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Abstract

Perturbation methods have been developed as a powerful
technique for solving differential equations which preclude
their exact solutions. It sometimes occurs that the straight-
forward expansions of the dependent variables in powers of
a small parameter have limited regions of validity and break
down in certain regions. To render these expansions uniform-
ly valid, a number of techniques called 'singular perturbation
methods' have been developed in different branches of physics,
engineering, and applied mathematics. In particular, to have
an understanding concerning the mechanism of nonlinear wave
propagations, various techniques of singular perturbation
methods such as the reductive perturbation, the derivative
expansion, and the Krylov-Bogoliubov-Mitropolsky methods, are
developed recently.

In this thesis, some of the methods mentioned above are
applied to solve problems for water waves of finite amplitude.
The first part deals with capillary waves on a thin liquid
sheet, and the next part is concerned with long gravity waves

on a viscous water layer.

Part I. Instability of Thin Liquid Sheet

It is well known that there are two kinds of capillary
waves on a thin liquid sheet; one is symmetrical wave in which
the displacements of opposite surfaces are in opposite direc-
tions, and the other is antisymmetrical wave in which the dis-

placements are in the same direction. In the first half, we
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derive a simple equation for weakly nonlinear waves called
the nonlinear Schrodinger equation. Thanks to the well-known
properties of this equation, it is found that these two kinds
of waves of constant amplitude are always unstable to small
disturbances and the growth rate for the symmetrical wave is
larger than that for the antisymmetrical one, and it is ex-
pected that such an instability may lead to the break-up of
the liquid sheet. However, since the above analysis is based
on the assumption that the amplitude is small compared with
the thickness of the sheet, the result thus obtained is far
from satisfactory explanation for the break-up.

The next half deals with symmetrical waves of arbitrary
amplitude but long wavelength in comparison with the sheet
thickness. These waves are governed by a simple set of two
differential equations for the surface displacement and the
fluid velocity component in‘the direction of the wave propaga-
tion. These equations allow only periodic solutions as steady
solutions which agree, in a certain 1limit, with the solutions
obtained in the analysis for the nonlinear Schrddinger equa-
tion. Several properties of physical importance such as in-
tegration invariants of mass, momentum, and energy, the depen-
dence of amplitude on wave frequency, and so on, are also studi-
ed analytically. According to the results obtained in the
first half, it is suggested that these steady solutions are
unstable. To confirm this conjecture, initial value problems

to the set of equations are solved numerically. As initial



values of these calculations, two kinds of small disturbances
superposed on the steady solution are taken. One 1is a second
harmonic disturbance to the steady solution, and the other is
a subharmonic one. Within the calculations the steady solution
seems to be stable to the higher harmonic disturbance. How-
ever, 1t is remarkably unstable to the subharmonic disturbance
and the solution bursts at a finite time. It is shown that
the wave energy distributed almost uniformly in the initial
stage 1s concentrated rapidly near the minimum trough which
becomes deeper and deeper, and thus the opposite surfaces are
getting closerto each other. We cannot, however, perform the
calculation until the two surfaces meet together, because of

a violent change of the fluid velocity. Nevertheless the re-
sults thus obtained may be sufficient to confirm that such a

'burst instability' leads to the break-up of the liquid sheet.

Part II. Effect of Viscosity on Long Gravity Vaves

In the first half of Part II, analytical investigations
of the effect of viscosity on long gravity waves are made.
First, the dispersion relation for infinitesimal waves is
examined. It is, then, found that the dispersion relation
consists of two distinct parts, geometrical and viscous dis-
persions. The former arises from the geometrical configura-
tion and the latter from the effect of viscosity. Next, our
attention is directed towards the waves of finite amplitude.

The reductive perturbation method combined with the usual

-v1-



boundary layer theory reveals that the inviscid Korteweg-de
Vries equation is not affected by the viscosity if @ (X°)<
K , where R is the Reynolds number and &X (<= 1) the
wavenumber. For (J(¥ /)< R = 0(5("5, the effect of viscosity
modifies the Korteweg-de Vries equation and yields new types
of equation. On the other hand, for K< CNZYﬂQ', the complex
phase velocity becomes purely imaginary and the free surface
is found to be governed by a nonlinear diffusion equation
which was first derived by Nakaya.

In the next half, initial value problems to the equation
obtained in the first half are solved numerically. The re-
sults are compared with the experiments made by Zabusky and
Galvin. It is found that the solution obtained numerically
agrees with their experiment with respect to the damping of
solitary waves, while their phases do not coincide with each
other. By expanding the free surface elevation into Fourier
series, each component is investigated separately. The tem-
poral variations of the Fourier components together with
those of the wave energy are computed. From these computa-
tions it is clarified that when the geometrical dispersion
dominates over the viscous one, the wave energy decreases

almost linearly with time, while in the opposite case viscosi-

ty damps it exponentially.
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PART I. Instability of Thin Liquid Sheet



§1. Introduction

Since the 1950's much attention has been paid to the
mechanism of drop formation resulting from the break-up of
liquid sheet because of their increasing application in com-
bustion, chemical and agricultural engineering. Disintegra-
tion of a large bulk of liquid into small drops with larger
surface per unit volume is of practical imporatnce in most
applications. The atomization of two-dimensional sheets has
particularly received increasing attention because of the
geometrical simplicity which provides a convenient model for
theoretical study. 1In order to obtain a greater understand-
ing of the processes involved, much attempt has been made to-
wards analysing the hydrodynamics of flow, establishing the
basic mechanism of drop formation, and determining the result-
ing drop-size. However, very little is obtained concerning
the knowledge of the drop formation.

There is no doubt that a certain kind of instability
gives rise to the break-up of the liquid sheet, and one be-
lieves that unless the instability may occur any sheet cannot
disintegrate into drops. Squirel)has studied the linear insta-
bility which arises in a moving sheet due to the reaction of
the surrounding air. This instability is the only one example
which has been studied so far. He obtained the dispersion re-
lation for disturbances with the (nondimensional) wavenumber

/2 and the complex frequency <u ;
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where (/, is the 'sheet velocity and X=cothk . The above

relation is satisfied for antisymmetrical waves, and similar
relation for symmetrical waves is obtained if we replace X
by 7 (=tanhk). The ratio )(o of the density of the sur-
rounding air to that of the sheet is in general Very small.
Profiles of the symmetrical and antisymmetrical waves are

sketched in Fig.1l. Another nondimensional parameter PD/

(a) (b)

T~ N T N

—_— T N T ST

Fig.1. Sketch of (a) symmetrical, and (b) antisymmetrical waves

is the Weber number defined by

Us

2T
pL
where ;Z is the thickness of the sheet, 7  the surface

W=

tension and {3 the density of the sheet. It is easy to
see from eq.(1.1) that when the surface tension force is
negligible, both symmetrical and antisymmetrical waves are

always unstable. This fact means that the effect of the



surface tension suppresses the instability, which is essen-
tially equivaleht to the so-called Kelvin-Helmholtz insta-
bility. Another important reduction from eq.(1.1) is the
fact that the exponential growth rate (.. , imaginary part
of ¢ , for the antisymmetrical waves is much larger than
that for the symmetrical ones. The analyses for Squire's
instability have been studied extensively by including the
effects of nonlinearit;fgzd viscosity?) Nevertheless our
understanding about the basic mechanism of drop formation
is still far from satisfactory.

The instability which we intend to show in this thesis
is very different from Squire's instability of a moving
sheet. 1In our instability the surface tension force it-
self and nonlinearity play an important role.

Recently, much attention has been paid to weakly non-
linear waves in dispersive media. It was shown, in particu-
lar, that the amplitude modulation of nonlinear dispersive
waves 1s governed by the nonlinear Schrodinger equation, by
using various techniques of singular perturbation such as
the reductive perturbatioéﬁakhe Krylov-Bogoliubov-Mitropolsky,
and the derivative expansion methodg?B)The outstanding fea-
ture of the solution to the nonlinear Schrodinger equation
is that a periodic wave train of constant amplitude such as
the Stokes wave becomes unstable under certain conditions.

) 10) .
For example, Hasimoto and Ono showed that the Stokes wave is

modulationally unstable when 4, 4. = 1.363 where Aa is the



wavenumber and A/, the depth of water. This criterion
agrees with that of Benjaminl4)and of Whitham!®) The main
purpose of the first half of Part I is to apply the above
singular perturbation method to the present problem and to
show a possibility that the modulational instability plays
an important role in the break-up of the sheet.

It is then found that the two kinds of waves, symmetrical
and antisymmetrical waves, are always unstable to infinitesi-
mal disturbances, and the maximum growth rate for the sym-
metrical waves is greater than that for the antisymmetrical
ones. This tendency is contrary to Squire's instability of
a moving sheet. Particularly for the symmetrical waves we
discuss how important role such an instability plays in the
break-up of the sheet. However, since our analysis is based
on the assumption that the ratio of the amplitude to the thick-
ness is small (but finite), we cannot confirm that such an
instability certainly leads to the break-up.

The next half of Part I is devoted to obtain a certain
evidence that our instability can cause the break-up of the
sheet. To do so, we discard the assumption that the non-
linearity is weak, i.e., the ratio of the amplitude to the
thickness of the sheet is small. 1In place of smallness of
the amplitude we impose the asssumption called the long wave
approximation, which states that the ratio of the thickness
to the wavelength is small. Confining our analysis to the

symmetrical waves, we derive a simple set of equations which



governs the surface elevation and the velocity potential,
and some importﬁnt properties about nonlinear wave trains
governed by these equations are first examined. Next, solv-
ing the equations numerically we show that the wave trains
of constant amplitude are unstable and because of this in-

stability the break-up of the sheet occurs certdinly.



§2. Formulation of the Problem

Let us consider a two-dimensional sheet of liquid of den-
sity g surface tension 7 and uniform thickness J. It is
assumed that the liquid sheet is sufficiently thin so that
the gravity force can be negligible in comparison with the
surface tension force. This condition is written as <&
(TV{ﬁ?]é where 9 is the acceleration due to gravity. If
the motion is generated from rest, the flow may be irrota-
tional, so that the wave propagation is governed by the two-
dimensional Laplace equation for the velocity potential ¢(@q,t)

in the Cartesian coordinates:

+ $,,=0 (2.1)

?

X

where Z is the time,y measures horizontally to the right
and é; vertically upwards. The boundary conditions at the

free surfaces are given by

9
botx (Bt ) =0, [P )? (2.2)
at g=%(x, ¢) ,

L=+ P, (2.3)

and

/ 2 2 7 r72 \i’:
Pt 5 (P +8 )=, [ 1+, J (2.4)
at J=7,2),
= 4 /
?; 7;--f 7%‘7;, (2.5)



where 7 ¢ x,%) and Y’Yz)f)are, respectively, the displace-
ments of the upper and the lower surfaces from the central plane.
The subscripts x , (y , and ¥ denote, respectively,
partial differentiation with respect to X , & » and z .
All quantities have been normalized by means of the half thick-
ness £ /2 and the phase velocity (2T/40.Q7)fo'f the anti-

symmetrical wave#*.

* For water sheet surrounded by air, unit of linear dimension and that

of time are usually SXIO_dcm and 4 X 10—5— sec, respectively, when ¢ =10~ cm.



§3. Analysis for Weakly Nonlinear laves with Moderate Have-
numbers

It is assumed that nonlinearity of the waves is so small
that the modulation occurs slowly with respect to both space

and time. In describing these waves, it is convenient to intro-

b
duce new variables of multiple scales:

X, =X, X, =€ X, X, =X ; (3.1)

1o =X, ¢, =€*, £,= €1 (3.2)

where ¢ is a measure of smallness of the amplitude. Accord-

il

ingly, the derivative operators &/J and 3/3Z are expanded

as
2
S 2
EY% '2, € I, (3.3)
m=C ’
and
N
_92)_. = N -47’____3)
by Z, < 2%, - (3.4)
72}=C

Similarly, 96(1;‘9, ‘) > ?7(lﬂ'i) , and  7/Ca, ) are expanded

into power series in &

¢ = Z € 7& Ce, Xoy Xay 9, Koy X4, 3D, (3.5)
n=/

7=/ -f—Z &l (X X, Xy e, A, ) (3.6

7=/

and

Vit S €D oz e, A R o

"=/



Substituting (3.5), (3.6), and (3.7) into (2.1)-(2.5)

and arranging in powers of & , we get

OCe)
L0Z¢,]=O, (3.8)
L, L%, 7, ]=0,
) at 7=/, (3.9)
42[¢/) 7/]:@,
Z/ [¢/: - 7/,’]:0’
N (3.10)
Ziz ngél, %C/J7==(>,
ACON

L[ P, ]:—‘/\/0'2)[95,] , (3.11)
Lolb, 1 ]=~N"Th, 0T+, ]

(3.12)

L[, ]=~N"T4,7 7,

at 5'=/’

Lz [¢2) ‘Z/]:”"/\/,_&)[\ﬁ,, 0/’/]’ .13)

O () : at y=—/)
Lol ]==N7TH, %], (3.14)

LIt 2 )==N"I3, %, 7, 2 ]+ K77, %7,
B i . (3.15)
/\'2 Z‘?Sg’ 73—/: o /\/3 )Z—¢/7 ¢3) "'7:-’; )/‘1/7’

Lo LEs = W T == NT[E, 7 T m1 27 ] } '
(3

sty -/,
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LB~ ]=-N"TE ¢, 27 1+M° =0 T

o . | (3.16)
4;21@, /,\'3_47-— 2 Z¢’)g52;,/i/; 72/]’ at “;:.-1,
where
.;: ED ap, Y
L. [P )= (G +95°)¢, LI, ’/L]ia'%“ A
B I .
L2[¢a,/_7-<951 T 3L, (t =1,2,3),

/VQ)[¢ /=2 91 J)(, ,

Q)

NTH 7 T= 7’+atoaﬂf7+’//az,) e
27

2 élcc”(/ ’

it

/‘//,’“[’7, 7

Q- 7- _ a2 2%,
/\/2 Z¢/, )7_] 3‘/1 7’ I SN SXo ,

3 2?3 __’% 7,
o’ ¢4;¢]“'<§7¢31/+& a].,&"/1+ aJll ’

3) - , >P, 3(#’, 9)‘?/3 a‘f)x /
N/ Z%) @2) )Z) //2 ]_;:_ 3‘% + JE ‘/‘az 39 / 7"()16\_)5/ 7“91{ )y/

/) 2‘7) (7259
+-ldp)‘7 QI‘,( aLT;_X—_)‘;)/)f%LC}f 7‘.6'_'71’//

3>~ _ YA 37, Y N 2
M’ Z’71) )/) :“alﬁl/ +2<910¢)X + QI’ '2 C)Ia ch)

(%)~ . 2% . Q’y‘/ aa]‘,) 2 }/1 (2_'/_/_
A/l Z¢’; ¢z) 7/; /2.7‘;; %7/ AQY* / +5L ')J3/ 3/(/ Tota

%, A
ox. 7oz,

Qf_‘f_d‘#’/-}_{a

(:)XD OX@ (02’ ()1/ ‘)I ‘)(7
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Let us consider the lowest order problem in &
Laplace equation (3.8) together with the boundary conditions
(3.9) and (3.10) permits two kinds of progressive wave solu-
tion, which represent symmetrical and antisymmetrical waves.

For the symmetrical wave, the solution is given by

2 - / ’ |
‘?/g 'A‘ Coshi2Y 4€L€+C & ‘f‘B,(S,) (3.17)

(O cee /\./’
7 =—7=A4Ae+cCC (3.18)
where & = Alc‘ —¢ L , ,é and (o being,

respectively, the wavenumber and the freaquency of the infini-

tesimal wave, provided that the dispersion relation

.‘2 ] \

% = R Tae £ R (3.19)

b
is satisfied. The complex amplitude /4 and an additive

. (s) .
real function [9/ may depend on the higher scales X, ,

L ;i/ , and ;Zl, and C.C. stands for the complex conjugate

to the preceding expression. Similarly, the solution for the
antisymmetrical wave is obtained as

B L_é’__’. S{.‘nﬁé‘{ e - )
75 T sk kb ACTrC o B, , (3.20)

7 =7 =Ae + CC, (3.21)



with the dispersion relation:

C;::: A\C"x%é (3.22)

where an additive real function é%“u may depend on higher
scales. The linear dispersion relations (3.19)_and (3.22)

have already been obtained by Tay10r16).

3.1 Antisymmetrical wave

Let us now proceed to the second order problem for anti-
symmetrical waves. Substituting the first order solution
into the second order equations (3.11)-(3.13), and solving
eq.(3.11) under the boundary conditions (3.12) and (3.13),

we get

& - 20 coskahky s 6:2“?_ k. (2 /o é{&sﬁ@,_ﬂ‘,gﬁly )

4. CosRR 200 scn o
A, 7 C. 2 (3.23)

where 19;a>is a homogeneous solution of eq.(3.11) depending
on the higher order scales*. The surface displacements of

the second order, and 7/ , are given by the integra-
2 2 &

* The other homogeneous solution [ﬂﬁ(bx;)fl,z;)égghas been dropped

according to the idea of Bogoliubov and Mitropolskyl7); and that of

12)

Inoue and Matsumoto
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tion of the second equation of the boundary conditions (2.12)
and that of the /boundary conditions (2.13) with respect to
:f‘; as follows:

2= ﬁ— ek 2 ec€

\.1. 4 2/?1 +Z)—)al/

Y. 6’ + C C 1“() (3.24)

Cu 91‘,

Jé_ 34
(1 2c0* A’ C 2/>1 (O )01/ e

_ L Q_i e yca)
o 5a€ rec+ G (3.25)

a) a)
where C'l and C2 are real functions to be deter-

mined in the higher order. Substituting the above solution
752 and 72 into the first equation of the boundary

conditions (3.12) or ¢2 and 7:./ into the first equation

of the boundary conditions (3.13) and arranging in powers of
€£€ , we have from the coefficient of CO"@

3 54
EY 7 (;7 27, (3.26)

and from the 'constant' term

93 CX= 1) |
o1 rom (3.27)

where [/ denotes the modulus of ,4 and X =cothék.

-14-



The group velocity C% of the infinitesimal wave is given
by

-
Cy= ﬂ/‘/: véx[ﬁ k=X ] (3.28)

Equation (3.26) implies that the variationAof the ampli-
tude is transmitted with the group velocity, i.e., there is
no temporal change of the amplitude in a frame of reference
moving with the group velocity. According to eq.(3.27), an
induced current Jf§7:913 of the order of &* appears in the
sheet due to the nonlinear interaction, which is represented

by
aB®Y 20k (1-X) //;/s

X X ([3X+k (XD]

(3.29)

where an arbitrary function resulting from the integration
with respect to t, has been set equal to zero.*

The third order problem (3.14)-(3.16) can be dealt with
by a similar procedure to those for the second order problem.
After tedious but straightforward manipulations, we obtain
E)gg

from the coefficient of the following equation for

the upper surface

A LAy, LdG PA a2k 4 )
L<c9.t>_+(‘3c}}:)+2 e X -—13//4//-}1“/.4’ (3.30)

* In general, this restriction may be severe. However, this function
has no important effect on the modulational instability. In this sense,

the term has been dropped.

-15-



where

R (EX=T)
X

S =

whk () — XD B~
=
e N

and for the lower surface

4 4G 2 )*23/\%91, =SPAIA+FA, (.31

where

@)

k=X A7@, 5B

a) /)
The induced surface elevations (1 and (1 must

be determined by the condition that 7; and fg/ are

secular term free, from which we obtain the relations

alB,(‘U+ /9(’(0)+ 247 AP _ -

az‘/l C)r/ 7 31/ ’ (3.32)

N N Y ) o 5

&12 - at/ T Lo X, . (3.33)
/

Substituting eq.(3.29) into (3.32) and (3.33) and remember-

ing the first order relation (3.26), we can express the second

. a
order surface elevations Cl( ) and (3“0) as follows:

- 4h[3 X2k(-XD)]
T BX koD

(3.34)

1A

-16-



‘) 44[?)(1—2/{)(#)( )]//4/

z Z 3IXFhCI—X / (3.35)

9] 7(er) .
Now that (?L and (; have been expressed in terms

of /4 , we have from eq.(3.30) or eq.(3.31) the following

closed equation for A4 :

A, / [{C 2
(aiz 53?4?)—*1_2772 C?L/A/4 (3.36)

6—-3)
Introducing the new variables defined as

we have the final equation for the amplitude /4

A

\_ﬁ _
‘ jt T+ fa ot ZL/’4/2A, (3.37)

where
1 dG _ OBRXE kX 2B )X Tk XK ]
;2_ 2 L/A J;Iéu)<1

’(3.38)

/‘-/y/:XVA‘]
2 - COBLEEX 2 RXSH(E-19F)X 30k X5 (3—~4k )x
“ AX3X+hCI=XD] "

(3.39)

Equation (3.37) is called the nonlinear Schrodinger equation,
which has already been obtained in the studies of various
nonlinear dispersive systems.

The sign of the coefficient fh and that of the coef-
ficient ;1{ are always positive and always negative, res-
pectively. The coefficient A, and 7. are shown, respect-

ively, in Fig.2 and 3 as functions of the wavenumber /A .

-17-
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Fig.2. Variation of A versus wavenumber | :

symmetrical wave; — — — — — , antisymmetrical wave.
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Fig.3. Variation of - 2? versus wavenumber A :
symmetrical wave; — — — — — , antisymmetrical wave.



3.2 Symmetrical wave

In a similar way, the nonlinear Schrdédinger equation

for the symmetrical wave is obtained as

L 3%? e %%i_-= 52 04/1/4’ (3.40)
where
A = L 4G _ (3FY 4 5}5\'7/3‘/‘(3-—2,4»”))’2—/-5/\,'74\/;]
5 T2 p 2 2 , (3.41)
3>é 7/ rﬂﬁéf;7ki]
o R LR S Y Ut o)y ek Sicag Y
) 4)/2[3\//"'/? ('/"7/1,)]1 (3.42)

with Y =tanh/<~

Inspection of eqs.(3.41) and (3.42) shows that /@ >o
and ;Z < ¢ for all wavenumbers (see Figs.2 and 3). The
induced current 3ﬁ1(1>/<9,17 and the induced surface ele-

. (s . . . -
vation (7 ) due to nonlinear interaction are given as
2

«QBff_ 25@&(7_'Y2) _A4/2
X, V[3Y +ka-Y?/ ’ (3:43)

(;“’ 4hB3Y 2k ] s
[3Y +he=YD)*

It should be noted that the induced quantities are propor-

(3.44)

tional to the squared modulus of amplitude.
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The present symmetrical wave may also be regarded as

the nonlinear ‘capillary wave on a water layer with a rigid
boundary. For example, the existing worﬁggg)caplllary waves
on an infinitely deep water can easily be recovered as a spe-
cial case of our results. In fact, if we put 4 =/, QXP((
where 4. and are real constants and equate Y~ to
unity, we obtain the displacements as

V= -7l REQT T € Qs S FEC 2, (55
where .= 2.4 and ( = /e:(—'(cu-—/eééla://é)ﬁ Equation
(3.45) describes a periodic wave train moving with the phase

velocity

C = é (/= 7¢ R 22 ). (3.46)

The results (3.45) and (3.46) coincide with those obtained
18 19)
by Crapper and those by Pierson and Fife up to the second

order in & , except for the trivial nonperiodic terms.
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3.3 Modulational instability

In order to have an understanding concerning the mech-
anism of the break-up, we study solutions of the nonlinear
Schrodinger equation. Equafions (3.37) and (3.40) have the

following type of solutions expressed as

/ ,,i o . - . -
A = A €XP L‘(JL/‘C, )Lz ) , (3.47)
where /45 A is a complex'constant, jﬁ and _ji are real
functions of 7 . They satisfy the relation
C"/ A - "L’—z—- — 5 . 2 r4
;/tl;;(]“,,;‘-f;_)v pPJ, = =2 /A1, (3.48)

where the subscripts a and s have been dropped. .This solu-
tion denotes a pfogressive wave train’of'conétant‘amplitudé
In_particular, putting ;ﬁ = K and jé =.$EIZ: , we

bbtain a steady‘périodic wave train with constant phase ve-
locity. Further, if ﬁ;=0, we get a progressive wave train

. ~ —
with argument (= éj{v~(¢ 1 , where

. e 2y
(o EALT (5.49)

Ji

@ (b A1)

which is called "amplitude dispersion’zox _Crapper's solu-
tion ¥ and the Stokes wave belong to this simple type.

The stability of this solution-(3.47) has already been

0)

10)

studied by Taniuti and Washim®) and also by Hasimoto and Ongd"

According to their results, it becomes unstable to small dis-

turbances of a certain kind when /35?4; ¢ . Therefore,



nonlinear capillary waves of constant amplitude on a thin
liquid sheet are always unstable, because [)g is always
negative as has already been remarked (see also Figs.Z and

3). The maximum growth rate é;&x is given by
A 7
é\ma)( = /Z?/ /40/2 for k.‘: "'/g //40'/, (3.50)

for thq disturbed wave

A = (}40+252)éxfc(j,'g—]’2 +2§2), (3.51)

~

in which k> is the wavenumber of the disturbance
A 2 A

and & 1s a small parameter, gé and % are real

functions of & and [

In order to know the degree of instability, we examine
the ratio of the maximum growth rate for the symmetrical
wave to that for the antisymmetrical one. It is found that
the ratio is always larger than unity and it decreases mono-
tonically as the wavenumber K’ decreases (see Fig.4).
This implies that the instability of the symmetrical waves
may lead to the break-up of the sheet rather than that of the
antisymmetrical ones, which is contrary to Squire's insta-
bilit;)of a moving liquid sheet. Since the induced surface
elevation given by eq.(3.44) is proportional to the square of
the amplitude and the sign of the coefficient is always posi-
tive, the exponential growth of the amplitude leads to the
exponential increase of the thickness of the sheet. On the

other hand, according to eq.(3.50), the modulated amplitude



40
30T
g(!)
1 - ___'HQX
s &'max
20r
10 [
0] | 2 3

wavenumber k
s) C(&)
Fig.5. Variation of the ratio ) = éku/ Smax @5 @ function

of the wavenumber é . The superscripts (s) and (a) denote

the symmetrical and antisymmetrical waves, respectively.

A has a periodicity with the wavelength

¢ _Ar /o B y*
A= & (4] ( D ) (3.52)

The increase in the amplitude gives rise to the increase of
the thickness and vice versa, which is shown schematically

in Fig.5. Hence, it may be concluded that this modulational
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4

Fig.5. Sketch of time evolution of the free surfaces. The
arrows indicate the direction of the variation of the free
surface. , initial state of the free surfaces

with uniform thickness. , modulated state.

instability plays an important role in the break-up of sheet,
although we cannot answer the question of what happens when
the disturbance grows so large that the conditions & ,
é? << / are no longer valid.
In the next sections, we will investigate successively
the mechanism of the break-up based on the knowledge obtained

in this section.
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§4. Analysis for Long Haves of Larce Amplitude
We have discussed the instability of capillary waves on
a thin liquid sheet under the assumption that the dimensional

amplitude (L is small compared with the half thickness

of the sheet, i.e.,

L .
=/

(i

< ="
2
Because of this assumption we could merely show the existence
of the instability but not explain the break-up of the sheet.
The above condition is, therefore, not assumed here, but for

simplicity another one called the long wave approximation

is imposed. This implies that

Al = /——«ZC )2<a /’

where Z; is the wavelength of the wave.

Our aim in this section is to show a possibility of the
break-up of the sheet. First, confining our analysis to the
symmetrical wave with arbitrary amplitude but long wavelength,
we derive a simple set of equations governing the wave motion
and investigate various properties of physical importance con-
cerning the wave train described by the equations. Secondly,
by solving the equations numerically we confirm the fact that
the instability, predicted in the preceding section, proceeds

until the break-up occurs.



4.1 Derivation of a simple set of equations

We write .down again the equation of motion and the
boundary conditions shown in §2 only for the symmetrical

wave. These are

g}iz F g .—_—(,,, - (4.1)
[ /], 5 o ) 5 <7
¢t7"3—<7§r 7‘763 )'7‘_(/"7: 721/(”—7/1)1, (4.2)
at g'—'?(x;.t),

g; - 71 s ('7/)1 ',/x, (4.3)

gé#: 0’ at \;{:C/ , (4.4)

, 2
where 6#=( p51/7‘)(1'/2 ) and eq.(4.4) is the symmetrical
condition for the upper and lower surfaces. If the dimen-
sional wavelength is short compared with the length#* L
defined as
Z,L = ;;Zl_

¢ (A
the last term on the left-hand side in eq.(4.2), which is due
to the action of gravity force, is negligible. It should be
noted that, in view of the symmetry, the set of eqs.(4.1)-

(4.4) can also describe the wave motions on a water layer on

*  For pure water LC =0.27cm, mercury 0.19cm, ethyl alchol 0.1l6cm and

glycerine 0.23cm, when these are surrounded by air. All the values

resemble each other in magnitude.
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a rigid boundary.

The dispeérsion relation for the symmetrical wave is

given as (see eq.(3.19))

CQ B /\’ Xtccrv (W

Here, if we suppose that the wavelength is large, i.e., k<g

1, the above relation can be rewritten approximately as

kl

/\;2

This relation implies that when the space scale is set equal
/
-5 . . ~ . .
to /p{ %, the time scale is A in magnitude, where /At
stands for the squared wavenumber, i.e., /4(5 A* . Hence

it is convenient to introduce the following variables:

$= A% 2, T=uX. (4.5)

We now suppose that all the quantities are functions of ¥
and 7 and vary at the same rate in both space and time.
In terms of ( ; v ,7) the set of eqs.(4.1)-(4.4) is written

as

9¢ +.__£ 19,

A
TS EY (4.6)

/L‘g-‘%+—j’—[/c4/§-§ﬁf‘—)¥[§—f";)’]=/ 652/// b /)/ (4.7)

aty =7(57)»

2d
aj = 5T =SS 5§Z )
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= =0, at =0, (4.9)

Further, we e){pand ¢(§,y,z‘;/u) and '7(§ ,'C;/u) into

power series in /L(:

BCs, 9, T 0= L/( b (5,97,

vr=e ' (4.10)
7(%,T ;/u) =Z/u"'7,, (3,7)

It should be noted that the zeroth order perturbations
are taken into account; otherwise the system of equations may
not lead to interesting nonlinear equations. Similar situa-
tions to this appear in nonlinear Alfvén wavesz )and long gravi-
ty waves strongly influenced by viscosity (see §4 of Part II).
Substituting eq.(4.10) into eqs.(4.6)-(4.9) and noting that

¢(§' » 4> 7T ) at the free surface can be expressed as

#es, 51,0 )0=F,n, # 35 (AT BT

we can obtain a sequence of equations for each order of AL -
The first order of eq.(4.6) gives

@
% o
& ,

from which we have, with the boundary conditions (4.7)-(4.9)

P =P 5T (4.11)

From the second order of eq.(4.6) we have
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7.
o>

S _

Sy <,

Integrating the above equation with respect to 37

obtain

¢, _ _

g =k

i @

where (C(¥,7) is

b2 g+ C(3,

T D

b

an integration constant.

order of eq.(4.9) requires (=0, whence we have

b _ _ NV,

3 Y - EFE .

we

The second

(4.12)

Substitution of eqs.(4.11) and (4.12) into the second order

of eq.(4.8) gives

and eq.(4.7) becomes

(4.13)

(4.14)

Accordingly, our problem is reduced to solving the set of

eqs.(4.13) and (4.14).

Next, we try to arrange these two equations into a sin-

gle one.

We assume for a moment the amplitude to be small,

although eqs.(4.13) and (4.14) are valid for long waves of

arbitrary amplitude.

-\
V=/1E7,  U=EN

Thus we write

b

é— <L«

/

b



where ((=5¢/7& and & 1is a measure of smallness of the
amplitude (see the definition which appeared in the first
page in this sub-section). Here we have omitted the sub-
script ¢ . Substituting the above expressions into egs.
(4.13) and (4.14), neglecting the terms of higher orders in
magnitude than &2 , and eliminating the velocity (¢ ,

we obtain the linear equation

A A
37 377 _ -
IC* " S E” C, (4.15)

16). This is the same form

which was first derived by Taylor
as that governing the transverse oscillations of an elastic
beam*.

Even for nonlinear case a single equation can be derived

by introducing the function §L defined by

7= jg, 6(7_'__5,

which satisfy eq.(4.13) identically. Equation (4.14) is writ-

ten in terms of yQ, as

S ooyt S Ju sy eSS (9@

2= -0 2 2L Z= =/
J(‘Kﬁg/ 200 OC 2§ DEXNIT / )J§4 C.(4.16)

As this form is rather complex and moreover makes the physical
meaning ambiguous, we will not intend to consider farther

about thlS equatlon in this paper.

* TFor a derivation of this equation and its solution, see Fourier trans-

forms by I.N.Sneddonzz) .
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In concluding this sub-section, it is important to
write eqs.(4.13) and (4.14) in alternative forms. Dif-
ferentiating eq.(4.14) with respect to £ , setting =
SP/IE , and introducing new variables X, 21 and é;,
we write eqs.(4.13) and (4.14) in the form useful for in-

terpretation, that is,

g + iti(u’?)’"O, (4.17)
j% ~+ Uf—% =d g;% (4.18)
where the variables ‘2', 2?, and ?' are defined as

The asterisk indicates diménsional values of the variables.
The nondimensional parameter 5\ appearing in eq.(4.18) 1is
expressed as
S - 472 Vel
L%

23)
which may be related to Ursell parameter for long gravity

waves (see Part II). Making the following transformations:

U—)5 U, 1t — ‘/—}—Z— (4.19)

we have the same form as eqs.(4.13) and (4.14) expressed
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in terms of (( . Hence it is sufficient to treat eqs.(4.13)
and (4.14) in'place of eqs.(4.17) and (4.18) without loss

of generality.

4.2 Steady solutions

We seek a solution of eqs.(4.13) and (4.14) in the fol-

lowing form:

’

7= 7(Z) ¢=75C2) with o= £-CT,

which represent a steady travelling wave with velocity ( .

Substituting the above expressions into eqs.(4.13) and (4.14),

we obtain
1:)1. 7 g Vi ’ 3
—CU + (@7 )=0C (4.20)

/ / a2 ,
—CPIt 5 (P )=y (4.21)

where the prime denotes the differentiation with respect to

- . Integration with respect to Z gives

)

¢,= A +C7

\

where /4 is an integration constant. With use of this re-

lation, we have from eq. (4.20),

717”:‘3/,—(,41"(2‘77)- (4.22)



Finally, we obtain after integration

el ;) s ATFCYY
/z/c/ o // “““ )’7“8, (4.23)

in which 43 is another integration constant. The right-
hand side must be positive, which requires that C1/42i3 B*.
In place of 4 and /5 we introduce new constants () and

(, satisfying the relations:

. . 2 2, \

crCG=4," CAG+G) =285,
where we can set ( = (] without loss of generality. Thus
eq.(4.23) can be rewritten as

AP 2 (7=C)C =)
/:/_C_/) = Z , (4.24)

Solutions of this equation can be written in terms of the
elliptic integral (see Byrd and Friedman%a)p.79), although
we do not here write down it explicitly. It follows from
this equation that the surface displacement §7 varies with-

in a region expressed as

I

o= C = 7= G

]

and there are wave trains whose wavelength X 1is given by

_ 2 F/ 7
i) J(p=GrG=)
G,

* We must choose 4=-C [0, in order that the velocity ¢ should

become small quantity in the weak-nonlinear limit.



which is written simply as

:ﬁm E(&), where A =(Q-C)/G > (4.25)

where (A ) 1is the complete elliptic integral of the
second kind (see also Byrd and Friedman242 p-79). These
wave trains are shown in Fig.6. |

The wave velocity (O is equivalent to C =d4i//,
¢~ being the frequency, from which we have, with use of A
=27 /k,

(E—’-/—%/(Tl FrECQ). (4.26)

Wave trains of constant amplitude can exist, only when such
a relation as eq.(4.26) is satisfied among the frequency,
amplitude, and wavenumber. It is found that in the present
case the nonlinearity leads to decreasing of the wave ve-
locity contrary to the case of gravity waves (see Lamgw), p-
417). As we have already mentioned (see §3), these depend-
ence of nonlinearity upon the frequency is called the 'ampli-

tude dispersion'zol
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Fig.6. Steady solutions. Solutions obtained by solving eq.(4.24) numérically are shown
as functions of ¢ for three different values of Zzl. Note that '7 and ¢ are nor-

malized by means of C; and Zkf//C/, respectively. For the three values of a*, i.e.,
0.1, 0.5, and 1.0, the normalized wavelength is equal to 3.1, 2.7, and 2.0, respectively.
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4.3 Comparison between plane wave solution of the nonlinear

Schrodinger equation and steady solution for long waves

We seek a plane wave solution expressed as /7=((%/2)exp
(-i2T) in eq.(3.40), where (¢, and §2 are real constants

as before. This wave profile becomes

4 s o
,’/ =/+ Q. Cos S~ 7&; EQRces 28 + 6254, (4.27)

where

C _ /é,l”— Ct,t:

C, - /\7[3?/+2/?(/-in] a:
[PV rkc1 )

The frequency O for the nonlinear wave train is expressed

as

o (k64 ) =w —48— SN (4.28)

where ¢o 1is the frequency for the linear wave given by eq.
(3.19), and ?’ is the function of [é (see §3.3). Here we
assume that the wavelength is long enough to be able to set

Y =/ , then from eqs.(4.27) and (4.28) we have

22 R
7-= [+ & A CosC -2—&‘6052 4 +-/z,‘ SN (4.29)
(0= (o— = PG (4.30)

>

Returning to the results established in §4.2, we con-
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sider a wave train of small amplitude, in which we can ex-

pand the elliptic integral in eq.(4.26) into power series in
— 24
Q* . According to the formula given by Byrd and Friedman

(see p.298), when @%< 1, eq.(4.26) can be approximated by

2

o ,')2-,";_' ‘/C’;—C}_ > ((,2 "(‘//\, ‘5]
RISz T 0@y,

When the constants (¢, and (7, are determined so as to satis-

fy the relations

— — L _'\f = 2
C, =/-ca——- £,
_ . - 2 .2
C=/trea—7€a,

we have the same dispersion relation as (4.30) and

e e eos o n =g L Q)
‘7~/ " QoCoS g — OS2I T o , (4.32)

from eq.(4.24). This equation coincides witheq.(4.29) except
the trivial constant term, which results from a special choice
of the integration constant (see the marginal note on p. 15).
Therefore, it is concluded that the present wave solu-
tion with long wavelength but arbitrary amplitude can be re-
duced, in its weak-nonlinear limit, to the solution of the

nonlinear Schrdédinger equation.

~1



4.4 Some interesting properties of periodic wave trains

We consider periodic but not necessarily steady wave
trains governed by eqs.(4.13) and (4.14). Assuming two func-

tions 7/ and «/ to be periodic*, we have directly from

eq.(4.13)

= 7/ oA 8 =0 (4.33)

where the integration is taken over one wavelength. This

relation states that the mass

/\4[/7j:/ ’],9(-5, (4.34)
L

is time-invariant quantity. Another invariant of physical

importance is the momentum given by

N (= // “« o &, (4.35)
i

where «{ is the velocity in &-direction as before. Mul-

tiplying 7 by eq.(4.14) after diffefentiation with respect

£, we obtain

/ e +Qude )deE =0 (4.36)

- L

while from eq.(4.13) multiplied by ¢( , we get

* It is easy to see from eq.(4.14) that the velocity potential 9ﬁ

cannot be assumed to be periodic.



([t + e Jt5-c

The second term in the latter is integrated by parts, and

after summation of the two integral expressions the expected

relation

d
d’r[l U 0(3:50, (4.36)

can be obtained.

Next, we derive some expressions concerning wave energy.
The energy consists of two parts: one is the kinetic ecner-
gy and the other the surface energy. Expression for the

kinetic energy, say ﬁ(, is known to be

EL/L7“2“/§-

On the other hand, the surface energy is proportional to the

surface area, so that for the present two-dimensional wave,

it is given by

/S

which can be approximated as

v/z/§+—u /clj

The second term corresponds to the energy due to the wave.



Hence, in what follows we call it simply the surface energy

and denote it by symbol (/, i.e.,

/[ 5
L= r—/ 12 AE
* /. /5 V\I ’

Some straightforward manipulations lead to an expression

for another important invariant expressed as

o ./
%) Grerd Bods=o e
L.

which implies the conservation of the total energy:

Elu, 7, ’@]c/{—%//(/"-f% ’/jz) AL (4.38)
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It sometimes occurs that when use is made of the vari-
ational principle in analyses for wave problems, some in-
teresting and useful results can be easily attained.

Steadily travelling waves become stationary if we move
with the same velocity as that of these waves, we examine the
following variational principle. For a fixed mass, we virtu-
ally change the wave form while both the ends are fixed®, and

we seek solutions for which the quantity
ZV:/< —"(J/’

becomes stationary. This is written as

JL =0 for A/ fixed,
where él\ is the first variation of the nonlinear functional
L‘Z-L(,OC 0}_7 . Here, it should be noted that the kinetic
energy [ is measured in the moving frame. We denote the
velocity relative to the frame by (/. Noting that for long

waves the product of /s and # may be constant, say A,

we have the Euler-Lagrange equation,

daL’,ié_'f)\

/7351/:, Y (4.39)

where Z,’ is the integrand of the nonlinear functional /_

and A the Lagrangian multiplier. This is expressed in the

* It may be sufficient to consider only one wavelength.
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form

: /A
}/fi .___3_(_7—; — 2N ) , (4.40)
If the multiplier is chosen to be (*/2, this equation is
just the equation governing the sfeady solution (see eq.
(4.22)). Similar fact was noticed by Boussinesq for solitary
wave in a shallow water and utilized by Benjami%eko demon -
strate its stability.

The following analysis is concerned with the wave energy
per unit length in f-direction. Denoting the two kinds of

energy densities by K’ and ('/, the Lagrangian /7 is writ-

ten as

L=k =U

Expressions for the two functions K’ and ('’ are given by
the integrands of /K and (/ , respectively. Differentia-
tion with respect to §& gives

dL 2L A7

_ arl oL o Te
A£ D7 HE

e AE

since the function Zif does not include the coordinate £

+

explicitly. We can arrange it in the form
0/ ’ oL 2
rys L= — .C_'_ =

where we have utilized the relation (4.39). This states



that the function
c?
L7g7 - 7

does not depend on & . When the relations obtained in §4.2
(see the expression for 9&’ and the footnote on p.33) are

utilized, the above expression can be written in a simple

form
— z 2
E"+ %"7=’2—(C7+G) (4.41)

—

where J}~’ is the energy density defined as

/= ! 2 Wayx
E' =57 +2’/§' (4.42)
This relation is also written in terms of ({ in place of ({ as

/ Lot L2
Loy =£cei-ch) o9

which implies that the energy density is uniform with respect
to £ . It is found from eq.(4.41) that the local energy
per unit length has its maximum at /7 = (,, and minimum at//=

(3 , 1.e.,
/ f’ -/ -
E. o35G, Ewn=3G,

These are proportional to the squared velocity (% , hence

for fixed (7 and (), these become larger for the shorter

waves (see (4.26)).
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4.6 Numerical investigations

It is suggested from the results obtained in §3.3 that
the steady wave solution represented by eq.(4.24) may be un-
stable to small disturbances with larger wavelength. There-
fore, we solve initial value problems numerically to egs.
(4.17) and (4.18) with & =1 (or eqs.(4.13) and (4.14) expres-
sed in terms of ¢( )}, choosing the following two cases as

their initial values,
Case (I): SS(&;¢,G,N\)-0.05cos 2T¢ ,
Case (II): AS(&;5¢,GyA)-0.0lcos &g,

where SS(&;¢, G, A\) stands for the steady solution with

the crest-to-trough amplitude, (3 —¢,, and the wavelength

A\ (see §4.2). Here we take ( =0.5, (=1.5, A =2, and

the remaining arbitrariness arising from the integration
constant is determined so as to make S’ minimum at & =0.
Numerical calculations are carried out under periodic boundary
conditions with periods XN and 3) , respectively, for Case
(I) and for Case (II), by use of the finite difference method
given in Appendix. The amplitude of the disturbance for Case
(I) is 10% compared with that of the steady solution, and

for Case (II) this ratio is very small (merely 2%).

First, we discuss for Case (I). 1In Fig.7 the temporal

variations of the maximum surface elevation //,.x and the mini-
mum one VW‘H are shown. From this figure, it may be con-

cluded that the small disturbance, which corresponds to the
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Fig.7. Temporal variations of 2 _and 7;“‘for Case (I).

me

second harmonic with respect to the steady solution, does
not give rise to instabilities.

On the other hand, for Case (II) the variations of the
free surface / and the velocity ¢/ within the time in-
terval 0 £ T 4 4.4 are shown in Figs.8 and 9, respectively.
As has already been suggested, disturbances with larger wave-
length than that of the steady solution grows with time. In
fact these two figures show the instability. We cannot carry
out this computation just up to the time of break-up, since
the errors originating from the steepeness of the two quanti-
ties, particularly from that of the velocity (see Fig.9), be-
come larger. However, it is highly plausible from these

figures that such an instability proceeds until both surfaces
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Fig.8. Variations of free surface 7 for Case (II). In the initial stage the minimum
trough is placed at & =0. The wave profiles are drawn over two wavelengths of the dis-

turbance.
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for Case (11).

Phases are

Fig.9. Variation of velocity (¢
properly shifted so that the position of the minimum velocity,
which is initially placed at the same position as that cor-

responding to the minimum trough, may be situated in the cen-

ter.
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meet together in the center plane. In this example, the
minimum trough ‘(initially placed at £ =0) becomes smaller
(but not monotonically), and hence this trough is important
to have an understanding of the mechanism of the break-up.
The wave energy distributed almost unifirmly in the initial
stage 1s concentrated in a narrow region near the minimum
trough (see eq.(4.43)). This tendency is more remarkable
for the kinetic energy, which is easily seen from Fig.9.*
This concentration becomes more noticeable and at last our

solution may burst at a finite time.

* 1In this respect, it should be noted that the position of the minimum

velocity is placed at the same point as that of the minimum trough.
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§5. Conclusions

In the first half, we derive a simple equation called
nonlinear Schrodinger equation, and we show the existence
of the modulational instability for weakly nonlinear waves.
It is, then, conjectured that the modulational instability
for two kinds of waves, especially for the symmetrical waves,
may play an important role in the phenomenon of the break-
up of the sheet.

In the next half, to confirm the above conjecture we
analyse the symmetrical waves without the assumption that
the amplitude is small compared with the thickness of the
sheet. Numerical computation shows that the steadily propa-
gating waves are unstable to small disturbance with larger
wavelength than that of the steady wave solution. Such an
instability proceeds until the solution bursts suddenly at
a finite time. This 'burst instability' gives us an almost
certain evidence that the break-up does occur. Our calcula-
tion was carried out for a special case, in which the wave-
length was three times as large as that of the steady wave
solution, and thus it remains to determine the optimum wave-
length of small disturbance for a given steady wave solution.
If the determination could be carried out, then we have a
possibility that we may determine the drop-size arising from

the break-up and finally find a method of controlling it.
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Appendix: Numerical Algorithm with Finite difference Method
In solviﬁg the initial value problems to eqs.(4.13)
and (4.14) expressed in terms of ¢/ , we use the following

leap-frog explicit scheme,
/i, T T e v e
E—A-/[ua,/f/)—-M(L,Jﬂ)]‘fé-é [uc Lj) U JUcet],)) ]
X [ ucetl, )=ty )]-= ’—A/—; [5([‘/‘2,/' J2Stly )15, ;)
—-S¢=2)], (A.1)
/T - e, o,
Z/ZS(LJ/'/'/J“S(L,/—/)] +5A[§<¢ L))t (i J#S CCtL 5 0]
X [tcert,j)=ud=ly) ]+ Zé[“("" LU )t /27

X[s¢eH ) )=sc~,0]=0, (A.2)

where 5 (¢,)) and (A(c, ;) imply n(a,)a’) and U8, )4, re-
spectively, A and 47 being the lattice spacing and the
time step. Both eqs.(A.1) and (A.2) have the truncation
errors of order A2 and 45’2. For the initial step we use

the forward time difference scheme,
/7, . / <, <L o
L UCE, H1 )=t () )15 [Uli=1} )+ ULy )+Ulith)) ]

X po [/(L//) = D+ Do D"‘ S(L"/i) ’

/ -
o - / . -
& [S(L,/T‘/)‘—S(_L,j )]‘/‘FZS(L“/,/)‘?‘.S(L/)‘f‘.S(L“H,/./]
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X Dot Ci ) )+g (e, jwii ) jetierty )]0 Sc)=0,
where

Dy fci.j)= - F et jy=f )],

D_ i) = 2\/—[]‘(4‘;/')’"7[(“"'/‘}],

Do ¢i5)) = 55 lfers j)~F&10].

We examine the stability of the above scheme on the
- 2M .
basis of the von Neumann theory. For the application of

the theory, we linearize eqs.(A.1) and (A.2), hence

33/7 Luee,j#0=UCSp=1)] + U DUl )=D 0. b.SEy)
(A.3)

24,[s<c,/+/)-5 ()= J+ S bttt )+ 1 DSt ) =0,

(A.4)

—

where ({ and S are regarded as constants. Equations (A.3)

and (A.4) can be rewritten by usual steps as

———[u (§,/+/) e, - /)]+ U isimaf d(f .))

=2._A/;3_ Lisins § (esaf~1)8CE, ) (A.5)

/565,/+/) g (§,/ -1 )/ * -“DLSWA* GCE, )

24y

—

+;—é!— ’LS4wég (E /) 0, (A.6)

-
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where we have introduced the Fourier transforms,

A0y ¥
3¢5, ‘m/s*(;,z)e‘ s

/\
A, D / —-L\}-;
(5:T)= 5z [uescoe Ay,

~
-~

Replacing 3'\(/.“/) and («/}(‘/l"/) by g\?/) and (,//\ "(/), we can
arrange in the form,
¢ “A N . A
U+, 5 )=R(Sa,ad UV, 5D,

where U is the column vector with four components, and

@ is the 4 X4 matrix defined as

UG+l §)= [5G, E)
1, 3)
2 CJti, T)
ac+hs) 1.

— ) N A -— . . I
Q = —-f[/?.(éd.wAS / -—i—/—SQL S’.Lofvdsﬁ o
/ o o (%
/ . .
'4:5‘ 4 csavd f /- . A
4 . O — 2 (20503 /
X(crsazr—1) <
\ 0 O o/ 0
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The eigenvalues X for the matrix & are given as

\=-3[(Acr8)tG~ac), ~[<(acBI* 13-Grcg

where

R\
|

A
_ 4LL'<3a

P

oy ¢
2 ="S5SnNa4 .
X 3

]

Noting that /A and (C are real,

relation

it follows that when the

4— X2 = o0, where X = uCrl3E,

is satisfied, the modulus of the eigenvalue )\_ is always

27)
equal to unity, and the linearized scheme is thus stable.

We have an inequality:
Y. Qo oA D 2
/%] =/>2 U TSINAE 1145§9—<ma £ (/~tossE )

L
X2 Zé’—/sfndéj“/

i —3-’—/7 +2)25 < 2L ok [sinaE (/—-@54’\]1/

from which it is obvious that when an inequality
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/ 9 —_— Id
/M/-’A*gdf[/f— </
A S/3 A ’
is satisfied,'bur difference scheme is stable. In deriving

this we have utilized the relation:

) -
max /Sllnég\(/—Coség\)z/zJi/%i
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List of Symbols

Dimensional quantities

a .

3
Y
/-

I~
o

S

amplitude

acceleration due to gravity
thickness of sheet

wavelength

71 ed

surface tension per unit length

density of sheet

Nondimensional quantities

complex amplitude
one half of real amplitude

real amplitude

crest-to-trough amplitude normalized by means of

trough (=(C, - C )/ G)

R, B:: induced potential due to nonlinear interaction

C,

G o

Ly

¢
S

height of trough

height of crest

induced surface elevation due to nonlinear interac-
tion

phase velocity

group velocity (dec/dR )

E{d,”, 7] energy contained per one wavelength

E

energy density (= K7+ (/)
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E(Q) :

complete elliptic integral of the second kind with

modulus 7

Sy )dle, ) ) or SCisj)

(/_

K

/<-/ .

k

ratio of gravity force to surface tension force
2

(=p§47/47)

kinetic energy contained in one waveiength

kinetic energy per unit length

: wavenumber

L/

integrand of nonlinear functional L

Ad({y] : mass contained in one wavelength

NI (( ]+ momentum contained in one wavelength

P

2

=~

<o~ x C© C X

4 -

Cimx:

o,

coefficient of dispersion term on the nonlinear
Schrddinger equation

coefficient of nonlinear term on the nonlinear
Schrodinger equation

time

velocity in E-direction

surface energy contained in one wavelength
sufface energy per unit length

coth k

tanh k

5 i’:&))(/ J ﬂfs ))(

maximum amplification rate

ey 14
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& : a measure of smallness of amplitude (=(?/(4‘/2)),
band-width for quasi-monochromatic wave

7 : upper surface elevation

7’: lower surface elevation

phase for linear wave (=X,.—(.T.)

™

A : wavelength

A< i a measure of smallness of wavenumber (=OT/VZ~)2)

g e( x —-Cyij) for modulated wave, or /Jé?L for long
wave
T+ &% for modulated wave, or /A/Z' for long wave
9b : velocity potential
(J : wave frequency for linear wave
(Z;: wave frequency for nonlinear wave
K> ¢ frequency shift due to nonlinearity

superscript
(s),s: symmetrical wave
(a),a: antisymmetrical wave

* : dimensional quantities
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PART II. Effect of Viscosity on Lona Gravity Waves
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§1. Introduction

The effedt of viscosity on long gravity waves has been
investigated by a number of authors since the time of Stokes
(see, for example, Lamg)). Most attentioh, however, has
been confinedrto infinitesimal waves on the basis of linear-
ized theory, which is surveyed by Wehausen and Laitone. On
the other hand, the inviscid potential theory enables us to
handle finite amplitude waves, and there is also a long his-
tory of the inviscid nonlinear gravity waves (see Lamg and
Stokerﬁﬁ. Amongst them Korteweg and de Vrie?oderived a sim-
ple equation for the free surface, called today after their
names, at the end of the last century.

In the first half of Part II, we attempt to derive a
simple equation for weakly nonlinear long gravity waves on
a viscous fluid laver. In order to see the effect of vis-
cosity, we first obtain the linear dispersion reiation and
express the complex phase velocity (¢ as a function of the
wavenumber (¥ and the Reynolds number‘»/? . It is found
that, when AX%?CL/:Z7 1, the wave dispersion consists of two
different parts; one is due to’the geometrical configuration
and the other due to the effect«of viscosity. In particular,
for long waves ( X<«< 1), the geometrical dispersion (in-
viscid dispersion) dominates over, balances with, and 1is
dominated by the viscous dispersion according as 0(9(”54,@,,(’
=£7(/_1'X~5), and  (/x7)< R <¢7(LX.J_) . We then apply the reductive



perturbation methods)combined with the usual boundary layer
theory to waves with small but finite amplitude. It is found
that the inviscid Korteweg-de Vries equation is not affected
by the viscosity for CM@(§<: A? but it is modified by the
viscous dispersion forc?@fb<ij§5@i§ and new types of equa-
tion are derived for the disturbed free surface. Existence
of the steady solutions to the above new equations is examined
but it is found that the effect of viscosity always damps
the wave energy and there exist no steady solutions including
shock-like solution. On the other hand, for /xR C /<=1
and o¢ << 1, the complex phase velocity becomes purely im-
aginary and there exists no wave motion. A modified reduc-
tive perturbation method leads to a nonlinear diffusion equa-
tion for the free surface, which was first obtained by Nakaya§)

Recently, Zabusky and Galvin.nmade laboratory experiments
on gravity waves and compared their results with the solutions
of the Korteweg-de Vries (K-dV) equation. They concluded that
the number of emergent solitary waves and their phases based
on the K-dV equation agree quantitatively with those obtained
experimentally. However, the amplitude disagrees somewhat,
and they supposed that this might be due to the viscous dis-
sipation. Therefore, the next half is devoted to the study
of the effect of viscosity in more detail, confining our in-
vestigations to the case of weak viscosity (/¥RC/=>1).

Our aim is to answer the following questions:

(1) Can the modified Korteweg-de Vries equation obtained in
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the first half explain the various properties of gravity
waves obtained experimentally by Zabusky and Galvin?

(2) Can we clarify the mechanism of wave motions, in which
there are three competing effects, i.e., nonlinearity, geo-
metrical dispersion and viscous one?

For this purpose, we solve initial value problems for
two cases; one is sinusoidal wave and the other solitary wave
in their initial wave forms. The former is the most realiz-
able one in experiments so that this enables us partially
to attain our aim (1) mentioned above. The latter belongs
to simpler and more fundamental one (from an analytical point
of view). Furthermore, expanding the displacement of the
free surface elevation into Fourier series, we investigate
the three competing effects upon the wave motions in detail.
Numerical algorithm used in these computations is summarized

in Appendix C.
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§2. Basic Equations

The continuity equation and the Navier-Stokes equation
for two-dimensional flow of an incompressible viscous fluid
under the action of gravity may be written in nondimensional

form as follows:

Y, 200 _

DX * 34 ¢, (2.1)
20/ 20/ oy op ! (2 ga/
—_— - . = — T
> X " 6(3/( Tt a4 DX R o T ) (2.2)
ALt L 7.l LY L A AR )

{ 2= Iz~ — - 1+ T .

where ( ¢( , 1~ ) are, respectively, the velocity components
along ( X , ¥ ) directions. The Cartesian coordinate X is
measured horizontally along the bottom and VA vertically
upward, and Ve is the time. We have used the undisturbed
depth H as the characteristic length and the wave ve-
locity ( (9}/’ )% in the inviscid shallow water limit as the
characteristic speed, where (§ is the acceleration due to
gravity. The pressure P has been normalized by pé)h/ ,

p being the density of the fl%Zd, and the Reynolds num-
ber R is defined as Q =(94 )*H /1, in which %
is the kinematic viscosity. Since we are concerned with long
waves, we neglect the effect of surface tension.

The boundary conditions relevant to the present problem

are

(= 1= C at g=C , (2.4)
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ok
54_ at Y=Hhcex) (2.5)

1= 2w

(Q’H_ )>c)// (52")]'* 3; jf! ;)IL—%' aty=A, 1)

(2.6)

_ 3 ~or YT A ;
/) /’)/ (2 ’)]rR( L au) 2 {L_%%% -

at =50 ), (2.7)

where ‘y = 7%'(1),f,) represents the disturbed free surface.
The conditions (2.4) at the bottom are obvious, while eq.(2.5)
is the kinematical condition at the free surface. The 1last
two conditions represent the stress continuity at the free
surface, i.e., eq.(2.6) and (2.7) imply, respectively, that
the tangential stress at the free surface is equal to zero

and that the normal stress at the free surface is equal to

the atmospheric pressure /),

The undisturbed steady state is given by

L(:(" ‘Z"ZC’ ﬁ:/’
(2.8)
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§3. Linear Theory
Let us first consider the effect of viscosity on gravity

waves of infinitesimal amplitude. Substituting

(=0, Qv=7.7, N
(3.1)

P=1=Y +Pqtp

into eqs.(2.1)-(2.3) and the boundary conditions (2.4)-(2.7)
and linearizing them with respect to the small quantities with

the prime, we obtain the linear equation for 7./

2, P .
L; (’/\ ‘ ‘)‘L\ 3 Z Vs \99‘2‘/ D%Z\z
4 e —_—
I ALDY* /2 e #‘2,7)1 24t - Y%/, (3.2)

together with the boundary conditions:

, ALY g :
.z\ — D =0 at y = ,
—) 4 ()"\/ -
;(Z - 3; =¢ at g={, P (3-3)
/ ¢ Z\
d“z« YL /(a 0 ) o /
N\ LY
YETA )[9/)1 at =/

after elimination of ({’, ¥, and P’

As this equation is linear and does not coﬁtain the co-
ordinate X explicitly, the function 'l\/(X » Y,Z) can be
expanded into a Fourier series with respect to the coordinate,
and the equation can be written for everv Fourier component
separately. This means that it is sufficient in this problem

to consider solutions of the form

-



IV = DY exp [incx-ct], (3.4)

where (X is the wavenumber (assumed to be real positive)
and C the phase velocity. Substituting this expression

into eq.(3.2), we have

N2 xRV + X = ROT =0, (3.5)

in which the prime denotes the differentiation with respect

to :y . The general solution of this equation is given by

'7:}(9) = ,/;Cc's'f'&’j/—/-BS'th '/1Dq/:¢/+((’u;/f[95/—/—Dsm%\{@é{’ (3.6)

where (31=(}T£¥—chCi) and A4, 3 , & , and [0 are arbitrary

constants. This solution must satisfy the boundary condi-
tions:
’4’—\ - L/ - o [)
IN(C D)= N ()= (3.7)
2~ - '__""\.//
XTI+ (D)= (3.8)

— (XCX " ) (3N + XACER )N
— AR D) =0, (3:9)

These conditions are homogeneous, so that we have the dis-

persion relation:
49(2(3 (D(a‘f‘.Pl) 7“43’%’ ((3 S en Ay 5’4’n£(3 —X c“cs‘A)‘)(cz%P D)
- (X !32)2((3 Ce 5/(1)((‘054”,3 — A)(S',#ﬂA:‘)/SI‘)Z /;r3 )

— C(//\)l ((3 < ,{ X (”'L'Sf{!(»} —X 5;6774;;} ¢ SA.X):(-; (3 10)
{ , : ? )
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requiring that the complex amplitude v (# ) should be non-
trivial.

In order to clarify how the viscosity affects the complex
phase velocity, we try to express C as an explicit func-
tion of ¢/ and A& . In general this procedure may be
very difficult, but for the following two cases Qe can obtain
approximate expresssons; one is the case (a) in which /xR C/
=> 1 and the other the case (b) where /X RC /<< 1%*.

We first consider the case (a) in which we may set fgg/
coshﬂ 0 and tanhp.t,l where we have chosen the branch of

(B satisfying /?QCP)>O. Assuming then that X is
of order of unity and A& is much larger than unity, we

have

%)

sinhx )+0(R Y, (3.11)

L
T2

/ 5
C =(tanh X /x )2+exp(5/'ti/4)9( AR /(Zcos}‘lfI
where we have discarded the waves propagating to the negative
X -direction. The first term in this expression coincides
exactly with the phase velocity obtained in the inviscid theo-
ryl? Therefore we may call the dispersion due to the first
term 'geometrical dispersion'. The second term is the lowest
order viscous correction whose real part represents the pure

dispersion while imaginary part represents the dissipation.

* It should be noted that X may take any order of magnitude for
the case (a) but for the case (b) X must be much smaller than
unity in addition to’x¥R C/-x1. Since, however, we are concerned with
long waves, it is sufficient to be able to obtain approximate expres-

sions of ( for x-x1 in both the cases (a) and (b).
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Thus the effect of viscosity is not only dissipative but also
dispersive. In,this sense we may call the complex dispersion
due to the second term 'viscous dispersion'. It is easily
seen that eq.(3.11) is still valid even for values of
smaller than unity so far as XK =>1.* When 0'¢ becomes
much smaller than unity, the first term in eq.(3.11) Xaries
as 1-aﬂ/6, while the second term as exp(S/ti/4)(>OQ}72.
Therefore the two different types of dispersion may balance
with each other when & =C7(Rﬁ3. For values of (X smaller
than this the viscous dispersion dominates over the geometri-
cal one.

Next we consider the case (b). As was already remarked,
we assume O << 1 in addition to /x R C/ << 1. Then
the hyperbolic functions of & or F contained in eq.

(3.10) may be expanded into Taylor series of X or F

Assuming R to be of order unity and arranging eq.(3.10)
in powers of X , we obtain |
. SN
ZD(IQ X /Q g 2 2 ‘f“(j ><3‘
= - - = / ’ 3.12

which represents, to this order of approximation, the viscous

dissipation only. It may easily be verified that the above

* On the other hand, for &X >>1, the dispersion relation is also
derived from eq.(3.10) and becomes
/ . -
C =7 —2iXR /

This was found by Stokes for an infinitely deep water (see Lamb

1)).

-70-



relation (3.12) is valid not only for A =¢ (1) but also
for A< (' (X™%) . Thus in such a relatively low Reynolds
number (highly viscous) case, the disturbance cannot propa-

gate as a wave but may be diffused out.

It is useful to summarize the abové results for long
waves ( X << 1) and classify the dispersion relation ac-
cording to the order of magnitude of the Reynolds number.
Case (a): high Reynolds number case

(i) geometrical dispersion dominant

: X* ok
C =/--6-—7‘-... for C(X “94/{, (3.13a)
(ii) balance between geometrical and viscous dispersions

2 _ . L N
C o= f= Zor g OPETSHIGRIZe | for 2 =07, (3.13)

(ii11) viscous dispersion dominant

C =/ - 2_/— e x/’)(\fﬁ'c/zl )("X'/\D)N{f- -+« for (‘“()("j</Q (3.13c)

< (X

Case (b): low Reynolds number case, viscous dissipation

dominant

v LD ~ e
C=—4cxXR+... . for < (a7 (3.13d)

where the dots stand for the higher order cuantities than
the preceding expressions. In the region intermediate be-
tween the cases (a) and (b), i.e., when /3=<f(;¥ﬂ), we can-
not find any series expansion such as (3.13a)-(3.13d). For

water layer, the above classification 1is given in Appendix

’
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§4. Nonlinear Theory

On the basis of the linear dispersion relation obtained
in the preceding section, we now consider the effect ofvvis—
cosity. on long gravity waves with small but finite amplitude.
Our main purpose is to derive a simple eauation for the sur-
face elevation under the assumption of weak nonlinearity and

long wavelength.

According to the general theory of an oscillating bound-
ary layer, the thickness o of a boundary layer near the
bottom may be evaluated as /)/K’(’/’f'. This fact suggests
us an application of the boundary layer approximation for
the case (a) in which /Q@Q(’/:>> / . On the other hand, for
the case (b), where/XQQ(’/<z; / - the effect of viscosity

prevails in the whole flow field. Hence we divide our prob-

lem into cases (a) and (b).

4.1 Case (a): high Reynolds number case ( /XR{C/ >> / )

It is expected in general that the effect of viscosity
is dominant in two boundary layers close to the free surtace
and to the bottom. According to Longuet-Higgingv however,
the ratio of the energy dissipation near the free surface to
that near the bottom is of order /(’g/i/,Q / . Therefore
the boundary layer near the free surface may be negligible
in the present long wave approximation ( X<« / ) for

high Reynolds number (0 ~>> / ). In fact, as will be



seen later, the boundary conditions at the free surface (2.5)
-(2.7) may be Treplaced by the inviscid ones so far as the
present order of approximation is concerned.

We shall therefore divide the flow field into two re-
gions; one is outer region beyond the boundary layer and the
other inner region near the bottom. We then match the outer

solution in the limit ¥ — ¢> to the inner one in the

limit '? —s oo , where ?’ is the stretched inner vari-
able defined as ? = & /4 . Such a procedure is familiar
( a P )
9,i0

in the conventional matched asymptotic method and may vield
a uniformly valid solution in the whole flow field.

Let us first consider the outer problem. As a typical
example, we shall here take up the case (aii) in which X =

(*(/Q_f>). The other two cases (ai) and (aii) may be dealt

with in a similar manner if we notice the relative order of
magnitude of X and K?

As is known in the inviscid theor;q the dispersion re-
lation (3.13b) suggests us the following coordinate-trans-

formation:
<3

}=éy(1—-t), c=e't, J=Y. (4.1)

where & 1is a small parameter measuring the weakness of the
dispersion. This means that we have assumed & = EOY))=

2 :
. £ _ ) . i
0(%@ ‘). In terms of ('§’.j’ ), the basic system of equa

tions (2.1)-(2.3) may be written as

~J

2
}



A YL ' s0)

. (4.2)
&‘g {/ ’
(o) ,1
A7 w0y AL’ I _ 2P el <)L(“) ;P(No
¢ 57 T S T + L )——&3 5% /ﬁ(é(}?) ),
(4.3)
JL/!} N (—E/ [1‘ ’>
SL - (= -] “Ol = <f-—
£ 3 +€(U° ) 2 Yrel 5 -/ ( jiJayz)
' (4.4)
-3 . L
where we have set /e = £ /\)‘)<L and Z,\(‘)= E 2 L( / , the

latter is the same transformation as that used in the invis-

cid theoryg)

We have used superscript (¢) to specify the out-
er quantities. The boundary conditions at the free surface

(2.5)-(2.7) may take the form:

() K ,9/7 P e

2 3% . (4.5)
2L L e 28 DL W
(55 Te€3s IG5 )7+°e(3y sy g

(4.6)
By = P (R 2 AL oy ool
O ) ( /7* / J V3

)
e 2 7 | )
2§ Jj , (4.7)

at 5/= ﬁf(S,z‘). The matching conditions may be expressed

as
(s, Y, T (L(“’( 5.7, T)
e (2995, 9,T) |7 L &y ) | (409)
I (”/”(‘ ‘&y
P ) POs T



where the superscript (i) denotes the inner quantities.

Since we consider weakly nonlinear waves, we expand

e, L"’) , /yﬁ) , and £ in powers of &
-y —_ o oS T ':)» [T —
(S, T )= €Sy, T (4.9)
n=J
,_x—,-
[ o = Y s c)
[/ (?:J,é)‘Lé' ) (3,9,T/), (4.10)

=y

©) = <= A,
PG C)=r-yrly +/) €075 9,0, (4.11)
=y

A(s.c)=/1 ) € £, (5. (4.12)
n=f

Hence the small parameter ¢ may also be regarded as a
measure of weakness of nonlinearity, which means that the
Ursell parametegzaas been chosen to be of order of unity.

Substituting the above expressions (4.9)-(4.12) into
eqs.(4.2)-(4.4) and the boundary conditions (4.5)-(4.7), and
arranging them in powers of ¢ , we have a sequence of equa-
tions and the boundary conditions for each order of &

From the first order of eq.[4.4) together with the first

order of the boundary condition (4.7), we obtain

(¢ )

= K, (5, C). (4.13)
The first order of eq.(4.3) gives
‘ «)
S (¢ t _ i)__[_)J_
i =
55 dy ’ (4.14)
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which together with (4.13) leads to the solution

'
f

L=k (LT (9, T (4-1)

where ({(H, C ) is an arbitrary function of (Y ,ZT) result-
ing from the integration. Since we assume that there is no
surface elevation when there is no flow, we may set (¢(Y.T)
equal to zero. Mathematically speaking, this is valid if the
s, ) .f‘ ' . .
condition (¢, = L, holds somewhere in the }' space. This
was also postulated by Gardner and Morikawa in their inviscid

i
theory.) From the first order of eq.(4.2) together with the

first order of the kinematical condition (4.5). we obtain

: a/‘ '
N = 35 (4.16)

{

The second order of eq.(4.4) and the second order of the

boundary condition (4.7) give the second order pressure as

) ) IE .

/2 =32 ))g‘ (/ J ) +Z§1 (4.17)
Eliminating LA&O from the second order of eqs.(4.2) and
(4.3), and substituting the expressions 64M), Zg(‘) and

/2(0) obtained above, we have
b 2P / aéi Sf‘
ee) (3/? f/)f}&’*z )53 14? b c
(4.18)

where b(;)[‘)is an arbitrary function of ( §. T ) result-
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ing from the integration with respect to 3 . Setting F
equal to unity and substituting Z§;V(§;/, T ) into the sec-

ond order of the kinematical condition (4.5), we have

N N ()f: /L -

3z T vos +Z_a\;3 (4.19)

The arbitrary function é(§;zj) will be determined by the
matching condition for 2\ (see (4.8)) after the inner solu-
tion is obtained. It should be noted that, up to the present
order of approximation, the viscous term in eqs.(4.3) and
(4.4) have no important effect and that the condition (4.6)
~is automatically satisfied. The condition (4.7) is essen-
tially equivalent to the inviscid one. i.e., /32— P ’=0 at
g = KRG,

We now proceed to the inner problem. Since X = C\(E%),
R = C‘-('(;-;t), and (C/ = ((/) . we have CT=C"(/?('/3("/-£)
= (6‘) . Therefore, in this case, the thickness of the
boundary layer is just of order ¢ . Following the conven-
tional boundary layer theory, we introduce the coordinate-

transformation

L 32 ) |
F=€7Ca-%) T=EFL ) 7=y/E, (4.20)

where § ~and T are identical with those in the outer

problem. On the other hand, the vertical component of the
; L @

velocity should be transformed as 7= & (e > |/ ), where

the & outside the parentheses corresponds to the usual



stretching in the boundary layer approximation, while the
/
€ ¥ in the parentheses plays the same role as that in the
(0) L)
outer problem. Thus we have |77 e 177,

We can now rewrite the basic system of equations in

terms of (3, 7 ,T):

(" 21" -
a 3 ks 2 7 C., (4.21)
- op fu"’ /au(“
a0’ QUMY g (6
@t /) s = g R
€ 55 + (¢t ; + 1 57 a ¥
(4.22)
DI RREON YRS Y LRI PLTE VI VAo 2] g
€ T FeWE sy el TmEm e 5y ((”"
. .L a?.t/(c.)
P T N O 55
Expanding the inner quantities in powers of & as
) ) - < 2
(C (5,7, T)=2 €U . 7,0 ) (4.24)
M =t
(), lu) _
LS =2 €MUK ), (4.25)
)=y
() B - T ) >y
/) (% /) _/_6*77‘_/)/-)7—1_,/))1 (§)/)()’ (4.26)

n=y

and substituting them into eqs.(4.21)-(4.23), we have a se-
quence of equations to be solved. On the other hand, the
boundary conditions at the bottom (2.4) should also be ar-
ranged in powers of & . From the first order of eq.(4.21)

and the boundary condition: ’Z)“v =0 at 7/ =0. it follows



that

[ (4.27)

The first order of eq.(4.23) together with the matching

condition for P (see (4.8)) gives

/),(L)= P= £ (s, T, (4.28)

where eq.(4.13) has been used. Introducing 'Z»“J and /?“)

thus obtained into the first order of eq.(4.22), we obtain

()lc(fu + A)-V 3(//“) — /<)'¥ &Za/
Ve % 93 (4.29)
«) .
where LT, must satisfy
(&) - oy
of, = C at ;=
(4.30)

7 ‘) A @) |
e ( {, « — Airie ( ,// — .P,( {‘ e /)

FAES (‘/‘9 <

The solution of eq.(4.29) subject to the conditions (4.30)
is given in Appendix B. Inserting this solution into the
second order of eq.(4.21) and integrating it with respect to

;7 , we have the following expression (see Appendix B):

. K

¥ G e

»

”{? /§—”.§'//t (4.31)

from which, using the matching condition for ¢ * (sece (4.8)),

: 2 (
: ) e [ WG ) Yy s
/élnL Z(I(L = é / 3—5—-7)7‘— J(ZZR‘V)A

7 — 7'—”)('
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we can determine the unknown function ,b(<§,;f) as

s vyt [0k [mmn(mED e
’ 2(?(@*)‘47 D& jE- &%

Inserting this expression A( £,7) into eq.(4.19), we

finally obtain the desired equation for fa

SA 2 g LR -

IC 2 ok ¢ 287

<

51? d &’ _ / K, sgncg-g,')dg/
+(A[V) "/f 1 A )F IE ey F "

(4.33)

e
The first and the second terms on the right-hand side of eq.
(4.33) are, respectively, due to the purely dispersive and
dissipative parts of the complex viscous dispersion. Ott

and Sudan have also obtained formally* an equation similar

to eq.(4.33) with the right-hand side as

— X zgé; Jiil(g g/) */g
JE JET- g '

— K

(4.34)

* The linear term in eq.(4.33) can be obtained by using the Fourier
transform and the convolution theorem provided that we extend the linear
dispersion relation to allow negative values of (X . However the
inclusion of the nonlinear term is rather arbitrary and a quite formal

procedure.
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with %3 > 0. If X; were negative or ¢ and &7 in
the sgn function were interchanged, their equation is par-
tially equivalent to our equation (4.33) in the sense that
their equation takes into account the dissipative part
only out of the complex viscous dispersion. Needless to
say both the purely dispersive and dissipative parts are the
same order of magnitude.

So far we have confined ourselves to the case (aii).
It may be shown, however, that a similar analysis to that

given above leads to

34
j}_f_) -+ g“ , 3—2—’- '7‘-?/“ :99§3 = for case (ai), (4.35)
w .
2 L2 p ok [k [=sgnCED gy
ST 2 25 4rek*)T) 2 |E-§)

for case (aiii).(4.36)

provided that we introduce proper coordinate-transformation
and asymptotic expansions depending upon the relative order
of magnitude of &X and K . Hence £ and 7 in the above
eqs.(4.35) and (4.36) are not necessarily identical with

those defined in (4.1) or (4.20).

-81-



Since the effect of viscosity prevails in the whole
fluid layer, the concept of boundary layer cannot be applied
to this case. By virtue of the dispersion relation (3.13d),

it is natural to introduce the following new variables

§=¢cx, =66, 9=5. (4.37)

where we have assumed that X is of order &~ and AL
of order unity. In terms of the new variables ( §,%,T) we
can rewrite eqs.(2.1)-(2.3) and the boundary conditions (2.4)
-(2.7), which we call eqgs.(2.1)'-(2.3)' and the boundary con-
ditions (2.4)'-(2.7)' although we do not write down them ex-
plicitly.

We now expand the field quantities (¢ , 72¢ , /) , and
4 as power series of &

((CE, I, T )= E U (5,9 T,

=<

5.9, T) =) ETUNCS, 9.7 )

AT

’ (4.38)

PCs, g ) =Cl=grPi )+ € P(E 50,

MN=c

A5, T)= )+ 5 €"R(5,T ). J

The essential difference between the above expansions and
those employed in the preceding sub-section is that we have

taken the ':zeroth' order perturbation into account in the



above expansions. This means that in such a highly viscous
case as in thé'present case the weaker nonlinearity considered
in the case (a) cannot balance the dominant viscous dissipa-
tion. A similar situation to this is also encountered for
nonlinear Alfvén wavegf) Introducing (4.38) into eqs.(2.1)'-
(2.3)' and the boundary conditions (2.4)'—(2.7)' and remember-
ing that any field quantity (- (§}‘9,Zf) at the free surface

can be expressed as

22
Qcs, y-#,c1=0) 73 ;’f(ﬂ;é R

we can obtain a sequence'of equations and the boundary condi-

tions for each order of &

Since the procedure of calculation is similar to those

given in §4.1, we only summarize here the main results:
{ / > ) P
Le=17,=0, 1,=[LR0+E)Y> K/Qyj +2Ry fz‘;))t-

l(o=C —[—_)_i E=I1+8 )], (4.40)

and %i) satisfies the following nonlinear diffusion equa-

tion:

DI R A [, p I
— = £ ,,)\3-[ Cr+ 7)) ——/ (4.41)

T )3
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It may be shown that the same type of equation is also derived
for /Q\/‘ [(.)/") , if we introduce proper coordinate-trans-
formation and asymptotic expansions depending upon the rela-
tive order of magnitude of X and A

Quite recently the same equation as eq.(4.41) was obtain-
ed by Nakaya6)together with its similarity solutions. It is
easily seen that Nakaya's nondimensional space coordinate X
and j* defined in his eq.(2.16) are equivalent, respective-
ly, to our } and \’51 defined in (4.37) but his time ,{‘*
is equivalent to our R # /2> . It seems, therfore, quite
surprising that the same equation is obtained for different
time stages. It is shown, however, that there is some con-
fusion in his analysis concerning the order of 4£#% . 1In
order that his analysis is consistent, his ,{¥ should be

multiplied by €2 (or by /* in his notation).
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§5. Some Simple Properties of Eqs.(4.33) and (4.36)

Let us ndw consider whether or not the resultant equations
obtained in the preceding section have steady solutions. It
is well-known that the Korteweg-de Vries equation (4.35) has
the cnoidal and solitary wave solutions. In order to see the
existence of steady solutions to eq.(4.33), we examine the
time evolution of the wave energy.

Assuming that

) c‘)lé/\ -~ ——-i—" .
7{> ()% — C as 3 > (5.1)

and multiplying eq.(4.33) by ﬁ; and integrating it with

respect to § from — < to oo , we obtain

o f (=3 7/(5 57
A oF, (=57 Ay ols

By virtue of the convolution theorem, we have

/ DM / Pk, > rehf ey ik )€ Sk
/5573 [

/\ . .
where 7{/:(/\)) [) is the Fourier transform of ff,(?)?‘). Hence

(5.2)

eq.(5.2) can be rewritten as

i
J.

_d_ 7 e T
df/.ﬁ"’;“ R

where it should be noted that the contribution from the pure-

//’/ 76(/e, C )75 CATIAE (5.3

&
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ly dispersive part does vanish in the above integration.
Since %;(—k ft ) is the complex conjugate to éa(/C,j:), the
integrand on the right-hand side is positive definite (note
that 76( &,7 ) 1s real). Thus the total energy decreases
monotonically with time and there exists no steady solution
to eq.(4.33) satisfying the condition (5.1). For example,
following Ott—Sudan13’15)we can easily show that the ampli-

tude .5 of the initially given Korteweg-de Vries soliton:
— - / P a
Sesecklce -8 00/55 )7 (5.4)
decreases with time as
Rl S . ._-)(-'*4-
S/ = (1+0TT), (5.5)

kj T and

’ /",7\5 \'f,/ / 3 ,
Iy = _,;% / v ‘C% £ &L—/L L K@ PINE ‘“\L) /2 ‘/3
, [z -3yt
> o (5.6)

In the above analysis we have used two time scales 'C and
¥ and assumed that /?*“_/ is much smaller
than unity but large enough compared with ¢ so as not to

invalidate the asymptotic scheme developed in the preced-

* It is easily shown that this expression of ¢ 1is proportional to
/V /—/\’/;/.y\(/;‘}/lz//\{ and that the constant of proportionality is

; v . . )
positive, where 7(/\7 ) is the Fourier transform of AR sech N
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. . s . . 3
ing section. Due to a trivial miscalculation by Ott—Sudan\)

the value of ¢; given in (5.6) differs from their value by

/
factor - — .
= 16)
On the other hand, Pfirsch and Sudan have obtained a
necessary condition for the existence of shock-like solutions
of the Korteweg-de Vries equation with dissipation. Accord-

ing to them the necessary condition is given by

./ét;ru .y(O( ) —>

X ¢ /\X/ /’ (5'7)

where Y (X) 1is the linear damping rate in X space,
and is proportional to ‘}/% in the present case (see (3.
13b)). It is easily shown that the presence of the purely
dispersive part of the viscous dispersion does not alter the
Pfirsch-Sudan's criterion. Thus we may conclude that eq.
(4.33) has no steady shock-like solution for which ﬁ%/;:—-xy

¥R (3==) .

The same conclusions obtained for eq.(4.33) may also be

applied to eq.(4.36).



§6. Numerical Integration of the Modified K-dV Equation

In the préceding section, we have analytically examined
some simple properties of long gravity waves under the in-
fluence of viscosity. In this section, we investigate
the effect of viscosity in more detail by solving the modi-
fied K-dV equation numerically. Our aim is to answer the
following questions:

(1) Can the modified K-dV equation explain the various
properties -of gravity waves already known in experiments?

(2) Can we clarify the mechanism of the wave motions, in
which there are three competing effects, i.e., nonlinearity,
geometrical dispersion and viscous one?

For this purpose, we solve initial value problems for
two cases; one is sinusoidal wave, and the other solitary
wave in their initial wave forms. The former is the most
realizable one in experiments so that this enables us
partially to attain our aim (1) mentioned above. The latter
belongs to simpler and more fundamental one (from an analyti-
cal point of view). Furthermore, expanding the displacement
of the free surface into a Fourier series, we investigate
the three competing effects upon the wave motions.

Numerical algorithm used in these computations is sum-

marized in Appendix C.

6.1 Correspondence between experiments and the modified

K-dV equation
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Recently, Zabusky and Galviﬂ”

made laboratory experiments
on gravity waves in a shallow-water tank driven by an oscil-
lating piston which gives wave forms similar to a sinusoidal
function. They compared these results with numerical solu-
tions of the K-dV equation. Their work showed that at a down-
stream location, the number of crests and troughs and their
phases agree fairly well with the numerical solutions, while
the crest-to-trough amplitude disagrees somewhat.

Present sub-section is devoted to discussing how accu-
rately the modified K-dV equation obtained in §4 can explain
the results of the experiments made by Zabusky and Galvin.

To do so, we comparee the solutions of the K-dV equation with
those of the modified K-dV equation taking account of the vis-
cous dispersion, and also investigate the behaviour of the
Fourier components.

Main parameters used in their experiments are summarized
in Table I. In order to compare their experiments with the

solutions of our modified K-dV equation. we rewrite the equa-

tions* in more convenient form (see ref.7) as

K L F ok L, 9K _y, sk L
o% voox Y3 X YT ., (6.1)
z

where

~ M ea
Y /A/L &

¥ It is easy to see that eqs.(4.33),(4.35) and (4.36) in §4 are
unified into a single form represented by eq.(6.1).
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/
~ XX = /?f*_ H VT2
X = L /2 -(/4] L §,

o~ K¥
£ = 2 %,

The asterisk indicates dimensional value of the variables.
Two nondimensional parameters X, and ¢, appeared in
the above equation represent, respectively, a measure of

the geometrical and viscous dispersions relative to the non-

linearity, and they are defined as

/
Y ¢ M A
X, 7 b= 7 A7, Aa=3 474 “9H ) (6.2)

|
where Lﬁ. is known as the Ursell parameter?) In Table I,

are listed their values corresponding to Zabusky-Galvin's

7

experiments.

Table I. Parameters of Zabusky-Galvin's experiments. The

last parameter o was calculated for pure water at 20°C.
Case 1 2 3
Depth H (ft) 0.493 0.242 0.242
Wavelength L (ft) 7.92 8.38 9.46
Amplitude A (ft) 0.0418 0.0192 0.0243
O(, 0.02025 0.004672 0.002896
s 0.01475 0.03945 0.03312
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It is seen from Table I that the viscous dispersion
dominates or at</most balances with the geometrical one
in magnitude of the parameters. As will be shown later,
however, the ratio of these parameters itself is not so
effective measure of the two dispersions as it appears,

because the geometrical dispersion has a local effect while

the viscous one global.
We solve an initial value problem to eq.(6.1) under

the following initial condition:

7 = Cos T XL,

where and hereafter we suppress the tilde for simplicity.

We set here each parameter as follows:
Case A : 9//=‘5“£0/Z(Q_Uﬁ-—; o.cor9/, H=/0X,,
Case A2 : o, =4ve/rd, oh=/0 (500X ),

The magnitude of the factors in Case A, is similar to that
in Case 3 of Zabusky-Galvin's experiments. Main constants
used and obtained in these computations are summarized in

Appendix D.

6.1.1 Wave forms for K-dV and modified K-dV equation

Wave forms calculated numerically by using the method

given in Appendix C are shown in Fig.l for Case A, and also

in Fig.2 for Case A,.

We first compare the results of Case A, with those of
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Fig.1. A series of the wave forms for Case A, (continued
from the preceding page).



Fig.2. Wave forms for Case A, at two different times.
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the K-dV equation. The differences between the wave forms
of the K-dV equation and those of Case ALof the modified
K-dV equation are shown in Figs. 3 and 4 at time A =1.0 and
2.0, respectively.b From these figures, it is found that
the two wave forms are not so different from each other
under such a weak influence of viscosity. Nevertheless one
can observe a slight damping of wave amplitude and a phase
shift in the present Case ;4/ , which are due to the viscous
dispersion.

According to linear theory, real part of the viscous
dispersion gives a phase shift if we assume the initial wave
form remains unchanged. This phase shift ot is represent-
ed as (see eq.(3.13b) or (3.13c))

f—— -2

e A A-allie S 4 (6.3)

’

/

where X 1is a wavenumber in the present frame of reference.

L

Setting x equal to /C , we have

JC = ¢ 7 /3 & C.oo208

at time ¢ =1.0 and 2.0, respectively.

On the other hand, numerical calculations give the posi-
tions of crests, which are listed.in Table II for Case /4, and
K-dV equation, from which it is concluded that the réal phase
shift calculated numerically is, in general, larger than that
predicted by the linear theory and the larger crest gives the

larger shift in the phase except for fz at T =1.0. The lat-
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and K-dV solution,

Wave forms at ¢ =1.0 for Case A,
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Fig.4. Wave forms at £ =2.0 for Case A, and K-dV solution
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ter can be explained by the fact that the amplitude dispersion*
plays an important role and hence the damped solitary waves
move with the slower speed. As already shown in Figs. 3 and

4 (see also Table III in the next paragraph), the waves with

larger amplitude are damped more significantly.

Table II. Positions of crests for Case A, and K-dV equation.
The subscripts indicate the number of the crests designated

in order of magnitude. The n-th crest is shortly written as

fa

Z =1.0 Xt =2.0
K-dv eq.(6.1) P2 K-dv eq.(6.1) Py2
P 0.453 0.421 0.032 0.789 0.687 0.102
P 1.984 1.968 0.016 1.945 1.890 0.055
i 1.546 1.531 0.015 1.171 1.140 0.031
'/ZL 1.132 1.109 0.023 0.289 0.265 0.024

Next we consider Case A, , in which there exists more
dominant contribution of the viscous dispersion. 1In Fig.2
is shown the variation of wave forms at two different time
stages. Peculiar properties of the K-dV equation such as
soliton formation almost disappear in such a highly viscous

case. Initial wave form steepens due to nonlinearity, which

* This means that the solitary waves propagate with their proper

speeds proportional to their amplitude (see §6.2).
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is similar to case A, , but the maximum amplitude decreases
so rapidly that the geometrical dispersion has no important
effect and moreover its position cannot proceed to the posi-

tive X -direction.

6.1.2 Comparison of Zabusky-Galvin's experiments and the solu-

tion of the modified K-dV equation

Zabusky and Galvignexamined their experiments in detail
for Case 3 and the corresponding K-dV solution. As pointed
out before, their Case 3 is closely related to our Case A,.
Let us comparé the wave forms calculated numerically for
Case A, with those obtained experimentally by Zabusky and
Galvin. For this purpose, the heights of solitary waves

measured from mean water level are shown in Table III. It

Table III. Comparisons of heights of solitary waves:
o= vl
ﬁ::experiments, ﬁk :K-dv %? :modified K-dV solution.

E K | pk E ) K pk pM!
A AN S AT
r v v —
» | 1.88  2.10  0.22 2.21 | 2.36  0.15 |
A : e
p | 0.792 | 0.873  0.081 | 1.35 | 1.43  0.08
‘ .
£ | 0.067 | 0.097 | 0.050 | 0.54 | 0.57 . 0.03
, ;

should be, however, that this correspondence is somewhat in-
complete, because the heights of the K-dV solution correspond-

ing to the experiment are the values at €=0.675 while the
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heights of the modified K-dV solution and the corresponding
K-dV solution 'are the values at Z =0.680. Needless to say,
there are slight differences between the two dispersion
parameters in Case 3 and those in Case A,, and also between
their initial wave forms. Therefore we cannot compare the two
results completely. Nevertheless it can be pointed out from
Table III that there exists a similar tendency concerning
the damping of the solitary waves, so that our modified K-dV
equation can describe almost accurately the long wave mo-
tions under the influence of weak dissipation so far as the
damping is concerned.

We now summarize briefly the results obtained above.
The wave forms with weak viscosity (Case A,) are not so
different from those with no dissipation (K-dV), while the
number of emergent solitary waves coincides exactly with each
other. This agreement between the modified K-dV and the
K-dV solutions corresponds accurately with that between ex-
periments and the K-dV solution. Moreover, the damping of
solitary waves obtained by numerical computations for Case
A: is well compared with that found experimentally.

As a result, it may be concluded that our modified K-dV
equation can describe the observed wave behaviours except
the fact that the phase shift obtained by the calculations
is not confirmed by their experiments. In this respect, it
should be noted that the phase shift is always caused by the

viscosity and is of the same order in magnitude as the vis-
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cous damping. It is therefore hoped that careful experiments
concerning the' phase shift will be carried out. Then the
results may be compared quantitatively with our modified

K-dV solution.

6.1.3 Temporal changes of energy spectrum

The temporal changes of the energy spectrum for Cases A,
A: and K-dV solution are shown in Fig.5. The ordinate measures
the components of the energy spectrum for the n-th Fourier

component defined by
Y'l 2
E,=0,+ b,, (n=1,2,3,...), (6.4)
where C?H and AI, satisfy the relation

G-, 5
7% =3 7‘“2_ ([2” cosniT X+ 5,, SN ).
n=/

Both spectra for K-dV solution and for Case A, resemble each
other in shape. On the other hand, for Case A,, F, varies
linearly with time in log-scale. The second component }E;
grows up to a certain equilibrium value, and then it decreases
with time at a rate similar to that of £,. This tendency
applies to Ei, and the higher order components. On the other
hand, we show the energy spectra including up to the 11-th
component of several time stages in Fig.6 for Case A, and also

in Fig.7 for Case Ap.

We now consider the changes of the wave energy:
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~/ . ZZ ::/L *
1=
p

In Case A, it damps almost linearly with time, which is

shown in Fig.8. On the other hand, for Case A, we find the

exponential decay represented as

i et

Fo=0 ,
where the value of - is nearly equal to 2, since the wave
energy may be nearly equal to the first component /£, . As

this value is about one half of that predicted by the linear
theory (‘é;4.4, see eq.(3.13b) or (3.13c)), we may conclude

that nonlinearity gives rise to negative influence against

the damping.

6.2 Damping of solitary wave

By using the transformations

1““

A o= XK, X—=>X5x, t -t

eq.(6.1) can be rewritten as
.

° L; S » ; )3 DI [4 ’
Y + /%‘.in; " ‘ZLii - X QL /;l

¥ x0T 5 T o -1 . (6.3)

. ¢

Setting QQ.=O in the above equation, we recover the K-dV

equation and have the solitary wave solution represented

* This is nearly equal to the sum of the potential and kinetic energies

per unit wavelength.
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as

A e VA - Xt )

A solitary wave whose amplitude S' is equal to 24 has the
width /0 =1/} 7 and propagates with speed |’ =8.
We solve the initial value problems to eq;(6.5) for the

following two cases,
Case By XY, =C. [

Case B, : X -
) ;

>
choosing the solitary wave placed at X =6.4 as its initial
value. In the numerical calculations, we replaced the region
extended from X = — =C  to X = <% by a periodic bound-
ary condition. Several constants used in these calculations
are summarized in Appendix D. The separation distance was
taken to be 12.8 (318D ). 1In this configuration, each soli-
tary wave is well-separated geometrically, but the effect
due to the presence of the others may not be weak because of
the non-locality of the viscous effect as shown in the right-
hand side of eq.(6.5). However, we carry out the computations
under the periodic boundary condition mainly because of their
simplicity in numerical algorithm.

The wave forms thus obtained for Cases B, and B, are
given in Figs.9 and 10, respectively. As we have already

shown in §5, under the influence of weak dissipation, the
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amplitude 5 decreases with time as
Ll e ~¢
S/ SCe) =1 +mX T, (6.6)

if we note that eq.(4.33) is replaced by eq.(6.5)(cf. ea. (5.5

)), where

2 N4 . ',7A r ) /
Serlé Z’§ék¢9<??§¢vaféfL£§?1£§ﬁ£;¥gzéf
[Z2=2[2 :

Setting LY =24 for the present problem, we have 77 =0.190.
When = X, £ <</, we may approximate eq.(6.6) for Case B,

as

S/ SCe) s [ — A T,

which shows the linear damping of the amplitude. On the
other hand, by solving the initial value problem, it is found
that the amplitude also decreases almost linearly with time
and has the value ) =23.0 at ¥ =0.247. However, the linear
damping rate thus obtained ( )§=0.17) does not agree with

the value given by the above theory ( 1§=4wn7aé_=0.076). This
disagreement arises mainly from the assumption made in §5 that
solitary wavé preserves its symmetry around the central axis.
On the other hand, the function expressed in the right-hand
side in eq.(6.5) has initially a negative sharp peak near

the axis and is roughly positive in the left half to the cen-
ter and negative in the right half to it (see Fig.11). Such

an ansymmetry will appear more remarkably in Case B, (see Fig.
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Fig.11. Function expressed initially in the right-hand side
of eq.(6.5). Function £(x) is the right-hand side of eq.
(6.5), so that

f(l) /;;f, alf | where & cxy= 24sect™V 2 X,
10).

Next we consider the phase shift for Case B, . The po-
sition of the solitary wave after 0.247 time unit is computed
as X =6.4+1.90, while the K-dV equation gives the position
to be X =6.4+1.976. Thus we have the phase shift 48=0.076,
which is twice as large as that predicted by the linear theory
(d6 =0.039, see eq.(6.3)). Such a tendency is also found in
the case of the sinusoidal function discussed in §6.1.2, and

this can be explained by taking account of the amplitude dis-
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persion.

In Case B, subject to the stronger influence of vis-
cosity the solitary wave does not propagate downstream and
decreases rapidly (see Fig.10). The fact that the left to
the peak is fat and the right thin originates from the ansym-
metry of the right-hand of eq.(6.1) pointed out above (see

Fig.11).
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6.3 Conclusion

First, it was clarified that in addition to the nondimen-
sional parameter &/, already known in the inviscid shallow
water theory, under the influence of viscosity another non-
dimensional parameter Cé plays an essential role in long
gravity waves.

Secondly, we obtained the results that the solution of
our modified K-dV equation agrees with Zabusky-Galvin's ex-
periment with respect to the damping of solitary waves, while
it produces a new disagreement in their phases.

Lastly, concerning the damping of wave energy it is
found that when the geometrical dispersion dominates over
the viscous one, wave energy decreases almost linearly with
time, while in the opposite case viscosity damps it exponen-

tially.
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Appendix A: Classification of the Dispersion Relations for
Water Waves

We inquire whether there are cases in which the viscous
dispersion plays an important role in a usual water layer.
In order to see this, we now investigate the relations be-
tween the depth /4 (measured in cm) and the dimensional wave-
length /_ (in cm). For a usual water layer at 20°C, the
wavelength vs the depth for 9(=(9/2)f//§’—é and ¥=RKR7 is
drawn by solid lines in Fig.A. It is seen from this figure
that, for example, when Z~=102cm, the geometrical dispersion
dominates over the viscous dispersion for a layer deeper
than 3 cm and balances with that for a layer 3 cm in deep.
In a layer shallower than 3 cm the viscous dispersion makes
a dominant contribution, and thus we cannot discard the
effect of viscosity. For a water layer shallower than or as
shallow as 0.1 cm, any wave cannot propagate and diturbances

are diffused out.
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and ¥ = R~/ .

wave approximation is valid.
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Appendix B: Evaluation of COQ) and 1LY’

Equation '(4.29) and the boundary conditions (4.30) may

be rewritten as

OFf pxX O
EPE + K oy 9, (B.1)

Sf=-% at 7=,

(B.2)
._;d';.wj[:(),
Vit
where ;{(5,7,)% Lﬂui— fﬁ . This equation can be solved
by using the Fourier transform. Introducing
oG ‘(.ég_
7//?, 7) =/ /7(/?,;)(' AR
where (B.3)
/\/ K ’ / g ” :"‘Lég 7
‘f(é;7)~—zg Mf(i(_)f cfgy
A\

into eq.(B.1) and solving the second order equation for kf

we obtain the general solution

A

f-celrae (5.)

where
\7)

i) .
& = (R ksgrk ) exp(-3 57k s

The integration constants (, and . must be determined

P s

so as to satisfy the boundary condition (B.2). Hence we have
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) < -4 L/ .,
(0 = I /ﬁ, e 2‘%.[//%, (B.6)

:\ K
where 7, is the Fourier transform of #

Substituting (¢(“’ thus obtained into the second order

of the continuity equation (4.21) and integrating it with

respect to 7 , we find that
¢ / .)LA
== —?"*'/w ~=(/-¢€ )11&5 g/k’ (B.7)

where the integration constant has been determined by the

condition:
) - ~
\ —_ 4 - .
.y, =C at (=C .

The second term on the right-hand side of eq.(B.7) be-

comes, in the limit '? —_— <,

e L/
/_271_)_%/( / T+ CSY97 )//e/f - g/{' (B.8)

where the explicit form of (™ given by (B.5) has been sub-
stituted. Applying the convolution theorem we can rewrite

(B.8) as

} /—Sy?/(§-§’)é{§,
2(7/\‘*) ()5 J5-5% 7,

(B.9)
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Appendix C: Finite Difference Method Combined with FFT

In order 'to solve the initial value problems for eq.(6.1)
or (6.5), we replace the left-hand side in each equation by
a right-to-left sweeping iterative algorithm validated by
Zabuskymgnd the right-hand side is estimated by use of the
fast Fourier transform (shortly, FFT). This algorithm is given

as

_4%/— Z_[/(L-rz)J'r/)—3 Lttty ) T3, ) )= (L= 5/‘}7
/ — ) . S N . , < .
7+ J;:Z L2, 71 )+ L((L~/;/)][”(‘ﬂ—>/+/) THLHL,))

— (( (c',/-f-/) - é((b/,/')]: o/zf(cg/‘) , (C.1)
where
UL, ) = Hoea, jai ),
v~/

Ceyp) =0T D, (2
jﬁ “J) /Liil/(izé

L
)L b gar, e cesEe
'_C A,,;</A/)’/' (('1,(/4’)) S L.r\..")—‘%z P ] ,

2 and '<§/being, respectively, the lattice spacing and the

time step, which satisfy the relation

4= 24X,

Equation (C.1) can be arranged in the form

Lec L"'/ w1y = U (‘.T/)J') B L‘C((fo‘ZJJ“f‘/)‘U(L“/)/.)YQ/J;S

Xy, HGy)
0, J =S ’ (C . 2)

1—
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where

<= j [etCira, jro = =17 ) ]

All the calculations are carried out for periodic bound-
ary conditions with period 24 . In the first place’110V¢gyrU
is evaluated by means of the explicit finite difference
method, and then L((A4/¥J) is calculated from eq.(C.2) by
using the values of (((A/, /') , L{(/\/#’-/,/') , and f(/\/,/') ,
where A/rggnld . We sweep to the left until we compute
({(2;/f~,) and we set U(N*%fﬂ)=646b/+/)because of periodici-

ty. We repeat this process until two successive sweeps differ

by a small amount given by

/ z(.(/\/+2,/+/)- c((z,/'+/)/ < €’

b

where we take é/ = /C 4 for the NEAC 2200 whose single pre-
cision arithmetic carries ten significant figures.

According to Zabusk;é)the discretization errors contain-
ed in the left-hand side of eq.(C.1) are of order Cb,/[))g
and JOAY(éV/L)jz where .Y and /D are the amplitude and
width of the solitary wave and satisfy b = (VZ)O,QT/)f .
For example, for Cases B, and B, , these errors @g/z))z
and ;n,Y(g;/[))‘ can be estimated as 2X10 2 and 4.8X'10”’,

respectively, which are the same order as those of Zabusky's

computations.
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Appendix D: Summary of Constants Used in Numerical Calculations

We summarize briefly the constants used in the computations.

are performed in the time interval

and B2 .

Table IV. Summary of constants.

Q> and

E,,,_/ at time

be equal to zero exactly.

c<« £ = 15‘ for K-dV equation, Cases A, ,

Last two quantities
7= 1e

errors accumulated during the calculations.

[z;JE and

It should be noted that the former is a measure of

These calculations

E%H,E imply,respectively,

1f there were no approximation, this value would

X Xz N N 24 1;~ (13,5 E;FAE
| k-av  |500/64° 0 256 2 2.4 2x107"
Case A, [500/647 | 10 X, 128 32 2 ' 2.4 |5x1077 | 5x107"
Case A, [500/64~ 1 64 32 > 1.0 2x1077 | 2 x107"
Case B, 1 0.1 128 32 ©12.8 0.247 7x107"
Case B, 1 10 128 32 12.8 0.1 8 x107%
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List of Symbols

Dimensional quantities

A

amplitude

acceleration due to gravity
depth of fluid layer
wavelength

kinetic viscosity

density

Nondimensional quantities

&y
by -
C :
D
£,
E :
‘f(X):

FE):

coefficient of cosn 77X 1in Fourier series
coefficient of sin#i{X in Fourier series

complex phase velocity

width of solitary wave (=12X%/~")

energy spectrum for the n-th Fourier component
=3+ by)

wave energy which is nearly equal to the sum of the
potential and kinetic energies (=2§ ED

I
function expressed on the right-hand side of eq.(6.1)

or eq.(6.5)
(c)
L// ‘—;%/
surface elevation

surface elevation for linear wave

period of numerical computation with periodic bound-
ary.condition

number of lattice spacing
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47¢ : damping factor for solitary wave
f : pressure
£y : atmospheric pressure
P perturbed pressure for linear wave
B, : n-th crest designated in order of magnitude
R(C&,y,7): field quantities («,V, and P )
K Reynolds number
kﬁ.: Reynolds number stretched into quantity of order unity
Rel #): real part of o
sgn( & ): signum function which is equal to unity for posi-
tive & and minus unity for negative &
" : amplitude of solitary wave
;5. ¢ initial amplitude of solitary wave
£ : time
(e/,270): velocity components corresponding to coordinates
(¥,7)
(¢¢’,1V): perturbed fluid velocity for linear wave
(/. : Ursell parameter (=A4L/H")
L/ : stretched velocity
X : wavenumber
Y, (4/9) (H7ALY
Yt (1/3) (LT gH
File X (XY= R
7/ (X): linear damping rate
) damping rate for wave energy

damping rate for amplitude of solitary wave
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/" : thickness of boundary 1layer
OF : phase shift
£ : lattice spacing in computation with finite difference
method (=24 /N )
2/ : time step (=4f/4dJ
& : a measure of smallness of amplitude or that of wave-
number
7 : stretched coordinate in ¥ -direction (=& /J )
& : stretched coordinate in 2« -direction

7 : stretched time

superscript
(o) : outer quantity
(i): inner quantity

“N : Fourier transform
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