

In the constant relaxation time approximation, it is assumed that the 

relaxation time is independent of k. The distribution function attempt to 

recover the initial distribution with single exponential decay. 

 g(k,  t)  = g(k, 0) exp (--t(2.1.16) 
and, 

            afl                     = --g(k,t)  (2.1.17) 
                       ati scatter 

Substituting (2.1.6) and (2.1.17) into (2.1.4), and neglecting spatial dis-

tribution, we obtain explicit expression of boltzmann equation for our 

 problem. 

 -  -e  (E  v  x  B)  kf  = (2.1.18) 

Using the effective mass m* defined in section (2.4.2), we can use v = 

for electron velocity. The equation (2.1.18) becomes 

  heafo[erer2 g  =  E m*m*x E)(m*(B•E).8]- k (2.1.19)     m* 1 +(ccT)2aE 

where  we = —nzeB* is the cyclotron frequency and 

                         afox7
vk-1=1faot  vkfo==aEitvk(2.1.20) 

  aE 

was used. 

Here we assume for the simplicity E =  (Ex,  Ey, 0) and B =  (0,  0, B) and 
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express (2.1.19) as g =  c  • k which leads to 

             cx = er 7  a  fo r 

                 =rn* 1 +  (wcy)2  aE[Ex— wcrEY   Cy1 

             cz =eoT7 afo          {m,* 1± (cocT)2aE[Ey+cocrEx](2.1.21) 
                 ( and 

           g =  cxkx  +  cyky 
 of()  T  wcT2          = eVx OE[1+ (WcT)2 Ex 1 + (cocr)2EY] 

                                 T E
y(2.1.22) 

             a fo[ wc7-Ex+2             +evy DE1 + (w cT)21+ (wcr)2] 
Using the obtained distribution function we can evaluate the current den-

sity. 

             J = 1  I                       d3k(—ev)f (k)                   (2
7)3 

         =  e  

  (27)3if                      d3kvg(k) (2.1.23) 
Substituting (2.1.22) into (2.1.23), 

           ne2riT 
                             ( Wc T2    Jx =  (2.1.24)             m*L\1 + (wer)2Ex1 + (wc7-)2Ed 

                 )        =   

                 ne2ri4.0,7_2 
 JY             m*[Al +Goc7-)2) Ex + (1 + (co cy)2) EY1 (2.1.25) 

                                         i To evaluate the interaction of carrier with light field, we can think of the 

simple vibrating field,  Ex =  Eoxei",  Ey =  Eoyei". The light absorption 

can be obtained using Joule's formula. 

  1 
    P(w) = Re(J)  • Re(E) =—2Re(<1 • E*) 

       nee (r) E2[ 1  1 

                     0 

               4m* 
       =--1 (co—cuc)2 (T)2 + 1+(co +coc)2 (r)2+ 12.1.26) 
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Translating this into the function of magnetic field using  we =eB, 
                                                  m* 

    ne2 (r) E2 1 1   P(B) = „ 2\2          4m*°(B —Bc)2(,m,)+1 (BBc)2)  +1 
                                              (2. .27) 

where 

                                    m, w 

           B, =  (2.1.28) 

This shows the absorption peak at B =  +Bc from which we can evaluate 

the effective mass of carrier. Here we have the classical cyclotron resonance 

absorption of light by carriers with a effective mass. 

By observing the cyclotron resonance line width, we can evaluate the 

momentum relaxation time by utilizing the relation 

           AB = Bc(2.1.29) 
 w  (7-) 

where  AB is the half width of absorption curve. 

2.2 General formulation of scattering relaxation time 

In usual scattering theory, a scattering relaxation time for one particle is 

expressed as 

       T Ar
ivo- 

                                               (2.2.1) 

where  NI is the number of scattering center, v the particle velocity and a 

the scattering cross section. 

               a =  a(t9,0)A2 

                =  27r  if(6)12  sin  Oa (2.2.2) 
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where  f  (0) is the scattering amplitude and is appear in the boundary 

condition for the  Schrodinger equation in the scattering problem. 

                                      ,ikr 

         e+)  f  0) (r  CO) (2.2.3) 

                                   r f  (0) can be expressed in the partial wave technique as 

                               00  

 f (0) = E i (2/ + 1)  exp(i61) sin  61P1(cos  0) (2.2.4) 
                  i=0  2k 

where  Pi(cos  0) is Legendre Polynomial. Substituting (2.2.4) into (2.2.2), 

we get the total scattering cross section. 

                                           °° 

               a= E (2/ + 1) sin2 (2.2.5) 

where  61 is referred to as the phase shift of  l-th partial wave. The partial 

wave approximation which omits the partial wave with large  l is only ap-

plicable when the spatial extension of scattering potential is under several 

times of electron de Bloglie wave length of the electron. That is the case 

that electron velocity is so small. In the case of such low  energy scattering, 

cross section is usually concerned to a few of lowest  l-th partial wave . 

  In the transport problem, the momentum transfer cross section  Um is 

more important instead of (2.2.5) 

             o-,, = 1(1 — cos 8) If (0) 12  (1S2 
                         47r °°                 = — E(/ + 1) sin2(8/ — 6/±1) (2.2.6) 

                       k2 t=o 

Indeed, in the case that electron velocity is very small as in the case of 

low temperature electron scattering in semiconductor, a and  urn can be 

regarded to be the same since the condition  (51+1  <  S1 is satisfied. As the 
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velocity of electron rises, the partial wave technique becomes more difficult 

and instead, the Born approximation becomes applicable in which  f  (6) is 

approximated using the transition matrix element. 

                      1t2m1 
 f  (9) =—4 7r—•-h2V  1k) (2.2.7) 

where  8 is the angle between k' and k. This leads to the momentum 

relaxation time expressed in (2.1.15) and usually easy to solve. But the 

partial wave treatment using (2.2.6) is more accurate for scattering of slow 

particle. 

  In the non degenerate semiconductor where all of the electrons par-

ticipate in the scattering, it is necessary to take thermal average with 

Boltzmann distribution to compare with the scattering relaxation time 

obtained by experiment. 

                                 Joroo                             TE 2 exp k 6,77) dE 
     (T) =                ,3B-L                                                (2.2.8) 

                          Jo--- €2 expET  l dE 

when  T is a power of  El that is,  T =  aes, it becomes 

 (T)  = a(kBT)sr( s)                      r(
2) 

                340 
                    a(kBT)sr(-5+  s)(2.2.9) 

       r2 

2.3 Various scattering process in semiconductor 

Here we briefly survey the various scattering processes in semiconductor. 

2.3.1 Acoustic deformation potential scattering 

Acoustic phonon scattering problem is treated first in history among var-

ious scattering processes in solid, because for the most part it dominates 
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the room temperature mobility of metals and semiconductors. 

Bardeen and Shockley [4] derived that the interaction of an electron with 

acoustic phonon can be expressed as  SE =-ac ‘(V"r• Sr) where  ea, is the 

acoustic deformation potential constant. The obtained relaxation time is 

expressed by 

              1 Q*223                              ejrn2EaC(kB17)   (
2.3.1)                   (

T)2171-1h,4p4 
where p is the crystal density,  vs = `21./

q the sound velocity. This shows that 

the cyclotron resonance line broadening caused by acoustic phonon scat-

tering has the temperature dependence of  TL This partly comes from the 

temperature dependence of the number of phonon that is proportional to 

the temperature and partly from that of electron mean velocity according 

to equation (2.2.1) which has the temperature dependence of 

2.3.2 Ionized impurity scattering 

Ionized impurity scattering dominates the low temperature mobility of 

semiconductors especially in the case that the compensation is rather 

strong. The first formulation of this type of scattering has been done 

by E.Conwell and  V.F.Weisskopf.  [5] They used the model potential in 

which the bare coulomb potential is interrupted at the certain length to 

avoid the divergence of the cross section at small scattering angle. They 

set one-half the average distance between neighboring impurities as the 

cut-off length. They obtained the following formula based on the Born 

approximation, 

                        k2(2m*)1€1.    T= (2.3.2) 
                e4IVI ln.[1(2ka)2(K,2h,2E/2m*e4)] 
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where  NI is the concentration of ionized impurities, K the dielectric con-

stant,  E the electron energy, e the electronic charge and a the cut-off length 

defined by 

                        1 
       a= 2/TV(2.3.3) 

                                    A This formula is applicable when the compensation is small and free carrier 

density is relatively low. The threshold density for ionized impurities is 

 N1 =  1017cm-3 in the case  of n-type Ge. 

  Brooks and Herring [6], on the other hand, suggested that instead of 

the cut-off length, the screened coulomb potential should be used. They 

obtained the formula based on the Born approximation. 

                       ic2(2m*)le 
    T =   (2.3.4) 

               7r- e4Ar (2kA)2]  1+1/(20)2 

where  A is the  Debye-Hiickel screening length defined by 

                        ickBT)          A =((2 .3.5)                              Llire2n) 

  In either case above two formulas have the energy dependence ofE2. 

We can expect that the scattering rate thus, the line-broadening of the 

cyclotron resonance has the3dependence by considering the  equa-

tions (2.1.29) and (2.2.9). Brooks-Herring formula is widely used as the 

standard formula for the ionized scattering in semiconductors. But it is 

based on the Born approximation which is not applicable to low energy 

scattering as in the case of the electron scattering at low temperature in 

semiconductors.  Sclar [7] derived another formulation by use of partial 

wave method. He approximated the attractive and repulsive coulomb po-

tential by a square well with radius a and depth V and a square barrier 
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with radius a and height V, respectively. He obtained the formula for the 

repulsive potential 

                  (2m*)5E-2 (tanh  aa2           T =  87r/Via2  aa   1)  (2.3.6) 

where 

             a =[k2Crnh:V)a212(2.3.7) 
and for the attractive potential 

                     (2m*) 2 C 2 (tan aa - 2       T =   1  (2.3.8) 
 87rNia2  aa 

It can be easily seen that these two formulas yields the  T1 dependence of 

cyclotron resonance line width both for the attractive and for the repulsive 

potential. 

While  Sclar used the square potential approximation, Blatt [8] evaluated 

the scattering rate for the ionized impurity based on the static screened 

coulomb potential by partial wave method and obtained the numerical 

result. After that, El-Ghanem and Ridley [9] developed the problem as 

the scattering by the co-existing system, i.e., the coulomb potential and 

the central cell potential. 

2.3.3 Neutral impurity scattering 

The neutral impurity scattering in semiconductors was firstly formulated 

by  Erginsoy [10] who utilized the result of numerical calculation of scat-

tering cross section on the electron-Hydrogen atom by Massey and Moisei-

witch [11] and extended it to the scattering problem in semiconductor by 
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replacing electron mass with the effective mass and vacuum electric sus-

ceptibility with that of semiconductor. Massey and Moiseiwitsch's result 

for the scattering cross section is approximated by 

 20aB 
           a-  =   (2.3.9) 

              ricoh2i where aB =4me2is the Bohr radius of Hydrogen atom. Erginsoy derived 

the following inverse relaxation time for electron-neutral donor scattering 

by replacing aB with an effective Bohr radius aB = ;TT  ic 

                    —1= Nva  =  20Nva*B 

 20a*BhN 
                                               (2.3.10) 

                                 m* 

where v =  —hi° is used. 
 m* 

  Erginsoy's result holds true for the neutral donors which are well ap-

proximated by the effective mass theory. The extensions of Erginsoy's 

result to the impurities which deviate from the effective mass theory has 

been tried by many researchers but there has not yet been explicit  agree-

ment with experiments. As for the usual shallow impurity scattering in 

semiconductor, Erginsoy's theory well accounts for the low temperature 

mobility of semiconductor under the condition that the number of ionized 

impurities is negligible. 

  Erginsoy's result is for neutral donors. In the case of scattering of elec-

tron by neutral acceptor, the situation is not the same. In the case of 

donors, the particle bound by the impurity is an electron and the analogy 

to e-H scattering is suitable where the electron-electron exchange inter-

action affect the cross section effectively. On the other hand , acceptor 
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atom binds an hole and there is no exchange with an incident electron . 

Its scattering process should be considered on the analogy of positron-

Hydrogen atom scattering instead of electron-Hydrogen atom scattering . 

This problem is vigorously investigated by Otsuka et. al. [12] Their the-

oretical analysis based on Schwartz's calculation for  e+-H scattering cross 

section and obtained the inverse relaxation time for electron neutral ac-

ceptor scattering as 

 h 2 h223      = 3.4NA—h -(12 .5T± *a-2                                              (2.3.11)   (r)m* 2m*kB2m*kBaB) 
where NA is the density of neutral acceptors and ( ) means the thermal 

average. This formula exhibits slight temperature dependence. For low 

temperature limit, 

               1 ha*NA 
            3.4 B (2.3.12)             (

r) m* 

If the impurity is double donor or double acceptor, it can be treated on 

the analogy of electron-Helium atom and positron-Helium  atom scattering 

respectively. Kestner et al. [13] calculated the cross section for e-He 

and  e+-He scattering. The inverse relaxation time for low temperature 

obtained from their result is; For e-He scattering, 

                          = 22.5aB/v                      *,(3kBT)2            /(2.3.13)        (r)  m ) 

and for  e+-He scattering, 

                      1  
= 0.25 ha*B NI  

            (r)m*                                               (2.3.14) 
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2.3.4 Other scattering mechanisms 

Besides the scattering mechanisms described above, there are many scat-

tering processes in semiconductor. 

  • Non-polar optical deformation potential scattering 

   The interaction energy of an electron with optical phonon is expressed 

     as, 

 SE  =  D6r (2.3.15) 

   where D is the optical deformation potential constant. The scattering 

   matrix element for this interaction is given by 

                  [ (Ng+ 2  IMk±q,k  I = D 2pVco
o(2.3.16) 

   where p is the density of crystal and  Nq is the mean number of phonon. 

                                           I-1 
 Nq =[exp (hw°kBT) 1 

                      ]-1                  = [exp(—T)— 1 (2.3.17) 
   and  O =  V' is the Debye temperature. The result for the momentum 

   relaxation time is, 

                 13m1D2  =  (2.3.18)               (
T) 4Al2Trh2p(kBe)f 

   where 

                                      s 2z 
                                                                                                     -7 

                         Y 2 e ctY       f (—T) =  (2z)(e2z  —  1) Joy   (2.3.19)      0 Vy +1 + e2z Re{                                        -NA —  1} 

                  0 

              z—Y—c A                         2T' 

   Optical deformation potential scattering is not effective at low tern-

   perature because the number of optical phonon is so small.                                                
1                                                        1 

                           25



• Piezo electric scattering 

  If a crystal has the piezo electricity, electron scattering caused by the 

  potential energy due to phonon polarization may occur. The potential 

  energy is expressed as 

 Se  =  lel  e'  (V,  •  Sr) (2.3.20) 
 ickoq 

 where  ep, is the piezo electric constant,  n the dielectric constant and 

  q is the phonon wave number. The matrix element for the scattering 

 is 

                          (e2K2kBT) 21  lel  eps kBT) 2     Ithlk I  =   (2.3.21)               Ktcoq 2Vci) Kkoq2 
 where V is the volume of unit cell,  ci =  pct.)?  I  q? the elastic constant 

 and 

              K2 e2                 pz (2.3.22) 
                       1 — K2 Kicoci 

 where K2 is called as an electro-mechanical coupling coefficient . The 

 momentum relaxation time is 

                 1  3m  e2K2  (kB  T)                                              (
2.3.23)                 (r) 23'fih2KKo 

 which has  T1 dependence on temperature, but it is not effective for 

 the non-piezoelectric crystal like Si. 

• Polar optical deformation scattering 

 In the  semiconductor with large ionicity, the interaction of carrier 

 with optical phonon is strong, and it yields large deformation energy 

 and causes the scattering of carrier. The potential energy is expressed 

 as 

                    lel E            SE = (2.3.24) 

                         26



where E is the electric field caused by the polarization P, and 

                                 N„ecSr 
             E =—77

0 = coq(2.3.25) 

where  Nu is the number of lattice point in the unit cell and  ec is the 

Callen effective charge 

        ec = col   (2.3.26) 
                          Nu 

where M is the reduced atomic mass. 

The matrix element becomes 

           2 271-ha(hc,o0)  ( 1 1) 
      ith±q,k1 = Tr 2 Nu ± -2 —2 (2.3.27) 

                         v M,2q 

where 

 h  lel  Eci  
                   a =(2.3.28) 

                       217n(h,wo)g' 

              Eo  =  let InkBe (1 1)                   2lk;t)(2.3.29) 
                      ziricohP 

a is referred to as the polar constant. 

The momentum relaxation time is 

1 ( + b            (h,coo) 2 117. [1 a +1 + exp 70) in   = awo    (2.3.30)   (
7) E ) Ivg In  a  —  1 T 1 — b 

where 

 a_ [1 + hcl 2 b = Re[l —  2 (2.3.31) 
                                      1 When T  <<  0 is satisfied, the conditions  E  <  hwo, b  N 0, and  Ng 

exp (4) are also satisfied. Then momentum relaxation time becomes 

                1 =  2acoo  exp (--)(2 .3.32) 
            (7) 
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2.4 Deep impurities in semiconductor 

2.4.1 Formulation of impurity model in semiconductor 

The problem of impurities in solid state can be attributed to solve an 

static  Schrodinger equation. 

 10)  =  E  i(k) (2.4.1) 

 7-1=  U(r) (2.4.2) 

where  7-6 is the host crystal Hamiltonian which includes the kinetic energy 

of electron (or hole) and periodic lattice potential, and  U(r) is the addi-

tional potential energy due to the existence of impurity. Now we expand 

 10) with complete set of Bloch function  1k) which is eigen states of  7-to, 

that is,  7-to  1k) = Ek  1k)  . 

 10)  =  E  lk)  (k10)  =  >  lk)  0(k) (2.4.3) 
     k k 

Here, We call  0(k) "Bloch representation of  10)". Equation(2.4.1) be-

comes, 

 EEk  1k)  0(k) U(r)  >  1k)  0(k)  = E  E  1k)  0(k) (2.4.4) 
 k k k 

multiplying  (WI from the left hand side of the equation (2.4.4) and replac-
ing k and  k', 

           (Ek —  E)0(k)  E  U(k,k1)0(k1) = 0 (2.4.5) 

where  U  (k, k') =  (k1  U(r)  Ik'). This equation is to be applied to all  ap-

propriate k exists. So, this is the set of linear equation about  q(k)'s and 

has nonzero solution when the secular determinant of equations (2.4.5) 
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vanishes. And this restriction leads eigenenergy  En and set of eigenvector 

 {On(k)}. For the bound state, expectation value of the velocity must be 

zero, that is, 

                     /1 aE\ 
              (v)= .aiii = ° 

Then, nonzero  0(k) constructing  OM must be taken from the area  cen-

tered at critical point of k space. It may be maximum  (MO, minimum 

(M2) or saddle (M3) point. So, we should divide k—space into subzone  Sli 

centered at ith critical point. 

In the region k  E  ili, equation (2.4.5) becomes 

         (Ek —  E)cbi(k)  +  E  I  Uii(k  ,  k'  )0(k'  ) = 0 (2.4.6) 
 j  le'  En  i 

Where, 

 01(k)  for k E Qi 

 0(k) =  02(k)  for k E  Q2 

  { 

   . : 1 

In general case,  (0) may be expressed as 

 10) =  E  E  lk)  0(k) (2.4.7) 
                              i k'€0; 

If the intervallay transition matrix element  Ujj(k  , k') is very small  corn-

pared to internal matrix element, we can neglect  Ujj(i j), equation(2.4.6) 

becomes, 

         (Ek —  E)0°(k) +  E  Uii(k  ,  k)(75?  (k'  )  =  0 (2.4.8) 
                                   kiEs2i 

from which we can obtain solutions  Epn and  q  (k) for the first  approxi-

mation.  4n(  k) should taken to be normalized and orthogonalized. 

                E  gi(k)ce,(k) =  (5nni (2.4.9) 
                        kE0i 
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To estimate the effect of intervalley mixing,  Oi(k) can be expanded using 

02n(k), 

 Oi(k)  =  E  cince(k) (2.4.10) 

and substituting this into equation (2.4.6), we get 

  (Ek — E)  E  cino(In(k) +  E  >  Uii(k  , k')  E  cinAn(k) = 0 (2.4.11) 
   n EQ

j 

By utilizing the relation (2.4.8), this equation becomes, 

  E(E9n —  E)Cirgn(k)  E  E  C  in  E  uii(k,  le)013n(k) = 0 (2.4.12) 
                        n k'eo

; 

Multiplying  EkEsii  On  ,(k) from left hand side of the equation and using the 

orthogonality of  On (k)and replacing n and n', 

 (E1  -  E)C  -I-  E  E  Cin'Uinin, = 0 (2.4.13) 
 joi n 

where, 

 = E E (gn(k)uii(k, k1)0in,(W) (2.4.14) 
                      kEni kies2; 

secular determinant equation of (2.4.13) becomes, 

 (E1  -  E)SiiSnni + (1 — 0 (2.4.15) 

which leads to solution E in and set of eigen vector  {Cin}. Finally, here 

we have the complete representation of global impurity problem. If the 

transition matrix element  U(k,  k') is confined into the narrow region of 

Brillouin zone, and the secular determinant has small dimension accord-

ing to the equation (2.4.5), This problem become easy to solve. But, once 

 U  (k  , k') spread widely in the k-space and include the intervalley scatter-

ing  (Eiji 0) in worse case,  10) need to consists of thousands of  block 
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states and the secular determinant becomes too big to solve even with a 

help of the super computer. 

2.4.2 Effective mass approximation 

In the absence of intervalley scattering, equation which represent the im-

purity system simply becomes, 

          (Ek —  E)02(k) JeES2i Uii(k, ki)0(i)(k1 ) = 0 (2.4.16) 

If we define  Uii(k, k') = 0 for k  Oi or  k`  S2i, we can expand integration 

region to whole k—space. 

Writing  Uii(k, k') in more explicit manner, we get 

 Uii(k, k') =  (kI  U (r)  1k) 

                =  f  dr  (kjr)  U  (r)  (riki) 
                  =  f  dr  tYk`  (r)U  (r) (2.4.17) 

Because the Bloch function must be in the form  of  ok(r)  =  uk  (r)  exp(ik  • 

r),  Uii(k, k') becomes, 

 Uii(k, k') = f dr exp  [—i(k — k')  • r]  U  (r)4(r)uk,  (r) (2.4.18) 

As uk(r) has the translation symmetry same to that of lattice,  uZ(r)uk,  (r) 

can be expanded by reciprocal lattice vector. 

 4,(r)uki(r) =  E Ch(k, k')  exp(—ih  • r) (2.4.19) 

Therefore,  Uii(k, k') becomes 

 Uii(k, k') =  I Ch(k, k')  I dr exp[—i(k — h)  •  r]U  (r) 
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            =  >  C  h(k  ,  k'  )U  (k — k' h) (2.4.20) 

where  0  (k) is the Fourier transform of  U  (r)  . If  U(r) varies very slowly 

compared to host lattice period,  (k) has significant value only for  lki < 

 14 Now k and  ki are confined in the region  Qii, k — k' is much smaller 

than  h. So, h must be zero. Then  Uii(k,  k') becomes 

 Uii(k  ,  k')  =  C  o(k  ,  k')U(k — ) (2.4.21) 

Moreover, if one approximate  Co  (k  , k') by Co(ko, ko), normalization con-

dition  luk012 = 1 forces Co(ko,  ko) = 1 where  ko is the central critical point 

of Qi. 

  Expanding Ek around the critical point  ko, the first term vanishes and 

 Ek becomes 

                  1 
 Ek = Ek°—2{(k — ko)k_k0}2 Ek' •(2.4.22) 

Now we can define inverse effective math tensor. 

            1 1 [   82E  
                                   (2423)                  (—m*h  akiak;  

„J.1,2,3 

If we choose the principal axis appropriately to diagonalize the effective 

mass tensor, (2.4.23) becomes, 

 3  h2 
 Ek, =  Eko  E  -- „(ks —  kos)2 (2.4.24) 

                                   s=1  ms 

Substituting this into (2.4.16), we get 

    3 h2 

  {E (ks —4.9)2 — (E —  Ek0)}01(k) +dk' U (k —)0i(k1 ) =     s.12m4                     s: 

                                              (2.4.25) 
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Simply translating the origin, 

      3  

 E 2* (E —  E0)} fi(k)dki U (k —  ki)  fi(ki) = 0 (2.4.26) 
      s=1 2Tre.: 

where  fi(k) =  4i(k k0). 

Usual Fourier transform technic translate this into r-representation. The 

result is, 

     r h2  02   (E — E0i)}  Fi(r)  U(r)Fi(r)  =  0 (2.4.27)     is/J=1 2m:  a4 
      r h232                 U(r)} Fi(r) = (E —  Eoi)Fi(r) (2.4.28) 

             2m,*; axs 

This is referred to as the effective mass equation. In the Fourier transfor-

mation procedure, the following formula is used. 

                                                          n 

           I dk  exp(ikx)kn  f  (k) = (—Od  
                           n F(x) (2.4.29) 

                                          dxn 

        dk exp(ikx)  f  dt  f  (k — t)g(t) = F(x)G(x) (2.4.30) 
where F(x) and G(x) are the Fourier transform of  f  (k) and g(k) respec-

tively. 

The wave function is of the form, 

        =  dki,bk(r)0(k) 

 dkuko  exp(ik  •  r)  f  i(k  —  ko) 

        =  uko(r)  exp(iko  •  r)  f  dk  f  i(k —  ko)  exp[i(k — ko) 
      14,0 (r)Fi(r) (2.4.31) 

Effective mass approximation neglects the following points. 

  • Non parabolicity of band structure which emerges from the higher 

   order in the expansion of energy around critical point (2.4.22) 
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 • h 0 term in the expansion of  Uii(k, k'). 

  • Effect of intervalley scattering or scattering into higher excited states 

 (Ujj). 

And therefore the effective mass approach to the deep impurity problem 

will start from the procedure which extend above points. 

2.4.3 Scattering state in crystal 

Scattering state of impurity is expressed by the Lipmann-Schwinger  equa-

tion with the incident Bloch function. In the Bloch representation, it is 

           0(k) = 6(k — k')dkuU (k, k”)0(kll)(2.4.32) 
                                Ek E - 

     10) =  dk  ik)  0(k) 

 dk  jk)k(k  —  kf)I dk" (kIU (r)lk") (lc" 101 

 = 

 Ek  E  - 

 lk)  (k1          =lki)- dk  U  (r)  10) 
                      Ek E - 

      = -  Go(E)U(r)  10) (2.4.33) 

Multiplying  (r  I from the left hand side and using  f  dr'  Irf) = 1, 

          =  (rIO) 

           (dk(rik)  (kir              7.— dr' )   u(r) (00)   =I 
                               Ek E - 

           =  TZ,(r) —  dr'  G  0(r  ,  r')U  (r)q5(rI) (2.4.34)J  

where 

 G  o(r  ,  r') =  f  dkln(r)ilf  k(r)                                               (2.4.35) 
 Ek  E  i77 
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This is the  Lippman-Schwinger equation in r-representation for the scat-

tering problem. If we omit the incident Bloch function  Wk*,(r), this is 

equivalent to the equation for the bound state (2.4.5). 

2.5 Transition metals in silicon 

2.5.1 Localized (3d) states in the crystal field 

For simplicity, we treat (3d)1 case where many body effect is cannot be 

found. If (3d)-atom exists in the absence of crystal field, the system  Hamil-

tonian has the full rotational group symmetry and the electron wave  func-

tion with an angular momentum  / is the basis of corresponding irreducible 

representation D(1) and which has  (2/ + 1)-folded degeneracy. But, if one 

put the (3d)-atom into the  crystal. field, symmetry of the system Hamil-

tonian will be reduced to that of crystal field. If the group of symmetry 

operation that conserves the crystal field Hamiltonian is expressed by  c, 

 (21+1) folded states are separated into the levels which correspond to the 

irreducible representation of  g. This is equivalent to reducing  D(1) into 

the irreducible representation of  g (  ra,  I'm  •  •  • ), which is expressed by, 

 D(1)  g  ra  +  rfi,  +  •  •  • (2.5.1) 

Here we treat the case of interstitial Mn in Si for instance which we now 

mostly interested in. In crystal Si, it is said that Mn favors the interstitial 

position and surrounding Si atoms are tetrahedraly configured around Mn. 

Therefore d-electron of Mn suffers the crystal field of Td-symmetry and its 

irreducible representation can be reduced using the character table of  Td , 
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that is, 

 D(2)  Td  =  T2  +  E (2.5.2) 

If the crystal field is strong enough to neglect the many body effect, elec-

trons start occupying from the lower energy level of the two representation 

of  (2.5.2). In this case, total spin becomes minimum because the electrons 

with an up-spin and with a down-spin occupy the same level. When the 

crystal field is weak and the coulomb interaction among the d-electrons is 

relatively strong, electrons tend to satisfy Fund's rule and arrange their 

spins and as a result, the total spin is enhanced. In the case of transition 

metal in Si, the total spin is said to be generally lowered because of the 

covalent nature and the strong crystal field [14, 15, 16]. 

2.6 Scattering of electron by deep level center 

2.6.1 Quantum well scattering and zero energy resonance 

 Schrodinger equation for scattering problem is 

                714ek+)(r) =  Ekek+) (2.6.1) 

                              2 

            =  V2 +  V(r) (2.6.2) 
 2m 

Expanding with spherical function, 

               , 00  / 
            ek+) = E  > Chnie) (r)Y1,20 9 , (2.6.3) 

 1=0 m=-1 

and substituting this into (2.6.1), we get 

    h,2 1 d2d)1(1-I-(+)  –—r(r) + V (r)e) 
                                 (r)=Ek(r)    2rn r2 drdr r2 

                                               (2.6.4) 
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            d2 k2/(/+1)             dr2r2 U  (r)] ui(r) = 0 (2.6.5) 
where  ui(r) =  r  1:4+)  (r), Ek =  ';42 and V =27,,U. Here we assume that the 
potential is the square well with the radius a and the depth Vo. Because 

 ui must smoothly smoothly at the surface of the well even though the 

potential is discontinuous, the following equations should hold. 

                        duln durd         uln(a)= urt(a), (2.6.6) 
              dr dr 

                     r=ar=a 

Therefore, 

                       dR(+)indRi                                                 Mout 
     Win (a) =  eout  (a),   dr dr(2.6.7) 

                 r=a r=a 

This leads to the continuous condition of logarithmic derivative, 

            1  dItE)in 1  dItE)°ut  
       le                                                (2.6.8)              in dr

r=aeout drr=a 
If we define  fin as              1  1  del 

       .fl=(2 .6 .9)                     ke)in dr 
                                                          r=a 

and substituting into equation (2.6.8), we get 

            1 del 
     k= (2.6.10) 

                       R(±)"t dr 
                                                           r=a 

At the outer side of the well, the potential is zero and the equation (2.6.4) 

yields the solution, 

 .m+)out(r)  iliw)(kr)  hp(kr)                                               (2.6.11) 

where  le  (kr) and  142)  (kr) are the Hankel function of the first and the 

second kind, and  77/ =  exp(2iSi) where  Si is the phase shift for the  1-th 
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partial wave. Substituting (2.6.11) into (2.6.10), 

              c•rile(ka)h12)' (ka)                                               (2.6.12)              jIn(k a)h12) (ka) 
Solving this for we get 

 (ka)  fin —  hr'  (ka)  
                                              (2.6.13)                     (1)•(1), 

                     (ka) fr—hi(ka) 

We can get solution 7"nc) for the hard core potential by extrapolating Vo 

oo, which corresponds to  Rfn = 0, and  fin = oo, and 

                      (ka)                        711 = (1) 

                 (ka) (2.6.14) 
Relation  exp(2i6i) yields 

                            — 

 tan  81 =1 711                                               (2.6.15)                          irn -F777717+2 

Therefore, we can determine the phase shift for the  l-th partial wave  con-. 

cerned with the hard core scattering. 

                      ji(ka)               tan b(e) =(2 .6.16)                      1
ni(ka) 

For small ka,  j1(ka) and  ni(ka) can be approximated by 

                       (ka)1   ji(ka)(2 .6.17)  (21
+ 1)!! 

 (21—  1)!!                ni(ka)ti  (k
a)1+1(2.6.18) 

and then the phase shift becomes 

                       (ka                               )21+1         tan e) =  (2.6.19) 
 (21 + 1)!!(2/1)!! 

This decreases rapidly with  1. For s-wave, 

 tan  e) =  —ka (2.6.20) 
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Therefore the total cross section for s-wave is 

 a(c) = _47r sine                      o6471-a2 (2.6.21) 
                      k2 

This yields the inverse relaxation time of 

                   13-4Nrir'3-a2(k
BT)3,                                               (2.6.22)  (7)  m*2 

This shows  711 dependence on temperature according to the variation of 

the mean thermal velocity of carriers. 

  Using  40, general representation of  ri becomes, 

 (c)  f n — ri(kar) isi(ka)                                               (2.6.23)              ril= fin — ri(ka) —  is_(ka) 
                         2isi(ka)               =7.7c) [1 fin.— ri(ka) — isi(ka)(2.6.24) 

where definitions, 

              (ka)   ri(ka) isi(ka) (2.6.25)               (k
a) 

              (ka)  

 (ka) ri(ka) — isi(ka) (2.6.26) 

are used. 

  For the scattering of s-wave  (1 = 0), the equation for  ujin(r) becomes 

               {dr2(k2U0)]uion(r) = 0 (2.6.27) 
Because  /t-) must have finite value at the origin, the condition  uion(0) = 0 

should be satisfied. This restriction leads to the solution of the form 

 ujon(r)  =  A  sin  nr,  (tc  k2  U0) (2.6.28) 
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therefore,  RV) becomes 

 Rv)(r)  =  ujon(r)  =  Asin                                              (2.6.29) 

and         1 I-  1  dRV)1 1 
       f o k=k a[Kacot Ka  —  1] (2.6.30)            [Re0indr                                        r=a 

Here we define 

               Fo(ka)  kaftz  —  1  =  Ka cot  ,ca (2.6.31) 

For s-wave and small ka,  6(c) —ka,  r(ka) =  -L and  so(ka) = 1 are 

satisfied. Then (2.6.24) becomes 

               710 = exp(-2ika)Fo(ka)ika                                                (2.6.32)                           F
o(ka) — ika 

By making use of the approximation exp(-2ika)  r_-2 1 — 2ika, 

 11—  77012  N 4(ka)2  (ka)2 [Fo(ka) — 1]2                                              (2.6.33)                      (ka)2[F o(ka)] 
For small ka, we can approximate Fo(ka) by  Fo(0) when  Fo(0) has a finite 

value. Then the total cross section becomes 

                                               2                  1 

                11 — 7701247ra2[1(2.6.34)                            F0(0) 
   a =71 

This cross section vanishes when  Fo(0) approaches to unity. It is referred 

to as Ramsauer-Townsend effect. 

  When  Fo(0) = 0, we must expand Fo(ka) with (ka)2, and 

          Fo(ka) =  F0(0)  ±  FP)(0)(ka)2 

 FP)(0)(ka)2 (2.6.35) 

where 

                   (1)dFo(ka)  

                     =  

 d(ka)2(2.6.36) 
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then (2.6.33) becomes 

     11()2                             [Fo1(ka)— 1]2              012 4(ka)2(ka)2                                              (2.6.37) 
 (ka)2  [FP)(0)(ka)2P 

When ka approaches to zero, equation (2.6.37) approaches to 4, that is, 

 7o  —4 —1 and  80 which leads the total cross section 

             o 7r  47r               =11 — 71012  =  .7 (2.6.38) 

This is referred to as zero energy resonance. 

  The wave function of the resonant state inside the well is also expressed 

by (2.6.28). But it is not the perfect bound state and the wave function 

oozes out of the well. If we assume this oozing as spherical wave of the 

form  ugtd(r) = B exp(ikr), the resonant state is constructed by connecting 

 ujon and  ur smoothly. The boundary condition is, 

 1 duioni [  1  dugul 
                                              (2.6.39)                [4'drj r=aurdrr=a 

The right hand side is identical to ik. Multiplying a by the both side of 

(2.6.39), the left hand side becomes Fo(ka) and (2.6.39)  giv'es 

           Fo(ka)  =  a/k2 Uo cot  aIk2 Uo =  ika (2.6.40) 

We can get  k and  c  h,2k2/2m for the resonant state by solving this 

equation. In the case that k  = 0, this leads to the zero energy resonance . 

  In order to solve (2.6.40), we should firstly get the zero point of Fo(ka) , 

i.e., 

 al/k2  +  U0  cot  al/k2  +  U0  =  0 (2.6.41) 

Then solution is 

                                      2 

 k2 [-12a(2n + 1)] —  U0 (2.6.42,) 
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and 

            Es=h2k2 h2712 (1)2  h2U0                  2
m 2ma2`n +2) 

                 h2r2 
`1 

                       _)2  —(2 .6.43) 
                    2ma22' 

Expanding Fo(E) =  Fo(ka) around  Es, 

 Fo(ka) =  FO(ES) +  FP)  (Es)(E —  Es) +  FP)  (Es)(E —  E3)2  +  •  • 

      FP) (Es)(E —  Es) (2.6.44) 

Then (2.6.40) becomes to 

                FP(Es)(E —  Es) = ika (2.6.45) 

Therefore the solution of (2.6.40) is approximated by 

                             ika  E  
= Es +  

                        Fd(1) (Es) 

              =  Es  ——irs(2 .6.46) 

                        2 where 

                           2ka 
 Ps =  (2.6.47) 

                       Fd11(E8) 
Now we have the energy for the resonant state. Substituting (2.6.47) into 

(2.6.44), we have 

               Fo(E) = 2rk
:(E —  Es) (2.6.48) 

The total cross section is, 

     7r 7r 

             77012 =1 — exp(-2ika)Fo( 2                                ka) + ika                                  F
o(ka)  —  ika 

                                                      2 

                                  2ika  = —
k2 1 — exp(-2ika)Fo(ka) — ika 

 —Jr,2 

                  k2 (E — Es) + 2t+1 — exp(-2ika) (2.6.49) 
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The first term shows the resonant scattering and the second shows the 

hard core scattering. If we neglect the hard core part, total cross section 

becomes 

 7r 

 0-  = (2.6.50) 
                       (Ek _ E.02 `221 

The resonant state appears dependent on the shape of potential. In the 

solid, it also depends on the band structure and in general it easily ap-

pears than in vacuum ( see section 2.4.1 ). The simple calculation for 

the resonant scattering is presented in Fig.33 which is derived by taking 

the thermal average of relaxation time obtained using (2.6.50) It is noticed 

from the figure that the temperature dependence of inverse relaxation time 

is approximately  T1 

2.6.2  Spin scattering 

The interaction of the localized spin with the spin of conduction electron 

is expressed by the s-d interaction model, i.e., 

 =  —2JvS(r)s  • S (2.6.51) 

                    ——2J exp( — iq •r)s • S (2.6.52) 
                    Nq 

where s is the spin of the conduction electron, S spin of the localized 

magnetic impurity, v the volume per a lattice point and J is the exchange 

integral. J is assumed to be less affected by k of electrons. Here we write 

the transition matrix using T-operator,  T(ek +  ink), 

 T(k1  ,  a',  M';  k,  Q, M)  =  (k',  a',  M'  IT  (€k  +  ink)  ik  ,  a, (2.6.53) 
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where  a is z component of s and M is that of S. The scattering relaxation 

time  T of the electron is expressed by the golden rule. 

        1
= 

(7 
 = E E E

h IT(k'  ,  a',k, M)12 (Ek — Ev) (2.6.54) 
                      ,04M,M' 

Because J is less affected by k, T do not depend on k and  r(k) can be 

regarded as the function of  Ek. Then (2.6.54) becomes 

 1 ,  =f)Ek)2 _,WM{2                         IT(Eki,Ek, T, m)I 
  7-Ek)itEk=eki 

 IT(Ek1,1,M  ±  1;  M)I2  ek=ek' 

                                              (2.6.55) 

where the inelastic scattering is neglected and only the elastic process is 

considered.  p(Ek) is the density of state at energy  Ek,  Wm the probability 

in the case that z component of S is M. The term other than these two 

are omitted because they do not preserve the total spin. 

  For the s-d exchange interaction, T-operator for the one electron scat-

tering can be written as, 

 T(E +  in) =  t(E  T(E  in)a-  • S (2.6.56) 

where t(€ +  in) is the part which do not contain spin flip,  T(E +  in) that 

with spin flip. Making use of the relation,  o  • S =  i(or+S_+  u_S+)-F GrzSz, 

we can calculate the matrix element, i.e., 

        T(Ek,I,M;Ek,I,M) =  t(Ek)±  7-(Ek)M (2.6.57) 

     T(Ek,t,M1; Ek, T, M) =7-(Ek),/(s-m)(S+m+ 1)(2.6.58) 

where  ii  (EI) is omitted. We can calculate the inverse relaxation time by 

substituting these into (2.6.55). When the magnetic field is not applied, 
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linear term on M is canceled out and we can get, 

       ,r( Ek)  =2hP(Ek)  {14E012 +  IT(Ek)12  S(S  +  1)1 (2.6.59) 

In the first Born approximation, T(E  jk) = V  jk) can be assumed, 

then 

            t(Ek)  = 0,  T(4)  = (2.6.60) 

Therefore the inverse relaxation time is 

    1 I 2 

                =  

 7-EkP(Ek){(2-N)S(S1)}(2.6.61)            )" 

Using the density of states of the conduction band, 

                          (2m*)3/2\1 
                          2712h3 

           p(Ek) =  602 (2.6.62) 

and making thermal average of (2.2.8), we get the final result for the 

relaxation time. 

                                     3 

           13M*/              = j )28(S 1)}(kT)1(2.6.63) 
           (T)Frh,42N 

Note that this has  T1 dependence on temperature. 
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3 Experimental  Procedures 

3.1 Sample preparation 

Samples are prepared by doping of transition metal impurity into FZ pure 

Si single crystal with resistivity of  N  300051 — cm. Residual shallow im-

purity is boron of which concentration is less than  1012crn-3. Doping of 

transition metals was carried out by evaporation onto Si surface and  dif-

fusing at high temperature of  — 1100 °C. Firstly, host Si wafer with (100) 

surface was prepared from 1 inch ingot. Before evaporation of metal, the 

sample wafer was ultrasonically rinsed out by trichloroethylene and etched 

by HF to remove the oxide layer. Transition metal was then evaporated 

from the alumina coated tungsten basket or bare tungsten boat onto sili-

con surface under the vacuum of  ti  10-5 Torr. Deposition was continued 

until the closely configured glass plate becomes perfectly opaque. The 

 evaporation chamber is not necessarily kept at a high vacuum, but the 

main components of residual gases are expected to be oxygen and water 

vapor which have much less diffusivity in Si crystal compared to transition 

metals and they should have less effect in diffusion process and measure-

ments. In the first place, we evaluate the diffusion depth based on the 

following simple calculation. 

  Diffusion  equation is, 

 an(r,t)   =  —div(an(r,t))  DV2n(r ,t) (3.1.1) 
            at 

where n(r, t) is the density of impurity, D the diffusion constant and a is 

the drift vector. For thermal diffusion, we assume a to be zero. Then in 
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one dimensional case, equation (3.1.1) becomes, 

                   32 
              , , ,                 D—a

x2n(x,t) = —at rqx,t) (3.1.2) 

Because the quantity of deposited metal onto surface was so large in  com-

parison with the maximum solubility of transition metal in Si  (  usually of 

the order of 1016  cm-3 at 1100 °C ), we can assume that the density of 

metal at Si surface is constant. A solution of equation (3.1.2) under such 

boundary condition is given by, 

 n(x,t) = no [1 - erf  x )]                          2VDt 
                          no x2            ti  exp  (3.1.3)                    IV

7rDt4Dti 

where erf(x) is the error function. 

               erf(x) = —2ix exp[-t2]dt (3.1.4) 
                           Arir^0 

 In this case, the penetration depth of impurity can be regarded to be the 

order of  2VDt. Table 2 shows the diffusion constant of various element in 

    Metal  Temperature(C)  D(cm2/s) Reference 

     Mn 1038 1.68  ti 2.49 x 10-6 Gilles [17] 

    Mn 854 2.3  ti 8.4 x  10-7 Gilles [17] 

     Mn 700 7 x  10-8  N 5 x  10-9 Gilles [17] 

    Fe 920 1.7 x 10-6 Gilles [17] 

     Co 700 2.4 x  10-7  ti 4 x  10-11 Gilles [17] 

             Table 2: Diffusion Constant of various element in Si 
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Si crystal from which we can evaluate the time for impurity perfectly to 

diffuse to opposite side of wafer. For the case of Mn element, the diffusion 

constant is known as D = 2 x  10-6cm2/s at T=1100 °C. Assuming the 

thickness of the wafer is  lmm, the time for Mn to diffuse to the back 

surface is evaluated to be  N 20 minutes. In the case of substitutional 

shallow impurity such as B on the other hand, the diffusion constant is 

about D  10-13cm2/s at T=1100°C  [18] which is  10-7 times smaller than 

that for transition metals and it will take 4.2 x 108 minutes to reach to the 

back surface. In practice, samples are annealed for  8,-24 hours at 1100°C 

considering the surface barrier to penetrate into Si bulk such as silicide 

formation and to obtain the uniform distribution of metal atom. For 24 

hours annealing, substitutional shallow impurity will penetrate into Si for 

only 2  pm. 

  In the end of thermal diffusion, samples were dropped into glycerin 

and quickly quenched to avoid the precipitation of metal impurity onto 

surface. After quenching, sample surface was polished with  emery paper 

to remove the surface metal layer, and etched by  HF+NO3(HF:NO3=1:5) 

solution. Diffusion of metal was confirmed by two methods, namely, SIMS 

(Secondary Electron Mass Spectroscopy) and DLTS (Deep Level Transient 

Spectroscopy). Procedure of DLTS measurement will be described later. 

SIMS measurement was done by Matsushita Techno-Research Co. The 

result is shown in Fig. 1. It can be seen that Mn of  N 2 x  1016cm-3 

has diffused uniformly except for near surface. Together with the Mn 

diffusion, we acknowledge the co-diffusion of Cu of  N  1016cm-3. But it 
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will become clear in Section 4.2 that Cu is unimportant for the scattering 

of electrons. In addition, there can be seen the signals from Al and Na, 

but they are not exceeding the lower detectable limit for Al and Na that 

is about 3 x  1014cm-3 and 1 x  1014cm-3, respectively. Furthermore, it 

became clear in PL measurements that no shallow impurity such as Al 

did not diffuse into specimen so much as to affect the electron scattering 

and the fact supports our expectation. 

3.2 Microwave Cyclotron Resonance 

Figure 3 shows the experimental diagram of microwave cyclotron res-

onance. Prior to the measurements, a sample surface was washed by 

 trichloroethylene ultrasonically and etched again by HF+HNO3 solution 

for several seconds and set into the bottom of the wave guide with grease 

and then immersed into the liquid Helium. In the measurements, the 

sample was illuminated by Xe  flash lamp through the glass lod to obtain 

free carriers. The pulse width of Xe flash lamp is the order of sub  its. 

In order to eliminate the high energy component which generates the hot 

carrier and make carrier density high at near surface because of its high 

absorption coefficient, and  IR filter was emplayed. So, the light actually 

used to excite the sample is which include the energy components near 

band gap which has low absorption coefficient compared to higher energy. 

Sample were expected to be uniformly excited. The pulse rate was set to 

20Hz which may not raise the sample temperature. Microwave is  gener-

ated at the Klystron and guided into 8mm size wave guide through the 

                           49



attenuator and divided at magic—T. One part is guided to sample direc-

tion and the other is guided to the opposite direction at where the phase 

shifter was settled. Finally the divided two wave were again mixed at the 

magic—T after the appropriate phase and amplitude matching operation 

and reached to the GaAs diode detector. As the detector output is nearly 

 proportional to the square of the amplitude of electric field, We can obtain 

power absorption directly from the detector output. The signal was then 

put into two channel boxcar integrator equipped with two plug-in amplifier 

gated at an arbitrary time position. Output from the boxcar integrator 

was recorded using both of analog recorder and personal computer with 

digital voltmeter equipped with GP-IB interface. The signal was taken 

after the appropriate interval from the excitation to avoid the carrier— 

carrier scattering contribution to line width. Usual sample temperature 

was 4.2K cooled by liquid He. Temperature can be varied down to 1 .5K 

by evacuating liquid He, and up to about 12K by thermally shielding by 

evacuating only around the sample and heating with manganine heater 

near the sample. Sample temperature was measured using both of closely 

settled carbon resistance and manometer ( only under 4.2K ). Magnetic 

field up to 6000 gauss was applied using an ordinary split magnet.  Mag-

netic field direction was perpendicular to the (100) direction and choosed 

to separate the six-folded conduction band of Si into three two-folded ones 

as depicted in the inset of the figure 3. 
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3.3 Far Infrared Cyclotron Resonance 

The experimental diagram of far—infrared  (  FIR) light cyclotron resonance 

was depicted in Fig. 4. Sample was attached on the bake plate with GE 

varnish and settled into the cryostat and immersed into the liquid helium. 

Far infrared laser was optically pumped by electric discharge excitation 

type CO2 infrared laser and generate the 513  ,um line. FIR light was 

guided to sample by about  10mm0 light pipe. The light passed through the 

sample was detected by the appropriately biased InSb detector where the 

detection was realized using photothermal conduction mechanism. Sample 

was illuminated by Xe flash lamp to generate the free carrier in the similar 

way to microwave experiment. Minor difference is that in the FIR case 

the glass lod is slightly bent due to the existence of FIR light pipe which 

considerably lowered the excitation efficiency. Magnetic field was applied 

using superconducting magnet up to 5 Tesra. This time the magnet is in 

(100) direction which is perpendicular to the sample  surfac,e and pallarel 

to the FIR light propagation vector (Faraday configuration). The sample 

 temperature was fixed to 4.2K all the time by immersing the cryostat into 

the liquid helium directly. The signal from the detector was put into two 

channel boxcar integrator also in the similar way to microwave experiment 

and recorded and treated in the personal computer. 

3.4 Deep Level Transient Spectroscopy 

DLTS measurement was firstly introduced by D.V.Lang [19] and until now, 

it is widely used to characterize the deep level traps in the semiconductor . 
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Wide properties of deep traps such as activation energy, concentration 

profile and capture cross-section can be obtained by this method. This 

method is based on the thermal emission properties of traps which is 

almost unique to each traps. So, DLTS can be the powerful method to 

distinguish the various traps in semiconductors. Here we present the brief 

description of the DLTS measurement process. 

  DLTS measurement is done by utilizing the transient change of the 

capacitance of the depletion layer of Schottky barrier or p-n junction. 

Here we assume the n-type semiconductor case where the current carrier 

is electrons and Schottky barrier is for electrons. Capacitance of Schottky 

barrier as a bias voltage is approximated by the formula, 

                             kT               C =(eE2 CI)2                 (Val Vr-e(3.4.1) 
where  Es is the dielectric constant of the sample, Nd the shallow donor 

concentration,  VVr is the reverse bias and Vdo is the diffusion voltage at 

zero bias. DLTS measurement is usually executed under  the reverse bias 

condition where the most shallow impurities existing near surface are ion-

ized and depletion layer is so wide and capacitance is rather small. When 

sufficiently long forward pulse voltage is applied to the junction, the shal-

low impurities are fully neutralized and the capacitance becomes large. At 

the same time, if there exist the deep electron traps, they are also filled. 

After the pulse voltage is finished to apply and initial reverse bias is  re-

covered, shallow impurities are ionized again and depletion layer is also 

widen again. But the deep trap filled by the pulse bias takes rather much 

time to release electrons compared to shallow ones according to their large 
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activation energy, which prevent the concurrent recovering of capacitance 

and causes the time dependent capacitance change in the Schottky bar-

rier. Such time dependence is related to the activation energy and capture 

cross-section of deep trap and expressed by 

           C(t,T) =  C(0,T) —  AC0  exp  [—en(T)t] (3.4.2) 

 en  (T)  = Ncvno-nexp[--Eil(3.4.3) 
                          kT 

where  Arc is the effective density of states of conduction band,  vn is the 

thermal velocity of electron and  an the electron capture cross section of 

impurity considered here. They are, 

                                                          3 

                  Nc = (27m*kTr 
                           h2                                                 (3.4.4)                  ) 

                     3kT 
       v7, = (3.4.5)                  ( me* 

                     on= acr,exp—ET                 E
) (3.4.6) 

Substituting (3.4.4), (3.4.5) and (3.4.6) into (3.4.3), explicit temperature 

dependence of  en can be obtained as, 

                     ) 

            en(T) = CT2 expEiE(3.4.7)                            kTB ) 

and 

   C   

                                              3 

                              (270-TiteV-3-0-00  =(3 .4.8) 
                           h3 

Measuring capacitance at two different time  ti and t2 after the injection 

of a pulse, one can get, 

        S(T) =  C(t2,T)  —  C(ti,T) 

             =  AC0  {exp[—en(T)ti] —  exp[—en(T)t2]} (3.4.9) 
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For temperature which maximize S(T), it needs dsdTMIT„, = 0, we obtain 

the equation, 

 In  ti  —  In  t2 
           a  =  en(T,2) (3.4.10) 

 ti  —  t2 

Notation a is referred to as rate window. By plotting  T,2  /a against  1/Tm, 

one can get  Ei+ EB from its slope according to the relation (3.4.7). Here 

we must remind the capacitance of Schottky barrier is expressed by the 

equation (3.4.1). If there are considerable amount of deep electron traps, 

the same amount of charges of ionized shallow impurity are canceled out 

until the traps release their charges. It leads the modification of  capaci-

tance, 

                                                                       1 

                                                                   2  ACO  = --1(q€) 2 Ns2 ANs(VdoV.——(3.4.11) 
   2kT)-                           q) 

then, 

           AC  AN, 

          C  2N, 

                  Nd  =  AN,  =  2N,AC°                                               (3.4.12) 

One can get  Ns by measuring the capacitance - reverse voltage relation 

using (3.4.1). If we choose  10ti for t2,  S(Tm) simply becomes to  0.697AC0 

and the concentration of deep trap is, 

                   Nd = 2.87N,S(Tm)                                               (3.4.13) 

Experimental block diagram of DLTS is depicted in Fig. 5. The sample is 

settled into helium refrigerator unit and the sample temperature is stabi-

lized by computer controlled temperature controller. Capacitance signal 

is get by digital capacitance meter which can get the whole time variation 
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of transient behavior of capacitance at one pulse. Pulsed reverse bias is 

applied to the sample by utilizing the trigger output from the capacitance 

meter which is once attenuated from 5V to one tenth of required voltage 

and amplified 10 times by pulse amplifier. Impedance matching was made 

by serially configured resistance. Temperature data from the temperature 

control unit and transient capacitance data from digital capacitance meter 

is obtained and treated by personal computer. 

3.5 Electron Spin Resonance 

Electron Spin Resonance measurements were examined at IPCR  (  Institute 

of Physical and Chemical  Research  ) in cooperation with Dr. Katsumata 

and Dr. Hagiwara. Figure 6 shows the configuration diagram . of our  ex-

perimental equipment. The sample is settled at the end of a quartz rod 

and put into a microwave cavity. The frequency of microwave was 9 .21 

GHz and its power was usually 4mW. The usual modulation frequency 

was 100kHz and its amplitude in magnetic field was 5G. The sample tem-

perature was controled by a heater coiled at the injector and changed from 

4K to 300K. 

  For instance, we should handle the case of Mn in Si. Interstitial Mn 

can exist in Si with five possible charge state according to the published 

article [14, 15, 16] and four of five had been observed in ESR and DLTS 

measurements. They are  Mn-(3d)8,Mn°(3d)7,Mn+(3d)6 and  Mn2+(3d)5. 

  Effective spin Hamiltonians of the system of total (3d)-spin interacting 
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with external magnetic field and nuclear spin is, 

 gpBH  •  S  IAS (3.5.1) 

where H is the static magnetic field and S is the total spin of unfilled 3d-

electron and I is nuclear spin and A is the hyperfine interaction constant. 

If we choose the axis to diagonalize A and apply the magnetic field H 

 (0,0,H,), equation (3.5.1) becomes, 

       7-1 = gl-tBSzHz AzIzSz AsIxSs+ AyIySy 

          =  giLBSzHz+ AzIzSz-1 
                        4(AxAy)(1-S- +IS+) 

          +4(As -  Ay)(1-±  S± +  I  S) (3.5.2) 

Let us treat the case that Mn spin is S =  2. For almost all Mn exists, 

nuclear spin is I =  2, so the number of basis spin fu  action is 2 x 6 = 12. 

Diagonalizing (3.5.2) leads to the energy, 

             mAz I(I +1)- m2 (A
x2+A2)m, E±  = 2 2 89l4g[tBHzAxAy (3.5.3)                                  P.B.Hz 

where  m is the nuclear spin quantum number  (  (m) =  mhim) ) and an 

approximation A <  gmBHz is used. 

If the  Hz is small, S and I are not a good quantum number because of 

the relatively large mixing term. The states will be specified by F which 

is eigen value of F = I + S. But, once  Hz become larger so that we can 

neglect the last two term in (3.5.3), then energy becomes, 

                     E±,,+91-1BH0  mAz            22                                                (3.5.4) 

Energy diagram is depicted in Fig. 7. In zero magnetic field, Energy is 

separated in 7-fold states (F=3) and 5-fold sates (F=2). As magnetic 
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field is increased, the folded states become separated and quantum  num-

ber  I and S again become good number to specify states. Usual ESR 

measurement satisfies the condition for large magnetic field and magnetic 

transition occurs when the selection rule  AS = ±1 and  A/ = 0 are  sat-

isfied. So, we can expect to observe six lines in the ESR measurement of 

Si:Mn. 

3.6 Photoluminescence 

Configuration diagram for photoluminescence measurement is depicted in 

Fig. 8. All measurements were done at helium temperature. Excitation 

light is  Ar+ laser (4880 A line) which is filtered to cut the light with 

wave length above 6000 A and below 4000 A. PL light from the sample 

is focused by lens and filtered to cut the light with wavelength below 

6500 A in front of the monochromater which has 600  mm-1 grating and 

about 2m radius. The monochromated light is detected by Ge-PIN diode 

detector appropriately biased and cooled with liquid nitrogen. Signal from 

the detector is processed by Lock-in Amplifier and its output is stored into 

personal computer via digital voltmeter. 

3.7 DC measurements 

For Hall measurements, electrodes must be attached but we must not 

apply any annealing treatment because of high diffusivity of transition 

metals in Si crystal. Finally, for n-type Si, electrode was successfully made 

by evapolating Al onto Si surface and for p-type Si, that was realized by 
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rubbing In:Ga arroy. He refrigerator was used 
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4  Exp  erimant  al Results 

4.1 DLTS measurements 

We firstly made the DLTS measurements on Mn doped n-type CZ-Si to 

certify that aimed diffusion of Mn into Si host is achieved. Usual DLTS 

measurements require the certain amount of shallow impurities to supply 

free electron to fill up the deep level within the period the forward bias is 

applied. So, we must use rather highly doped Si instead of pure one we 

used in cyclotron resonance measurement. Table 3 shows the previously 

         Energy Level Type Assignment Ref 

         E, — 0.12eV acceptor interstitial [20, 21] 

        E, — 0.27eV donor Mn4 [21] 

         E, — 0.41eV donor interstitial [20, 21] 

         E, — 0.51eV substitutional [20] 

         E, — 0.54eV donor Mn-B pair [20] 

            0.32eV donor interstitial [20, 21] 

             0.39eV donor substitutional [22, 23] 

             Table 3: Previously observed DLTS signal for Si:Mn 

obtained DLTS signal for Si:Mn. The typical DLTS signal we obtained is 

depicted in Fig. 9. The reverse bias is 5V, filling bias  OV, and rate window 

ratio  t2/t1 = 0 for t1 is 10  ,us to 10 ms. The injection pulse width is  lms. 

Making use of the standard rate window variation technic described in 

section 3.4, we can obtain for E  E, — 0.11eV,  E, — 0 .20eV and 
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E, - 0.39eV from Arrhenius plot as shown in Fig . 10. The temperature 

dependence of capacitance is shown in figure 11 from which we can obtain 

the trap density was obtained from temperature dependence of capacitance 

by making use of the relation (3.4.13). The signal of  E, - 0.39eV is close 

to the level position of interstitial Mn ( Mn?  -*Mnt ) shown in Table 

3 and that of  E, - 0.11eV is correspond to (  Mni ). We have 

not succeeded in the assignment of  E,  -  0.20eV signal . The signal appears 

around this energy was attributed to Mn4 cluster [21, 20] or a defect  signal 

[24]. Mn4 signal is reported to have energy level at about  E, - 0.27eV. 

The defect signal is reported to have signal at abour - 0 .20eV and they 

obserbed it in only quenched sample, too. But, we have not observed any 

signal in only quenched sample. 

  DLTS measurement was also done using the back side surface of the 

same sample, and almost the same result was obtained and the fact shows 

uniform diffusion of Mn in host Si is achieved . 

  DLTS measurement for p-type Si doped with Mn in the same way did 

not succeed because of its high resistivity which is known as caused by the 

coupling of Mn and shallow acceptor  (  boron in this  case  ). Mn-B pair is 

known to become donor with activation energy of  Ec-0.54eV . This pairing 

not only reduce the density of acceptor boron but also compensate it . The 

DLTS measurement for p-type Si:Mn requires the well controlled sample 

preparation. If we want to observe the DLTS signal in p-type Si:Mn, the 

sample with boron density higher than  1016cm-3 will be required . 
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4.2 Cyclotron resonance 

The data obtained and stored into personal computer system were fit 

numerically as superposition of several Lorentzian curves using the  non-

linear minimum square technic referred to as the Gauss-Newton method 

described in appendix A and separated into each constituting Lorentzian 

curve to obtain accurate line width. The typical result of fitting is  de-

picted in Fig. 12. The rather broad peak at around B=1.9kG named as 

HCR1 is light hole resonance and HCR2 is heavy hole resonance. Because 

Si has the six fold degeneracy in conduction band and have three equiva-

lent pairs if ellipsoidal iso-energy surface is assumed, three resonance for 

electron can be obtained. Magnetic field was applied to separate these 

peaks. We decided to evaluate the relaxation time of electron using  ECRI 

which has cyclotron effective mass m*/mo = 0.208 obtained from the ac-

tual resonance peak using the relation (2.1.28). 

  Figure 13 shows the time resolved microwave  absorption for stepping 
                                                                                                          f. 

magnetic field drawn in three dimensional plot from which we obtain the 

time resolved cyclotron resonance curves as shown in Fig. 14. We also get 

the time resolved inverse relaxation time as depicted in Fig. 15. The ini-

tial enhancement of line width is due to momentum relaxation of electron 

caused by carrier-carrier scattering and its decaying feature depends on 

the carrier recombination process. The evaluation of line width was done 

at time position where the broadening caused by carrier-carrier scatter-

ing become negligible. The final line width to be analysed was obtained 

by averaging the several number of resonance curve obtained in the way 
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described above and from which we can get the electron inverse relax-

ation time according to (2.1.29). Figure 16 shows the typical cycrotron 

resonance line of FZ pure Si and that doped with Mn measured at liq-

uid He temperature. One can see the remarkable enhancement of line 

width in Si:Mn sample compared to pure Si. Let us concentrate into the 

peak named ECR1 as mentioned above. Figure 17 shows the obtained 

temperature dependence of inverse relaxation time of FZ-Si doped with 

various transition metal obtained from  ECR1 peak. Straight line shows 

the acoustic phonon contribution which has  71 dependence to tempera-

ture as described in section 2.3.1. Quenched Si has slightly broader line 

width compared to pure host. We did not yet identified the origin of 

this broadening, but it should be attributed to defect center or some deep 

impurities entered at the annealing process, but not to shallow impurity. 

The reason will become clear in the PL measurement where postannealing 

procedure decreases the Si defect which act as  nonradiative recombination 

center. It can be seen that transition metal impurity other than Mn have 

line width almost same to quenched Si and do not significantly affect the 

relaxation time of electron. It is notable that only Mn doped Si exhibits 

extraordinary enhancement in inverse relaxation time among Si doped 

with the transition metal impurity. We have not yet certified the diffu-

sion of these metal impurity other than Mn. There rest a little possibility 

that these metals have not diffused in Si sufficiently. We only expected 

the diffusion of these metal impurities by their diffusion constant in Si 

comparable to Mn. Figure 18 shows the inverse relaxation time for Si:Mn 
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and host Si where host Si contribution to line width which is expected to 

contain acoustic phonon scattering  only was subtracted. The temperature 

dependence of 1/r obtained by least square method is about  T°.41. Next , 

we show the result of annealing effect on signal. Figure 19 shows the cy-

clotron resonance line of the sample which experienced various annealing 

treatment. The sample named "Slowly cooled Si:Mn" is that experienced 

no quenching process after the diffusion of Mn and naturally cooled with 

the furnace. It takes about a half day to be cooled down to room  temper-

ature. The sample named "Annealed Si:Mn" is a quenched one, but after 

quenching it was annealed at 500°C for about 4 hours and cooled slowly. 
"Quenched Si" is a non -doped one which experienced the same process to 

doped ones including quenching without Mn doping. We can see that Mn 

doped Si has the large line width but Slowly cooled Si:Mn has as large 

width as pure Si. And even in the quenched Si:Mn, rather low tempera-

ture annealing  (  500°C) made line width narrower to the size as narrow 

as that of quenched Si. This result shows the precipitation of Mn atom 

occurs even at 500°C because of their high mobility and very low solubil-

ity in Si and make it sure that the broadening of cyclotron resonance line 

width is caused by Mn doping. 

4.3 ESR measurements 

Typical ESR signal of Si:Mn obtained is depicted in Fig. 20. These signals 

were not seen in host Si and Quenched reference sample. The correspond-

ing g-value calculated is g = 3.375. This signal is already attributed to 
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Mn°(S = 1/2) in the previous work as depicted in Table 4. The sample 

           state configuration spin  g A 

 Mn2+  (3d)  5 22.0066 -53.47 

 Mn+  (3d)  6 1 3.01 73.8 

 Mn+  (3d)6 2 1.68 46.1 

 Mn+  (3d)  6 3 1.34 

          Mn°  (3d)  7 -2-1 3.362 92.5 

 Mn°  (3d)  7  3                                      1.46 

 (3d)  8 1 2.0104 -71.28 

          Table 4: Previously obtained ESR signal of interstitial Si:Mn 

made using pure Si as host exhibits the strongest signal, while that made 

using p-type Si shows weakest signal of the three. We could not get the 

signal other than  Mn? in these three type sample. Figure 21 shows the 

signal around g = 2.0. Quenched Si exhibits the remarkable structure at 

g=2.076 and g=2.009 which is not seen in pure Si. Si:Mn exhibits the 

similar behavior but not with sharp peak. This sharp signal is proba-

bly related to some kind of defect produced at the quenching procedure. 

Therefore it may exist in the Si:Mn sample. This result implies that  cer-

tain amount of coupling of Si defect center and Mn atom which produces 

the ESR-inactive center and make the sharp signal decrease in Si:Mn sam-

ple. Figure 22 shows the temperature dependence of  Mn?(S = 1/2) signal 

at g=3.375. The steep decrease occurs when temperature is raised and 

signal is almost hidden into noise at above 7 K. It is known that  Mn? can 
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exist with two spin states which has deferent g-value as shown in Table 4, 

that is S=3/2 (g=1.46) and S=1/2 (g=3.362). It is also known that S=3/2 

state is the excited state of S=1/2 state  (  see section 3.5 ). This quenching 

behaviour of ESR-signals seems to be caused by thermal excitation, but 

the signal expected to grow at around g = 1.46 was not observed probably 

because of weak signal intensity. Since the excited states generally has un-

stable feature, it is probable that such state is hard to observe compared 

to the ground state. 

  Next, we examine the illumination effect on the ESR signal because 

our cyclotron resonance measurement was always done under the condi-

tion that the excitation by the Xe flash lamp exist. Sample illumination 1 

was made by use of Xe continuous lamp. Figure 23 shows the illumina-

tion effect on  Mn?(g = 3.362) signal of Mn doped p-type Si. The signal 

 intensity was enhanced when the filtered light was illuminated on the sur-

face. But without filter, the signal is weakened on the contrary. The 

dependence of signal intensity on illumination intensity is shown in Fig. 

24. When  weak illumination is applied, signal grows as illumination  in-

tensity is raised. This enhancement with illumination can be recognized 

even with the weakest illumination intensity we applied. On the contrary, 

it is observed that much stronger illumination decreases the signal  inten-

sity as shown in figure. Reminding the strong temperature dependence of 

this signal, it may be caused by heating of the sample under strong pho-

toexcitation. Because our cooling system is the gas flow type, we can not 

say it is much efficient under strong illumination. These illumination was 
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also applied on Si:Mn made using pure Si and that made using n-type Si. 

But Si:Mn with pure Si exhibits no detectable change in signal strength 

except for damping caused by heating. The sample with n-type Si shows 

the slight enhancement with illumination, but its not as large as that of 

p-type Si:Mn. 

  Illumination of continuous light on n-type Si:Mn yield the new peak at 

around g=2 which is shown in Fig. 25. This signal can be attributed to 

neutral phospher. Phospher atom has the  I=1/2 nuclear spin which yield 

two peaks in ESR signal according to equation (3.5.4). Figure 26 shows the 

dependence of peak to peak intensity of phospher signal on illumination 

strength. The signal can be seen to be almost proportional to illumination. 

This result implies that in n-type Si:Mn at low temperature, phospher 

donors are fully compensated with certain acceptors created by thermal 

treatment they are neutralized by photo excitation. The signal appeared 

in quenched Si at around  g=2.0 showed no response to illumination except 

for the growth of small signal at g=2.004 which should be attributed to 

free electron signal because of its g-value. 

4.4 PL measurements 

The result of photoluminescence is depicted in Fig. 27. The peak labeled 

FE is free exciton luminescence and EHD means that of electron-hole drop. 

BE denotes neutral donor bound  exciton for n-type Si and neutral acceptor 

bound  exciton for p-type Si. Pure Si exhibits the well known peak of FE 

and  EHD due to the lack of luminescent center like shallow impurities. 
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On the other hand, quenched Si and Si:Mn shows no luminescence with 

detectable intensity which seems to be due to the defects introduced at the 

quenching which act as the efficient non radiative recombination center. 

And p-type Si and n-type Si exhibits the bound exciton luminescence 

which feature is also well known. The  points one should notice is that 

Si:Mn sample which experienced the post annealing process of 500°C 4 

hours recovers the FE and EHD feature and slowly cooled Si:Mn exhibits 

the feature same as pure Si not as n-type or p-type Si. This means that 

the Mn diffusion process at the temperature as high as 1100°C did not 

introduce shallow impurities which usually act as luminescent center as 

seen in n-type or p-type Si and that broadening of cyclotron resonance 

line width in Si:Mn is not caused by such shallow impurities which are in 

danger of introduction by heat treatment and are usually hidden under 

high compensation ratio. 

 4.5  DC measurements 

The room temperature resistivity of various Si and Si:Mn sample measured 

by usual four-point technic is shown in Table 5. It is seen that Si:Mn has 

very low resistivity while pure Si and Quenched Si and slowly cooled Si:Mn 

have high resistivity and that high resistivity is recovered after post an-

nealing procedure. The remarkably high resistivity of p-type Si:Mn is due 

to coupling of Mn and boron. Si-B complex is well known to become the 

donor at around  E, — 0.53eV. This donor level may compensate the shal-

low acceptor  and donor itself is too deep to supply carriers to conduction 
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band even at room temperature. This makes sample resistivity very high. 

Figure 28 shows the temperature dependence of carrier density of Si:Mn 

sample derived from Hall coefficient. Carrier type obtained is electron and 

the activation energy is fit to 227meV. Donor density can not be obtained 

straightforward by this figure because the temperature does not yet reach 

to the extrinsic range even at room temperature. But slight bending at 

near 300K allows us to estimate it to be order of  1015cm-3. Comparing 

this with cyclotron resonance result and  photoluminescence result, we can 

say that this donor level related to Mn doping is the cause of CR line 

width broadening. 

4.6 FIR cyclotron resonance 

We made the cyclotron resonance experiment at 4.2K using far infrared 

laser to investigate the magnetic field dependence of inverse relaxation 

time of electron. The results is depicted in Fig. 29 and 30. In Fig. 29, 

it can be seen that Si:Mn has almost the same line width compared to 

pure Si while micro wave mesurement shows the remarkable difference 

between these two sample. Figure 30 shows the genuin inverse relaxation 

time due to the Mn introduction which is derived by subtracting pure Si 

component from the obtained bare line width. It can be seen that for 

cyclotron resonance experiment under high magnetic field, the effect of 

Mn introduction is reduced, that is similar to the case of scattering by 

shallow impurities. 
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4.7 Room temperature postannealing 

Because of their large diffusion constant, transition metal atoms easily 

move around in Si crystal even at rather low temperature and precipitate 

onto surface and which is the reason why we must quench samples into 

liquid after Mn diffusion at high temperature. Figure 31 shows the room 

temperature annealing effect on cyclotron resonance line width and ESR 

signal intensity for Si:Mn. We prepared the several sample which were 

made at different day to execute this experiment. We decide the annealing 

time to the days past from the day it made to the day it measured. The 

sample which suffer longest annealing time is that of about 400 days. We 

can immediately see the fact that inverse relaxation time is decreasd only 

by apploximately 40 % with annealing time while ESR signal is decreased 

by 2  N 3 % in 100 days. ESR signal is saturated to decrease after 100 days 

past. This result apparently says that the origin of cyclotron resonance 

line broadening and that of ESR signal are different.  The similar fast 

decreasing is obtained by Nakashima [20] for DLTS signal of interstitial 

Mn. 

4.8 Stress effect on line width of cyclotron resonance 

Figure 32 shows the stress dependence of inverse relaxation time for Si:Mn. 

The stress was applied to < 111 > direction not to change the occupation 

of the six equivalent valley relatively. In the case of p-type Si with shallow 

acceptors, it is known that the electron momentum relaxation time at low 

temperature is almost governed by the neutral acceptor bound exciton 

                           69



scattering. [25] Neutral acceptor has the smaller scattering cross section 

compared to that of donor. But when it capture the exciton, it is known 

that it turn to be donor like. This make cross section larger according to 

the theory of neutral impurity scattering as described in section 2.3.3. It 

is also known that the stress applied to lower the system symmetry makes 

the generation of bound  exciton difficult. Our result shows no damping of 

inverse relaxation time in increasing stress. And moreover no luminescence 

line was observed near band gap energy. It is expected that some kind 

off luminescence should be observed if the bound exciton exist because of 

its high radiative recombination efficiency. Its energy is expected to be 

one tenth of impurity binding energy (Heynes rule) less than free exciton 

luminescence energy. Accordincly, in the present case we can say that the 

bound exciton is not responsible for the broadening of cyclotron resonance 

line width. 
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     Sample Resistivity (a-cm) 

  Pure FZ Si 3196 

  Quenched Si 3251 

 Si:Mn 106 

Si:Mn  (post  annealed) 3951 

Si:Mn (slowly cooled) 2569 

  n-type Si:Mn 6.78 

  p-type Si:Mn 27000 

        Table 5: four-probe resistivity 
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5 Discussions 

5.1 ESR, DLTS and DC measurements 

It is known that transition metal in Si favour the interstitial site  [14, 15, 

16]. Mn in Si interstitial site can have four charge state according to the 

theory. These are  Mni-  (3d)8,Mn2(3d)7,Mnt (3d)6 and  Mn2+(3d)5. These 

 Mni state transferred initial 4s electrons into 3d orbital or other atom. In 

n-type Si which have sufficient number of donor, Mn atom act as acceptor 

and traps one electron from donor, compensate it and become  Mn- state. 

The number of this  Mn- is owes to the number of Mn atom and donor atom 

and to distribution function. If the number of donor atom is insufficient 

to fill all Mn atom, the rest remains neutral, that is,  Mn° state exists in 

the same time. When these negatively charged and neutral Mn atom is 

put into depletion layer neighboring to the Schottky barrier interface, each 

Mn atom will release one electron and become  Mn° and Mn+ respectively. 

So, we can observe following two process in DLTS results in such sample.                                                              sample. 

                     Mn- 0.11eVMn0                            ni--+ 

and 

 Mnfilling  mn9  0.41ey Mni 

Energy diagram of interstitial Mn is depicted in Fig. 7. In p-type Si, 

on the contrary, Mn can act as donor and compensate acceptor. We can 

expect two states, Mn+ and Mn2+ which are the states which traps one 

and two holes respectively. The number of occupation of these states is 

owing to the number of compensating acceptor. In actual, only Mn2+/+ 

 7.



can observed in DLTS on p-type Si:Mn. It is, 

                    Mni+filling7,,_2+0.30eV -rt-4

The transition  Mn-i° is called as acceptor,  Mn°i+ as first donor and 

 Mn2+/+ as second donor. We have observed the former two signal in 

n-type Sample. 

  In ESR measurement, we have observed the strongest  Mn? signal in the 

sample with pure Si host. This is consistent with above description. In 

n-type Si:Mn we observed the rather strong signal intensity of  Mn?. So, we 

can say that the concentration of interstitial Mn exceeds that of shallow 

phospher donor which amount is 3 x  1014cm-3. In p-type Si:Mn ESR result 

shows that most of interstitial Mn is charged to  Milt and the signal inten-

sify of  Mn? become least of the three type of sample we measured. But, 

we observed the enhancement of  Mn° signal when weak illumination was 

applied on p-type Si sample. This means that the neutralization of  Mni 

by the carrier generated by illumination was occurred. It is remarkable 

that even with the very weak illumination, signal enhancement occurred. 

It is known that the pulse illumination applied to generate free carriers 

necessary for cyclotron resonance neutralize almost all shallow impurities 

and make it hard to observe the ionized impurity scattering at low tem-

perature. We can say that about the same situation occurs in our Si:Mn 

case. Reflecting the occupancy of  Mn° states, n-type Si:Mn exhibits the 

weak response to illumination but signal is enhanced slightly. The appear-

ance and growth of phospher signal by illumination in n-type Si:Mn can 

be understood bye the assumption that the full compensation of donor by 
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Mn acceptor occurs. This also support the excess of Mn concentration 

to that of phospher. But the strongest illumination we applied could not 

lead to the saturation of the signal intensity. 

  Room temperature DC measurement revealed the very low resistivity 

of Si:Mn with pure Si host compared to other pure Si originated sample. 

The conduction type of this sample known from Hall measurement is n-

type and its activation energy is found to be about  E, - 0.23eV and its 

concentration is deduced to be 1014  N  1015cm-3. This value for activation 

energy is slightly different from  E, - 0.27eV which is assigned by Czaputa 

et. al. [21] to be Mn4 cluster. But there is no energy level other than 

Mn4 around this energy which is previously assigned as Mn related states 

in Si. Our DLTS measurement shows the small peak at around 130K 

which is assigned by Nakashima [20] as the  Mn4(E, 0.27eV) signal. He 

observed the growth of this signal accompanied with the decreasing of the 

signal of interstitial Mn in the long period room temperature annealing. 

This behavior is to be attributed to the Mn4 cluster formation. In Si:Mn 

with host Si doped to n-type or p-type, Mn is charged up because of the 

compensation as described above. So, the clustering of Mn atom probably 

prevented by coulomb repulsive force. It is known that Mn4 cluster is 

formed easier in pure Si host [26] because it retains the neutralized feature. 

So we conclude that the Mn4 cluster is formed in very high concentration 

in excess of  1014cm-3 in this type sample. 

  Room temperature resistivity for Si:Mn made using n-type Si exhibits 

the value about the same but slightly smaller to initial value. We have 
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seen that the phospher donor in this sample is fully compensated by  MI17, 

but its activation energy is obtained from DLTS about  E, - 0.11eV which 

is small enough to supply almost all electrons to conduction band. Indeed, 

temperature dependence of resistivity exhibits steep rising at temperature 

about  100K which is twice as high as initial n-type Si where shallow donor 

has activation energy about 45meV and exhibits steep rising in resistivity 

at temperature around 50K. 

5.2 Cyclotron resonance 

From Fig. 17, we see that only Mn diffusion affects inverse relaxation time 

of electron significantly. DLTS, ESR and DC measurements revealed that 

about  1015cm-3 interstitial Mn exist in sample with doped host Si.  Com-

parable amount of interstitial Mn also expected in sample with pure Si 

host. But it is also revealed that room temperature annealing process de-

creases the number of interstitial Mn  significantly while inverse relaxation 

time decreases only slightly. On the other hand, we see that Mn4 cluster 

formation in excess of  1014cm-3. We executed Hall measurement again on 

the same sample after about 200 days of room temperature annealing, but 

we observed no significant change in room temperature Hall coefficient. 

Instead, it even looks increased slightly in carrier concentration. So, we 

conclude that this Mn4 cluster is responsible for broadening of electron 

cyclotron resonance line width. It is peculiar that the room temperature 

annealing effect for inverse relaxation time exhibits the slight decreasing 

feature while Mn4 cluster density seems to remain constant. This can be 
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justified by the assumption that interstitial Mn also affect the electron 

relaxation time as well as Mn4 cluster. 

5.3 Neutral impurity scattering 

It is already known from the previous discussion that Mn4 as well as  Mni 

may be neutralized under pulsed illumination in the cyclotron resonance 

measurement. We must treat the neutral impurity scattering firstly. Be-

cause these center is  deep and its Bohr radius of ground state is expected 

to be very small, usual neutral impurity scattering treatment become no 

longer applicable because its cross section becomes too small to affect the 

line width. 

5.3.1 Spin scattering 

In the case of transition metal in semiconductor, it is known that Hund's 

rule is often broken if the p-d hyblidization is large compared to exchange 

energy among  (3d)-electron.[14, 15, 16] transition metal in Si is generally 

the case because of strong covalency of Si. In Si, TM usually expected to 

prefer the low spin ground state. But it is known that Cr and Mn can 

have high spin state in Si according to the calculation. And five spin state 

had observed for interstitial Mn and two for substitutional Mn as shown in 

Table 4. In addition, Si:Mn shows the ESR signal of Mn4 cluster [21]. It 

is probable that these spin can interact with conduction by the spin-spin 

interaction expressed as 

              =  JSM  -se (5.3.1) 
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where J is the exchange integral,  SM the impurity spin,  se the spin of con-

duction electron. This interaction lead to the  ri temperature dependence 

of cyclotron resonance line width according to the discussion in section 

2.6.2. Neutral impurity scattering case seems to be the special case of 

spin scattering where J becomes large because of the widely extended 

Bohr radius of effective mass impurity. Vikhnin et. al. calculated the 

scattering cross section for the interstitial Fe in Si and conduction elec-

tron using the s-d exchange interaction approximation principally same to1 

the theory described in section 2.6.2. The result is 

                              m
J0 

                                          4 

                                                     *2 

              Cis;=3/1)77k(0) 2(5.3.2) 

  r where  rik(r) =  71\-  uk(r)I2 and uk(r) is a Bloch function of incident electron 

and  1 is the number of equivalent valley of conduction band. He obtained 

the total cross section for the case of Fe in Si ((3d)8,S=1), 

 a = 1.3 x  10-14cm2 

This cross section leads to the inverse relaxation time for the impurities 

of  1015cm-3 at T=4.2K, 

                         -1= 1 .8 x 1078-1 

Because the parameters emerged in Vikhnin's theory are not expected to 

differ so much in Mn case, this value seems too small to explain our Si:Mn 

result for inverse relaxation time of about  ti  101°8-1. The spin scattering 

is treated by Kasuya et.al. in the case that spins are more concentrated 

such as the case of diluted magnetic semiconductor. 
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5.3.2 Resonant scattering 

For the next, we can imagine the case that resonant scattering play an 

important role in the relaxation time of conduction electron. The square 

well potential is known to have probability of generating a semi-localized 

resonant states in the  E  > 0 region which is originated in the steep change 

of potential at the boundary (see section 2.6.1). In the solid state, this 

situation is enhanced by the band  structure.  [27] If there is remarkable 

amount of intervalley transition, that is, U(k, k') has the applicable value 

between the different valley, the bound state associated to one valley may 

mix with the continuum state of another valley (valley orbit interaction) 

which situation is depicted in Fig. 33. This mixed state resonantly scatters 

the electron in that continuum states according to the manner of Breit— 

Wigner scattering where the scattering cross section is of the order of the 

square of electron De Broglie wave length. Therefore, if such resonant 

state lies near the band edge of conduction band, this  resonant scatter-

ing is very much responsible in the electron relaxation time in the case of 

non-degenerate semiconductor. Figure 34 shows our simple calculation of 

the inverse relaxation time of electron for the resonant scattering with the 

Breit-Wigner formula. They have about  T2 dependence on temperature 

at low temperature which originate in the fact that only electrons resonat-

ing is responsible to relaxation time and rising of temperature make the 

population of electron occupies the resonant state high according to the 

Boltzmann distribution. Further rising of temperature lowers the occu-

pation of the resonant states on the contrary which yield the maximum. 
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Sankey [28] et. al. shows theoretically that the resonant scattering can 

dominate the low temperature mobility in the case of  spa-bonded  substi-

tutional deep impurity in zincblende host. Its temperature dependence is 

almost linear to T at low temperature while our simple calculation yields 

the  T1 dependence. It seems that the same situation can arise in deep 

impurity in Si case where strong  spa hybridization exist. But our attempt 

to detect the resonant state using FTIR measurement failed. And the 

possibility of resonant scattering became much more controversial. 

5.4 Ionized impurity scattering 

We must not forget the case Mn4 are not fully neutralized. It is well known 

that ionized impurities strongly affect the carrier mobility if they exist. 

But there are only a few sufficient experimental result which detect the 

ionized impurity scattering directly at low temperature such as T  <  10K, 

because of the difficulty for detection of such scattering at low  tempera-

                                                                                                                        , ture. One reason is that DC measurement fails at low temperature where 

no carrier is available for they are trapped to shallow impurity. Second, 

even if one can avoid the shortage of carrier by illumination, as in the case 

of cyclotron resonance, generated carrier immediately neutralize the ion-

ized impurity even in the compensated sample. There are no longer exist 

ionized impurities enough to affect the mobility. In such circumstances , 

 Ohtsuka et. al. [29] succeed to detect the ionized impurity scattering by 

use of cyclotron resonance. They made free carrier necessary for resonance 

by illuminating sample with far infrared light of energy adjusted to the 
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binding energy of the impurity. They obtained the scattering coefficient 

two times less then that obtained from Conwell-Weisskopf (  C-W  ) formula 

and about ten times less then that from Brooks-Herring  (  B-H  ) formula. 

It evidently demonstrate the collapse of Born approximation at low  tem-

perature. The same can be said to our result if our measurement is that 

capture the ionized impurity scattering. We firstly evaluate our result with 

B-H formula and C-W formula described in section 2.3.2 which are widely 

used to evaluate the ionized impurity scattering. If we try to evaluate B-H 

type scattering formula, it is necessary to evaluate the number of free elec-

tron concentration which screen the impurity Coulomb potential. From 

the result of time resolved cyclotron resonance measurement depicted in 

Fig. 15, we can evaluate the carrier-carrier scattering contribution. Since 

other scattering probability is almost independent on carrier  concentra-

tion, the decaying behavior can be entirely attributed to the contribution 

of carrier-carrier scattering. Approximating this decaying behavior by 

simple exponential decay with constant offset, we can get the inverse re-

laxation time due to carrier-carrier scattering to be  1/r = 8.7 x  109cm-3 at 

just after the excitation. Here we can utilized the previous result done by 

Kawamura et. al. who investigated the broadening of cyclotron resonance 

line width caused by carrier-carrier scattering. They evaluated the carrier 

concentration under the light illumination using the plasma shift of absorp-

tion peak. They obtained experimentally the value  1/7- = 1.8 x  1019(s-1) 

for Ge at 4.2K with the electron concentration of about  1013cm-3 . We 
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here define the experimental condition parameter  7 as 

                                      we          =  (5.4.1) 
                                      an,*47:34- 

They obtained as the final result that inverse relaxation time caused by 

carrier-carrier scattering is proportional to  770 in the case where condition 

 kBT  >  hco is satisfied. Here n is the carrier concentration. We can evaluate 

the value at same temperature, 

                                        es.' 1.03 
 7si 

Because also in our case (T = 4.2K,  we =  35GH  z) the condition  kBT  > 

 h,wc is satisfied, we can evaluate the carrier concentration for just after the 

excitation, 

                    (LS x 1010-yGe)2                n = 10                      "                            8
.7 x 109  -ysi 

                     = 2.5 x  1012cm-3 

Because the area under the resonance curve is proportional to carrier con-

centration participate in resonance, we can plot the time variance of  elec-

tron concentration. This is shown in Fig. 35 from which we obtain the 

electron concentration  20ps after the excitation to be about 5 x  1011cm-3. 

We did not evaluate the carrier concentration for all measurement, and 

this can vary with the experimental configuration or sample character, but 

our measurement was always done under almost the same configuration 

with weakest excitation as possible to extract this carrier-carrier effect, the 

carrier concentration is expected to be same in  order in each measurement. 

Figures 36 and 37 show the calculated inverse relaxation time using B-H 
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formula and C-W formula respectively for several impurity concentration. 

For B-H formula, obtained carrier concentration is used to evaluate the 

screening length but it is too small to affect the temperature dependence 

of inverse relaxation time and appeared to have less meaning. It can be 

seen for any impurity concentration, C-W formula and B-H formula don't 

explain the temperature dependence of experimental data. 

  But after the work of C-W and  B-H,, several authors had proposed the 

invalidity of Born approximation oriented theory such as C-W and B-H 

in low energy scattering problem. Sclar's theory [7] and Blatt's calcula-

tion [8] both suggests the smaller cross section of ionized impurity for low 

 temperature such as T < 20K than C-W and B-H theory. Moreover their 

partial wave oriented theory suggests that the negative derivative of  mo-

bility respect to temperature while high temperature mobility obeys to  71 

 (  see section  2.3.2  ). So, the ionized impurity scattering may explains our 

slightly temperature dependent relaxation time if impurities are ionized. 
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6 Conclusions 

We conclude that the broadening of the cyclotron resonance line in the Mn-

doped Si is mainly due to Mn4 clusters of density  f‘,  1015cm-3 which have 

the activation energy of  N 230meV. In the n-type or p-type Si, Mn atoms 

compensate shallow impurities and ionize themselves, then, the Coulomb 

repulsion force makes it difficult for Mn atoms to form clusters. Moreover, 

the ionized Mn atoms tend to couple with ionized shallow impurities. This 

is remarkable in the case that shallow impurities are acceptors. In pure 

Si, the Mn atoms hold their neutral feature and it may relatively easy 

to form clusters. The Mn atoms which remain in the interstitial site 

will move around even by the room temperature annealing, and some of 

them precipitate to the surface and some of them form the Mn4 cluster 

and others are found at other stable site. SIMS result at just after the 

preparation of sample showed the  Mn. density of  — 2 x  1015cm-3 and it 

became 5 x  1014cm-3 1 x  1015cm-3 after the room temperature annealing 

of one year. The result of ESR measurement showed that the density 

of interstitial Mn decreases rapidly for first 100 days and the ESR signal 

becomes hard to observe. The Hall measurement showed the 230meV 

donor with the density of  ti  1015cm-3 which is ascribed to Mn4 cluster, 

and showed no decreasing after 200 days. By considering above results, 

we can conclude that both the interstitial Mn atoms and the Mn4 clusters 

are responsible for the scattering of electrons in the Mn-doped Si. The 

initial density of the interstitial Mn is obtained to be  ti  1014cm-3 from 

the DLTS measurements. It is probable that pure Si doped with Mn has 

                           83



less density of the interstitial Mn because of the Mn4 formation. 

  The scattering process should be treated by the formalism of the neutral 

impurity scattering. If we assume that the density of  Mn4 cluster is ti 

 1015cm-3, the scattering coefficient (vu) becomes  N  10-5crn3s-1. It is 

almost same order as the value for the case of Si:P which is a typical 

shallow donor in Si. In general the wave function of a deep impurity 

is localized around the atom, and we can say the above coefficient is so 

large in magnitude. The obtained temperature dependence of the inverse 

relaxation time is  T°•1. This temperature dependence is explained by 

assuming that the scattering is treated as the hard core scattering as the 

potential become localized and deep. 

  In the case that (3d)-transition metal impurities have localized spins, 

the s-d spin interaction can cause the scattering of conduction electrons, 

and its temperature dependence in semiconductor is calculated to  T2. But 

the calculation of Vikhnin [30] implies that the inverse relaxation time of 

ti  107s-1 for  NI  =  1015cm-3 at 4 .2K. It is too small to affect the cyclotron 

resonance line width. 

  The deep impurity states are characterized by the shape of impurity 

potential and the intervalley matrix element. If the energy of deep impu-

rity correspond to one valley coincides the band energy of another valley, 

and if appropriate amount of invervalley matrix element exist, the reso-

nant state can exists in the band. This resonant state efficiently scatters 

the band electrons if its energy is near the conduction band edge. The in-

verse relaxation time due to this resonant scattering is calculated to have 
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the temperature dependence of We can not neglect the possibility 

that such resonant scattering occurs in Si:Mn, but our measurements of 

the infrared absorption and photo-conductivity spectroscopy showed no 

evidence for such resonant state. 

  This work examined the scattering of electrons by deep impurities, and 

it is probably the first one for Si. Even as a global scattering problem in 

semiconductor, the investigation of the mechanism of the scattering caused 

by the central cell potential is not enough. Recently, the first principle 

calculations have gradually revealed the nature of deep impurity state 

such as lattice defects, interstitial impurities, substitutional isoelectronic 

impurities, DX centers and so on. Therefore, We can expect that the 

scattering problem with these impurities will make progress. I hope this 

work will become one of the helps for them. 
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A Gauss-Neuton Fitting of resonance curve 

Here we define the Error function, 

 E(P) =  E(fi(P)  mj)  =  E (A.0.2) 

             S = fi(P)mi(A.0.3) 

where  fi(p) is the fitting function with  paratheter vector p, and  mi is 

experimentally obtained data point. If p is at minimum point of E(p), 

the condition 

 e(p) =aE(p) = 0 (i  =  0,  1,  2,  .) (A.0.4) 
                    °pi 

Let us expand xi(p) around the  initial parameter values  Po. 

 e(P) = e(Po) +E(Pk — Pok)an(P°) 
        kuPk 

  aa        =  E(P0)+E(p pok) E(Po) 
                k  uPk UPi 

                  asj,

uPka  as. 
          = 2 E si

uPi+2_APkP0k)  2sj 3ape    

                  asi,asiasi a2s.          = 2 2_, + 2DP`kPok) [   S  (A.0.5) 
           j(-/Pi k  aPk aPi3  aPkaPi 

If we set (p) = 0, for  Sp = p —  po, 

        as • as • as- a2 s          SuPi3-PEE6pkO[,3apt+ SjOPkOPi=0 (A.0.6)        kjPk 

The third term is negligible at around the minimum point, and 

                asas • as3• 
              sj 3d-EE6pk „ = 0 (A.0.7) 

 UPi k j 013kaPi 

if we define Aij = t, it becomes 

 >  siAji +  E  E  (5pkAikAii =  0 (A.0.8) 
        j  k  j 
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 At  s +  At  Abp = 0 (A.0.9) 

therefore, 

 by  =  (At  Ay].  At  s                                             (A.0.10) 

The obtained parameters  Po  +  6P is not the exact minimum point of E(p) 

because of neglecting the third term of (A.0.6), but several iteration of 

this procedure rapidly minimize it. 
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 Figure captions 

Figure 1 : SIMS profile for Mn doped FZ pure Si. It can be seen that 

         Mn of  N 2 x  1015cm-3 has diffused uniformly except for near 

         surface. There  can be seen the signals from Cu, Al and Na, 

         but Cu is unimportant for the scattering of electrons, and 

        Al and Na are not exceeding detectable limits which are 

         3 x  1014cm-3 and 1 x  1014cm-3, respectively. 

Figure  2  : The SIMS profile for Mn doped FZ pure Si after room  tem-

         perature annealing of about one year. The concentration 

        of Mn is decreased to  ti 1 x  1015cm-3, but it do not have 

         changed more radically than expected. 

Figure 3 : Block diagram of microwave cyclotron resonance. The sam-

        ple is set at the bottom of wave guide, and illuminated by a 

        Xe flush lamp through a glass lod. The light  is sometimes 

        filtered to cut high energy part not to make electrons hot 

        and to suppress the high density excitation near the sur-

        face. Microwave is generated at the Klystron and guided to 

        sample with 8 mm wave guide. The phase matching is made 

        by Magic-T technique. The signal is put into two channel 

        boxcar integrator, and its output is stored into the personal 

        computer. Magnetic field up to 6000 Gauss is applied using 

         an ordinary split magnet. 
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Figure  4  : Block diagram of the far infrared cyclotron resonance. The 

        far infrared laser is optically pumped by electric discharge 

         excitation type CO2 laser and generate the 523  pm line. 

        FIR light is chopped at frequency of 20 Hz before it is guided 

        to sample by about  lOmm0 light pipe. 

Figure  5  : Block diagram of DLTS measurements. The sample is set-

         tled into helium refrigerator. Capacitance signal is get by 

         digital capacitance meter and stored into personal computer 

         and analysed. The capacitance meter can get whole time 

         variation of transient behavior at one pulse and therefore, 

         it needs only one temperature scanning for several DLTS 

         signal with different rate window which is necessary for ar-

         rhenius plot. 

Figure  6  : Block diagram of ESR measurement. The sample was  set-

                                                                                                                                 , 

        tled at the end of quartz rod and cooled to 4 K by blowing of 

         He gas. The temperature is controlled by a heater coiled at 

        the injector and changed from 4K to 300K. The frequency 

        of microwave is 9.11GHz and its power is 4mW. The usual 

        modulation amplitude is 5G and its frequency is 100kHz. 

        The data is obtained in first derivative curve. 
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Figure  7  :  (a):High and low spin state and Energy diagram of Mn spin 

         in Si. If the exchange energy among d-electrons exceed the 

         crustal field energy, the high spin state is favored according 

         to the Hund's rule. On the other hand, under strong crystal 

         field, electrons are tend to make pairs and lower the total 

          spin. 

        (b):The ESR absorption in the  S=4 case of Mn. The num-
         ber of six resonant lines are originated in the Mn nuclei spin 

Figure 8 : Block diagram of photoluminescence measurement. Ar+ ion 

        laser ( 4880 A)is used for excitation light. The light is fil-

         tered to cut the plasma noise before illuminate the sample. 

        The  luminescent light is also filtered to cut the laser line 

         scattered by the sample before entering into the monochro-

         mater which has 600  mm-1 grating and about 2 m radius. 

        The monochromated signal is detected by Ge-PIN diode de-

         tector cooled with liquid nitrogen, and processed by lock-in 

         technique and stored into personal computer. 

Figure 9 : Obtained DLTS signal plot for various rate window. The 

        reverse bias was 5V, the filling bias OV, and rate window 

        ratio  t2/t1 = 10 where t1 is varied 10  ius to 10 ms. 
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Figure  10  : Arrhenius plot of DLTS peak of Fig. 9. We can obtain 

         activation energies for the peaks seen in Fig. 9 from their 

         slope in this figure. They are  E,— 0.39eV, — 0.20eV and 

         E, — 0.11eV. The signals for — 0.39eV and — 0.11eV 

        can be attributed to interstitial Mn which were obtained 

         previously by several workers. The signal appears to around 

        E, — 0.20eV was attributed to Mn4 cluster [21, 20] or a 

        defect  signal [24]. The defect signal should be found in any 

         quenched sample, but we have not observed any  signal in 

          such samples. 

Figure  11  : Temperature dependence of capacitance of the Schottky 

         barrier formed to achieve the DLTS measurement. We can 

        obtain the density of the deep levels associated to the peak 

        using the relation (3.4.13) 

Figure 12 : Typical result of cyclotron resonance measurement on Si 

         at 4.2K. "ECR" means the electron cyclotron resonance 

         and "HCR" means the hole cyclotron resonance. The mag-

        netic field is applied from the direction which separates the 

         three peaks of electron resonance. The smooth solid lines 

         are result of fitting of folded resonance curve. To resolve 

         the folded curve, the non-linear minimum square method is 

           used. 
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Figure  13  : Three dimensional plot of transient photoconductivity in 

         varying Magnetic field. The magnetic field step of the prac-

         tically obtained data is about ten times finer than the figure. 

         We can get information from this figure about time resolved 

         change of resonance line width as shown in Figs. 14 and 15. 

Figure 14 : Time resolved cyclotron resonance curve obtained from fig-

         ure 13. The line width of all resonance peak get narrower 

          as time passes. 

Figure 15 : Time resolved inverse relaxation time obtained from figure 

         14. The decaying feature is due to carrier-carrier scattering. 

        The line width is evaluated after 20  its where the broaden-

         ing due to the carrier-carrier scattering become negligible. 

         Initial carrier concentration is deduced from this figure to 

         be 5 x  1011cm-3 using the result of Kawamura  [31]. 

Figure 16 : Cyclotron resonance curve for Si:Mn and host Si. Remark-

        able broadening of line width is recognized in Si:Mn  sam-

        ple. Such broadening is not seen in  Si:  Cr or Si:Fe sample we 

        prepared. The difference in peak position is due to slight 

        deviation of the direction of magnetic field, and it do not af-

        fect the line width analysis significantly when we use ECR1 

         for evaluation. 
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Figure 17 : Obtained temperature dependence of the inverse relaxation 

         time of Si doped with various transition metal impurities. 

        For the evaluation, the ECR1 peak in Fig.16 is used. The 

         inverse relaxation time for electrons in pure Si exhibits  al-

         most  T4 dependence on temperature which is due to the 

         acoustic deformation potential scattering described in sec-

         tion 2.3.1. The Mn doped sample shows the inverse relax-

         ation time about an order larger than that of pure Si, but 

        Si:Cr and Si:Fe show the broadening almost the same to 

        only quenched Si sample. 

Figure 18 : Inverse relaxation time for Si:Mn sample subtracted with 

        the host Si contribution. The slope shows about  T°-41 de-

          pendence on temperature. 
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Figure 19 : Cyclotron resonance curve of sample suffered different  an-

         nealing process. Slowly cooled Si:Mn is a sample which is 

         doped with Mn without quenching. The Most of Mn atoms 

         are expected to precipitate onto surface and it exhibits al-

        most the same line width to pure Si. Annealed Si:Mn is a 

         sample which experienced the post annealing of 500 °C for 

         about 4 hour. The Mn atom is also expected to precipi-

         tate onto surface or moved to the site where Mn atoms are 

         electorically inactive. Quenched Si is a sample which  expe-

        rienced the annealing and the quenching but without Mn 

         doping. This sample is expected to include thermal defect 

         or unintentional Cu doping. 

Figure  20  : ESR signal of  Mn? of three types of Si:Mn sample. The 

        calculated g-value is 3.375. This signal is already attributed 

        to  Mnio(S = 1/2) in previous work. The sample made using 

        pure Si host exhibits the strongest signal, while that made 

        using p-type Si shows weakest signal of the three. The 

        difference in signal intensity is mostly due to the position 

         of Fermi level, or compensation ratio in another word. 
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Figure 21 : ESR signal around g=2 for host Si, quenched Si and 

         Si:Mn. The quenched Si exhibits the remarkable structure 

         at g=2.076 and g=2.009 which is not seen in pure Si. This 

         signal is probably related to some kind of defect produced 

         at the quenching procedure. In Si:Mn sample, the defects 

        may passivated by coupling with Mn. 

Figure  22  : Temperature dependence of ESR signal of  Mn?. The signal 

         intensity steeply weakened as the temperature is raised. 

Figure 23 : Illumination effect on  Mn? signal of Mn doped p-type Si. 

         The weak illumination enhances the signal intensity, but 

         too much illumination weaken the signal. This weakening 

        is probably due to the heating of the sample. The  sam-

         ple made with pure Si exhibits no response to illumination 

        without weakening by heating. The sample made with  n-

        type Si exhibits only weak response to illumination, and is 

        slightly enhanced. 

Figure  24  : Dependence of  Mn? signal intensity of Mn doped p-type Si 

        on illumination intensity We observed that even very weak 

        illumination cause the enhancement of the signal intensity. 

        As illumination power is raised, the heating of the sample 

        weaken the signal intensity steeply. 
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Figure 25 : Donor ESR signal of P°(I=1/2,S=1/2). The signal is very 

         weak under no illumination. This means that phospher 

        atom is initially ionized, and neutralized by illumination. 

Figure  26  : Dependence of donor ESR signal intensity on the illumina-

        tion intensity. The signal intensity is almost linear to the il-

         lumination intensity. We see that even under the maximum 

         illumination we apply, the donors are not fully neutralized. 

Figure  27  : Photoluminescence of samples which suffered various an-

        nealing treatment. Pure Si exhibits the typical free exci-

        ton (FE) and electron-hole drop (EHD) luminescence. In 

        quenched Si and quenched Si:Mn, the peaks seen in pure 

        Si disappear due to the rapid non radiative recombination 

        through the defects made in the quenching process. Slowly 

        cooled Si:Mn may have no defects due to the quenching, 

         and it exhibits the same luminescent feature to pure Si. 

        The n-type and the  p-type Si exhibits the shallow  impu-

        rity bound exciton (BE) luminescence instead of FE. When 

        we post-annealed the quenched Si:Mn sample at 400°C for 

        about four hour, the FE and EHD feature are recovered by 

        a little amount. We see that the annealing and quenching 

 procedure do not introduce the shallow luminescent centers 

        which act as the efficient scatterers in the cyclotron reso-

          nance measurement. 
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Figure 28 : Hall measurement for Si:Mn sample made using pure host 

         Si. The carrier type is electron, and its activation energy 

         is about 227 meV. This donor can be attributed to Mn4 

         cluster. The donor electron is not yet fully ionized even at 

         room temperature, but we can deduce the donor density is 

           under  1015cm-3. 

Figure  29  : Far infrared cyclotron resonance for Si:Mn and pure Si at 

        4.2K. The line width of Si:Mn is broader than pure Si, but 

         its difference is not as large as in the case of microwave 

         resonance. The cyclotron  resonance line width in quantum 

         limit is not accord to the classical description, but we can 

        say that the Mn contribution is small under high magnetic 

         field. 

Figure 30 : Inverse relaxation time subtracted with the host contribu-

         tion for FIR and micro wave cyclotron resonance at 4.2K. 

        This figure shows the Mn contribution to the line width 

        under different magnetic field and different wave frequency. 
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Figure 31 : Room temperature annealing effect on the inverse relax-

        ation time and the ESR signal intensity. The ESR signal 

         intensity rapidly decreases in 100 days, while the enhance-

         ment of the inverse relaxation time due to the Mn doping 

         obtained from cyclotron resonance line width become about 

        a half of initial value after 400 days. This means the ori-

         gin of cyclotron resonance is not only from the interstitial 

         Mn. The initial decrease in inverse relaxation time may be 

         related to interstitial Mn. 

Figure 32 : Stress effect on inverse relaxation time for Si:Mn. If the 

         scattering by the acceptor bound exciton is responsible to 

         the broadening of the cyclotron resonance line width, the 

         application of stress on the sample may reduce the line 

 width.  [25] But our result shows no reduction of line width 

         even under the stress of  r 1.5 x 106g/cm2. 

Figure 33 : The conceptional figure of the resonant state originate in 

         band structure. If there is remarkable amount of intervalley 

         transition matrix element, the bound state associated to 

        valley j may mix with the continuum state of valley i. This 

         resonant state effectively scatters the conduction electron 

         according to the Breit-Wigner formula. 
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Figure 34  : Calculated inverse relaxation time of resonant scattering us-

         ing Breit-Wigner formula. We can see that the temperature 

         dependence is  N  T1 at low temperature. When the mean 

         velocity of electrons exceeds the resonant energy, the mean 

         scattering cross section start decreasing, and it may emerge 

         in the decreasing in inverse relaxation time. 

Figure 35 : Time decay of carrier density after excitation derived from 

         the time resolved cyclotron resonance measurement by uti-

         lizing the fact that the area under the resonance line is 

         proportional to the number of resonating electrons. The 

        number of electrons just after the excitation is determined 

         from the carrier-carrier scattering contribution to the line 

         broadening. 

Figure 36 : The temperature dependence of the inverse relaxation time 

         calculated using Brooks-Herring formula. The density of 

         conduction electron is set to 5 x  1011cm-3 which is derived 

        from the carrier-carrier contribution to the line width at 

         the time where resonance is measured. The points in figure 

         show the experimental result for Si:Mn. 
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Figure 37 : The temperature dependence of the inverse relaxation time 

         calculated using Conwell-Weisskopf formula. The inverse 

        relaxation time depends on the density of ionized impuri-

        ties, but not on the carrier density in this formula. The 

         points in figure show the experimental result for Si:Mn. 
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