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Preface

One important theme of quantum theory is to explore new characteristics and physical
phenomena of materials by the analysis of the interactions between materials and light.
Particularly, studies on the nonlinear optical effects induced by the interactions between
materials and strong electric fields have attracted considerable attention both theoretically and
experimentally in recent years. The nonlinear optical effects originate from the microscopic
polarization at the molecular level, which is characterized by the hyperpolarizability. In this
thesis, methods of calculation and analysis of the molecular hyperpolarizability are first
constructed quantum meéhanically. Second, the mechanisms by which the nonlinear
polarization is induced in organic molecular systems are analyzed and classified by theoretical
computations of the hyperpolarizabilities. Finally, new models of organic nonlinear optical
systems are proposed in the light of the classification of the mechanisms.

In part I of this thesis, the calculation method for hyperpolarizability is discussed on the
basis of the time-dependent perturbation theory (TDPT). The method is useful when the
external field is not strong. Semiempirical molecular orbital (MO) methods which can well
reproduce the transition properties are mainly employed since several quantities relating to
excited states are difficult to calculate quantitatively by the ab initio method. One advantage of
this method lies in its ability to clarify the virtual excitation processes. Three types of
approximation based on the TDPT are proposed in order to elucidate the characteristic details of
the processes. The characteristics of the three types of virtual excitation processes are utilized
to classify the representative nonlinear optical systems in part IIL.

In part II, the calculation methods which do not treat excited states directly are
developed. Non- and semi-empirical MO methods are utilized to obtain the total energy of the

ground state. First, the finite-field (FF) method by the use of the coupled-Hartree-Fock



(CHF) theory, in which the potentials by the external field are treated variationally, is
explained. In order to include the correlation effects, the Mgller-Plesset perturbation theory
(MP) is employed. Second, the Rayleigh-Schrédinger perturbation theory (RSPT) is employed
to include the external perturbation and electron correlation effects systematically and to
explore the relations between CHF(+MP) and RSPT me;hods. Third, general equations giving
the nth order response properties with respect to an external one-electron perturbation are
derived ori the basis of the coupled-cluster (CC) theory which can include higher order
correlations effectively. These equations are useful for analytical calculations of the
hyperpolarizabilities of any order. Moreover, in order to calculate the dynamic
hyperpolarizability, the time-dependent CC (TDCC) theory is deveIOpcd_ by analyzing the time-
development of the phase factor. Finally, the 7 density analysis method is proposed as an

~ effective tool to clarify the spatial details of third-order hyperpolarizability (¥). It is possible to
separate the ¥ density into different contributions, for example, the ¢ and 7 contributions.

In part III, various molecular, polymeric and CT complex systems are examined. For
the polymeric systems, the characteristics of the longitudinal ¥ values are investigated with
particular attention to the roles of several substituent groups. Dependences of the ¥ values on
the chain lengths are also examined. Results for finite polymeric systems are extrapolated to
an infinity of the chain length to predict the intrinsic ¥values per unit cell of polymeric chains.
For the CT complex systems, static third-order hypcrpolarizabilities of alternate donor (D)-
acceptor (A) stacks and of segregated molecular stacks in the column direction are compared.
Dependences éf Y on the size of the clusters are also investigated. In the TDPT, the CNDO/S
approximation with the single-excitation configuration-interaction (SCI) method is employed for
the calculations of several quantities relating to the excited states. On the other hand, in the
CHF and CHF+MP theory, the INDO and ab initio MO methods are employed to obtain the.

perturbed ground state energy. From the results of these calculations, the representative
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existing nonlinear optical systems are classified according to the mechanisms of operation of the
third-order nonlinear effects. The criteria of the classification are the symmetry of charge
distributions (centro- and noncentro-symmetric charge distributions) and the types of the
interactions which induce the charge-transfer (CT) effects (through-bond and through-space
interactions). Using the classification proposed here, polar-substituted polymer chains which
involve both the CT interactions through space between the neighboring side chains and the
intramolecular CT interactions through the main chain are proposed as a new model of the third-

order nonlinear system.
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PART I

CALCULATION METHOD OF THE HYPERPOLARIZABILITY
BY THE TIME-DEPENDENT PERTURBATION THEORY (TDPT)



Introduction

The time-dependent perturbation theory (TDPT) is used for the calculation of the
response property of the system in the presence of an external oscillating field. In this case,
the required quantities relating to the ground and excited states are transition energies, dipole
moment differences and transition moments. Therefore, the virtual excitation processes
characterized by these quantities are able to be investigated and the explicit criteria designing
the nonlinear optical systems are easily constructed. Moreover, the dispersion effects of the
hyperpolarizability can be examined when the oscillating external fields are applied. However,
a few ab initio calculations for the small-size systems are carried out due to the problem of the
convergence of the hyperpolarizability including the sum over the excited states and to the
difficulty of the calculations of precise quantities felating to the excited states. In general, the
TDPT with the semiempirical molecular orbital (MO) methods which can well reproduce the
quantities relating to the excited states is performed to analyze the virtual excitation processes
qualitatively.

In chapter 1, first, it is shown that the macroscopic nonlinear optical effects are
characterized by the hyperpolarizabilities at the molecular level through the nonlinear optical
process. Next, the time-dependent perturbation theory (TDPT) is explained and is used to
obtain the analytical formula of the dynamic polarizability (@) and hyperpolarizabilities (8, 7).

In chapter 2, in order to clarify the virtual excitation processes in the complicéted
expressions for fand ¥, the diagonal and two-level approximations are applied to the
expression of B, while the three type approximation is applied to the expression of 7.
Moreover, the schematic diagrams of the transition matrices are introduced to obtain the

spatial contributions of each dominant virtual excitation process.



Chapter 1

Nonlinear Optical Process and the Analytical Expressions for the Dynamic

Hyperpolarizabilities by the Time-dependent Perturbation Theory (TDPT)

1. Nonlinear Optical Process

When the optical electric field Fo(r.t) is applied to the materials, the microscopic
polarization p is induced in the molecules constructing the materials. The microscopic
polarization induces the macroscopic polarization P whole over the crystal. As a result, new
electric field FN(r,t) is generated. This process is shown in Fig.1. When the angular frequency
of Fo(r,t) does not equal that of FN(r,t), the process is referred to as the nonlinear optical
process. In this case, various nonlinear optical effects such as the second harmonic generation
(SHG) and the third harmonic generation (THG) are observed. [1-8]

The macroscopic polarization P of the organic solid can be expanded as a function of an

electric field F :

Pl0)=Y, x{PF (0)+Y, xRF (0)FX (@) +Y, 254 F (@)FX(@)F @)+ ..., (1)
J JK JKL

where P lis the ] component of the polarization in the laboratory reference frame and @ is the
angular frequency of the polarization field. X5 is the component of the linear susceptibility
tensor of rank 2. 1(2)1 7k and x(3>]]KL are the components of the nonlinear susceptibility tensors
of rank 3 and 4, respectively. F Twy) is the 1 component of the external field oscillating at

angular frequency @y.



The microscopic polarization p can be expanded in a similar manner :

Pi@)= phy; - ph =, oyiF Y(w1)

J

+ Y BijdF Y(01)F “(@2) + Y, YijuF Y(@0)F *(02)F N(w3)+ ... . (2)
ik jki

Here, F'represents the local electric field. Here, ufo, is the molecule-fixed i component of the
total electric dipole moment and 4 is the i component of the permanent dipole moment. In the
case of the medium intense electric field F the right-hand side of Eq.(2) can be approximated
by the first-order term with respect to F '. However, in the presence of the strong electric field
such as the laser beam, the higher-order terms cannot be ignored. These higher-order terms
give rise to various nonlinear optical properties. Bijx and Yji; are the tensor components of the
second- and third-order hyperpolarizabilities, respectively. The magnitude and sign of the
hyperpolarizability characterize the nonlinearity of the system.

When the coordinate system is inversed, the electric field F comes to be -F in Eq.(1).
However, the even-order terms of the right-hand side of Eq.(1) are unchangeable. If the crystal

is centrosymmetric, the polarization for the inversed system is expressed as [9]

-Pl(@)=-3, 2{PF (1) +
J

Y 2 BF (0)FX(w)-Y, 254 F (0)FX(w)F (as)+ ... . (3)
JK JKL

As can be seen from Eqgs.(1) and (3), the even-order susceptibilities vanish in the
centrosymmetric system, while the odd-order susceptibilities usually exist in any system. This

relation is also correct in the microscopic polarization. Therefor, in order to exhibit the even-



order nonlinear effects, both the crystal and its elementary molecules must be possess
noncentrosymmetric structures.

For most organic molecular crystals, their nonlinear susceptibilities can be expressed as
a function of the number density of molecular units (N), local-field factor (L,), the angle
between the molecule-fixed and the laboratory coordinate axes (6) and the nth-order molecular

polarizability (™) :

2™ =f(N,L,,0,a®) (n=123,..). (4)

For randomly oriented systems such as the gas or liquid phase, X™ can be expressed as

x™ = NL,<a®> , (5)

where L, is a local-field factor determined by the refractive indices of the system. <a™> is the
orientationally averaged molecular polarizability. For example, the third-order nonlinear

susceptibility can be given by

15 = Nf(w)f(@)f (@2)f (@03)<y>1kL - (6)

Here, f(w;) is the local-field factors for each of the electric fields. The subscripts /,J, K and L
denote the components in the laboratory coordinate system.

The <¥">4777 is expressed as [9]



Ys = <Y>UKL = l(')’x:«:xx"' Yyyyyt Yzzzz)"‘l_(')/xxyy',*' Yeyxyt Yayyxt Yyyxxt Yyxyxt Vyxxy)
5 15
+11—5( Yaxzzt Yazxzt Yazoxt Yozxxt Yexoxt Yoxxz)
'*%S(Yyyzz"")’yzyz"'szzy'*")’zzyy""')’zyzy'*"}’zyyz) ) (7)

in which ¥y is the component of Yand i, j, k and I represent the components in the molecular-
fixed coordinate system.
Due to the symmetry of the electric fields along the molecular coordinate axes, ¥ for

THG and SHG can be simplified as [9]

Y (B30 ;0,0,0) = %('Yxxxx"‘ Yyyyyt Yzzzzt Yaxyyt Vyyxxt Yaxzz
+’)/zzxx+'}'yyzz+'yzzyy) ) (8)

¥ (20 ;0,0,0) = %('}’xxxx"' Yyyyy""}’zzzz)+%(27xxyy+yxyyx+27)’yxx
+'nyxy) "115(27yyzz+7yzzy+27/zzyy+72yyz) . 9)

Further simplification of Eqs.(8) and (9) can be performed for the static or DC expression of 7

by Kleinman's symmetry rule. The resultant expression for % is given by

Ys = é‘(')’xxxx“*' Yyyyyt Yezzzt 2 Yaxyyt Yaxzz+ 2 Yyyzz) - (10)

In DC-SHG (=EFISH=electronic field induced second harmonic) method, the third-order

susceptibility X can be expressed as

1O(2050,00) =N 1 Qo) Qo) O) LBy, an



where g is the permanent dipole moment; k is Boltzmann's constant and T is the absolute

temperature. [, is the vector given by

ﬁx ﬁxxx"‘l/?) (ﬂxyy‘*‘ﬂxzz‘*‘ﬂyyx*‘ﬁzzx)
By = gy = ﬂyyy+1/3 (Byzz+ Byxx+ Bazy+ Bxxy) |- (12)
i ﬁzzz+1/3 (ﬁzxx"‘ﬁzyy'* ﬁxxz'*‘ﬁyyz)

For the centrosymmetric systems, 7;can be obtained from xS by Eq.(11) since fi vanishes
for the centrosymmetric systems. If 7;is much smaller than to-BuIskT , the projeéted B, on
to the direction of yg can be obtained by Eq.(11). If %; is approximately as large as po-BvlskT |
both B, and %; can be obtained using Eq.(11) by the DC-SHG method with varying the

temperature.

2. Time-dependent Perturbation Theory (TDPT) [10,11]

Although macroscopic nonlinear effects are not expressed by the simple sum of
microscopic polarization vectors, it is noted that macroscopic polarization mainly depend on the
microscopic polarization [1-8]. Therefore, in this section, the analytical formula of
hyperpolarizabilities are obtained quantum mechanically. The hyperpolarizability can be
regarded as a response of the system with respect to the external field. If the electronic
wavefunctions of the system in the presence of the external field are obtained, the response
properties can be described completely by the calculation of the expected value of the one-
electron dipole operator. The time-dependent perturbation theory (TDPT) is employed to
calculate the wavefunctions in the presence of the electric field.

The Schrédinger equation for the unperturbed systems with Hamiltonian Ho is expressed

as



Hou,=€,u,. ‘ (13)

Here, u,and &, denote the nth electronic wavefunction and electronic energy, respectively.
The time-dependent Schrédinger equation for the perturbed system in the presence of the

oscillating field is expressed as

., 0 '
H?—l’hg ‘II, (14)
in which
H =Hy+H'(). (15)

H '(¢) represents perturbed Hamiltonian involving the external oscillating field. The time-

dependent Schrodinger equation with the unperturbed Hamiltonian Hy is expressed as

d

Ho(p=l’hE(P, (16)
where the eigenfunction ¢ is given by
Q=u,e-int, @,=%2 |
n , "= (7

Here, 4 represents h/2x, in which 4 is Plank's constant. Using Eq.(17), ¥ in Eq.(14) can be

expanded as



.t
Y= Ya,()u,e ot
Z() " (18)

where a,(t) is the expansion coefficients depending on time. If the expansion coefficients a(1)
are obtained, the wavefunction ¥ (#) of the perturbed system on any time can be obtained by

the use of the unperturbed wavefunction of the stationary state in Eq.(17). The TDPT is used

for obtaining the expression of au(¢).

Substituting Eq.(18) into Eq.(14), we obtain

B, (Gn(Ditne i - | 0pan(Dune-io )]

n

= (Ho + H (D) Y an(une-ien"

n

H[Y, (An(t)- | Op@n(E))tne i@ ]

= Y (€n + H '(D)an(D)ne i@t .

n

Therefore,

N i (Dupe-iont = Y an(DH (Dupe-iont . | (19)

Operating u} on both sides of Eq.(19), the integration all over the space is carried out. Using

the following orthonormal relation :

ju,’fundv = <uylu,> =6y, (20)



we obtain

Ma(t)e- it = Y e-iontg, (1)<klIH '()ln> . (21)

n
Here,
<k\H ‘(t)|n>=[u;c"H'(t)u,,dv. - (22)
Now, using the notation :
& — & = hon, (23)
Eq.(21) is rewritten as

ax(t) = #Zan(tkle "(Dln>eion (24)

* The coefficient an(t) is expanded as the power series of A (order parameter) :

a,(0) =a ) + 22y + 2%y + ... (25)

- Substituting Eq.(25) into Eq.(24), we obtain

10



ax(t) = $Z<k|w "(O)In>an(t)eitnnt

=-_nl?2<le 'Oln>AaOBO+A2aD(0+13aP@) + ... Jeiomt | (26)

n

From each order term of Eq. (26), the following relations are obtained.

i’ =0, @D

i) = LX<kt ‘@ln>adpyeiont, (28)
n

&P = LT <kt @insad@einnt, 29)

The general expression for (/+1)th-order c'z,(cm)(t) is expressed as

i) = LX<kt in>adieion:. (30)

In the first place, the result of the first-order perturbation theory is described. It is

assumed that the system exists in the state ug, which is one of the eigen states of Ho :

a0y =5,,. (D

Using Eq.(31), Eq.(28) is rewritten as

aP = #le "()I0>e it

. . . Doy o
Therefore, the first-order corrective coefficient @5 () is given by

11



aP@) = l—lh—f <kIH ‘(1 )I0>ei®0t'dr" . (32)

In the second place, the result of the second-order perturbation theory is described. One

state m except 0 and k is considered. From Eq.(28),

aD(r) = é] <mlH '(t )I0>eimot'dt" . (33)

Substituting Eq.(34) into Eq.(29), we obtain the third-order corrective coefficient a;{z) (0 :

t

aP@ =1 3 a0t Y<kH (¢ Ym>eiomt dr’
m

0
t t'
=—%—Zj dt '<k|H '(t')|m>ei"’km"f dt "<mlH '(t ")0>eiomt”,  (34)
1
m0 0

Finally, the third-order perturbation theory is applied. One state m' except 0, k and m is

considered. In a similar manner, we obtain

-
a1y =L f <m 1H '(2 ")I0>eiamot "dr ™ (35)
0
R
aPy =L Xald ¢ y<m IH (¢ m Seiontdr” (36)
0

12



a®@) = Z}a— S a@(ty<m 1H (¢ Yim >eioent'dr (37)

0

As can be seen from the above expressions, the first-order perturbation is a process
relating to the direct transition from O to k, the second-order perturbation is to the transition
from O to k through m, the third-order perturbation is to the transition from O to & through m and

f

m.

3. Analytical Expressions for the Polarizability and the Second- and Third-order
Hyperpolarizabilities [8,12,13]

The following external oscillating electric field is considered :

F'=Ficoswt + Facosant + Ficoswst (38)
=F1(eia)1t+e-iw1t)+ Fz(eiam+e—iam)+ F3(eia>,:+e-iw,t)
2 2 ‘

The interactions between substance and electric field are assumed to be treated by the electric

dipole approximation. The perturbed Hamiltonian is expressed as

H'G®)=-pF'= -pipi' (g‘_“*_f?;“‘“) , (39)
i=1

where p represents the electric dipole operator -er, in which e is an elementary electric charge

and r is the molecular coordinates.

13



First, the analytical expression of a{ (1) is considered. Substituting Eq.(39) into

Eq.(32), we obtain

t
3 o
aP@)=L <k 3|pr(elteit o seimer g
1
0 a=

= Li«walo{e L L L -IJ.
2% W0 +0, Wro— W,

a=1
. ) . ) .
Therefor, the first-order corrective coefficient @ () is expressed as

(40)

27 Wk +0; Ok~

a=1

@
Second, the analytical expression of @ (#) is considered. Substituting Eq.(39) into

Eq.(34), we obtain

t

a,‘f’(t)=% > aD(e Y<klH (2 Yim>eiomt'dr’
b m

0
t ‘ . ‘
= - 1 Z[i <m|p.Fa9'O>(el(wa+wmo)[ + el(a}nO‘(lh)t .
2i%? o ™Mla=1 W0 +0, Omo— 04

x <k 'i('P‘Fb' (——————e iw”t';e'iw""))lm >eitn "Jdt'
b=1

14



=- ——Zii <kip-Fylm><mlp-F 10>

4i#i% m go1pm

t
X (ei(wa+a»+aa.o)t' +ei(-w..-wb+a»o)t' +
0 W +0g 00— Wq

Therefore, the second-order corrective coefficient ak 2 (1) is expressed as

3 3
a;‘f’(t) = —15222 <klp-Fp'lm><mlp-F ;10>
m g=1b=1
(Omo + @) (Wro + D+ Wp) (Dm0 - W) (Do - Wz~ Dp)

Finally, the analytical expression of 45 (f) is considered. Substituting Eq.(39) into

Eqgs.(35)-(37), we obtain

al)(r) = % > a@(t)<klH (¢ Yim>eiomt dr’
2 m
0

=-—_2222<mlpr lm '><m '|p-F;10>

m m'a=1b=1
[ x(m,+mb+w,,.o)¢ + :(aa,+(ob o)t ' }
(wm '()+wa)(wm O+wa+wb) (wm 'O_wa)(wm 0-Wg- wb)

xz <klp-F.lm> (——-—e ol ’Zfe o ')eia&mt dt’

=- ——ZZii i<kIpF m><mlp-Fylm '><m '|p-F,10>

8in? m m'a=1b=1c=1

!
X [ e H{a+op+e+axo)t ' + e i t+anta- ixo)t ' + ] dr'
o L(@m 0% @a)(Dp 0+ Wat@p) (D 0~ D) (D 0- Vg~ D)

15



. : 3 .
Therefore, the second-order corrective coefficient aP(® s expressed as

a®@) = M%Zz‘fi i<k|p.Fc'|m><mrp-F,,'|m '><m '|p-F10>

m m'a=1b=1c=1

e (Ot Ot O+ )t

X
[(wk() + 0+ Wyt W) (D 0 + W) (W, 0 + BT+ Wp)
e (6o~ Ca- -0 )

+
(O - Vg Op- D) (D 0- D) ( Dy 0~ D~ Dp)

(42)

Substituting Eq.(25)(A=1) into Eq.(18), the perturbed wavefunction ‘¥ is written as

¥ = an(t)une-ion
n

= ag(t)upe i + a;(Huie ™t + ax(Duze i + ...

= (@PW+a{P@)+
+ @O +aM)+
+ (@) +aiP 0+
+ (ago)(t)+a§1)(t)+

= upe i@ + Y a{D(t)upe i+ Y, aP(tyune-ioni+ Y a@(tune-iont+... .
n n n

..upe”
LJue”
.)uqe”

..uze-

itot
iont
iyt

ot 4

The expected value of p is expressed as

<WYIp¥> = <uplplug>

+ Y aD*(D<niploseionit Y. alD(1)<0lpln>e-iont | (i)
n n

+3. Y a*(MaP(t)<mipin>e iomt
n m

\ (11)

+ z {ar(lz)*(t)<nlp|0>eiw"°t+ar(:2)(t)<0|p|n>e-iw,.ot>
n

16
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+ Z 2 a$V* (0)a®(r)<nlplm '>e-ion \
+ Z Z a(l)(t)am (H)<m 'lpln>einat (iii)
+ 2 {a(3)(t)<OIpIn>e it 4 (3)* (t)<nlp|0>e‘“’»°‘}

(44)
+ ...

In comparison Eqs.(2) with (44), the analytical expression of each order polarizability is
derived.
First, the analytical expression of polarizability ¢ is considered. Substituting Eq.(40)

into the first-order corrective term (i) in Eq.(44), we can write

2, al V" (<nipl0>eioot 3 afl(e)<Olpin>eions

n
ﬁZi‘ﬁOlpF { >[ vk e HOo@N | oiowt <pplO> + c.c
o

n a=1 0 +Wq Wp0—Wq
—-——Zi<OIpF '|n><nlplO>( gl el ...)+c.c , (45)
n g=1 Wpo +W;  Wpp—Wq

where c.c means complex conjugate. Compared with Eq.(2), the coefficient of F' { coswit in

Eq.(45) is equal to a; .

ai,-=% <Olpiln><nipil0>[—1L—— + —1

n Wn0 +Wg Wno—Wq

Using the definition for transition moment U and transition energy Eno :

o = <nlpi0> = -e<nlri0>, (46)

Eno = fitono , (47)

17



the analytical expression of ¢;; is given by

' . . E 0
ai(-1;01) = 2, phattlg——20—.
i ; n nOE'le ) (ﬁwl)z (48)

Second, the analytical expression of the second-order hyperpolarizability S;j is
considered. Substituting Eq.(40) into the first term (ii-1) of the second-order corrective term

(ii) in Eq.(44), we obtain

e K@+t | gl
Wy 0, W0~ Wg

+ ...|e 0wt

(ii-1) = 22{ ig;owawm

n mlag=1

leﬁ—imwm,wo{e"‘“’”“’”)‘ LG

e -inot <mlp|n>‘l
b=1 Wno +0p  Wpo—Wp {

3 3
- ZZ%ZE‘KOIP-F 4 Im><mipln><nip-F}'l0>
n m a=1b=1
[ e - @atip)t + e oty + ]

(Dm0t ©a)(Wn0-0p) (D0 ©a)( Do+ D) (49)
The coefficient of F{F é‘cos (01+@2)t in Eq.(49) is
L2,2<0 Ipilm><mipiln><nlpki0>
242 0 m
[ 1 + 1 ‘
(Omo+@1)(Ono-2)  (Opo-01)(@no+ @2) (50)

Substituting Eq.(41) into the second and third terms (ii-2) of the second-order corrective term

(ii) in Eq.(44), we obtain
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(ii-2) = ZZ—ii}o pF plm><mipF gln>

a—lb 1
[ e @+ Ot o}t + (oot <nipl0>ei% +c.c
(wm0+wa)(wn0+wa+wb) (@0~ 04) (W0~ Wg-Wp)

———ZZii@ IpF glm><mip-F p'ln><nipl0>
a%?

n mag=1b=1
e -i(@+mp)t e i(w+ )t ] P
(wm0+wa)(wn0+wa+wb) (@0 0g)(WDpo-Wg-p) | (1)

The coefficient of F' {F é‘ cos (W1+@y)t in Eq.(51) is

L33 [<0 pilm><mipkn><nipil >[ 1 1 }
ip*In><nip'0 +
242, ,,.{ (Omot@1)(

Wnot 1 +@2) (D0~ 01)(Dpo-01-D2)

+<0 kalm><mhpiln><n|pi|0>[ 1 + 1 “
(Omo+@02)(Wno+ @1+ @W2)  (Opo-W2)(Dno-W1-W2) (52)

Now, the coefficient of F/F éc cos (w1+@2)t  in the second-order corrective terms equal to Bij(-
(011 @2); 01,02)+Piki(-(01+@2);02,a01). Therefore, from Eqgs.(50) and (52), the second-order

hyperpolarizability Bj is expressed as

Biji(-(01+@2);01,7) = iZZ

Joi. pk 1 + 1 )
[“ On i n Hn °((En @) En 0 Bt@3) | (En0-h1)(Enothirs)

1 1
ol b ”((En 0+ (En 0+ 01+ 02)) " €000 o-ﬁ<wl+wz>>)

1 1
"5" Haon b "((E,, o+ 0)(En o+ (@1 07))  (En ‘o-ﬁwz)(Eno-ﬁ(wﬁwz))ﬂ (53)

Here, the replacement of variable m with n' was carried out and Eqs.(46) and (47) were used.
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Finally, the analytical expression of the third-order hyperpolarizability ¥y is
considered. Substituting Eqgs.(40) and (41) into the first term (iii-1) of the third-order corrective

term (iii) in Eq.(44), we obtain

(iii-1) = ZZ{ i<0|pFa'|n>e

a-l

{ i i2<m 'pFlm><mip-F)'10>

-

Aot | gdGoay )
Wrot Dy W0~ Wy

X

e {{ o+ OA+@n o)t + e i@+ k- )t + )}
(Omo+ D) (D 0+ W+ @) (D0~ Wp) (D 0~ Dp-Dc)

X e-i%nnt <nlpim '>

———222&,&, i<0'pF 'In><nipim'><m’ \p F'lm><mip-F}'l0>

n m'm a=1b=1c=1
X( e -iodt + e it l e i(mta) + e i+ + )
Wnot @,  Dn0Wa (Wmo+ Op) (O 0+ Op+ @) (Wp0-Wp) (D '0- Wp-Oc)

;—22222 2<0'pF 'ln><nipm'><m’ pF 'lm><mip-F}'l0>

nom'm a=1b=1c=1

( e -+ o+t
(wn0+wa)(wm O'wb)(wm ' 0-Wp- wc)
;(a)¢+aa,+(oc)t
* ) (54)
(wnO Wa) (D 0+ Dp) (W, * 0+ Wpt+ D)
The coefficient of F? F kF3cos (w1+w2+@3)t in Eq.(54) in which variables n, m' and m are
replaced with n', m and n, respectively, is given by
8ﬁ3 P
#On'#n'm#mn.urlfO( 1 + 1 )
(@po+@01)(Wy 0- W2)(Omo- W2-@3)  (Dp0-W1)(Dn 0 02)(Dmo+ W2+ O3)
+ud ok, “knul( 1 N 1 )
On T mE IR ( 00+ 01) (O 0-03) (Dm0 W2-03)  (@0-01) (D 0+ W3)(Omo+ B2+ @3)
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k i . j
+ Ut Mg
sk uioowiopyl
#On'ﬂn'mummuno
Lo .
+ U0 M remMntt o

ST TR T A T

(Opot+@2) (0 O'le)(me‘wl'w3) +(wn'o-wz)(wn 0+3)1)(wm0+w1+w3)
(@n0+02)(@n o-lws)(wmo-wl-ws) +(wn'o-an)(con 0+(})3)(me+ w1+03)
(@n0+@3)(@n O'L)l)(me'wl’wZ) +(con-o-ws)(wn 0+C})1)(a’m0+ w1+ 02)
s oo o o) Carma-wa )@ o w (g e )

(55)

The coefficient of F {F é‘F 3lcos (w1+wa+@3)t  in the second term (iii-2) of the third-order

corrective terms (iii) in Eq.(44) becomes the same type of Eq.(55) since (iii-1) is the complex

conjugated term of (iii-2). Substituting Eq.(42) into the third and fourth terms (iii-3) of the

third-order corrective terms (iii) in Eq.(44), we obtain

33 3
zzzz 2 2<Olpln><n ip-F.\lm><mip-Fp'lm'><m"'p-F,'10>

nm'm ag=1b=1c=1
e -Hwatap+ax)

(0no+ Wg+ Op+ D) Opr0ot 0) ( Do+ Dot Dp)
+ g Xt O+ tec . (56)
(Wn0-Dg- Wp- ) (D0~ Og) (Dm0~ Bg- Dp)

The coefficient of F{F écF _ofcos (w1+wo+w3)t in Eq.(56) in which variables n and m' are replaced

with n' and n, respectively, is expressed as

LYY

4ﬁ3n m n'

(bl mitnttly X

1 1

(Wpo+ @1+ D2+ W3)( @y 0+ 01 (Dot O1+@2)  (Op0-01-W2-D3)(@y 0~ W1)(Do-W1-D2)
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YT TL I TINTEP
, 1 . 1
(@0t @1+ @2+ @3)( @y 0+ 01)(Dmo+ 01+ @W3)  (Wp0-D1-W2- W3)( Wy 0- D1) (Wm0~ D1-W3)

j I j k
+u(‘)n'#n'mulnmun0 X

, 1 + il
(@Dpo+ @1+ W2+ 03) (@ 0+ 02) (Do + @1+ @2) (W0~ W1-WD2-W3) (W, 0- W2) (D0~ W1-W2)

j ] k
+)u(l)n'#{;'mﬂrlnnun0 X

1 N 1
(@pot @1+ D2+ 03)(@y 0+ 02) (Dot W2+ @3) (W0~ D1-D2-W03)(WDp 0~ W2) (D~ D2-W3)

i k j i
+Au(l)n'ﬂn'mulnnﬂn0 X

1 N 1
(@Dno+ @1+ W2+ W3)(Wn 0+ 03) (Do + W1+ @3)  (Wy0- D1-W2- W3) (D 0- W3)(Dpm0-D1-W3)

. s l
ay TR LA TERS

1 " 1
(@Op ot @1+ D2+ W3) (@, 0+ 03) (Dp0+ W2+ @3) (D0~ B1-D2-W3) (W, 0- W3)(D)r0- D2-03)

87

The coefficient of F {F é‘ F 346‘05 (w1+@y+m3)t  in the third-order corrective terms (iii) in Eq.(44)

are equal to

Yijkt (- @4; 01,02,03)+Yijik (- W4; D1, 03,02)+Yigjt (- D43 02, 01,03)
+%iklj (- @4;02,03,01)+Yitjk (- 045 03,01, 02)+ Vi (-04;03,02,01).

Here, w4 = w; + w; + 3. Consequently, from (iii-1)-(iii-3), we obtain

Yiu(-0s,01,02,03) =LY 3 Y
244 L &
{u(l)n'/'trlt'm#'lfmﬂzzo X
1 N 1
((En'0+ﬁ0’4)(En 0+ )(E o +hi(01+@2)) (Epo-fiwg)(Ep 0-fi1)(E pmo-fi(@1+@2)) )

, k ,
+ #(‘)n'ﬂn'mﬂlgln#,jlo X

1 . 1
((En'0+‘h(04)(15n 0+ W1 ) (Epmotfi(@1+@3)) (Eno-fiws)(E, 0-fi@01)(Emo-fi(@1+@3))
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+ u(i)n'urln'mﬂrj;m#rlfo X
1 " 1
(Enotfig)(E 0+ h@2)(Epotfi(w1+@3)) (Epo-fi4)(Ep o-fiw2)(Emo-fi(w1+@2))

o !
+ Ubpltd b nflag X

1 N 1
(Enottig)(Ep 0+ 1@2)(E o+ #i( W2+ @3)) (Eo-fi4)(Ep 0-fi2)(E po-fi( 2+ @3))

j k ] l
+ “(l)n‘“n'mu{n ntno X

1 + 1
(Enotfi@a)(En o+i03)(Emotfi(@1+@3)) (Eno-fiw4)(Ep 0-h03)(Emo-fi(@01+03))

+ Whptd, kil x

1 N 1
(Enotfiwa)(Ep o+1i03)(Emo+i( 2+ @3)) (Epo-fiws)(En 0-fi3)(Epo-fi(@2+@3))

o .
+ [ M nmbinnblng X

1 . 1
(Enoth@1)(Ey, 0-RW2)(Epmo-fi(W2+@3)) (Epo-h1)(E, 0+ 02)(Epmo-fi( w2+ @3)) )

Sl T TEAM TN

1 " 1
(Enothm))(Ep o-h@3)(Epmoth(w2+@3)) (Epo-fion)(E, o+ w3)(E mo+h(@a+w3)) )
+ Ul Mt o X

1 N 1
(En'o+ﬂw2)(En 0-AO1)(Emo-fi(1+@3)) (Epo-fi)(Ep 0-fi@1)(E pmo+hi(@1+@3)) )
+ #6n’”r‘1'murjnnﬂr110 X

1 N 1
(Enoth2)(Ep 0-h@3)(Emo-fi(01+@3)) (Epo-fiw2)(Ep 0+Aw3)(Epo+hi(w1+@3)) ’
+ Pt mntt] g X

1 N 1
(Enot#ias)(E, o-iw1)(Emo-i(w1+@2)) (Epo-fiews)(Ey o+rhw)(Epot+fi(w1+@2)) )
+ bbby bt X X

1 1

(Enotfian)(E, o-ﬁwz)(EmOjfl(wﬁ0)2))+(En'0-ﬁw3)(En 0+hW2)(Emo+Ti( 01+ @2)) )} ' (58)

Here, the indices n' and » run only over excited states excluding the ground state.
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Chapter 2

Approximate Expressions for the Second- and Third-order Hyperpolarizabilities

and the Schematic Diagrams of Transition Matrix Elements

1. Approximate Expressions for the Second-order Hyperpolarizability B

For DC-SHG method which is usually used for measuring Bii(-20 ;@,®), Eq.(1.1.53) is

rewritten as [1-14]

Bii(-20 ;0,0) = iZZ

1 1
((E,, ) En o @) (En o h0)Eyothd)

(T TLINTLYTTT BTN TLIY B

[u{in STLERTLN

( . + ! | (1)
(En '0+ﬁw)(En O+2ﬁw) ) (En 'O‘ﬁw)(En O'Zﬁw)

The virtual excitation process [15-18] represented by the subscript of transition matrices in
- Eq.(1) can be illustrated in Fig.1 (a). There are two types of processes : - type (I) involving
one excited state and type (II) involving two excited states.

For most strong intramolecular charge-transfer (CT) systems, the transitions from the
ground to CT excited states are found to be most contribute to B;j; [19]. Therefore, total S
can be well approximated by the contributions of type (I) which represents the interactions
between. the ground and the CT excited states. This is referred to as the diagonal

approximation [2]. Under the diagonal approximation, the expression of f;j; is given as
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Bi(-20 ;0,0) =

B [

n

2 2
i i 1 ik oyl Pk En"+2(hw)
b pbhn 1 ——————+ (ks 1} o+ 1ttt o) :
T B2y a)?) T B - B oY) P
In this case, the i component of § is expressed as
Bii(-20 ;0,0) = iz (1) Ldn Ey’ . (3)
2% (Eno®(10)2)(Eno®-(21i0)?)

Using the electronic-charge-centroid coordinate system (see Appendix 1), Eq.(3) is written as

En()2
(En2-H0)?)(Eno>-Qha)?)

Pi-20 0,0 = 2 3, (Aufd,)’ )

where A#én denotes the differences between excited and ground state dipole moments. The
index n runs over excited states.
When one excited state n and ground state 0 mainly contribute to total 3, the two level

approximation [19] can be applied. In this case, Eq.(4) is approximated as

. . E.n2
Bii(-20 ;0,0) = 3(Aub,)(1é, )’ 0 : 5
2T E g (h0)) (B 2)?) )
Using the oscillator strength :
QWEn0,
f= M‘.uOnlz’ (6)

#2¢2

Eq.(5) is written as
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242 .
B ii(-20 ;0,0) = 3€B_f(Api,) > ZE"O > - - )
4m (Eno>-(10)*)(Eno>-(210)?)
In the case of the static electric field, Eq.(5) is represented as follows.
Aud i \2 :
B i(0;0,0) = 3 (AH0a)(HGn) "")(‘2‘ 6n)_ (8)
2 Eno

2. Approximate Expressions for the Third-order Hyperpolarizability ¥;ju

In the case of THG(wi==mn=w) [14-22], Eq.(1.1.58) is considered here. The virtual
excitation processes can be divided into three types shown in Fig.2 (a) [15-18,22]. Type (I)
represents the process (0,n-n,n-n,n-n,0)(n=0) which is concerned with the excitation energies
(Eno), transition moments (io,) and dipole moment differences between excited state n and
ground state 0 (). Type (I) represents the process (0,n'-n',0-0,n-n,0) (n,n'#0) with the
ground state in the middle of the process. This process is concerned with the excitation
energies (E, o, En0) and transition moments (lon, Hon). Type (III) represents the process
(0,n'-n';m-m,n-n,0) in which another higher or lower excited state m than the excited states (n,
n') in the former two processes are included. The process is concerned with the excitation
’ energies (En 0,En0Emo), transition moments associated with the ground state (Uon', on) and
ones between excited states (Un'm, Unm)-

In order to more clarify the characteristics of the virtual excitation processes, we
propose the three type approximation [15] as follows. For type (I), all terms are considered.
For type (II), the most contributable process (0,n-1,0-0,n-n,0) iliustrated by the type (II)
equalized n to n' are considered. This process is refereed to as type (II)' . This approximation

is identical to the diagonal approximation used for the second-order hyperpolarizability. Type
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(IIT) is reduced to the process (0,n-n,m-m,n-n,0) by eliminating the terms with n#n' from the
process (0,n'-n',;m-m,n-n,0). This is refereed to as type (III)'. Under three type approximation,

the analytic formula for %j;;(-3@ ;w,m,w) is expressed as

Yiii(-3@ ;0,0,0) =

: - E no(En*+(h)?)
(i) (Apio)? 0 49)
21 0 1m0 (Eno2-(3h)2)(E no>- 21 0)?)(E no>- (i) }
=X i’ Len (I
Zl O (B> (GH0)D) (Eno-(he)?) }
) ) 2 2_ 2
b Y (i) (et Emt B0 RO S (AO) }(III)
el (Eno*-(GR0) ) (E no?-(10) ) (Emo*-(2H0)?) )
m+£n

In the case of a static electric field, Eq. (9) is reduced to Eq.(11).

i 2010 )2
it (:0:0,0,0) = 3, {Ha0) (A#no) z(#no) oY W) hn)

2
n=1 Enp Eno’ mn=1  Ep0“Eno
m#*n

(10)

Here, the first, second and third terms correspond to the type (I), type (II)' and type (III)'
contributions, respectively. From Eq.(10), the terms expressed by type (I) and type (III)'
contributions are positive in sign, while the type (II)' contribution is a negative. Therefore, the
overall sign of ¥;; is determined by the detailed balance between the (I+III')- and (II')- terms.
Particularly, for the centrosymmetric system, it is noted that the type (I) values come to be

zero since Al disappears because of the centrosymmetric charge distribution.
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3. Schematic Diagrams of the Transition Matrix Elements [15-18,22]

The analysis method of the TDPT three type contributions is described. We
schematically represent the characteristic of the transition matrix y,, which is one of the
quantities related to the excited states much contributing to ¥ value. The transition moment
Unm is defined by -<¥,Irl¥,,>, in which ¥, and ¥,, are wavefunctions of state n and m,
respectively. The direction and the tendency of the transition moment can be investigated by
the schematic diagram in which the phases for ¥, x ¥, are drawn on each atomic site. For
the molecule constructed of atoms A and B including one 7 orbital respectively, if the phase of
¥, X ¥, is plus on atom A and minus on atom B, it shows that the seeming polarization is
induced in the molecule. The atom A has a minus charge and atom B has a plus one, so that, in
an intact, the dipole moment directed from A to B is effected by the electronic excitation from
- the state n to m. In this case, the transition moment is directed from atom A (positive phase of
¥. X ¥n) to atom B (negative phase of ¥, X ¥y, ). In general, the transition moment is
directed from the site with the plus phase of ¥, X ‘¥, to the site with minus phase.
Differences between the excited and ground state dipole moments (Au,o) is illustrated by the
way that the phase of ¥, X ¥, is drawn on each atomic site. In this representation, the plus
phase of ¥, x ¥, indicates the increase of the charge, while the minus phase indicates the
decrease of the charge. In this paper, the TDPT three type approximation is performed by the
use of the CNDOY/S (see Appendix 2) [23] molecular orbital (MO) method including the single-
excitation configuration interaction (SCI). In the SCI procedure, the transition matrix and the

dipole moment differences are expressed as follows.

i i
Hon=—€12 chi—)jmij’ \ (11)
ij
Pim=—€ X, 2Cninj Cm it Gik mi - & mip, (12)
ikl
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pin=—€ 2 X'Cainsj Cu ki ik miy - & miyp)

ij kl

+ DUCninsj 12(mi; - miy) , (13)
ij
m:-j=f v rydv . (14)

Here, C, i—;j is the CI coefficient of the one electron excited determinant exchanged between
orbitals i and j. The symbol X ' signifies the summation except the case satisfying both i=k and
J=I at the same time. For the transition moment u,o, since the low-lying excited states are
mainly constructed of one dominant one electron excited determinant |'F;,;>, the
corresponding coefficient ICp ;| is approximated to 1. Therefore, the phases of (the sign of
C, i—j) X VX ¥;are used for illustrating the transition moment ,o. Other transition matrices

are illustrated in a similar manner.

4. Characteristics of Each Order Polarizability
From the analytical expressions for each order of the polarizability and
hyperpolarizabilities within the limits of wavelengths where the dispersion effects can be

ignored, the following relations can be approximately obtained :

2
a o I/‘an I 15
E, (15)
2
[3 o I“n() l A“n()
2 ’ (16)
En()
2 2 4 2 2
I/'an l IA.und |lunO ‘ + IlunO I I:umrJ
14 3 T3 2 ’ a7
Eno En() EmOEnO
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where the proportional coefficients are positive in sign. From Eq.(15), it is found that
polarizability o is always positive in sign. The sign of the second-order hyperpolarizability 8
can be varied with the coordinate system since the A, is included in Eq.(16). As can be seen
from Eqs.(15) and (16), the magnitudes of « and 8 become large when IAu,gland |uq0l are
large and E,g is small. For the third-order hyperpolarizability %, the sign of type (II)
contribution (the second term in Eq.(17)) is contrary to others. Therefore, the total ¥is

characterized by the three types of virtual excitation processes.
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Appendix

1. Electronic-charge-centroid coordinate system [9]

In the electronic-charge-centroid coordinate system ('), the following relation is
satisfied :

<0|r'|0>=0, (A.1)
where 10> denotes the ground state wavefunction. Here r' is represented as
r=r+rg, (A.2)

in which ry signifies the displacement of some other system (r) from the charge-centroid
coordinate system. Using (A.2),

Hoo' =<0l-e r'0>=0=-e(<0lr 10>+<0lry10>)
=Hoo+ (—erg),

(A.3)
Unn' =<nl-e r'in> = <nl-er In>—<nl-ery In>
= Unn + (—erp) A4
= Hnn + Hoo) = Allno 5 (A.4)
Hon' =<0l-e r'in> = <0l-er In>—<0l-eryin>=p,, . (A.5)

Here, H00', Knn' and Hon' are ground state dipole moment, excited state dipole moment and
transition moment in the charge-centroid coordinate system, respectively. Therefore, Hon in

Eq. (3) signifies the change in dipole moment between the ground and excited states.
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2. CNDO/S method [23]
Under the CNDO (complete neglect of differential overlap) approximation [24], the Fock

matrix elements are expressed as follows.

F,,=H, + %P,,(rrlrr) +2 Py(rritr), (A.6)

#r

Fyo=H,- %P,s(rrlss) (r#s) , (A.7)

where Hrs is the core integral and the bond order matrix element P, is expressed as

Ps=2) Gd. (A.8)
j

Here, C,i is the linear coefficient of the atomic orbital  in molecular orbital i. The total

electronic energy is represented by

n
Eelec = Z & + %2 P.sH,s , (A.9)

i=1 r.s

where €; is the energy of the molecular orbital i.

Two electron integrals of atomic orbitals are approximated by

(rrlrry =yan=1,- A, : (A.10)
— - 14.395 Nichi :
(rrls9) = yap = .2 (Mataga-Nishimoto equation), (A.11)
S Yaa+YBB
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where the atomic orbitals r and s belong to atoms A and B, respectively. The parameters /, and
A, signify the ionization potential and electron affinity, respectively.

The diagonal and non-diagonal terms of core integrals are approximated by

Hy=-L0,+4)-@s-Lyaa- Y Zswas, (A.12)
2 2
B (#A)
KSrs
H,g =———(2 Ba+PBg), (A.13)

where Z, denotes the effective nuclear charge of atom A ; §,, is the element of the overlap
integral matrix ; Kk is a parameter which is defined as 1.0 for o bonding and 0.585 for z bonding
and B is a specific parameter given for exch atom. These parameters used for the CNDO/S

method are listed in Table 1.
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Table 1. Parameters for atoms H, C, N, O and F used for CNDO/S method.

H C N O F
I+ Ag 14.35 29.92 40.97 54.51 56.96
I, +Ap 0.0 11.61 16.96 21.93 24.36
Yaa 12.85 10.93 11.88 15.13 17.36
B -12.0 -17.5 -26.0 -45.0 -50.0
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PART 1I

CALCULATION METHODS OF HYPERPOLARIZABILITY BY THE
RAYLEIGH-SCHRODINGER PERTURBATION THEORY (RSPT),
COUPLED-HARTREE-FOCK (CHF) AND COUPLED-CLUSTER (CC)
THEORY



Introduction

For the methods based’ on the time-dependent perturbation theory (TDPT) mentioned in
part I, the analysis of the virtual excitation process can be performed and the dispersion effects
are able to be considered. However, the TDPT approach entails calculations of several
quantities relating to excited states. In general, it is very difficult to obtain the quantities
relating to excited states precisely. Therefore, in this part, the variational and perturbational
methods dealing with only the ground state are applied to the calculation of the
hyperpolarizability. The total energy in the presence of the external field can be expanded as
the power series of the field F. The first-order coefficient of the field F represents the dipole
moment Y, and the second-, third- and fourth-order coefficients are o, 8 and ¥, respectively.

In chapter 1, the calculation method of hyperpolarizability based on the coupled-Hartree-
Fock (CHF) theory is described. The total energy in the presence of the field calculated
variationally is differentiated with respect to the field. This procedure is referred to as the finite-
field (FF) method. For the semiempirical (INDO) molecular orbital (MO) method, the CHF
method is explained. In order to examine the contributions of the electron correlation effects,
Mgiller-Plesset (MP) perturbation theory is applied. Moreover, the 7 density analysis method
is proposed for analyzing the spatial contributions of 7.

In chapter 2, the double perturbation theory based on the Rayleigh-Schrédinger
perturbation theory (RSPT) is adopted for the analysis of the inclusion of the correlation effects.
The analytical expressions of the hyperpolarizabilities without correlation effects (RSPTO
approximation) are obtained. Moreover, the coupled-cluster (CC) theory which can include
higher-order correlation effects systematically is employed to obtain the general equations for

the nth-order response properties with respect to an external field.
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Chapter 1

Calculation methods of the Hyperpolarizability by the Coupled-Hartree-Fock
(CHF) and CHF with the Mgller-Plesset (MP) Perturbation Theory

1. Coupled-Hartree-Fock (CHF) Theory [1-9]

The total Hamiltonian in the presence of a uniform electric field F is expressed as

H =Ho+ Y, Fri- 2.Z; FR; , (1)
i I

where indices i and I signify electrons and nuclei, respectively. Z; is the atomic number of the
Ith nucleus and Hy is the field-free Hamiltonian. The total energy can be obtained as the

expectation values for the wavefunctions ¥ in the presence of the field.

E =<¥IHI¥>. (2)

Similarly, the dipole moment is expressed as

p=<¥PIDZR-Dr|¥>. (3)
I i

In the coupled-Hartree-Fock (CHF) method, ‘¥ is approximated by a single Slater determinant

whose orbitals are reoptimized for each field F. Differentiation of Eq.(2) with respect to F

gives
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(4)

If ¥ is the true wavefunction, the first and third terms on the right-hand side of Eq.(4) is equal
to zero by the Hellmann-Feynman theorem [10]. The CHF method satisfy the theorem. If the
Hellmann-Feynman theorem is satisfied, the dipole moment defined by Eq.(3) can be

expressed as

H=-—= (5)

In general, the total energy and dipole moment can be expanded as the power series of the

applied field.
E = Ey- Zy F‘-—Za,, i —Zﬁ, FiPip*- LYy FIFIF*F!- ., (6)
ljk 4ijkl
.u #0"‘20‘”17 +2Bt]kFF +ZYz]kIFF F + ’ (7)
Jki

where L is the permanent dipole moment. The Hellmann-Feynman theorem asserts that
Eqs.(6) and (7) are compatible. For the Mgller-Plesset (MP) theory [11] or limited excitation
configuration interaction (CI), the Hellmann-Feynman theorem is not satisfied. Practically,
however, there is little computational differences between the hyperpolarizabilities in these
two expansions [12]. t

The 7 values are evaluated by the numerical differentiation of the self-consistent-field

(SCF) ehergy of molecules in the presence of an electric field as a function of field. This method
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based on the finite-field (FF) treatment [13-15] (see Appendix 1) is here referred to as the
CHF method. In contrast, the coupled-perturbed-Hartree-Fock v(CPHF) method [16-24],
which is an analytical differentiation method, requires no calculations of the ground states in the
presence of the field. Indeed, the % value by the CHF method are liable to involve some
numerical errors. However, when precise calculation of the total energy and appropriate
numerical differentiation are carried out under careful selection of field strength, the numerical
errors between the CHF and CPHF can be minimized [6]. One advantage of the CHF method
is that it can be applied to almost any quantum chemical formalism, for example, MP theory,

in which the analytical method is not available at the present time. The CHF method based on

the INDO approximation [25] is explained in Appendix 2.

2. Mpgller-Plesset (MP) Perturbation Theory [11]

When the zeroth-order Hamiltonian is chosen as the Fock operator in the Rayleigh-
Schrodinger perturbation theory (RSPT), the electron correlation (the error of the Hartree-Fock
approach) can be included by the perturbation calculation. This is referred to as the Mgpller-
Plesset (MP) perturbation theory. If the system can be well described by a single determinant,
the MP theory suitable for the evaluation of the electron correlation effects.

In most cases, the second-order MP contribution for the correlation energy is larger than
others. The second-order MP (MP2) formula for the correlation energy in terms of spinorbitals

is expressed as

E (8)

@_ (1)22 <ablirs><rsllab>

2 EGtEEE;

abrs
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where a, b, ¢, andr,s,t, label the occupied and virtual spin orbitals, respectively ; &

signifies the energy of orbital i. The antisymmetrized two electron integral is defined by

<ijllkl> = <ijlkl>- <ijllk>. 9

In the case of the MP theory based on the unrestricted Hartree-Fock (UHF) reference state

(unrestricted MP (UMP)), Eq.(8) is rewritten in terms of the spatial orbitals by

E® lZ (arlbs)(ralsb) N lz (arlbs)(ralsh)

2a brs EatEb—Er—Es E,HE—E—E5

2 abrs

N l_z (arlbs)(ralsb) + _1_2 (anbs)(ralsb)
2prs EatEr—EE& 2~ EqtE&Es

brs
i lz (arlbs)(rblsa) _1_2 (anbs)(rbisa) | (10)
2. EqtEy—E~E 2 EgtEE—Es ’ ;
7. abrs

Here, iand i signify the spatial orbitals of & and B spins, respectively. In the case of the

restricted MP (RMP) theory, Eq.(10) is reduced to the expression :

NJj2
2 _ (arlbs)(2(ralsb)-(rblsa))
E7=2, EFEEE; ' (D

abrs

In order to evaluate the hyperpolarizability, the CHF (instead of the HF) orbitals and
orbital energies are used in Eqs.(10) and (11). In this case, the effects of the external field can
be included variationally by the CHF calculation at first and then the electron correlation effects

can be included based on the MP theory.
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3. 7 density Analysis in the Variational Approach

The analysis of the virtual excitation processes is impossible in the variational approach
since the variational approach only deals with the ground state directly. Therefore, the
derivatives of charge densities with respect to the applied field are employed in order to
interpret the spatial characteristics of the ¥ value. The charge density function p(r,F) can be
expanded in powers of the field F in the same as the expansions of energy and dipole moment in
Eqs.(6) and (7) [6]. To simplify the notation, the field is fixed in the direction i. The charge

density function p(r,F) are expressed as

1 i ij 1 i_j_k
pr.F) = p%r) + SV F + 2i'Zp(z)(r)F o -STZp‘”(r)F FFs (12)
i o Y

Using Eq.(12), the dipole moment expansion can be represented as follows.

MEE f g’ prFydr’

i (0 3 i (1 3.0 1 i 2 3 i i
=-fqp (r)dr -zfq o rdr'F -2—'2qu( Xrdr’F'F
i H

-%ZIqip(3)(r)dr3FiFiFi-... . (13)
i

Here, the ¢i is the i component of the molecular coordinate.

From Eqs.(1) and (13),

1 i 3 3
, iiii=_3_!fqp (r)dr . (14)
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The charge density (PS),s divided into each atomic orbital s is considered according to the

Mulliken population analysis.

pr) =Y. (P) (P o r), (15)

st

where @ denotes the atomic orbital s. From Eq.(15),

[ par’=3 p$),,= Y f p(rdr. (16)

Here, the S is the overlap matrix element and the Py, is the bond order matrix element.
Equation (12) can be rewritten as follows by the use of the charge density function pg(r) divided

into each atomic orbital s.

pP) =% p%r) + Xp(r)F +—Zps (FF + 5 pf’( FEFYL
s i

Therefore,

f p(rFdr’ =

2fps (r)dr +22fps (rdr'’F'+ ZEfps(m FF'
Eprs()d FFF + | (18)

The following approximation is attempted to the charge density function pg(r).

48



por) = (PS) S(r-r). (19)

This approximation implies that the pg(r) is concentrated to the center rg of the atomic orbital s.

At this time, the following relation is hold.
@) 3 @) 3 @
f ps(rdr =(PS)SS=( f ps(r)dr) : (20)

By the use of this relation, Eq.(13) can be rewritten as follows.

p'F) =-SigrsH 0+ qu(PS) Z P OF'F'

1 ' )
+3—'Zq;(PS)ssFFF -} 21
i

From this equation, we obtain

3)
Yiiii™ = 3p Z (PS)yeds. (22)

where the q:s represent the i component of the coordinate of the atom located at the center of
the atomic orbital s. We call the third derivative of (PS), the ¥ density. The spatial
characteristics of the ¥ value can be obtained by the use of the plots of the magnitudes and
signs of the ¥ densities on each atom. It is also possible to separate the density derivatives
into the different contributions, for example, the o and x contributions. The plus sign of the ¥

density implies that the second derivative of the charge density increases with the increase in



the field, while the minus sign implies the inverse effect. Plots of the ¥ density give the
information about the magnitude and sign of the total ¥ shown in Fig.1. The third-derivative of

the (PS)ss, namely the %;; density of atomic orbital s, is calculated by the four-point numerical

derivative method as follows.

(PS$)%) = ((PS) (2F)-(P$) (- 2F)

Ss 2F
F2U(PS),{-F)-(PS) (F)1) . (23)

Here, the (PS);s(Fi) is the Mulliken charge density of the atomic orbital s in the presence of

the field Fi.
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Appendix

1. Finite-field (FF) Method [13-15]

The fourth-order derivative of the total energy E with respect to the field is calculated by

the following equations.

Viiii=- ——%{56E(0)-39[E(Fi)+E(-Fi)]+12[E(2Fi)+E(-2Fi)]
6F
{EGF)+EC3FY]), (A1)
Yiijj=- ——.1—2—.2{-72E(0)-38[E(Fi)+E(-Fi)+E(F’)+(_F’)]

12F °F
+2[EQF)+E(2F)+EQF)+E(-2F)]
+20[E(F FY+E(F -FN+E(-F FY+EC-F'-F)]
[(EQF FY+EQF' -F)+E(-2F F)+E(-2F -F)
+E(F 2P+ E(F 2F)+E(-F 2F)+E(-F'2F)]} . (A.2)

2. INDO CHF Method
2.1. INDO (intermediate neglect of differential overlap) Approximation [25]
Under the INDO approximation, the expressions for the unrestricted Fock matrix

elements are

Fpy=Upet Y, [P iy (UUIAL) - P 33 (HAIA)]
AcA

+ z (Ppp-Zp)YAB U on atomA , | (A.3)
B(#A)
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o 24 o
Fuv= QPP )uvipv) -P, (nuivv). (A.4)

Assuming 2s and 2p orbitals to have the same radial parts, the nonvanishing two-electron

integrals are

(sslss) = (sslxx) =F = Yaa> (A.5)
(sxlsx) = 4G, (A.6)
(xylxy) =345, (A7)
(xxlxx) =F 444 F 7, | (A.8)
(xxlyy) =F =24 F?, (A.9)

and similar expressions for (sslzz), etc. The integral FO is calculated theoretically from Slater
atomic orbitals. The values G1 and F2 are determined semiempirically. The values are listed in

Table 1. The core integrals U, are determined by the following relations :

Hydrogeln : 1
'/2(1+A)s=Uss+ /270111, (A.10)
Boron to fluorine :
Loty = U+ Z-Yo)F - Yz, 346, (A.11)
Loa+8),= U+ (Z4-Yo)F° - 4G 2 (2, -34)F”, (A.12)

where Z, is the core charge of atom A, and / and A denote the ionization potential and the

electron‘affinity, respectively. Values for (/+A), and (I+A), are listed in Table 2.
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2.2. CHF Method Based on the INDO Approximation [2]
The expression for the Fock matrix element of « spin in the presence of the electric field
F is
F,‘fv = Hﬁ?,’e + F(¢ulrilg,) +

N© NP
Y [(Pupd P EED-(D, PAFZONT+ Y, (9u0 PEFPY . (A13)

Here, ¢, denotes the uth atomic orbital and ‘¥, is the ath molecular orbital. The matrix

elements (Pul7119v) are expressed as

(Paplril@an) = Ry + (Paulralgay) = Ra (A.14)
(Paulrilday) = (Paulralday) , ’ (A.15)
(Panlriigpy) = %(mumg W(Rs+Rp) =0, (A.16)

where ry, r; and R, are shown in Fig.2. Here, (9aulral®av) are calculated by

(¢2s|2l¢2p,) = (¢2slx'¢2px) = (¢2s|yl¢2p,)

=9 x05291774&, (A.17)
3z%

(D257l 02p,) = ($2p,Ira1025) = ($2p)raldp) =0, (A.18)

in which z* signifies the effective nuclear charge.
By solving the usual Hartree-Fock equation using the perturbed Fock matrix elements

(A.13), the CHF orbitals and orbital energies can be obtained.
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Table 1. Empirical values for G! and F2.

Atom Gl F2

C 0.267708 0.17372
N 0.346029 0.219055
0] 0.43423 0.266415
F 0.532305 0.31580

56



Table 2. Values for (/+A)y/2 and (I+A),/2 [eV].

H C N 0] F
(I+A),/2 7.176 14.051 19.316 25.390 32.272
(1+A),/2 5.572 1275 9.111 11.080
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Fig.2. Coordinates of atom A and electron i
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Chapter 2

General equations for the nth-order response to an external one-electron perturbation.

Many-body perturbation and coupled-cluster treatments

General equations for the nth-order response properties with respect to an external time-
independent one-electron perturbétion are derived on the basis of the many-body perturbation
theory (MBPT) and the coupled-cluster (CC) theory. The corresponding equations for the time-
dependent case are also derived by the CC formalism, which is referred to as the time- |
dependent CC (TDCC) method. The theoretical expressions developed will be useful for
analytical calculations of the response properties of any order , e.g., polarizability and

hyperpolarizability.
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1. Introduction

Wavefunctions which are adequate for calculations of the total electronic energies are
known to be often inadequate for reasonable evaluations of physical properties [1]. Response
properties to external perturbation are particularly cumbersome to calculate inasmuch as they
involve quantities relating to the transition energies. Generally, the energy differences
between states obtained by subtracting two expectation values calculated separately no longer
have the upper bound property. Development of reliable methods for non-variational direct
calculations of the response properties are thus a momentous matter of urgency. Methods of
direct calculations of the response properties are placed in two categories, numerical and
analytical. In the numerical methods, the response properties of a given order are determined
by fitting the computed total electronic energies of the perturbed system to a power series of
external field. The finite-field (FF) method [2-5] belongs to this category. However, the
numerical procedures are liable to encounter some inherent difficulties. For example, choices of
the basis sets describing polarization properly in the presence of the field and calculations of the
total energies reliably for the varying field strength are difficult to achieve. In the analytical
methods, on the other hand, responses to the external perturbation at various orders can be
calculated on a unified ground. Derivations and comparisons of general equations which provide
analytical expressions for the response properties most effectively are the purpose of the
present work. |

We first cohsider time-independent response properties with respect to an external one-
electron perturbation in a general manner. Two non-variational approaches are examined. One
is the Rayleigh-Schrodinger-type double perturbation theory (RSPT) (= many body perturbation
theory (MBPT)) [1,2,6-8], which chooses the Hartree-Fock (HF) Hamiltonian as the |
unperturbed Hamiltonian, and regards both electron correlations and the external one-electron

disorder as perturbation. The other is based on the coupled-cluster (CO) theory [9-14], which
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can include higher electron correlations effectively. Finally, the dynamic responses to an
external time-dependent one-electron perturbation will be dealt with in the formalism of the

coupled-cluster(CC) theory [15,16].

2. Static Response Properties by the Time-independent Double Perturbation Theory
An external time-independent one-electron perturbation, e.g., electric field, is

expressed as aH;. The total electronic energy in the presence of the external perturbation can

be expanded as the power series of a.

, 1 2 1 3 1 4
EO(OK)=E0(0)-OCE1-2—'06 Ez--?’—'a E3‘Z'—a E4 . (1)

If the unperturbed term is the HF Hamiltonian and if the perturbed terms are the potential V

which represents the electron correlation effects and an external one-electron perturbation oH,,

the total Hamiltonian H is expressed as follows:

H=Hyp+uv+AMaH,) . - (2)

where u and A signify the order parameters. The correlation potential V is expressed as

V o=t X vHRG) 3)
i<j i

Here, the first and second terms of the right-hand side of Eq.(3) represent the Coulomb

repulsion and the HF potential, respectively.
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Our objective here is to derive static response properties by the time-independent double

perturbation theory [17,18]. The perturbed time-independent Schrodinger equation is written as

H1®Dy> = Ey D>, (4)

where |Pp> and E( represent the eigenvector and eigenvalue of the ground state, respectively.

On the other hand, the unperturbed eigenvector ['¥4(0,0)> of the HF ground state and its

eigenvalue Eo(0,0) satisfy the following Schrédinger equation.

Hyr 1¥5(0,0)> = Ey(0,0)I'F5(0,0)> . (3)

Here, two variables u and A in 1%¥(u, A)> and Eg(u, A) indicate the order of the correlation

effects and that of an external perturbation, respectively.

The total electronic energy Eo can be expressed in the power series of Eg(, 1)

2
Eo = Eo(0,0) + i RUAPEG(1-n,n) + D, u2PAPE(2-n,n) + -
n=0 n=0
m
= O > pmnAEq(m-n,n) (6)
m=0n=0 :

The perturbed ground state |®Pg> can be expanded similarly:

IDg> = I¥o(0,0)> + 2 A" o(1-n,n)> + ﬁ: U2rA"MYo(2-n,n)> + -
n=0 n=0
m
= X 2 pr A o(m-n,n)> (7)
m=0n=0 *
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Substituting Eqs. (2), (6) and (7) into Eq. (4), we obtain

m m
D 2w mATHyE \Po(m-nn)> + 2, O, pm ARV 1Wo(m-n,n)> +

m=0 n=0 m=0n=0

m 5 "
2 2 umrA" L QH O Wo(m-n,n)> = Z i um-n'A" Eo(m-n,n)l Yo(m'-n',n)>  (8)
m=0n=0 m"=0n"=0 ‘

where, m”=m+m’and n"=n+n’.

We choose |¥(u, 4)> to satisfy the intermediate normalization condition as follows:

<¥(0,0)IDo> = <¥((0,0)I ¥p(0,0)>

+ u<¥(0,0)| ¥6(1,0)> + A<¥(0,0)I¥p(0,1)> + - =1,
where
<¥o(0,0)| ¥o(m,n)> = 0, (m 20, n 20). 9)
From each order term of Eq. (8), the following relations are obtained:
Hyg 1'¥0(0,0)> = Eo(0,0)I'¥0(0,0)>, (10)
=1 —
Hyr 1'P0(1,0)> + VI¥(0,0)> = Eo(1,0)1¥6(0,0)> + Eg(0,0)I Po(1,0)>, (11)
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Hyp 1¥(0,1)> + (aH1)I'Po(0,0)> = E¢(0,1)1 ¥5(0,0)> + Eg(0,0)l ¥p(0,1)>, (12)

= = >1

Hyr 1Wo@.9)> + V 1¥(p -1,9)> + (aH ) ¥ (p ,q-1)>
= i iEo(p-r;q-s)l Po(r,s)>. (13)

r=0s =0

Operating <@4(0,0)! on both sides of Eqs.(11)-(13) and using Eq.(9), we obtain

Eo(1,0) = <¥,(0,0)IV1¥,(0,0)>, (14)
Eo(0,1) = <¥p(0,0)laH 11¥0(0,0)>, (15)
and

Eo(p,q) = <¥o(0,0)M¥(p -1,9)> + <¥y(0,0)laH 1 ¥(p.q -1)>, (p,g=21).  (16)

From Eq.(11), it follows that

(E¢(0,0)- Hyp)l¥p(1,0)> = (V- Eo(1,0)1%¥5(0,0)>
= (V- <%(0,0)IV1¥(0,0)>) ¥5(0,0)> . (17)

We expand |¥p(1,0)> as the function of 1¥,(0,0)>:

1¥5(1,0)> = 3, C n(1,0)1 ¥,,(0,0)>. (18)

Operating <¥(0,0) on both sides of Eq.(18), we can write
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<¥,(0,0)1'¥p(1,0)> = 2 C »(1,0)<¥,(0,0)1 ¥,(0,0)> = C »(1,0). (19)

nn'

From Eq.(9), Co(1,0) equals 0. Therefore,

1¥o(1,0)> = 2, "1%,(0,0)>< ¥,(0,0)| ¥,(1,0)>. (20)

Here, the symbol ¥' indicates the summation over n except n=0. Operating <'¥(0,0)! on both

sides of Eq. (17),

<¥,(1,0)I(Eo(0,0)-Hup)| o(1,0)> =
<WL(0,0)I(V - <¥p(0,0)IV¥p(1,0)>)l Fo(1,0)>.

Using Eq.(20), we obtain

<¥,(0,0)IV1¥,(0,0)>

<¥,(0,0)|¥y(1,0)> =
0.0 ¥0(1,0)> = =2 =S 1)
In the same manner, from Eq.(12), we obtain
<W¥,(0,0)loH1¥,(0,0)>
<¥,(0,001¥,(0,1)> = L .
ROOFOD Eo0.0) - E4(0,0) | (22)

From Eq.(13),

66



¥,(0,0) ¥o(p.q)> = 1 (p-
<¥,(0,0)'¥o(p,q)> E0(0,0)-En(o,o)[<"y"(0’0)'wp(”1"’)>

+ <¥,(0,0)laH 1 ¥o(p,g-1)>- ﬁ'i' Eo(p-r,g-5)<¥n(0,0)| ¥o(r.5) >] , (p.g21). (23)
r=0s =0

Here, the symbol Y' indicates the summation over r and s except the case: r=s=0 and r=p, s=p.
From the above Eqgs.(14)-(16) and (21)-(23), any Eg(i,A) can be obtained. The

analytical expressions of response properties (E; i=1,2,...) can be calculated using the

analytical expressions of Eg(u,A) and the following relations:

Eg =Eq0,00+ 3 E(it,1) + 3 Eo(it,2) + 3 Eq(i,3) + 2 E(pt,4) + -~

u=0 u=0 u=0 p=0
1 2 1 3 1 4
= Eo(()) - aEl - ?a E2 = ﬁa E3 - Z'-a E4 -ttt (24)

When oH; represents a static electric field (aH; = F-r), E,, E; and E, (n23) give the
permanent electric dipole moment, polarizability and hyperpolarizabilities, respectively. For

example, the explicit expression of Eg(0,4) is given by Eq. (14)-(16) and (21)-(23) as

2
Eq(0.4) = z <0IW 10> <OIW|n1><n1I3WIO>
m (Eo(0,0) - E,,(0,0))
<0IW In1><nIWI0><0lW lny><nyl W 10>
iz (Eo(0,0) - Eny(0,0))(Eo(0,0) - Eny(0,0))2
<0IM0><0IWln1><n1IWlny><nalWi0>
Atz (Eo(0,0) - Eny(0,00)(Eg(0,0) - Ey(0,0))?
<0IW10><0lW ln1><n11W lny><nyl M0>
Az (Eg(0,0) - Er,(0,0))*(Eo(0,0) - En,(0,0))
2 <0IW In1><n11Wlny><nylWlnz><n3iw 10> 25)
(EO(O’O) - Enl(0,0))(E()(0,0) - Enz(0,0))(E()(0,0) - En3(0’0)) ’

ny,nz,n3
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where

W=e) Fri. (26)

Here, the indices ni, no, ... indicate the excited states. When 10> represents the HF ground
state, the static third-order hyperpolarizability Yj; which is obtained from the coefficient of Fi

FiFkF' (i,jk,l represent the x,y,z components) is expressed as

<a lpir><r\pils><s lp*e><t \plla>

Yijki ='&1!‘Sijkl { ))

a,r,s,t (ea'gr)(ea'gs)(ea‘et)
<a lpilr><r\pwile><c \ukb><b lulia>
+ 3
a,b,c,r (£a-8,)(8b-8r)(8c-8r)
<a lpir><r \pws><s lpuklb><b lulla>
- X
a,b,r,s (Ea'gr)(eb‘er)(eb‘gs)
<a lpir><r \pils><s lpkb><b tulla>
- X
abrs (€a-€,)(€4-E5)(€p-E;)
.y <a lpilr><r lwilb><b lukls><s lplla> } 27)
a,b,rs (Ea'gr)(eb'es)(ea'es)

and the unoccupied spin orbitals of the HF ground state, respectively. & represents the i th
orbital energy and u ¢ represents the i component of the one-electron dipole operator. Details of

calculations of the ¥ values by the use of Eq.(27) will be reported elsewhere [19].

3. Static Response Properties by the Coupled-Cluster Theory
The coupled-cluster (CC) method [1,9-14] can include the interactions among electrons
within clusters and those between these clusters effectively. The CC method tends to give

faster convergence of the wavefunction than does the configuration interaction (CI) method.
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Prior to applications of the method to the response property problems, it will be
beneficial to briefly outline the essence of the coupled-cluster theory. In order to introduce the

cluster interactions, the wavefunction |0> is written as follows in terms of a cluster operator T :

0> = eT 10>, (28)

The noninteracting reference function 10> is limited to a ket corresponding to a single Slater

determinant here. The cluster operator T is expressed as the sum of one-, two-electron, etc.,

clusters
N
T = DT, =Ty + Ty + = + Ty (29)
i=1
with
ro+
T, = ztaaraa (30)
ar
1 rs + +
T2 = Z ; lap@rasapa, (31)
aors
Ty =—1_ X i atat. apa,
N 4. | (32)

rs...

In these expressions, a, b, c, .... denote the occupied spin orbitals in 109>, while 7, s, ¢, ....

denote the unoccupied ones. The symbols a¥ and a represent the creation and the annihilation
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operators, respectively. One of the advantages of the CC method is that the size-consistency
is satisfied on a truncation of T at any order.

By expanding Eq.(28) and collecting terms of common excitation level, we write

eT10% = (14 ¢y + Cy + C3 + 1005, (33)
where the configuration excitation operators Cy, C, .... are
C, =T, (34)
1.2
Cr=Ty+ o1y (35)
Ca= T+ AT +T,T (36)
3= 3 3! 1 14 2

= dp4 (172 12 (37)

Cy =Ty + 4!T1 +2!T2 + TaTy + 2!T1T2 , etc.

These expressions are convenient to analyze the excitation level in the conventional CI and
MBPT wavefunctions [20].
rs...
The cluster amplitudes ab... are determined by the condition that the CC wavefunction

1109 satisfy the Schrodinger equation :

Hel 109 = EeT109 . (38)

When the above exponential series are collected together as commutators, Eq.(38) is rewritten

as follows:
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H+ [HT]+ %[[H,T],T] +§1'—[[[H,T],T],T]

+4l'[[[[11, 71.71.71.71110% = E10%>. (39)

The reason why the series truncates after four commutators is that H contains at most two-
electron operators, which involve four general (particle and hole) operators. Equations for the
amplitudes of any order are derived by noting that when the excited determinant
<0O|(excitation operators) operates on both sides of Eq. (39), the final equation yields zero.
The excitations are chosen to include up through n-fold excitations from 10©> in the case where
T has been truncated at T,,. Once these amplitudes are obtained, the total energy can be

calculated by projecting Eq. (39) onto 109>, For this reason, the energy obtained is not

variational. Although the variational approach, where <0l operates on both sides of Eq.
(36), can also be performed, the resultant commutator expression of the exponential operators
cannot be truncated and comes to be complicated. Therefore, in general, the CC equations. are
treated nonvariationally.

We are now in a position to derive general equations for the nth-order response
properties. In practice, we will follow the procedure by Monkhorst [15,16].

When an external one-electron perturbation (aH1) is applied, the total electronic

Hamiltonian is written as

H(a)=H0+OCH1. (40)

The perturbed wavefunction 10> is expressed as
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10>= e’ @109 | (41)

The cluster operator T(¢) can be expanded in powers of the field « :

(0 o, 2@, 350 @ L (42)

T(ax) =T " +oT " +aT T "+ aT

The total electronic energy E(a) can also be expanded in the same way :

0)

oY v E? v ED s @ (43)

E(x) = E aE +aE + a E + e

rs...
The equations for E(a) and the cluster amplitudes fab... are

<0 ¢-T (@ H(a) eT @ 109> = E(a), (44)
and
<ste’ PH@y e P10 = 0. (45)
Substituting Eqs.(40) and (42) into the left-hand side of Eqgs.(44) and (45), we obtain
<0©] T g-of DT @ (g 4 gH ) o V42T @+ oT (9O
and
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<G5l eT® eof V2T @ (hy 4 o)) el P+ 2T @+ oT 10O

Substitution of Eq.(43) into the right-hand side of Eq.(44) permits the equation of each order (n)

to be rewritten as follows.

(V] 0
0 T T 0 0
<0% e’ Hye' 10 = EQ (46)
) (0)

-T
<rsret Hype' 10% =0, (47)

These equations are nothing but the original CC equations, Eqs.(44) and (45).

in=1
@ ,T" W ) r® ©
<0 le {H1+H0T -T Ho}e 0" >=E" "
Therefore,
<0©) eT® {Hl + [Ho, T(l)]} T 1005 = gD, 48
rs... 7¢ 1) 7 )
<ap..le {H1+[H0,T ]} e 10 >=0. (49)
i p=2
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1)2
<0¢ {(HIT -7y )+—(HOT‘”2-2T“’HOT“)+T( 2Ho
)
T 0 2
+(H0T(2)-T(2)HO)} e’ 109 =
Using the relation :
2
g V2 or P Ve Yy, = 1w, 7T
we obtain the following equations.
(0) ()
0 -T . 2 T 0 2
<0% e {[HI,T(I)] +l[[H0,T(“],T(“] +Ho T} e |0( L-e® 60
<IS {[Hl, 7 41 SlHo T T M) 4 +[Ho T ()]} % =o. (51)

These equations are identical to those derived by Monkhorst [15,16].

(1)2 6y (12

2
{(HITQ)-T()HI)+%{H1T 21OV

()3

2 2
+HI D 1%, + —(HOT 3P e V¢

3
3T HOT -T( Ho

(1), (2) (2 1 () ¢

3
sl Vr - r g P Cugr Ve rPr Cug } o 0% = ®,

Here, using the relations :
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1) .2 1 2 2 1 2) (1 2
HgOr®. 1O r® P O POy 1@ ?)

1)3 1 1)2 1)2 1 13 1
H 31 Cugr V43 Ve O Vg = w711,

we obtain

<0 e { (11, T @1+ L1Hy, 7O 7 D)+ (Ho, T

+ LHe, TOL TWL TO) 4 [[Hy, TWY) T<2>]} eI 10Os = EO (52)
6 ’ t ’ b A
(0)
ey T 2 1 a (1 @3
<ppre” Lo gt 1O T P e o T

)
+ %[[HO,T(I)],T(“],T(I)] +[[HO,T(“],T(2’]} el 10% =0, (53)

=4

(1)2 (12 (1) (13

W w3ru . 1)

(V]
0 T 3 3 3
<0%e” {1y s g™V

D.,2 2 1 1 2 2 1 4 4
s HTOr® 1P 1O 1Oy 1@ Pr Oy @ TPy

1)4 1 1)3 1)2 1)2 3 1 1)4
+EIZ(H°T() -4T()H0T() +6T()H0T() -4T(1)H0T()+T()H0)
(1)2T(2) (22 (1)2 1. @ ). (1)

+%(H0T P O rOr P r PO g

12 2)  (1)2 2)2 2 2 2
+7° )HOT(2)_ T @ )Ho)+%(HoT() + T(z)HO-ZT( )HoT()S

M

©
.3 3 3 T. 0
O & tor P+ Vg b e’ 1075 = E

4
+HIT TP g P @

Using the relations :

1), 2 2 1 2 2 1 2
HIT( )T( ) T( )HIT(I)r T( )HIT( )+T( )T(I)H1 - [[Hl,T( )],T( )],
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(1)4

2 2 3 1)4
Ho P ar HOT(1)3 ) (1) 1 (1)

6T g P ar Pr g Ve r Yy
- He TP T T 1Y),

we reach

<0 e {[Hy, T+ Sl TOLTOL T O+ (1H, T LT @)

+ [Ho, T(4)]+EIZ{[[[H0, TO, T, TO T “’1+15[[[Ho, TW), T M), T @)

+ L[[HO, TP, T D1+[[H,, T<1>],T<3)]} eT® 100> = E@, (54)
<re” {iT T, 7O T O T D T

+1Ho, T Crgtittr o, 7, T DL T Ottt 0, 7, T T )

+ 21tHo, TP, T i1t 7M1, 71 ) AC (55)

The above equations can be regularized by the use of the commutative relation among

Y. For example, Eq. (54) is rewritten as

0T {ta,, 7% +i[[[H1,T“)j,T(“j, T +~1—([[H1,T(1)], T3
+0H T, T Oyt T Nagitiin o, 7,71 M, 1)
+i<[[[Ho,T‘“J,T“’J,T‘2)1+[[[H0,T“’],T‘zﬁ,T Y
HIHo, T, 7D, T it , 7%, 7 ﬁ

+%([[H0,T(I)J,T(3)J+[[H0,T(S)],T(l)])} & 0% =g (56)
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Equation (56) allows to express the CC equations for the nth-order (n 22) response

properties in a general form as follows:

n-i
<0(0) I e-T(O) { i Zl'vernl,nz ..... ny ([ o [[Hl ’ T m )],T (nz)]’
i=ON=1""

w T (nN)])} eT®1005 = E® (57)

® 1 n-i

<isiie’ {2 X 5 Pmmpm o THLT 0T O,
ON=1""°

.....

1=

©
e, T (nN)])} eT |0(0)> =0. (58)

with

N
ng=mn-1i, (n;, >0, integer). « ' (59)
k=1

Here, Pnynyny is the operator which represents the summation over all combinations of
(n1, n2, ... ,ny). It should be noted that the series in Eqs.(57) and (58) truncate after four
commutators when H; contains at most two-electron operators. The cluster operator T is

written as

. N . . . .
R S AL AR LT (60)

where
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Tl(l) =2(")t2a:aa (61)

ar
T 4 =i D> O iifar at apag, etc. - (62)

abrs

Here, the index i represents the order of . As can be seen from Eqs.(47), (49) and (58),
calculations of the ith-order cluster amplitudes @¢ entail calculations of the cluster amplitudes
of the (i-1)th-order. Therefore, Eqs.(47), (49) and (58) have to be solved successively up to
the desired order of the cluster amplitudes. Once the cluster ampliktudes are obtained, the

response properties E™ of ahy order can be calculated by the use of Eqs.(48) and (57).

4. Dynamic Response Property by the Coupled-Cluster Theory

Recently, Koch et al. have derived analytical expressions for the higher-order response
properties by the CC response functional theory [21]. In the present paper, the corresponding
equations to obtain analytical expressions for the time-dependent nth-order response properties
will be derived according to the method proposed by Monkhorst [13]. We refer to this
formalism as the time-dependent coupled-cluster (TDCC) method.

The time-dependent Schrédinger equation :

H(a,t)lO>=i§—tIO> (63)

is used. Consider the total Hamiltonian

H(x,t)10>= Hy +aH, e +e™")e", o (64)
0 1
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where the second term is an external time-dependent one-electron perturbation. A small

positive number £ is used in order for this perturbation to be applied adiabatically.

The cluster operator T(« , 1) can be expanded as follows:

0 1 2 2 3 4 4
Tw.t) =TQ+ar%) + 7% +° 1% +* 1) +--

Here, the excitation operator T® of a given order i is written as

. N . . . .
T = Y1890 =10 + 150 + - + X0,
m=1

where

i) N T +
T, (1) =Y Or,(1) aya,
ar

THm=1 Y @ S () af af ap ag , ete.

abrs

rs...
Here, It should be noted that the cluster amplitudes ?ab..{f) depend on time.

The time-dependent wavefunction 10> is expressed as

T(,t)-ié(a,t)

0
10>= e 109

The phase factor 6 (¢, ) can be expanded as

) @

o(a,t)= E(Ot +a6(1)(t)+a26 (t)+a36 (3)(t) +a46 (4)(t) F oo
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(67)

(68)

(69)
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Substitution of Egs.(64) and (79) into Eq.(63) gives

ot -iot_ gt T(a,t)-id(a,t), (0) .0 T(a,t)-is(a,t),(0)
[Ho+oHye' ' +e' e e l 10 >=iz-e ' 107> 71y
Substituting Eqs.(65) and (70) into Eq.(71), we obtain
[H0+ aHl(eim+e-im)e€’] eT(a,z)-i6(a,t)|O(0)>
, -id(a, 72
- {E(0)+i§at—[aT(1)(t)+m]+%[a 6Dy 41} M@ B@ GO, T

In the limit of time ¢ approaching negative infinity, Eq. (72) should taken on the form

Hg eT(a,-=)-is(a, =) 10©@s =
(©) . d (1)
{E + [zgt—(aT (t)+---)]t

+ ['387(“ 87y + ) ]::-oo}

= -co

gl (@O, (73)

The eigenvalue and the eigenvector of the unperturbed Hamiltonian Hy in this limit are Eg and

T(a, <0)-id(a, ), (0) . .
e l 10°">, respectively; that is,

T(a, -0)-id(a, ) (0) T(a,<)-id (o, -c)
(4 €

H, 0% = E, 1095 . (74)

Therefore,
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T (k)(_oo) =0 *k=1,2,..), (75)
and

(k

5§ Pey=0 = (k=12 ..). (76)

e T(a,t)+id(a,t)

0
Operating <0( )| on both sides of Eq. (72), and noting that (&, ¢)

can commute with Hy and H,, we obtain

(0) -T(a,t) iot  -iwt_ et. T(a,t) .(0) 0

<0Ve [ HyraH e ey e 1e 0 >= = 8(a,1). a7
Using Eqgs. (65) and (70), we may rewrite Eq.(77) as

©o 1% oar®uy-ar®uy--- ot -iot_ et

<0 le (e JIHo+aH(e +e e ]
[0}] 1 ©)

of ol e T (O 0 1 2). (2

(e (t)+ (t)+ ) e IO()>=E()+—aa—t(a6()(t)+a()6()(t)+~-). (78)

rs.. e -T(o,t) +id(a,t)

Likewise by operating <as...! on both sides of Eq.(72), we obtain

rs. T2 ar®uy-ar %) - iwr et
<ab..:le (e

Y[(HoraHye' +e ) e’

ar ey +ar®ey . T
e

( Ye -i aa—t(T (°)+ aT m(t) S )I0(0)> =0. (79)

From Egs.(78) and (79), CC equations for the response properties of the order n are

obtained as follows.
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0 (0
0 -T T 0 0
0% Hye 0% = E? (80)

© ©

< sreT Hge' 109 = 0. (81)

These equations are again nothing but the original CC expressions, Eqs.(46) and (47).

in=1

a8V (p)

<00 T { Hy(eiot+et 4 e-iot+ery 4 [Hy, TH(0)] } eT@100s = 5 (82)

0)

© (
T i -i 1 T
<;Z:::|e {Hl(ezwt+£t+ezwt+et)+ [HO,T( )(t)]} e

¢Y)

ot i (83)
i) p=2
<00 o-T® { [Hy, T V@) (eiot+et 4 grivt+er)
(2)
+%[[H0, T D1, T V()] + [Ho, T(Z)(t)]} eT® 1005 = Q_‘Sa_t(‘l, (84)

0)
T
<tgire” {0

iwt+et it +Et
+ e

© 2)
.oT 77 (p) |0(0)> 0.

+3(tHo T 01T 01+ Ho TR0 } ¢ - i T (85)
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<0O)] -T® { [Hi, T P(0)](eiwt+et 4 grivt+er) 4 %[[Hl ,TOD], TY0]
(eiotset s giwivety 4 [Ho, T O1+LiHo, TV T V01, T 0)

26 (1)

+[[Ho, T V], T ®(1)] } eT 1005 = >

iot+et -iwt +et

<cate” (P e+, 1O V0!

it +et -iwt +€t

e e ) +[Ho T (r)]+6—[[Ho, P01, 7 Y01, 1Yo

o &)
+[[HO’T(1)(I)],T(2)(I)]} R aT_(t)IO(0)> _ 0.

ot

©0) .
1cot+st -lwt+EL

0
<0( )

zcot+£t -iwt +£t 1) 2) iot+et -iwt +£t

T ()](6 +te )+[[H1,T (01, T (0)](e +e

+[Ho, T (r>]+——[[[[Ho,T“’<r>] P01, 701, 70

+5[[[H0,T Y01,7 01,1 (t)]+§[[Ho,T EOIN AR OY

© @
+[[H0,T(l)(t)],T(3)(t)]} el 109 = asat (1)
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e Ly, T e O i, T V01, T V),

(86)

(87)

(88)



<0©) 1@ { [Hy,T (3)(t)](eicot+st +e-iotrer) 4 %[[[Hl ,T (1)(1)], T (1)(t)],
T D(p))(eivt+et + g-iwt+ety 4 [[Hy, T W], T P(p)](eiwt+et 4 g-iwi+et)
+[Ho, T‘4>(z)]+2—14[[[[110, T O], T VW1, T O], T V()]

+ %[[[Ho , T O], T O], TP + %[[Ho , T @], TP®]

38 ()

+[[Ho, T V), T(3)(t)]} eT® 1005 = ax

The general CC equations for the nth-order (n >2) response properties are also

expressible in the form as follows:

© n-i

1
<0%ie” | .Z(W;NL!PM,M ..... wo([ [H 0, T "1, T “),

© (n)
T ‘"”’(t)])} R OGN

ot
© 1 n-i
v T 1 (ny) (ny)
<gare” | 1Py (L [H@,T 01T “0),
i=ON=1"*
© (n)
o, T ("”)(t)])} el - i———aT () IO(0)> =0.
ot
with
/Ho, (l =0)
H;(t) =\l Hl(eimt+£t+e-icot+et)’ i=1)
N
an =n-i, (n,>0, integer)
k=1
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(89)

(90)

29

(92)

(93)



Here, Pniny-ny is the operator which represents the summation over all combinations of
(n1, n2, ... ,ny). The series in Eqs.(90) and (91) are truncated after four commutators when H;
contains at most two-electron operators. Solving Eq.(90), the time-averaged nth-order
response properties, i. €., he first- order polarizability and the second-order hyperpolarizability

(exand 7, respectively) may be evaluated with the aid of the following relations:

7. @
%) = %Jf asat(r) g - _%a(w). 04)
T
@ _ o [ "% _ 1 |
E (@) = EEEJ A= gy (), (95)

5. Concluding Remarks

In calculating physical properties numerically, we often encounter difficulties related to
the choice of proper basis sets describing the accurate total energies under the electric field of
given strengths. As an alternative approach, some analytical expressions for the response
properties are badly needed. In the present work, general equations for analytical expressions
of the nth-order response properties have been derived on the basis of the MBPT and the CC
methods. These methods can include higher-order correlation effects systematically. In the
MBPT double perturbation method, however, correlation effects included are usually rather
limited for a practical reason related to the expense for calculating many higher-order
perturbational terms. Moreover, most higher-order response properties tend to need higher-
order correlation effects in order to result in correct results [2-8,22-23]. The time-dependent
coupled-cluster (TDCC) analytical method presented here will be most appropriate for

quantitative calculations of the higher-order response properties. Recently it has also been
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pointed out that qualitaiive calculations of the higher-order polarizabilities for open-shell
systems are difficult [3,30]. For these systems, the augmentations of the basis set seem to be
mandatory. Further, for reasonable treatments of the properties of the systems which cannot
be described adequately by a single-reference zeroth-order wavefunction, we would have to

develop the present approach on the basis of the multi-reference CC (MRCC) method [34-37].
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PART III

CALCULATIONS OF THE THIRD-ORDER HYPERPOLARIZABILITIES
FOR ORGANIC NONLINEAR OPTICAL SYSTEMS



Introduction

Calculation methods as mentioned in parts I and II are used for the evaluation of the
hyperpolarizabilities for several representative existing organic nonlinear systems. Nonlinear
systems studied here are classified to the monomolecular, charge-transfer (CT) and polymeric
systems. For these classified systems, each specific mechanism inducing the nonlinear optical
effects are investigated and then some new models of nonlinear optical systems are proposed.

In chapter 1, the monomolecular systems are examined. Comparisons of the results
obtained by the ab initio coupled-Hartree-Fock (CHF) and the semi-empirical uncoupled-
Hartree-Fock (UCHF) and CHF calculations are carried out. It is well known that the
augmented basis set is mandatory for the calculation of the semiquantitative hyperpolarizability
of the small-size system. Therefore, the augmented basis set which is appropriate for the
calculation of the third-order hyperpolarizability is presented.

In chapters 2-4, the static third-order hyperpolarizabilities (¥) of #-conjugated
polyacetylene and polydiacetylene systems are calculated by the use of the TDPT(time-
dependent perturbation theory), UCHF and CHF methods combined with the semi-empirical
INDO approximation. Characteristics of ¥ calculated for these systems are investigated in
rclatién to the chain-length effect. In the TDPT approach, three types of the virtual excitation
processes for the systems are investigated. In CHF approach, the plotting of the third
derivatives of the Mulliken charge densities ( ¥ density analysis ) against the electric field is
proposed for the analysis of the spatial contributions of 7.

In chapter 5, the static third-order hyperpolarizabilities ( yyyyy ) of alternate donor (D)-
acceptor (A) stacks and of segregated molecular stacks in the column direction are calculated

by the CHF method based on the INDO approximation. It is found that both the mixed and the

neutral/ionic segregated stacks exhibit large 7’yyyy values.
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In chapter 6, the third-order organic nonlinear optical systems are classified based on
the mechanism of the occurrence of third-order nonlinear effects and several appropriate
calculation methods of their third-order hyperpolarizabilities ( ) are discussed. The criteria of
the classification are the symmetry of charge distributions (centro- and noncentro-symmetric
charge distributions) and the types of the interactions which induce the charge-transfer (CT)
effects (through-bond and through-space interactions). Moreover, based on the classification,
new types of polymeric systems with polar side chains which involve both the through-bond and

through-space interactions are proposed.
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Chapter 1

Ab initio and Semiempirical Calculations of the Third-order Hyperpolarizabilities

for Centro- and Noncentro- Symmetric n-Conjugated Molecules

The static third-order hyperpolarizabilities are calculated for centro- and noncentro-
symmetric m-conjugated systems via ab initio and semiempirical methods. The basis set
augmentations to a standard 6-31G basis set are carried out at the ab initio coupled-Hartree-
Fock (CHF) level. At the semiempirical level, the INDO Rayleigh-Schrédinger perturbation
theory (RSPT), the CHF and CHF combined with Mgller-Plesset second-order (MP2)
perturbation theory are employed. Results for the INDO and ab initio CHF methods are in
agreement qualitatively well each other. The ¥ density analysis is also employed to understand
the spatial contributions of the ¥ values. This analysis reveals the differences of 7 and ¢
contributions, and of the contributions of o and S electrons in the case of the open-shell

molecules.
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1. Introduction

It has been recognized that the delocalized n-electrons contribute to the remarkable
enhancement of the nonlinear polarizabilities [1,2]. The nonlinear systems with large nonlinear
effects tend to possess noncentrosymmetric charge distributions [3,4]. These systems involve
the intramolecular charge-transfer (CT) effects. In this work, the centro- and noncentro-
symmetric systems are mainly examined.

In this report, several variational and perturbational approaches at the ab initio and
semiempirical levels are employed. For the ab initio coupled-Hartree-Fock (CHF) and coupled-
perturbed-Hartree-Fock (CPHF) methods [5-18], it is well known that the choice of basis set
is very important for small molecules [5-9]. In the present work, the augmentations to the
standard 6-31G basis sets for C, N and O atoms are performed according to the method by
Hurst et al. [5]. It is expected that the nonlinear optical properties for smail molecules are
reproduced semiquantitatively well by ab initio CHF method with the augmented basis sets.
For the aniline, nitrobenzene and p-nitroaniline, it is found that the qualitative agreements
between the ab initio and semiempirical CHF values are achieved well.

There are indications that the electron correlation effects are somewhat larger for third-
order hyperpolarizabilities [10,11,13,19,20]. Therefore, the Mgller-Plesset second-order
(MP2) perturbation theory [21] is employed combined with the INDO CHF calculations
[22,23]. Further, the Rayleigh-Schrédinger perturbation theory (RSPT) [22,24,25] without
electron-correlation effects is attempted. This method is referred to as the RSPTO method [22]
hereafter.

In the previous paper [22], we proposed the Y density analysis as a convenient
procedure which can exhibit the spatial contributions of ¥ values. In this work, the ¥ density
analysis at the semiempirical CHF level for 7 and o electrons, and/or ¢ and f electrons.

Details of the RSPT0 and CHF(+MP2) are the same as those described previously [22].
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2. Calculated methods and systems

The ab initio and semiempirical methods are employed to obtain the third-order
hyperpolarizabilities for the butadiene (a), diacetylene (b) and benzene (c) shown in Fig.1.
Bond lengths and angles for butadiene (a), diacetylene (b), benzene (c) and dicyanoetylene
(g) are taken from experimental data. The ab initio quantum chemistry program HONDO7 [26]
is used. The selection of basis set is known to be very crucial for the calculation of the
qualitatively correct 7 value [5]. Hurst et al. proposed the basis set augmentation appropriate
for the calculation of 7 value in the chain direction for regular polyene [5]. In the present work,
we extend the standard 6-31G basis for the C, N and O atoms nearly according to the method
by Hurst et al. [5]. The diffuse p functions are generated from the most diffuse 6-31G
exponents in the way that their ratio make a geometric series. The polarization d functions
have the same exponents. - These diffuse p and polarization d functions are added to the
standard 6-31G basis sets for C, N and O atoms. The augmentation to the basis of H atom is
not carried out since it little affects the 7 values for the systems studied here. Details of the
augmentations are given in Table 1. This augmented 6-31G basis set is referred to as the 6-
31G+PD hereafter. At the semiempirical level, the INDO RSPTO, CHF and CHF+MP2
methods are employed. In the CHF method, the numerical differentiations are used. The
minimum field strength is 0.005 a.u., which seems to be most appropriate to assess the
calculated results.

mono- and di- Substituted benzenes with donor (D) and acceptor (A) groups; aniline
(d), nitrobenzene (e) and p-nitroaniline (f), are examined. These molecular geometries are
optimized at 6-31G+PD and 6-31+G [27]. These systems possess the noncentrosymmetric
charge distributions. The CHF and CHF+MP2 methods are used for the calculations of the
hyperpolarizabilities for these systems. Results by the ab initio CHF and CHF+MP2 methods
with 6-314+PD and 6-31+G [28] are compared with the INDO calculated values.

94



The system (g) is trans-dicyanoethylene with centrosymmetric charge distributions.
The INDO RSPTO, CHF and CHF+MP2 methods are applied to this system. The ionic trans-

dicyanoethylene (g)~ is also examined.

3. 7 density analysis

The approximated 7;;, in the ¥ density analysis is expressed as follows [22] :

Yoz = = 32 (PS4t (1)

The 9% represents the z component of the coordinate of the atom located at the center of the
atomic orbital s. The (PS);; is the Mulliken charge density divided to the atomic orbitals s. Sy
is the overlap matrix element and Pg is the bond order matrix element. This approximation
implies that the charge densities are concentrated on the center of the atomic orbital 5. The
spatial characteristics of ¥ can be obtained by the use of the plots of the magnitude and sign of
the ¥ density on each atom. The plus sign of the ¥ density implies that the second derivative of
the charge density increases with the increase in the field, while the minus sign implies the
inverse effect. In the ¥ density plot, the size of a circle on each atomic site indicates the
magnitude of the %;,,, densities, while the black and white circles correspond to the increased

and decreased V;;,; densities, respectively.

4. Results and discussion
4.1. Comparisons of several calculation methods for the small-size systems
The Y,,,, values for butadiene (a), diacetylene (b) and benzene (c) calculated by the ab

initio and INDO methods are listed in Table 2.v The results from the ab initio CHF method are in
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good agreement with the results of Chbpra et al. [9]. The INDO method tends to give the
smaller I! values than the ab initio results. However, the qualitative tendencies of 7;;;;
values at the INDO level except the RSPTO method for (a), (b) and (c) are in good agreement
with those of the ab initio CHF values. The degree of the electron correlation effects at the
INDO level is found to vary with the systems remarkably. For example, the %;,,; value for
butadiene (a) at the INDO CHF+MP2 level is 2.0 times as large as the values at the ab initio
CHF level, while the value for benzene (c) at the INDO CHF+MP2 level is 1.4 times as large
as the values at the INDO CHF level.

4.2. Analysis of the contributions of 7 and o electrons by the use of the ¥ density

For butadiene (a) and diacetylene (b), the plots of the 7;;,, densities are employed to
interpret their spatial characteristics. The results by the INDO CHF method are used. Figure
2 shows both the 7 - and 0 - ¥,;;, densities. For butadiene (a), although the contributions of 7
- 12222 densities for the central two C atoms and those for the C atoms at both ends are
opposite in sign, the contributions of the central two C atoms are much larger than those of the
C atoms at both ends. As a result, for both butadiene (a) and diacetylene (b), the 7 - Ym;
densities give large positive contributions, while the o - %,,,, densities give small negative
contributions. Therefore, in these systems, the characteristics of whole the Y,22, are
determined mainly by the contributions of ﬂelectrbns. The variations in 7%,,,, densities for
diacetylene (b) indicate the non-local effects ranging from the right half of the molecule to the
left half. These non-local separation of the %;,,, densities suggests the nonlinear dependence

of Yvalue in the chain direction on the chain length.
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4.3. Comparisons of the semiempirical and ab initio CHF methods for the medium-size
noncentrosymmetric systems

By the large-scale ab initio calculations for the long regular polyenes, Hurst et al.
pointed out that the basis augmentations are much less important with increasing chain length
[5]. Considering from this fact, the CHF at the semiempirical level are expected to give the
reasonable ¥ values for the medium and large-size systems. As the example of the
noncentrosymmetric medium-size systems, aniline (d), nitrobenzene (e) and p-nitroaniline (f)
are examined. The INDO calculated 7;,;; values are listed in Table 3. From these results, the
MP2 effects slightly increase the CHF results. In the INDO CHF and CHF+MP2 methods,
the 7,22, values increase in the order : (d)<(e)<(f). In the ab initio CHF methods with 6-
31G+PD basis and CHF+MP2 with 6-31+G basis, the %;,;, values increase in the same order
: (d)<(e)<(f). In the CHF method, the ratios of the INDO/ab initio values are aniline (d) 0.16,
nitrobenzene (e) 0.16, and p-nitroaniline (f) 0.27. In the CHF+MP2 method, the ratios of the
INDOY/ab initio values are aniline (d) 0.25, nitrobenzene (e) 0.15, and p-nitroaniline (f) 0.21.
From these results, the semiempirical INDO method can simulate the ab initio
hyperpolarizability with a scaling method. Both INDO and ab initio CHF+MP2 results
indicated that the %;;,, values for nitrobenzene (e) are slightly larger than aniline (d), whereas
the ¥;,,; values for p-nitroaniline (f) are about 5 times as large as the values for nitrobenzene
(e). This implies that the intramolecular CT effects from D to A groups mainly contribute to
enhance the total Y;,,; values of p-nitroaniline (f). Ab initio CHF+MP2 calculations with 6-
31G+PD basis are expected to investigate the V;,;, values for these systems more precisely.

From the spatial characteristics of the 7%,;,, densities for p-nitroaniline (f) by the INDO
CHF method shown in Fig.2, the contributions of & and & electrons are found to be opposite in
sigh. Large variations in the %;,,, densities on the amino and nitro groups are mainly related to

these contributions. The contributions of 7 electrons, which are positive in sign, are much
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larger than those of o electrons, which are negative in sign, so that the net 7;;;; comes to be

positive in sign.

4.3. INDO CHF hyperpolarizability and the ¥ density analysis for the open-shell system

System (g) is the acceptor molecule with centrosymmetric charge distributions. The
Y2222 values calculated by the INDO method are listed in Table 4. For the neutral and anion
systems (g)? and (g)~, the tendencies of the RSPTO values agree well with those of the CHF
values although the values by the CHF method are much smaller than those by the RSPTO
method. At the RSPTO and CHF levels, the 7,,,, value of ionic dicyanoethylene (g) is found
to be about twice as large as that of neutral dicyanoethylene (g)0. At the CHF+MP2 level, in
contrast to the results by the RSPT0 and CHF methods, the %;,,, value for the ionic
dicyanoethylene (g)" is smaller than that of the neutral dicyanoethylene (g)°. Ab initio CHF
method has to be needed to confirm the above tendencies more precisely.

The 7,,,, densities for (g)0 and (g)~ are illustrated in Figs.3. From the Y, densities
for the neutral dicyanoethlene (g)0, the central CC double bonds exhibit the negative
contributions to the 7;;,, value, whereas the cyano groups at both ends exhibit the positive
contributions. From the definition of ¥ density, the contributions for more remote cyano groups
from the center of the molecule are larger than those of the central CC double bonds, so that the
total ¥;,,; value comes to be positive in sign. The 7;;,, densities for the ionic dicyanoethlene
(g)~ are divided into the contributions of « and J electrons. It is found that the contributions of
o electrons are distributed on the cyano groups, while those of B electrons are on the central
CC double bonds and the N atoms in the cyano groups. The contributions of & electrons are
positive in sign, while those of B electrons are negative in sign. The contributions of ¢
electrons are larger than those of f electrons, so that the total %;,;, values come to be positive

in sign. This implies that one excess & electron increase the Y;,;, densities of o electron on
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the cyano groups and those of f§ electrons on the central CC double bonds and the N atoms in
the cyano groups.

From the large-scale ab initio calculations for the small-size molecules, it is noted that
the augmentations of basis sets and the inclusions of the higher-order electron correlation
effects are very important for the calculation of the hyperpolarizability for the anion system [16-
18]. Ab initio CHF calculations based on the coupled-cluster (CC) theory [18] are now in

progress to confirm the tendency of hyperpolarizabilities for the anion systems.
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Table 1. Exponents for diffuse and polarization
Gaussian orbitals for 6-31G+PD.

Atom p d
C 0.05230 0.05230
N 0.05822 0.05822
0 0.07191 0.07191
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Table 4. Yzz.: values [a.u.] calculated by the INDO method
for the neutral and ionic dicyanoethylenes (g)° and (g)~.

INDO
System
RSPTO CHF CHF+MP2
(2)° 202.4 34.7 362.8
(g)" 451.5 77.7 276.9
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Chapter 2

CNDO/S-CI Calculations of Hyperpolarizabilities : Regular Polyenes, Charged

Polyenes, Disubstituted Polyenes, Polydiacetylene and Related Species

The analytic formula for the third-order hyperpolarizability 71-]-,(1 (-3w ;0,0,0) can be
derived from the time-dependent perturbation theory. An approximate formula of 7‘-1-,(1 in a static
electric field is presented here. The 7,,,, values (the chain axis components) for regular
polyenes, charged polyenes, donor(D)-acceptor(A) disubstituted polyenes, polydiacetylene
and related species are evaluated by the use of several quantities calculated for low-lying
excited states by the CNDO/S-CI method. The signs and magnitudes of 7,,,, and the effects of
variations in chain length are investigated on the basis of the calculated results. For regular
polyenes, the calculated V,,,, values are positive and a power law dependence on the chain
length N is found with an exponent of 4.14. In contrast, the calculated values of 7,,,, for
charged polyenes(+) are negative, but possess a similar N-dependence with an exponent of
4.44. The signs, magnitudes and N-dependences of 7,,,, for disubstituted polyenes with

donor(D) and acceptor(A) groups and polydiacetylene are discussed in relation to the

experimental data available.
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1. Introduction

The third-order hyperpolarizability ¥ju(-3w ;®,m,@) has been receiving intense interest
recently. The analytic expression for 7’ijk1(-3w ;0,0,0) is derived here from time-dependent
perturbation theory [1] in a similar fashion to the derivation of the second-order
hyperpolarizability Bii(-2w ;w,w) treated in previous papers [2,3]. However, the expression
for ')’,-ju(—?,a) ;0,0,w) is considerably more complex and the higher excited states contribute to
Yiju significantly. Therefore, approximations of terms in the full formula of ¥ju(-3® ;,,)
are presented. The approximations clarify the virtual excitation processes [4,5] for the third-
order nonlinear coefficients, and reduce the labors of calculation on the basis of the full formula.
The approximate formula is applied to the evaluation of the %;,,, values (the chain axis
components) for relatively short 7-conjugated compounds. As previously [2,3], the excitation
energies, transition moments and the differences of dipole moments between excited and
ground states are calculated by the CNDO/S single-excitation CI (SCI) procedure.

There are three objectives of this study : first, to examine the magnitudes and signs of
the Y., values for regular polyenes and charged polyenes (+) and (-) and to clarify their
dependences on the number N of carbon-atom sites [7-9]; second, to investigate the ¥;;,,
values for disubstituted polyenes with donor(D)-acceptor(A), D-D, A-A groups and related
species; and third, to calculate the %;;,, values for polydiacetylene and to examine the

calculated results in relation to the experiments [10,11].

2. Theoretical Methods

A theoretical formulation for the third-order hyperpolarizability ¥ju(-3® ;,0,®) is
given by time-dependent perturbation theory [1]. However, the full expression for ¥ju(-3w
;0,0,0) is too complicated to provide a clear picture of the virtual excitation processes [4,5].

Thus, the processes have been separated into three different contributions [5] as shown in
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Fig.1. In order further to clarify the characteristics of the processes, the following
approximations are introduced : (1) in compounds with 7-conjugated linear chains, the chain
axis component of 7,-ju(-3a) ;0,0,0) is assumed to be predominant, so that ¥;(-30 ;0,0,0),
which corresponds to V,;,,(-3@ ;0,0,0), is adopted as the characteristic quantity of the third-
order hyperpolarizability; (2) for contributions of type (I) in Fig.1, all terms are considered;
(3) for contributions of type (II) in Fig.1, the predominant term is considered to be the process
(On-n0-0n-n0). When n is set to n', the term obtained is denoted type (II)'; (4) for
contributions of type (III) in Fig.1, a reduction to the process (On-nm-mn-n0) is made by
eliminating the terms with n#n' from the process (On'-n'm-mn-nQ). The reduced term is then
denoted type (III)'.

Approximations (3) and (4) are illustrated in Fig.2. These are considered to be reliable
unless many higher excited states contribute to the third-order nonlinear excitation processes.
Approximations (3) and (4) are expected to be applicable to small molecules and/or relatively
short conjugated chains. The approximate analytic formula for ¥;;(-30 ;0,0,0) is given, using

the above approximations, as

Yii(-30 ;0,0,0) =

(i (Auiy)?
21 Hno O (Eng-(30Y ) E > (250))Eno?-(h0)?)

Y iy En } (y
n=1 .
\
J

Eno(Eno*+(#®)?)

(Eno®-(310)2)(Eno®-(100)?)

. . E 02 E mo+AE no(Fi)2-3E no (i )
+ 2 (i) Wi )’ O :
m,nz=1 Hno) A (Eno?-(310)?)E no-(h0) ) (Emo*-(2h0)2)

m#n

In the case of a static electric field, Eq.(1) is reduced to Eq.(2).
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where the first, second and third terms correspond to the type (I), type (I)' and type (III)’
contributions of Fig.1, respectively. From Eq.(2), the terms expressed by type (I) and type
(III)' contributions are positive in sign, while the type (II)' contribution is a negative.
Therefore, the overall sign of ¥j; is determined by the detailed balance between the (I+III')-
and (II')-terms.

In order to calculate ¥;; by the use of Eq.(2), the excitation energies (E,g), transition
moments (Lon, Unm) and the differences of dipole moments (u,,,) between excited and ground
states are needed to be known. Here, the CNDO/S approximation [6] including the single-
excitation configuration interaction (SCI) is employed to calculate these quantities. In these
SCI calculations [2,3], only the & electron orbitals are included because -7 * excitations
contribute predominantly to low-lying excited states and because the z-electron contribution to
Yiju is known to be more dominant than the o-electron contribution [4,5].

3. Results

Organic systems studied here are schematically shown in structural formula (A)-(I) of
Fig.3. The compounds are placed on the z-x plain, and the coordinate z axis is chosen along the
chain axis. Under this assumption, a dominant component of %, is given by ¥;;;;. Bond
lengths and bond angles for these systems are assumed on the basis of experimental data and
the bond alternation has been taken into account. For regular polyenes, lengths of 1.35 and

1.45 A are assumed for the double and single bonds, respectively. For the charged polyenes, it
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is assumed that the alternation between single and double bonds is inverted at the center of the
chain.

Table 1 summarizes the ¥,,,, values in a static electric field and the values of the three
types of contribution for the varying number N of carbon-atom sites in systems (A)-(I). Figures
4-12 show the log-log plots of the absolute value of %, , i.e., 1%, and each part of 17,
versus the number N of carbon-atom sites. Table 2 shows virtual excitation process which
makes the most dominant contribution to each part, together with the ¥,,,, values at N=9 for
(B), (C), (G) and at N=8 for the remaining systems.

From the calculated results, it is seen : (a) that the first excited state is predominant in
type (I) and type (II)' contributions; (b) that both the first and second excited states are
contribute to type (III)' contributions in centrosymmetric systems such as a regular polyene;
and (c) that plurality of excited states, including a few higher states, contribute to type (iII)'
contributions in noncentrosymfnetric systems such as a D-A disubstituted polyene.

The contributions of type (I) for the regular polyene (A) are found to be zero since the
Ap disappears because of the centrosymmetric structure. In type (II)' and (III)' contributions
for the regular polyene (A), the absolute values of the type (III)' contribution are larger than
those of the part (II)' contribution, so that the net %,,,, values are positive in sign. In this
system, the process (01-10-01-10) is dominant in the type (II)' contribution while the process
(01-12-21-10) is dominant in the type (III)' contribution throughout all the numbers N of carbon-
atom sites. Figure 4 shows that the calculated values of type (II)', type (III)' and 7%, all fit

well expressions of the form:

Yyssr = aNk . ‘ (3)
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From Fig.4, these terms have power law dependences on the number N of carbon-atom sites
with exponents (k) of 4.09, 4.10 and 4.14, respectively. The results are in good agreement
with the previously reported results [4,7-9].

Ab initio calculations of ¥ in a static electric field for regular polyenes have been
carried out by Hurst et.al. [12]. Their calculations using the CPHF method give 7’i,-k1 in a static
electric field by differentiating the ground state energy at the Hartree-Fock level obtained
variationally in the presence of an electric field. They investigate the dependences of some
basis sets on ¥y and propose the basis set named 6-31G+PD by which reasonable results of
the chain axis component can be obtained. In order to compare their results with those obtained
by the present authors, the chain axis components were calculated from their equation of
extrapolation and their values are plotted together with our results in Fig.13. Our ¥y, are
about 60% of their values at the 6-31G-FPD. As for the dependence of ¥;;;; on N, our k value
(4.14) agrees well with theirs (k=3.91) at 6-31G+PD. This suggests that the three-type
approximation with CNDO/S-CI method is appropriate to reproduce the dependences of Yy22z O0
chain length of medium-size polyenes, which are obtained by the large scale ab initio CPHF
method with th;z augmented basis sets.

The calculated results for the charged polyenes (+) (B) show that the Itype (D) values
are zero because of the centrosymmetric structure as in the case of regular polyenes, while the
ltype (II)'l values are larger than ltype (II)'| values unlike the regular polyene, resulting in a
Y,.2; that is negative in sign. The result is in good accord with the calculated result for the
charged soliton (+) reported by Silbey et.al. [7;9]. From Fig.5, it is seen that Itype (II)', Itype
(II)' and 1%,.,, | of charged polyene (+) have the power law dependences on N with the
exponents 4.57, 4.61 and 4.44, respectively. Similarly, Fig.6 shows that ltype (ID)'l, Itype
(TII1)'| and 1%,,,, | of charged polyene (-) exhibit similar power law dependences with the

exponents 4.25, 4.26 and 4.25, respectively.
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The system (F) represents the largest 1%;,,, | value among the disubstituted systems:
(D) with amino groups as electron donors, (E) with nitro groups as acceptors and (F) with
both amino and nitro groups. The 7 values decrease in the order: (F) > (E) > (D), as shown in
Table 1. However, the vN dependences of 1%;,,, | in Figs.7-9 show that k values for (D), (E)
and (F) are 3.64, 2.37 and 2.70, respectively. From comparison with the N dependence of each
part for the regular polyenes (A), it is found that system (D) exhibits smaller N dependences
of Eq9 and Eg than system (A), and that the N dependences of Ejo, Ezo and lp;,l for system
(E) are smaller than those of system (A). Since D-A disubstituted system (F) is not
centrosymmetric in structure, the contribution of type (I) to (F) is not zero, whereas types
(ID' and (III)' contributions are nearly cancelled as shown in Fig.9. Therefore, the N
dependence of Itype ()| contribution seems to be reflected mainly in the N dependence of the
total 17,,,, | value of (F).

It seems that the dipole moment difference (Ap) most contributing to type (I)
contributions, is not simply proportional to the number N of carbon-atom sites. This behavior of
Ay is responsible for the smaller N dependence of 1%, | for system (E). In fact, in the D-A
disubstituted polyene, the charge displacement by the 0-1 transition increases linearly with N
in the case of short chains, whereas the charge for long chains is more or less localized in the
vicinity of the carbon-atom sites connected with D and A substituted groups, rather than
showing a direct charge transfer from a D to an A group. Consequently, Au causes the
saturation for long chains.

For the system (G) with a carbonyl group at the middle of the chain, 1%;,, | values are
positive in sign. In this system, the Il and Ipy,! are smaller than those for the charged
polyenes. In Fig.10, Itype (II)'| exhibits a larger N dependence than does Itype (III)l. Hence,
the N dependence of 1%;,,, | is calculated to be small (k=3.29).
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Y222z values for system (H), which has a C=N backbone, become larger than those of
the regular polyene. From Fig.11, the N dependence of 1%,,,, | is the largest with k=4.53 among
all the calculated systems except for the polydiacetylene. This large third-order |
hyperpolarizability is probably due to the large polarization in the main chain. Ab initio
calculations such as CPHF are necessary to confirm this tendency.

The & values for the polydiacetylene (I) are found to be 6.67, 6.36 and 6.85, respectively,
from the N dependences of Itype (II)l, Itype (IIT)'l and !%,,,, | shown in Fig.12. The magnitudes
of k are the largest among all the calculated systems. The 7,,,, values for system (I) are,
however, enormously negative. This is attributable to the N dependences of the transition
moments (Iigql, I141,51) and the excitation energies (E1g, E20); ie., the |yl values are much
larger than |y, and the N dependences of Ity and E3o are larger than those of Iy, and Ejy,
respectively. Probably these differences are the origins of the characteristic behévior of V22,

values for polydiacetylene system (I).

4. Discussion and Conclusions
These CNDO/S-CI calculations show that the approximate formula Eq.(2) is sufficiently
reliable in reproducing the tendencies for ¥,,,, observed for relatively short 7 conjugated linear
chains [5]. Table 3 summarizes the dependences of Itype (II)'l, Itype(III)'l and total 1%;,,, | on
the number N of the carbon-atom sites, and the signs of ¥,,,, for all the systems treated here.
From Table 3, it is seen that the signs of ¥,,,, for the charged polyenes (B) and (C) are
opposite to those for the regular polyenes and that their dependences(k) are larger than those

for the regular polyenes. These tendencies seem to be attributable mainly to the fact that |py,!
is smaller than Iy, ,! in the case of the regular polyenes, while Ipgy,;| for charged polyenes
become large owing to the charge transfer from the neutral carbon sites to the charged site, so

that Itype (II)'| dominates over Itype (III)'l.
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For the systems disubstituted by donor (D) and acceptor (A) groups, it is proved that
|¥,22;} values are larger than those for the regular polyenes, although the N dependences
become smaller for the former systems. The present calculations demonstrate that the 17,224
values for D-A disubstituted polyenes are determined mainly by the type (I) contribution
because of the cancellation of type (I)' and (III)' contributions. The calculations also indicate
that the type (I) contribution is affected primarily by the IAu | value. It suffers saturation in long
chain systems because the charge localization in the vicinity of the carbon-atom sites connected
with the D- and A- groups occurs with the increase of the number N of carbon-atom sites. This
tendency probably leads to the characteristic behaviors of Y,22; concluded for D-A disubstituted
polyenes.

However, in the system (H), which might be expected to show the same characteristics
as do the D-A disubstituted system, it is found that a large charge displacement in the main
chain provides a large 1%,,,,| value, and furthermore, that the N dependence of 17;;;,l does not
exhibit so much saturation in contrast to the case of D-A disubstituted polyenes. It is
suggested that synthesis of type (H) compounds is worth attempting.

For the polydiacetylene system (I), the calculated %, values are found to be negative
in sign, and their magnitudes and the N dependences exhibit the largest values in all the
calculated systems. According to the recent experiments {10,11], the signs of Y observed for
this system are variable from plus to minus, depending on the experimental conditions. This
suggests that the ¥ value of the system is very sensitive to subtle changes in the molecular
structure and environmental effects. As can be seen from Eq.(2), small changes for
relationships of the magnitudes between type (II)' contributions and the other types can induce
an inversion of the sign of ¥,,,,. In fact, the present calculations do indicate that the
introduction or elimination of charge at the center of polyene, which corresponds to the case of

charged polyenes here, can change the sign, magnitude and the dependence of 7,,,; on N.
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Therefore, it is not surprising that the inversion of the sign of ¥,,,, occurs with small changes of
the molecular structure for the polydiacetylene systems.

In conclusion, the approximate formula Eq.(2) derived here is suitable for effective
computation and analysis of the third-order hyperpolarizability ¥y (-3w ;0,0,) for organic
molecules, such as long chain polyenes with donor and acceptor groups. The CNDO/S-SCI
method employed in the present calculations provides reasonable results at least in qualitative
sense. However, more careful examination of the contributions of double excitations [4,5] will
be necessary in the case of long polyenes. Ab initio calculations are also desirable for
confirmation of the qualitative tendencies revealed by the present CNDO/S-SCI calculations.

They are in progress in this laboratory.
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Table 1. Calculated values of the three types of contribution and the total %,,,, x 10 36 [esu] for

system (A)-(I).

(A)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
4 0.0 -2.09 2.98 0.887
6 0.0 -12.0 17.5 5.60
8 0.0 -39.3 58.1 18.8
10 0.0 -94.0 138 439
12 0.0 -184 266 81.9
(B)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
5 0.0 -9.18 6.86 -2.33
9 0.0 -145 111 - -33.8
13 0.0 -712 551 -160
©)
0,n-n,n-n,n-n,0 0,n-1n,0-0,n-n,0 O,n-n,m—m,n-ﬁ,O Total
5 0.0 -14.2 11.6 -2.59
9 0.0 -184 150 -33.8
13 0.0 -822 673 -149
(D)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
4 0.0 -6.27 8.22 1.86
6 0.0 -25.6 35.1 9.47
8 0.0 -68.9 96.3 274
10 0.0 -145 203 57.9
12 0.0 -261 361 99.3
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N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
4 0.0 -7.61 19.8 12.2
6 0.0 -33.2 67.1 339
8 0.0 -91.7 157 65.0
10 0.0 -194 305 111
12 0.0 -347 514 166
(F)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0.,n-n,m-m,n-n,0 Total
4 14.8 -7.46 9.58 17.0
6 42.7 -30.6 38.0 50.1
8 90.4 -82.4 102 110
10 157 -172 216 202
12 237 -304 394 327
(G)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
5 0.0 -1.01 4.29 3.28
9 0.0 -18.8 45.8 27.1
13 - 0.0 -96.1 170 73.4
(H)
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
4 1.05 -1.04 1.55 1.57
6 6.83 -5.29 9.59 11.1
8 23.2 -15.1 32.0 40.1
10 52.5 -32.0 77.2 97.7
D
N 0,n-n,n-n,n-n,0 0,n-n,0-0,n-n,0 0,n-n,m-m,n-n,0 Total
4 0.0 -26.9 11.8 -15.1
8 0.0 -1210 557 -659
12 0.0 -16000 5040 -11000
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Table 2. More or most contributing process (according to type contribution) to %,

for (A)-(I)2.

System D) 1) (1)

(A) 01-10-01-10 01-12-21-10
(-39.3) (50.0)

(B) 01-10-01-10 01-12-21-10
(-145) (76.8)

(C) 01-10-01-10 01-12-21-10

(-184) (107)

(D) 01-10-01-10 01-12-21-10
(-68.9) (81.4)

(E) 01-10-01-10 01-12-21-10

(-91.6) (102)

(F) 01-11-11-10 01-10-01-10 01-12-21-10
(87.2) (-81.9) (20.2)

01-13-31-10
(44.6)

(G) 01-10-01-10 01-12-21-10
(-18.3) (19.4)

(H) 01-11-11-10 01-10-01-10 01-12-21-10
' (22.2) (-14.9) (21.7)

(I) 01-10-01-10 01-12-21-10
(-16000) (4870)

a) %,z X 10 39 [esu] values of the contributions in three parts are shown in parentheses.
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Table 3. k Values and the signs of 7,,,, for (A)-(I).

System k(1) k(1T k(ITTy k(Total)  Sign of ¥,y
(A) 4.09 4.10 4.14 +
(B) 4.57 4.61 4.44 -
(©) 4.25 4.26 425 ~
(D) 3.40 3.46 3.64 +
(E) 3.49 2.97 237 +
(F) 2.54 3.39 3.39 2.70 +
(G) 478 3.87 3.29 +
(H) 429 376 427 4.53 +
(1) 6.67 6.36 6.85 —
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Chapter 3

Uncoupled- and Coupled-Haretree-Fock Calculations of the Third-order

Hyperpolarizabilities of n-Conjugated Polyenes with and without Defects

The static third-order hyperpolarizabilities (?) of #-conjugated polyenes are calculated
by the use of the uncoupled- and coupled-Hartree-Fock methods combined with the semi-
empirical INDO approximation. Characteristics of ¥ calculated for regular polyenes, soliton-like
polyenes and donor(D)-acceptor(A) disubstituted polyenes are investigated, particularly in
relation to the chain-length effect. Plotting of the third derivatives of the Mulliken charge
densities ( ¥ density analysis ) against the electric field is proposed for the analysis of the local
contributions of the constituent atoms to ¥. Results for the finite polyenes are extrapolated to
an infinity of the chain length to predict the intrinsic ¥ values per unit carbon-carbon (CC) bond

of polymeric chains.
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1. Introduction

Considerable attention has been given to the investigations of the nonlinear optical
properties of z-conjugated polyenes [1,2], in which delocalized n-electrons effect extremely
large longitudinal hyperpolarizabilities. Recently, a number of ab initio and semi-empirical
theoretical studies have been carried out [1-15]. The methods used in these studies can be
divided into two categories; one is the variational [3-8] method while the other, perturbational
[9-15]. Both methods involve the time-dependent and time-independent treatments.

Melo et al. [6] have performed theoretical calculations of the third-order
hyperpolarizabilities for regular polyene, soliton-like polyene, and polaron-like polyene at the
Pariser-Parr-Pople (PPP) level [16]. Their method is based on the perturbative expansion of
the Hartree-Fock (HF) density matrix [17]. They have concluded that the conformational
defects can make a non-negligible additive contribution to the total polarization response of the
system. For example, the ¥ values along the chain lengths for charged soliton-like polyenes
are negative in sign. In our previous work [9] based on the time-dependent perturbation theory
(TDPT) with the CNDO/S [18] single-excitation CI (SCI) procedure, the ¥ values for charged
soliton-like polyenes are likewise found to be negative. Recently, however, it is pointed out
that the SCI procedure is often insufficient for reasonable predictions of the sign and the
magnitude of ¥ [11-13].

Results of ab initio calculations to date unanimously indicate the necessity of the use of
large augmented basis sets for obtaining reasonable ¥ values for small molecules such as
hydrogen fluoride. However, such rigorous calculations can hardly be carried out for large
molecules. Fortunately, Hurst et al. [3] have shown that the basis set dependence of ¥
becomes small when the lengths of polyenes are sufficiently large. Moreover, according to

Kirtman and Hasan [7], the scaling procedure by the use of the finite-field (FF) INDO SCF
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calculations is able to reproduce the tendency of the results obtained by ab initio large-scale
calculations for the longitudinal hyperpolarizabilities of long polydiacetylenes [7].

In this article, the coupled-Hartree-Fock (CHF) method [3-5,8] based on the INDO
[16] time-independent variational approach is employed to investigate the signs and
magnitudes of the static Y values for regular polyenes, soliton—likekpolyenes and donor (D)-
acceptor (A) disubstituted polyenes. The ¥ values are evaluated by the numerical
differentiation of the self-consistent-field (SCF) energy of molecules in the presence of an
electric field of finite strengths. A method termed the Y density analysis is proposed for an

elucidation of local contributions of the constituent atoms to 7.

2. Methods of calculations

In our FF CHF treatments, -the ¥ value is calculated by differentiating the ground state
energy or dipole moment with respect to the external electric field. In general, the Y values by
the FF CHF method are liable to involve some numerical errors. However, when precise
calculation of the total energy and appropriate numerical differentiation are carried out under
careful selection of the field strength, the numerical errors can be minimized {4]. One
advantage of the FF CHF méthod is that it can be applied to almost any quantum chemical
formalism, for example, Mpller-Plesset perturbation theory (MPPT), in which the analytical
compufation of 7is not feasible at the present time [5].

The following equation is used for numerical computation of the longitudinal ¥ value in
the chain direction (z) as the fourth-order derivative of the total energy with respect to the

- electric field :
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Yo = —ko{ - EGF)+12BQF)-39E(F)+56E(0)

-39E(-F?)+12E(-2F%)-E(-3F?) } : (1)

Here, E(F?) is the total energy in the presence of the field FZ applied in the z direction. The
minimum field strength employed here is 0.002 a.u., which seems to be most appropriate to
assess the calculated results.

The relationships between the coupled-Hartree-Fock (CHF) and other approaches can
easily be understood on the basis of the double-perturbation theory [8,14,15], in which both
electron correlation and external field are regarded as perturbation. The theory is also referred
to as the Rayleigh-Schrédinger perturbation theory (RSPT). Thus, the total energy in the
presence of the field F is expanded as the power series of the field. The coefficient of the fourth-
order field is ¥,(0;0,0,0). This expression seems to be convenient for caléulation since only
the quantities related to the ground state are required. Yet, the orders of electron correlations
are usually limited to rather small ranks on account of practical reasons related to
cumbersomeness and expense in evaluating their contributions. It is well known that the RSPT
method including the first order of electron correlation is equivalent to the CHF method. In this
work, the RSPT method including no correlation effects (RSPTO method) is employed. This
method is equivalent to the uncoupled-Hartree-Fock method [8].

The derivatives of the charge densities with respect to the applied field proVide useful

information for an interpretation of the spatial characteristics of the ¥ value. The charge density

function can be expanded in powers of the field F [4]. The 7,,,, value is expressed as

Yez2z = — gl;f qu(3)(r)dr3 . (2)
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Here, g7 is the z component of the molecular coordinate and p(3)(r) is the third derivative of the

electronic density function p(r).

The 7 value is approximately given by the Mulliken charge density (PS)ss divided to the

atomic orbitals s involved :

Yooz == 3% (PS)gs, (3)

in which
(PS)ss= 2, (P)u(S)is (4)
t

where Sy is the overlap matrix element and where Py, is the bond order matrix element. The

9§ represents the z component of the coordinate of the atom located at the center of the atomic
orbital s. The approximation implies that the charge densities are concentrated at the atomic

orbital centers. We refer to the third derivative of (PS);s as the ¥ density. It is calculated by

the four-point numerical derivative method as follows :

(PS)§%>=$;{ (PS)ss(2F")-(PS)ss(-2F )42 [ (PS)s-FI)-(PS)s(FD ]}, (5)

where the (PS)ss(F?) is the Mulliken charge density of the ator;lic orbital s in the presence of
the external field FZ .

The spatial characteristics of ¥ can be elucidated by the use of the plots of the magnitude
and sign of the ¥ density on each atom. It is also possible to separate the density derivatives

into different contributions, for example, the ¢ and 7 contributions [4]. The plus sign of the ¥
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density indicates that the second derivative of the charge density increases with the increase in

the field, while the minus sign indicates the inverse effect.

3. Results and discussion

The molecular structures of polymeric compounds studied here are shown in Fig.1. The
direction of chain length is taken as the z direction. Bond lengths and angles for these systems
are all taken from the standard geometry data. For the regular polyenes, the lengths of 1.35 and
1.45 A are assumed for the double and single bonds, respectively. For the soliton-like polyenes,
it is assumed that the alternation between single and double bonds is inverted at the center of
the chain. The ¥,,;; values per unit carbon-carbon (CC) bond, namely, %;,,/N, calculated
by the RSPT0O and CHF methods are listed in Table 1.

The logarithms of (%;,,, / N) versus N are plotted in Fig.2. Variations in log(%;;;z / N)
with the increasing chain length exhibit similar trends for both methods. However, the
magnitudes of the log(Y;;;, / N) for several polymers obtained by the RSPTO method are
smaller than those by the CHF method. Moreover, the relative magnitudes of the log(Y;z;; /
N) by the RSP’I‘O method considerably differ from those by the CHF method combined with the
INDO UHF approximation. For example, the magnitudes for neutral solitons (d), which are
open-shell molecules, are much smaller than those for other systems. Nevertheless, the
uncoupled-Hartree-Fock (=RSPTO0) approach might be useful for qualitative understanding of
the relative tendencies for these systems. However, since RSPTO is admittedly less reliable
than RSPT1(= CHF), only the CHF results will be discussed below.

The variation pattern of the chain-length dependence of 7V for charged soliton-like
polyenes (c) is found to be noticeably different from the patterns for other polyenes (a), (b) and

(d); its ¥ increases most dramatically with the increasing chain length. The %;,,, / N values
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for D-A disubstituted polyenes (b) at small N are greater than those for other polyenes but, at
larger N, they are smaller than those for (a) and (c).

In order to compare the characteristics of the spatial contributions of ¥;;;;, the %,
density analysis is carried out for these systems with both larger and smaller N. The 7.,
density plots are shown in Fig.3. The size of the circles on each atom site exhibits the
magnitude of the 7;,,, densities and the black and white circles correspond to the increased and
decreased 7;,;, densities, respectively. At smaller N, the distribution patterns of the ¥;;,;
densities for the D-A disubstituted polyene (b) are similar to those for regular polyene (a).
However, the magnitude of the ¥,;,, densities for the D-A disubstituted polyene (b) are much
larger than those for the regular polyene (a). For the soliton-like polyenes at small N, the
charged soliton (c) exhibits two contributions of 7;;,, densities whose signs are opposite to
each other in contrast to the neutral soliton (d), so that the total 7;;,; values for the charged
soliton (c) are smaller than those for the neutral soliton (d). At large N, the magnitudes of
Y22z densities for the regular polyene (a) and the D-A disubstituted polyene (b) are much
smaller than those for soliton-like polyenes. This implies that for greater chain lengths, the
variation is localized in the vicinity of the carbon atom sites connected with D and A substituted
groups, without delocalization due to direct charge transfer from D to A group, so that the
Y2222/ N values tend to be saturated for long chains. For the charged soliton (c), the mutually
opposite contributions of 7;,,, densities are exhibited around the middle of the chain, while the
end of the chain contributes the plus 7;,;, values. On the other hand, for the neutral soliton
(d), the magnitudes of %;;,, densities are relatively small as compared to those for the
charged soliton (c¢), and the mutually opposite contributions of ¥;;,, densities are exhibited
from one end to the other of the chain. Therefore, the behavior of the %;;,; / N values on the

chain lengths for charged and neutral solitons (c) and (d) comes to be remarkably different. The
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rapid saturation effect of %,,;,/ N values for the neutral soliton (d) seems to have been caused
by the localization of an extra electron at the middle of the chain.

Melo et al. reported that, according to the PPP variational perturbation approach {6],
the 7 values for the charged soliton-like polyenes are negative in sign in contrast to the present
INDO CHF results. However, judging from the reliability of the INDO CHF calculations for
large-size molecules, the results that the charged soliton-like polyenes exhibit positive 7
values seem to be reasonable in the long chain region. Detailed investigations by the ab initio
CHF method are desirable to confirm the validity of our results.

The 7%;,,; / N values for infinitely long polymeric chains are estimated by extrapolation.
In this study, the extrapolation procedure presented by Hurst et al. [3] is applied. Thus, the

Y222 / N values are fitted by least squares to

logA(N)=a+£—+1&, (6)

where N is the number of the unit CC bonds and where A(N) is the 7%;,,,/N. The
extrapolated values for infinite polyenes are A(e) = 10%. The fitting parameters and
extrapolated values are listed in Table 2. The limiting Y;;,, /N value for the charged soliton-
like polyene is found to be Iérger by about two orders of magnitude than that for the D-A
disubstituted polyene. It is reported that the extrapolated ¥;;;; / N values have considerably
large uncertainties [7]. Therefore, the Y;,,,/ N values for larger polyenes would have to be
evaluated by the semiempirical scaling procedure in order to obtain reliable ¥;;, / N values [7].

Finally, it should be noted that, at the ab initio level, >augmentations of the basis sets
are required in order to reproduce the characteristics of the third-order hyperpolarizability

correctly [3,8]. For small-size systems, in particular, use of modest basis functions often
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leads to incorrect representations of the third-order hyperpolarizability. In this connection,
Hurst et al. pointed out that the basis augmentations become less important as the chain length
increases[3]. The present CHF calculations at the semiempirical level appear to provide
correct tendencies of the ?values for medium- and large-size systems as examined here.

| Although, in this work, the electron-electron correlation effects are neglected, the
characteristics of the third-order hyperpolarizability demonstrated will probably be reliable. The
Mgller-Plesset perturbation theory (MPPT) [19] will be applied to estimate the correlation

effects at the next stage.
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Fig.2. Plots of log( Yzz22/N) vs. N by the INDO CHF method. N is the
number of CC bonds.
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Chapter 4

Coupled-Haretree-Fock Calculations of the Third-order Hyperpolarizabilities

of Substituted Polydiacetylenes

Coupled-Hartree-Fock calculations of the static third-order hyperpolarizabilities (¥) in
the chain direction for regular polydiacetylene and several donor(D)-acceptor(A) substituted
polydiacetylene oligomers through C42Hy4 are carried out at the level of the INDO
approximation. The modes of the variations in ¥ with the increasing chain length are
investigated for the different types of polydiacetylene systems. The ¥ density analysis is
carried out to elucidate the spatial characteristics of 7. Results for sufficiently long oligomers
are extrapolated to an infinity of the chain length to predict the intrinsic ¥ values per repeating

unit of the polydiacetylenic chains.
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1. Introduction

Recently, a large number of #-conjugated polymers have been investigated in relation to
nonlinear optics. The longitudinal components of their hyperpolarizabilities are generally large
and increase nonlinearly with the size of the chain length [1-8]. The polydiacetylene systems
have attracted particular attention and are expected as the materials having large third-order
nonlinear characteristics.

The chain length dependence of the third-order hyperpolarizabilities for conjugated
polymers are thought to be an issue of practical significance. Kirtman and Hasan [5] calculated
the static longitudinal hyperpolarizabilities ¥ for the polydiacetylene and polybutatriene
oligomers through Cy6H¢ by the coupled-Hartree-Fock (CHF) [5-12] method in both the INDO
[13] and the ab initio formalisms [7-11]. The results of the INDO calculations have proved to
reproduce the chain length dependence of the ab initio results, provided a certain scaling
parameter is invoked.

In this work, the longitudinal ¥ values for regular polydiacetylene and six types of
donor(D)-acceptor(A) substituted polydiacetylene oligomers through C4oHy4 are investigated
by the INDO CHF method. Differences in mode of the variations in 7 with the increasing chain
lengths are examined for the different types of polydiacetylenes. The longitudinal ¥ values per
unit cell of infinitely long polydiacetylenic chains are predicted by the extrapolation of the results

of calculations for the polydiacetylene oligomers of finite lengths.

2. Calculation methods

Details of the CHF method used have been described previously [6]. Briefly, the third- .
order hyperpolarizability (?) is expressed as the fourth-order derivative of the total energy with
respect to the external electric field applied. The following equation is used for numerical

computation of the longitudinal ¥ value in the chain direction (z) :
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Yazez = g;?{ MEFI+ECFD) - (EQF)-E(2F") - 6EO) }, 1

where E(F?) is fhe total energy in the presence of the field FZ applied in the z direction. The
minimum field strength that is large enough to affect the numerical results without sacrifice of
precision is chosen to be 0.002 a.u., a strength which seems to be most appropriate for our
present purpose.

The ')’density analysis is found to be useful to understand the spatial characteristics of ¥

[6]. The approximate Y;;;, value in this analysis is expressed as follows [6] :

1 (3) z
Y2222= ——5‘—5‘ (Ps)ssqs’ (2)

4
where 4s represents the z component of the coordinate of the atom located at the center of the

A}

(3
atomic orbital s and where (PS) s is the third derivative of

(PS) ;= D, (P)hS) s (3)
t

with S, and Py, as the overlap and the bond-order matrix elements, respectively. The
approximation presumes that the charge densities are concentrated on the centers of the atomic
orbitals. The third derivative (P S)?s) is referred to as the ¥ density. The spatial characteristics
of ¥ can be elucidated most conveniently by visualizing the magnitudes and the signs of the Y

densities on the atoms.
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3. Calculated systems

Figure 1 shows structures of the polydiacetylene systems studied here. The structure of
the polydiacetylenic main chain is the one that was obtained by Karpfen [14] according to the
infinite polymer band structure calculations. The direction of chain length is taken as the z
direction.

System (a), which is designated as R, is regular polydiacetylene. System (b) denoted
by DA is the polydiacetylene which is substituted with the D and A groups at either end, and
systems (c)-(g) are the polydiacetylenes whose side chains are all substituted by the D and/or
A groups. The systems (¢)DDDD, (f)AAAA and (g)DAAD as well as (a)R possess
centrosymmetric charge distributions, while the systems (b)DA, (¢c)DADA and (d)DDAA are
noncentrosymmetric. The amino (-NH;) and nitro (-NO;) groups are chosen as the D and A

substituents, respectively.

4. Results and discussion

The longitudinal third-order hyperpolarizabilities (¥, ) for the various model systems
of the varying chain length N were calculated by the CHF method. The calculated Y values per
unit cell, i.e., %,;;/N, are summarized in Table 1. Figure 2 shows the logarithms of V222
N) versus N.

From Table 1 and Fig. 2, it appears possible to classify the systems into three
categories. The first category includes systems (a)R, (b)DA, (c)DADA and (d)DDAA,
which show relatively small %;,,,. Systems (¢)DDDD and (f)AAAA form the second category
exhibiting the ¥;,,; values of medium magnitude. Thirdly, system (g) DAAD is unique in that
it exhibits anomalously large 7;;;, values.

Systems (b), (c) and (d) of the first category are the noncentrosymmetric systems in

the sense described above. According to the analysis based on the TDPT (= time-dependent
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perturbation theory) [3,4,15-17] three-type approximation [3], the noncentrosymmetric
systems should generally tend to exhibit larger ¥ values than do the centrosymmetric systems
because of a large contribution of the intramolecular charge-transfer(CT) excitation involved.
For systems (c) and (d), however, the CT effects from D to A groups are operative primarily
across the main chain. Therefore, although the components of ¥ across the main chain may well
be enhanced, those along the chain under consideration will be little affected. Correpondingly,
in system (b), the CT effects along the main chain must be small because of the weak
interactions between D and A substituents placed at a large separation.

The second category, i.e., systems (e) and (f), is centrosymmetric. The substituents
attached to each double bond unit either donate or attract electrons all together. As a result, all
the double bonds are rendered either electron-rich or -deficient as compared to the non-
substituted chain. It appears that these situations somehow assist polarization of the main
chain, thus leading to a slight enhancement of ¥ in the chain direction.

The third category, i.e., system (g), can exhibit a large local CT in the chain direction;
the neighboring double bonds bear either A or D substituents. The situation accounts for its
markedly large %,,,,.

The 7 density analysis permits visualization of the origin of the ¥ values calculated.
Plots of the %;;,, densities for systems (a)-(g) at N=6 are shown in Fig. 3. The size of a circle
on each atomic site indicates the magnitude of the %;,;, densities, while the black and white
circles correspond to the increased and decreased 7;;,, densities, respectively. In all
instances, the signs of ¥ densities are seen to be inversed in the middle of the chains.

Minute inspection of the density distributions shows that the 7;,,, densities for the first
category (a)-(d) are somewhat smaller than those for other systems. The Y;;, densities for
systems (e) and (f) as the members of the second category are slightly larger than those for the

first category. For system (g), the magnitudes of the 7;;,, densities at each double bond unit
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and the C-C=C-C unit are found to be much larger than for other systems. These characteristics
are all in line with the tendencies noted for the relative magnitudes of the ¥ values listed in
Table 1.

The ¥;;2; / N values for infinitely long polydiacetylenic chains are estimated by
extrapolation. Hurst et al. [7] proposed an extrapolation procedure of a physical quantity A(N)
by the least-squares fitting to an iequation of the form:

logA(N) = a +1%+;C5, (4)

where N is the number of the unit cells and where A(N) stands here for V;,,, / N. The limiting
value at N — oo is thus A(ee) = 104, The fitting parameters a, b and c determined for our
polydiacetylene oligomers are listed in Table 2, together with the extrapolated values A(eo).
The limiting %,,,, / N value for system (g) is found to be considerably larger than the values for
the remaining polydiacetylene systems.

According to Kirtman and Hasan [5], the ratio (?;;;, values by INDO)/(Y;,;, values by
ab initio (4-31G)) for the regular polydiacetylene (R) is estimated to be 0.20 + 0.04 for
sufficiently long chains. Using this scaling factor, the limiting value for (a)R in the ab initio
framework is predicted to be (6.8  1.4) x 10° a.u., which agrees reasonably well with the value
((5.33 £ 1.17) x 10° a.u.) obtained by Kirtman and Hasan. The corresponding limiting value for
the case of (g)DAAD is as large as 2.7 x 10° a.u.

In conclusion, the centrosymmetric systems (¢)DDDD, (f)AAAA and (g)DAAD, are
predicted to exhibit fairly large %;,,, values in the chain direction. The system (g)DAAD, in

particular, will have anomalously large 7;,,,. The 7 density analysis seems to be useful for a
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pictorial understanding of the origin of large longitudinal hyperpolarizabilities possible with

conjugated polymeric chains.
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Fig.1. Structures of the polydiacetylene systems studied.
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Chapter 5

Coupled-Hartree-Fock Calculations of the Third-order Hyperpolarizabilities fbr

Mixed and Segregated Charge-transfer Clusters

Static third-order hyperpolarizabilities ( ')’yyyy ) of alternate donor (D)-acceptor (A)
stacks and of segregated molecular stacks in the column direction are calculated by the coupled-

Hartree-Fock (CHF) method based on the INDO approximation. It is found that both the mixed

and the neutral/ionic segregated stacks exhibit large 'Yyyyy values.
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1. Introduction

Organic materials which exhibit strong nonlinear optical properties have attracted
considerable attention, and materials with large nonlinear effects have been investigated
actively in recent years [1-13j. Most third-order nonlinear materials involve the intramolecular
charge delocalization to effect large hyperpolarizability ¥. Interestingly, nonlinear optical
systems with the intermolecular charge-transfer (CT) interactions have also been studied [14].
Recently, it has been reported that the mixed stack of tetracyanoquinodimethane (TCNQ) with
perylene exhibits enormously large ¥values [15].

In this paper, molecular aggregates in which donor (D) and acceptor (A) molecules
stack alternatively or segregatively, namely the mixed and segregated stacks [16], are
investigated, in order to analyze the effects of the intermolecular interactions and to propose
new models of the third nonlinear systems involving the intermolecular charge-transfer (CT)

effects. The coupled-Hartree-Fock (CHF) method in the INDO approximation is used to

evaluate the static third-order hyperpolarizabilities ( 7}y,,) in the column direction.
Dependence of Yyyyy on the size of cluster is also investigated. The 7 density analysis

proposed in a previous paper [17] is applied to the examination of the spatial contributions of

Yyyyy for the CT clusters. Details of the CHF method and of the ¥ density analysis are the

same as those described previously [17].

2. Method
2.1. Model systems

Figure 1 shows spatial arrangements of the alternate D-A stacks (2) and the
segregated A stacks (b) treated here. trans-Diaminoethylene and trans-dicyanoethylene are
adopted as the D and A molecules, respectively. The intermolecular distance was fixed at 3.0

A. In the alternate stacks (a), the D and A molecules are assumed to be placed in such a
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manner that the intermolecular overlap be maximal. For the segregated stack (b) as a model of
the A column in the segregated D and A molecular stacks, three models are considered: (i) the
ionic stack ((b)N-), (ii) the mixed-valence stack((b)0-5V-) and (iii) the neutral stack((b)?),
where N is the number of the monomers involved. The models (i), (ii) and (iii) correspond
respectively to the representative states involving complete CT, incomplete CT and no CT from
the D to A column in many existing CT complexes [16].

Geometries of the D and A component molecules were assumed on the basis of relevant
experimental structural data. Those for the charged A molecules are assumed to remain the

same as for the neutral trans-dicyanoethylene.

2.2. 7Y density analysis
The ¥ density variation in the column direction is examined in order to elucidate the

effect of intermolecular CT interaction on 7. The approximated ¥jyyy in the ¥ density analysis

is expressed as follows [17] :

Yoyyy =~ 3%33 PS)Pqy . (1)

Here, 42 represents the y component of the coordinate of the atom located at the center of the
atomic orbital s. (PS)s is the Mulliken charge density divided to the atomic orbitals 5. Sy is
the overlap matrix element and Py, is the bond order matrix element. The approximation is
based on the assumption that the charge densities be concentrated on the centers of the atomic
orbitals involved. The spatial characteristics of 7 can be obtained by the use of the plots of the
magnitude and sign of the ¥ density on each atom. The plus sign of the ¥ density implies that

the second derivative of the charge density increases with the increase in the field, while the

168



minus sign implies the inverse effect. In the 7 density plot, the size of a circle on each atomic
site indicates the magnitude of the 7yyyy densities, while the black and white circles correspond

to the increased and decreased 7yyyy densities, respectively.

3. Results
3.1. Mixed stacks

The Yyyyy values calculated for the mixed stacks (a) with N = 2, 4, 6 and 8 are listed in
Table 1. The mixed dimer (N=2) exhibits a positive Vyyyy Vvalue as large as 1229. The 'Yyyyy
densities shown in Fig.2 are negative and positive in sign for D and A molecules, respectively.
The CT effects from D to A thus lead to a large positive 7’yyyy value.

As Table 1 shows, the ?’yyyy values for the mixed stacks (a) increase almost linearly
with the increasing stack size N. The distributions of %)yyy densities shown in Fig.2 suggest
that the ¥)yyy densities at the both ends of the dimer (N=2) are carried over without loss to the
top and bottom molecules for the hexamer (N=6). The distance between the top and bottom
molecules are 5 times as large as that for the dimer (N=2), so that the total 7’yyyy value for the
hexamer is 5 times as large as that for the dimer. As a general trend, the ¥}y,y / (N-1) values
appear to be constant over different size of clusters as can be seen in Fig.3. The results can be
interpreted as an indication that the effect of the intermolecular CT interaction between the
nearest neighboring molecules as noted in the dimer is propagated without decay along the

column of the alternate stacks of the increasing stack size.

3.2. Segregated stacks

As Table 1 shows, the neutral segregated dimer (b)0 (W=2) exhibits a relatively small

positive ¥}, value. From the Yyyy densities shown in Fig.4, it is evident that the ¥,

value is yet caused by the CT effects. Needless to say, these effects are much smaller than
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those for the mixed dimer. The dominant spatial contributions of the Vyyyy densities are found
to be located on the cyano groups.

Again, the 7'yyyy values are (N-1) times as large as the value for the dimer (b)0 (N=2),
as can be seen in Fig.2. The Yyyy densities shown in Fig.4 indicate that the distributions of
Yyyy densities for the top and bottom molecules are similar to those of the dimer. Apparently,
the %yyy value is determined only by the interaction between the nearest neighboring

“molecules as in the case of the mixed stack (a).

For the ionic dimer (b)2- (N=2) in the triplet state, the relatively large positive Yyyyy
value is obtained as compared to that of the neutral dimer (b)0 (N=2) (Table 1). As is shown in
Fig.5, the %yyyy densities on each atomic site are opposite in sign for and B electrons. The
contributions of & electrons are dominant in the central CC double bonds and CH bonds. By
contrast, the contributions of J electrons are dominant in the N atoms in the cyano groups.
Both contributions are positive in sign, so that the total %yyy values come to be positive in
sign. Compared With the neutral dimer (b)0 (N=2), the Yyyyy values for (b)2- (N=2) are
calculated to become larger on account of two excessive & electrons existing in (b)2- (N=2). .

As can be seen in Fig.3, the ionic segregated stack (b)V- exhibits a nonlinear increase
when the size of the cluster is small. However, the Yyyyy/(N-1) values approach a constant
level for large-size clusters. The ¥)yyy densities for the hexamer (Fig.5) show that the
densities for the top and bottom molecules are much larger than those for the dimer (b)?- (N=2).
However, the contributions from the molecules lying inside the stack are contrary in sign to
those of the top and bottom molecules. The net results are that the nonlinear increase of the
Yyyy / (N-1) values tends to become saturated rapidly.

For the mixed-valence dimer (b)- (N=2) in the doublet state, the electric charge on each
monomer comes to be -0.5 in the molecular orbital (MO) picture. The CT energy of this mixed-

valence stack is clearly much lower than the values for other CT stacks, since the former does
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not have a strong Coulomb repulsion energy. Therefore, extraordinarily large %yyyy values are
to be obtained. The mixed-valence stack has been regarded as a high conducting system [16].
Thus, the electrons tend to transfer between the neighboring molecules along the column
direction. When a very small field is applied to this system, the excess electrons readily begin
to transfer between the neighboring molecules. The situation corresponds to the conducting
state instead of the nonlinear polarization state. The above abnormally large Yyyy values are
thought to be reflected in this conducting state. Therefore, mixed-valence segregated stacks
would be inappropriate as nonlinear optical system. In ionic segregated stacks, the excess
electrons on each molecule do not behave as conducting electrons by virtue of the mutual
Coulomb repulsions, but can cause large nonlinear polarization. In neutral segregated stacks,
on the other hand, no excess electrons exist, so that large nonlinear polarization cannot be

expected.

4. Discussion and concluding remarks

The prese.nt calculations show that several models of CT complexes exhibit large ¥
values. The nonlinear polarizations in these systems are caused by the intermolecular CT
effects. These systems have been proposed as the high conducting systems constructed of D
and A molecules, and many species of D and A molecules have been synthesized [16]. Both
the mixed and neutral/ionic segregated stacks are found to possess large ¥ values in the column
direction. In the mixed-valence segregated stack, the ¥ value diverges due to the lower CT
energy. For both the mixed and neutral segregated stacks, the ¥ values in the column direction
seem to be determined by the interactions between the nearest neighboring molecules. As a
result, the ¥ values increase linearly with the increase in cluster size. By contrast, in the ionic
segregated stack, the ¥ value is effected by the non-local polarization effects between

molecules lying more distant than at the nearest intermolecular distance. However, the
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contributions with opposite phase to the top and bottom molecules develop near the stack ends,
so that the nonlinear increase of the Yyyyy / (N-1) values come to be saturated. In general, the
¥ values in the column direction for the CT complexes except for the mixed-valence stack tend
to increase linearly with the size of the cluster.

Previously, we investigated polymeric systems involving the intramolecular CT effects
(through-bond interactions [19]) through main chain [17]. In this paper, complexes involving
the intermolecular CT effects ‘(through-space interactions [19]) enhancing the ¥in the chain
direction have been investigated. For large polymeric systems, it was found that the Y values
per unit bond come to saturate. Similarly, the ¥ values in the column direction for medium-size
CT complexes seem to increase linearly with the increasing cluster size. In order to judge the
utility of the CT complex-type nonlinear optical systems, the variation behavior of the ¥ values
in the case of the large-size cluster have to be investigated. Further, from the view point of the
mechanism involving the CT effects as mentioned above, new nonlinear optical systems which
will have both the through-bond and through-space CT interactions can be suggested. We have
proposed such new polymeric systems with polar side chains that are expected to possess
large CT effects between the neighboring side chains [20]. These systems are expected to
involve both the through-bond CT effects in the main chain and the through-space CT effects
between the neighboring polar side chains to enhance the Y in the chain direction.

The results for the mixed stack of tetracyanoquinodimethane (TCNQ).and perylene
investigated by Gotoh et al. [15] are in good agreement With our theoretical predictions.
Clearly, large CT effects from D to A molecules seem to contribute to the enhancement of the ¥
values in the column direction. However, it is noteworthy that there are other important factors
exhibiting enormously lafge Yvalues. The most important factor among them is the dispersion
effect induced by the close approach between the energy of an external electric field and the CT

excitation energy. Since the CT bands of the CT complexes are generally located at rather low
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energy levels, the practical dynamic hyperpolarizabilities seem to be rather enhanced by the
dispersion effects. Theoretical calculations based on the time-dependent Hartree-Fock (TDHF)
and time-dependent perturbation theory (TDPT) are now in progress in order to investigate the

dispersion effects.
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Table 1. Yy values [a.u.] for the CT clustersa.l)
N is the number of monomers.

N (a) (b)° (b)V-
2 1229 42 154
4 3611 189 733
6 6078 366 1406
8 8443 514 2027

2) (a) ; Mixed clusters
(b)? ; Neutral segregated clusters
(b)"; Tonic segregated clusters
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Fig.1. Charge-transfer (CT) clusters studied.
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Fig.3. Yoy / (N-1) [a.u.] values calculated for three types of the CT
clusters by the INDO CHF method. N is the number of monomers.
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Chapter 6

A Classification of the Third-order Organic Nonlinear Optical Systems

and Proposal of New-type Nonlinear Optical Systems

In this work, we classify the third-order organic nonlinear optical systems based on the
mechanism inducing the third-order nonlinear effects and discuss several appropriate calculation
methods of their third-order hyperpolarizabilities (¥). The criteria of the classification are the
symmetry of charge distributions (centro- and noncentro-symmetric charge distributions) and
the types of the interactions which induce the charge-transfer (CT) effects (through-bond and
through-space interactions). From the viewpoint of the mechanism of the CT interactions, most
conventional third-order organic nonlinear systems involve the through-bond interactions. In the
previous paper, as the new models of the third-order nonlinear systems, we proposed some CT
complexes which involve the intermolecular interactions. In this paper, another new-type
polymeric systems with polar side chains which involve both the through-bond and through-
space interactions are proposed. For the calculation methods, the time-independent
perturbational and variational approaches which are appropriate for each classified system are

discussed.
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1. Introduction

It is well known that the organic nonlinear optical systems exhibit the large nonlinear
optical effects by the delocalized = electrons [1,2]. The second-order hyperpolarizability (8) for
the centrosymmetric systems disappears, so that the intramolecular charge-transfer (CT)
systems with donor (D) and acceptor (A) substituent groups have been investigated [3]. By
contrast, the third-order hyperpolarizabilities () exists for centro- and noncentro-symmetric
systems. Many conventional third-order nonlinear systems with large Y values are either the
noncentrosymmetric systems with strong CT effects or the centrosymmetric polymeric systems
with large delocalization of 7 electrons in the chain direction [1,2]. However, the explicit
criteria designing the third-order nonlinear systems with large ¥ values are still not completely
elucidated.

Previously, we proposed the three-type approximation [4] based on the time-dependent
perturbation theory (TDPT) [4-7]. This approximation divides the expression of Y value into
three-type approximate virtual excitation processes [4-7]. These virtual excitation processes
are shown in Fig.1. The ¥ values for the types (I) and (III)' are positive, while the value of
type (II)' is negative in sign. Therefore, the magnitude and sign of Y values are determined by
the balance among three-type contributions. The type (I) contributions mainly relate to the
differences of the ground and excited dipole moments and the types (II)' and (III)' to the
transition moments between the states. That is to say, the contributions of type (I) mainly
determine the tendency of the ¥ values for noncentrosymmetric systems, while for the
centrosymmetric systems, the detailed balance between types (II)' and (III)’ detefmines the
magnitude and sign of ¥ values. Therefore, we adopt the symmetry of the charge distributions
as one of the criteria of the classification.

Another criterion of the classification is the mechanism inducing the CT effects. One is

the system which involves the through-bond interactions [8], and the other is the system which
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involves the through-space interactions [8]. In the previous paper [9], we proposed some
types of the CT complexes which involve the intermolecular CT effects. It was found that both
the mixed and the neutralfionic segregated stacks indicate the large ¥ values in the column
direction.

Further, using the classification proposed here, we propose the polymeric systems with
polar side chains which involve both the CT interactions through space between the neighboring
side chains and intramolecular CT interactions through the main chain.

The calculation methods of third-order hyperpolarizability are divided into the time-
dependent [4-7] and time-independent methbds [9-17]. These methods possess the
perturbational [4,10,11,13,14] and variational approaches [10-12,15-17]. In this work, for the
time-independent methods, the relationships between the perturbational and the variational

methods and the electron correlation effects for the ¥ values are discussed.

2. A Classification of the Organic Third-order Nonlinear Optical Systems
21. A Classiﬁcatibn based on the Three-type Virtual Excitation Process

Figure 1 shows the three-type virtual excitation processes in the TDPT three-type
approximation. The type (I) process (0,n-n,n-n,n-n,0) relates to the transition moments
between the ground and the nth excited states (Lo,,), the excitation energies of the nth excited
states (Eo,,,) and the differences of the dipole moments between the ground and the nth excited
states (Ao ). The type (IT) process (0,n-n,0-0,n-n,0) relates to the transition moments
between the ground and the nth excited states (Uo,,) and the excitation energies of the nth
excited states (Eg,). The type (III)' process (0,n-n,m-m,n-n,0) relates to the transition
moments between the ground and the nth excited state (o), the excitation energies of the

nth excited states (Egp), the transition moments between the nth and the mth excited states
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(4n,m) and the excitation energies between the nth and the mth excited states (E, ). The

static ¥ values are expressed as [4]

(i) (Auiy)?
D = Xk T, (1)
n=1 EnO
;4
, 3
y = -3 ), @
n=1 EnO

@ _ 3 (o) (e )2
e mun=1 EnOZEmO
m#n

(3)

As can be seen from Eqs.(1)-(3), Y® and ¥ ™D’ values are positive, whereas the ¥’ values
are negative in sign.

For the centrosymmetric systems, the contributions of the type (I) disappear because
the differences of the dipole moments betweén the ground and the nth excited states (Aup )
equal to 0. Therefore, the detailed balance between the types (II)' and (III)’ determine the
magnitude and sign of the total ¥ values for the centrosymmetric systems. The relative
magnitude of types (II)' and (III)' are found to be mainly determined by the balance between the
transition moments between the ground and the nth excited states (4o,») and those between
the nth and the mth excited states (U m). If IUo,l are smaller than Iy, 4|, then Itype (III)'l
tend to be larger than Itype(Il)'l and the total 7 values are expected to be positive in sign. On
the contrary, if Iug,l are larger than I, |, then Itype (III)'l tend to be smaller than Itype(II)l
and the total 7 values are expected to be negative in sign.

On the other hand, the 7 values for the noncentrosymmetric systems with strong CT
effects are mainly determined by the type (I) contributions since the Itype (I)I values are much

larger than Itypes (II)' and (III)' values and the sign of type (II)' values are opposite to the type
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(III)' values. Large type (I) contributions suggest that the large dipole moment differences
between the ground and the CT excited states (A ) determine the tendency of the total ¥

values for the noncentrosymmetric systems.

2.2. A Classification by the Mechanism Inducing the CT Interaction

The next criterion of the classification is the mechanism of the CT interactions induced by
the external electric field. That is to say, there are the systems involving the through-bond and
through-space interactions. Though most conventional nonlinear systems involve the
intramolecular (through-bond) CT effects, the new models of third-order nonlinear systems
proposed previously [9] involve intermolecular (through-space) CT effects. These systems are
the CT complexes which are inherently presented as the conducting molecular crystals [18].
More recently, it is reported that Perylene-TCNQ mixed stacking CT complexes come to
exhibit enormously large ¥ values [19]. This tendency is in good agreement with our

predictions [9].

2.3. A Classification of the Existing Organic Systems
The systems classified into four categories are listed in Table 1. The
noncentrosymmetric and centrosymmetric systems are given in the symbols (NS) and (CS),
respectively. The through-bond and through-space interaction systems are given in the symbols
(TB) and (TS), respectively. The representative systems which belong to each category are |
shown in Fig.2. These systems are also divided into the monomolecular (M), the polymeric
(P) and the CT complex (C) systems. | |
Detailed descriptions of each system shown in Fig.2 are given as follows.

Monomolecular systems (M)

(M-1) ; Polyaromatic systems which possess no D or A substituent groups.
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(M-2) ;

M-3) ;

Aromatic systems with D or A substituent groups which exhibit large
noncentrosymmetric charge distributions.
Aromatic systems which are substituted centrosymmetrically by D or A

substituent groups.

Polymeric systems (P)

(P-1) ;
(P-2) ;

(P-3) ;

(P-4) ;

(P-5) ;
(P-6) ;

(P-7)

Nonsubstituted polymeric systems.

Polymeric systems which are substituted centrosymmetrically by D or A
substituent groups.

Polymeric systems with D and A substituent groups.

Noncentrosymmetric charge distributions are developed

in the acetylenic, diacetylenic and aromatic main chain.

Centrosymmetric systems which possess defects.

ex. Charged soliton-like polyenes, Neutral soliton-like polyenes
Noncentrosymmetric polymeric systems which possess the defects.
Centrosymmetric polymeric systems with polar side chains. The polar

side chains are arranged as face-to-face stacking. The CT effects between
the neighboring side chains contributes to enhance the total ¥ values. The
main chain does not only control the arrangement of the side chains, but also
contribute to enhance the total ¥ values by the CT effects in the main chain.
Noncentrosymmetric polymeric systems which utilize the CT effects
between side polar chains. The main chain does not only control the
arrangement of the side chains, but also contribute to enhance the total 14

values by the CT effects in the main chain.

CT complex systems (C)

(C-1) ;

CT complex which is constructed of the alternatively stacking D and A
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molecules.
D molecule ; Aromatic systems, TTF, TMTSF, etc.
A molecule ; TCNE, TCNQ, DCNQI, etc.

(C-2) ; Segregated CT complexes which are constructed of segregate
D and A stacks. Neutral segregated stacks (D or A column).

The charge-transfer from D to A column are not induced.

(C-3) ; Mixed-valence segregated stacks (D or A column). The incomplete
charge-transfer from D to A column are induced. This system is
appropriate to the conducting systems, but are not appropriate to the
third-order nonlinear systems because the 7 values bdiverge.

(C-4) ; Ionic segregated stacks (D or A column). The complete charge-transfer
from D to A column are induced.

The ¥ values in the column direction for these CT complexes are large. The ¥ values in

the column direction per unit interaction become nearly constant for the medium-size

cluster constructed of about ten monomers.

Details of the four categories listed in Table 1 are explained below.

(CS-TB)

Centrosymmetric charge distributions. Through-bond interactions.

Contributions of type (I) disappear. The balance between types (II)' and (III)’

determines the tendency of the total Y values.

(NS-TB)
Noncentrosymmetric charge distributions. Through-bond interactions.
Large Al , values. Type (I) determines the tendency of the total ¥ values.
(CS-TS)

Centrosymmetric charge distributions. Through-space interactions.
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Contributions of type (I) disappear. The balance between types (II)' and (III)
determines the tendency of the total ¥ values.

(NS-TS)
Noncentrosymmetric charge distributions. Through-space interactions.

Type (I) determines the tendency of the total ¥ values.

3. New Models of the Third-order Nonlinear Optical System

New models of the nonlinear optical systems proposed previously [9,10] are the
conducting systems which do not exhibit good conducting properties. These systems are
polymeric systems with defects ((P-4,5)) and the molecular crystals involving the through-
space interactions ((C-1-4)).

In this work, we propose another new polymeric systems with polar side chains which
are expected to involve both the through-space CT interactions between the neighboring side
chains and intramolecular CT interactions through the main chain. Characteristics of the main-
and side-chain contributions are investigated by the 7 density analysis [9-11] based on the

coupled-Hartree-Fock (CHF) calculations [9-12,15-17].

3.1. Calculations

The energy of a molecule in the presence of an static, uniform electric field can be
expressed as the power series of an electric field. The fourth-order coefficients represent the
third-order hyperpolarizability tensors. These tensor components can be determined from the
differentiations of the energies with respect to the electric fields. In this work, the finite-field
(FF) method based on the INDO [20] CHF approximation. The minimum field strength in the

FF method is 0.002 a.u. This value is appropriate to assess the calculated results.
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In the previous paper [9-11], we proposed the method using the ¥ density analysis

which can reveal the characteristics of the spatial contributions of the ¥ values. The

approximate 7;;; value by the ¥ density analysis is expressed as follows.

1 3 i
iiiiz_éTz(PS)ssqs- (1)
s

Here, the (PS);s is the Mulliken charge density. The gi represents the i component of the
coordinate of the atom located at the center of the atomic orbital s. This approximation implies
that the charge densities are concentrated to the center of the atomic orbitals s. We call the
third-derivative of (PS)ss the 7 density [9-11]. The spatial characteristics of the ¥ value can be
obtained by the use of the plots of the magnitude and sign of the ¥ densities on each atom. The
plus sign of the ¥ density implies that the second-derivative of the charge density increases
with the increase in the field, while the minus sign implies the inverse effect.

Figure 3 shows an example of the new polymeric systems with polar side chains. - These
systems correspond to (P-6,7) shown in Fig.2. The main chain is the polyacetylenic chain. The
polar side groups are perpendicular to the plane of the main chain. Therefore the side donor (D)
and acceptor (A) groups are aligned as the face-to-face stacking in order to induce the CT
interactions through the neighboring substituents. Four types of the polymeric systems; (i)
CCCC,V (ii))DDAA, (iii) DAAD and (iv) AAAA, are examined. The number of carbon atomic

sites is eight. The donor (D) and acceptor (A) groups are amino and nitro groups, respectively.

3.2. Resuits and Discussion

The 7,,,, values (chain direction component) calculated by INDO CHF are listed in

Table 2. The approximate 7,,,, values obtained from ¥ density analysis are found to be in good
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agreement with the CHF 7,,,, values. The approximate 7,,,, values are separated to the
contributions of the main- and side-chain regions as shown in Fig.4. Large differences in the
contributions of ¥ density with the arrangement of the substituent groups are not observed. It
is found that for the regular polyene (i) CCCC, the ratio of contributions of the side-chain region
is about 20% of the total ¥,,,, value, whereas for the polyenes with polar side chains, those
reach about 40%. Compared with the results for the same-size regular polyene (i) CCCC, the
main-chain contributions for (i) DDAA, (iii) DAAD and (iv) AAAA are found to be about 1.26
times that of (i) CCCC, whereas the side-chain contributions for (ii) DDAA, (iii) DAAD and
(iv) AAAA are found to be about 3.82, 2.70 and 2.95 times respectively. Large contributions of
type () in the TDPT three type approximation [4] seem to be responsible for the larger
enhancement of the ¥ values of the side-chain regions for (ii) DDAA, since the type (I)
contributions only exist in the noncentrosymmetric systems. These results also suggest that
the polar side chains do not only significantly increase the contribution of the side-chain region,
but also slightly increase the contribution of the main-chain region. We are at present applying
the CHF method to investigate the contributions of the other substituent groups and the other

main chains.

4. Appropriate Calculation Methods of the ¥ for the Classified Systems

The calculation methods of the ¥ values are separated to the time-dependent methods
which can describe the dependence of ¥ value on the oscillations of the external electric field and
the time-independent methods which can describe the static 7 value. In this paper, the time-
independent methods are discussed. Figure 5 shows the several procedures. These
procedures are classified by two criteria. One is the number of the Slater determinants used to
describe each state (single- and multi- references) and the other is the approximated methods

(variational and perturbational methods).
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For the perturbational approaches, the Rayleigh-Schrodinger perturbation theory
(RSPT) is employed [10,13,14]. In general, this approach is based on the double perturbation
theory [10] in which the potentials of the external field and the electron correlations are
considered to be two perturbations. In this approach, the analytic formula of %ji value is
obtained from the fourth-order energy term respect to the external field. In this paper, the
RSPT method with the nth order electron correlation effects is referred to as the RSPTn method
[10]. This method can include the higher correlation effects systematically. However, the
explicit formula including higher correlation effects is not practically used to calculate the 14
values because of the complicaﬁon of its formula. In order to include correlation effects, the
variational approach is employed as the starting point.

For the variational approaches, the coupled-Hartree-Fock (CHF) method is gencfally
used at the Hartree-Fock (HF) level. The total energy in the presence of the external electric
field is calculated variationally. The total energy is differentiated by the external fields and the
fourth-order derivatives represent the ¥ values. There are some numerical [16,17] and
analytical differentiation methods [15]. When the numerical differentiation is performed
carefully, the results of the numerical differentiation are found to be equal to those of the
analytical differentiation [16]. The approximate level of the CHF methods is equal to that of the
RSPT method including the first order correlation effects (RSPT1) [12]. In order to include the
higher electron correlation effects, the Mgpller-Plesset (MP) perturbation theory {21] and
coupled-cluster (CC) theory [22] are employed. In this case, the conventional sophisticated
programs can be utilized.

For the systems which cannot be represented by the single determinant, or the systems
which possess strong electron correlation effects, the multi-configurational coupled-Hartree-
Fock (MCCHF) [23] and multi-reference coupled-cluster (MRCC) methods [24] have to be

applied.
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We discuss the appropriate procedures for the calculation of the ¥ values for the
systems listed in Table 1. For the noncentrosymmetric closed-shell systems without defects
((M-2),(P-3,7),(C-1)) and the centrosymmetric closed-shell systems without defects (M-
1,3),(P-1,2,6),(C-2)), the RSPTO, CHF and CHF+MP2 methods are considered to be
adequate for the calculations of the qualitative ¥ values at least. For the large-size systems,
the CHF method seem to be practically appropriate since the inclusions of the correlation effects
are fairly difficult. For the rest of the systems listed in Table 1, which are open-shell systems
except the charged soliton-like molecules, at least the calculations including correlation effects
have to be needed. Particularly for the systems with excess electrons or holes which can
transfer easily, the methods including higher electron correlations or the multi-reference based
methods will be expected.

In this paper, only the time-independent methods which exhibit the static
hyperpolarizability were mentioned. However, in order to gain the practical Y values which are
useful for the designs of the optical electric devices, the time-dependent approaches have to be
employed. Particularly for the CT complexes and the conducting polymers with low excitation
energies, when the differences between the energies of the external field and those of the low
excited states for the systems are small, the dispersion effects of the Y values must be
considered.

Some differences between the results of ab initio and semiempirical molecular orbital
(MO) methods also exist [11]. For the ab initio approach, it is well-known that the
augmeﬁtations of the standard basis set are mandatory for the calculation of the
semiquantitative ¥ values [15,16]. For the semiempirical approaches, the calculated ¥ values
tend to be smaller than those by the ab initio method because of the inadequacy of the basis

sets [11]. In this case, in order to estimate the Y values at the ab initio level, the scaling
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procedure of the ¥ values at the semiempirical level seems to be useful for most medium and

large-size systems [11].

5. Concluding Remarks

The conclusions are listed as follows.

(1) By the criteria of the TDPT three type virtual excitation processes and the types of
the CT interactions, the third-order nonlinear optical systems are classified into four categories
given in Table 1. As the new models of the third-order nonlinear systems, the centrosymmetric
systems with defects, the CT complexes with strong intermolecular CT effects and the
polymers with polar side chains involving both the through-bond and through-space interactions
are proposed.

(2) For the centrosymmetric, when the Itype (III)'| < Itype (II)'l, the total ¥ values
come to be negative. This case seems to correspond to the case : |t | > It ml.

(3) For the CT complexes, the D-A mixed stacks and the neutral/ionic segregated
stacks are expected to exhibit large ¥ values in the column direction. The mixed-valence
segregated stacks which are good for the conducting system seem to be inappropriate for the
third-order nonlinear optical systems.

(4) For the polymeric systems involving the CT effects between the neighboring polar
side chains, the main chain is used to arrange the side polar substituents and to enhance the
chain length component of ¥ value. Therefore, these systems utilize both the through-bond and
through-space CT interactions.

(5) The open-shell systems with defects are expected to exhibit large ¥ values than
those of the closed-shell systems owing to the mobility of the electrons or holes. However, the

theoretical evaluation of the ¥ values for the open-shell systems is fairly difficult and available
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experimental 7 values for the open-shell systems don't exist yet. Further experimental and
theoretical studies for the open-shell systems have to be performed.

(6) As the time-independent calculation methods, the CHF method is appropriate to
evaluate the qualitative ¥ values for the closed-shell systems. For the open-shell systems, the
multi-reference based methods and the methods which can estimate higher-order correlation
effects have to be carried out.

(7) For the systems with low excitation energies, in order to evaluate the dispersion

effects of 7 values, the time-dependent methods must be employed.
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Table 2. Approximate Vzzzz value§ and CHF 7,,., values
for regular polyene (i) and polyenes with polar side chains (ii)-(iv).

System Approximate values[a.u.] CHF values[a.u.]

(i) CCCC Main 9098.8(76.6%)
Side  2773.2(23.4%)
Total 11872 12785

(ii) DDAA Main 11423.3(51.9%)
Side 10587.5(48.1%)
Total 22010.8 23335

(i) DAAD Main 11490.0(60.6%)
Side  7483.3(39.4%)
Total 18973.3 20270

(iv)AAAA Main 11488.1(58.4%)
Side  8185.3(41.6%)
Total 19673.4 21041

a) The percentage of the contributions from main and side chains is
shown in parentheses.
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Polymeric systems (P)

(P-1-1) (P-1-2) (P-1-3) P-1-4)

(P-1) Centrosymmetric regular polymeric systems

X2 1
X\% — —
n X n
X X2
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(P-2) Centrosymmetric polymeric systems with D or A substituents

O e
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(P-3) Noncentrosymmetric D-A substituted polymeric systems
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(P-4) Centrosymmetric polymeric systems with defects
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(P-7) Noncentrosymmetric polymeric systems with polar side chains
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