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1.1 EREUEAERE

FIZAHNEENC X0 PE Sz ZRe{biisg (SO, RERMbY (NOY 7o & D R&IGY
WED, REPRLERTRILS L THiE (HS04) <OfilE (HNOs) (2L, WERLE
DFEKE L BT, BOIWEFTARZT o VOFFH EICELT, AEREICWELZ LT
LI EL, TRLOLMBIENZIIUD & T omIEiE MBI, HERREMEO V2L LT
INETIZZL OEBEMZBELEED TET,

RIOKGE B TIERKUG G DHEITIT VY, 1950 FEARLARE, BRMERIC L D8 & 8o 2T -
FHRAERER~DOWENZ S RESND L IR oTo, AB U TUFTETHETIE, 1950 414R%
(Z L FEIER DWIA CEAPEIIC K 0 #3H, KEAMPERTE R RoTGFAHEML TN D
ZEBWBMNE ol F1z, 1970 FARITIZIETE A YR EH O > 2 LY L NI
SN DB TR B L, RS HICHENEIM L oz,

I ORMBEIZHLT 572, 1970 FARLIRE, AR A3 Thi TE 7, 1979
AT, EEEONRA R BRI L > THIRKRKIERICET 20O EBESENCTH D TR iFRE
BRI RAA ) DSERIR S, 1983 RIS T, TORKICIE, MKREEZIZ L
ET % 49 5 EOMBENCK U, B RKTE YR OB IR 2 2855500, BRlE % Dl f 2
DIRDLOBER « FHATh, JRIRAE OPE BB KR, EE ) 0 FEh, € =2 U > 7 D FEfi,
TBERAHDHEE R K2 E D T2, ZOFMITHSE, 1985 F12iE T~ Ly U REEE] T
R OPE LB ORI, 1988 HF12I% [V 7 ¢ TiET] CERMLY OHFH & OB
HE SN, &5I2199% (21X, MBI OPEH EOEBIOHK B 42 nigEE)
WCEoTHESND Y, BUEIZED T THiAx I A TONTE T,

FEA, TUT T, FEEZIIUD ETHRER EEICET 2 REREICHED, KK
1598 OHEH B2 L T\ 5, Oharaetal. (2007) (2 X DHEFHEER TIX, 77
23T 1980~2003 EDRINS, TR/ F—HEEIIMEL LIZEINL, KRKIGEWE D N2
EJRHEH &1 SO, T 119 %, NOx T 179 %, —M{kikFE (CO) T 64 %, FHEAZ AAERMEA
#bA% (NMVOC: Non-Methane Volatile Organic Compounds) C 108 %I/l L TV %, Richter
etal. (2005) |3 2IC K DB, PEO TEMBIZ W T FRbEFR (NO,) JRED 1996
~2004 DI 50 %M L7- & @E L TRY, ZoMMIZBIT 5 NOx gkt EO S %2R
2 LT\ %, Zhang et al. (2009) (X DHEFHRG R TIX, 2001~2006 FEOMICHFEIZH T S
KEIGRE D N 2R PEH B, SO, T 36 %, NOx T 55%, CO T 18 %, VOC T 29 %,
R IR¥'E  (PM: Particulate Matter) T 13 %L T\ 5, ZO K 9 R KRKIGYWEPEH &
O¥EINL, JRHPTREKIGRTIZT Tl S IRIKRRUGGIC © 27203 D, E£7z, BITEDOREMEILA R
BT EIEABRELOBRBEICER T 5720, KEEEE GEELTBY, BREBENE LWV
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W7 UTIZRT DR AE BT R A THERETH Y, BURIRE S b EHERA 72
BILRIRE > TWVD, 9 LEEWRND, 1992 FICRT U7 BENE=4Y 7 xy U
— 2 (EANET: Acid Deposition Monitoring Network in East Asia) (http://www.eanet.cc/index.html)
PEPE S 7z, EANET 1%, HAFEO FT 2001 4 1 AICAKBEE L 20, 93— y/8C
B 5 BN BE #1 G A 5+ i (EMEP: European Monitoring and Evaluation Programme )

(http://www.emep.int/), 7 A U 315 5 EZFKKILAEFE (NADP: National Atmospheric
Deposition Program) (http://nadp.sws.uiuc.edu/) (ZHe<, {3 OKERKE R hU—27 & LT
IHEHEED BTV D (K, 2005).

HARIZH T 2 WetEiba ME~OI D fA1E, 1970 FRICEFRM S OFERIZE Y, RO
RN RGO AZF 2 2T RSV, HERETHEDOREIZOWTHRHE LD &
DEEED TH D, HEOFER, EXFLVLAT LT B MO bkE 7 & R&HF ORI
WE L, BIRTORBEWE L OMEBFERICL2bDEEX bV, BARENIZEIT 22
BULOBMEILAE D=4 Y 713 1983 FEICRbG ST, 4y, IRERBETIIERIENTIC K D1
FEORKRPIEDTZDIZIE, TOERBBIOEELHA LN TIMLENH D & L, RRIGY,
Bk, 3% - A OHMAZEL BIRIKONIZEE T O IR DRI RS2 Z2RE L, 546
FHETCH 1 IREEMERRT R 1SS F Lo, FRMER SRARAIEEE 4 Ik TiThon, BIfEITER
BAICI--TBMERENE =Y v 7HBBICESIBERETE=%1 7

(http://www.env.go.jp/earth/acidrain/index.html) 23474V T 5, 20 HFLL BT 7z 2 BEMER
F=H Y T OFRERITOVTIE, BREEE (2004;2009) ([ZXE-oTWY ELDdHbNTEY, £
OEIILL T DL S22 5 TS
1) BRPEIEAE OIRI

MK L CAMERENR S SN D pH3 REOMITBI S TWhanom, KR
& LT pH4.4~5.0 FREEOFEMERNBHI S TR Y, RIKDKI S %703 pH4 AKifi D
FRVVEMERN & 72> T D,

- FEMEULAE ST B A28 L CIRIEHITV ORETH 5,

-« BARVERISOTE B AU T, MR B BRI T TR mOKRKH SO, IEN
EHLTEY, BERGRORENRE I N, FFICRERIL, B0 B804> 2 (05)
DEREER R E, KNGO REHHRXORENEE CTH D,

- PEZR &L i U TR ORI E IR ITIRIRE TH 505, BAKERZ WO
PEILAE BRIT 0,

2) RREER~DRE

- FEAEFR A MR O UL ECRIBARDFEDHER S T2y, BEMETRE S TR L3
FREKREWTETE DS DR,

- RHEHA - BKIHAR R T, SERMICIERE 2B IER <, WIS 0%
BIIMRR STV,

- 57 BT BIASE AR O R 0JELD 8 ClX, pH O T 72 SEaPEILE O 20



RON LN O LN TERY, EAMICHEN I SN, TORRE, BrEits

IZR Y TEEICERE LR O R NRIRICIH L, KA ke ic ik L T b

EEZ DT, BHHIZANORFEARERICE LY KT TR WS OO, KT

IRBORBLC, Rk S OMMRIZ BV TSR I D,

3) AkoOME

cPAMETEAE IC K AN, RGN E=2 U U RERICE VB BN SO T

HY, FAERRIC TR EOARNRID - - BEFE TR IS D TTHEMEDR &

LHZlhENS, RME=4 1 U7 2EFICE L TN,

T VT HIE AR CRRREEH AWM T 572012, BEANET 2@ U C, [EEEM

TBREMER T D,

B RKUGYIE A~ DI LA & LT, BMEILETZIT TR, Oy =T ey el

LA L TE=FV T E{ToTNL,

c FRYETE A IS L D AERRR~OREBIEO - DIZ, T3 - L - BRKOEZ IR OB

i, B Y 27 omnak Yy B ARy M, ARV I a2 b—v a3 UET VO

I E T D,
2O XS, BAREWIZE W TITEMEILE IS X DA 9 E XA L T RWIRITH
LN, A% EBHENEEZITo T MERH DL LS TWD
LD X 51z, BrERE OBRHEIE 2 D EHF SN TETWDHR, BT Y 7 &
ANEWIRONTZEOHSE TITh X5 21520, BRYEILEICOWT, hEBEOREZERI 7
AR DR, EEIEROME, Y —Z - L2 —BROE RN E, AT
P AAT O 7oL, BIEET VOIEHNRAAIR THDH, ZHETIZ, BEET LEZHW
ToFEATIC K o C, FRICRIERERECBE R RGRICE L T ORI GO TW D,
5 (2005) 1%, KT OTITBIT D 1995 FE k5L L ThiEbamo Y —A - LT Z—
fEMT 24TV, AARSOREILE &ORARMNTF SR %2, TE 49 %, AR 21 %, #E 12 %,
K13 % EHEE Lz, F7-, ARESCHIE TP EOFSERNE N &, BERDOZ B
WROEHETITAROFEENENZ &, KUOEBELR ZIT 5Ll ETIEAkLOFES S
N &2 R O bR Sz, FIlS (2004) 1, WICFIETHRICTHE 12 A%
MEELTEY, EEICHARNTEARICHARDOLE BRI T DHEREROFENRE N L,
FEINC X > TRAFNFGENRE S B2 DD, ZHTEICELOENIC L > TR T
DLz, Fiis (2008) 1%, 1995 4E75 5 2003 4F % %4312 B A DR # L& B ORFEL B &
Yial—Yarl, TOLEEMBEREEN L=, TORE, BRIIBIT A MELEREIL
WT VT DIEZTEDREDOEIZ L > TRELSFEINDLZ L, 2m1$_i;%%kM@
HENIEFITRENWT &, 2000 FLABRIIHFENS SO, HEH EH AN AEVWEBEETE YO % 523
RELROoTWDLZ ERENRINT, FEOMHRIZZNETIZEZ AT TED (eg,
Arndt et al., 1998; Ichikawa et al., 2001; Holloway et al., 2002; Lin et al., 2008b), Aff9TIZ & > TIHE
APRFGROUEBEBENRE S B2 LG5 H D, 1990~2000 FHi#% O HARIZI U 5



B /RULAE & B8 LT sIEI S 3 D BRI E IR B OB 7 /Wi K DRk

hE~OBEEERO %51, FEHEENE (nss: non sea salt) @ SO, THI 32~66 %, NO; THJ
35~61 %EHEESH TV D (BRELAE, 2009), WFZEM] THRERICIEAAE L 2K E LT, il
ETNOIEAME, [JBY, G WWEET NV, RRIGREWHEIHHEDE N R L, a7
RREZOND, ZOXD RO RS L, B RKRIGRICET 2 HEGERR O
FITb 055720, ZORRMBASLET VIZE L TRIKER L2 BfEL, K7 V7128
% BB 0T 7 L O LB BFSE (MICS-Asia: Model-InterComparison Study of long-range
transport and sulfur deposition in East Asia) (Carmichael et al., 2002; 2008) 23{THiL T\ 5, K
EET VLD THNREEN M L3252 & T, X OEEED S WERMERE ORI T3 & fTEE
L%,

1.2 Tk HBHELE

L1 fi CHl 72 R AE DT =4 ) & 7 0BEE 7T /WS L 5 TRITIE, EICEN - BESIC
PEDBMELAE ST A « =7 a Y NV ORHLMERENRI G & S TWDH N, TBEOEAFICAHET
HZ LR o THAL DBHEWEDOLE b L > TTEERLEWE L D, FEITED
e E DILAEIL, KOBEE LW ) GBS IZE EN 50, WERBRIIR -RYWE
DOHMELAE T 2 DIV, KFmX T, FIC X DWBIELE RS 2 BT LT
HDE LTI,

T I HFR T < ITTRET 20 NKEEET, WEIZIZIEZELFR O TH L, FiTR 72
ZERDOIRENBERETTENR DD, ZZRNEINT 5 E TKREIDMZ LNTZIGEITRET D,
FTEAEEN L AET HBRETIE, K0ERBRELLT 2D, BIXETORAERKIC K
STHETE, XML LD L LTROLORETHND (A, 1999) :

1) Jitf7 (radiation fog)
KN HIR ARSI L > Twm &, EHICHEELTCEROBEN T 5 2 & TH
AL, BB EORVINITHIZHRELLT U,

2) i (advection fog)
B2 NZERDNRE DRV HIRE O RICBEI L, mosnd I & TRAEL, il
MO T TRAET 2WMHEREDNDH D,

3) 7&%5 (steam fog)
B <R 72 2R EAMOMm T NER EIREG L TRANGE LG A IR ET 5, 4
WEPRALS 252 L LRILFHTH D,

4) FifREE (frontal fog)
IBRERTRE CRERAH VIBEN LR L 2 AL, EZEORKNLHE T L TE b
AR ORTRIANZETE L, 22 mEafnicz s 2 & TRAT 5,

5) _kHF (upslope fog)



LIz - %%#L%L WIBAIZARIC L > TEDOERDIBEN TN Y, #EALT
I o T GBI FET 5,
EEEROFEDIEAIC ,:::é?ki5ﬁﬁl@5%@~oﬁﬁfﬂﬁ<,@ﬁﬂ%@:

D%\ (Fuetal, 2006), [T, ERFZS, EBESBRIATILEICEMT 2 Z &
NEREORAERINE 72V (Klemm et al., 2005), EENE L 2 DI OV TEDOREHED
<725 (Lange etal., 2003),

L, EZBICE R TCREIGYEYWERENE BT TRAE L, WIS X TRZEN/NE
We D BAATE Y 72 0 OREREA K E HERERN RV, LIl > T, FEIRKIGEWE
ZRDIAARLT K, MICHSTHBEDERENIANCELS D, 2070, MBEFEOZE
T L DHADBERFE LRSS EIND, BRI E D 7o DI ITFEROBREEIT
VEN S D, BAKRKOBREIE, BEICER[RERGT DT 7T 1 71EH D WX EREEF]
MT 23y U TVEOEWNIH L, MIHKOR 7 ) — 2z 225 ER VLIS,

FROALFRAROREGNI L EH O, BARENTIE, SHIL (Aikawa et al., 2001; 2005;
2006; 2007), FHRKIL (Igawa et al., 1998; 2002), 7111 (Watanabe et al., 2006), FR¥EILI -
4 1L (Tago et al., 2006), SZIL (3 5, 2005), ¥R (fElk 5, 2005), FeiziEm (52, 2005)
72 E, BB AT LI B W THIEDTHOIL T 5, Aikawa et al. (2001; 2005) |3
ANEINCIT DL, TEEEA 4 BERNICENTR 75 <, [NOS)/[SOS bR LY
HREWTZ AR LT, Aikawa et al. (2006) 1%, 7~H L& BEE L CTESCNOILERES 2 1
EL, RERGEWEHEHEDZL ORI WA R L0 AE T HEWEE LY &
A FARENE L, ZOREL OSH IS IFEOFRRLY bREVWZI LER LT,
Igawa etal. (1998) IZFHRKILIZEBWT, FKRKORRMEE X, FAKE, FFb ETFEEERE, L
REDFRYEN AJRIE LB L TR Y, TR OFEEMMA 4 U REIXRICHRT 3~50 55
WZ & Zsx L7z, Watanabe et al. (2006) 1%, & LIUTECIZLEIZEE, FEOBMLIZHBW
T SOSDHEGRMNE L, BBIHYROPERRKE VATHEMEZ R Lz, 05 (2005) 1
SN B W TE S AL 5RVERYES 3, BEEIG R OB L D2 b D TH L a2 R L
7o Rl S (2005) 1ZVREINCINT, FAKH O FEELE A A4 R EIINIC A TE VA,
ZOREL (FB/M) FFHRRINICHST/hINWZ &, FKRF ERKFOREICIZS E D
BRZ BNV &, FITFICE~NTINOSY[SO A K & < HNOs IZ K AP D F 525K
XN el ER LT, BARKFOA A RER, BRI ORGERREIZL > TREDL D
IR D LR DR AR DOEEEZZ T S HIBENRRE W, £20—FT, HARICEBIT

2 FOWBEMACIITEE G R L DB HE L 2> T D,

FROMBIHA~OLEIZEIL, BRIPRERROEEZET LML ET DL L
WL - THEL D, BENHBICRAT LTI, BARIEEENENEICEKT 25505
% (Vong et al., 1991), FEKILEBOEE(IZIX, WHEBE, BEKNEEHE &2 WIEEE
ETUNRHNLND Z RN,

TFBEE CIE, MEE b OShERGE & TR B OTLITIC X 5 2 Eh & iR i e CHIE L,
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GRKIEET 7 v 7 A (Fy) ZRAUZL > TRD D,

F, =LWC-w' (1.1)

T, LWC ZHKREOEBRSy, wTMEREE w OZBKS TH D, T DOHET, #
HEEO—RUCEEZRET S 2 L CREEREZENELZIT) ZLRnTE 208, WMESAT
L@ TH Y, BARENIZENTEAKLEEOREITHO S 726T720 0, FHBEIC &
> THEKLEEZRE LB E LTIX, 7 A Y IR Cheeka Peak DE I ARIZEHB W THE
%/ H1Z 2 mm day” (Kowalski and Vong, 1999), KA > Fichtel [Li#1o> 7 b #RIZIW\ T
117 mm year' (Klemm and Wrzesinsky, 2007), 7'=/L kU =2 Luquillo [LROEFEFIZ I
T 1mmday' (Holwerdaetal.,2006), AEILEC Yuan Yuang Lake FIARFEX Db/ FHKIC
P T 0.4 mmday’ (Beiderwieden et al., 2007) 72 & DEENH 5,

BRI SER, MO EMRAMZHEST S LT, RAUTKL > THERKLERLHE T
LHETH D,

F, =W +W, +W, -W, (1.2)

Jog

T IT, WeldBait T &, wrldARNIE, W 3ehE e, W IMANETH L, B
P EITHE ST, MR TS W= S 72D (e.g., Lange et al., 2003),
HAMNEE DHFIZL > THEE SN2V §5 (e.g., Kobayashi etal.,, 2001) H5 6 &5, M
WX, FTERAE L’Clz\fib‘ﬂ}qul@{ﬁ EMRRNOHEET D ENTE D, ZOHFER
eI S 72 EEEIC L > TITO 2 M TE 50, KNIEDOZEMPRIE 6 DX, ﬁﬁ%
Y/luTE%*&ﬁﬂﬁLﬁE@?ﬁEfkr@Fﬁ%ﬁfcﬁ ElZE o T, ZBRKULBERBOBRENRELIZDT
Ve ZOFBEIZ Lo THEARLERZME LFl L LT, ARILOSHER - IKEBKICE
VT 20~2860 mm year (/K& 1)1, 2001a; 2001b; Kobayashi etal., 2001), 7 A U 77 ® Great
Smoky [LIARESZZRE D 7 & ARIZIUNT 400~700 mm year' (Shubzda et al., 1995), KA >
O Erz |G O SHEEBIARIZ 5V T 190 mm year” (Lange et al., 2003), 2 7 7~ ? Minas
R P R X D EBEMIZ BN T 0.5~1 mm day” (Holder, 2004) 72 & DEENRH 5,
BAEE 7213, Lovett (1984) IZX > TR SN2 1 RLBLEET ABL VLI
TWo, ZOFTME, BHENZERET RIS ORI, TR O IR L E
PRI K DRET 7 v 7 ZAE|PLET VTR L CTEBY, Bk Lo RE - FKEOEH
i, TBORRDA, WENRTA—=ZREDANT =52 % b LICHERKLERDOHEEIT I,
ZOETNEDEIZLIEE m%%Tw ROHEER & LTIX, 7 A U U0 Whiteface 1110 b
7 b ARIZF VT 69~769 mm year' (Miller et al., 1993), 7 A U B HEROS LHIZ I Tk
960~2290 mm year (Baumgardner et al., 2003), K- > ® Kleiner Feldberg @ F 7 & #KIZ30>
T 2.7mmday' (Pahletal, 1994), 7 > Z® Vosges ILIRD k7 & #RI2FV VT 56 mm year
(Herckes et al., 2002), 7 T /L KPEPERD Serra do Mar DEEAKIZ 51U T 75 mm year”
(Vautz et al., 2003) 72 FOWENH D, F7- Katata et al. (2008) 1%, KX - 3£ - fiAHE



RAFFMCBE L, ZFERROMAGAAT | Wi EET LV ERFL, KA YO Fichtel
Iz 31T 2 AR BRI VRIS K 2 BLIAS R (Burkard et al., 2002) & D H#IZ & > TET /L OMGE
EAToT, TORER, BIFE L2748 Lovett (1984) DET/LL D b IEE R < FAKILE &
TR TELZ LRI,

FKDALFMRDOWE &, FKILERDE ﬂﬁ%ljlﬁ# AT5 2 & T, %’@’J:of%f:%
SNLBEYEILE &L T 52 LN TE D, TR DR ~DF X, RIS
5> TRELE 5, Beiderwieden etal. (2007) 1T & Z)n%%f“ IXFET K D T IR 1Tt
LT 1 H#LUTFERSTEY, EVHBIIRETIHIKTHLEICLD2FHITENZEREL
iiﬁ“&ﬁfj% HBNTWDOEAELH D, ED—JT, Herckes etal. (2002) (2 X AR T

W2 X B E 5 IXBMEEEIT) LT 3~4 BIREE & 72> TE Y, Miller et al. (1993)'?3Klemmand

Wrzesmsky (2007) IZ X DFERTIEL, FICLXD2FHITRMELEIZILHL TS, 61
Kobayashi et al. (2001) <> Baumgardner et al.(2003) 1%, &L 2BEMEW'E O LG &N ?’E(ﬂ:
EEDN0FULICH R 2580 HD LV I RRER LTINS,

1.3 A0 B & AGRSCDERL

L1 fiC~7 & 91T, 1980 ALK, AR TR ENERRES N T LT,
AW IEZ AR L TS EDR D H, 1.2 1272 K 91D, FEDHBEICHREAT L Lzl
DIEMEILAE TIE, B L DM E~OUWE DR, @HOT=2 ) 7RET A TRIZE N
TR D e AWML & FRRICEHEE L R bRt H 5, LavL, BEEFZEICE
T A FIC XL DML O BAGIZFRE OB A H 5 WITILEDO A ZX SR E LIz b DIZR
LNTEY, BRENIZBWTIZZED XS 2RI HIZE A LR, £, ARIZE LD
=D ZRHEMRCEDNTEY, £ bD% TIUHIAFET D720, Moz ~T
FBICLDRENERLERLRELH D, £O7D, ARICBIT HBMHELE 2G5 L
T, BIZEDOBMERLE~DOTFELHALNIZL TCW MERH D, £ 2 CTARIFZEIL, EiE
BTV E OB S L DB EILAE BOZR A TITEEMEL, BICLOF
5 U5 LGSR T DM EILE RO Z1T > 2L 2L L7z,

Bl LB I 2 L—va ITiE, 1960 BRI, TEOFRAE - WIRICED LY
PLUBFE AT B 72D 1 IRGTET D HW BT E 7= (e.g., Zdunkowski and Nielsen, 1969;
Brown, 1980; Musson-Genon, 1987), L7>L, EEEDOFEDOHREZ THIT 5 7-0OI121% 3 IRIE TR
G THTO0ERD D, 3 WILRBET VI L > TH @ﬁfﬁu%uiﬁ%fﬁﬂi@@@
Ballard etal. (1991) IC XD A=y T ¥ NIEHERRFRIZEBT DMHEDO THITH 5, I
SHEMWMOIEL, T AU DESTRKEHEE % — (NCAR: National Center for Atmospherlc
Research) & X2 I N=T ML KZFEIZ L - CTIH[ABHSE S 4172 Fifth-generation Mesoscale
Model (MMS5) (Grell et al., 1995), =@ 7 RJNSZ R & - THIHE S 4172 Regional Atmospheric
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Modeling System (RAMS) (Pielke et al., 1992) 72 ¥ DFEL 72 RRET VORI, 3R
TRBRETANFEDY I 2l —va Al bEZ<HVLND LR TETND (eg,
Stoelinga and Warner, 1999; Kong, 2002; Pagowski et al., 2004; Koracin et al., 2005; Fu et al.,
2006), Pagowski et al. (2004) X, HFH DAL % U AT 199949 A 3 HFEFICRAE L
TR 2 XJTBIT MMS & VTR U, BRI B E 2RI A K72 L TR Y, ME TR SN
7ol > 72 2[R B P FE CHIR AN K > TWHEAIS N2 Z & TIRBVBRAELTZZ & 2R
L7z, Koraginetal. (2005) (%, 7 A U7 OPEESFT 1999 4 4 H 14~16 AIZFA L72iEE
ZXRIT MMS 2 O TREST L, BHIEER OJEE & mREOBE) 8 & ORBIBEOK[GEOHE
HMEZRFR BAF DN EZ OF A+ THIRICEEBE L T\ 5 & L7z, Fuetal (2006) (%, #&fEC 2004
4 H 11 HITHAE LT % 2 6212 RAMS % IO TRENT L, B2 < T - 72 22 [ B it
BCHmEICE > THHISND Z ENFERFORERKNTHD & LT,

URITRLEEE DI, BFEORRETMICEDE Y I a2 —T 3 /0)§< (LR E DFA
N/F%ﬁ%kbk%ﬁ?%éobﬂb,% BRMETEAS 2 5l 2 729011, JABTE
T K> TREIMIZEZ THIT 5045038 5, % Z T Shimadera et al. (2008) X, /BT
77V MMS5 % 2005 4= 1~3 A L0V 7 A OUrsE I L, MMS 233 O34 O KR 728
MZRFIHTE5Z L &/R L7, F7- Shimadera et al. (2009) X, MMS &7 2 U I DR
Bifri%/T (EPA: Environmental Protection Agency) (Z & ¥ BH¥E S 1172 K&UE € 7 /L Community
Multiscale Air Quality modeling system (CMAQ) (Byun and Ching, 1999; Byun and Schere, 2006)
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Fig. 1.1 Outline of this paper.
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BHL. AR — STV WRF, 7245 Advanced Research WRF (WRF-ARW) /38—
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6) EBEOREHOV I 2L —ra T, B LI SRMHRRE D T T OREER
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External Data WPS WRFE-ARW
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Geographical —Jp| geogrid b| realexe wrf.exe
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metgrid > Diffusion > MetEiO;OJOQV
Gridded = Initial condition ’ M'Cf.op.hysws
Meteorology —| ungrib Boundary condition » Radiation e ez o
Data FDDA file » Land Surface Resta)r/t Simulation
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» Cumulus

Fig. 2.1 WRF-ARW modeling system flowchart for real-data simulations.

i E EE, AR R S oK M OZERE R e Gl T 7 A NV EERT D, W, HE .
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Ppnt = constant

1.0

Fig. 2.2 Schematic of WRF vertical coordinate.
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+(V-W)+P (p.4)=F, (2.4)
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T E—"RT, £, ¢ (=g2) ZVART Uy, g FEDINEE, FTHZ2Dx, y, 1,
tixENENOREMSr, X(2.3)~Q2.5DENE 3 BUIKJEBERE, K (2.3)~(2.6)F L UVY2.9)
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emission/ sensible/ surface
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e 4 Surface 44—

Fig. 2.3 Interactions of WRF physical processes.
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KEETHNZIE CMAQ D/X—T 3 > 471 i L7=, CMAQ (3441 77— 3 kIt K
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External Data
Emission Inventory ——Jp | Emission Processor

CMAQ Modeling System

M I Model = ad
eteorology Mode
MMS5 or WRF-ARW ——P MciP P LCIM
v » Advection Dry and Wet
Global CTM  ——Jp| ICON and BCON |> > Diffusion Deposition
CMAQ Default » Gas-phase chemistry ’ Gas and Aerosol
Concentration Profile | - Ao o501 chemistry Concentration
JPROC |} » Clouds and Aqueous Chemistry
Photolysis Rate Table
Nested or Restart Simulation

Fig. 2.4 CMAQ modeling system flowchart.

CMAQ IR FCESHEHENTEY, ZTOMAFNL, SREOKILFEAFLZ Y b
T B Y — RO (e.g., Zhang et al., 2006; HJI[ 5, 2008; Nghiem and Oanh, 2008; Xu et al.,
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2007; Chuang et al., 2008), HARIZIT DM ILE Bl L OFAEREHIF 5 ORFELE Ot
(F115,2008), 3T 27 OS5 MUK IS T DRIEWEILAEED Y —2 - L7 X —f#HT (Lin
etal., 2008b) 7 EZLIKIZHT %,

Fig. 2.4 IZ" 9 X 912 CMAQ TIE, ¥AR T ut vt —, [GbHA v X —T7 = — A7 1
& »#— (MCIP: Meteorology-Chemistry Interface Processor), ¥l L OERSGMHT nE >
#— (ICON and BCON: Initial and Boundary CONdition processors), & KREARBER IS E 4~
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T 7 A NVEERT D, TO, ZRERICOVTHERBET VO IE S LICHRE
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ETNVOMBEL Y GHIREL TEEEAMOLT LN TE D, ZOEMIERIL, FEER
7'y ¥ —, ICON - BCON DAFIZ LB L7225, F72 MCIP Ti, HARWE DRk
LA L % Pleim et al. (2001) OFHEIZ L - TRHETE 2, U ARWE ORCPEILAHR L X
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1999), ZAHPIEIZHIWNT SO 1%, FEIZOHIZ X » T S 4, BLFD X 512 HaSO, & A 5K
T 5,

SO, + OH — HSO, (R2.1)
HSO, +0, — SO, + HO, (R2.2)
SO, +H,0 — H,S0, (R2.3)

72, SO, DEAVIZITIRFA SR & B 7% B 2 =9, KITIEME L7= SO, 1%, LT X 91z
figt Bt LT <,

SO, +H,0 »>S0,-H,0>HSO; +H" -» SO +2H" (R2.4)

IKICYEME LT= SAV)IE, Fix oA k- T S(VD)D SO I, Mik#le LT,
SO, & & BITHITAATMBMIRLATE (H,0,) X005, £V O Mn(Il), Fe(Il)Z filit & L
TIRIFEER R ER B/ SN TV D,

NOx DEELIBFEIX, JLFEAF X NOEMDTHD 05 & DDV 58, —ER{bEE
F (NO) U TORISIZLEY 0512L > TNO, ~EBlbE N5,

NO+0O, - NO, +0, (R2.5)
— T, NOJITEEIMNR () IZX > THfRE I, LTFOX I 03 24EKT D,

NO, +hv - NO+0O (R2.6)

0+0,+M—->0,+M (R2.7)

ZIZT, MIZFE3IIRT, BFE S+ (Ny) FidEs+ (0,) THbH, EIZTVOC < COD
OH 72 I X ABBLBFETAEL D, TAFA~LFFLTIUHL (RO, b R4

- 18 -



H2E RBKRRZEET IV

AN (HO,) 1%, ATFTD X 912 NO ZEE(L LT NO, 24T 5,
RO, + NO - RO +NO, (R2.8)
HO, + NO — OH + NO, (R2.9)

ZOEICLTERINTZENO D, KIGAR26~NDICE->T O3 BEREINSZ T, H
D O3RN EFT 25, EHITNOIE, LLFD X 912 OHIZ X » TEL S HNO; 24T 5,

NO, +OH — HNO, (R2.10)

ZDORISIE, 25°C, KAUESME T TOH & SO, DRIGIZHATH 10 53728, NOy 2D
@ HNO; DERIE SO, 725 D HySO4 DAERRIZ N TIAETRICIT W & Z AT T L L E X
SND (A, 1994), F-EMICIE, NOy & O3 DGIT & » THEKT HR§EE T 2 1L (NOs)
23, HNO; DAERRICHB W TEIE L /25,

NO, +0, - NO, + 0, (R2.11)

NO; i% VOC OFJHIZ X - T HNO; #45K L, F72 NOs & NO, s BAR T 2 IRk — %3
(N,Os) @, KRR D R — R X - THNOs AT 5,

NO, +RH — HNO, +R (R2.12)
NO, +NO, - N,O, (R2.13)
N,O,+H,0 - 2HNO, (R2.14)

SO, BIL U NOx DEE{KIZ L » TAERK ST HSO, B L HNO; 1E, 7 E=7 (NH;) I
LoTHFnzh, KT 25,

2NH, +H,S0, — (NH, ),S0, (R2.15)
NH, + HNO, — NH ,NO, (R2.16)

IS ORI TIE, WEET E=7 A (NHy),S0s) DOERIMEN: S, NHy BT
WIUZHEEE T =7 & (NHYNO3) Bi DR S ILDH, ZILH DR D% < 1% accumulation
T FIZEHEENDBINRLATH D728, REAPFICER R LEEBRE STV, 20
£ 912 NH; IZREH CIEmMEmE 2 h g 2R Th 203, RSt FTo LT
AL 2 K > TR~ A2 N D728, THE~ORERITELE L THbh s,

F 1z, W DL BIAFET H5581E, £4003 HNO; & i LAEEET - U w7 A (NaNOs)
B Z2ERT D, ZORFITEB LD coarse T— FICEENDIMHKRR+THY, FEHLKEE
FEMRKE < KK F OFMITHBAE N,

HNO |, + NaCl —> NaNO , + HCI (R2.17)
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FIE K[B/KRKETRNCBIT DEESRE

3.1. FEMER

Fig. 3.1 IZ CMAQ D FHREFEIK & GRS R O FEARIZ N - Bl 5%, Table 3.1 (2 WRF 35
L ONCMAQ DR ESRM 27, FHREBIFIL 2004 43 4 ~2005 43 H & L, 2004 4£3 H %
BhAERHREWIM, NH IR 2 FEBHT — & MG 51072 2004 45 4 ] ~2005 4 3 H % §EAlx
G & Ulo, KRR REIE, Ak 32.5 B, B 1225 AL E L2 7 v~ L MEA
MEEPNETREIND, TVT OIRBE R ET 5 81 km A&k (D) 25, 27 km k&1
fEI (D2), 9kmi&FiEk (D3), BLOEHEZXI% LT 25 3 km & FiEK (D4) FToO

30°N+

20°N+

&1#:x¥a\7v4lwﬂg;?

T s
90°E 100°E 110°E 120°E  130°E  140°E 150°E

10°S+

Elevation (m)

3000
2000
1500
1200
1000
900
800
700
600
500
400
300
200
100

¢ Acid deposition monitoring site @ Aerological observatory
¢ Fog sampling site on Mt. Rokko O Meteorological observatory

® Osaka and Higashiosaka air pollution continuous monitoring station

Fig. 3.1 Modeling domains for CMAQ prediction and locations of observation sites.

-20 -



Table 3.1 WRF and CMAQ configurations

Parameter

Setting

Spin-up period
Simulation period
Output interval

Map projection

Central point
Horizontal grid spacing

Vertical domain

March 2004

April 2004 - March 2005
1 hour

Lambert conformal conic
32.5°N, 122.5°E
81,27,9 and 3 km
Ground surface - 100 hPa

WRF Version ARW 3.2.1
Horizontal grid number 156 x 108, 78 x 78, 81 x 81and 84 x 84
Vertical grid (half-y) 0.998, 0.993, 0.985, 0.97, 0.945, 0.91, 0.87, 0.825,
0.775, 0.725, 0.675, 0.625, 0.575, 0.525, 0.475, 0.425,
0.375, 0.325, 0.275, 0.225, 0.175, 0.125, 0.075, 0.025
Initial and boundary NCEPFNL and GPV-MSM
Analysis nudging Wind (G,, =3.0° s™) in D1 and D2
Explicit moisture WSM3
Cumulus Kain-Fritsch
PBL and surface layer YSU PBL and MMS5 similarity
Surface Noah LSM
Radiation RRTM and Dudhia
CMAQ  Version 4.7.1
MCIP Version 3.6

Horizontal grid number

Vertical grid (half-7)

Initial and boundary
Advection

Horizontal diffusion
Vertical diffusion
Photolysis calculation
Gas phase chemistry
Chemistry solver
Aerosol

Cloud and aqueous chemistry

128 x 96, 66x 66, 69 x 69 and 72 x 72

0.998, 0.993, 0.985, 0.97, 0.945, 0.91, 0.87, 0.825,
0.77,0.70, 0.62, 0.54, 0.45, 0.35, 0.225, 0.075
CMAQ default concentration profile
Yamartino scheme

Multiscale

ACM 2

JPROC table

SAPRC-99

EBI

AERO5

On
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458 E Lz, BEFEOBRMEILE OFT L THICEB VT, AFEHER A X132 100 km f2
FEEHWEEAERZ Y (e.g., Arndt et al., 1998; Ichikawa et al., 2001; Holloway et al., 2002; Lin et
al., 2008b), L22L, AHFETIEEZG L LTEY, ZORAEICEWTITHEORKRIE
FL D728, D4 OKFEFHFEH A X% 3 km & L7-, MCIP CTiX, WRF O&X& THllC
BWTHRMEDOFEZ < Z1 T D EAMEOK T2 1IR3 5728, CMAQ TiX WRF
L0 B F BRI D 72 2o T D, $REJEIE, WRF TiIMi#Efs 5 E2% 100 hPa £ T
24 BIZEIL, CMAQ TIERIEAN - B 7 7 A WY A X/ oT-oiz, FHEMER~D
WENNINEBZOND FZEOBEBEERO LTI6BE L, HEMTOMERE O T .05
S, EEIRET 270+ 2 IC® 2, FRME LT 58, F1ESN 15 m,
F2EBKIS0m, F3EAK 110 m ThDH, WRF/CMAQ IZ L D RGYKEVE T ks FERE
flilzi%, Fig. 3.1 IR LIEARILNZEB T 2 FHREMA, KREE, SEIREE, REAL
LMY EE=2Y v T HE, R RKIG YRR 23610 2 BLRANE 2 Fv 7z,

3.2 K&BEFIL WRF OHE &

WRF OISR L OVE R -« ME BRSO W= B BUENT 7 — # 1, National
Centers for Environmental Prediction (NCEP) T & 2 2K #&f#ifr> — % (NCEP FNL: NCEP
FiNaL operational global analysis data) (http://dss.ucar.edu/datasets/ds083.2/), 35 &L UVKRGRIT D A
VEAETHET WM LD FBEATE (GPV MSM: Grid Point Value derived from MesoScale
Model) (http://www.jmbsc.or.jp/hp/online/f-onlineOc.html) T&H 5,

NCEP FNL (%, 4ERZXIZRIT 6 RN, ACEAREEE 1° x 1°TEESh T D, FHEM
23515 2 NCEPFNL &, #itf7—%# (0~10, 10~200 cm) (Zi3, iﬁ%m*k;ttﬁ%
mﬁ,%%7~& i, RERE, BEEES, KEE, MEERSNAEEND, LT
— XX, Wi EASUE, HRRJE, BUERPE - BAbRsy, RIR, MHHmEE, i, K
g,%g,mL%E,ﬁmm%,ﬁﬁﬁ@m%izw#~@8ﬁéinéoﬁEﬁ(mm,
975, 925, 900, 850, 800, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200,
150, 100, 70, 50, 30, 20, 10 hPa) (IR D7 —HXITI%, YART v /bmpE, A,
JEGE P - BiAbAksy, R, BRE, FEXHRE, O;iRAH, EAKIREWARENEEND,

GPV MSM (%, b 22.4~47.6 F£, % 120~150 EED H AT K OVEE A k4 & LT

%o aIHEMIMICIT 2 GPV-MSM 7 —# 1%, 1 H 4[] 6 KRR CHRLE SLCTHY, K7 —

ZAZHIHME & OIIE & 18 RFf iR £ CoTofE (M b7 — & 1 IR, <UEmT —4# 3
R IRR) 23& £, mﬁﬁﬁﬁiﬁi?—&fowxouy,%Eﬁ?—&forxa%O
Lo TWnWo, M E7F—&I2i%, EEAKE, HEX JEGH G - mALECy, KU,
ﬁﬁ@ﬁ,mmg,ﬁiﬂaimé SUEM (1000, 975, 950, 925, 900, 850, 800, 700,
600, 500, 400, 300, 250, 200, 150, 100 hPa) (BT DT —ZIZlX, VART ¥ I/LE

22
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B, O JRGEHPE - LAy, AU, SR, MXHBEN G END.

BT EENDT —H OH T, WRF ~OAN7T—2 L LTERSND DI, T
IREE, THEEAKER, RmiRE, BEES, KHE, MEE, WmmEARE, HEXUE,
SR, FEXHEEE, BUEHYE - FALRY Th D,

WRF OFFFLIE, D1 & D2~D4 (I CTIT 572, D1 O - FEFEIZ 1L NCEP FNL %
L, D2 O - BEFECIXMH X GPV MSM, JK[fil% NCEP FNL # i/ L7z, Zh b o
BRSO SR IE 6 MR & L7z, D2~D4 X2 V= A R AT 4 v /Tt & T o127
¥, D2 & D3, D3 & D4 OFFEIFRG IR L T D,

FDDA {22\ TiE, FE NCEP FNL 36 LU GPV MSM % W fiftrfE T~ o0 7 %,
D1 35 KOV D2 123515 2 HH DO HP - FALAST IR L CF y Y0 7485 G,y = 3.07 s TfT -
7oo FRICDLITRZ XSG E LTEY, BRENEEANTRAET 570 E0BmNG, i - K
M55 B O 7203 B FEIIN O KRR Tl 2 EFEICAT O Z LIZNEETH 5720, firiET v v
TIMBETHDLEBEZBND,

EMYEERFEIZIE, WRF Single-Moment 3-class (WSM3) A % — A (Hong et al., 2004; Hong
and Lim, 2006) %V /2, WSM3 A% — AL, KK, FAR/EK, B/EDKS TREHFK

FOFHZATY, H TR 2 RE - BAREFRITLE O KRR L DL ERBE S
T\5, %7 Dudhia (1989) Cﬁéb\, 0°C ZHEIT/AKEKERXBILTEY, simple-ice A F—
LEBFHIN D,

FEEMRFEIZIE, Kain and Fritsch (1990; 1993) b F LA o A v MR, FEREAKMEO K
WHEEE, RO\ R B &7z Kain-Fritsch A % — 2 (Kain, 2004) % A7z,
Kain-Fritsch A% —ATlE, = ML A AN, T hULA AV, ERWEORERE
LTz, WS RETT ML > TKDO LR - TRENERIL SN D, E, CMAQ
’C“&iﬂ(qqﬁ?‘ﬂ'/l’ AN 8 km KDL HE NI 77U v AT — /L OXREDEENBE SN
N2, DAIITHEEAF— 2 Z T2,

PBL 21 ih@ﬁT%ﬁﬁéﬂtM@mﬂmgﬂmmmmmuMM)mLX# A
(Hong and Pan, 1996) # & L 72, YonSei University (YSU) PBL A % — 2 (Hong et al., 2006)

wHWiz, YSU ZF—AIZEIT 5 PBLES L, RSV VFY—RY BP0 LR505
JEEEFSN TS, YSU AF—A1%, Nohetal (2003) % &1Z PBL EOBATIEZEE

LTW5, £72 WRF ®/3— 3 >3 TiE, Hong (2007) % & IZLEEREICBIT DI
TNATY XLRHER STV D, HHEESREIEREIZIE, Monin-Obukhov M FH{ELHI] (Monin and
Obukhov, 1954) #H L2 L7, MM5 O MRF A ¥ — A THWOHILTWZAF—2 % -,
ZDAF—ATIL, Paulson (1970), Dyer and Hicks (1970), Webb (1970) K5 % 7E FEES
BUZ L - THEHEICRIT D8, Koy, EEEOZHUREN THIS LD,

I NI AR 1, NCEP & NCAR (Z &L - TH:[FAIPHFE S 4172 Noah Land-Surface Model (Noah
LSM; Chen and Dudhia, 2001) % i\ 7z, Noah LSM Ti%, THEIIEE 0~10, 10~40, 40~
100, 100~200 cm @ 4 FIZHEI SND, AKX - FIG, RIWEZZEL, Rimit, 78%
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B, HEPKkREOTHE S LIZ, HBIRE - FAKEOTHEITH, £, HMEORE,
BN DK 72 EO TR HAT D,

FEW O A % — A121%, Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) % H
W2, RRTM A2 F— AT, REHH AR MLz 16 1IZ0EIL, KEK, 05, CO72ED
HAE L OEOHFNRS BREMICH DD, R A % — A121%, Dudhia (1989) A%
— Lz Mo, ZOAF— LTI, KRGS OREREFOHGEL, KK X HWIX (Lacis and
Hansen, 1974), X B - WL (Stephens, 1978) &8 L, S50 T m & B
77y71#%wénéo

33 KREEEF/N CMAQ DB &M

CMAQ @ D1 28T 2 KRIFREWE B L OZ ORI E IR E OYIZRIER X OVl 5L R
*@_iJm%km%ﬁELkCMNIT7iNFﬂ%f7u77%»%ﬁ%bkﬁnD3
D4 ORIEEER AL, £ D1, D2, D3ICEITEKREFH A « kiR 1 KRR

DFERERNDIER S LD,

KA IEFRIZIX, SAPRC-99 Z{EH L7z, VOC 135 Z LICKIGHENR KR E S Bir D7
D, ALZRIGE T VIS B % 5 2 D BI2IE VOC O R 21T 9 MBS & %, SAPRC-99
AF— LTI, BUSHEEIL TWD VOC lin £ &, REARMEA TERBT 5L 09
FENREHEN TS, CMAQ /X— 3 > 4.7.1 @ SAPRC-99 A F— A DHEHIERICEIT 5
VOC ffki%, /AT /78 K (HCHO), A% /—/v (MEOH), 7 k%82 FfE (MEK,
PROD2), FEf& (CCO OH), 7k h7 /7t K (CCHO), DA (RCO OH), 7%k
k> (ACET), 7= /—/v (PHEN), ¥M (HCOOH), ZOfh7 /7t ¥ (RCHO), 7
VA4 ®H$— (GLY), AFNVTVAFH—1 (MGLY), 7 EF/L (BACL), 7 LY —)L
(CRES), A&7 VT & R (BALD), A ¥ 27 vl A (MACR), AF/NVE=/L/ kv
(MVK), Z O AfaFi7 /L5 v K¥E (IPROD), —F L > (ETHENE), A Y 7L
(ISOPRENE), € /7 /X (TRP1), X7 7 ¢ ¥ 5 f (ALKI~ALKS), X> €
(BENZENE), & Ot 5 #F %48 2 i (AROINBZ, ARO2), 4L 7 ¢ > ¥4 2 # (OLE1, OLE2),
T AXT L (SESQ) OAFF33FEL 72> TS,

T Y UIEEREIZIE, CMAQ /N— = > 4.7 TiBJI S 17 Fifth-generation modal CMAQ
aerosol model (AEROS5) #f{#H L7z, AERO5 Ti%, Edneyetal. (2007) 3 XU Carlton et al.
(2008) IZHEVY, SOA DAERGBREALBINTEY, 1 VT Ly, BEAFT LRy, X
Yo, VAR —L, AFNLT Y AFH— S Ok FARINEIN STV S, il
W 31 D HER FHEHH B O R, HNOs & NaCl OGS E1EL U & 5 sy o H
A & coarse & — R OGS DB (Kelly et al., 2010), N,Os DR R IZF 1T 5 AH)
— DO B (Davis et al., 2008) i1 T\ 5,
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34 HEHET—#

CMAQ |Z1Z, SO,, NOy, CO, NH;, PM10, PM2.5, VOC OHEH &% 5- % 7=, NOx, PM2.5,
VOC IZOWTIE, MRS L7ZH D% CMAQ ICA ST A MENH 5D, AHFZETIE, KAk
= oo | 8 5 - R F I B % ( JCAP: Japan Clean Air Program )

(http://www.pecj.or.jp/japanese/jcap/index_j.asp) (Z331F DR, HARIZE T 2853 B D
VOC LT — % (BREEEHAI v % —,2003), SMOKE (ZH) 54T —4, VOC + PM
DR~ v 77 I SPECIATE (http://www.epa.gov/ttnchiel/software/speciate/index.html) 73
Ex b LI LR (2005) (2 K DB A 25 & LT, Fig. 3.2 [IZARMIIEICE T 5 NOx,
PM2.5, VOC D#FABIFAR 2 B &I CT/RT, NOx I, EiC—M(bEHE (NO) & L THEHE
I, BRD OREFIIZ@EESE (NOy & LTHH SIS, CMAQ N— = > 4.7 TliE, PM
RIECHRIIZIB T 2 AR —IG72 Y, #iHEE (HONO) ([ZBT 2SN R STV D,
Z DT OBEFAIIT OV TIE, Sarwar et al. (2008) 29V, NO, NO,, HONO DOHEH bk
FhFIEI 90, 9.2, 0.8%& L7=, PM2.5 2O\ T, BSEERLSY (PNO3), Fil2Rk4y (PSO4),
ISy (PEC), AHEIKFEMSy (POC), £ Ofth (PMFINE) & L CHEiS %, VOC
{22\ TIE, SAPRC-99 A& — A& E 5 30 FIZ/HHE L7z, AR VOoC & LT, i
ATVl BEOA YT L=y ELRDLTARVENPEH SN S, CMAQ /N—
CaAT T, TANRVEE LT, A YT L=y R2OMBIRDE S TN,
ATV ra=y k3 ONLRHIEAXRTARUBEBMISN TS, EAFT U0,
AT VLRE ) TR LRI E <, 2 2 WHEBK T OARICHEETH
% (Atkinson and Arey, 2003), AHFZETIL, &I (2005) 2314 VS L2« E T LA
DOREAEIR VOC JEH O TT ARUBAICHHE L TWeiHind, BEXAXRT A0 b LT,

A A Z 31T D Nl s L OMWHAE R VOC HEH&I21E, EAGrid2000-JAPAN %
7=, EAGrid2000-JAPAN (X, FEHEAEZ 2000 4F & L, ARBIEB KX OVEH - KHBIC 24 B
EENBIE S, AAREEZGIHERERIE A » 2D 3 RA v a, ThbbigkE 307 x
FRFE 45" (59 1km x 1km) Z &I SN72T — % TH D, FAEFRIL, KRB AR L
U CHRERT, BIEWEEH, TOMo 3 SISOV THEHEE 24 3 @, /INREREER A&
PR & UC/NEBDREE, /NEUBEESEMBER), BPhEE o 3 #0FY, BEMRAERLE L CHEH (B
KB, VOC 2%, Z A% « 7 L —FEEFE), finfin, mizeek, 7o — FEEHE (K - pEE -
FLEI) O 4T, VOC Z3838AEJR & L-Cds, Fll, BREHZR, oo 4 5, NH;
AP E LTRE, Ny b, ZOMo 35, AR VOC AL LTA VY 7Ly,
E TRy, EOMOD 3 EFINT TS, Fig. 3.3 12 EAGrid2000-JAPAN (Z351F 5 4
HHBREE D A 28 2 BT T A HERT/RT, CO & NOx IZ DWW T, AFICHEHO 2 —
b R A S — NEIG O LSRR D72 OBBEEIINC X 0 JEHES ML T\ 5, SO, 133
EAE S i b/ S, NH 12OV THE, FBED D ERBICHELRIE LAY FHE0 5 ok
N K > CHEHEZSEIN L, FEAB ) 5 H R E VN, PMI0 2OV TIE, KEITIEMIN
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Fig. 3.2 Speciation of (a) NOy, (b) PM2.5 and (c) VOC emissions.
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HERDBFREX I L > THRHHEHEIM L TV D, VOC IZ2oWTIE, EFICKIE LA & A&
HEINZ X o TREA IR & 2858 AW b OFFH | L T D,

AARTIE, BEE D OHHH S 2 ERB MW L ORI E O R E I 1T 2 /&
OHPEFIZBT 2 Rl E L (HEH NOx « PM ) ITRER SN D HRHIXIRIC L - T 2000
FLIRE S BEE ) b OHEH BN LT %, Table 3.2 IZ SRl T o BB EET 2 JERIC
BT 5 SO, NOx, CO, FAZ iRtk (NMHC: Non-Methane hydrocarbons; NMVOC &
FFE & LT D), HilEhi - 1Kk¥’E (SPM: Suspended Particulate Matter) D4 2 FE 2 7R,
AMFFETIX, BEVED D OPFH B 2 M9 5 72912, Table 3.2 (I8 LI AR FEEJRE D
2000 47> B DY %% EAGrid2000-JAPAN IZ 51T 25 BB # H OFFHH I U CTHiE L 7=,

HALSNOT 27 OREEIZ IS T 2 NEJFRD SO,, NOx, CO, VOC F LT PM OHEH &
\Z1%, Zhang et al. (2009) |Z > T Intercontinental Chemical Transport Experiment-Phase B

(INTEX-B) (http://www-air.larc.nasa.gov/missions/intex-b/intexb.html) 7= 8|2 H1E S 7= HE
7 — & & At L7z, INTEX-B HEHi 7 — 2 1%, JEUEGEZ 2006 4 & L, ARG 0.5° x 0.5°
THEff ST\ D, BAEBIIFEEDT, X, FE, BEIZFEARD 4 59 L7 >THY, NOx,

Table 3.2 Annual mean pollutant concentrations observed at the roadside monitoring stations in Hyogo

2000 2001 2002 2003 2004 2005

SO, (ppb) 63 67 49 41 43 36
NOx (ppb) 78 77 74 72 68 63
CO (ppm) 079 074 071 065 060 0.57

NMHC (ppmC) 027 024 022 023 023 021
SPM (ugm™) 40 38 35 34 33 34
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Fig. 3.4 Ratios of monthly emission rate against mean emission rate from residential sector in China.
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Fig. 3.5 Ratios of monthly NH; emission rate against mean emission rate in China.

PM2.5, VOC DA EIZIE, ZHFH Fig. 3.2 1T LT238EAT, © O RBEIREE, /MR
FEREE, BEVHEEPIOME A Ao, ERFESMICHOWTIE, TEOE N FEH LB D HE
EINTWD, FEOFEDHTIX, AFICBWTREODOREEEHINC LV g &
AL T\ (Fig. 3.4),
AARLSN DT 2T OFEEIZI 1T % NH; HEHH&(T1X Regional Emission inventory in ASia
(REAS) (Ohara et al., 2007) @ 2004 33 X O 2005 4F FHIfEZ V72, NHyBEH =X, BA
ZRITDPEHE L FRICEHEBNIEFICRENEB 2 bR D, BEHENFHCIZ O HIEIC
xF LTI, Streetsetal. (2003) (2 X > TEEHELHNHETE SN TEHY (Fig. 3.5), AWFIETIX
Z DZEHIAE % REAS (23 L7z,
A ARLAMZ 31 DAEA IR VOC HEH & I21%, EAGrid2000 (Murano, 2006) 33 & OY Guenther
(1995) Z A 7=, EAGrid2000 3 & O% Guenther (1995) 1%, THENHT P 7B L 04
BARISIC, WAERRA Y Ly, B2 TARY, FOM VOC IZHOWTEHIAE N EE S
I, ACERRBIE 0.5° x 0.5°F KON 1° x 1°TEfF ST\ %, Fig. 3.6 IR VOC Bk
SREE D H AL A ARSI KT D HeR TR, MEARETR VOC OHFH EITKIR A O R4
DOEENNZAENHEINT 5 A%, Guenther (1995) TIXEVF U E £ 5728, EAGrid2000 (2
%&T%%%@ﬁ¢é<&ofmé
T TN T B NS A~ RARBERIR OHEH EITIE, Streets etal. (2003) &\, B¢
Tén%iVX%m#%Eéthw TR S I OB & N 38l & 7e o C
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Fig. 3.6 Ratios of monthly biogenic VOC emission rate against mean emission rate.
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Fig. 3.7 Ratios of monthly CO emission rate against mean emission rate from biomass burning in Asia.

WD, FEIEENOWTL, T YTEE 5O, ZAENUTHOWT CO HEHHED A 2L
PHEE STV (Fig.3.7), AWIETIE, ZOAZ(LEMOWEICHER LT,

Wang et al. (2008) (%, International Comprehensive Ocean-Atmosphere Data Set (ICOADS)
(http://icoads.noaa.gov/) 33 & T8 Automated Mutual-Assistance Vessel Rescue System (AMVER)
(http://www.amver.com/) (2 X 2 [EEEMUEMAIONET — % &= 1 & 12, 2RO 0.1° x 0.1°D

ARPFEFITRE LT, RERMAEEE EICKT T 288100 6 OMfaEEN E O R A2 £ Ship

Emissions Allocation Factor (SEAF) & 3 iE L 7=, AHFFETIX, EESMARD b OPEH E1X, Corbett

and Koehler (2003;2004) (= & 0 #EE S 7z 2EkPEHi &4, SEAF 2 MV T 0.1° x 0.1°DF -+
WZHEID Y TTHEH L,

ZE TR T —Z G EN TV na v 7 72 SICBIT 5 ANARJEE KO A

I~ X%bﬁi{ﬁ? BEH #IZ 13, Arctic Research of the Composition of the Troposphere from Aircraft

and Satellites (ARCTAS) (http://www.espo.nasa.gov/arctas/) D7 DIZHBE I N7 — %

(http://mic.greenresource.cn/arctas_premission) % FV 72, ARCTAS #EH7 —# 1%, INTEX-B

PR T — 2 72 EOER O KEE b BB OP T — & 2 fllHa bR b DT, KEHE
FE1ex IPTEfFS TV

KILEPRO SO, PEH FE121X, Andres and Kasgnoc (1998) 3 L ORARITIZ L 5 = F D SO,
PEHEOBIME  (http://www.seisvol.kishou.go.jp/tokyo/320 Miyakejima/320 So2emission.htm)
Zf# ] L7=, Andres and Kasgnoc (1998) 1%, 25 AfIfk#HHIIZ SO, ZHEH L T2 kilico
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Fig. 3.8 Monthly SO, emission from Miyakejima.

WO SO, PR RAHEE L THY, HADKIITIE, 5, FEEMIEE, &Ml —JH
, JudE i, ZAUE, BTRERL, AERILAEENRTWD, ZFEEOBEILIIE 2000 4O A%,
REIT SO, ZHEH LT TV 5, Fig 3.8 IC=EBICBITABHINEA b LIC L, FHHEHIRH
BT D AR SO e EZ/RT, ZEENSD 2004 £ 4 H05 2005 43 HETO 1 4£[{]
D SO HEH BT 1.9 Tg TH Y, ZHUTHARICEIT 2 ABEFEHHEOR 215 Th 5,

(mol s km™)

0.1000
0.0700
0.0400
0.0200
0.0100
0.0070
0.0040
0.0020
0.0010
0.0007

(mol s™ km?)

0.0200
0.0100
0.0070
0.0040
0.0020
0.0010
0.0007
0.0004
0.0002
0.0001

Fig. 3.9 Spatial distributions of annual mean pollutant emission rates for EB.
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Fig. 3.9 (continued).
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Fig. 3.10 Monthly mean pollutant emission rates in D1 for EB and EJ

CMAQ 12X 2 KRRE THNE, BBEHRIC L HEEBLZFMT 572012, L EoOPkHEE 2
TEELTEARP 7 —2 (EB) & AARUSOEEIZIK T 2 NARFEPEH 22 L & Lcdk
o —2A (BJ) TiT-72, Fig. 3.9 {2 CMAQ DFHEME 1 I2hLsy L7 HEH & D EB IZ51F 54
SEIE D22 434, Fig. 3.10 (2 EB B8 X NEJ @ D1 ICEBIT 2 EWE OHEHSRE D H (b &R
T, VOC X, M7 T BHET T2 COMAERFIEH &R Z W=, EB & EJ ®
ZETILERH/ N S W, OB OWTIE, BARLSNOREIZ I T D A& EIRPEH 23 K 5
O TEY, EB & ElDENRHHRDRELLoTND,
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FHA4E IB/RIUETHIRER

4.1 RBTFHRER
411 #HEKSETH

WRF (2 L 2 MIEAEORSE T HGER & OLEIZIE, DA NOKIEEE 16 #im (FH, -
¥, RBE, SN, B, EES, nURS, AR, MERK, mhE, KBk, AR, FnEkl, BER, &
A, Tﬁ%) BT OBRMEZ W -, BHRMEIE, RiRd JONREE T E 2 m, JRGEISH |
10 m OFFRZ AT,

TS EE OFEMICIL, #EHEEE & L CTHEBIRE (R) (F(4.1)), Mean Bias Error (MBE)
(#(4.2)), Mean Absolute Error (MAE) (:(4.3)), Root Mean Square Error (RMSE) (H((4.4)),
Index of Agreement (1A) (F(4.5)) ZH 7=,

R=— = - (4.1)
(Bl w300l
MBE=M -0 (4.2)
MAE = Li]M,. -0, (4.3)
N3
RMSE = {%i(M =0, )2}2 (4.4)
Z(Mz - 01 )2
IA=1- = (4.5)

ZIT, M BEXOOREEE L BAMED TE, ML 0,135 5 B « B 103
T HEHEME S BREE, N XY TH S, TA 1E Willmott (1981) 12XV BRI NI-HE
BT, 006 1DEEZEY, 1ITEWIEEFHEME L BIEDOEN/ NSV EZ2R LTS,
Emery et al. (2001) X, K[RET M LD TRIKEFAGTO /I MBE, MAE, RMSE, 1A
IZONWTARUFv—7 ZFHELTEY, [RIRIZOWTIE MBE <+0.5 °C, MAE <2 °C, 1A > 0.8,
MBEICOWTIEMBE<+1 gkg ', MAE<2 gkg ', IA> 0.6, K (Z >V TlE MBE<+0.5ms ',
RMSE<2ms ', 1A>0.6 L 72> T\\5%,
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Fig. 4.1 12 D4 NOKKREZBICBITAKIE, B, B, BAKEDHB#EICHOWT, #
HIfE & WRF FH5EEO LB & HAR X T3, F£72, Table 4.1 12 D4 NOXRGEEICBIT DK
I, W, JEGE, EUEHVE - rAbRsy, BOKEIZOWT, BIHIEE KO WRF FHEE O R
BF L OHERME Z 7R3, ARiwSCTiE, HZ1E 2004 45 4, 5 A3 L 0V2005 453 H, EZ03 2004
Fo AL 8 H, BEFEIL 200449 Hnb 11 H, AFT 2004 4 12 A5 200542 H &9
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—HLTEY, ETFHEZRSBITETWD, FHEIZHOWTIE, FMzEL T

FEELRE R O A P ED R

AR EFE CEKREEE & 72 > T %, Table 4.1 TIIEA KRG E B OB OMEIT R L TV
R, ERHTANEDS > TV D RIKTIE, A T 2.6 ms”, FET27ms! & B
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Fig. 4.1 Scatter plots of the observed versus WRF-predicted monthly meteorological variables at the

meteorological observatories in D4 from April 2004 to March 2005. 2:1, 1:2 and 1:1 reference

lines are provided.
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Table 4.1 Observed and WRF-predicted seasonal and annual mean meteorological variables at the

meteorological observatories in D4

Spring Summer Fall Winter  Annual
Mean temperature (°C) Obs. 14.1 26.2 18.8 6.2 16.4
WRF 13.5 25.5 19.1 6.4 16.2
Mean humidity (g kg"") Obs. 6.9 14.9 10.2 4.1 9.0
WRF 6.9 14.8 10.4 4.4 9.1
Mean wind speed (m s™) Obs. 2.9 2.8 2.6 2.9 2.8
WRF 39 3.7 3.8 42 39
Mean wind U-component (ms™)  Obs. 0.5 -0.2 0.1 1.1 0.4
WRF 1.2 -0.4 0.0 1.9 0.7
Mean wind V-component (ms™) ~ Obs. -0.1 0.2 -0.4 -0.7 -0.3
WRF 0.2 0.7 -0.8 -1.0 -0.2
Mean Precipitation (mm) Obs. 435 558 798 344 2135
WRF 482 282 690 439 1893

B EHAANEHOBAOMEE (80cm) IRYTHDHEEZLND, LnL, &
ThHLERTIE, FFEHRGEABIT 1.5ms", FET3.6ms' L EHTEEIC X 2B KEH
OEE NS T, ZAUE, KT A X0 3km THDHTZOHENEEE LD L5
720 I ORRIC L 2 B ORI SN WD 7ed B2 b, £, HARD
PEtsk C I ARk e 23 K2 He & 56D 5 23, WRF (281T 2 HHIFI H 2SR AR 0 354 O HLEF: (50
cm) 23 HARDERFMRICHKT 2 E LTINS <, BEEIC T 2 MR AT o B A SRR
(I KFH S AV TV D ATREMEDS B 5. BLIEIC DWW T, [BEE BT MBIZI T 50
HATICRRE STV D e N TIEEY DR EZ T4 <, Bl OBIIED KR B E0
OFLHREGEL Y /N EL o TV DR S H D, A OWTIE, BRIET V7
KEF 260D DR, BFRITIIREEGREDOREEICL DM RF Y OB, AFTT
HARWEDN D 0L D OFHESZNENEB L TEY, ﬁﬂ FHAR TR A —F L
T, BAKEIZOWTE, SEFEMICIIERAMBKEEZBRTE TV, 8 HBXU9
Ak wf%_t$ﬁﬂ“umﬂﬁéhfwtoD4®m$%%#4xi3mnf%b,
CMAQ TIFAK A TV A AN 8 km KOG AT 77U v AT — IV OXHRED RN E
JESNRN o, AR TIE D4 I iﬁ%x#~A%%w1w@wo::?d%bfwﬁw
23, DAICFEEAF—2 2 AW THEICIE 8 AB L9 ATk T 5 BEKEDE/INGHM L 5
nigimnoioizd, Zo umﬂﬁiﬁmé®$ K 2BEROBFBERMENAR 4 TH L7214k
CTWbEEX NS, BEUER EO-DIiE, BAGRRIZEE BRI 2 ZMp iR 2
F—LZOWNWTHRATHLERDH D,

Table 4.2 IZ D4 NOXRLEEEHICBIT D&, WA, JEM, BEEEE - mibmlkolic 20T,
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Table 4.2 Statistical measures for hourly WRF predictions at the meteorological observatories in D4

Spring Summer Fall Winter  Annual
Temperature Sample number 35294 35272 34815 34442 139823
R 0.95 0.87 0.95 0.86 0.97
MBE (°C) 0.6 -0.7 0.3 0.2 0.2
MAE (°C) 1.6 1.7 1.5 1.7 1.6
IA 0.97 0.92 0.97 0.93 0.99
Humidity Sample number 35327 35271 34813 34559 139970
R 0.94 0.87 0.94 0.86 0.97
MBE (g kg'™") 0.0 -0.1 0.1 0.3 0.1
MAE (g kg") 0.8 1.2 0.9 0.6 0.9
1A 0.97 0.93 0.97 0.91 0.98
Wind speed Sample number 34993 35051 34526 34298 138868
R 0.54 0.62 0.59 0.57 0.58
MBE (ms™) 1.1 0.9 13 1.3 1.1
RMSE (ms™) 2.5 2.5 2.6 2.6 2.5
IA 0.69 0.73 0.70 0.68 0.70
Wind U-component  Sample number 34993 35051 34526 34298 138868
R 0.61 0.66 0.59 0.62 0.64
MBE (ms™) 0.7 -0.2 0.0 0.8 0.3
RMSE (ms™) 2.6 2.4 2.4 2.8 2.5
IA 0.75 0.79 0.74 0.74 0.77
Wind V-component  Sample number 34993 35051 34526 34298 138868
R 0.64 0.67 0.64 0.57 0.64
MBE (ms™) 0.4 0.5 -0.4 -0.3 0.0
RMSE (ms™) 2.6 2.6 2.8 2.5 2.6
1A 0.78 0.79 0.76 0.73 0.78

WRF (2 & 2 1 ReEE O TR EE R 4 2651 3 L OMER Cd, RQUIRICOWTIE, MBE (%
KE - £Z [, MAE BX VA IZHOWTIERHEBAM 4K % 8 L T Emery et al. (2001)

2k DR F~v—7 Zilil- LTV 5, BEIZOWTIEL, MBE, MAE, 1A ® =IHH & &35
WK EZ B L TRy F~v—r 2 LT0W5, 77, KIEEIBEITHERELEL, B
il L SR OEBOER AR —H L TWDLZ LEERLTWD, ABHIZOWTIE, 3T
IR XY ICEHRE TR R & 72> TV D728, TA DR T~ — 7 (2O TIXE R
BRZBL TR LTWDH DD, MBE ICOWTIZEZEDOATH Y, RMSE (ZOWTIEE
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BB EREZEL TR F=—7 2 L TRy, £, KBS L EE T
IIHEFHEIRIC L DRHIlAE L Ze > TV D,
BEFERFZEIC BV T IA Z W TRRET VO THIKEE %2 354 L 761 & L C, Gilliam et al.
(2006) 1%, 2001 EDOT A Y A HE A X G L Uiz MMS IC X 5 THIFERZFHMM L TR0, 1A
XA T 0.9, EUEHT0.5~07 FEE L 72> TW5, Leeetal. (2007) 1%, 2001 45 8 f 24~27
H OREEF I ORFEEXNG L Lo MMS 12X 5 PRI RZFHME L TE Y0, 1A IZKIRT 0.67
~0.93, AT 0.43~0.66 & 72> T\ %, Borge et al. (2008) 1%, 200542 H 19~27 HE
L6 H 18~26 HDA XY 7B a2%IT, WRF IZ K » THRUEREA 72 9 VAEHE LT
B R T TR EIT > 2R R AT L TRV, 1A TEIE T 0.8~0.9, EHE T 0.6~0.7
FREE L 72> TV, Wuetal. (2008) (%, 200248 HEB X112 HD / —A T A4 FME
XEE LT MMS IZ L5 THFERZFEM L TRV, TAIXKIETO09, WET0.7~0.8, EH
T0.6~07 ThHV, F-BEITFETO0.8~09 m s FEEBKIMESN TV, b DH
HIND, AWFRIZEIT D WRF IZ X D41 ERGOTHIE, BEEVIRICE T 21 ERE o Tl
LR EOREERDH D Z &, BIEDIRRKSRETT M K > TR S 31T 2 HER AT
OEGEA KR & RIEORE CHELT 5 Z IR TH D Z LW bnd,
D4 NOKEGHE S 16 #1231 2 F o BHfER X OFHEEIC DWW T, Fig. 4.2 IZXUHE,
EE,HE JEGEEPY - BAbEcy, BEKED 2004 4F 4 H~2005 4 3 H DO HZAk, Fig. 4.3
FEIMNOKIR, WA, JRURDOY 24 K Z b Z T, HEHOXIERL L OREIZ DN T
i,ﬁﬂm FIRENR RS —HLTRY, R THENMZEL COLE@H ¥ -2 R<
BHTETWD, [URETBENZMIC EA L TRET 2 E TOHM TIEBRAR AN D54
R <, RAHRAUE & ZAUTHE D IRDE - FEMATHR O @IE<C R B O i 7 L ORBIBIR DK
%%%mﬁﬁf%fwé&%z%hé Fio, [IRO 24 KHELIZHONTH, HEFLESF
FEHREMHE O RR0RE L, MBLAFITFHREMBEO T RORELS B> TNDHH DD, Ff
BHCRIFETETCWE, —4, @E@m%%%m_owfﬁ %ﬁ’m&é&%%@%
ki mbfk%#ﬁ@#iméw D7D, BEOZELITIHMERE D@7 & O Lz
RERAT—ILTORBIC L DEENRNE N2 D, HIFEEOREEEIC OV TIE, KR
RO AR & o L v — &#ﬁnéa%ﬁ<ﬁﬁb JEGH VG - AL Sy DB X — T
DN THEERFI L TWA R, J TIZil~ 7 X 5 IZFHR B 28 U CEHHE CRUE 2N KHE
fliZn T, 6 H21 H, 7 AKARE, EFENOKFITHIT TR LD FFICEEZE 72 5 B
E— 7 IEROEELL D ThH D, 2004 FFIXAAR~O RO EFENE R o 10 6T
b (KRIT,2005a), HZIZiX6 AZ2fE, 7 AKIC 1E, 8 AIZ3 M EREL, BKEFITIX
~10 AIZAARMTIZ 6 HOBRBEEE L, 2056 4l EELe, £7-, £FTIL12 A
THRNS 1 A2 TAROKEREN R E 72 2 & TS D OZHERD B AME) 5K
XiAL, AN KE L o TND, BEHD 24 BFEZELIZ OV TIE, [REEEDNRFITITN
FHCRE SN TWA Z X% (Fig. 3.1) Z &5, HHIZHEENKE AT Z & TR
RELRHOTNDHEBZ BN, BBAEFEFLEAFIIRELS, AFhESLLhoTnD,
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Fig. 4.2 Time series of observed and WRF-predicted daily mean meteorological variables at the

meteorological observatories in D4 from April 2004 to March 2005.
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Fig. 4.2 (continued).
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Fig. 4.3 Time series of observed and WRF-predicted seasonal mean diurnal variations of meteorological

variables at the meteorological observatories in D4 from April 2004 to March 2005.

FHEMIMIC Téu—‘k‘%l@ﬁwki X, BEZRTIE 2004 FED 6~7 H OHERNATHRIC X D FBEIA
Diginotziz, 7 ARKLEEIZ LEoTERPLTZL ENTZHDODORETITEESE TR
> TWe (KEJT, 2004b) %@ﬂﬁ@ ZHITIX, 2EMISFEAREICERTHRKENR S, FRC
KT B RO FEIC X - T B CTIXAEL T LS UL EORBERE & 72 - 72 (KET, 2004a;
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, BARAXC FPOHBIZE<HRTE TS,
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Fig. 4.4 Scatter plots of the observed versus WRF-predicted monthly meteorological variables at 925 hPa
above the aerological observatories from April 2004 to March 2005. 2:1, 1:2 and 1:1 reference

lines are provided.
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AW, AHEE, BE, MAHRE, RE, MBE) © EZ2925 hPalZi T 281HIEZ H iz,
BBRGENTEH 9 REB L O 21 B 2 [EfTHhiI TV 5,

Fig. 44 IZEERGE B O 22 925 hPa [ZRIF A 5IR, 1B, JEAEO H EHHEIZ OV T,
ﬁMﬁ&wmaﬁlmw@%ﬁﬁﬂfmﬁ:ﬂ;ﬁmw3’ﬁEx% 20 172 925 hPa

BT ORI, WA, JEEH, BEUEEF - rEALRs 0 H EEEICOWT, BUHIES LY WRF

ﬁ%mw%ﬁ%kivﬁﬁm T, RIEBLIOREICHOWTIE, HEKEDES LAk
K%ﬁ%ﬁ%ﬁ%mfﬁ%%%kﬁﬁﬁ%®ﬂ¥ﬁ1ﬂﬁ<*ﬁbf%@,Hﬁﬁik%
THRETEHLZ M E B HHETETWS, EZTIEHMEMTICHEXTERENMELS, Zhic
&w@ﬁ%ﬁ<ﬁoTWéJﬁﬁﬂomTiAh“%ﬂfaﬁﬂth%%m@ﬁT%D
MEREOFENNEL 720, MBMTICHE_RTRENKE 25, MFEAT CIXER %8
L CARRANZHE TEAFHM & 72> T 223, 122 925 hPa CIEBLIIE R & 3RS R O A
PMEIMEIR—F L T\ D, AFICOWTIE, 228 925hPali=/ <~ BNTH Y, HFERIT
BT LZEMNHIFOLEN L TV DR, BRaERAHT & FEOMm & 2eo Tk, Bl
EHETHRIERN —HLTWD

Table 4.4 |Z Fﬂﬁﬁ%mﬁw9%mm B D&, WA, EUH, JEUHAP - fEAbasy
IZ2WT, WRFIZE D 1 REHIE O TG B 2 2 %%kioﬁﬁfr# RIRE L OV
FEIZOWTIE, HIRMEOGE & RERICHBIRE S TA OfED 11TEL, FHHEIC K 53
MDENZ ERDND, Bt L OVEGERPE « LR IZ OV TR, MR AT b~ TR
DREL > TWNDHT2D, RMSE $ K& 2o T4, MEAMRE, MBE, 1A IZ2WW T
HMEMEOHA LD LHLNICRWEE 2o TS, ZD, KRIGURWE O R i
ICBWCHE L 25 EzEommaE T, #H CRSHFHRTE WD LN D,

Table 4.3 Observed and WRF-predicted seasonal and annual mean meteorological variables at 925 hPa

above the aerological observatories

Spring Summer Fall Winter  Annual
Mean temperature (°C) Obs. 9.7 20.1 14.2 3.0 11.8
WRF 8.6 19.3 14.0 32 11.3
Mean humidity (g kg"") Obs. 6.7 12.7 9.3 4.7 8.4
WRF 6.7 12.7 9.8 5.1 8.6
Mean wind speed (m s™) Obs. 8.8 7.6 8.7 9.6 8.6
WRF 9.1 7.9 9.3 9.8 9.0
Mean wind U-component (ms™)  Obs. 32 0.6 -0.4 3.5 1.7
WRF 32 0.3 -0.6 3.7 1.6
Mean wind V-component (ms™)  Obs. 1.1 2.0 -0.1 -2.5 0.1

WRF 0.9 1.9 -0.8 -2.6 -0.2
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Table 4.4 Statistical measures for hourly WRF predictions at 925 hPa above the aerological observatories

Spring Summer Fall Winter  Annual
Temperature Sample number 3668 3676 3638 3598 14580
R 0.97 0.93 0.98 0.99 0.99
MBE (°C) -1.0 -0.7 -0.2 0.2 -0.5
MAE (°C) 1.6 1.2 1.0 1.1 1.2
IA 0.98 0.96 0.99 0.99 0.99
Humidity Sample number 3664 3675 3637 3598 14574
R 0.94 0.86 0.94 0.96 0.95
MBE (g kg 0.0 -0.1 0.5 0.4 0.2
MAE (g kg") 1.0 1.4 1.2 0.7 1.1
1A 0.97 0.93 0.96 0.97 0.98
Wind speed Sample number 3655 3652 3631 3588 14526
R 0.78 0.85 0.84 0.78 0.82
MBE (ms™) 0.3 0.4 0.7 0.2 0.4
RMSE (ms™) 33 3.0 32 32 32
1A 0.88 0.92 0.91 0.88 0.90
Wind U-component  Sample number 3655 3652 3631 3588 14526
R 0.88 0.91 0.91 0.90 0.90
MBE (ms™) 0.0 -0.3 -0.2 0.2 -0.1
RMSE (ms™) 3.5 3.0 33 35 33
1A 0.93 0.95 0.95 0.95 0.95
Wind V-component  Sample number 3655 3652 3631 3588 14526
R 0.87 0.87 0.89 0.85 0.88
MBE (ms™) 0.2 0.2 -0.7 -0.1 0.3
RMSE (ms™) 35 3.1 3.5 3.5 34
1A 0.93 0.93 0.94 0.92 0.93

Fig. 4.5 IC HALEDOEELARE E 20 #1500 122 925 hPa (23T 5 O BHMER L OF
BAEIZOWT, &R, WA, BUE, EUEERR - e o 2004 44 H~2005 43 ADHZ
bZ&7d, BEHORIEL L BEIZOWTIE, HEMEOBE & FEEICBIRNE & 55
MEL—HLTHEY, HETHEHBZEL TCOLEH XY — 2B FHTE TS, H
O R EGEICOW T, #IRMAEOLA XY bEEd e — 7 oS, EUS R - mHAk
ROy DEE Y — B HBEL WS, KR, WE, EUROQMR A E, HEMT
& ARRICIR AR SUECHTRE, BREOBEImIZ L > TAETTWD,
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Fig. 4.5 Time series of observed and WRF-predicted daily mean meteorological variables at 925 hPa

above the aerological observatories from April 2004 to March 2005.
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413 ANHELUICBITFAEDOTH

RF IZ X 2Z O THREEFHGIZIX, NHE BT 2FRET — & 2 iz, SHE LTI
PRAREBOFE S 800 m s (AbfiE 34.757 B, FFE 135.229 ) (T8 2 Sud N7 S F L B 2R PR
T X —HHINIZ B W TEORENTHOITE T (Aikawa et al., 2001; 2005; 2006; 2007)
AISNZEEIZT 7 IR A 7 U — 0 % 2 BHCR > Bk HEREERE (R TR
Thd, EETIE, BV —DREZEMTHL7 7 o3 BELT, BAROEREZRST
HAMA L 725 TS, WEI SNTZERICTEENDENT 7 v SIS, o7
Uy 7R M8 N D, BTV TR ML, BANRU N, HHWEFEK60ml T LI
%@%mmﬂbﬁbéo%mﬁyfw@%ﬁm,Eﬁkiﬁﬁﬁﬁﬂ%ﬁnt/&—mk
WTAITbiL, BNk 5% KE (LWC: Liquid Water Content of fog) (gm?) 1%, 77~

DY ﬁ%3ﬁnmmkz&®x7) — UK DFEOMENFE 80 %L L, FKRER
LAEE OBBIR 2 HHEE LTz, FHREMEICOWTIE, HRICHETLE 1| Bl 2E%,
%k&ﬁbf“é

FOREDHEIZIX, Stoelinga and Warner (1999) 35 1 O Kunkel (1984) (2 L 5 7 HBLEE
®K$ﬁ&@%mﬁ%ﬁwﬁo

%5::—1000x15gl9z) (4.6)

L. =1447LWC"™ 4.7)

T2 C oy FACERER (m), B [TEDREREE TH D, AL TIE, EXTRFEHEEED 1000
m AT & R DTEAKREN 0017 ¢ m° LU EOSAITENRE LI &AL, BRAKERL IO

TR THZARBEZEH Uz, £, ACTEEIRA 200 m Kili & 72 5 FAKED 0.10 gm ™ LA
oG GEERREE L,

Fig. 4.6 [ZNH LOFBRERSICEB TS 1 HY 720 OFRAERFICOWT, BHMES L O
FHRAE D 2004 4F 4 H ~2005 4= 3 H O RINE AR, AR NI 2 FOFRARMIX
AT 1 A& 2 HIZIEKREHE, & Oftio A0S0/ Nl & 7e > TV D23, %%%
L THERERTETWD, FZFORAMMIL, D4 2ERTEENELS o TV IHIM L —
FLTEY (Fig. 42b), RAECRHR EIET 2RI, KEEDLE~OBRS LHEI
LoTERREL VD EEZLND,

Fig. 4.7 (AR LOFERERSIZIT D RHEIE TOBER AL & TR AR O FK &
[ZOWT, BUANETS & OFHEAL D 2004 45 4 H~2005 453 H O HRfE%Z, #KE0.017gm”
L EDFEE, FAKE010 g m” L EDOEBEDBEITOVTRT, BAEIZOWVWTIE4~6 A
(CEHE TR, FRAMEEICOVTIE 1~2 HICHE TEH L /2> TV D, %,
BEOHAE LY, A boEMZFHFE CHRAHEBE TE WD, FEMEICOVTE, #
KE0.017 gm” UL EDFETIE, FAMEITFHET16.9 %, BT I18.8 %, THFEKEITH
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HT021gm?, BITO015gm > &80, FAKE010gm UL EOEETIE, FeAMEILE
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v, HEEIBEIFEZTIES —H LTV,
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Fig. 4.6 Time series of observed and WRF-predicted daily fog duration at the Mt. Rokko fog sampling
site from April 2004 to March 2005.
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Fig. 4.7 Observed and WRF-predicted monthly fog frequency and mean liquid water content for (a) fog

with liquid water content > 0.017 g m™ and (b) dense fog with liquid water content > 0.10 g m”

at the Mt. Rokko fog sampling site from April 2004 to March 2005.
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42 RIJUETHFER

4.2.1 O; - NOx * SO, - PM10 EEETFHI

CMAQ T & % KR&EVE T OKE EFEAMICIE, Fig. 3.1 12 LTz, SH NI T B FEEREM A,
BRERICK DMIERE T =2 U /S 30 M (RIS, ALME, YEa0m, mEreim, g,
B, RBACR, B, SR, DR, PRI, SR, BRETIR, \J7RAR, §tA B,
Rt mCEBNIE, Jewdr, Wi, [Ris, s, BEE, REIR, SRR, R, HE, K
SE, 20O, BAE, AF), KEFHROKRKIGIERESR O 9 5 PM AR O RIE
bATONT- KB BREER @t v 2 — (ORI, HWRRERE#EARE 2 — (KR (2
BT HBHIEE AV, CMAQ DRHEMIX, &2 TOHHEEZEB L EB & HALUSAD A
HEEH N ESPr L L BN ICOWCE 1 BloB T A5 47T,

F7°, BEHERIC X 2BIRE RO | RefEZ VT, O3 * NOx * SO, * PMI0 JREED T
RS BE 2 34T L 7o, BBDRIEREIC K 280X, R, AR, sEmmeu, /NG, Ve,
N RAR, BERilR, JFRAR, FE R, R, FEw, RE, WU, KBk, KT
I% 03 * NOx * SO, - PM10 (KB, HABKTIiE SPM), X OO TIiX 05+ SO,, B, i, 5~
W, B, Kb, RUER\IE, BfEE, HUE/NES, BT Ol oW T Thiviz, i
OEMIHTIZ-DU T, Table 4.5 [ZEHIME R L OVCMAQ FHERE D ZHiBIE L OHERE %, Table
4.6 IZ CMAQ (2 & % 1 IR [HME O TR EE SR Al 2 2= 3 L OMER T/Rd, 05122V T,

Table 4.5 Observed and CMAQ-predicted seasonal and annual mean O3, NOx, SO, and PM10

concentrations at the monitoring site with automatic monitoring system

Spring Summer  Fall Winter Annual
Os (ppb) Obs. 47.1 329 32.9 33.7 36.7
EB 48.0 43.1 40.0 35.7 41.8
EJ 36.6 31.2 33.7 352 34.1
NOx (ppb) Obs. 11.2 8.3 11.8 14.1 11.3
EB 10.9 7.3 10.5 16.9 11.4
EJ 11.7 7.6 11.3 16.4 11.7
SO, (ppb) Obs. 2.3 2.0 1.8 1.6 1.9
EB 1.8 1.5 1.2 1.0 1.4
EJ 1.4 1.4 1.1 0.9 1.2
PM10 (ug m™) Obs. 29.9 234 233 20.0 24.2
EB 15.0 13.5 11.9 8.7 12.3
EJ 8.6 10.2 8.6 6.7 8.5
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Table 4.6 Statistical measures for hourly CMAQ predictions of O3, NOy, SO, and PM10

Spring Summer Fall Winter  Annual
0; Sample number 45834 45501 45754 42440 179529
EB R 0.59 0.64 0.65 0.66 0.64
MBE (ppb) 0.9 10.2 72 2.0 5.1
MAE (ppb) 12.7 16.1 11.8 9.1 125
IA 0.76 0.75 0.77 0.80 0.78
EJ R 0.56 0.61 0.62 0.66 0.60
MBE (ppb) -10.5 -1.7 0.9 1.5 2.5
MAE (ppb) 15.4 13.1 103 8.7 12.0
IA 0.67 0.76 0.78 0.81 0.75
NOx Sample number 22278 22429 22221 21815 88743
EB R 0.78 0.75 0.74 0.71 0.73
MBE (ppb) 0.3 -1.0 -1.3 2.7 0.0
MAE (ppb) 6.1 4.6 6.6 10.2 6.8
1A 0.87 0.85 0.85 0.82 0.84
EJ R 0.76 0.74 0.74 0.73 0.74
MBE (ppb) 0.5 0.7 -0.5 2.3 0.4
MAE (ppb) 6.6 47 7.0 10.0 7.0
IA 0.86 0.85 0.85 0.84 0.85
SO, Sample number 20427 16832 18422 20835 76516
EB R 0.45 0.44 0.51 0.53 0.47
MBE (ppb) 0.5 0.5 0.6 -0.6 0.5
MAE (ppb) 1.7 1.5 12 1.1 1.4
IA 0.64 0.64 0.67 0.69 0.65
EJ R 0.40 0.39 0.49 0.51 0.43
MBE (ppb) 0.8 0.6 -0.7 0.8 0.7
MAE (ppb) 1.8 1.5 1.3 1.1 1.4
IA 0.59 0.60 0.65 0.67 0.62
PM10 Sample number 24418 23581 22878 23065 93942
EB R 0.50 0.41 0.48 0.49 0.49
MBE (ug m™) -14.9 9.9 -11.4 -11.3 -11.9
MAE (ug m™) 17.1 13.3 13.2 12.6 14.1
1A 0.60 0.57 0.58 0.56 0.59
EJ R 0.31 0.27 0.35 0.41 0.32
MBE (ug m™) 213 -13.2 -14.7 -13.3 -15.7
MAE (ug m™) 22.1 15.4 15.7 14.1 16.9
IA 0.47 0.49 0.50 0.51 0.48
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FEFIZIE, EB O ET X0 L EHIE mﬁfﬁm:m< EJ Tl & 2/ gl & 72 > T
W78, HAREOWREZ THT 572 DT ROE B EBT HINENH D Z &N
D, BB IUOMEFEICIE, EB THK .:Hﬂﬁé:focofk D, FHECEUREIGY O AR E K
FHli S TWD, D72, EB 52 EJ L0 HAHBREICOWTIEROem B L7223, 1A
DNWTIEA E L TW2RY, AT, [URMES BRE LD 2RV b FERIG A TIC
<<, MBI /INEV, NOx IZOWTIE, EB & EJ TIEEOHEBMICKE 22751
R, B, B KEIZIE, EB OB EI LV HIBEMELS o TR, BEEHLROK
BT HSNTIE, ﬂﬁ%@%m ZED NOXIRED LA LV b, KENSOBIRSH TE
03 IZ L » THAR THH &7z NO @ NO, ~Dfgfl (ks (R2.5) MMeESh, &6
NO, 35t LC HNOs 72 EDMOWEICZENT 5 Z & (RUGR(R2.10~14)) 12 L% NOx I
EORTOIPEERREL RoTNDEBEXLND, AL, MEFEKENAETIZL
S KEED G D O3 DRIV 72N T2, KEED D D NOx DBIROFBED N KE 720, EB
DI NOx JENCRLE L oo TV D, SO IZDOWTIE, BEBEEY ORI IR N
K& L, MOFEEHITITEITNSNEOO EB D8 E] L0 H00BENEL o, F
7=, FHEHAR 238 L T EB 5 2800 B I @ﬁfﬁﬁma< 725 TN 5, PMI0 2OV T,
BEH GO BT RRICRE L, FHAEMMZE L CEERRLN, EB OFM B LY b#E
HMEOFHEEXm L Tnwb, LavL, EBI b\f%pir;%iﬂ;ﬁf'aﬁ% LT 10 ug m™ BA_F3f/)s
FHi STV

BEAEAFZEIC BV T IA Z W T RRE T T VO FHIKEE 277 L7=%1 & LT, Sokhi et al.

(2006) (X% 200247 H 13~17 HB L8 H 14~18 HOr Y R &%% Lt L= CMAQ
DOTFHTIE, TAI1E 05 T0.69~0.70 & 72> T 5, Appel et al. (2007) 12X % 2001 4F 6~8
A7 AV aHEZx5: L Lz CMAQ O THITIX, TAIL0; T0.83 & 72> T %, Genget
al. (2007) 2 &% 2005 4 11 A 15~26 H D E#fEa %15 & L7z WRF-Chem O Pl Tix, 1A
X0, T0.58 £72 5T %, Leeetal. (2007) (2K 5 2001 48 A 24~27 H OEEFEH DR
%4 & L7z Variable grid Urban Airshed Model (UAM-V) (Systems Application International,
1999) OFHITIE, 1A X 03 T0.73~0.84 L 72> T\ 5, Tieetal. (2007) (2% 5 2003 45
HI1~11 HOA X a7 ¢ Zxt4: L L7z WRF-Chem @ T#HITIE, 1A 1% 03 T 0.40~0.90,
NOx T 0.43~0.76 £ 72> T\ 5, Yuetal. (2008) 12X % 2001 456 H 24~28 HDOA XU A
A %% L L7 CMAQ O T TIZ, TA1E 03 T0.79, NO, TO0.75 £ 72> T\ 5, Beckx
et al. (2009) (ZX % 20054 3~11 HOAZ o H &34t & L7z Air quality modeling in Urban
Regions using an Optimal Resolution Approach (AURORA) (Mensink et al., 2001) @ Tl CTiZ
IA 12 05 T 0.75, NO, T 0.64, PM10 T0.57 £72->C\ %, Borgeetal. (2010) (ZX % 2005
F2H19~27THB L6 H 18~26 HDA XU T a %4 & L7 CMAQIZ L 5 Tl Ik
IA I3 05T 0.67, NO, T0.68, PMI0 T041 L7725 TW5, ZNbLOHEND, AHFFEIZE
7% CMAQ (2 X % 05+ NOx * PMI10 IREDOTHIIZ, BEEWIEIZI T 2 Tl & FRI%ELL EOK
ERDDZ ERoND,

- 48 -



Observation EB EJ

0401 0421 0511 0531 0620 0710 0730 0819 0908 0928 1018 1107 1127 1217 0106 0126 0215 0307 0327

(b)
b

0401 0421 0511 0531 0620 0710 0730 0819 0908 0928 1018 1107 1127 1217 0106 0126 0215 0307 0327

(c)

60
ol

] |\ I\ i
1‘\\ |‘l I \ i"’ \ \1 /
1 U'v | (\ J e \, ’/'\'/_\‘h/ \‘*‘QA"A\,\:/’:‘ 5\4 ) v,“,;! A v 4 / "

NOx
(ppb)

|

61|

! |

2 ‘J‘"l'\‘ *‘WV J‘ v!u‘,’bwm“ \hwn AM ‘lu J *v\!\‘

0 } t
0401 0421 0511 0531 0620 0710 0730 0819 0908 0928 1018 1107 1127 1217 0106 0126 0215 0307 0327

(d)

S0,
(ppb)
i

/ 4‘\' ~‘f« A ,—:M.w; A\A,‘* V!

0401 0421 0511 0531 0620 0710 0730 0819 0908 0928 1018 1107 1127 1217 0106 0126 0215 0307 0327
Date (mmdd)

Fig. 4.8 Time series of observed and CMAQ-predicted daily mean concentrations of atmospheric
pollutants at the monitoring stations with automatic monitoring system from April 2004 to

March 2005.

Fig. 4.8 |2 H B ERE R & H 21T 5 ¥ D 03 - NOx * SO, * PMI0 JEE IOV T, 2004
4 H~2005 4 3 HlzBiT %ﬁrﬁumkioﬁﬁm@ HZ& L ZTRT, 031Z 2V TiE, EB D
FERITIBEFBLOAF BN TBRAEE KL< —HLTWwWd, LaL, 6 A TANL 9 HIZH
FTCOEBEKRHME SN TR Y, ZOHMBIZBWTT U7 KEEICEIT 2 0 ER N0 KaHn S i
TWDEEZBND,NOX IZOWTIE, AZRICIT HAIRIZE 1T D NOx BEH B0 #N (Fig. 3.3)
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BREWCL->TREN EFLTERY, SHETREDOFHE M EZBMRFH CETND, £AFL
ML, KENOBIRINTEZ 012Xk > T NOx OF(LAME#E SN D728, EB OJS5H EJ
L0 H NOx BENLLET LTS, SO, ICoWTIE, AR TEEEE—7 0B Z
HHT&E W5, FELSIMEEB & E] OZET/NS WA, FHEEIMZE L T EB Ol R0
RENEL 2o THEY, KNGO SO, DBIEDOHELE 2T T\ D, PMI0 IZOWTIE,
TR AT L9 ICFHR I 28 L Cl/heHli & 72 > Tnvd, 7z, IREEE) /¥ — 13 S0,
DYE &I TV A2, EB & Bl OZEIT LV KE 2> TW%, EB TlE, EJIZBWT
AoNeholemiBEY —27 OMBNFEHR TE TV ILANRE L, FHRTREN D ORLT
R ORI A 2 MRFH TE VWD LWV D, 2O LT, 412 HIBW TRz
HAZ T T <, BHRTHRT U7 Eic W T EZEo an il 2 RAFICHRETETWnWDH 2
LR L TS,

KEH D NOx & VOC OEELLRNELT 5 & O; DAL ZBILT 570 8, HIEHK
INEIEFIZEHETH D (Kley et al., 1999; Jenkin and Clemitshaw, 2000), % D7z, FEAJEN
Z R TR & I8 AR D 72 O E R TIERRBR B ORPUIR E S BZp 5> T D, #THET
THUIR A 72 RIS « BURIC K 2 28D iR & <, EFRHECILR FRBER S L 28R K
TneEILND,

Fig. 4.9 [Z& i 23 L TRIRICE T 5 03 35 L U NOx IR EE ORI 24 KfH 2 b %
Y, O3 OWNWTHE, HOHZBEIEE £ TIENOIZ LD O3 /S (BULR(R2.6~9))
DMEBAL 72 0 BN ER L, Z0%IT NO XD O3 RS (RISR(R2.5) 2VES L 72
DIBENEDT D0, BEOHBENRKE VD, NOx (IZ2OWTIE, — H o h TR
BT DRENRR AN L 7eo TNDA, ZORFFAFFIZIN T, FHE T NOx I 4 i K L
TEY, ZTh) O BEOE/NHEIC SRR - TWEEEZ NS, LavL, BHILFHET
NOx IREEN—F L T\ D EEB L OKEDS b EMIZE W TIE, FHE T O IRENE K
P STV D, ZD7®, NO IZKD O MRS HEE L, FHAR TR/l ST
HEEZ LD, HFEICE, [IRO LA HFEOINT X > T RISHED EA-L,
X512 VOC EHEMN K E W (Fig. 3.10e) Z 2B HFO O3 AERMNENT 5 & 2 6,
O; REDOHWAITFM TRORELS Lo TS, FE, EF, KBIILFHETKENSD
O; DBIMDE L RE < 72> TRV, IFTHH Sz NOx DL AMREE S LD 729, EB
DFHMBEI XV b NOxIREMET LTW\W5, FHARHIMZE L TR & EBIZBIT 5 H PO
K O;EEIZERLS —HLTEY, KT 2FHEHK KD EB IZOWTO IA X, 03
JET0.86 & FFHBMEILRIFTH D, £, NOxIREIZOWTOIAX0.68 L7e>TW 5,

Fig. 4.10 (Ziz@Hh 2 83 L CTRUIIZIS 1T 5 05 8 K OV NO i FE O Z=HiBI ) 24 BEZAE
T, BRI TIE, KRIRICHASTEFBEOFRAEREN D72 <, O ORIWE & 72 5 NOx DIRE
MIEF RN T2, M7 O3 R EIT VRN EB BN, O IREO T/ NS, &
72, BRIZH1T 2 4 Os IREEIZRIRE V b 237 0 @< e o TV DAY, MU 72 Oy A pl &
DIRNTZ, O3 IREEDY 120 ppb LA EE R0 FEAF L F 0 MEEBRAETIND LI 7
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Fig. 4.9 Seasonal mean diurnal variations of observed and CMAQ-predicted O; and NOx at Osaka monitoring

stations from April 2004 to March 2005.
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Fig. 4.10 Seasonal mean diurnal variations of observed and CMAQ-predicted O; and NOy at Oki monitoring
stations from April 2004 to March 2005.
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LAV OEREITHBE LIS WEB X bd, EFEBLUHKZEICIE, EB T O REL KX
SEAFHELTEY, ZHIEKENDO Oy 0B EZBKFHMEL TWAHZ EZ/RLTND,
AT T, FHETKENDD 0; OBHOEENKEWMLOFEIZB W TE, EB O
FHBEI LD H NOxIEEN EH L T\Wa, BRI EOEREH#CIE, 0;X° NOx 721 T <,
MOMEEEH T, RRFPBREIZEICEFNLOBMICE > TELTLEBEL NS, R
21T % GHR B 2D EB OFEFICHOWTD IA 1L, 0; T0.72, NOx T0.59 &7,
NOx (Z2WTIE, Bl SRR OREZEN R E W OIC BRI A A £ & D TRl L% 6
<Dm(EMMﬁ>@,%ﬁﬂ%ﬁ’ﬁwfﬂﬁbkﬁA;@%ﬁmm&@ofwé

BRI IZ 31T 2 bhlfl i, FHEICIR T 2 KEED D D Oy DBURIC K 2 O KM & 7R~
RLTHY, TORKLE LT O0; DR MEMExEEIC iékm$# nOKFAMAE 2 5
N5, KEEDS BAR~OBFEEE TP D 72 W2 Bl 25 72, NO & i3howy
B L DI K D O3 DIy ~ DML A 12 K D R0 b OFREDS /Nl ST
WHEEZOND, KIRIZIKIT 2 HEGERIE, FHRICET 2 NO 12X D Oy HIRSHE D
W/ Nl 2 R L TS0, KENOBIRSNTL 2 Oy 03BA LIEGE, BIEOET /LT
IIRBRIZEBNTHFO O3 IEE/NHE S D Z &7, Liein->T, BEHENRZ
B CIIEEROSIC L D O3 AR EB L UINOIC L 5 O3 THIkEN & b/ NS T 5
AR B D,

422 HA - BT - Bk EETH
Table 4.7 |Z CMAQ |Z & 2 ZHi VR E TN OWT, BN & OFHEILREL, Normalized
Mean Bias (NMB) (X(4.8)), X OGIRMEPBHIED 7 7 7 % —2 (0.5~2 %) LINIZA

S TWHEIE (F2R) %7,

NMB == -1 (4.8)

oﬂi

F 72, Fig 411 IZBREBIC L DBERET =2 U 7N, BIOKKERKKIZE T 525
I D H A« Ris- « KRR OBLANE X CMAQ FHREMED ik % 7~d, 03, NOx, SO,,
PMI10 DWTIE, 4.2.1 TR~/ & [FEECToH 5, HNO3 IZDOWTIE, EB IZBWTH 6
DI KFEAM & 72 > TV 5, Chuangetal. (2008) (X CMAQ /N— 3 L 442 K->TT7 V7
KEENSREB~OT 1Y VORRBREZ TH L, CMAQ N—Y 3 v 4.4 TNy
& HNO; D UGB BFE STV W72 D1Z, HNOs 238 KeFli X 4T 5 "lREME 2 /Rie L7,
ARFFETH A L7z CMAQ /X— 3 > 4.7 Tk HNOs [TV oy & RS L, Bk & Rk
95 NaNO; #EkT % (MUSE(R2.17)) 728, CMAQ /X— 3 44 |2H~_% & HNO; D

KREHFMPEL o> TWND, LL, AFFERIZIEN TS HNO; Tl KFEi STk Y, K
JER(R2ANC X DHHRICH T D HNO; OFRENE/ NS Tnb &2 b5, iz,
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Table 4.7 Statistical measures for CMAQ predictions of seasonal mean pollutant concentrations

R NMB F2R (%)

EB EJ EB EJ EB EJ
0; 0.71 0.68 0.13 -0.07 98 100
NOx 0.92 0.93 0.00 0.03 71 63
HNO; 0.35 0.62 1.98 0.42 23 70
NH; 0.50 0.49 -0.50  -0.50 15 15
SO, 0.74 0.72 -0.24  -0.35 70 46
PM10 0.77 0.52 -0.48  -0.64 54 17
Aerosol SO~ 0.70 0.54 -0.17  -0.58 68 20
Aerosol NO3’ 0.52 0.43 0.38 -0.38 53 43
Aerosol NH," 072  0.70 0.13 -0.55 75 38
SO4* in rain 0.05 -0.08 -0.26  -0.51 70 48
NO;" in rain 0.61 0.54 0.35 -0.34 83 60
NH," in rain 0.56 0.30 0.04 -0.57 81 34

EJ IZBWTHRRMBMAEHE & 2o TV D Z &b, KISH(R2.10~14)I2 & 5 HNO; Al &
IZOWTHEFHRE TBAGHI SV TVND LB X HiILDH, NH3 IZDOWTHE, FHE T/l & 72
STV, TOFKE LT, NH; OHEHITHAECAEMIRENC L5 b ONETH Y, PEHIFRE
DOARFEFEMEN KXV (Kannari et al., 2007) 720, JEHEOHEENRE TH L Z ENBEITF 6N
%o F77, NH3 X HNO; & K LT NHNO; 24K T2 (IS(R2.16)) 72, EB O 5 n
E] XV HIRENMELS 72> THY, HNO; O KFHE & NH; O/ NEAR O JRRNIZ 72 > T
LEZBND, KT SOMNITHOWTIE, EI TIEHLMMISE/NE & 72> THY, EB TH
R TA /N R O A TR 23 58 < oD R & SORul /N & 72 o TV DI E LR,
RO 7 7 7 % —2 OFPFHICINE > TE Y, FtHE CHEE RO EL R B TE T
WD EWNZ D, KFIRNOTIZOWT b BB R OB 2 iR < 21T TV DA%, EB Tldud KEE
fili& 72> TWDELANE L, ZIULHNO; D KFHHIC L2 D THL EBEZ BILD, BT
P NHICHOWTIE, ER 23 (NH),S04 =2 NHNO; Th 5728, NMB O ITk Ik SO~
&R TR NOy DFE RO TR B D & 72> TW D, PMI0 D EERS D 5 Bk -1k SO~ -
NO; * NH, @ EB IZ851F 5 A5t OREE L~ U X BLANE & FIEFRS TH S 720, PMI0 O/
FEAMI, BRFBRR S BHERL R 0y 7 E OO S O/ LA b O THH LEZ BN
Do FTBBMEIZOWTY, WIRIEZ G T 2 B3RS 2B AT 72 OB S 03 8 RKEEAT &
N, EBEOPMIOEELY bEL< Lo T DAL H D, BKPIREIZONTY,
EJ TIEBH S T/ NGl & 72> T % 2%, EB TIX EJ K0 HBEN EH L, F2R OfEN G
{TeoTnD, &FELT, BHAZXME T2 RKJE TRV T-IBEE OB A B
THZELEIARMRTHY, FECEEGROREZMNHEE TE TS LR D,
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Fig. 4.11 Scatter plots of the observed versus CMAQ-predicted seasonal mean concentrations of

pollutants at the acid deposition monitoring stations, and Osaka and Higashiosaka stations

from April 2004 to March 2005. 2:1, 1:2 and 1:1 reference lines are provided.
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4 H~2005 4 3 BIZ3B1T 28RS X OGHRMEO A REZ =<7, 1~2 AIIEEHE C&EKH
T EE O/ N OB 2385\, oo H CTIRIRE O A 2L o 2R EHE TE T\ 5,
NH, W2 DWW TIEETO A Tl i & 72> TV D23, K13k NH IV Tl ast 5 &
BAMEIZ L CTW5 (Fig. 4.11i) 728, Z DK E LT NH; O/ N (Fig. 4.11d)
MEZBND, AT, FHE TR SO~ - NH, TEE 2N/ N ST Y (Fig. 4.11g,
D), TAUNEKTEEOE/NHEIZE SRR - TS EEZ NS, LarL, HNO; B IO
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Fig. 4.12 Observed and CMAQ-predicted monthly (a) SO,*, (b) NO5™ and (c) NH," concentrations in

fog water at the Mt. Rokko fog sampling site from April 2004 to March 2005.

-56 -



Fa4E KBKREE T

DFABEITRN (Fig. 4.7) 72, AHUNZE W TERICENREAE L TWEBImICEICK
R OHT A < RARENE Ieo TWIEAREE b & 5, 1~2 A ZBRITIX, EB OfERITEHI
RO 77 2 —2 OFPITIFIFNE->TEY, FETHEATO SO, - NOy » NH, %
B HIRE O A L FBREOREE TCTHTE TS L0z D,

424 BEOZERSMEBRBEROEFE

Table 4.8 |2 EB 0 D4 OB 51T 2 FEHIE L OEROFHH 2 - it - Bk - gk
PR, BIOEN ST B RO EFE 2t , BEEEROEER CRup (%) 1 EB
WZBIT D ERE T M & ET TR DEFEREE My, 2B RD 1=,

CR :ﬁﬂl%ﬂxmo (4.9)
M

TAP
EB

F£ 72, Fig. 41312 CMAQ (Z X 5 2004 4F 4 H ~2005 4F 3 H OFNHI A A « i1« BRAKH -
T PR DR EFERICOWT, EB @ D1I~D4, EB ® D4, BLNE] ® D4 12T 522/
A E R,

Table 4.8 CMAQ-predicted seasonal and annual mean pollutant concentrations and contribution rates of

transboundary air pollution in land area in EB_D4

Spring Summer Fall Winter Annual
O; (ppb) 50.0 (29) 442 (33)  41.1 (23) 367 (1)  43.0 (23)
NOx (ppb) 8.1 (-13) 59 (-13) 7.4 (-6) 9.7 (2) 7.8 (-6)
HNO; (ppb) 1.9 (49) 1.6 (33) 1.1 31) 05 (24) 13 (38)
NH; (ppb) 0.6 (-17) 1.7 (-15) 1.0 (-18) 04 (-11) 0.9 (-16)
SO, (ppb) 1.7 (30) 1.1 (0) 1.1 (18) 08 (19) 12 (18)
PM10 (ug m™>) 129 (54) 124 (32) 9.3 (40) 4.5 (36) 9.8 (42)
Aerosol SO~ (ug m™) 4.5 (63) 4.5 (38) 2.8 (50) 0.8 (48) 3.1 (50)
Aerosol NO;™ (ug m™) 2.3 (63) 1.7 (34) 1.7 (46) 1.1 (41) 1.7 (48)
Aerosol NH," (ug m™) 1.9 (71) 1.6 (40) 12 (51) 05 (44) 13 (54)

SO, in precipitation (umol L")  20.5 (48)  19.6 (28)  12.6 (8)  12.9 (41) 16.0 (32)
NO;" in precipitation (umol L)~ 26.6 (56)  23.6 (32)  13.8 (31) 263 (51) 21.7 (45)
NH," in precipitation (umol L) 20.7 (75)  19.6 (29) 8.1 (34) 104 (67) 13.9 (52)

SO,> in fog (umol L™ 125 (46) 127 (36)  83.6 (31) 302 (27) 93.9 (37)
NO;" in fog (umol L) 223 (50) 174 (38) 154 (40) 113 (9) 169 (36)
NH," in fog (umol L) 177 (60) 201 (35) 122 (35) 69.1 (15) 147 (39)

Parenthetical values are contribution rates of transboundary air pollution (%).
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Fig. 4.13 Spatial distributions of CMAQ-predicted annual mean concentrations of pollutants in gaseous,

aerosol and liquid phases from April 2004 to March 2005.
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Fig. 4.13 (continued).
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(i) Aerosol NH," 3

Fig. 4.13 (continued).
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Fig. 4.13 (continued).

O3 DIEFENAIT OV TIE, NOx HEHEN L\ Ml TIXEMIC NO (2 L D0 (BUGE
(R2.5) 2L > TREMNME T 2720, BT 5 PR O /340 1L NOx I EE /0 A & <
HI&72oTWND, Fi2, O REIRMBEO G ABEEE LY moTEY, 421 HTR~
L O ICERHIC IS W CRIEBHRE O BN BRI & oo TWnDH Z L, WHRIZBIT S
KRG 6 OBRED /NG STV D ATREMEN B D, BFRITITIMMEFERIGIT L D 05 5K
AT 523, BARTIE, EFRIEMEFE Y ORNEET 5720, WEED QR AR
HEFITHAS, KN OREBREOMELZ T HMEID R b EEZbND, L
22L, D4 IZBITDH O WEICKT HAMEGROFLEITIEFDHFNREL 2> TND, 421
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TR A7 XD IZFHRICB W THEHE S 2V il TIIo b FROSIC L D 0y AfEB LW
O ZLD Oz {HIEN & DIZE/NHE SV TW D ATEEMENH 528, HAR & L THIIC
m797k%"ﬁémiﬁ%%ﬁ’Eémﬁwfﬁkﬂmbfwéﬁ%%%%é ﬁi
PR VOC IF SN E <, O3 ERRICB W TEE & 72503, JEHEHEEHI 1T 5 Atk
ﬁ%%(&mﬂﬂﬂﬂj%@oMitﬁVmﬁﬁﬂ%ﬂﬁMLﬁkH%E%muiofﬁu
BRI REL 725 (Fig. 3.3, 3.6) 73, AMFFETIEH AL & i TR D8 A X2 b
UERFHALTEY, AL ESTHGICT 7 KIS 2 HARR VOC JEH %8 K
R & 22 o TR Os B E BB KGHE L 72D, FT, 7T VT KEOHHHENIEFIZZ
Hiidek T PMI0 J2EE & IR IS m\ T2, =7 1 VLS K - THREAEE S <OBEER
JIEBRIHIEND EBEZ NS, EDD, BIEEETH L OARMETITEH L Ty
2, CMAQ N— 3 v 47 TBIMENT-TT vV VIRE DA% & L COEMME s ek
ZHET D FEEZHOUE, BABICH ST PMI0 BENEWT U7 KEICEWT, FRH
FHENPREVWEZFONT Oy ERENHDTLEEXOND, £i2, PRI S
N5 Z & TRIGE(R2.10)Z X 5 HH O HNO; AL E LI L, HNO; O KFEli2 d i S h
DARENE S B 5, HNO; DIEENAIZ OV T, HHRICBWTRENEL 2o TEY, TV
7 KEETHER S 172 HNO; BHHE CRAF N OREIN TS, BAE TSN TWND Z
LBDIND, ZDT, AAICEKIT 5 HNOsIREA K E <HAFHE & 72> Tk Y, s
(R2.17) RMFHEH~DFZMEIEEIZ K D HNOy DRKHF 26 DFREN M/ STV D &5
X B#LDH, NOx, NHs, SO IZDWTIE, —KPEHAT A TH D72, ZiLh OFERE A
IIHEH &4 (Fig. 3.9) | W%®_ﬁofméthhOMTﬁ,%EVNNﬁ¢Ek
AARTHZETHY, £72K @#%%ﬁéhf%ﬁxhm;ofﬁﬁf%méMRqum%t
IMEE SN D T2, BIBIHYIC X » TREN EH LI <, D4 TIIHERTEB O3 El &
D HRRRENEL 722 T D, SO IZ DN TIE, BN Tl kI DI &~ T huilg
m&rﬂ WS, UTEEE FEE T D EREO NI CRENEL, FE, KE,
W ITHES BRI L > TREN EH L TWA, LL, EFICEEEY ORNE#T 5
T2 OMBEEY DB EZ I 20, THIZIE=EEN 5O SO JEHENML T\ 5 -
¥ (Fig. 3.8), #RE{GYC K D1BE EHIZITE A L7220, NH3 [ZOWTIE, D4 DRy
T HNO; &SRR ZRIREE /3 & 72 > TR Y, RIS (R2.16) 1285 NHNO; DA AR L
TW5, 72, HNO; DI KaFHiiZ L > CTEB O S EI L0 H0R0BENME T LTV 5,
PM10, Hi7fk SO * NOs » NH, ICHOWTIE, HARICHASTHEICE T HHRENILS 0
ZE <, BB RICEID2FSbBREN, BERBRICEI2FHTIREFIRBREL, EFIC
RN o> TEY, D4 BT DIREITH T 2T 5 ITER TR 50 % & 72> T\ o, £z,
TIZIBUN THEE DML N B AR kmf@ﬁ%%@ﬁﬁﬁk%<ﬁ01wéoﬁ%%smz
Kowfm,mw G CIRENY — Lo TRV, REBRXICIIEENRRENI LN
bnD, BT NOSIZHOWTIE, R4k SO~ Jtmf%ﬁ@ﬁﬂ%b\%ﬁﬂ?éﬂk{iﬂwﬂﬁfﬁif‘%
MRE <, T OfRBITHILA 22 AR S B LN 2 L 2R LTS, Kk NH 1220
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TIE, FEASAI(NH),S04 %2 NH4NO; Thh 5728, K4k SO,7 & K f-4k NOy DL EE 454
220340 & 7e > T B,

Bk SO4% - NOy * NHS IEFEICHOWTIE, bZEDH A « ki F- LMK RITIKAET 5 7~
D, DAY — NTORCHEN T DT A« RIS & BT D, AARICHARTHE
BT HBENLHNCE L, BEIERIC LD HERREVEITONTIE, KiFIR SO~ -
NO; * NH,/ IREOHA LA TH D, XFICBVTHESE L FRICEEEROF G N K E
Ko TWABN, ZHhRAZEOIEE Y OFHEIC LY, KEEhROK K SO - NO;y -+
NH, 3B &, HARMBAICB W CZEN L ZR VAL BIZE BB LTELEND 20
ThdreEILND,

FEK T SO.F « NO3™ » NH, DPEEESAR IOV TIE, FFAME N HEREI S T 2 %Ll Lok
FOHFEREZR L TWD, FAKRPREIFFEAKTRE LD bIE22000m<, 10 U R/
TWDHHIH A O 5, D4 OFEBIZI T 2 FHZKPIREL, EB IZHBW TRKFIREID
% LT SO~ THI 6 fi2, NO; THJ 8 15, NH, THI 11 1% &L 725 T 5, Aikawa et al. (2001; 2005)

T, AHINCHT 55T, EEMEEA A U RESTICESTH 7 &<, [NOSY[SO Th
IV HERENWZ EERLED, D4 OFEKIZE ié%{ﬁu%ﬁ%ci%n& [EER DM 277 LT
%o BOCFHABUTEFORKEREDORMIC L > THRE LD, BHRTIET V7 KENHD
FIRBEREIC L > T BORKGEMENR -6 SN T WD, ZD78H, DB HHED
AR TR B Y DB 2 TR 2T TR Y, kit - BAKPIREOES L FEkIC, #BE5
DI Lo TRESRBEN EH LTS,

AT 1T DGR TIE, O3 ° HNO; W CEIRE L 7> Tk Y, L HAMIZE
D EHME & FREOMEDFRKN D2 o TWD EB X BND, M CIXBNT —4
MPHNTEY, ET VLD RKE TFRIORFEZIT 5 Z L PEEICHNTHRETH 5,
Z D78, WHRIZEB T D KAZE PRI R TREESEENARKE WEE X Hivd, CMAQ
X7 AU D EPA ICL > TR ENTZETALTHY, T /LOBFE « BHOBEOWKEITE
WZT AV DR EXRIATOID 2% (e.g., Davis et al., 2008; Sarwar et al., 2008; Foley et al.,
2010), MHBICEHT HRKVE TR E OBEEMEME, L, HARIZEBIT 2 KRZE THIO
BRI, 7/7k%ﬁ%@@ﬁﬁm®%@ﬁﬁﬁk&étb HA & KEED B oIz 35
T RKE THREOERZEMEDN <, THRER Lo DIIi3BEkic ik i 5F 7 VIRGED
VETH S,
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B5E FUHTTN

51 FEikEFETT N
5.1.1 JRGES

AAFTE CHIFE LT FILE T T LV CTl, BHRBENMCE TS 2 kot & RS %2 T3
L, TORESZ b EICHEMEE~DFEDOIREBEICOWTEFRFEEZITY, ok, K
BAITI—EERELTEBY, K& - HAEM TORLZBITIEE L TV,

FUHE S ORI W ER) H R KO = 2L —H UL, Yamada (1982) % %
ST LT, EHEGEDAFERS U (ms!) 1k TERENS,

oUu o ( —

— =—|-uw)-C AUU 5.1

ot 82( uw) P | | G-D
ZIT, uwW iELA 2 ARES (m® s, Cp (= 02) IEHMREAEIC VT OIEFUREL, As
AR A EEZE (' m®) ThD, A0 2 HIIHMEAIC L 2 REoBELE LTV
b, fltz oy —FREREAInTcEEINS,

og’/2) o oq’ 2\ —=oU . —— ¢ 3
o —az(qlSq . u'w % + fgw'd Bl+CdAS|U| (5.2)

1

ZIT, ¢ BT R AF— (ms!), HFEBR S 27— (m), pIEREKOEES (K,
S, (502) BXUB, (=16.6) IIFEBREH TH D, AL 2 H, 53 HBS L OE 5 HIERH
AL, FIBIOBMEAEIZ K 2L r VX —D 4Rk, Fi0F 4 HITELRT= R L —0
BoaEZ R L TWD, BRI A —/HIRAUZ L > TR,

=1 53
‘Kz +1, G
rzqdz
I, =0.12 (5.4)
quz
ZIT, ok (=04) ZHN~UERTHD, FT2,
— oU
—u'w _KME (5.5)
_Wy:Kﬁﬂz (5.6)
0z
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ThH Y, Ky LUKy 1 TES & L OB ELIRIEEER S (m? s™) T, Mellor and Yamada (1982)

DIFEICL->TRDBZ ENTE D,
A EBEE O E DAL, &RIZRT Kondo and Akashi (1976) 12X - TIRE I 7= %k

ZHWTHRIE LT,

A, =A,, -A(Z) =L 0<Z<]1 (5.7)
LAI + NLAI

4, = (5.8)

HFC

Z=z/H,, (5.9

N 1-Z 1 > 1 2

AZ) = —(z,-A) -=(z-2 5.10

@)=, F-essl (2. ~2) ~3 {22 | 510
A+1-4/(A-1) +4

g AN s (5.11)

m 2
22T, A\ PR ATREE (m® m”), LA MEERREE (m® m?), NLALITH -
@ 7p SN ORI RRTEE (m* m?), Hec 3BHEE S (), 21387 A =% —, 7,13 AZ)
PRRERDES, an FRAZWT LD ICRETDERTH D,

(5.12)

J‘O A2z =1

HIH - B S 1E, Monin-Obukhov O FHIHIZ & CICFRE L7z, BB W T
Monin-Obukhov O AHELAIZS %A T 4UE, S JEGERFS K OSERHRA OShE AEIILL T O X 512

rEhs,

oU

E Ly (©0) (5.13)
0z Kz

00 T

—=—4¢,(¢) (5.14)
0z Kz

{=z/L (5.15)

ZIT, ¢, BIOG, T EER L OCEEEAIC OW T OB, u, 1FEEEE (ms),
T I3EEIEE (K), LIE Monin-Obukhov & CTH V),

—\2
(5.16)

(5.17)
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Lz—lhiy (5.18)
KgwW

L EF I D, Monin-Obukhov OFEIHITIX, ¢ ZKKEEE /T A —2—L LTHW, ¢
IARLETH, FYTER, LETEELRD, HEEEIE, BAFEMZI--TREL LD
THY, KFFETIE, UTFIORT I~V ER =04 DA O Businger et al. (1971) 12X
DIREXE AV,

} =L <0 (5.19)

¢ (&)=1.14(1-13.1)"
$,(¢)=0.84(1-7.9¢)"
(

¢, (£)=1.14(1+4.1¢)
$,(¢)=1.14(0.74 + 4.1¢)

PEGEDERE T v 7 7 A ER(GB.13) % z FENCES T 5 2 E TR bn b,

} EREL >0 (5.20)

_u. [ 9($)
U(z)= - J;Tdé (5.21)
¢, =z,/L (5.22)

ZIT, plIHERSES (m) Thd, £, HEREIHFICKT DERT 2 LF—I%, Ak
BORDEI Y 65 EIRET D LR TRSIND,

g’ =B"ul($,(&)-¢)" (5.23)

Fig. 5.1 IZFIRAEE T VO R Z =T, T & D ICE L OBCIIMIME X USRS,
Ax BE N Az 1T L OERERE A X, nx B nz 13K SO ERK %2R,
A O FFAEEIE, BER R EEE 1.8 km GEARMMIE 900 m, ZRAHLIE 900 m), FF
xSk X R G R EE THNZ I 1T D D4 OAKFEFHER VA X2hHbE T3 km & L,
FEAME e SRR T U, BRAEIA Z D ISR ONE D AR A BLE L, ORI IR AR AR &
5,

Fig. 52 \CFILAEE T MTIIUT D FRMMst it N O Rl A= i R E & KSRGS 0§ B 43 A 0 45 %
T, REARFEE S OSRE DA OWTIE, RT A =2 —) DIENRKE L 2513 EREN L
HCHEENKE L 2D, AERGEDERE DA OV TIE, HAE LEIcEF T 513 2,
ZZTCOREDHENKE < 78D, 1082 BELO3 OBE IR & 2 6 Him 12 2> R
NEFHRD LT D DI L, 2234 3B L5 OEAIIAEAE DMK E 22 8E T i Cih
AEFHEMEE N ORALZEANS TV EE LW, B LS FEich i RN b
AT oHmbH 5,

- 66 -



WSE FUETT I

Uoo § 2=z % nz
LWCgc
Forest area
TAAAM AAAEEEE Z-Hc
Non-forest area £ EaiE
-fi“.r'.‘i“'.r 7= O
Spin-up region ' o Objective region Lo
1.8 km x= 3km X= axexnx

Zz=Hec
A=2
A=3
A=4
A=5

z=0 -

Asv  As(2) U(2)

Fig. 5.2 Example of vertical distributions of surface area density and horizontal wind speed.

5.1.2 FKILE

FKAE L, TR DPHAINET D LI TAEL D, MAE~DRLTOERIEAEIR
FRELTUTOHLDRH D (Petroff et al., 2008a) :
1) 77U UPEIC X DikE
B PN REHFTOT T 7 EEI L > TR L, FEEDICH - TR L CRE
REZIETHZ ETHELD, FiL0.1 um LLTFO X 5 BRIk - OILEICB W THE
DREW,
2) IREVITLDHLHE

RLF- 2SRRI > TRBE) LIEEY L 28m L L5 & D8I, & EED O

BEDQKLFHEE LD b/hSWHEE, KT EEOEEEEMIHES LD, REN/NS
UWRLF-RRFEE DY/ N E WG A 72 SR HEPED NS W R ITHF SRR E W,
3) IEMEERIC K DA
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KL MEMEIC Ko T, BEEWLS CRMIZZET 5B TEBEIT 52 LR T
ETICHEEDICHEZET 52 & THEL D, RENRKREVR-OMENRKE WG L
LA  EHED R E WIGEICTF G RE W,
4) EOLREC X DU
WA NEOEBEIZ L > TIREICBE LIEAICIEET 22 E THEL D, RFENK
ELRDITONTHEENREL 2D,
% < OBPFERITB N TERLOFERRITE pm UL EE 72> TEY  (e.g, Mueller, 1991;
Pahl et al., 1994; Eugster et al., 2006; Elias et al., 2009), Z ® X 9 7phifk % & DFEHL D ILFE 1R
FRIZIR W TSR & 72 2 DIXIEMEEZIC L 20 E TH Y, BEH /NS WEEITIEE LR
IZ L DULE OB LXK E 25 (Lovett, 1984), F7z, KL -OILF IV TILRE
WNHEE S TR BkRIR D e & & 5 2%, RMEIEIIDRKEWERL T OULEIZB N TIE
WBHTEHLEBZ26ND,
ZoOBRILBCOFREAIIRA TR IN D,

OLWC __ OLWC _ oLWC o
ot ox oz o

(KLWC oLwe + VSLWCJ_SIM _Ss (5.24)
z

I, WIRTEEEOMERS (msh), Kuce (= Ky) BBEOELFIBORI (s, v

LT OERFEEE (ms™), Snds KT Sgs 13FRRLT O Ko ~ OIS L OFE )k

MEIC K B BILEE T D, B OE/NLKHE TR TR IND,

_ gd;(pw _pA)

5.25
™ (5.25)

N
ZIT, dIFRTORE (m), ppB X py lTKB L OELOBE (kgm?), ulFZ2L 0
FEPELRE (kg m™' s7) TH D, BRI T OBEFm~OEME I L 2 BWAHITRA TR SN D,

S, = A ke, [ULWC (5.26)

I, A A RBEEREE (mm?), kR~ OIS I B A EREE, e iE
WHE@TZ21 & AR T ORMENEThH 5, BRI T ORET~OEHILMEIC & 5 BILEEITRA
TESNG,

S, = Ak v,LWC (5.27)

ZIT, LIFERA~ORERIERICBT ZEDEBRTH D, BRIEET T v 7 X Foy (gm?
s IR TcERENS,

Hpe

FFW = O(SIM +SShZ_FSG (5.28)
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ZIT, FsglIMAMCBT 2 BOMEHE~OENKET 7 v 7 2 (gm?s!) T, Mm@
BT AFKELEENRFEHEOREICL > TRDLNE, ZHERE LTENENS LD
ThHHID, AR TIZBRKILE T T v 7 ANBELGIWTWS, £7-, BIRERE Ve
(ms!) kA TREND,

Vop=F. |LWC,. (5.29)

T 2T, LWC IR EoFEKE (gm”) THD,
TEMEEZE K OVE RSB T 2EOFmAERIL, AHEEREIC T 2K B X
OSRE T OEOR DO R L L, Petroffetal. (2008b; 2009) % & & IZkA A V-,

2/n @2n

k. =j @,, ¢, Sin 9L|cos¢L|dt9Ld¢L (5.30)
6, =00 ¢, =0
2/

k.=1¢, cos,db, (5.31)
0, =0

ZIT, O FREHF I OWVWTOEDHERA (rad), ¢, ITAKFEH T ONTOIEED HAf
(rad), @, BEWp, ITZNZNO, BLVY, ICOVWTOFEERMTHS, LLFD LI,
Py \COWVTE—RTHD LREL, @, ([ZDOW T Strebel etal. (1985) &b L iZ~—F[H

Bl oTFEEIND,

1 ‘
(om(aL):% 7L 0<a, <2n (5.32)

2 'y, +v,) 2a, HL_I(ZO(L ij_l R T
== 1- 7277L 0< <— 5.33
o nr(mr(m( ] . “Ey O

ZIT, DIEA ~ B, B X v ITBEOBRMA O S AEINIZ L > TIREDLEH TH 5,
Table 5.1 (2R 2 BEDMERMA O AREM & B XNy, DE, ZHUTKHET 5 LB LV,

Table 5.1 Parameters on leaf inclination distribution function

Distribution 6, (rad) ) VL k, k.
Planophile 0.47 2.770 1.172 0.27 0.85
Plagiophile /4 3.326 3.326 0.43 0.68
Erectophile 1.10 1.172 2.770 0.54 0.42
Extremophile /4 0.433 0.433 0.39 0.59
Uniform /4 1 1 4/’ 2/n

Planophile: horizontal leaves are most frequent, plagiophile: oblique leaves are most frequent,
erectophile: vertical leaves are most frequent, extremophile: oblique leaves least frequent,
uniform: all orientations are equi-probable.
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1.0

— Needle leaf

06 —+ Broad leaf

04 —+

Impaction efficiency (-)

02

0.0 - i -

0.1 1.0 10.0
Wind speed (m s'1)

Fig. 5.3 Collection efficiency by impaction of particle (d, = 15 um) with needle leaf (4, = 1 mm) and

broad leaf (30 mm) plotted against horizontal wind speed.

o, AW TIE, BEOMIRMEITERMIC EDAEIC ML TWD EREL, w=1, v
=1, k=4I, k.=2n & LTz,

TEVERT 221 K DR OiEHIX, WO X IICA b—27 2% St O L LTERS &
N TX 5 (eg., Peters and Eiden, 1992; Katata et al., 2008; Petroff et al., 2008b) ,

B
€ =(7/S7;S ! J (5.34)
+a
d*|U
Szngw—pcl' (5.35)
H,a;

ZIZT,oa, B plINT A= —, dIFEOREKES (m) ThD, Katataetal. (2008) I,
R O#+EEZ DU T Thorne et al. (1982) OFERZH LIZEOREEI d =1 mm IZX L
TNRTA—=HF—a=5, =105 y=1, FHIRDILZEIZ-D T Belot and Gauthier (1975) @D
FERAEL EICEOREES 4 =30mm (X L T/NT A= —a=0.5, =19, y=5%1T
BY, AFETH ZNSHOMEEHW, Fig. 5312, Kifkd, =15 um ORI IZONT, 2
5DT A—=F—ANTRD IS 2212 L D HER A RT, BE 1 m s’ TIEREHEEOHH
LNRITEEDOFERE L > TEY, JAHE (X h—7 280 MNP0 EBEE L RO
REWVD, JJH#H (A h—27 28) BRELRDIZONTHEDEITNEL 2D,

TR ORIBITIE, FEINE R 2 Ao, RREINESES BRI E KR EIRFET D
EMREL, AA AIZBITDH Burkard et al. (2003) OBHIERIS LT =L b 22B1F 5
Eugster et al. (2006) OEHFERE S L12, ZhENH(5.36)F LK (5.37) %257,

d, =(1.6LWC" +158LWC +4.0)x10° (5.36)

d, =(23.8LWC"™* +204LWC +2.7)x10°* (5.37)
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25
x Observation

-+ Burkard et al. (2003)
X Eugster et al. (2006)

Fitted curve

Eq. (5.36)
Eq. (5.37)
Eq. (5.38)

Volume-weighted mean droplet diameter
(Hm)

0 4 T } T } T } T t

0 0.1 0.2 0.3 0.4 0.5
Liquid water content (g m'3)

Fig. 5.4 Volume-weighted mean diameter of fog droplet plotted against liquid water content of fog for
observation in Switzerland (Burkard et al., 2003) and corresponding fitted curve (Eq. (5.36)),
observation in Puerto Rico (Eugster et al., 2006) and corresponding fitted curve (Eq. (5.37)), and
fitted curve by Katata et al. (2008) (Eq. (5.38)).

F 72, Katata et al. (2008) I KA >V iZBI1F 2EAGEE (Burkard et al., 2002; Klemm and
Wrzesinsky, 2007) % & & IZRAEFHF TN D,

d, =(17.0LWC+9.7)x10° (5.38)

Fig. 5.4 \CFKE & RREINEFRIRORRE T~ T, T+ OERBEINEEERRIE, BKE
DOEINES TRE L 25T %, Burkard etal. (2003) OB 5 & 2(5.36) 1T FHBAR I R
= 0.91, Eugster et al. (2006) DOEEEH & G 3NITFBBEER = 094 THoT=, 7=/L
FU = (3(5.37) A1 2 (3(5.36) IZHARTH UZEARISH L TRENKE L, AL A
ERAY (K(5.38) IZHHBEWKRIR E o TWD, TDX DI, BORBESAITRME
EOBERIZE > THU T L IZR R D LEZONDT20, BRICET 2EAKLE O TRIZIX
AARIZEIT 28GR E L LIS LT BORRI M E NS Z EBREE LU, L@LHKK

BIFD2BHFERIIE LN TV RN, KR ToORRE BT 2 ZKIEED RN

ORISR E LT, 7o/ U a2t 5 & AARICEEN TV A A A2 DB f*%’iﬂb Lz

L7=2(5.36) & Hv 7=,

M R 3T DT BAKIEE 7 T v 7 A Feyr (gm?s™) 13RRKUIT X > TRDT=,
F,, =FR.,F,, +FR,F,, (5.39)

Z 2T, FRyB LN FRp IZBMIT 58 D EHEER S X OURER OEIE, FrnB L Feyp
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AL V) Lwe Frw
Fig. 5.5 Example of vertical distributions of leaf area density, horizontal wind speed, liquid water content

of fog and fog water deposition flux.

25 Th B, £, BICEAEFEWEOWLET T vV A Fre (molm?s™?) 1%, RAD X

TR THHEERT B L OURER O5 & ORI Sk 1T 2 FRFBKIEE T 7 v 7 A (g
.
INZFEART O EIESE Cropy (mol g') LFARILET T v 7 ZADEIZ L - TRDT-,

F,.=C,,F (5.40)

FW= FWT

Fig. 5.5 [CELETT VTR DHRMBENOIEmEEE, AFERGE, FTkE, #KLE
77w ADBESAOE T, BRERASENETH I LT, ks S imEiZ )
FCEKRENED LTND, BKLET T v 7 A%, BERSKE OVEE EEICB O TRE
<, BUEE SITHCBT DILENEE L 705 Z & Bbind,

52 FILETTIVORERT

Table 5.2 \IRTRFELMIC L - T, BILETT NVOREMRNT 21T > 72, KERLEE T
& LTREDSE N Z 5 %2, BE EOFZKEIT 0.2 gm”, FELSOREATRIERKIE 0.5 m
m? & UCEHBEEIT o7, BAREIS 96 %, 4 =3, SFHEMH 100 %, FEOREIZH(G.36)% MW
e AR — 2 L L, FRIHIRD R WIGEITREEEEE 11 Y —, BiEm S 8 /34
—V DFIRFER AR LR A2 R T,

Fig. 5.6 |ZHA S — 2281 B EREE E OB X 2 FBILERE DL E RT, FikE
ETNTHE, Bl ERTHICON CREREEEN EFHT 5, ERBEBEENRKE 2D L,
TR OFERBENENT 52— 5T, AL D2EINAKE L 20 EHENORBEN /X <
2%, BEEHBEEN/NSWEEIZIE, SR FOMERBEOEIMC L 2ENREL, ¥l
FEHEE OIINAENFILERED EH3 2, FBRESENSRE WEEITIE, AL DE
WOBMEDFBENRNE L, ERNEEEOHINIEVWELERENMET I 254055,
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Table 5.2 Configurations of fog deposition model for sensitivity analysis

Parameter Setting

Horizontal grid Ax =60 m, nx =50
Simulation period Az=1m, nz=45
Atmospheric stability neutral

Usc (ms™) 0.5-12

LWCye (g m™) 0.2

A, (m* m™) 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.5, 0.7, 1
NLAI (m* m™) 0.5

Hpc (m) 3,6,9,12,15,18,21,24
Fraction of forest area (%) 24, 36, 60, 96

A 2,3,4

Needle-leaved trees : Broad-leaved trees 1:0, 0:1

d, Eq.(5.36), Eq.(5.37)

Fig. 5.7 \ZHEAR S — 2B T D HEm S OZRIZ K2 FLEREOEER~T, BILET
TOVTIX, Bk BB DRENEE L 7t> TS (Fig. 5.5, BEmINEL 2D
FE, BEE SEFICB T AN K E < 2572, FLEREN LA LTS,

Fig. 5.8 ICHMEN G 2 B S BT 5 B OFILAEREDOEZ RT, TILEITHRMELE~D
WHEICLSTELTWD T2, HMHREIEI/NS < 72213 EFHEEECEY COZILAE R E X
WD T %, AR —2ADHFMRENIEG 96 %DGEITHA, HHEIEG 24 %055 TIE, FHFEL
HHEIT 62 %/ NE L 7poiz,

Fig. 5.9 [ZHEEHIFE DSRE AR 2 IR D DT b DIRT A — 2 —) B S BT 5E OFILE
HWEDOEALZRT, A DERKE 2213 ERREN B CRARRMA K E <785 (Fig. 5.6),
A=2~4 ORI TIEZLEREDOEITH E VY KREL 2L, KRS —2AD 1=3 DEEICH
R, A=2 OEAETIEHFLEREILS % hS< 20, 1=4 DA TIIELEEEIL 4 %K
L lpolz, MAEDHRESMIZET 2T —ZIIRONTWEH720, R TIILRE, 1=3
ZHAWS,

Fig. 5.10 (ZEHEERT 100 % & IRFERT 100 % D556 DFF LA RE 2~ SRR O I HEI X fE
ROEHEET LR TEMEFE IR L D TR OFEL R/ NS Wz (Fig. 5.3), FLEREIT
INEL T2 D, AR — ZADETERT 100 %DIGEITHAT, IREER 100 % D5 A 13 F A HE
M 23 % NEL Teoidz,

Fig. 511 [ZFEDORRIZK(5.36)F W T-5E6 £ (53N E AW GE OFILERE 2 R~T,
A(53NTIEFH(GB36) LV bFEDORENKREL 257 (Fig.5.4), A =7 ZENRRKREL %2
O, B DRENED L7 T 5, 2070, FLEREHRERY, R —2DH(5.36)
WG EITHAT, KGE3NEHWTGAITFELEREN 31 % REL kol
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Fig. 5.6 Mean fog deposition velocity in the computational area plotted against horizontal wind speed at

the upper boundary. Variations of fog deposition velocity due to variations of leaf area density

in the base case.
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Fig. 5.7 Mean fog deposition velocity in the computational area plotted against horizontal wind speed at

the upper boundary. Variations of fog deposition velocity due to variations of height of forest

canopy in the base case.

Fog deposition velocity (m s‘1)

1.0E-01 1

1.0E-02 1

1.0E-03

0

2

4

6

8

10

12

Fraction of forest area (%)

24
36
60

96 (Base case)

Wind speed at 45 m above ground (m s'1)

Fig. 5.8 Mean fog deposition velocity in the computational area plotted against horizontal wind speed at

the upper boundary. Variations of fog deposition velocity due to variations of fraction of forest

area.
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Fig. 5.9 Mean fog deposition velocity in the computational area plotted against horizontal wind speed at
the upper boundary. Variations of fog deposition velocity due to variations of parameter on

vertical distribution of vegetation surface, 4.
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Fig. 5.10 Mean fog deposition velocity in the computational area plotted against horizontal wind speed

at the upper boundary. Variation of fog deposition velocity due to variation of tree species.
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Fig. 5.11 Mean fog deposition velocity in the computational area plotted against horizontal wind speed

at the upper boundary. Variation of fog deposition velocity due to variation of fog droplet size.
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Fig. 5.12 Horizontal distributions of fog deposition velocity in the computational area when upper

boundary wind speed is 5 m s™ in the base case and cases of forest fraction being 24 and 60 %.

Fig. 5.12 ([ZHEAR 7 — 2B L OB EIS % 24, 60 %L L=/ —2AD, L fEE 5 m s
DGEITIRT D FLAEERE OKFA & ~T, BILEREIIRRGTIC BV TRRE 8o
THEY, BN OBFLERELIZL S, HFHREIE 24 %D5E T 3.0 15, 60 %DHET 2.4
%, 96 %D HE T 1.5 fF & 7o T\ D, FMEREOBINC X - T, MBI D itibsE &
WHRPITEENTIE D02 <, BRSO R D560 H 0 Z MRS TS (e.g., Draaijers
et al., 1994; De Schrijver et al., 1998), Z OHRITT v PR &I, HAEEIZINT,
BIARDREAABREIZE S ENTNDTEDREAALTL DROEELZ LTV L,
GLIRIEE R S D Z ENRIA E LTZEITF 55 (De Jong and Klaassen, 1997; De Ridder
etal., 2004), F7-, Kobayashietal. (2001) IZFEDLFICBNTHT v VRN FEL TV
% Z & &R LT %, Draaijers et al. (1994) (34K#% 70> & AP~ 100 m, De Schrijver et al. (1998)
IR DA~ 180 m DFEFH T v VIR OFEZ MR L T\ 5, FLEET L ORE
%, ZhboWE EFRROERmZRLTWD, £z, N THEME L THE &< 72
STWDEZANRDDLGE, €2 TIEHBARDMZE & FREIMNBRRIZE L SN TS T
O, BOWENMEEIND EEZX NS,

53 FEILEETTINVOKRIE

FILAETT LV OMFEIZIE, Burkard etal. (2003) 35 & OF Eugster et al. (2006) (2 X - TiTd
AVICIRMBIEIC KD FILE 7 T v 7 AOWER R 2 F e, FHBE CIXE NI O &5
FERITHE SN T RN, BILETT VICBT EMEERICLEET 7 v 7 A L
DB ZAIT > T,

Burkard et al. (2003) 1%, AA A® Légeren [LIDFER 690 m M5 (AL 47.48 &, H#E 8.35
) ICBWCIRHBINEIC L AZEOEIMILE Y 7 v 7 ADWMEEIT-T2, TBLET T v 7 A
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Table 5.3 Configurations of fog deposition model for the model validations

Setting

Parameter Lageren Mountain Luquillo Mountains
Horizontal grid Ax =60 m, nx =50 Ax =60 m, nx =50
Vertical grid Az=1m, nz =45 Az=0.2m, nz=36
Meteorology input Burkard et al. (2003) Eugster et al. (2006)
LAI (m* m?) 0.7-1.7 2.1

NLAI (m* m™) 0.5 0.5

Hpc (m) 30 3

Fraction of forest area (%) 100 100

A 3 3

Needle-leaved trees : Broad-leaved trees 0.5:0.5 0:1

d, Eq.(5.36) Eq.(5.37)

(Z, B O 45 m (BHE L 15 m) ISBE SHEREIC K- THIE S e, BLIHRE

W OREAENT, 7%&F?t#%£@®m%%&@01w %o BIRAEETILOBERIZIE 2001
9 A~2002 43 A D 30 rHBEOBIIIEZ FHv-, Zo#RH T, 2E810H O 5 B
BUZBWT 30 UL EOBEORENBRIENTWS, Lageren Lz 2 FIxEIL, ®E»
HREIINT TOMRFE L, RINPARLERGA IZHIFEIERCE NI ) oA LA
T k> THRAETL2FED 2 IS SN D,

Eugster et al. (2006) X, 7=/ k U =2® Luquillo (LROIE S 1015 m Hisi (Abi& 18.27 £,
PEHE 65.76 i£) ICBWCTHRFABIEIC K2 FOEIMILE 7 7 v 7 ZADOWEEIT T2, FLET
T w7 A%, BUAEEOHL 1 7.25 m ITERE SAVTCLEE I Lo THIE S 47z, BLINHE 2
AR, IEARIRZEB N ORDEZENRTH Y, BElT T 25~3m, K525 m &78->TW
%, Holwerda et al. (2006) |2 % » TR FEE AW CTHEE SN2 3EEREERE 2.1 £0.7 m?
m?>T&H Y, Weaveretal. (1986) Tk > THENTFELZHOWTEBAFESNZ20m m? &
T, ?%’?I%.S:E?‘w@*ﬁ%m %2002 456 A 26 H~8 A 7 H? 30 4y REIME OEHME 2 v 7=,
Z OB ED T, B SEOEEIC X o TREEDN BIR - 72 28K M E HNSR X A A
TR, Lﬁ%‘%’ﬂ#% CHBICRAET D, ZOWIMPOZERABEL, FFHES T85 % T
BT,

Table 5.3 IR FHRFMIZ L - T, FLEET VRIED T2 DIZ A A AD Ligeren [LF L
7' Y a® Luquillo (LIRIZISIT 2 FLE T T v 7 AR 2 XESRICEH R 217 - 72, 4

ik EDRGE, KR E ORGSR MEITITEN TN ORI 2B R A 7o, Ligeren
LN BT D IEmBREOREMIIE N2 o220, NLHEEICER IR W
— @ MODerate resolution Imaging Spectroradiometer (MODIS) (Z X 28 % & & IZ/Ek &
T IEME AR ST — & (http://cliveg.bu.edu/modismisr/index.html) % FV 7=, MODIS % [fif&
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T — 213, REREMRE L TEY, KPR ER 1 km x 1 km OF — 13 H BT <
NTW5, 2001 49 A ~2002 4 3 H @ Ligeren [LIIZ31F 5 BRI 0.7~1.7 m* m™> T
otz BEUSNORERRIEEIT 0.5 m* m?, WA OB A& RO D 720D /8T A —
B =13 1=3 LRE LIz, BORBITTNZ OB DB 22 b &1 LzR(5.36),
(53N % W=,
A A AD Ligeren [UF L7 x/L kU =2 ® Luquillo [UARIZIS T D EFILE 7 7 7 AEHIH
B DBMFER L BB ET VIS iéﬁﬁ%%@m@kbegsn_%m%%f&
ﬁﬂﬁ@ﬂ%@%%,mgm4 FLET T v 7 ADER, Fig. 5.15 \ICEEBEKIEE RO
AT, S2H THIRATE LI ICHFELEET A TIE, BHENKE RDHITONTHELER
ERREL D,

AA AP Ligeren L30T DBIHFE R TIE, 2R 55 <, #E Eo Rk & Fibas s
E@%_ﬁ%#ﬁghﬁ:ﬂkﬂmémﬁA b RIS R E N K E L 72> T 5 (Fig.
5.13a), D7z, Ligeren WIZKITDHFILET T v 7 AOFEMERIL, ﬁﬂ#%ﬁ%@
%o%ﬁ#ﬁmk%w(ﬁgsmwoit,mm&mf%&mzﬁsﬂ_k ARtEKIL
%%ﬁﬁﬂ??hmx%%T77mnk%@*ﬁbk%@@,E%%K%%E®%kﬂ5~
y@%%fﬁﬁf%fm&m(mgsww Burkard et al. (2003) (%, Z O@IHIHLA - iR
BT 2 FOLAEITARTHOERFERAERFICBIT 2 b ORIEN TH o2& LTS, i
@%‘3%%%7‘/1/ (Lovett, 1984; Katata et al., 2008) (2B W\ T, FEDOWWHEILEIR T 2L I
DR & BRMAEAE OIEMEE IS X D2 WENKEN & e > TR Y, TEOAE L TACE R
HIKATT D, £, BIEOFLETT VT, ZOBHIMAIZIT 2 FNE ZEE
E<ﬁﬁ¢é:&ml%f&ék%z%néo

7V 1Y 220> Luquillo IUARICH 1 HEIHER T, BOREDIZL A LT EABICLS
%@T&;ét&b RANC R R <, FREET V& ARRICRE EOREDA K E < 25122

THEEERENRKE L 2> TW5D (Fig. 5.13b), D7, Luquillo [LIRIZF T 5 FEILE
7?yﬁxwﬂﬁ%%ﬁ,@%%%&E<*ﬁbf%@ﬁ%%ﬁﬁR=&%&%<,ﬁﬁﬁ
WHER D7 7 7 2 —2 OFPIZILE > T\ 5 (Fig. 5.14b), F7=, 200246 H 26 H~8 A 7

B2 A EKIEE BILBINIT 41.7 mm, FH5 T 37.6 mm & O/ NaFl & 72 5 7223,
FEREKILAEBEDEA R — ANLBRIFICHBLTE T % (Fig. 5.15b), i O EEA 10 m
sTOBRAOFBELEEE T, FHETIEL20 em s §iZICEP LTWAR, BRITIE 10 cm s 2
FE73 8 50 ecm st BLEIC 725 TW 5 (Fig. 5.13b), Fib&EETF /L CIIAKERMIZ—EL L,
M ORRIZEZEE L TELT, BMEAEEL - HTHLEREL TS, LL, EE
TITHOTE DR SCAE A A 1 D R —PEIC K o TRIA D O FNREIZ L > THLEOB -
W OT NI T DL EZOND, TORDFHEICBWT, BlL Y & FEREREDIT
SOXNPEL, FELEEE 50 cm s LD X S ICIEFICEILEHENRE < 2D RinE
BHTET, AH0ZKEEERCCH/NHiShZEEx b b,
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Fig. 5.13 Comparisons of observed and model-predicted fog deposition velocity at the observation sites in

(a) the Lageren Mountain in Switzerland and (b) the Luquillo Mountains in Puerto Rico.
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Fig. 5.14 Comparisons of observed and model-predicted fog deposition flux at the observation sites in (a)

Accumulated fog deposition
(mm)

the Lageren Mountain in Switzerland and (b) the Luquillo Mountains in Puerto Rico. 2:1, 1:2

and 1:1 reference lines are provided

—— Observation = —— Fog deposition model
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0 I I f I I f 0 i i f i i f i
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Fig. 5.15 Comparisons of observed and model-predicted accumulated fog deposition at the observation

sites in (a) the Lageren Mountain in Switzerland and (b) the Luquillo Mountains in Puerto Rico.
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ITHNZ W TIHAT H B2 %L, EAZEB L MRBEEDLE~OBIRIZ L > THAE
T5%THY (Klemm et al., 2005), Z DK 9 2RFEITFAREIZ LLEAYJR 2358 < ELITAF = L
TN, BKILEBICBITHHFEENRKRENEEZ NS, Katataetal. (2008) 1%, FHiLAE
WA ALAIAATE | Wt ZfBET NV ERIE L, ZDET VI RA Y O Fichtel [LHIZI51T 2
IHHBINEIC L 2B 7 7 v 7 ADOBLIFER (Burkard etal,, 2002) % B < f8L$ 2 2 & 278
L, FHRECBUHIOM S CHEILERE & BE EORE L OMBEREWZ AR LT, Z
DOHEIL, AT DHFIREETT NV E T /0 Y 22® Luquillo ILUARIZIS 1T D BLHIGE R &
DHHIZH T DM E —F L TV D, BTN R AERICIB T 52L& B A Th >
7o AA AD Ligeren [ITIL, KL EDEN Y = ZFBNEET VLo THBTHZ L
IREECTH 72y, GFtOTKILERILT » AT 74mm LD 7R0o7, —5T, AD®
W ERFZOWERERFICBIT DIRED LB Th -7 7=/ F Y 2® Luquillo ILARIZEWN
TiE, FBWEETNVOFERR LBNFEROMICIENERES S 72, YO, D, @

WX, BRELV S EAZRB I MEBEDILE~DOBIRIC L > THRAET L2FD T REKIEL
BFIZBITDHENRKRENEEZLND D, EREOWE AT L -ZFLETT VI
T 1T 2 F/KILE O THNCHE A FTRETdh 2 &I L7z,
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6 E MRUEMEILAERDHMN

6.1 FHKILEER

6.1.1 T —%

S52HITRLIE L DI, BILEET ML D PRNEBRMEAEICET 2 AN T —ZIZKREL
WEIND, ZZCIRTEEENRETD D4 ICFREET A EEAT O L
BT 57 — X 2T,

BFHREIEICOWTIE, EEEEE S (http:/nlftp.mlit.go.jp/ksj/) DNk 18 4 o £ HiF]
oy Ay v a7 —2%@H L, LHFRIHMS A v 27— Tk, 2FEOLHFIHO
RBPUZDWT, F100m A v = TEIEFMAKS (H, (M, SBE, &bk, sk, @y
FHh, @fRas @R, WA, )17 ) BNEE ST\ 5, Fig. 6.1 ([ LHFI MG A~ v
27 —H %&b EITERR LTZ D4 D4 3 km & IR 2 BMENG DA%~ T, D4 DK
BT D HMEIBITL 69 %, FA&FOrEE (Fig. 3.1) 73 500 m LL_E [T R 5H+
5184 4% 1-H 788 4 Th 0, HMEIGIL IS %L o TnD,

BHFE I DWW T, Rl 6~10 FEIZITOI T8 5 B B IRBR 5k 2 5L G A&
(http://www.biodic.go.jp/kiso/vg/vg_kiso.html) DFEA A ¥ 25— & i L=, fiE A v
TaT—ZTIE, 3 WAy v a Z EICESEARYE, MARRERENEHINTVWD,
Fig. 6.2 [ZHE/E A v v 2T — % & b L ICVER L 72 D4 O80T 58 ST O /045 2 7
o BRI, D4 O CITESEIRZER, £ O ML IS CIX R RESHEERT A 3CBLH) & 72 o
TW5, £7- D4 OFMEED 5 6, WrkEHHEBHT 69 %, VEIEILTEMIL 24 %, kL HEHT
X 7%E72>T\N5,

Fig. 6.1 Spatial distribution of fraction of forest ~ Fig. 6.2 Spatial distribution of dominant tree species
area in D4. in D4. EN, DB and EB refer to evergreen
needle- leaved, deciduous broad-leaved and

evergreen broad-leaved forest.
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Fig. 6.3 Spatial distributions of seasonal leaf area index in D4 from April 2004 to March 2005.

BERFER IOV TR, MRER Tkm X 1km, HRBIO MODIS OIEHEERT — ¥ %
FIV 7=, Fig. 6.3 |2 MODIS OIERFEIEET — % % & L ICVERR L7 D4 D& 110 BT 518
RO a i &, BRI TH 5 2004 4 4 A ~2005 4F 3 A OFFiTRY, ERFEE
BiE, REVIEICET, £F, KE AFLRoTHBY, KT TEEELIER )M 5 &
o TNDHEZAHTIEL o TND,

6.1.2 FTEREHEBICEKE

TRAERER JOFEKEIIHEKILE RICEBRZET 5, Fig. 6.4 12 2004 1F 4 H ~2005 4
3 H OZHiRIT D4 IZ BT D REHEI G COZEFABE & BRAERFO L) FHEKED WRF IZ X

ZER AT TRRE R 2R, BIFEE S @O LIS B W THEIZRAE L TR Y, RNHLE
Hfruh IHRAELTND EZABLEL ALND EFZBLIOEFITIIHZEOREREN G <,
EERMICERKENRESRVEL o TND, FHCERIT, KURDE S KKFOKERE
MBS, BREPRLREILRoTWVD, £l ’t[:f*‘fﬁi%i AR TR AR
WKL, BAREDLONS Lo TS, AR, BRAEBEOREOVHIENIEL 725 T
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Fig. 6.4 Spatial distributions of WRF-predicted seasonal fog frequency and liquid water content of fog in
D4 from April 2004 to March 2005.
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WHH, KIEMELS RERFOKEREN DN, BKETRL/NESLS 5TV, -
2L, AFIBTHEREMEITATILOLE (Fig. 4.7) LRI, FHE TlEREHE S 7
TWAAEEMENH D, RS 500 m LA EOL#IC 81T 5 E 0% %’%@Jﬁfi\aio K&
FEZETU2%BLT0.19gm>, EFET10.6%FB L1024 gm>, KETT9%FL10.19g
m>, ZFET17.1 %BLTR0.095 gm>, FEMTIE11.7%B L0017 gm> L7z, £z,
T I ) D AR AE S T, RO LTI K 51.5 %, 1 E LTIk 49.1 %,
REEILR CIIiR KR 429 % & 7 o7z,

6.1.3 FTKILEE

Table 6.1 IZRTHRMFIT L T, DAIZBITDHEKILERD TRZITo T2, B Lo EE,
FKE2 EOKBEMITIT WRE 12X 2R TSR E2 V-, ﬁ%’fﬁéG:%‘fé*'fF&
X, EIZ6LIHTRLIEbDZ MW, BEmDRMmT — 213G oo Tol0, fid
EZONWTIE 15 m ERE L, F7z, %u%mﬁiﬁ%a%d}ﬁm;Nﬁéﬁfﬁ@ﬁaﬁﬁ%ﬁ
ERDDHIDDNT A—H—F, 53 HilZ FAEETT VORGEE & FRRIZ, ZnEh

Table 6.1 Configurations of fog deposition model for predictions in D4

Parameter Setting

Horizontal grid Ax =60 m, nx =50

Vertical grid Az=1m, nz=45

Meteorology input WREF predictions at the first and second lowest layers
LAI (m* m?) MODIS LAI product

NLAI (m* m™) 0.5

Hpc (m) 15

Fraction of forest area Digital National Land Information

A 3

Needle-leaved trees : Broad-leaved trees 5th National Survey on the Natural Environment
d, Eq.(5.36)

Table 6.2 Model-predicted seasonal and annual fog water deposition and precipitation in land area in D4

Elevation Spring Summer Fall Winter Annual
Fog water deposition (mm) 0 -500 m 3 3 1 1 8

>500 m 35 50 29 16 129
Precipitation (mm) 0-500 m 522 386 723 482 2113

>500 m 784 833 1085 832 3533
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Fig. 6.5 Spatial distributions of model-predicted seasonal fog water deposition and precipitation in D4

from April 2004 to March 2005.
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05 m m* BLURA=3 LRE LT, FORBRIZAA ZI2F51F 5 Burkard et al. (2003) |
HERGRERE S LI LR (5.36) & -,

Table 6.2 |2 D4 OFEE 500 m A O i ds & OME R 500 m LA E O [LHIIZ ST, 2004 4
4 H~2005 4 3 H OFHijF X OFER COVEHOFKILE & LK (EWN - ﬁ)iw%

WAE R 2777, £/, Fig. 651 mmﬁ4ﬂ~mw¢3ﬂ®$%%TD4 Kk
L BKEOEMOAO TR RE RT, FHECEI RIS & LI kmf%i

LCW5 (Fig. 6.4) 7=%, 15 smm%ﬁwwﬁrti;mmﬁiﬂm&m# % 5 500 m
DL EO LHCIERE R 500 m A OFERIZ T 17 fFI2b > T, BKEIZONTE
RN R DIFEHML TV DAY, FEE 500 m Lo (L I3 s 500 m A o iz
EART 17 {ETHY, BRI FKILEREITHAD E/hS W, FHIBITIE, KNSR
DNTIE, BFEBLUGEZEI i%%iﬁﬁ#m< FREPDRENTZDIZE L, KEICITFE
FEAEBE RORIRN T2 DT e <, AFRITFFAREDNNE AN - OITR b D
7o TS, AFRIIRIT 2 HKILERET, %_%%f%ﬁwﬁﬁk&ofwékzé
M AARUHA T 72 < Te o T D, £EE 500 m BL B (I 31T 5 ) F LA
ﬁéfnsmskEéfwjmg,ﬁ%fn9mm%%éf&ums,ﬁﬁfiwj
cm s EARoTr, BAKEICOWTIE, KEICITABROEEICL > TREMICEL, AFIC
1% B AHED © DOZH R D 58T iofH$@@T§<@OTV5 R TOFEDFEAKIL
FHEEBKBEOLR (FTKILER/MEKR) 1%, HEE 500 m R ORE Tl 0.4 %, 5 500
m UL EDOILHITIE3.7 %L 0, £DEBERTIH LI %eeolz, FERLHIZEKIT 544 M
DFEKIEEE L BKEDLRORKE L Z O FK - TOEKILEEIL, ST 6.0%
FBELUN75 mm, FLFHLHETIX 15.8 %38 L UV 1083 mm, H[E (LTl 10.1 %35 L OV573 mm,
EHRREILIARTIE 10.5 % XLV 544 mm & 72 o7z, BLED X 1T, FAKILERE L FERED LR
IXHIZ Lo TRE ST 5,

ANHINCE T BN RIS & A HEERE R TIE, FAKLERIE 20~2860 mm year &
785 TS (R EHIL 2001a; 2001b; Kobayashi et al., 2001), 472 Kobayashi et al. (2001)

FEAE SR O X X MRIC BT DGR TIE, B OEKILAS &iE 2140 mm year,

%*%%gkhmg®mﬁﬂuz%k%méﬂfw %, MBI RZ2DBOD, Z Ok
FUIAMIFEIC BT 5 TR RO 10 (52L ETH Y, FHOBWERE T2 ms'iE< o T
WHEEZBND, ZAUE, Rt 0.5 mm OREOWE FHELRETHY, FHREIRTE
DX D RBOWENEL TWD L 1F#E 212< \\, Kobayashi etal. (2001) (2 X 2 HNFEHIE
TIE, EEOBREHSDSERGCHEH L X TRERELS 2o TWNHEZATHLHZD
FARKEEMEESNTND LEZ LN, SHICANREDZEMPRIELDXICE > THEK
WA EDOHEERE R REAT SN TV D AR & 5, DM OBEEWFFEIZ DV T,
Lovett (1984) |d==2—A > 277 NGO/ LY AT IMRITHEATH720CBEELE 1
WILBEIRAE T TV TIE, BIREHREN 1~80 cms™ OFIPH & 72 % Z L %5~k L7-, Miller et al.
(1993) IZLDT AV DRI A M7 =4 ALUD MU EMKIZIIT S Lovett (1984) DET

H
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N FHOTEFRIGER T, FKE & L FBRKEDIRL 22 % & 72> T2, Shubzda et al.

(1995) I2LBT AV DT L—1| » 2F—=F—|URENLAR O b ¥ e RIS S ik
WSHEIC L HEERE R T, BARKLEREBERKEDOLRIT 13~25 %> To,
Vermeulen et al. (1997) (2 X 547 ¥ OIKHIOBHIERIARIZ I3 1T 2 HHBIEIC K 2 B
BTN, FELAEBEIL 0~10 cm s FRE L /e > TV 5, Dawson (1998) (ZAH VU 74 /L=7
NEOY a4 THIZBT DB G, FKibERIE 447 mm year!, FEKIEAE & L BARED
AT 34 % L HERE LT %, Herckes etal. (2002) (X577 A0 T+ —2 = LUk k
U EMIZIBT D Lovett (1984) DOFET /A& MW TRIFERTIL, FARLAEREEKEDOL
RIX 4 %E 72> T 5, Klemm and Wrzesinsky (2007) (255 KA Y D7 ¢ &7 /v b
v B ARICEIT B IBFEBEEIC K AR R TIE, BRI 0~30 ecm s RRE, FkibE
B ERBAKEDOLFEITI %L 7> T D, Chang (2006) (2 & 5 H{EILE D Yuan Yuang Lake
AKX DO b/ 2T 2 FRIFE R TIE, KIS 81T 328 mm year!, FAKILE & &
BEAKBDLRIT I %E 2> TN D, ZHHDFRRICOWTIE, AWFEICI T 2 THIFR &
RESERDLOTIER,

6.2 MHMEILEER

(2 K DEREME LS BT, T AKILEEO THIR R & CMAQ 1T & 2 /K HiR B oo T
%kiof*%kohww3ﬁD4®@ ﬂmmiﬁmﬁﬁkivﬁmﬂmmuL®M%
[Z2UNT, 2004 4 4 A ~2005 4 3 A OZFHiRE L OUERCOEEOZEK Wtk - fotEks
BLOAFTORE, RIGHEEH, Toe=THEZOWERL, THOICHT 5555
PDHERGO TR 2779, £72, Fig. 6.6 (22004 4F 4 H~2005 43 H D D4 (2B 5%
K A - MRS O AR C O - SUGTEZEFE (NOy-N = NO + NO, + NO; + N,Os5 + HNO;
+HONO + KL IR NOy) « 7 E=TMEF (NH:-N) (bEREDZERSME, iz
5@Fﬁm®§5® < W34 O Tl % x4, Fig. 6.7 (213 2004 4F 4 H ~2005 4£3 H O

BT DEAK A - HoVETEAE IZ K D0 « SOGHEESR « 7 B =T HEEREED%E
#1753 ﬁ@%ﬂ#%%v#

3 OOLAEBRRIC L DEBEME ORIEE BIZOWTIE, Fk - BEREOFERRKE WD
it &, G O % 5K EWERTTE CILE &N LV, H AR CIE, Hryints
AR 72 < AR IITAE S » OFHIRIC & » THEE B RO L Z 10T W=
BB ROFENREL oo TS, —J, KBS - W5 NEn Rk <k, TfricssE
ﬁ#%wk@,@ﬁ@%®%5#m {725 TW5%, D4 DIEHIZE iéﬁﬁ?@@ﬁ%%
DFHIIHE T 24.4 %, PUSMEZEFT39.0%, 7V E=THELET 379%E o7, %<
DOEEFEMFRIZ BT HARIZEIT 2B E ~OBEHR O T ERHEE SN TEY, 1990~
2000 £/ Tl nss-SO.~ THI 32~66 %, NO; THJ 35~61 % & 72> T\ % (BREEH, 2009) ,

-87-



B /RULAE & B8 LT sIEI S 3 D BRI E IR B OB 7 /Wi K DRk

Table 6.3 Model-predicted seasonal and annual acid depositions corresponding to fog, wet and dry

depositions and contribution rates of transboundary air pollution in land area in EB_D4

Seasonal or annual deposition (mmol m?)

Elevation Fog Wet Dry Total
Spring Sulfur 0-500m 0.5 (42) 10.7 (37) 55 (21) 16.6 (32)
>500 m 42 (41) 16.8 (42) 6.1 (28) 27.0 (39)
NOy-N  0-500m 0.8 (57) 13.6 (54) 17.2 (43) 31.6 (48)
>500m 5.5 (48) 21.8 (62) 17.1 (48) 44.4 (54)
NH;-N 0-500m 0.7 (57) 10.6 (73) 3.8 (20) 15.0 (59)
>500 m 43 (68) 17.2 (82) 24 (52) 23.9 (77)
Summer  Sulfur 0-500m 0.5 (34) 7.7 (16) 4.1 (1) 12.3 (12)
>500 m 4.7 (26) 15.9 (16) 3.6 (-2) 242 (15)
NOy-N  0-500m 0.6 (38) 10.1 (28) 16.2 (19) 27.0 (23)
>500 m 54 (32) 16.0 (29) 12.8 (24) 342 (28)
NH;-N 0-500m 0.8 (36) 8.4 (27) 92 (-4) 18.4 (12)
>500m 53 (33) 13.1 (30) 4.1 (-3) 22.5 (25)
Fall Sulfur 0-500m 0.1 (28) 9.2 (20) 3.8 (10) 13.1 (17)
>500 m 23 (29) 14.0 (20) 44 (13) 20.6 (19)
NOy-N  0-500m 0.1 (25) 10.5 (33) 10.6 (27) 21.2 (30)
>500 m 3.7 (31 13.2 (35) 10.7 (33) 27.6 (34)
NH;-N 0-500m 0.1 (23) 6.2 (46) 53 (4) 11.7 (23)
>500 m 2.5 (40) 7.5 (52) 22 (7) 12.3 (41)
Winter Sulfur 0-500m 0.0 (26) 6.3 (395 39 (23) 10.3 (31)
>500 m 04 (38) 11.0 (39) 33 (29) 14.8 (36)
NOy-N  0-500m 02 (22) 12.6 (55) 5.0 (39) 17.9 (50)
>500 m 1.6 (30) 22.0 (59) 5.4 (38) 29.2 (53)
NH;-N 0-500m 0.1 (16) 4.9 (69) 23 (3) 7.3 (47)
>500 m 0.6 (46) 9.1 (74) 0.7 (21) 10.5 (69)
Annual Sulfur 0-500m 1.1 (37) 339 (27) 17.3 (14) 523 (23)
>500 m 11.6 (32) 57.6 (29) 17.3 (18) 86.5 (27)
NOy-N  0-500m 1.7 (44) 46.9 (44) 49.1 (31) 97.6 (37)
>500m 16.3 (37) 73.0 (49) 459 (37) 135.1 (43)
NH;-N 0-500m 1.7 (42) 30.1 (54) 20.7 (1) 52.4 (33)
>500 m 12.7 (47) 46.9 (61) 9.4 (15) 69.1 (52)

Parenthetical values are contribution rates of transboundary air pollution (%).
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ABFFEIT 2004 4F 4 H~2005 £ 3 A 25 e LTRY, EFFTEZEILOLETT7 VT
DR EIE EENCB W CREIGEYE OJEH &R 2ICHI I LT\ 5 (Ohara et al., 2007;
Zhang et al., 2009) (ZH B 53, ARWFRIZI T 2815 YD % 53O TR R TBEEFIE
LHRTROR/NEN, ZORKE LTE, KRECPBFNEZ SZielr#E 2 x5 L LTnd
Te O EE DI AEPRN I Z N 2 L R0, JREDENIZ XD RBRMEOENR ENRE 2
HID, o, BEAEAFIE CTIIACEF RS 7 A X132 100 km B2 L HLWIEE 2320 (e.g., Arndt
et al., 1998; Ichikawa et al., 2001; Holloway et al., 2002; Lin et al., 2008b) 73, AR#FZE TIiIAF

Total deposition Contribution of transboundary

(a) (mmol m? year™) (b) air pollution (%)

Sulfur

Fig. 6.6 Spatial distributions of model-predicted total acid depositions and contribution rates of

transboundary air pollution in EB_D4 from April 2004 to March 2005.
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Fig. 6.7 Spatial distributions of model-predicted annual acid depositions corresponding to fog, wet and

dry depositions in EB_D4 from April 2004 to March 2005.

BT A XL 3 km THY, LOHIWZIr—LOHSEE TEERTE TS, D7
D, BEAMIZE TR 4 B TRAE THEND DA BN T, BEE5Y 055 RITIE L MEZ
Lo TERY, IR TIIMET6.0~572%, ILMEEHET19.6~79.5%, 7 o E=T HEHR
T4.6~841%L72>T5,

BMETEAE SOV TIE, G X D% 50F, /KT SO,% + NOs « NH, 2 D334 (Table
48) LWERFEREOMAN LI, FEEEAFCHFENREL 2o TS, ILERDAMITD
WU, BRI OIS (Fig. 4.13i~1) (2 TREAKEO M E (Fig. 6.5b, d, f, h)
MR EWTZD, FEAKRENZ OB W TIRE &N SV, WA, i, OGRS,
TUESTHERONTIUCOWT S, AFFHICHE N T 3 DOLEREOF THb D4 12
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BT OHILEREIIHTDHFGNVRELS R>TND,

REMETLAE IZ DU TIE, MR LS 23 K & W Ik CIEBn B 5 17 O EL i 5 DM IR e S 4,
ISR L K T AREDRE N OIWE RN L, WELERELY EES> TR
SR AL 23/ SV CIRR A &30 7 < g o TV 2, BHE CYEEIC 3513 2 FLEE 1349 0.1
mm 720 TWDA, EABWGEICITEE ORI KRE SR L7, EEOHEIXZ O
EED bREL, 42 HTHRAT L9 ICFHR THEIRIC I T 2 /etkii g |25/ Nl S T
WA AREMEN B D, MR ERICHTH2HFSIIT o LI b T AN RKEL, Db
DRI 31T 2 RS 1C K DR EIAE BT 5 SO, DFHIL 752 %, KIGMEERILE
HICKT D HNOs 38 K UYNOx DFHIXZENEI 642 %I LV 9.4 %, 7 =T HERIL
BRI D NH; OF 5% 69.2 % & 72o7-, RKEKHFEEIL HNO; LV b NOx DAL D
DIZEY (Fig. 4.13b~c) 23, HNO; [ZFEFITAKICEEME LT W 72 O -IFE ISR S e d
<, MMEREENEZL 2o TWD, TD2, BRI 5 EMELE IS X D - SIS
EHR T =T HEERIREBROOAMILENZEI SO, - HNO; « NH; R D434 (Fig. 4.13b
~e) [T o TWn5, BBRGYICK D F 2OV TIE, SO, « NH; IREICI T 55
YD FHDELF)/N S (Table 4.8) 72, Hiid « 7 =T HERILEICBWTHER
INEL o TS, BEEORMEILE HE ORIERE R (e.g., Tohno et al,, 2001; &1& 5, 2002a;
2002b; TR EAE, 2004) 12BN T, SO, X° HNO; DL 136 -1k SO 0Ri -4k NOy
mm%ﬁfiw%k%<ﬁof&m.$ﬁn B TFRRRIIZYTHL LB BND,

2 K DM E DOILAEIZOWTIE, BREGRIC X 2 %5108 ML L RRICKRE <,
ik%mwﬁg(m;m&c,qg)mﬁakmﬁzmﬁimﬁﬁ%%k%woﬁﬁfm
B DB ZIZTEA RN, BAKLEENZOILMTIE, &M EELE VL L
TWHEZALRALN, IRHPHCoERE % Ell>Tnb, BEIBITIE, ZARPIRENS
< (Table 4.8), FKILEENZWEFLEFIIBIT DbEERNEL L, AFTbEELD
7o TWD, B TOXERTICBIT D, GMESR, 7o E=THERORK
WA BT D FIC LD 0E OF G OFLMEIX, 5 500 m A O TIEn2h 2.1 %,
1.7 %, 32%E/NEDo7, 155 500 m LA EO L TIEZE T 13.4 %, 12.0%, 18.5%
LY, FRIUHIZEBIT HFICEDILEOFTEORERKREIL, ANELTIIXZERE 23.5 %,
19.9 %, 28.4 %, #iFHLUHiTIZZENEI35.7 %, 31.0 %, 39.7 %, FEILHTIZZNEN
mz%,mj%,%7%,$EMW?1%M%myw%,MA%,%A%&ﬁoto:@%
i, B O LBV TEIC X 2BEWEORED, LA OIS & FEICE
g@m% BRETHHLERLTND, Fo, ERLHIZET 2FM TORE, KISHEZE
R, TUE=THEROFICLHWAEE L BMELEROLEORKMEIE, RNELTIEZENR
LA 46.1 %, 473 %, 54.1 %, AOHLUHLETIXZNZEI 712 %, 65.8%, 77.5%, FIELHIT
XZNEH 54.1%, 58.8%, 64.1 %, SHEEILIRTIZZEANZEI 60.1 %, 72.9%, 74.5%& 72>
oo ZOEIIZ, 3kmiE T TOTFHIE LTIE, FICLDBUEWEDOLE TR THIEMEL
FELDHORNINEWIRER L o7, LcL, S2HITHIRAR- X ) ICHFMREES CligE
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KILEEDPHRNOBIEZ LR 55800570 L, FKRILEITRFEAKIZE S TEMPRIES D
ENRKREWVWD, EFLOLHIZIB W TITRPTIINCIXEIC X DEBEWE DL SR E %
REL EEAREMNES 5, BEEMEICEBIT S S0,%, NOy, NHy DFEIC L BIbE & LT
PEEAE B ORI, Miller etal. (1993) 12X 2 THIFER TIXZNEN 71 %, 57 %, 110 %,
Herckes et al. (2002) (2 & 2 THIFEFR TIZZNZEI 39 %, 32 %, 38 %, Klemm and Wrzesinsky

(2007) 1T X DBHFE R TIZZN TN 104 %, 129 %, 146 %L 72> TWnD, T D DR
\ZOWTIE, ABFETO D4 WO 70 (U310 5 T HlRS S & hicr9ir A3, Baumgardner
etal. (2003) (T & D ITHFHIZ K DM E OVEA I TIRMEILE D 10 5L EIC 672D LV 5 Wil
LY, FGHIESOHEE LR & OEWIC X o THIZE D LIRS BT 2 ZEDH 51X
RES R D, RFZEICEIT 2 THRERIL, TEEIZBIT 2 FOFRAEMEN SO L OFR
HTIE, BAKILEICL T, BHELEICELS, HELEL BED LV OBMERE» b7
HINDHREMEZ R LTV D,
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%75 anﬂ]

BRMEIL 1T, HIERBRBIFIEO O L DL LTINE TICE L OEEEMZRBLZED TE T,
FRPEILEDE =2 ) o IR S 2 L—3 a3 T, FIEMETRE & eSS kg &
ENTWD, L, TAKRTOREMEYEREITR %&Ti5#:%< FSREIZE
T 5 L7 EOFRMHIR TIIZBOFBKLEN LT INDLT20, FILIBIEWE O
EHEOLEERLERRLE 225, AT, RIER %%”W%Tw@“mmmMQk%%
t%%%%?»a;of 2004 4F 4 H~2005 43 H O 2 x5 & L, ZAK - Wk - iz
@%%K;é@ BILAERDMO TR EZLT > T,

LR IC A Té%a@%n’*’ﬂ%ﬁm“\é

B o1 BT, KRXOFmE LTIFEE RIC oW TRz, £9, ZhETIqTbitT
X T RMEIEE A~ O ERE 22 B0 M L, AARENICET 2 H00 A & Bttt g O BLk
IZDOWTmR LT, D2WT, BEZEOTFEERORE & FKILE&OEBIZET 2 BEE
W ZitnR L, T L DML EOBREREM, LR LT,

B 2~4 T TIL, AMRICEIT 2R/ RKEAE THNZ DWW TR~ T,

B2 mTIE, AR CHER LA R S KRKE T T LD WRE/CMAQ (2 DWW Tk
2o 7, KBET /L WRF OEER L O WRF IZB W TR S5 S WELERIC >V Cib
Rz, DONT, KRREET /L CMAQ OHEEE LN CMAQ 2B W CRHE S5 &40
T PR RIZOW T~ Tz, Z2O0H T, B &R BRI 2L F IS OV T
HIZE LD,

9% 3 T T, ABFZETO WRF/ICMAQ 12 L D RS KREE TR T R E S 2R Lz,
iﬁ“ T T~ T At G b ARSI AR EMEK A R L, DOWT, ABF

I[Z81F 5 WRF/ICMAQ DI « BER M L W3l - (LR A ¥ — L& R LTz, 61T, K
FW%MG%V?%%%&@% CHBERANGMTH D RKIGYWE OYPEH ROV Tk
~7z,

%4 FTIX, WRF/ICMAQ IZ XD RG/RRE TR KR Z R LI, £F, WRFIZEDXE
T IS BE A BLAVE & ORI K o TRl L7z, 1 B TR DWW TE,  JRGE O KEH
%Mmiw B/ N7 EORMBENRH D b OO, EHRKE & ZIUTEE S EEE - ZIETRO

BRI EORBBBEOK G A AR TE WD I L a R L, £, Aif
\ZB1F 2D WRF IZ X 2K THOREL, BHEMEICE T 2XETHEREU ETHL 2

k%:/TLto EERSETHNICOWTIE, KRGS @EEE%’@BUL IBWCHEELRD L

22 DR EH 7 BIFIZHHCECWD Z L 2R Lz, ARINZBIT2ZEO TNV T,

FRABER L0 mE@ﬂWM@@mkEWm%%@ﬁﬁT%fmé LEIRLEZ, D
DWT, CMAQ 2 X 2 KE&VE TR BE 2 BLAME & D Hf iz K- TR L 72, O3 NOx * PM10
REDTHENCHOWTIE, ARSIV TEENIZEICR T 2 Tl & RELL EOWEN D H Z
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AR LT, BT BRI ZOWTIE, TR O EEITERE D 7 7 7 X —2
uW#%h wﬁk@ofwé%Aﬂ§<,%MTW@ﬁﬁéﬂfwé:&%%bko
KRENZHE T 2BEKFREIZONTE, ORW/NFHI L 7o TV DA, BKFREDOSE
&ﬁ@ﬁ@%&f%@f%fwé_k%mbto@ﬁﬁ%@%@honf@(hﬁmm%
EFRNCBT 2 HS 0K EORMBERSH L 00, kif - Bk - FRPREICR
WTHEGNPREL, ETHRERTE WD I Ea2RLE, £, IRBlICRBIT 25K
Y, BRI TR A ICE L, B TTIEM K PR E IS~ T SO,ST 6 1,
NO; T 8ff%, NHy TI11{5L ) THlfERE /oo,
%SETi AW THIE LT 2 WBELEET VICOWTRNE, £7F, BiLEET
BT 2 FRAAIRE N A0 BUESE 3 L O A ~D TR EDFHEFEE R LI, 5
PT,%%%%TN®@E%ﬁ%ﬁV,%%%LR , HRSCHEORBENRKEL 2 DHIFE
EMEFEEDEN ERAT - 0KREL 0D L, HFMMEAEICET T A—2DEIZL -
THRELSENMT DI LER LT, £, FRREHIZIB T, BAROAIHE /MRS
EHINTNDTD, BHRAEICE S TERERERHFIC LR 2R LT, S6IT,
TFEBREIC LD FEAE T 7 v 7 AOWER R E DRIZ L > TH m%%Twmﬁﬁéﬁo
to%®F% JEASFH N B AR IZ 51T D IR DAL & 72 D5 m%%v
W LD THNNECTH 7228, BNV EFFERERICKT édﬁ%z’»i@ﬂé’) LR DY
Km,%%%%?w&ﬁwwﬁﬁf%%%LE&@ﬂiﬂL_m%#ﬁ%h,“m%%v
JVEBAHZERAE T 7 v 7 A BBl LT, HHIZBWTHRAET 2%, FIZEAHERBIY
KEEDOUE~OBIRICK > TRAETDIETHY, BEIZTZIDX D RFEOILE N IEH &
RHEEBEZLND, TDD, FLETT VN ITEEIC FKUEE O T RN FTHRE
Tho LMLz,
%6 ETIX, WRF/ICMAQ L ZILEET ML D, mEI BT 2BEWEILEEO S
@%@%%%%Lkoif,ﬁﬁﬁmﬁc % FKILEBED TRFERIC OV TR AT, KH
BFEKEE T VLR N7, FRAEBENGOIIHTIIZFKILERENZ <,
51 500 m LA oD |11 CIEARE & 500 m ATl O B2 e~ T 17RO FKILER T2 b ST,
%mm%gmeg_ﬂféw¢ X, & 500m L EDLIHITIX4%E 720, fOt L, o
E L, SRR E Tl 10%% LED &2 AL o7, D30T, BB T 25K -
T« HZPEUEE (2 K DB LS B O TR RICHOW TR~ T2, MILEREIC OV T,
TR - WA OTERRE VLML, GHELEO TGN RKE WA I EEN < 7
Sz, BB LROREBIZONTIE, BRI TRICKE S, RIEEE~DFL2 50 %Ll k-
Lo TWBHEZ AL BT, BIEIREICOWTIL, 3 SDOIEBREO T T bRiLEREIC
ST DHENRE o T, EHEREBICOWTIE, TADLEN LRI TH 5 7= oYL
DFENHII NS o To, T K DBIEME OILEIZONTIE, K TIHIZFEALERD
AR, R, rE LM, SAEEILRZR E OBAKILE RN WILHTIL, thEENR
PEUEAE G L TV D & 2 A D RO, RE CHMILE L ERlo7-, ZO/RENS, i
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WERETHD Z LIRS NT,

BEAEMTZEIC 31T 2 BT & D IRMETESE O E BALITAFE OB M & 5 WIEIHE D 7 2 54 5
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VT B 2 R R KIEAS 2 B8 LT E B LG B O ZER AT O Tl 25k A, s ds
T OEC L DMBMEILEOEREM LR LT, L L, BUEOEIEET VI L2 BEIMT, B
PEVE D RK P IRECIBMEIEE ROHRMENSBHIED 7 7 7 # —2 LNIZILE > TWOiuE
BIFL oL THY, MERLZ, SbIT, BMELESLEKILE IO WTE, BH
PNEETH L7290, BUEET VOBMGERRONTEY, MR mPEIC L DB L
2T 570, EFATRICET 2 A MEMITRAELEU LICRENEEZ N, TDI
D, AWFEORMEZIGH L T 72y, ETHEIEET VI L D PRKE DM L3k
bb, [FRKZETHNITHOWTIL, #H 4 ETHEANLMERICOW TR 21TV, HE &
THNZHOWTIE, HHERAERCHEKILEICEHT 28T — 2 2 INEL, SORIBEET L
DORGEEZHED TV BN S D, ZIUT L > THEIEE T VO TR E S [ E3huE, Bk
AESROBENIBWTEE L 2R THIOFEE M L5, S6I2, WEEDOTH
ik TIERMEL TRIE T AR SITEM L, FeMEILE IS K D AERER A~ O RER N A1T O 2
EHHREL R D, £, AR TIIRBINRBRUEMEOWLA ZMRE LTHWDN, BITT
DIRPEE DB S OREE~DRTEIC L DEMEREFE D RESN D, TORIZHONTY, HiE
EBT VORI L5 2 L TRMEATREL 70 5 L B A BN D,
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