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 Abstract

                `      Perturbation methods have been developed as a powerful

 technique for solving differential equations which preclude

their exact solutions. It sometimes occurs that the straight-

forward expansions of the dependent variables in powers of

a small parameter have 1imited regions of validity and break

down in certain regions. To render these expansions uniform-

ly valid, a number of techniques called 'singular perturbation

methods' have been developed in different branches of physics,

engineering, and applied rnathematics. In particular, to have

an understanding concerning the rnechanism of nonlinear wave

propagations, various techniques of singular perturbation

methods such as the reductive perturbation, the derivative

expansion, and the Krylov-Bogoliubov-b!itropolsky methods, are

developed recently.

     In this thesis, some of the methods mentioned above are

applied to solve problems for water waves of finite amplitude.

The first part deals with capillary waves on a thin liquid

sheet, and the next part is concerned wjth long gravity waves

on a viscous water layer.

Part I. Instabilit of Thin Li uid Sheet

     It is well known that there are two kinds of capillary

waves on a thin liquid sheet; one is syTnmetrical wave in which

the displacements of opposite surfaces are in opposite direc-

tions, and the other is antisymmetrical v.rave in which the dis-

placements are in the same direction. In the first half, we

                           -iv-



 derive a simple equation for weakly nonlinear waves called

 the nonlinear Sahr6dinger equation. Thanks to the well-known

properties of this equation, it is found that these two kinds

of waves of constant amplitude are always unstable to small

disturbances and the growth rate for the syinrnetrical wave is

larger than that for the antisymmetrical one, and it is ex-

pected that such an instability may lead to the break-up of

the liquid sheet. However, since the above analysis is based

on the assumption that the ainplitude is small compared with

the thickness of the sheet, the result thus obtained is far

from satisfactory explanation for the break-up.

     The next half deals with symmetrical waves of arbitrary

amplitude but long wavelength in comparison with the sheet

thickness. These waves are governed by a simple set of tv,ro

differential equations for the surface displacement and the

fluid velocity cornponent in the direction of the wave propaga-

tion. These equations allow only periodic solutions as steady

solutions which agree, in a certain limit, with the solutions

obtained in the analysis for the nonlinear Schr6dinger equa-

tion. Several properties of physical importance such as in-

tegration invariants of mass, momentum, and energy, the depen-

dence of amplitude on wave frequency, and so on, are also studi-

ed analytically. According to the results obtained in the

first half, it is suggested that these steady solutions are

unstable. To confirrn this conjecture, initial value problems

to the set of equations are solved numerically. As initial

-v-



values of these calculations, •two kinds of small disturbances

                isuperposed on the steady solution are taken. One is a second
                                        'harmonic disturbance to the steady solution, and the other is

a subharmonic one. Within the calculations the steady solution

seems to be stable to the higher harmonic disturbance. How-

ever, it is remarkably unstable to the subharmon' ic disturbance

and the solution bursts at a finite time. It is shown that

the wave energy distributed almost uniformly in the initial

stage is concentrated rapidly near the minimum trough which

becomes deeper and deeper, and thus the opposite surfaces are

getting closerto each other. We cannot, hoiNrever, perform the

calculation until the two surfaces meet together, because of

a violent change of the fluid velocity. Nevertheless the re-

sults thus obtained may be sufficient to confirm that such a

'burst instability' leads to the break-up of the liquid sheet.

Part II. Effect of Viscosit on Lon Gravit 1'Javes

     In the first half of Part II, analytical investigations

of the effect of viscosity on long gravity waves are rnade.

First, the dispersion relation for infinitesimal waves is

examined. It is, then, found that the dispersion relation

consists of two distinct parts, geometrical and viscous dis-

persions. The former arises from the geometrical configura-

tion and the latter from the effect of viscosity. Next, our

attention is directed towards the waves of finite amplitude.

The reductive perturbation method combined wi'th the usual

--
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boundary layer theory reveals that the inviscid Korteweg-de
Vries equation is not affected by the viscosity if C (ct-S)<

 k,where f? is the Reynolds number and O( ((,rt-f-'1) the

wavenumber. For 0(bl-?<R:.f o(/)(-57r, the effect of viscosity

modifies the Korteweg-de Vries equation and yields new types

of equation. On the other hand, for /?,(0(ari-P, the complex

phase velocity becornes purely imaginary and the free surface

is found to be governed by a nonlinear diffusion equation

which was first derived by Nakaya.

     In the next half, initial value problerns to the equation

obtained in the first half are solved numerically. The re-

sults are compared with the experiments made by Zabusky and

Galvin. It is found that the solution obtained numerically

agrees with their experiment with respect to the darnping. of

solitary waves, while their phases do not coincide with each

other. By expanding the free surface elevation into Fourier

series, each component is investigated separately. The tem-

poral variations of the Fourier components together with

those of the wave energy are computed. From these computa-

tions it is clarified that when the geometrical dispersion

dorninates over the viscous one, the wave energy decreases

almost linearly with time, while in the opposite case viscosi-

ty damps it exponentially.

--  V11-



PART I. Instabi1ity of Thin Liquid Sheet
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 gl. Introduction

      Since the 1`950's much attention has been paid to the

 mechanism of drop formation resulting from the break.-up of

 liquid sheet because of their increasing application in com-

bustion, chemical and agricultural engineering. Disintegra-

 tion of a large bulk of liquid into srnall drops with larger

surface per unit volume is of practical imporatnce in most

applications. The atornization of two-dimensional sheets has

particularly received increasing attention because of the

geometrical simplicity which provides a convenient model for

theoretical study. In order to obtain a greater understand-

ing of the processes involved, much attempt has been made to-

wards analysing the hydrodynamics of flow, establishing the

basic mechanisrn of drop formation, and determining the result-

ing drop-size. However, very little is obtained concerning

the knowledge of the drop formation.

     There is no doubt that a certain kind of instability

gives rise to the break-up of the liquid sheet, and one be-

lieves that unless the instability rnay occur any sheet cannot
disintegrate into drops. squirei)has studied the linear insta-

bility which arises in a moving sheet due to the reaction of

the surrounding air. This instability is the only one example

which has been studied. so far. He obtained' the dispersion re-

lation for disturbances with the (nondimensional) wavenumber
                                   ' /c and the complex frequency uv ,

-2-



        `o /t,>'(l-M+w'2(r/•fzx271

           -       x5u.-b lve- >(e ,>< , ,,z> (i'i)
                `where U. is the 'sheet velocity and ,>(=coth/tJ. The above

relation is satisfied for antisymmetrical waves, and similar

relation for symmetrical waves is obtained if we replace X

by '7' (=tanhk). The ratio )(e of the density of the sur-

rounding air to that of the sheet is in general very small.

Profiles of the symmetrical and antisymrnetrical waves are
sketched in Fig.1. Another nondimensional parameter t4/

                                '
             (a) (b)

Fig.1. Sketch of (a) symmetrical, and (b) antisymmetrical waves

is the Weber number defined by

                       Un               U/=/1'ZIL '

where Z. is the thickness of the sheet, 7-                                              the sur.face

tension and P the density of the sheet. It is easy to

see from eq.(1.1) that when the surface tension force is

negligible, both symmetrical and antisymmetrical waves are

always unstable. This fact means that the effect of the

-3-



 surface tension suppresses the instability, which is essen-

                ` tially equivaleht to the so-called Kelvin-Helmholtz insta-

 bility. Another important reduction from eq.(1.1) is the

 fact that the exponential growth rate CL"J , imaginary part

of (fu, , for the antisymmetrical waves is much larger than

 that for the symmetrical ones. The analyses for Squire's

instability have been studied extensively by including the
                      3.4) 5)effects of nonlinearity and viscosity.                                        Nevertheless our

understanding about the basic mechanism of drop formation

is still far from satisfactory.

     The instability which we intend to show in this thesis

is very different from Squire's instability of a moving

sheet. In our instability the surface tension force it-

self and nonlinearity play an important role.

     Recently, much attention has been paid to weakly non-

linear waves in dispersive media. It was shown, in particu-

lar, that the amplitude modulation of nonlinear dispersive

waves is governed by the nonlinear Schr6dinger equation, by

using various techniques of singular perturbation such as

                         6-8) 9)the reductive perturbation, the Krylov-Bogoliubov-Mitropolsky,
                                  to-l3)and the derivative expansion methods. The outstanding fea-

ture of the solution to the nonlinear Schr6dinger equation

is that a periodic wave train of constant amplitude such as

the Stokes wave becomes unstable under certain conditions.
                            tD)For example, Hasimoto and Ono showed that the Stokes wave is
modulationally unstable when k.H, >1.363 where fe. is the

-4-



wavenumber and ILrlp the depth of water. This criterion
agrees with that of Benjamini4)and of whitham15) The main

purpose of the first half of Part I is to apply the above

singular perturbation method to the present problem and to

show a possibility that the modulational instability plays

an important role in the break-up of the sheet.

     It is then found that the two kinds of waves, symmetrical

and antisymmetrical waves, are always unstable to infinitesi-

mal disturbances, and the maximum growth rate for the syrn-

metrical waves is greater than that for the antisymmetrical

ones. This tendency is contrary to Squire's instability of

a moving sheet. Particularly for the symmetrical waves we

discuss how important role such an instability plays in the

break-up of the sheet. However, since our analysis is based

on the assumption that the ratio of the amplitude to the thicl:-

ness is srnall (but finite), we cannot confirm that such an

instability certainly leads to the break-up.

     The next half of Part I is devoted to obtain a certain

evidence that our instability can cause the break-up of the

sheet. To do so, we discard the assumption that the non-

linearity is weak, i.e., the ratio of the amplitude to the

thickness of the sheet is small. In place of smallness of

the amplitude we impose the asssumption called the long wave

approximation, which states that the ratio of the thickness

to the wavelength is small. Confining our analysis to the

symmetrical waves, we derive a simple set of equations which

-5-



governs the surface elevation and the velocity potential,
               `and some import`ant properties about nonlinear wave trains

governed by these equations are first examined. Next, solv-

ing the equations numerically we show that the wave trains

of constant amplitude are unstable and because of this in-

stability the break-up of the sheet occurs certainly.

-6-



S2. Formulation of the Problem

     Let us cong'jder a two-dimensional sheet of liquid of den-

sity e , surface tension T and uniform thickness ,(2. It is

assumed that the liquid sheet is sufficiently thin so that

the gravity force can be negligible in comparison with the

surface tension force. This condition is writteh as t<!-.
        L(7r/Pe2- where ,S? is the acceleration due to gravity. If

the motion is generated from rest, the flow may be irrota-

tional, so that the wave propagation is governed by the two-
dimensional Laplace equation for the velocity potential 95<r/(.e. t?

in the Cartesian coordinates:

              Rx- Åëery=O, (2.i)

where .Z!' is the time,zmeasures horizontally to the right

and 8 vertically upwards. The boundary conditions at the

free surfaces are given by

    Åët + 2'/- (Åëx2 + Åës22 == 7zx/(/ f /lt22f (2'2)

                                       at 8-- 7 (x> t),

         SZv>=7t -iL Åë).m 21., (2.3)
                                      '

   g5. ":it(Åë.i ,c- sbsi?--z-., /(i+7i2?te (2.4)

                                         at 8= '2 !< z, Z? ,

         Åëy=7t/fÅëx'7x!, (2.s)

                         -7-



where 7! (x,:() and IZ i('1, X)are, respectively, the displace-

                 ,ments of the upp`er and the lower surfaces from the central plane.

The subscripts x. , s , and Z- denote, respectively,
partial differentiation with respect to .( , d( , and .t. •

All quantities have been normalized by means of the half thick-
                                               lness Z/2 and the phase velocity (2 7"-/2.0Zof the anti-

syrnrnetrical wave*.

k For water sheet surrounded by air, unit of linear dimension and that
of time are usually 5X10'jcm and 4.)(' lo-3'  sec, respectively, when .kZ =10-2 cm.

-8-



 g3. Analysis for Weakly Nonlinear Waves vfith F:oderate Uave-

 numbers

     It is assumed that nonlinearity of the waves is so small

that the modulation occurs slowly with respect to both space

and time. In describing these waves, it is convenient to intro-
                                   IDduce new variables of multiple scales:

      X.=x, (/ == e' J(, z.=e?x; (3.1)
      Z. t= 1, t,=et, t.-m e-2fi (3•2)
where e is a measure of smallness of the amplitude. Accord-
ingly, the derivative operators S/Jft and 3/J (' are expanded

as
                 J         ,9, ==2 e" 3I.,,, (3•3)
                m=C
and
                 i'          b'Pt =21-. e" ES?iE.. (3.4)
           ,                 47=o
Simi larly, 9S(u. y, -( ) , 7(21 .-t ), and                                        '7!(a..t? are expanded

into power series in 6: -
       g5 = 21-., Ea' 9f>., <i,,. xb.<), y-, t., t,. 6,), (3.s)

            •n =1

       7 = / 't- 2L 6L" '7e,((e) '(/7 Zb to) •t') iti) , (3.6)

               •77"-"!

and

                           i       7/= -/ tE 60' 7., (Io.It, 1), .t e'• /t• jf) ?.(.3.7)

                 m=-1

                         -9-



    Substituting (3.S), (3.6), and (3.7) into

and arranging in tpowers of e- , we get

 O(e):
          zC..L Åë,7 =D,

          L, ZÅë,. ?, 7 -0,
                                    at Y
              "          z<t2 L Åë,. `7, 7 -O
                          '
          Z, /- Åë,. - 7,7=-•0,

                                    at Y=
          L. L"gS,, 7,i-,7-•o,

e('e ?] :

     L.iÅë. 7-- -- /VS'?'(-ip, 7 ,

     4, Z--(A. 7z.7- - N,()''(--de. 9L7t /Y!,`'?('7!,7

     L2 IÅëa. '"r27= -- /V,<"ZNdii, '7!) 7 •

     zl! L-ip2 ,' Z/ 7 -t -- !y(t `2 >("'Åëv7, 7t !N 7,(2 'I--

     `<•i zir.'ÅëD. `211!.JZ= --•- /V.`2'l"'Åë,. O!,!7,

0 (E3? :

     z<.. L-Åë, 7= - /V.`"zrÅë, , f. 7,

     (i lÅë3. t.37 '-' - N,C'2Åë,, Åë.. 'z,. ?.7

     /L.? l'-'-Åës ) ?ts7= - N; (3 )I Åët 7 Åë'x") "'Z ?

                    '

                        -10-

(2.1)-(2.5)

=/
'

-/

'

'

  at

7,-.7,

at

(3.8)

(3.9)

(3.10)

(3.11)

   (3.

Y-1,

   (3.

y - ---/

  (3.

ffr7,r3 Z--7,. 7Z.7•

tk• .7•

      (3.

at y-/,

12)

13)

'

14)

15)



L, (f3.-

L2s/."ÅëJ.

nt-

,Lci7

-- N, ,3' Z- ;'

 f'= -N.

Åë:j

(3)z-
,.

i7,;K71!

Åë.. iZ !.

/tM,

7.7
  '

<3z':iz ; - z/ 7

'

(3.16)

at 3 =-1,

where

t. IÅë. 7
---

-<oTl51ft,Siyl;;a?Åët

'

zL, zl'`75.. '!, 7
 f!EIILct" sVzi
:'=- O,tc ex.a

.p

zL2 IÅëL . 27c7 ='
s,",. a '!,'

ecr oto, ( i -1,2,3),

A/,,(?Zt-Åë, 7 :- 2
aasi5,

a,?.ol,
'

M2t/'ip,. //,7   abi
...  :i;z;

t.:euk,\.y,tY/g,ll,.?aftsc)G4t5?2]

'

,A,•I!,'2'( 7, 7 :--
 ,)iJZt
2 ex. c)xJ ,

/v(. tza 2-('7Si, , 7•7='i;v]l"    a7•
7, - p--.'t", " o.2t,

b4S, S7,
oJV p

'

N.`3 )IÅë'7 Åë.7i2.S.n.s2.,,t2.9'jSILxtw.f a\•
ar tx ,

N, ,3  >Z'- Åë7 Åë)2 7,.
'/,7g-3r-'"i6ta,+ eÅë'1

dia
t.S lk7.g3yiz,f,t,z"t,.s'77,tokV.,:2!,

-IL' :it` ,,Ji,li2k. L'6 k)fi 7t i" f-.2tl

07,
(9,k, etbL

)xt
..D; t--U..7,?f ,i!Q

h.Y

(.e.y-.A,, gifo,7,

M, t3 ) z-i7, 1 7, ] =- '
a"!x

- D?dc)ki

"2o2Lit'Z-i

.bx2-
.a12Z .x-s e;'Z /.ak
c)I7 2 c)?oi ("D2cv

??,

M`"l'ij,. Åë,. Z Z7=- gLil212!.

eyi7, -1" ,)cr
OV., 77. -tl -g),X-.7 7, )- e2Z,

bt/
D.-' -"!.

ot)

--  ( e2Z,
.))lr .

fa02'!
,' ).?xRp'' 50:{ie(g".'6-'S', -t2!!oOL.itAi.ecr?.
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     Let us consider the lowest order problem in ( .
Laplace equatiori (3.8) together with the boundary conditions

(3.9) and (3.10) permits two kinds of progressive wave solu-

tion, which represent symmetrical and antisymrnetrical waves.

For the symmetrical wave, the solution is given by

                                               '    Åë, =- flti:i d('tl;i'l.//.Y /7 eLCf e,c t B,( Sl) (3.17)

     7, =- Z-= ifeCe't e. ('. , (3.ls)

where E; =kJ(e--cd.'Zto , i<l and Cu being,
respectively, the wavenumber and the frequency of the infini-

tesimal wave, provided that the dispersion relation

            .1           ZN'.' -k '.fa•iv• k'k (3.ig)

is satisfied. The cornplex amplitude ,/Il and an additive

real function B,(5) rnay depend on the higher scales .(/ ,

  Jr2 , .(ii , and .Z., and C.C. stands for the complex conjugate

to the preceding expression. Similarly, the solution for the

antisymmetrical wave is obtained as

    gs,.-/t-.4,-.,list{SezLSIil.)iS.6/,`/4(?.c'6-f-e.(1.•f-7?,(",' (,.,,)

                       t-     2!, = z- == Ae`6t e. ('., (3.2i)

                         -12-



with the dispersion relation:

          (oa           k. -` flKi?cc-JC )gz?1 k, (3•22)

where an additive real function Bt(a2 may depend on higher

scales. The linear dispersion relations (3.19) and (3.22)
have already been obtained by Taylor16).

3.1-A.nl!ipmtrcalave
     Let us now proceed to the second order problern for anti-

symmetrical waves. Substituting the first order solution

into the second order equations (3.11)-(3.13), and solving

eq.(3.11) under the boundary conditions (3.12) and (3.13),

we get

     szf.? = '{2'le'"' 11iC;i'i.IXi9.l.i-'`S` /42c'2`"E2- .,,., ,,,:,.f.?h. (> i5soLrgjfv2i2{e/--siiYV<gr .>

           xaDIA, e`;et o. o. •-t B.(e) (3.23)

         (wwhere B.            is a homogeneous solution of eq.(3.11) depending

on the higher order scalest. The surface displacernents of

the second order, z and ig2/, are given by the integra-

t The other homogeneous solution G(2,.k.tts Z3)(E$ehas been dropped

                                            17)                                               ; and that of accordlng to the idea of Bogoliubov and Mitropolsky
 Inoue and Matsumoto12).

-13-



tion of the second equation of the boundary conditions (2.12)

and that of thef`boundary conditions (2.1.3) with respect to

    lfo as follows:

       Z=-tVe".,A-ei`6D-2/,(i-kt,g2?b2{4,e""

                                               '
           k.c'; .L,)t!4, c)d'Eif- o, c. 7L (r`?.`",7 (3.24)

       oci-:51;.A2eiL`tt,t/Ax(is<t.+,E,,)s?,/,7,e`E'

              ,           .- Li, beL/tSL, eceAt e,e+ o.i(,a2 (3.2s)

                        /(a)           ('a)where (?. and C2 are real functions to be deter-
mined in the higher order. Substituting the above solution
   S752 and 72 into the first equation of the boundary

conditions (3.12) or Åëi and ?./ into the first equation

of the boundary conditions (3.13) and arranging in powers of
   ede , we have from the coefficient of (f'C`P

            tb91, t 0s `a)vAx,+d, (3•26)

and from the 'constant' term

            (a )        'r-ai).Bt', :-:": tL'Z(iflli}"-i"> ZA/?, ' (3.27)

where 1/;1 denotes.the rnodulus of ,4 and ,>( =cothk?.

                                                          '

                          -14-



The group velocity Ca) of the infinitesimal wave is given

by

       C2=,`t7(// =,`feUx'(3•'<' f- /? CimK2)7. (3.2s)

     Equation (3.26) implies that the variation of the ampli-

tude is transmitted with the group velocity, i.e., there is

no temporal change of the amplitude in a frame of reference

moving with the group velocity. According to eq.(3.27), an
                   ca)induced current JB,/OX, of the order of F.Z appears in the

sheet due to the nonlinear interaction, which is represented

by
            ge,i`"a'- ll'2.k,,, "(,,!,,-,' il,).of /)/7i2, (3.2g)

where an arbitrary function resulting from the integration
with respect to 4 has been set equal to zero.*

     The third order problem (3.14)-(3.16) can be dealt with

by a similar procedure to those for the second order problem.

After tedious but straightforward manipulations, we obtain
from the coefficient of (JLie) the follosvjng equation for

the upper surface

    t-('E'ffÅí'(9s"iA.•?ttdd-S['?.blli-s/A/)/"'tiW, (3.3o)

*

has

the

In general, this restriction may be severe. However, this function

 no important effect on the modulational instability. In this sense.
 terrn has been dropped.

                       -IS-



where

             deFk2(6,><)-72
        S=                4 xa ,

        h.. Ok {.--- X2)cL(a)+ fe gi,l`O,

and for the lower surface

    6(gfAat.-f-9.2-z,,1,)-gFZ./l{?Lk .3.t,.-s/A1-24th/A, (,.,,)

where
                                       (a )        r,.. - cJ.k (Å~!-X2) (f.?!(a l,. k o,,B,t .

                                                 /(a )                                      (a)                                          and (:z? must     The induced surface elevations (.?

be determined by the condition that 7j and Zi are

secular terrn free, from which we obtain the relations

          ,oi,9`al. gf..ia'. 2.k,"' O.,i,eia=., ,,.,,,

           'gxe,la'-,&to21`a4i,.ASo,!.va,/?-o. ,,.,,,

Substituting eq.(3.29) into (3.32) and (3.33) and remember-

ing the first order relation (3.26), we can express the second
order surface elevations (2)('A) and (21)i(a) as fonows:

         c.(a'-bfe,(3.Xk7E(l.fe-.,(ii)Å~79/A1} ,,.,,,

                        -16-



  2a'

   Åí(1 `=

Equation

which

ficient

ively, '

     (cf.?/`a•-'----f.S,i?i,,',2,XC--5i217ut.

Now that <?z(6X) and C2/(ti) have been expressed in

of !4 , we have from eq.(3.30) or eq.(3.31) the

closed equation for A :

      i(,`2,A-(, f- (a? .a`,ll-, )-t- if S/lale, .'D//1. =-= ,gt,, pat}4 ..

                                        6--8)
Introducing the new variables defined as

       }=ea- (j jo ), r; ezt,

we have the final equation for the amplitude A :

       t'tt,g.4tPat/lsi34-'d8d!x4BA,

where
        / d(f?, - cJ ':3fe',>< :2E-6/(, ,><3-f- (3-2 i6i?,>< 'Lt tff'k ,>( ----A,-7

 (3.35)

 terms

following

 (3.36)

2

CJ

c/R' s' k"X2
A, i K/. -x 6L/2 kK S+ (s -/gkvx 4

               '
        (L/j'1/.)2>(t

t3ok X j--,S13-413Y X

(3.37)

   (3.38)

  --7E7

      ?}

                      4X 21,'3 x.k (•/ -x) ?72 •
                                                     (3.                                                        39)

         (3.37) is called the nonlinear Schr6ding.er equation,

      has already been obtained in the studies of various

nonlinear dispersive systems.

      The sign of the coefficient /?a and that of the coef-

           X,., are always positive and always negative, res-

pectively. The coefficient /Da and zkla are shown, respect-

       in Fig.2 and 3 as functions of the vsi'avenumber !5. .

                         -17-
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    2s '- .7-

         CJ    8. -=

With >t

and 2.

induced

vat1on

     )B
        I
     o1,

     e.

It should

tional to

3.2 Symmetrical wave

           --t     In a similar way, the

for the symmetrical wave is

      ttop,, ,"Ps .b,-]'Z.=

where
      - l ct'(f,?s)- cu(3/,??X4--

nonlinear Schr6dinger equation

 obtained as

8s /A/7A• (3
                    '

6Jk 73f(3-2 E?7-tgh. 'Å~-fe)7

`/k

fe>(6 k'i >-.C

 8k2 y•i

"/gk'?74t3c

;- li• kX  '
•- 2fe7

/2feY`"6 E7-3--,sz/3 --4 lt 'V 7

                 4 Y 213 ytfe <•/- >-i.)7i

    =tanh k •

Inspection of eqs.(3.41) and (3.42) shows that ils? >0

   < c for all wavenumbers (see Figs.2 and 3).
   current SB,`S'/ c) 11 and the induced surface

    (?!'S) due to nonlinear interaction are given

   (sJ     ,..qh Y).ff/?
           .3 ytk a- ya?7 '        >-l-

  "'=--ffo}g3.Yt,?8--(9.\,}7,ve/2.

    be noted that the induced quantities are propor

    the squared modulus of amplitude.
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(3.41)

?7
 (3.42)
'

  The

 ele-

 as

(3.43)

(3.44)



     The present symmetrical wave may also be regarded as

              ,the nonlinear 'capillary wave on a water layer with a rigid
                                        t8,l9)
boundary. For example, the existing work on                                            capillary waves

on an infinitely deep water can easily be recovered as a spe-

cial case of our results. In fact, if we put /4 =,O.eXR('d'-?C2

where ./7. and s:.>. are real constants and equate N/ to

unity, we obtain the displacements as

                ,l    2= -7/.= /t 5e2a2teo. ccs 4-- 4k 62c(,2ct•s2g, (3.4s)

where (t.= '")-..4. and 4 = fe (--(co•-/5g;(f`2(f?;'//6?t Equation

(3.45) describes a periodic wave train moving with the phase

velocity

          c == Ef(/-- •/sk?e2({.2 ?. (3.46)

The results (3.4S) and (3.46) coincide with those obtained

          18) l9)by Crapper and those by Pierson and Fife up to the second

order in ( , except for the trivial nonperiodic terms.

-20-



 3.3 :/vlgLdulational instabilitx

      In order to have an understanding concerning) the mech-

 anism of the break-up, we study solutions of the nonlinear

 Schrbdinger equation. Equa"ti'ons C3.37) and (3.40) have the

 folloLNii'ng type of. solutions expressed as

                                   '            ,4 = A'. e>< ,t) c( 7'`'/ .E pt fz ), ' (3.47)

                                           'w.here ,/7c.• is a comple.x constant, f, and ft •are 'real
            '
lunctions of Z .. T, hey satisf. y the re'Jat,ion

                  '
          tY,gtt.` ('fl ',yy - f-,. )'t' f'tr'2'= --g- /rtt-'./), (3.4,g,)

w'here the sub.scripts a and s have been dropped. This solu-
tion denotes a progressive zvave train of constant aniplitudelO).

Jn-parti, cular, putting' v17(i F /< and f,, =,5)L '"(-'+' ,, 'vge

                                  ' tt

obtain a ste gcly periodic svave train with constant phase ve-

loci ,ty. ,Fu'rthe'r, 'i'E !-< =o, we g.et a progressive k;ave trhin

;v:Lth ai'guinent LL -.' = /<) .x ---(f'I•;F' '( ., where

         cT (/., ,. er L-2.!)= (c tEL/,`7e1')2't ,, (3.4•{•)

                                                      '
which is ' called 'amplitucle dispersion'20),... Crappe'r's so,lu-

ti6ri18)'and the stokes wa.ve b6iong to th}s simpie type•

                                  '     The stability of this solution C3.47) has already been
stuclied b.y TaniutiL and 1-vashimi6) and also by. Hasimoto and onolO.)

According to their results, it becomes unstable to small clLs-

turbances of a certain kincl when /)2t' k ( ., Ther,efore,
                                             '

-''
2•' 11, --



 nonlinear capillary waves of constant amplitude on a thin

 liquid sheet are always unstable, because IC)8 is always

negative as has already been remarked (see also Figs.2 and

 3). The maximum growth rate 6T.,a* is given by

          c5".a, --" /s/ IA.!2 for k"=Rp lgo/, (3.so)

for the disturbed wave

     .4= (#,f 'e" Åë"2ex2Lu,E--A tg gA?, (3.si)

             •Ain which K? is the wavenumber of the disturbance
and e/N i'sasman parameter, ÅëA and g'LrN are reai

                                  'functions of ig and 'Z .
     In order to know the degree of instability, we examine

the ratio of the maximum growth rate for the symrnetrical

wave to that for the antisymrnetrical one. It is found that

the ratio is always larger than unity and it decreases mono-
tonically as the wavenumber k decreases (see Fig.4).

This implies that the instability of the symmetrical waves

may lead to the break-up of the sheet rather than that of the

antisymmetrical ones, which is contrary to Squire's insta-
      1)
bility of a rnoving liquid sheet. Since the induced surface

elevation given by eq.(3.44) is pr-oportional to the square of

the amplitude and the sign of the coefficient is always posi-

tive, the exponential growth of the amplitude leads to the

exponential increase of the thickness of the sheet. On the

other hand, according to eq.(3.50), the modulated amplitude

-22-
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Fig.5
  of
  the

              wavenumber k

. variation of the ratio z' =(Sr.`-i7/ oC,,",f)i as

the wavenumber ,(? . The superscripts (s)
 symmetrical and antisymmetrical waves,

.a function
 and (a) denote
respectively.

,/4 has a periodicity with the wavelength

         A=--t/it,iE7,C..,(-f.?S, ,3.s2)

                                                   'The increase in the amplitude gives rise to the increase of

the thickness and vice versa, which is shown schematically

in Fig.5. Hence, it may be concluded that this modulational
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instability plays an important

although we cannot answer the

the disturbance grows so large                           v                LA E << / are no longer
     In the next sections, we

the mechanism of the break-up

in this section.

 role in the break-up of sheet,

question of what happens when

 that the conditions 6 ,
va1id.

wil1 investigate successively

based on the know!edge obtained
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 S4. Analysis for Long Naves of Large Arnplitude

     We have dtiscussed the instability of capillary waves on

a thin liquid sheet under the assumption that the dimensional

amplitude (fl. is small compared w'ith the half thickness

of the sheet, i.e.,

         (- --',(-t --L'( /

                -d -                2

Because of this assumption we could merely show the existence

of the instability but not explain the break-up of the sheet.

The above condition is, therefore, not assumed here, but for

                 ,simplicity another one called the long wave approximation

is irnposed. This implies that

            /c( =-:. I 7I"("?2<.- /,

where L- is the wavelength of the wave.
     Our aim in this section is to show a possibility of the

break-up of the sheet. First, confining our analysig. to the

symmetrical wave with arbitrary amplitude but long wavelength,

we derive a simple set of eo,uations governing the wave motion

and investigate various properties of physical importance con-

cerning the wave train described by the equations. Secondly,

by solving the equations numerically we confirm the fact that

the instability, predicted in the preceding section, proceeds

until the break-up occurs.

-25-



4.1 Derivation of a sirn le set of equations

      We writetdown again the equation of motion and the

boundary conditions shown in g2 only for the symmetrical

wave. These are

     Åë..fÅësy r-C,, • (4.1)
     Åët t S ('Åë.)t Åëy?te,-'z2=k,, /(7t7!.)it (4.2)

                                                     at 8=7(X,D     9cr5-k-f V. '7., (4.3)

     95cr `: 0, at ,1=o, (4.4)
                          2where (t>La =( p ji / 7- )( x" /2 ) and eq. (4.4) is the symmetr ical

condition for the upper and lower surfaces. If the dimen-
sional wavelength is short compared with the length* zC.e

defined as

                   L.- ='p-/'s •

the last'term on the left-hand side in eq.(4.2), which is due

to the action of gravity force, is negligible. It should be

noted that, in view of the symmetry, the set of eqs.(4.1)-

(4.4) can also describe the wave motions on a water layer on

'

* For pure water Ztc =O.27crn, mercury O.19cm,

glycerine O.23cm, when these are surrounded by

resemble each other in rnagnitude.

ethyl alchol O.16cm and

 air. All the values

-26-



a rigid boundary.

              t     The dispersion relation for the symmetrical wave is

given as (see eq.(3.19))

             . (-L             SI'l>2-" == k /Fec,v2v k .

Here, if we suppose that the wavelength is large, i.e., itZoL<<

1, the above relation can be rewritten approximately as

                  CJZ = fe2
                  E•

This relation implies that when the space scale is set equal

to 7fr(-2, the time scale is /c4 in magnitude, where /tZ

stands for the squared wavenurnber, i.e., /cli kZ . Hence

it is convenient to introduce the following variables:

                   t           }; /tf -., Z=// t. (4.5)

We now suppose that all the quantities are functions of 3;

and zr and vary at the same rate in both space and time.

In terms of (},3",T) the set of eqs.(4.1)-(4.4) is written

as

      // .oisÅë, +gsl)(L. :-r o, (4.6)
           "                                                J
  "(t?E,l,+f0v,eL,gL7D+(.o,g'f7-/tilslil,/Z'i+/`(5';Z?Zl,= ,,.,,

                                                   aty - 7(s.e
        gis; :/,/ g4 t.// ,a.9 .f?s2, , (4.s)

                         -27-
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      bÅë      ay =O, at 8:-=O,                                                       (4.9)

 Further, we eXband 9S(},y,z. ;;/et) and                                         '!(S,z ;/a) into

power series in /C( :

                         es
      95)C }. y. zJ/(? == .Z,/`("' gE),, (s, y. z ? ,

               . •,7=O (4.10)
                       m      'Z <}. z ; /c(? = 2L-, /c(" 7., ( }7 T? •

                      41=D
     It should be noted that the zeroth order perturbations

are taken into account; otherwise the system of equations may

not lead to interesting nonlinear equations. Sinilar situa-
                                             21)tions to this appear in nonlinear Alfv6n waves and long gravi-

ty waves strongly influenced by viscosity (see g4 of Part II).

Substituting eq.(4.10) into eqs.(4.6)-(4.9,) and noting that
 Åë(g,Y,z; a) at the free surface can be expressed as
             t
    y5(}, s=el, r?= g5/or. ,/. vL gLe7t/h,!.('tiqlO;., /Li"7. (s. v2f...,

we can obtain a sequence of equations for each order of /c(.

     The first order of eq.(4.6) gives

                  aV.
                       =o                  Ocrz ,

from which we have, with the boundary conditions (4.7)-(4.9)

               Åëp =9!le (}.7•). (4•11)

From the second order of eq.(4.6) we have

-28-



        gVis t il?l ?,Åëi. .=..

Integrating the above equation with respect to <7 , we

obtain

          ili,(;Il- =-d eli/a' s '7" C(s.T),

                                              '
where (3(},c) is an integration constant. The second

order of eq.(4.9) requires (?.=O, whence we have

                               '              Ddi, - -- eV. .
               OY - 0SZ Y. (4.12)
Substitution of eqs.(4.11) and (4.12) into the second order

of eq.(4.8) gives

             ?,tTil"-t"3.(.O,l}bo7!.?-e,, (4.i3)

                        '
and eq.(4.7) becomes

             g#o .,,f(s.di}c?7= o02/rl.p, (,.,,)

Accordingly, our problem is reduced to solving the set of

eqs.(4.13) and (4.14).

     Next, we try to arrange these two equations into a sin-

gle one. IVe assume for a moment the amplitude to be small,

although eqs.(4.13) and (4.14) are valid for long waves of

arbitrary amplitude. Thus we write

       7 == /fet'X, (.i -- e e"( , e4`:' /,

                         -29.-



where c(=)'b/s.t and c is a measure of smallness of the

amplitude (see the definition which appeared in the first

page in this sub-section). Here we have omitted the sub-

script ca' . Substituting the above expressions into eqs.

(4.13) and (4.14), neglecting the terrns of higher orders in

magnitude than (f2 , and eliminating the velocity c( ,

we obtain the linear equation

             ;/,7:l f {.lsilfZ)g.4. -- c•, (4.is)

which was first derived by Taylori6). This is the same form

as that governing the transverse oscillations of an elastic

beam*.

     Even for nonlinear case a single equation can be derived

by introducing the function Y defined by

            !7 '-'- ;:, , Wl--- ;."b ,

which satisfy eq.(4.13) identically. Equation (4.14) is writ-

ten in terms of iJL , as

     .5'ill1('Si•l.id"2L' 5);.Z,- -i'"i 5'il f' i.llglE2 <',i-:-W.'i7"6.3?ill'??3"g'`. =-(1'. (4.i6)

As this form is rather cornplex and moreover rnakes the physical

meaning ambiguous, we will not intend to consider farther
      '
about this equation in this paper.

* For a derivation of this equation and its solution, see Fo.ur-i.g!.-
forms by I.N.sneddon22).

trans-

-30-



      In concluding this sub-section, it is important to

write eqs.(4.13) and (4.14) in alternative forrns. Dif-

 ferentiating eq.(4.14) with respect to 4 , setting d(=
 c)`iZ5/04 , and introducing new variables j91, 1, and zz'V,

we write eqs.(4.13) and (4.14) in the form useful for in-

terpretation, that is,

          t'.v        l-7zttO.-(a7K?-o-, (4.i7)

        ,JLq--"".D,t'==tfitlSa,n,LN3, (4.is)

                    rL "V rLwhere the variables z , Z, and 7 are defined as

 x"V'--zX,.'"-5`2g,2-...z/Åí-,p,=l.f?i•?N•-.`.Zr'=4ia7.

The asterisk indicates dimensional values of the variables.
The nondimensional parameter ci) appearing in eq.(4.18) is

expressed as
                  ,,5S ,. .4Tc2a.e5,

                                      23)
which may be related to Ursell parameter for long gravity

waves (see Part II). Making the following transformations:

        crelts ", z--- k, (4.lg)

we have the same form as eqs.(4.13) and (4.14) expressed

-31-



 in terms of C( . Hence it is sufficient to treat eqs.(4.13)

              fand (4.14) in`place of eqs.(4.17) and (4.18) without loss

of generality.

4.2.SS.!!gg{tz-gg-l!Ml-lgnEtdit

     We seek a solution of eqs.(4.13) and (4.14) in the fol-

lowing form:

                            tl     '? = "l (4 >, 9 = 9C4 ), wi' th Lg; s"- CT•,

which represent a steady travelling wave wi'th velocity C. .

Substituting the above expressions into eqs.(4.13) and (4.14-)

we obtain

     -(l `tr'/-7L <Åë/7 ?!=0 (4.2c)
                              '

      --cÅë/+ •f (Åë i?'= ?',i (4.2i)

where the prime denotes the differentiation with respect to

  4s" . Integration with respect to (l; gives

                  g5!... JA II.C"!

                           /)                           L
where A is an integration constant. with use of this re-

lation, we have from eq.(4.20),

            ?i2'/= i(,g- -c?• 7?). (4.22)

                         - r> 2-

'



Finally, we obtain after integration

              `       !.-.i Ez!E//.. -. /. ("-2 tt.--<l17 ?7 .. B, ,,.23)

in which /,:)> js another integration constant. The right-
hand side must be positive, which requires that C"./93=' B2.

In place of ./4 and B we introduce new constants (?, and

  C• satisfying the relations:

        c2c o. = A2, * c ?(e + c. ) --kr B,

where we can set Ci L--- (2' without loss of generality. Thus

eq.(4.23) can be rewritten as

           (',dii/i'- c2 a-//) Z:-21 . (,.,,)

Solutions of this equation can be written in terms of the
elliptic integral (see Byrd and Friedman?4)p.79), although

we do not here write down it explicitly. It follows from

this equation that the surface displacement 1 7 varies with-

in a region expressed as

               0kC 4N i7 -k.- 0.
                                  '

and there are wave trains whose wavelength X is given by

            >v-ic`2•i 'li]jl((de.v(r-,r)(fio.-77.,)`U''

Ct

* We
become

must choose g=- (7

 srnail quantity in

l/t.t",i•L

the

 in order. that the velocity 95 should

weak-nonlinear limit.
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which is written simply as

      A--!c`,L/ptEII Er(a?, .h... c--L7=---((g-(ii?/('??, (4.2s)

where E(i) is the complete elliptic integral of the
second kind (see also Byrd and Friedman24) p.7g). These

wave trains are shown in Fig.6.

     The wave velocity <t is equivalent to (? =CUI16x ,

ab being the frequency, from which we have, with use of )k.

=2,7rt1A. ,

             ii=iiilb/7oT. rcE(a-). (4.26)

Wave trains of constant arnplitude can exist, only when such

a relation as eq.(4.26) is satisfied arnong the frequency,

amplitude, and wavenumber. It is found that in the present

case the nonlinearity leads to decreasing of the wave ve-
locity contrary to the case of gravity waves (see Larnb25), p.

417). As we have already mentioned (see g3), these depend-

ence of nonlinearity upon the frequency is called the 'ampli-
tude dispersion,20).
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-2  =o.Ia
a2=o.s

d2= l.o

Fig,6. Steady solutions.
  as functions of g for
 malized by means of e2
  O.1, O.5, and 1.0, the

 Solutions obtained by solving eq.(4.24) numerically
 three different values of 'ai. Note that '2 and
 and 2v(ii'/IC!, respectively. For the three values of

normalized wavelength is equal to 3.1, 2.7, and 2.0,

are shown
a are nor-
az , i.e.,

respectively.
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4.3 ComLll2Lamptisonbt lanewavesolutionofthenonlinear
schroLEdlj.ns!nere uation and stead solution for lon waves

     We seek a plane wave solution expressed as i4 =(6rÅë/2)exp

(-ii?U) in eq.(3.40), where 6Z. and -v2 are real constants

as before. This wave profile becomes

                          '                                           '      ,27 -- /-6 6?. ecs4 `- '-4tifl.. 620Jiccs?c 'f 6?01., , (4.27)

where

        < := K'z- cT' .7t,

        e.-t,f•i).-\.5S.fl,Y,o3•.

The frequency (- ., for the nonlinear wave train is expressed

as

                                   '       c;•• (k),6' a,)=a) -fr •$ e')0.3, (4.2s)

where cd' is the frequency for the linear wave given by eq.
(3.19), and 7 is the function of k) (see g3.3)..Here we

assume that the wavelength is long enough to be able to set

 7=/< , then from eqs.(4.27) and (4.28) we have

     C7 -= /f- 6d. cosgli -t'20`acosL) g:'- -7L 2,f,L e:2o." , (4.2g).

     LIU -- C<)"J{, K'?(t')0e'". (4•30)

    Returning to the results established in S4.2, we con-
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sider a w'ave train of small amplitude, in which we can ex-

pand the elliptic integral in eq.(4.26) into power series in
 a- . According to the forrnula given by Byrd and Friedman2L'F)

(see p.298), when '(-)iZ2<< 1, eq.(4.26) can be approximated by

                                               '                                           i    de-ny -g- /<b2ttT-. (/-4i eac'.,Ot- 2,,, fi(2-o(a627.

When the constants C! and C2 are determined so as to satis-

fy the relations

       C, =/- C--a.-- >Y6 g.7cÅë

         '       e. == /f(!}a-!"N6" 6-cti

we have the same dispersion relation as (4.30) and

       7= /f ea,eosg. t"C2b:nes2 >' +tl ('XC?bX, (4.32)

from eq.(4.24). This equation coincideswitheq.(4.29) except

the trivial constant terrn, which results from a special choice

of the integration constant (see the marginal note on p. 15).

     Therefore, it is concluded that the present wave solu-

tion with long wavelength but arbitrary amplitude can be re-

duced, in its weak-nonlinear limit, to the solution of the

nonlinear Schr6dinger equation.
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4.4pmt t t etesofperiodicwavetrains
     We consider periodic but not necessarily steady wave

trains governed by eqs.(4.13) and (4.14). Assuming two func-

tions 7 and U to be periodic*, we have directly from

eq.(4.13)

               k4.y,C 7! c/e;--o, ' (4.33)

where the integration is taken over one wavelength. This

relation states that the mass

                           '               /V7('oJ ---•1,, ]7 tp! ti (4.34)

is time-invariant quantity. Another invariant of physical

importance is the momentum given by

              /V' (''7, L( .Il ';y'i qi/ dS., (4.3s)

where (-( is the velocity in tV..-direction as before. },Iul-
                                        'tiplying 7 by eq.(4.14) after differentiation with respect

  .v' ,we obtain • -  v
             L            / <i7 clc. t il (.1 (/E.. >u/.,SI. :--(>l '(4.36)

           xL
while from eq.(4.13) multiplied by c( , we get

* It is easy to see from eq.(4.14) that the velocity potential

cannot be assumed to be periodic.

9)

-38-'



    y(1"l'(z 7z-,-J t a (cv'/' ?.-7(r7..: -'- o.

              tt

The second term in the latter is integrated by parts, and

after summation of the two integ,ral expressions the expected

relation

                t4Zra7ds•--ro, (4.36)

can be obtained.

     Next, we derive sorne expressions concerning wave energy.

The energy consists of two parts; one is the l:jnetic ener-

gy and the other the surface energy Expression for the

kinetic energy, say k', is known to be

                   2'-/f.2Lt2ds.

On the other hand, the surface energy is proportional to the

surface area, so that for the present two-dimensional wave,

it is given by

            Z//./( tt- ds,

which can be approximated as

        f. dg +f/c(f. 7,2ds.

The second terrn corresponds to the energy due to the wave.
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Hence, in what follows we call it simply the surface energy

and denote it `by symbol LJ, i.e.,

              U'= f/I 173-) blvi

Some straightforward manipulations lead to an expression

for another important invariant expressed as

        tt'--c-•/.(l'/L(itf'/s22cYl---'O., (4.37)

which implies the conservation of the total energy:

    E(c!) '1. '7s7=L,1.(il(f- 7!c!2ff t's22 c/g. (4•3s)
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 4.5Y..a-rpt.a-t-i-o-n-a.1-.+p-r.ii-n-c-imle.

      It sometimes occurs that when use is made of the vari-

 ational principle in analyses for wave problems, some in-

 teresting and useful results can be easily attained.

     Steadily travelling waves become stationary if we move

with the same velocity as that of these waves, we examine the

following variational principle. For a fixed mass, we virtu-

ally change the wave form while both the ends are fixed*, and

we seek solutions for which the quantity

                Z-= /< ---U,

becomes stationary. This is written as

            r-           0L=& for /Vl fixed,

       t- ,where o4 is the first variation of the nonlinear functional

 z(vL e(, i/, 7/sJ • Here, it should be noted that the kinetic

energy l< is measured in the moving frame. We denote the

velocity relative to the frame by LIc. Noting that for long

waves the product of "lc and 7 may be constant, say /` ,

we have the Euler-Lagrange equation,

             d-a-i',;,',,`,,i---i],!L''JX, (4•39)

                       'where zL' is the integrand of the nonlinear functional zl-.

and X the Lagrangian rnultiplier. This is expressed in the

* It may be sufficient to consider only one wavelength.
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 form

              "IZsg ==i("ij42i --' 2X ), (4'4o)

 If the multiplier is chosen to be 42/2, this equation is

just the equation governing the steady solution (see eq.

 (4.22)). Similar fact was noticed by Boussinesq for solitary
                                             26)wave in a shallow water and utilized by Benjamin to demon-

strate its stability.

     The following analysis is concerned with the wave energy

per unit length in e-direction. Denoting the two kinds of
energy densities by 1<' and Lti, the Lagrangian IL! is writ-

ten as

                L! = kl -" ui .

Expressions for the two functions k' and U'are given by

the integrands of /< and (.i! , respectively. Differentia-

tion with respect to S gives

             .`',',`i=5'S'.II6' "" gi7Sg/ 21fg•

since the function z<i does not include the coordinate E

explicitly. We can arrange it in the form

      ,-,--"L, (Li- V, ,0.f( -7L {;?V?-' c),

where we have utilized the relation (4.39). This states
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 that the function

             L"- 7, ,e--$--i' 7L f7V

 doesnotdependon S . When the relations obtained in S4.2
 (see the expression for SZ>' and the footnote on p.33) are

utilized, the above expression can be written in a simple

form

                            C2                     Cz              Ei+ i[-0=f(4 +4), (4.4i)

where F-t is the energy density defined as

            E!tl1!L"Z -ILf2/sZ. (4.42)

This relation is also written in terms of L( in place ofLtc as

      l77 L/2fT/ 21Åí .-- {-2(e,2Zd- <f.? .'i'-22, (4.43)

which implies that the energy density is uniform with respect

to ;lli . It is found from eq.(4.41) that the local energy

per unit length has its rnaximum at 17 = (t , and minimum attl=

(2 , i•e.,

           E;,,,,'2`?e., E,i.,,,--.`L"o,,.

These are proportional to the squared velocity C2 , hence

for fixed (f'/ and <r' 2? these become larger for the .ghorter

waves (see (4.26)).

--
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4.62t>!ulngtisgELumerica1investatons

              j      It is' suggested from the results obtained in g3.3 that

 the steady wave solution represented by eq.(4.24) may be un-

 stable to small disturbances with larger wavelength. There-

 fore, we solve initial value problems numerically to eqs.

 (4.17) and (4.18) with E=1 (or eqs.(4.13) and (4.14) expres-

sed in terms ofc( ), choosing the following tv;o cases as

their initial values                    '
  case (I): 5.5'( 4; c, , 0,, X)-O.05cos 2reg ,

  Case (II): J5f;S(e;c,,(?,,X)-o.olcosoi-[Lc,

where ,SS(e;C,,(,7,)Å~) stands for the steady solution with

the crest-to-trough amplitude, e. --e/ , and the wavelength

 -N (see g4.2). Here we take C, =O.5, e,=1.5, )Å~ =2, and

the remaining arbitrariness arising from the integration

constant is determined so as to make ,>giS rninimum at l;.=O.

Numerical calculations.are carried out under periodic boundary

conditions with periods >Å~ and 3X , respectively, for Case

(I) and for Case (II), by use of the finite difference method

given in Appendix. The amplitude of the disturbance for Case

(I) is 100f, compared with that of the steady solution, and

for Case (II) this ratio is very small (merely 20-,).

     First, we discuss for Case (I). In Fig.7 the temporal

variations of the maximum surface elevation 2/.ax and the mini-

mum one i!,.i,i are shown. From this figure, it nay be con-

cluded that the small disturbance, which corresponds to the
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     Temporal variations of 7/7t,tqxand iZ.in for Case (l)•

 harmonic with respect to the steady solution, does

   rise to instabilities.

      other hand, for Case (II) the variations of the

        7 and the velocity 4 within the time in-

      C fl 4.4 are shown in Figs.8 and 9, respectively.

 already been suggested, disturbances with larger wave-

      that of the steady solution grows with time. In

     two figures show the instability. IVe cannot carry
                                      '
   computation just up to the tirne of break-up, since

     originating from the steepeness of the two quanti-

particularly from that of the velocity (see Fig.9), be-

        However, it is highly plausible from these

       such an instability proceeds until both surfaces
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meet together in the center plane. In this example, the

minimum trough `(initially placed at ig =O) becornes smaller

(but not monotonically), and hence this trough is important

to have an understanding of the mechanism of the break-up.

The wave energy distributed almost unifirrnly in the initial

stage is concentrated in a narrow region near th' e minirnum

trough (see eq.(4.43)). This tendency is more remarkable
                         'for the kinetic energy, which is easily seen frorn Fig.9.*

This concentration becomes more noticeable and at last our

solution may burst at a finite time.

* In this respect, it should be noted that the position of

 velocity is placed at the same point as that of the minirnurn

the rninimum

 trough.
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 g5. Conclusions

                ,     In the firlst half, we derive a simple equation called

nonlinear Schrpdinger equation, and we show the existence

of the modulational instability for weakly nonlinear waves.

It is, then, conjectured that the modulational instability

for two kinds of waves, especially for the symmetrical waves,

may play an important role in the phenomenon of the break-

up of the sheet.

     In the next half, to confirm the above conjecture we

analyse the symmetrical waves without the assumption that

the amplitude is small cornpared with the thickness of the

sheet. Numerical cornputation shows that the steadily propa-

gating waves are unstable to small disturbance with larger

wavelength than that of the steady wave solution. Such an

instability proceeds until the solution bursts suddenly at

a finite time. This 'burst instability' gives us an almost

certain evidence that the break-up does occur. Our calcula-

tion was carried out for a special case, in which the wave-

length was three times as large as that of the steady wave

solution, and thus it remains to determine the optimum wave-

length of small disturbance for a .gtys!!} steady wave solution.

If the determination could be carried out, then we have a

possibility that we may determine the drop-size arising from

the break-up and finally find a method of controlling it.
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Appendix: Numerical Algorithm with Finite difference r`!ethod

             `     In solvihg the initial value problems to eqs.(4.13)

and (4.14) expressed in terms of u , we use the following

leap-frog explicit scherne,

22 /-ci rLu't o -- cr ( cti -oJt tlt Iu (t-/v' ]tarc.! ?t u (L'tiv'77

 K (a ( LTfl,P-of(L--iU 77=ik l'S(LDy')r2 S (t't i.R t2S(L X-1.77

                       --S(c'--2.i?7, (A.1)
z(, Z-s( d.fto-s (ev-/?7 f62 IS(c'"'iu )ts (c>/'2ts (cNfi.f 77

 X Z-c((cSi`-!,V- C((L'-1,/217 + 66/ ("ILi (L --1.1 7-7C- Ll (tV7-f-c! (e+ll?7

 XZS( ,-hl. 1'? --- .s' (ci--/, 1` 2Jl =0, (A.2)

where S' (d, i? and Cl (c) V imp ly Jl7 (rC4v 2s' .> and Ct(c`,6.J 6'), re'

spectively, zts and A! being the lattice spacing and the

tirne step. Both eqs.(A.1) and (A.2) have the truncation

errors of order (c!L2 and ,cs!2. For the initial step we use

the forward time difference scherne,

    .i, Zrtei( dij fo-cr (L',! ?7t3-/- Ia rt' --/.f]t u(L'v )tu( tt i,p]

    K P. L/(L) 1'? = P. IC?. L).-. S(4/) ,

    6i. IS (L ,7St o--s rL ,vL ?7 fJ-/--Z"`s(LL-/.1? ts r`'-7 7 -f-s (L'ti./ 77
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 Å~ /],. Ci(eV/S7+3'/-Ia(`-4v`7+c((d/'/'+crC`Lf12/27PDS(c)1)=o ,

where

       P, f(-,t,! ?= .i If (cflu•?-f(`•,/•27,

       D- f(`'u'? - t Ifav'2 - f( t-/•i?7 ,

       0o f(L'7/'? = 22 lf((", /. 17-fft"L/?7.

     We examine the stability of the above scheme on the
                             27)basis of the von Neumann theory. For the application of

the theory, we linearize eqs.(A.1) and (A.2), hence

 z'--,-s/i (a(`uti?"a(`)!Ll?7 t U- Po or (`',12=P. P. P- S(tv2 ,

                                                   (A

 tl. , ts ( c ,i`f /? --s (LV-i?7f s- P. aaV2t L--t P. s(cN.i? =o ,

                                                   (A

      - .rd.where U and S are regarded as constants. Equations

and (A.4) can be rewritten by usual steps as

 2:lk, Z'c7 ( "g,!fo -- 0(e.i-i ?7+ .L.'(' 2 e' s"v4 e" (;z"(s4v?

         --= 2./fr, 4Usirv6 4} (cos4g--/2 sA(eA.7?, (A

 .:li,. Z'sA( t". !`-f- /2 -- flN (Åí/ '-/ ?7 ,` .{l ) is ,- `tg C' e7 ( gX. 1-?

               pt           ,L :, iii/i 2,s,i,..4g As ({;.D=D, (A

                        -Sl-

.3)

.4)

(A.3)

.5)

.6)



where we have introduced the Fourier transforms,

      s"(Åí-()=,f.l/ls(s.z2e'dS"Sd/s,

                                 s4      cl?(S". 7? t--- t/,./c((s. -ir? e-LSSb.(f.sr .

Repiacing s"' C/'--/) and c"(/"'0 by ?1!? and c? '(v, we

arrange in the form,

    u(/./, sA?.. av(}Ad,.) av (1; sA?,

where (2L/ is the column vector with four components,

  (Q is the 4,S(4 matrix defined as

      b' qf/. .9?- "s (J +i. s"?

                       s"idt /, '8)

                    • 0qtt. "s2

                       0/('lti, 92 •

  e - - .`/ 02 c"hA }" / - {}t g. ,• st.;.4 g"

        t<i':(f,.JCis..r""l6?S o Nz4ic72cs..J.4?

                                     '
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The eigenvalues )y for the matrix iQ are given as

 JN--.-'-l-tS(L7o-t-B7Å}t4fl7Z,iZfiEJ{7(-tTB22,-lrt(L7(-/3J]Å}i2tt-(c.te--Br,

where
        i4= 40 4A./ siivAeA' (i- (DsAS),

        B7 --- -2i ,4 J? ..4-! sd'h4s",

        (ll = 2 6isi"4 Ag .
               ,,fs

Noting that B and C are real, it follows that when the

relation

      4-- ><2 > o , where .Å~= or-CtB ,

is satisfied, the rnodulus of the eigenvalue J>v is always
                                                     27)
equal to unity, and the linearized scherne is thus stable.

IVe have an inequality:

   !Å~1 = /2 t7A-Z-S-/st7o4 eiN 2tzA4 s'4"fl"gi'n4S (!-(os(s {l )

                x2 A(fSi st•n4e7S/

        fE .2 .4,,si IL7 / -7Lb?2c2(i-i'l' 44.i mc,,1( /,•,hn.,ls t{r;'X (i/-c.sA.'.exv]l</,

from which it is obvious that when an inequality
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  /c7i;i?:/t.vll]=-l/:• .i's/,

             'is satisfied, 'our difference scheme is

this we have utilized the relation:

     mAx /sin .6 giN(/- <..(6 eA?l/-

stable.

g/.2.

In deriving
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  List of Symbols

 Dimensional ,quantities

     a: amplitude

     ,8: acceleration due to gravity

    Z: thickness of sheet

    tL : wavelength

    <cl: 11 R8

    T: surface tension per unit length

    xO : density of sheet

 Nondimensional quantities

    A : complex arnplitude

   /7. : one half of real amplitude

   0. : real arnplitude

   -(il2: crest-to-trough amplitude normalized by means of

        trough (=(0z ' ()i )/02)

 e,, B.: induced potential due to nonlinear interaction

   (', : height of trough

    e. : height of crest

   LC> : induced surface elevation due to nonlinear interac-

         .        tlon •   C : phase velocity

   9 : group velocity (d`A-)'/dk )

E(cl7 0, 7Y: energy Contained per one wavelength

   F..': energy density (= !<i+ U/)
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E('C?? : complete elliptic integral of the second kind with
       modul'Us Zil!

f (c v'? :a( L ,J ) or s( L ,j )

  (/`) : ratio of gravity force to surface tension force

        (-P9Ii/4-7)

   /< : kinetic energy contained in one wavelength

   !<i: kinetic energy per unit length

   k : wavenumber

t(L( L4 l?7 2g i7 : l< -U

  4! : integrand of nonlinear functional L

 /Vrl(87 : rnass contained in one wavelength

/Nx(e,LO : MOmentum contained in one wavelength

  /) : coefficient of dispersion term on the nonlinear

       Schr6dinger equation

  X : coefficient of nonlinear term on the nonlinear

       Schr6dinger equation
  T.lf : time

  tL( : velocity in g-direction

  C/ : surface energy contained in one wavelength

  0': surface energy per unit length
  .>< : coth hx

  > : tanh k
  )! : ,sl,7de,gr.f:<

  (Sn,c,x: MaXiMum amp1ification rate

  c.f : (4 /T2a c3)/ L4
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 (L:- : a measure of smallness of amplitude (= 6U(( /2)),

            j     band-width for quasi-monochromatic wave

 1! : upper surface elevation

 r!': lower surface elevation

 E : phase for linear wave (= KD Rt'c-cL-• Ze)

 '>y : wavelength

/L( : a measure of smallness of wavenumber (=(izl/L )2)

                                            t g: e( .X - (?sl t) for modulated wave, or Aa--K- for long

     wave
 T: .t3tt for modulated wave, or /L/lf for long wave

 Sl> : velocity potential

a? : wave frequency for linear wave

dV', : wave frequency for nonlinear wave

.O. : frequency shift due to nonlinearity

superscrlpt

    (s),s: symmetrical wave

    (a),a: antisymmetrical wave

     * : dimensional quantities
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PART- II. Effect of Viscosity on Long Gravity VIaves
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 Sl. Introduction

              f      The effedt of viscosity on long gravity w'aves has been

 investigated by a number of authors since the time of Stokes
                       1) • (see, for example, Lamb ). )!ost attention, however, has
been confined to infinitesimal waves 6n the basis of linear-

                                         ' 2> ized theory, which is suryeyed by IVehausen and Laitone. On

the other hand, the inviscid potential theory enables us to

handle finite amplitude waves, and there is also a long his-
                                                     I)tory of the inviscid nonlinear gravity waves (see Lamb and
                                          .4) .      3)Stoker       ). Amongst thern Korteweg'and de Vries derived a .sim-

ple equation for the free surface, called today after their

names, at the end of the last century.

     In the first half of Part II, we attempt to derive a

simple equation for weakly non.linear long gravity waves on
                                     'a viscous fluid laver. In order to see the effect of vis-
                  `                                               'cosity, we first obtain the linear dispersion relation and

express the complex phase velocity d as a function of the
wavenumber C>( and the Reynolds number 1<? . It is found

that, when /c>(ilQ ('./7) 1, the wave dispersion consists of two

different parts; one is due to the geometrical configura- tion

and the other due to the effect-of viscosity, In particular,

for long waves'(c><'`kc'< 1), the geometrical dispersion (in-

viscid dispersion)- dominates over, balances with, and is
dominated by the viscous dispersion according asC(/)("S7T.< i?,i<?

=Cri(•)('S?, and cfr,(L)r"'7<1<? <cc)(L)<:`- ? . S'ie then app1y the reductive
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 perturbation method5)combined with the usual boundary layer

 theory to wavesf'with small but finite amplitude. It is found

 that the inviscid Korteweg-de Vries equation is not affected
by the viscosity for 0(1)(-S7`: 1(? but it is modified by the

viscous dispersion for o(b!'i?< i<?ESO(b(5 and new types of equa-

tion are derived for the disturbed free surface.' Existence

of the steady solutions to the above new equations is exanined

but it is found that the effect of viscosity always damps

the wave energy and there exist no steady solutions including

shock-like solution. On the other hand, for /prR (11<(1

and o( << 1, the complex phase velocity becomes purely im-

aginary and there exists no wave motion. A modified reduc-

tive perturbation method leads to a nonlinear diffusion equa-
tion for the free surface, which was first obtained by Nakaya9)

     Recently, Zabusky and Galvin 7)made laboratory experiments

on gravity waves and compared their results with the solutions

of the Korteweg-de Vries (K-dV) equation. They concluded that

the number of emergent solitary waves and their phases based

on the K-dV equation agree quantitatively with those obtained

experimentally. However, the amplitude disagrees somewhat,

and they supposed that this might be due to the viscous dis-

sipation. Therefore, the next half is devoted to the study

of the effect of viscosity in more detail, confining our in-

vestigations to the case of weak viscosity (/)(it(?el>>1).

     Our aim is to answer the following questions:

 (1) Can the rnodified Korteweg-de Vries equation obtained in
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the first half explain the various properties of gravity

waves obtained texperimentally by Zabusky and Galvin?

 (2) Can we clarify the mechanism of wave motions, in which

there are three cornpeting effects, i.e., nonlinearity, geo-

metrical dispersion and viscous one?

     For this purpose, we solve initial value problerns for

two cases; one is sinusoidal wave and the other solitary wave

in their initial wave forms. The former is the rnost realiz-

able one in experiments so that this enables us partially

to attain our airn (1) mentioned above. The latter belongs

to simpler and more fundamental one (from an analytical point

of view). Furthermore, expanding the displacement of the

free surface elevation into Fourier series, we investigate

the three competing effects upon the wave motions in detail.

Nurnerical algorithm used in these computations is summarized

in Appendix C.
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 g2. Basic Equations

     The continUity equation and the Navier-Stokes equation

 for two-dimensional flow of an incompressible viscous fluid

under the action of gravity may be written in nondimensional

form as follows:

                 '        ?,`.i --f- tbi'l>)-=c, (2.i)

 f;l91"-tc(,sD•'----k/tzL.SJCX.--.D2..A(,eig,/..O--l--.I?, (2.2)

 top.f+c(,o,it -,•-z•tgg,A=-,asa, -/ftl(git: -fgY,zt?, ,,.,,

where ( e.( , t•" ) are, respectively, the velocity components

along ( X' ,8) directions. The Cartesian coordinate X is

measured horizontally along the bottom and .,;1 vertically

upward, and t is the time. We have used the undisturbed

depth H as the characteristic length and the wave ve-
                `locity ( 8" )"Z jn the inviscid shallow water limit as the

characteristic speed, where 8 is the acceleration due to

gravity. The pressure IP has been normalized by p81`7/ ,

   fP being the density of the fluid, and the Reynolds num-
ber llN? is defined as i<?=(8U?ilL/ /l7,in which 2/

is the kinematic viscosity. Since we are concerned with long

waves, we neglect the effect of surface tension.

     The boundary conditions relevant to the present problem

are

       c(= zN=c at .y =- (fT. , (2.4)
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      -Z"= Pi .E.t' fC< :.?i'). at ,Y=!t'('z)vl?,. (2.s)

            '
({)ITIIL; f .9,l,i)/"/-(,OLz{--l?)7t2(g.&• --b9i/?,sl'l5.lt:=(7• ator=2,(i,v,

                                                       (2.6)
(/?7---/L))l7t-(s-'---),fi,?7tt?("i),IS,,'-t-bllE7s)ifi-,tt)..(i,s•):Lt--,7C'i-s,eit-N1;P4,-7--c;

                '              '                                 --                                 at 8= g,(Z.Je?, (2.7)

 where Si = 7C' (i. .t) represents the disturbed free surface.

 The conditions (2.4) at the bottom are obvious, while eq.(2.5)

 is the kinematical condition at the free surface. The last

 two conditions represent the stress continuity at the free

 surface, i.e., eq.(2.6) and (2.7) imply, respectively, that

 the tangential stress at the free surface is equal to zero

 and that the normal stress at the free surface is equal to

 the atmospheric pressure /),; .

      The undisturbed steady state is given by

                              '
                                '         L( =C , LZt'=C , 7`it' =- /•

         2` /-Y t 2g.
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g3. Linear Theory

     Let us fi,rst consider the effect of viscosity on gravity

waves of infinitesimal amplitude. Substituting

       (r •.. C!i, tlk:= z,i, )<,) =/v"- 7"fV /,

                                                      (3.1)
       /) -- 1-- ,C/ -- Z)4 -t P1

into eqs.(2.1)-(2.3) and the boundary conditions (2.4)-(2.7)

and linearizing them with respect to the srnall quantities with
                'the prime, we obtain the linear equation for 'ZN/ :

    .,D{'S>,-.,.,)--f-----Z'-;yi.-/.((,D,.`,4Zit2,s;'.,3'y.,--3,;/Zi?, ,,.,)

together with the boundary conditions:

           .> Z tl
     'Z L'= ;).t/ -='C at ty' =c ,

     :)')l(Zi/ ri.. f,)l>il!;(- .t ti-/,. {c3•3)

    ,)d,ktÅë,geY7' 'i '- `3tS.'t;2.Si3i ) -- /N' (51Ii'f?g2ii ' ?)2{N-{ /) =9, ,,., , /

           '
after elimination of Lt', v(,?', and 1)' .

                                               '     As this equation is linear and does not contain the co-
                                          tordinate .X. explicitly, the function 'Z.NJ (x,,C>/,.Z) can be

expanded into a Fourier series w'ith respect to the coordinate,

and the equation can be written for every Fourier compQnent

separately. This means that it is sufficient in this problem

to consider solutions of the form

                         -bT-



       zK" = 2f.)r• (91?.,)2g'p IL.;.k'(Z- c= 7f ).7, (3.4)

where C)( is the wavenumber (assumed to be real positive)

and (' the phase velocity. Substituting this expression

into eq.(3.2), we have

   2`.X Ci".-? o,•aJ\-L,ec? iiAL'f-f- .o(`'('cy-cK'o -z'.Nv, =0 , (3.s)

in which the prime denotes the differentiation with respect

to 8 . Thegeneral solution of th-is equation is given by

 •zCY, C'y' ) -- .!4(c-s-K'blly-f-Bs•i/, /i?.yt1-f--C(z•,/i'(t?y,"L)st,irf),3y( , (3•6)

where t<3-= o('(cY-cRc) and /4 , B , 0' , and /P are arbitrary

constants. This solution must satisfy the boundary condi-

tlons:

     ..--L '     'z.N((-)=. 'z'.1)t- ''( c.' .) J= 0, (3.7)

     C)<) z'l'.>' ('D-7t- 'tt'YN'`(/)----• o (3.s)
                           '
     - Lev ol}N '/'t/ )-- (3L ,)t7c f bl ') "'R) '2),7 ? o

                         -pt ')/x) z'X,(o=o. (3.9.)

                                                  '
These conditions are hornogeneous, so that we have the dis-

persion relation:

  4( t2E (Jx'+(3 a.) -7"4, lrX?E? (il(3 stoxi i4E>o(/ stnl?'E -- c)( c'bs'K'.J)(('c$i<?R )

  v" <lcj)y"'t3)..)2(C<3 (Jes'/C, L)r•'cc.s/?'i,3 -- •Ys;-"7"i]l?' LYst7t 'Z<;" t3 -l])

  -'-' C)t" /x') (g3 -r. i,, ,t([ ..>( (';L'sx`C,-'//3 "s L-)(i s07 t4'/f• ?• "- s '/C{i Y)=i', (3.1o)
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                                       .x. requiring that the complex arnplitude "Z7A (bt ) should be non-

 trivial.

      In order to clarify how the viscosity affects the complex

phase velocity, we try to express e as an explicit func-

tion of ,c>( and /? . In general this procedure may be

very difficult, but for the following two cases we can obtain

approximate expresssons; one is the case (a) in which !•Y'1<?0/

 >> 1 and the other the case (b) where /Å~ 1(?C/-</< 1".
                                                           e     We first consider the case (a) in which we may set te 1

cosh((3 •-Lv O and tanhp ;Nv 1, where we have chosen the branch of

   fi satisfying 2?e(P)>o. Assurning then that o( is

of order of unity and R is much larger than unity, we

have

              .L 1.-L s- sj C =(tanh y'ID( i+exp(siT( il4)a'`-'A" 1` (2cosh`-t)( sinh`-or )+o(R-5,(3.n)

 '

where we have discarded the waves propagating to the negative

X-direction. The first term in this expression coincides

exactly with the phase velocity obtained in the inviscid theo-
ryl? Therefore we may call the dispersion due to the first

term 'geornetrical dispersion'. The second term is the lowest

order viscous correction whose real part represents the pure

dispersion while imaginary part represents the dissipation.

k It should be noted that ()>(i may take any order of magnitude for

the case (a) but for the case (b) C)( must be much smaller than
unity in addition toi)('RC'/-<c':1. Since, however, we are concerned with

long waves, it ts sufficient to be able to obtain approximate expres•-

sions of C for -x'-sl in both the cases (a) and (b).
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Thus the effect of viscosity is not only dissipative but also

dispersive. In,jthis sense we may call the complex dispersion

due to the second term 'viscous dispersion'. It is easily

seen that eq.(3.11) is still valid even for values of

smaller than unity so far as o(R 7>1.* When O(' becomes

much smaller than unity, the first term in eq.(3.11) varies
                                                      Las 1-o(2 /6, while the second term as exp(srLi/4)()('x<?52/2.

Therefore the two different types of dispersion rnay balance
                              twith each other when C\' =0(Rd5'). For values of 0( smaller

than this the viscous dispersion dominates over the geometri-

cal one.

     Next we consider the case (b). As was already remarked,

we assurne •)<'<< 1 in addition to lc>('R el << 1. Then

the hyperbolic functions of b(i or E contained in eq.

(3.10) may be expanded into Taylor series of •C>( or t[? .

Assuming R to be of order unity and arranging eq.(3.10)
in powers of O(' ,we obtain '

    c =- .to"(R Hf.0tiJi itJ '(? (7 - .27 i?)? it- 0 (Jx(' "? , (3.12)

which represents, to this order of approxirnation, the viscous

dissipation only. It may easily be verified that the above

* On the other hand, for O( >>1, the dispersion relation is also

derived from eq.(3.10) and becomes
           c = ,cY'i' . 2i [)( R'1
                              .                                                     1)This was found by Stokes for an infinitely deep water (see Larnb                                                       ).
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 relation (3.12) is valid not only for k' =e(1) but also

 for !<?<. (P'('.)r-'V . Thus in such a relatively low Reynolds

 number (highly viscous) case, the disturbance cannot propa-

 gate as a wave but may be diffused out.

  . It is useful to summarize the above results for long

waves ( .>(' <'< 1) and classify the dispersion relation ac-

                                                         'cording to the order of magnitude of the Reynolds number. '

Case (a): high Reynolds number case

   (i) geometrical dispersion dominant

    C=/- 6ctZ+... for 'C,('X-'?<R, (3.13a)

   (ii) balance between geometrical and viscous dispersions

            a/    -a   (•-H-- /nt 6-hft ex/p(SM/`4)(x'R?li2-t ... for /? .o(XSJ),(3.13b)

  (iii) viscous dispersion dominant

                                   t                                                         '    d' .-. /.- 7i ex!P<•s"rr' c/4?(':>('K)?-i-f'- ...f.. t(x').fR(3.13c)

                                                  < ( (y -s> ,
Case (b): low Reynolds number case, viscous dissipation

dominant
                                  '
    (' = di IIi5ZL'v>('R) 7L..• - f., ,'<k'-<'./'(Ji'-'.],"(3•13d)

where the dots stand for the higher order quantities than

the preceding expressions. In the region intermediate be-
tween the cases (a) and (b), i.e., when ,K<) -- C(.)("i), we can-

not find an>' series expansion such as (3.13a)-(3.13d). For a

water layer, the above classification is given in Appendix A

                           '
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 g4. Nonlinear Theory

               t     On the ba'sis of the linear dispersion relation obtained

 in the preeeding section, we now consider the effect of vis-

cosity.on long gravity waves with small but finite amplitude.

Our main purpose is to derive a simple ea-uation for the sur-

 face elevation und6r the assumption of w'eak nonlinearity and

long wavelength.

     According to the general theory of an oscillating bound-

ary layer, the thickness "" of a boundary layer near the
                                    Zbottom may be evaluated as /,y'1<? (f'1-i. This fact suggests

us an application of the boundary layer approximation for

the case (a) in which /,.)!Rc/)-.,1. 0n the other hand, for

the case (b), where /.)(iR(' /<'< / , the effect of viscosity

prevails in the whole flow field. Hence we divide our prob-

lem into cases (a) and (b).

                                                '
4.1Case(a):.!tUs!]-!lg)LnglE!E.n.!!!!!.g.I]sa.s-gl Revoldsnumbercase(/.)('1(?(/->)/)

     It is expected in general that the effect of viscosity

is dominant in two boundary layers close to the freeturf'ace
and to the bottorn. According to Longueti-Higgins8,) however,

the ratio of the energy dissipation near the free surface to

that near the bottom is of order /C .)!')/ /PN /, Therefore

the boundary layer near the free surface may be negligible

in the present long wave approximation ( ,)(<'x' / ) for

high Reynolds number ( !<? '>L.)> / ). In fact, as will be

                                   '
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seen later, the boundary conditions at the free surface (2.5)

              J -(2.7) may be `replaced by the inviscid ones so far as the

present order of approximation is concerned.

     IVe shall therefore'divide the flow field into two re-
    'gions; one is outer region beyond the boundary layer and the

other inner region near the bottom. We then match the outer

solution in the limit 8g (', to the inner one in the

limit ?'7 -i) co• ,where `?' is the stretched inner vari-
                   'able defined as ?'= bl/o" . Such a procedure is familiar
                                            9,IO)
in the convent'ional matched asymptotic method and may yield

a uniformly valid solution in the whole flow field.

     Let us first consider the outer problem. As a typical

example, we shall here take up the case (aii) in which /J>( =

       ` C(l<?'-S-?. The other two cases (ai) and (aii) may be dealt

with in a similar manner if we notice the relative order of

magnitude of J>( and j(<) .
                                      io     As is known in the inviscid theory, the dispersion re-

lation (3.15b) suggests us the following coordinate-trans-

formation:

             I ki     ;=e)a-t?, 'c-=e'2t, y=5f. (4.i)
                 '
                                              '
where (f is a small parameter measuring the weakness of the
dispersion. This means that we have assumed (Z = C)(L)!')=
c;(t<>"s2?. in terms of (>6,t7,z ), the basic system of equa-

tions (2.1)-(2.3) may be written as
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              , ,)Li(C)i .        I?t"s7
        otrs t;. =(", (4.2)
(- f,)C20'. "((o2/? s?t}t`e'. L (r?{}{gsi:, `C'= - {'IEItSP`L'l.///i(6s)'c{ (k"'.o.?g(:g??,

                                                     (4.3)
e/St''""te(u`S?0s)Ly"'t(-t`"3.ts/`"'=-tly"'-/t,<-?---(/`'"(gegl"'tr)L,31L('y.t"?,

                                      . (4.4)
                         1 where we have set !(? = (;'r/?- and Z•N(`-?= e` -S t/(07 , the

 latter is the same transformation as that used in the invis-
 cid theorY:.S) IVe have used superscript (o) to specify the out-

 er quantities. The boundary conditions at the free surface

 (2.S)-(2.7) may take the form:

      c..(J)=-j.bf't6toj.R. -tct(e'--l'ii!i-lt, (4.s)

  ( [g,E,"O' t e" ;,'3 `Oj?Z"i •- e(3'S"?)7vL2e(?,S, i:"'L J.:.!"(s(o?',g,illl-)'.c,

                                                    (4.6)
                           . tJ}   ( R.7 -- P`"'?Z-/te('E\,;iJ?7t;?f z- 3)S'"'t e3cs(`C!,•;•u; -7- g3( `"?,f{8s

                        .H.- (,,, i,ll}!i`'Js•>ii.ll -(I'•,' - (,.7)

at i>t= 7fLr'(g,'c). The matching conditions may be expressed

      '                                'as

                                '                                        '        ., iL!"O)(' li'.liil, 'C,? ,. /(L.(")( S. •77, c`'? .

       ?,L4v'i ZN`O'( s. 3, 'C?"= k.( Yl , li, z-{(` '( $ :7, (`? (4.s)

              x/)"''?( }.,Ld, 'r .)/ ':', I)(t )( g, i2, 1? /,
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where the superscript (i) denotes the inner quantities.

     Since we,'consid6r weakly nonlinear waves, we expand

c('(Cl , L'(-'7 , /O('? ,and '/?L. ' in powers of 6r :

                                                      '
                      x      c((07( g. y., r?•= Z---:, e"'cd`,`"<' •i y. (?, (4.g)

                    -71 =- f
                                              '
                      N       L/ `"'( sr. tcl, ( .) ';- 2... (- `'l N.fC ?( IIf, ,ti, zr 7, . (4 .io)

                     -71 =t                   '
                                 )cs      /) `O?(.g,,7, (-?- /-,y Tl?,; t.-2-] e"!9,(J ?( '}, y, (-?, (4.ii)

                               -n =/
                         {)p      !, (.}.. -c- ? --- /-7k Z (•--'" 2L-( }.-T). (4.12)
                       m;/

Hence the small parameter (-- may also be regarded as a

measure of weakness of nonlinearity, which means that the
               12)
Ursell parameter has been chosen to be of orc!er of unity.

     Substituting the above expressions (4.9)-(4.12) into

eqs..(4.2)-(4.4) and the boundary conditions (4.5)-(4.7), and

arranging them in powers of (L , we have a sequence of equa-

tions and the boundary conditions for each order of (-- .

     From the first order of eq.(4.4) together i•iith the first

order of the boundary condition (4.7), we obtain

 , 2, (`''.= k'', (},c). (4.13)
             '     '                                                             'The first order of eq.(4.3) gives

          ,ltllillil,.,:)(;.`9 --- g-`!, ' (4.14)

               '
                         '
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 which together with (4.13) leads to the solution

              '              t'            Lf,"'''= 2t, ('}, (-)-t- dd (,g7'., (- ). (4•ls)

where (e((Y, ( 2 is an arbitrary function of (e/,U) result-

 ing from the integration. Since we assume that there is no

surface elevation when there is no flow, we may set (fe(- 57.??

equal to zero. "Iathematically speaking, this is valid if the
condition e•(i`"7= 74J, holds somewhere in the Sr space. This

was also postulated by Gardner and "!orikawa in their inviscid
      Il)
theory.         From the first order of eq.(4.2) together with the
first order of' the kinernatical condition (4.5). we obtain

                      bZiL:IC '
          2>(d) ------ 6} cY. (4.16)
        '
The second order of eq.(4.4) and the second order of the
      '         'boundary condition (4.7) give the second order pressure as

      R(ci=e 3),3tJ' o-y >? .ti'1. (4.i7•)

                                                         '
Eliminating cA{`'2 from the second order of eqs.(4.2) and

(4.3), and substituting the expressions C!, ""?, zt"), and

  /P. (O) obtained above, we have

     Z'3(`4'(f)9<ili'tÅítr3t){s2t?Y'2-".O)}k`3i(.g8N"-Y'/'--5'.k?7"6(}.O,

                                                    (4.18)
                   '
where 6($,c?is an arbitrary function of ( IF. -c ) result-
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 ing from the integration with respect to 7 • Setting ,Sl
 equal to unity' and substituting ZAS`'( 5- l. r) into the sec:

 ond order of the kinematical condition (4.5), we have

     odtt) -f-i-it-9 z,ti, .OJsef" -f-,i bJk !tl' -=-t!/) (5.c?. • (4.ig)

The arbitrary function b(;.'c-) will be determined by the

matching condition for Z•N (see (4.8)) after the inner solu-

tion is obtained. It should be noted that, up to the present

order of approximation, the viscous term in eqs.(4.3) and

 (4.4) have no important effect and that the condition (4.6)

is automatically satisfied. The condition (4.7) is essen-
tially equivalent to the inviscid one, i.e., R3 ' /S)`L)=o at

 ,Iit - 9,(}•,•,-?.

                                                         '     We no-N' proceed to the inner problem. .Since 0('= C(t[F'"?,
A' = Cb(([")ÅíL), and te/ - C(/? ,we have cr-- C' (/?('!1?('1'f?

= (f"' (<6? . Therefore, in this case, the thickness of the

boundary layer is just of order e . Following the conven-

tional boundary layer theory, we introduce the coordinate-
                 'transformation

      }=e2a- 0, z=(Tt, 7=a/e, (4.2o)
             '                      '
                                           '                    '                              '                   'where .} ' and 'c-- are identical with those ,in the outer
                                          '
problem. On the other hand, the vertical component of the
          should be transformed as z{`b= e- <(' (fL iL l/("], where
velocity

the e outside the parentheses corresponds to the usual
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 stretching in the boundary layer approximation, while the
    '  (f :i' in the parentheses plays the same role as that in the
 outer problem. Thus we have L/("). e L/(O.

     We can now rewrite the basic system of equations in

 terms of (}, 7' ,Z ):

       gC} (" tt .b. S!"0--'- C•, (4.2i)

e3'(.'(`'t(dt(2i):31'fif("'tL/vf.;ty:t,f,t`'=-{;.<;try`ltY.?(e,Dif`\t/.g-'--f,{`Y,

                                                    (4.22)

                        '-<r-J
 i,"f, `" t+. ( 2(c("2/.J) 3);f'" '-t- tf'l/ (`r '.O l; "L-- .----f- i34!l-E`L/ +tS`((- rl?(lsl, ."

                                  -f-,-.'. ,,E'`Si' ..i`">, (4.23)

Expanding the inner quantities in powers of (E; as

                       cxL)     c( (t)( }, ')z, 'r2= ,,']'--I (Oi c/,1" )( }. "!. (-"- ), (4.24)

                      7) =-t

     el/(O( }. -2, (-? -. .ii;ea'•z ;,`L?( }. 2!, (' ?, (4.2s)

                      i71 = 1
    /t)`L?( }. z z- ) =' 1r (Fp7t- P>`;tÅí R"(" ()'9- '7p '('2, (4.26)

                                  )2 =1
                                        ..and substituting them into eqs.(4.21)-(4.23), we have a se-
                    'quence of equations to be solved. On the other hand, the

boundary conditions at the bottom (2.4) should also be ar-

ranged in powers of E . From the first order of eq.(4.21)
and the boundary condition: Zk,(C7 =O at Ol =O. it follows
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 that

              j              f'                {i )             ZK, =C). (4.27)
The first order of eq.(4.23) together with the matching

condition for P (see (4.8)) gives
                                             '
         !C?, `E)= /C,)`oj= lt(,l)(},T.>, (4.2s)

where eq.(4.13) has been used. Introducing z>(c) and R"7

thus obtained into the first order of eq.(4.22), we obtain
       ,oy2c.,(id•) ,. !(?A,L iilc.;t(L2 -. !<?"tt Ei;.(l2 , (,.,,)

            (c' )                must satisfywhere C f,

           d7             =C: at 7(7 ---- c,         c r,

                                                    (4.30)
    `7;C-'.i`ix' ,lv (t',(`') =r -sll`'11t' ('/i`"?-= itFf,(s, 'r7.).

                               '

The solution of eq.(4.29) subject to the conditions (4.30)

is given in Appendix B. Inserting this solution into the

second order of eq.(4.21) and integrating it with respect to

      , we have the following expression (see Appendix B):  ?
                                     .J"
-;,ei•i;ttts.'z(,(`-'-f..i.htty(•(-3)c;;n-t.T-z.Ji-lligs.,<?y).t-t(ftg'.f-IZ/iZ:-SJ2`[i`Nil'Il/}??t,/:E,'i,

from which, ug-ing the matching condition for ' Z.` (see (4.8)) '
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we can determine the unknown function .b(g,c--.) as

      b(})T?=2(./R,,yfy./40p-f';ZtLZ-flYIE-li;7;-st}"EI/gs?c!g

      '
                             .Inserting this expression 6( ig,'c) into eq.(4.19), we

                                                 'finally obtain the desired equation for V2, :

     9L,-ki-z2 . tL- )tfi?.;gf; --,t--,I- i,3!iil, •--

                                                   •)C                      ,)<,
        4,7-,fx?t;jfie;t/7}4.:,i.i-4-z,-,/-,-si-,DÅí}fiSIZtlf2Efi,-(:./g..?•i4!'.

                  .ee .-. .., (4•33)
The first and the second terms on the right-hand side of eq.

(4.33) are, respectively, due to the purely dispersive and

dissipative parts of the cornplex viscous dispersion. Ott

and Sudan have also obtained formally* an equation similar

to eq.(4.33) with the right-hand side as

             t/u.)c)
       -ou, .3)f•i.--i,ZLi(E.,5E--tt.?, Mc!, ,,.,,)

          - •J)<:

* The linear term in eq.(4.33) can be obtained by using the Fourier

transform and the convolution theorem provided that we extend the linear

dispersion relatton to allow negative values of `'J)( . However the

inclusion of the nonlinear term is rather arbitrary and a quite formal

procedure.
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wi th CYj > O. If C)(3 we re negat ive or g and 4' in

the sgn functiori were interchanged, their equation is par-

tially equivalent to our equation (4.33) in the sense that

their equation takes into account the dissipative part

only out of the complex viscous dispersion. Needless to

say both the purely dispersive and dissipative parts are the

same order of magnitude.

     So far we have confined ourselves to the case (aii).

It may be shown, however, that a similar analysis to that

given above leads to

    :e;; ,ftil}. t S-- 2, gf` "e- 61 Sa'tt=0 for case (ai),(4•3s)

    iOil?--'i-7Lii-7P,g>gP-,,Jf,,,,Yb,OLeZÅí,.]ff,liYlg7iZ-- 2S/}Pti!4i

                            . oo
                                     for case (aiii).(4.36)

provided that we introduce proper coordinate-transformation

and asymptotic expansions depending upon the relative order

of magnitude of b( and R . Hence ig and T in the above

eqs.(4.35) and (4.36) are not necessarily identical with

those defined in (4.1) or (4.20).
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 4•2-C-a-s.re(b):.lho.w--R-e.}x[!g!1,gE--py!!gg!-si-gg-gdsnumbercase(/L)('1<?(/<,k-./)

             J     Since th'e effect of viscosity prevails in the whole

 fluid layer, the concept of boundary layer cannot be applied

to this case. By virtue of the dispersion relation (3.13d),

it is natural to introduce the following new variables

        .;=(-Z, (----"t, Y---;, (4.37)

where we have assumed that 'J( is of order ((= and i(?

of order unity. In terrns of the new variables (.IF,cSt,(r) we

can rewrite eqs.(2.1)-(2.3) and the boundary conditions (2.4)

-(2.7), which we call eqs.(2.1)'-(2.3)' and the boundary con-

ditions (2.4)'-(2.7)' although we do not write down them ex-

plicitly.

     We now expand t!e field quantities c( , tL< , /) , and
 fl as power series of (-- :

                       N
      c(c }, y, r? -= 2L 6' 4' Ue, (ix r ),
                      .'}1•= C
                       `.)L.)          r -"-      Z"( }., x T ) =L <f. :- 4' `e >., ( }. bl. z?

                     n.i=e ' (4•38)
                                   'r=      /) ('}. a, c? =(/-y rk?t z2L (:"R• (}. sz. •(--.)

                                  t7? =c '
                         LN.)      /.7(s, (-?--- /t 2Z6"2i., ('},T?. J

        ' M=c
The essential difference between the above expansions and

those employed in the precedingsub-section is that we have

taken the 'zeroth' order perturbation into account in the
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 above expansions. This means that in such a highly viscous
              icase as in th6 present case the weaker nonlinearity considered

 in the case (a) cannot balance the dominant viscous dissipa-

tion. A similar situation to this is also encountered for
nonlinear Alfv6n waves14.) Introducing (4.3s) into eqs.(2.1)'-

     ' (2.3)' and the boundary conditions (2.4)'-(2.7)' and remernber-

ing that any field quantity P, (}. Y)T? at the free surface

                          'can be expressed as

                                     -,L.S   Q (}. y=2, , ( 7 -- (gZ,7..,.fr tti-cr0/7.,.(t.•il,ll.,(f; "!2t l••(}• C)2+ 'ta :• ,g)

    '
                              '
we can obtain a sequence of equations and the boundary condi-

tions for each order of e .

     Since the procedure of calculation is similar to those

given in g4.1, we only summarize here the main results:

   z•x -- 7s, =-= o• 7s - z3-i p, o-t-x,:)ec/iz4,x?e/z7,e)}Rt.i -f-fRyC)ii}i[l?

     '   t('.=c•, cii •-K'o)-}:fY-f8Lv`(iff,.?7. (4•4o)

   Zl.,- !, 1., .

and >tti2. satisfies the following nonlinear diffusion equa-

tlon:

       //. -Z,i'iLo --= -4t ,;;.l; ('(ii- 7ft?. i',/':lll: -/. (4•4i)

1

'

-,gr,-



It may be shown that the same type of equation is also derived
              'for 1<Pl s'. C, (L>!-i? , if we introduce proper coordinate-trans-

formation and asymptotic expansions depending upon the rela-

tive order of magnitude of L>( and K? •

     Quite recently the same equation as eq.(4.41) was obtain-
           6)
             together with its similarity solutions. It ised by Nakaya
                                                         --,(!-easily seen that Nakaya's nondimensional space coordinate X

and JT)f- defined in his eq.(2.16) are equivalent, respective-

ly, to our 3 and ()t defined in (4.37) but his time .t')f-

is equivalent to our t<? Jt /2 . It seems, therfore, quite

surprising that the same equation is obtained for different

time stages. It is shown, however, that there is some con-

fusion in his analysis concerning the order of t')(- . In

order that his analysis is consistent, his /'\ should be

multiplied by (;Z (or by ,)!2 in his notation).
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 2Z{'ll-c'IJ-)L/1,.XL2,cls

where it should

 g5. Some Simple Properties of Eqs.(4.33) and (4.36)

              t     Let us ndw consider whether or not the resultant equations

obtained in the preceding section have steady solutions. It
              'is well-known that the Korteweg-de Vries equation (4.35) has

the cnoidal and solitary wave solutions. In order to see the

existence of steady solutions to eq.(4.33), we examine the

time evolution of the wave energy.

     Assumin'g that

       7<L)l and g4}; ---f) c: as s )iÅí', (s•i)

and multiplying eq.(4.33) by lf.fi and integrating it with

respect to }' frorn -- •.c• to L)o ,we obtain '

    dd-(:/(...2t;tr2X}`.(..fix?t/.2Llz(1.g."`f:i,11)?'iZ;Zf?iiL2.yl(i-iY7(!s'p/}

                                                       (S.2)
By virtue of the convolution theorem, we have

                          '                   ',./.?8,i,i7--s5'l.'}'S/'.t+-;"(l;i---2(11ttt(6,.'c?/)7t4/tt/-L..cr}!k?eC'eJE!z

        Awhere lft2,(k,l',) is the Fourier transform of 7iL2,(l;.lr7.                                                        Hence

eq.(•5.2) can be rewritten as

                    t.J'      -N. 2Z'/'L `'CÅÄA .-. .N ..-
- A)T,t

be noted

 /)4./

6

that

 N,<,tl]i(/,,-,, , .?tz 6x5.

the contribution

(,?(/b,,

 from the

(5.3)

pure-

--  8S-



 ly dispersive part does vanish in the above integration.
               ' Since )8L, (- 1,) ;z ) is the comp lex conj ugate to vet ',( k, -L ), the

 integrand on the right-hand side is positive definite (note
 that -2t,( }.,'c-) is real). Thus the total energy decreases

monotonically with time apd there exists no steady solution

 to eq.(4.33) satisfying the condition (5.1). For example,
 following ott-sudani3'i5)we can easily show that the ampli-

tude ..5" of the initially given Korteweg-de Vries soliton:

                                          1.           ,-S'L. s' c,)c/2 2Zl-( gL -.-,.i is'.c.J>/(j,tt,.?E'l/ (s.4)

decreases with time as

          .5S /.5V. - (/ -iL 2it -(- "` ?;< (5.5)

               Lwhere T\= /eX-2-zJ and

                  x:'

-7•t---
t/</1:.i.t/'ii5i./)'

/t'il,i"t'[;(ltli(-A2(f's-ec,`i2"(rifJ"LPa'.k"-'J/'Lil...S--'-E-.rtt.i.t,L-?-Llr•:J/<"

               -oc •- .s

                                                         '

                                 '
In the above analysis we haye used two time scales "(L- and

   c--X and assumed that R"`-'-t is much smaller

than unity but large enough compared w'ith e- so as not to

invalidate the asymptotic scheme developed in the preced-

* It is
   ).t r /.!IN'1i

positive

easily
1 7i( !l} ]l

, where

shown that this

it/L, and that
  7N( z? ) is the

expression of t!)t is proportional to
the constant of proportionality is
 Fourier transform of y{s)-.-sc'L-/i "'c' .
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                                        • 13)ing section. Due to a trivial miscalculation by                                               Ott-Sudan

the value of 'h71 given in (5.6) differs from their value by
         /factor -- --- .         2,                                       16)
     On the other hand, Pfirsch and Sudan have obtained a

necessary condition for the existence of shock-like solutions

of the Korteweg-de Vries equation with dissipation. Accord-

ing to them the necessary condition is given by

         ?,,;. -)ylttr.,x?.o

         J( ee /pt/ , (5•7)
where >Z(.)(2 is the linear damping rate in o< space,
and is proportional to ,\lf in the present case (see (3.

13b)). It is easily shown that the presence of the purely

dispersive part of the viscous dispersion does not alter the

Pfirsch-Sudan's criterion. Thus we may conclude that eq.
(4.33) has no steady shock-like solution for which Yf?/}---rjo?

',c 7fLl, (/-} - •-•(' 7 .

     The same conclusions obtained for eq.(4.33) may also be

applied to eq.(4.36).
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 g6. Numerical Integration of the Modified K-dV Equation

      In the prteceding section, we have analytically examined

 some simple properties of long gravity waves under the in-

 fluence of viscosity. In this section, we investigate

 the effect of viscosity in more detail by solving the modi-

 fied K-dV equation numerically. Our aim is to answer the

following questions:

  (1) Can the modified K-dV equation explain the various

properties of gravity waves already known in experiments?

 (2) Can we clarify the mechanism of the wave motions, in

which there are three competing effects, i.e., nonlinearity,

geometrical dispersion and viscous one?

     For this purpose, we solve initial value problems for

two cases; one is sinusoidal wave, and the other solitary

wave in their initial wave forms. The former is the most

realizable one in experiments so that this enables us

partially to attain our aim (1) rnentioned above. The latter

belongs to simpler and more fundamental one (from an analyti-

cal point of view). Furthermore, expanding the displaceTnent

of the freg surface into a Fourier series, we investigate

the three competing effects upon the wave motions.
                                                       '                                            '  L     Numdrical algori'thm used in these computations is sum-

marized in Appendix C.

                                      '
6.1pmCorresondencehet ene rimentsandthemodified
K-.-=tV egt!,!a-tio-n

-88-



     Recently, Zabusky and Galvin7)made laboratory experiments

on gravity waveg in a shallow-water tank driven by an oscil-

lating piston which gives wave forrns similar to a sinusoidal

function. They compared these results with numerical solu-

tions of the K-dV equation. Their work showed that at a down-

stream location, the number of crests and trough's and their

phases agree fairly well with the numerical solutions, while

the crest-to-trough amplitude disagrees somewhat.

     Present sub-section is devoted to discussing how accu-

rately the modified K-dV equation obtained in S4 can explain

the results of the experiments made by Zabusky and Galvin.

To do so, we compar'e the so!utions of the K-dV equation with

those of the modified K-dV equation taking account of the vis-

cous dispersion, and also investigate the behaviour of the

Fourier components.

     Main parameters used in their experiments are summarized

in Table I. In order to compare their experiments wit! the

solutions of our modified K-dV equation. we rewrite the equa-

tionst in more convenient form (see ref.7) as

        tf:.I:ll-f-s.,e.6N-IL.o(,,si.,),et.V.==o!2L/C5//tttzi-Iliii.`2,V;,li,(6.i)

                                     zwhere
                                  0          tN-.,,ifi-iA'/7tL'c-,

* It ls easy to see that eqs.(t,.33),(4.35) and (4.36) in g4 are

unified into a single form represented by eq.(6.1).
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                      e( 1  xrN-.=xf-LMt/2Z=(A"?i'2."},

  ,?V-= 22;' .t ,?,

         A•
The asterisk indicates dimensional value of the variables.

Two nondimensional parameters O(i and O!2 appeared in

the above equation represent, respectively, a measure of

the geometrical and viscous dispersions relative to the non-

linearity, and they are defined as
                                                    /    o!,=;lriui-d'/--gqA{il.V, of.=o/(ftÅët.A2.sLH?4,(6.2)

where C/h is known as the Ursell pararneter).2) In Table I,

are listed their values corresponding to Zabusky-Galvin's
     . v)experlments.

Table I. Pararneters of Zabusky-Galvin's experiments. The

last pararneter O(2I was calculated for pure water at 2eOC.

Case 1 2 3

DepthH(ft) O.493 O.242 O.242

WavelengthL(ft) 7.92 8.38 9.46

AmplitudeA(ft)' O.0418 O.O192 O.0243

O<x
!

O.02025 O.O04672 O.O02896

C>/2 O.O1475 O.03945 O.03312
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     It is seen from Table I that the viscous dispersion

dominates or at``most balances with the geometrical one

in magnitude of the parameters. As will be shown later,

however, the ratio of these parameters itself is not so

effective measure of the two dispersions as it appears,

because the geometrical dispersion has a local effect while

the viscous one global.

     We solve an initial value problem to eq.(6.1) under

the following initial condition:

               E = oos -( zi
                              '

where and hereafter we suppress the tilde for simplicity.

We set here each parameter as follows:

 Case A, : ol, = .S'c c: / bt <LLY =>=.- O. c) o /g /, CY. = lo or/,

 Case A2 : cNZ, =soo/lic4"J', cy(. =/.o <r!F soc)C\/.).

The magnitude of the factors in Case Ai is similar to that

in Case 3 of Zabusky-Galvin's experiments. Main constants

used and obtained in these computations are summarized in

Appendix D.

6.1.1 Wave forms for K-dV and modified K-dV e uation

Wave forms calculated numerically by using the method

given in Appendix C are shown in Fig.1 for Case At and

in Fig.2 for Case A2.

     We first compare the results of Case At with those

                         -91-
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 the K-dV equation. The differences between the wave forms
 of the K-dV eqthation and those of Case ,g/ of the modified

 K-dV equation are shown in Figs.3 and 4 at tirne .1 =1.0 and
                                       '                  ' 2.0, respectively. From these figures, it is found that

the two wave forms are not so different from each other

under such a weak influence of viscosity. Nevertheless one

can observe a slight damping of wave amplitude and a phase

shift in the present Case ,4i , which are due to the viscous

dispersion.

     According to linear theory, real part of the viscous

dispersion gives a phase shift if we.assume the initial wave
form remains unchanged. This phase shift orN c) js represent-

ed as (see eq.(3.13b) or (3.17)c))
                                 1
            ..;"`c,"= bl. I,/-tl/`r Jl2)' '-' 'ir .f, (6.3)

        .-'N.-where .>( is a wavenumber in the present frame of reference.

         r-v '--Setting .)( equal to /L , we have

             d"E' = t. (- /3 <L , 0. C' J)Kc2,

at time .Zi =1.0 and 2.0, respectively.

     On the other hand, numerical calculations give the posi-

tions of crests, which are listed in Table II for Cate i4t and
                                                    'K-dV equation, from which it is concluded that the real phase

shift calculated numerically is, in general, larger than that

predicted b.y the linear theory and the larger crest gives the

larger shift in the phase except for il?s. at 7f =1.0. The lat-
          '
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ter can be explained by the

plays an import`ant role and

move with the s.lower speed.

4 (see also Table III in the

larger amplitude are damped

fact that the amplitude dispersion*

hence the damped solitary waves

 As already shown in Figs.3 and

 next paragraph), the waves with

more significantly.

Table II. Positions of

The subscripts indicate

in order of rnagnitude.
  2n '

crests for Case

 the number of

 The n-th crest

 A"

the

 is

and K-dV equation.

crests designated

shortly written as

Z-i.o t-2.0
K-dV eq.(6.1) f" K-dV eq.(6.1) ffreo

P, O.453 O.421 O.032 O.789 O.687 O.102

2t. 1.984 1.968 O.O16 1.94S 1.890 O.055

'j 1.546 1.531 O.O15 1.171 1.140 O.031

2. 1.132 1.109 O.023 O.289 O.265 O.024

     Next we consider Case A2, in which there exists more

dominant contribution of the viscous dispersion. In Fig.2

is shown the variation of wave forms at two different time

stages. Peculiar properties of the K-dV equation such as

soliton formation alrnost disappear in such a highly viscous

case. Initial wave form steepens due to nonlinearity, which

* This

speeds

meams that the

proportional to

solitary waves propagate

 their amplitude (see g6

with

.2).

their proper
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ls slmllar to case

so rapidly tha't the

effect and moreover

tive x-direction.

6.1.2 Comparison of

Ai, but the maximum arnplitude decreases

 geometrical dispersion has no important

 its position cannot proceed to the posi-

Zabusky-Galvin's experiments and the solu-

tion of the modified K-dV equation
     zabusky and Galvin7)exarnined their experiments i'n detail

for Case 3 and the corresponding K-dV solution. As pointed

out before, their Case 3 is closely related to our Case Ai.

Let us compare the wave forms calculated numerically for

Case Aj with those obtained experimentally by Zabusky and

Galvin. For this purpose, the heights of solitary waves

measured from mean water level are shown in Table III. It

Table III. Comparisons of heights of solitary waves:
  )tL"'F':experiments, 79zK :K-dv Kt(i :modified K-dv solution.

/:Ei ,e!7.t< lAk--KE AM /ZK,,f.K-/:"i/

2 1 .88I 2.10 O.22 2.2111 2 .36O.15i]
t3 .792l O.873 1.3Sil 1

-t-'-"]+-i
.43O.08l]j

P3i O.067 O.097 11 O.030 O.54 : O.57 ji O.03 ;

should be, however, that this correspondence is somewhat in-

complete, because the heights of the K-dV solution correspond-

ing to the experiment are the values at Zr=O.67S while the
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heights of the modified K-dV solution and the corresponding

K-dV solution tare the values at t =O.680. Needless to say,

there are slight differences between the two dispersion

parameters.in Case 3 and those in Case At, and also between

their initial wave forrns. Therefore we cannot compare the two

results cornpletely. Nevertheless it can be pointed out from

Table III that there exists a similar tendency concerning

the damping of the solitary waves, so that our modified K-dV

equation can describe almost accurately the long wave mo-

tions under the influence of weak dissipation so far as the

damping is concerned.

     We now summarize briefly the results obtained above.

The wave forms with weak viscosity (Case Ai) are not so

different from those with no dissipation (K-dV), while the

number of ernergent solitary waves coincides exactly with each

other. This agreement between the modified K-dV and the

K-dV solutions corresponds accurately with that between ex-

periments and the K-dV solution. P!oreover, the damping of

solitary waves obtained by numerical computations for Case

At is well compared with that found experimentally.

     As a result, it may be concluded that our modified K-dV

equation can describe the observed wave behaviours except

the fact that the phase shift obtained by the calculations

is not confirmed by their experiments. In this respect, it

should be noted that the phase shift is always caused by the

viscosity and is of the same order in magnitude as the vis-
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cous damping. It is therefore hoped that careful experiments

concerning the`phase shift will be carried out. Then the

results may be compared quantitatively with our modified

K-dV solution.

6.1.3 Tem oral chan es of ener s ectrum

     The temporal changes of the energy spectrurn for Cases Ai,

A-. and K-dV solution are shown in Fig.5. The ordinate measures

the components of the energy spectrum for the n-th Fourier

cornponent defined by

        E. = 0hi - 6in, (n-i,2,3,...), (6'4)

where 0n and 5,, satisfy the relation

     743 - gl" +t'- (a. cos-nrd x v" 6. s',n 7? tT JU ?•

             n=1
Both spectra for K-dV solution and for Case Ai resemble each

other in shape. On the other hand, for Case A2,E,varies

               .. --'linearly wjth time in log-scale. The second component !=2

grows up to a certain equilibrium value, and then it decreases

with tirne at a rate similar to that of tri. This tendency.

applies to Es and the higher order components. On the other

hand, we show the energy g.pectra including up to the 11-th

component of several time stages in Fig.6 for Case Ai and also

in Fig.7 for Case A2.
                                                '
     We now consider the changegL of the "'ave energ.y:
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       .)t 7`" Z'2L e.( 7`- ).J(s ";)(z

Setting. CV.< =O in the above equation,

equation and have the solitary wave
--.-.- t .t J+ -t.-tt+-t -tt"m tt t+. Jtt ttt.--.- Jt.ttt-

* This is nearly equal to the sum of the

per unit wavelength.

                          -1OS --

                L;- =ltt 1:-,L*

                               .                     j]'= l
              t`
 ln Case A, it damps almost linearly with tirne, which is

shown in Fig.8. 0n the other hand, for Case Az we find the

exponential decay represented as

                    E "-= e-- >h-' t,

where the value of )ri-: is nearly equal to 2, since the wave

energy may be nearly equal to the first component E,. As

this value is about one half of that predicted by the linear

theory ().(Å}=4.4, see eq.(3.13b) or (3.13c)), we may conclude

that nonlinearity gives rise to negative influence against

the damping.

6•2Jtltcgillz!pss-ILig-lnli!arninofsitA:E>iwave

     By using the transformations

                                                '                   / 2. t        /z •--,) ou,ttl<L), •(e!)(r,•3f.c, f--;)dv,S-f,

eq.(6.1) can be rewritten as
                                    .- .>C
       e) lfLL' ' ,-) ll,Z' ,S) t,i,:r . e) l(t' d!J( !

                     (6.5)JJ( i ,r7=Jt(7 •

  we recover the K-dV

 solution represented

potential and kinetic energ' ies
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         9L =15Y soc4T 2///il (z-- .3S' t?.

          '

A solitary wave whose arnplitude .:S'` is equal to 24 has the
width tC) =1/l/-:2r and propagates with speed L/ =8.

     We solve the initial value problems to eq.(6.5) for the

following two cases,

        '             Case Bi : cvf.=O./,

             Case B2 : bl, =/C•
                                        '
choosing the solitary wave placed at X =6.4 as its initial

value. In the numerical calculations, we replaced the region

extended from X= --- c.c to X= a-e by a periodic bound-
                         '
ary condition. Several constants used in these calculations

are summarized in Appendix D. The separation distance was

taken to be 12.8 (k18D). In this configuration, each soli-

tary wave is well-separated geometrically, but the effect

due to the presence of the others may not be weak because of

the non-locality of the viscous effect as shown in the rig}ht-

hand side of eq.(6.S). However, we carry out the computations

under the periodic boundary condition mainly because of their

simplicity in numerical algorithm.

     The wave forms thus obtained for Cases B) and B2 are

given in Figs.9 and 10, respectively. As we have already

shown in g5, under the influence of weak dissipation, the
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 arnplitude .5" decreases with time as

                `         ,S'(,,s5/ ,5"(•,? -.-- (1 ," J?z7 JK. zf J) H;9` (,.,)

 if we note that eq.(4.33) is replaced by eq.(6.5)(cf. eq.(5.5

 )), where
 .,,.=f!!.IC!(c7t eegE//,R2zse.zaegis,,!.g.stpat,-S(/,.?.!ygZig.

               ..eliC; -'"

Setting .<Sl =24 for the present problem, we have xn'7 =O.190.

When •77? J\if .t<</, we may approxirnate eq.(6.6) for Case B,

as

       .S (t? / S(' o? L. / - 4 pt2 of, t,

which shows the linear damping of the amplitude. On the

other hand, by solving the initial value problem, it is found

that the amplitude also decreases almost linearly with time

and has the value .J" =23.0 at .t=O.247. However, the linear

damping rate thus obtained ( >s( =O.17) does not agree with

the value given by the above theory (Yt,=4•n7 ali =O.076). This

disagreement arises mainly from the assumption made in g5 that

solitary wave preserves its symrnetry around the central axis.

On the other hand, the function expressed in the right-hand

side in eq.(6.5) has initially a negative sharp peak near

the axis and is roughly positive in the left half to the cen-

ter and negative in the right half to it (see Fig.11). Such

an ansymmetry will appear more remarkab}y in Case B2 (see Fig.
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            . .)v

10).

     Next we consider the phase shift for Case Bt . The po-

sition of the solitary wave after O.247 tirne unit is computed

as xl =6.4+1.90, while the K-dV equation gives the position
to be X=6.4+1.976. Thus we have the phase shift (Åíe=O.076,

                      'which is twice as large as that predicted by the linear theory

(die =O.039, see eq.(6.3)). Such a tendency is also found in

the case of the sinusoidal function digLcussed in .q6.1.2, and

this can be explained by taking account of the amplitude dis-
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perslon.
              t     In Case Bz subject to the stronger influence of vis-

cosity the solitary wave does not propagate downstream and

decreases rapidly (see Fig.10). The fact that the left to

the peak is fat and the right thin originates from the ansym-

metry of the right-hand of eq.(6.1) pointed out above (see

Fig.11).
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6.3 Conclusion
              '     First, it was clarified that in addition to the nondimen-

sional parameter O!i already known in the inviscid shallow

water theory, under the influence of viscosity another non-

dimensional parameter Ct2( plays an essential role in long
                                              'gravlty waves.

     Secondly, we obtained the results that the solution of

our modified K-dV equation agrees with Zabusky-Galvin's ex-

periment with respect to the damping of solitary waves, while

it produces a new disagreement in their phases.

     Lastly, concerning the damping of wave energy it is

found that when the geometrical dispersion dominates over

the viscous one, wave energy decreases almost linearly with

time, while in the opposite case viscosity damps it exponen-

tially.
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Appendix A: Classification of the Dispersion Relations for

Water Waves

     We inquire whether there are cases in which the viscous

dispersion plays an important role in a usual water layer.

In order to see this, we now investigate the relations be-

tween the depth H (measured in crn) and the dimensional wave-

                                                 olength L- (in cm). For a usual water layer at 20 C, the
wavelength vs the dep th for s\ =(g/2 )S'/ R -5L and ct = R -i is

drawn by solid lines in Fig.A. It is seen from this figure
that, for example, when l-=lo2cm, the geometrical dispersion

dominates over the viscous dispersion for a layer deeper

than 3 cm and balances with that for a layer 3 cm in deep.

In a layer shallower than 3 cm the viscous dispersion rnakes

a dominant contribution, and thus we cannot discard the

effect of viscosity. For a water layer shallower than or as

shallow as O.1 cm, any wave cannot propagate and diturbances

are diffused out.
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Fig.A. Classification of the dispersion relations for water
waves. Regions corresponding to the Cases (ai)-(aiii) and (b)
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 Appendix B: Evaluation of d(i`0 and `Z.L,(`)

               t      Equation`(4.29) and the boundary conditions (4.30) may
                            ' be rewritten as

         {ilil}IF(i. -t- i<"e;t{llgf-} =(fr), (B.i)

     .f"' -' 72t, at "7-o',

             ,bg`L•uf-c•),

where JF (;, 7 ) f LL(L L- l,?, . Th is equat ion can be solved

by using the Fourier transform. Introducing

         /(}, 7? ;/O`;(k, 2,? (v, dkS,/fe ,

                    .HtJO .

          f` fe/ ot ,2R( }. p er`ki,i },

                                                        Ainto eq.(B.1) and solving the second order equation for ,f

we obtain the general solution
                         '
          f.4 e-"7 .+ ('. eON7, (,.4)

where
                             J•                                                        l7)          6- -= ( K?"k s277ik .) iS'e.Å~,p r- .7C`so o7k ?. (,.,)

The integration constants e! and (11. must be determined

so as to satisfy the boundary condition (B.2). Hence we have
                     '                                                 '                                     '                                           '
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                      .x       c/,")= (; --lf..kl e'Åë7eC/?SNE, (B.6)

       -•N ,where 2i, is 'the Fourier transform of 7<), .

     Substituting c!S`)thus obtained into the second order

of the continuity equation (4.21) and integrating it with

respect to 7 , we find that

    zA.`"=- ,;A}• f(" •f/..ac8AN (/- e-<"7? 2i (e`AN {/k, (,.,)

where the integration constant has been determined by the

condition:

             ZN." '=c .t '7! =O.

     The second term on the right-hand side of eq.(B.7) be-

comes, in the limit '7 ! --i? .=< ,

                 s       (fit ./..(-!tcso"7fo,?k1'i!:h, e`L/?},/fe, (B.s)

where the explicit form of LAJ given by (B.S) has been sub-

stituted. Applying the convolution theorem we can rewrite

(B.8) as

         M          - \f } ,) }/ (}L3" ){ .        (i( P. ?
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 Appendix C: Finite Difference Method Combined with FFT

              `      In order'to solve the initial value problems for eq.(6.1)

 or (6.5), we replace the left-hand side in each equation by

 a right-to-left sweeping iterative algorithm validated by
        18)
 Zabusky and the right-hand side is estimated by use of the

 fast Fourier transform (shortly, FFT). This algorithm is given

 as

   ti Iu(c t2./'rD --3 c( (( •t/u 2 t3d((c.,fti?- c( (t'-/V77

        7L st, (-t((l't2,1'.0tc((t--lv'?7L-t (([+?.v•f0tLt(('tl./7

       -- C( ((./-e/? -- t((t-l7/?7= of2 f!cv?, (c.i)

 where

        Cl((,/) = 7f,L'(d4,y'4/? ,

        f((,y)=i-L-../fE.-".--.,/(t,7('?fZ-('l2.(14?-a,,(i'd'7?cc-s'ttrL"L

              k-- ( 6oo <167f (d,(/d'2? s c ,-v't)'L C4 7 ,

 A and 4i being, respectively, the lattice spacing and the

time step, which satisfy the relation

             `(CS/ = af/4 .)(, .

Equation (C.1)can bearranged in the form
     C( ( `'7/ f-I ) = cr (` -r-t7,l'?' L'-c((c`t-2wi-t-1?-L((L-l,/•? 7yi.ny's"5

                           cr. difr7
                        t                           LY., J) --s' , (C.2)
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where

       ,S" =: ?4,,O,[i tC-`C((c'-fr2,/',tC•1., 7L-cr(Lt----1,,t .)7.

     All the calculations are carried out for periodic bound-

ary conditions with period 2('. In the first place,C((2V72tulrO

is evaluated by means of the explicit finite difference

method, and then c((NJI)l-1? is calculated from eq.(C.2) by

                             'us ing the va lues of ct (IV-/, 1' ? , Lt (/V+/. /' ? , and JF (tVv? ,

where /Vr2C/4 . We sweep to the left until we compute

 cr(2,JiL-i.> and we set C((Ah,?21t/?= CI(27ff/)because of periodici-

ty. We repeat this process until two successive sweeps differ

by a small amount given by

         1 t( (N+27v'tD- C( (2.7`+Dl < di ,

                       •-7                ,x                  = !CTwhere w'e take e                           for theIEAC 2200 whose single pre-

cision arithrnetic carries ten significant figures.
     According to zabuskyi8,)the discretization errors contain-

ed in the left-hand side of eq.(C.1) are of order (6/D?2
and Xi ,k5' (4/ D72 whe re .8 and P are the amplitude and

                                                    iwidth of the solitary wave and satisfy P) = (f/'2iY, /.5'.) r.

                                                         2For example, for Cases Bi and B2 , these errors (zf,/L))
and Llb:S' (6/ /?2'` can be estimated as 2 .>(' 1O -2 and 4.s )<' 1 o'-P i ,

respectively, which are the sarne order as those of Zabusky's

computatlons.
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Appendix D: Sumrnary of Constants Used in

      We summarize briefly the constants

are performed in the time interval cri .4.

and B2 •

Numerical Calculations

used in the computations. These calculations

 ( rfr IE for K-dV equation, Cases Ai, Az , B, ,

Table IV. Summary of constants
   0.i and Est.-1 at time
errors accumulated during the
be equal to zero exactly.

. Last two
 z6 - 11E •

calculations

quantltles
 It should
. If there

 C(,}.E and

be noted

 were no

  ZFM.-,,E imply,respectively,

that the former is a measure of
approxirnation, this value would

O/, L>(,. N Nl "24 JtE t(?,o2)F.- E.-.,.,

K-dV o 256 2 2.4 2Å~'10-"

CaseA, 500/643 1OC><t 128 32 2i2.4 5/1o'-9 .tl5xlO

CaseA2 500164J 1' 64 32 21.0 2Å~lo'7 2xlovti

CaseBi 1 O.1 128 32 '12.8O.247 7,)<1o'ti

CaseB2 1 10 128 32 12.8 O.1 8/1O'PÅë
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  List of Symbols

  Dimensional quantities
    A : arnplitude

    8 : acceleration due to gravity
           '    H : depth of fluid layer

    L : wavelength

    U : kinetic viscosity

    P : density

 Nondimensional quantities
   0n : coefficient of cosnm.)c in Fourier series

   bn : coefficient of sinmrrAt in Fourier series

   C : complex phase velocity
    P : width of solitary wave (=12J</AS')

   lt-n : energy spectrum for the n-th Fourier component

        (-a3+6i,) '
    E: wave energy which is nearly equal to the sum of the
        potential and kinetic energies (=Z Eii)
                                       lht YCx): function expressed on the right-hand side of eq.(6.1)

        or eq.(6.5)
J4('4. ,7 ? : (1 ," '--•- 2,

   7d2 : surface elevation

                                '   l3i': surface elevation for linear wave

   ?e: period of numerical computation with periodic bound-

        ary condition
   iAV' : number of lattice spacing
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   /il : damping factor for solitary wave

    ,1 i   k : pressure
   Rg : atrnospheric pressure

   Pi : perturbed pressure for linear wave
   P,, : n-th crest designated in order of magnitude

R(g,y,z ): field quantities (ct,V, and P)
  R : Reynolds number
   !?" : Reynolds number stretched into quantity of order unity

/(le(A): real part of F

  sgn(a): signum function which is equal to unity for posi-

           tive E: and minus unity for negative q
   A5' : amplitude of solitary wave

   iS". : initial amplitude of solitary wave

   .t : tirne

  (a,v): velocity components corresponding to coordinates

           (l,Y)
  ("',ZN'): perturbed fluid velocity for linear wave
  L/r- : Ursell parameter (=,4L2/H"")

  L/ : stretched velocity

  Jg : wavenumber
  CYi : (41g) (HN '1 ,g L?)

     ' 4.l  -.)ii : a!3)o'2Li/4-iz'3S,f;ei                      H )4

  io•2 : ,.)(! ( ,Y - Ll<'d )

-'/ (J(): linear damping rate
  h,  L- : damping rate for wave energy
  -..T

   fs, : darnping rate for amplitude of solitary wave
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  cr : thickness of boundary layer

 cf6? : phase shift

  4 : lattice spacing in computation with finite difference
       method (=2J2 //V )

  4' : tirne step (=4314D(t)

  ({L' : a measure of smallness of amplitude or that of w'ave-

       number

  17 : stretched coordinate in y -direction (=Y/or-)

   5 : stretched coordinate in 7(-direction

  z : stretched time

superscrlpt

  (o): outer quantity

  (i): inner quantity

  A : Fourier transform
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