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SYNOPSIS

     Taking account of experimental evidences of the chemical short 

range order and the medium range order in the amorphous structures, 

the crystalline embryo model is proposed by employing the concept 

of quasi-crystalline clusters which could pre-exist in the liquid 

state, be enhanced during supercooling and be frozen as the static 

crystalline embryos by the rapid quenching. A simple model assembly 

of single element atoms containing the b.c.c. or f.c.c. embryos is 

first constructed by computer, and the calculated diffraction func-

tions semiquantitatively explained the characteristic halo intensity 

distribution of the amorphous metals. As a more realistic struc 

tural model containing metalloid atoms, the composite type embryo 

models for amorphous Fe-B alloys are constructed by assuming the 

b.c.c. embryos and chemical clusters of Fe3B type coexisting in it. 

The diffraction functions and the high resolution electron micro-

scope images calculated from such embryo models well reproduce the 

experimental results, when the embryo size is taken to be as small 

as 10 A in diameter, and quantitative discussions on the truncation 

effect in the Fourier transformation for the diffraction functions 

and the effect of aberrations and defocusing on the high resolution 

image formation are successfully done. It is concluded that the 

medium range order clusters of this size most probably exist in the 

real amorphous metals. Comparing with other structural models, the 

consistency and the validity of the present theory and calculations 

are also concluded.



Contents

g.

2.

3.

  INTRODUCTION 1 

1.1 General Introduction 1 

1.2 Experimental Evidences of Structural Ordering in Amorphous 

     Metals and Alloys 6 

   1.2.1 Neutron and x-ray diffraction 6 

   1.2.2 Mossbauer spectroscopy 15 

   1.2.3 High resolution electron microscopy 17 

   1.2.4 Magnetic measurement and others 20 

1.3 Various Structural Models 23 

   1.3.1 Dense random packing model 23 

   1.3.2 Chemical cluster model 30 

   1.3.3 Microcrystalline model 33 

   1.3.4 Dislocation model 37 

   1.3.5 Crystalline embryo model 38 

  CRYSTALLINE EMBRYO MODEL 44 

2.1 Basic Concept of Crystalline Embryo Model 45 

   2.1.1 Origin of crystalline embryos 45 

   2.1.2 Diffraction from a microcrystallite 50 

2.2 Model Construction for Amorphous Iron and Nickel 54 

2.3 Model Construction for Amorphous Fe-B Alloys 60 

2.4 Model Structure for the Calculation of High Resolution 

     Electron Images 67 

 CALCULATION OF X-RAY DIFFRACTION FROM EMBRYO MODEL 70 

3.1 Deduction of S(K) and G(r) Functions 72



  3.2 S(K) and G(r) Functions of Embryo Model of Single 

       Element 75 

  3.3 Consideration on the Correspondence between Diffraction 

       Pattern and Structural Model 82 

  3.4 S(K) and G(r) Functions of Embryo Model for Amorphous 

       Fe-B Alloys 89 

4. CALCULATION OF HIGH RESOLUTION ELECTRON IMAGE FROM CRYSTALLINE 

   EMBRYO 106 

  4.1 Kinematical Theory of Electron Diffraction 108 

  4.2 Image with Beam Incidence along Z-axis of B.C.C. Embryo 112 

  4.3 Change of Lattice Image with Rotation of Model Assembly 125 

  4.4 Image Contrast from a Thick Specimen Containing Two 

       Embryos 133 

5. DISCUSSION AND CONCLUSIONS 135 

  5.1 General Discussion on Crystalline Embryo Model 135 

  5.2 X-ray Diffraction of Amorphous Metals and Alloys Containing 

       the Medium Range Order 144 

  5.3 High Resolution Electron Image from the Medium Range 

       Order 153 

  5.4 Conclusions 159 

ACKNOWLEDGEMENTS 162 

REFERENCES 163



1. INTRODUCTION

1.1. General Introduction 

     The theory of x-ray diffraction and high resolution electron 

microscopy of the medium range order in amorphous metals and alloys 

will be described in this thesis. The origin. of the medium range 

order will also be discussed in relation with thermodynamical and 

structural considerations. 

     Amorphous solids have always been found to be, at best, meta-

stable with respect to some crystalline phase or phase mixture. 

The liquid of many metals and alloys can be made into a metastable 

amorphous solids if it can be cooled by sufficiently fast quenching 

such as in the vapour condensation, the electrodeposition, the 

chemical deposition and the rapid cooling from the melt. It is 

convenient to distinguish three-categories of amorphous metals and 

alloys; amorphous elemental metals, metal-metal alloys and alloys 

of transition metals with non-metallic elements, i.e. metalloi.ds. 

The thermal stability of these materials increases with the dif-

ference in chemical bonding nature between constituent atoms. The 

amorphous elemental metals are formed only as evaporated or sput-

tered thin films and generally crystallize -at temperatures about 

one tenth of the melting temperature, Tm. By contrast, the amor-

phous metal-metalloid alloys, for example Pd-Si and Fe-B alloys, 

can be obtained as continuous strips by the quenching from the melt 

at the cooling rates of 1056 K/s and are stable to temperatures 

of the order of 0.4T
m. In this thesis, the discussion will be 

mainly concentrated on the amorphous alloys of the metal-metalloid
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systems. Since the first production of an amorphous Au-Si alloy 

by the rapid quenching from the melt, 1) various amorphous metals 

and alloys have been found to exhibit technologically interesting 

properties, e.g. the high fracture strength, the excellent soft 

magnetic behaviour and the good corrosion resistance, and at the 

same time they have been offered to the investigators in the basic 

research field for the studies of the structure, the atomic trans-

port, the electronic and magnetic properties and the thermodynamic 

characterization of disordered metallic systems. However, the 

fundamental problems on the atomic structure of the disordered 

systems still remain unsolved in spite of a large number of efforts 

made by many investigators during past a few decades. Especially, 

the basic understanding of the amorphous structure inherited from 

the liquid or other parent states seems to be one of the most im-

portant and fascinating subjects for the liquid and solid state 

physicists. 

     Recently, a number of techniques, like the x-ray and neutron 

diffraction, the Mossbauer spectroscopy, the high resolution elec-

tron microscopy and the computer model calculation, have been de-

veloped to considerable extents and applied to the basic study of 

the amorphous structure. The most direct characterization of the 

random atomic arrangements is given by the x-ray, neutron and elec-

tron scattering experiments. The coherently scattered intensity 

distribution, i.e. the interference function, of the amorphous 

metals and alloys exhibits the apparently characteristic diffuse 

one. The pair correlation function obtained from the Fourier trans-

formation of the interference function yields only a statistically
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averaged projection of the amorphous structure onto one dimension 

and does not always establish a unique description of the atomic 

configuration in real three dimensional coordinates. Nevertheless, 

it has been found that the pair correlation function of the amor-

phous structure does not only exhibit the oscillation of amplitude 

over larger radial distances, but also shows a sharp well defined 

first maximum and the peculiar second peak splitting, as compared 

with that of the liquid structure. This means that the amorphous 

metals and alloys may have a degree of order in the atomic arrange-

ments higher than that in the molten state. In fact, many newer 

experimental results, including not only those by diffraction tech-

niques but also those by other tehcniques as above mentioned, have 

strongly suggested that the chemical short range order or even far-

ther range atomic order extending beyond the first neighbour dis-

tance exists in the actual amorphous structure. 

     On the other hand, the modelling experiment seems to be a pow-

erful and available means since it can give us an intuitive picture 

on the nature of disorder of the amorphous metals and alloys. 

Since Bernal's first proposal of the concept of dense random pack-

ing (DRP) of atoms, Z) the idea of DRP has suffered various examina-

tions and improvements and this sort of studies has been prevailing 

in the field of the study of the amorphous structure. However, the 

high degree of ordering in the actual amorphous structure is hardly 

expected from the DRP models. The existence of the chemical short 

range order in the amorphous alloys is widely accepted from the 

fact that the atomic arrangement of nearest neighbours in a re-

stricted range of the metalloid atom composition is similar to that 
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found in one crystalline form of the material. In accordance with 

this, the chemical cluster model has been proposed, where the chem-

ical clusters typical of the structure of crystal phases appearing 

during the devitrification of amorphous alloys are packed randomly 

to form a'dense and three dimensional array. However, with respect 

to the medium range order, there remain a great deal of arguments 

and problems to be solved. One of the most important problems is 

about the origin of such-atomic orderings including the chemical 

one and another is its effects on the x-ray diffraction and the 

electron images. It must be noted that experimentally the diffrac-

tion pattern is kept almost unchanged and shows the diffuse inten-

sity distribution characteristic of the amorphous structure, even 

if the quenching rate is critically changed, by which the size and 

the amount of the chemical short range or medium range order are 

expected to largely depend on. Accordingly, the systematic and 

theoretical consideration on the chemical short range and medium 

range order is indispensable for the satisfactory description of 

the amorphous structure. 

     Taking such high degree of atomic orderings into considera-

tion, Hamada and Fujita3~ have proposed the crystalline embryo 

model for the structure of amorphous metals and alloys. As will 

be presented and discussed in this thesis, the crystalline embryo 

model is based on the concept of quasi-crystalline clusters, which 

is expected to pre-exist in the liquid structure including the 

supercooled state and be quenched in the amorphous structure by 

the rapid cooling. This model is quite different from the micro-

crystalline model in the sense that the crystalline embryos exist 
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surrounded by the disordered region in the amorphous structure. 

In reality, the embryo model satisfactorily reproduces the diffrac-

tion data and the high resolution electron images from the medium 

range order in the disordered structure, which is considered to 

offer the bases necessary for the interpretations of the experi-

mental results and yet to present the solutions for above mentioned 

problems. In the following sections of the chapter 1 are mentioned, 

in the first place, the experimental evidences of the structural 

orderings in the amorphous metals and alloys given by the neutron 

and x-ray diffraction, the Mossbauer spectroscopy, the HREM and 

the magnetic measurements etc. In the second, the various models 

for the amorphous structures are introduced. The origin of the 

structural orderings in the amorphous metals and alloys'and the 

uselessness of the application of the micro-crystalline diffrac-

tion theory to them will be considered, and the model construction 

based on the concept of crystalline embryos will be described in 

the chapter 2, which will be then followed by the calculated re-

sults of the interference and pair correlation functions and the 

high resolution electron images in the chapter 3 and 4 respective-

ly. Finally, in the chapter 5, the differences among various 

structural models so far proposed, the comparison of the embryo 

model with the experimental results and the probability of exis-

tence of the medium range order will be rigidly discussed. The 

consistency and validity of the present theory and calculation 

will be concluded and acknowledgements will be given in the last.
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1.2 Experimental Evidences of Structural Ordering in Amorphous

     Metals and Alloys 

     There have been a great many of experimental studies on the 

structure of amorphous metals and alloys which were reviewed in 

literatures4) and articles. 5,6) Amorphous metals and alloys are 

considered as solids with a frozen-in liquid structure and are 

macroscopically isotropic in the domain range greater than 20 A. 

In addition to this, the three dimensional atomic periodicity is 

almost lost beyond a few atomic distances, although the degree of 

order in the atomic arrangements is higher than that in the molten 

state. It is characterized by a limitted number of diffuse halos 

in the x-ray, neutron and electron diffraction and no sharp dif-

fraction contrasts in the electron microscopy. Recently, a number 

of techniques, the x-ray and neutron diffraction, the Mossbauer 

spectroscopy, the NMR, the high resolution electron microscopy, 

etc., have been extensively developed and applied to the study of 

the amorphous structure. Some newer experimental results obtained 

by these techniques strongly suggest that the chemical short range 

order or even farther range atomic order extending beyond the first 

neighbour distance may exist in the actual amorphous structures. 

In this section, the evidences of such structural orderings in the 

amorphous metals and alloys are given for each experimental tech-

nique. 

1.2.1 Neutron and x-ray diffraction 

     The neutron and x-ray diffraction methods have been frequently 

used to analyse the structure of amorphous materials. The radial 

                                    - 6 -



distribution function or the pair correlation function G(r) is ob-

tained by the Fourier transformation of the coherently scattered 

intensity distribution or the interference function S(K). The G(r) 

function provides only a statistical average projection of the 

structure onto one dimension. So that, the three dimensional ar-

rangements of atoms in the amorphous solids can not be uniquely 

determined from the G(r). It is worthy of note that the S(K) func-

tion and the G(r) function for any of the amorphous metals and al-

loys have quite similar appearances, although they are related 

with each other by Fourier transformation. . In Fig.l are illus-

trated the S(K) and G(r) functions of an amorphous iron film,, 7) 

which was made by the vapour condensation method on the cold sub-

strate kept at liquid helium temperature, and for comparison those 

of the liquid iron. 8) The oscillations in both functions have 

larger amplitudes and persistently remain in higher K or r values 

for the amorphous iron than for the liquid iron. Furthermore, two 

functions of the amorphous iron have a characteristic sharp fist 

peak and a broad second peak splitting into two subpeaks. These 

profiles vary with the composition, the preparation technique and 

the heat treatment as are described below. 

     Experimental information on the local coordination of metal-

loid atoms in the amorphous alloys is meagre. The x-ray and neu-

tron scattering are generally dominated by the contributions from 

the heavier metallic elements. Since the concentration of the non-

metallic element is about 20ato, the weighing factor w
N_M is typi-

cally three times smaller than the corresponding factor for M-M 

correlations, where M denotes metals and N non-metals. Moreover ,
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the radius ratio rN/rM (where r being the effective atomic radius) 

generally lies in the range 0.75ti0.85 so that the peak of the N-M 

pair correlation function is found at a distance of about 1.8rM 

and, accordingly, difficult to be resolved from the M-M distance 

as a separate component. Especially in the x-ray measurements, 

the diffraction data in the reciprocal space are confined to the 

K values below about 17 A-1 and good resolution of the G(r) is not 

obtainable. 

     Dixmier and Duwez9) reported a slight asymmetry in the first 

peak of the G(r) in the amorphous Pd-Ni-P alloys and attributed it 

to a contribution from metal-metalloid pairs. Suzuki et al. 10) 

showed that the resolution of the G(r) was progressively improved 

when the truncation was made at higher K
max values in the Fourier 

transformation of the S(K), which is shown in Fig.2. The scatter-

ing from several amorphous Pd-Si alloys was also measured by 

Fukunaga et al. 11) over a wide range of K values from 0.5 A-1 up 

to 30 A-1 by means of the time-of-flight neutron technique, and 

well resolved pair correlation functions showing a distinct separa-

tion between two first neighbour peaks at 2.42 A and 2.81 A, which 

are associated with Pd-Si and Pd-Pd distances respectively, were 

obtained. From the area under the peak at the smaller radial dis-

tance 2.42 A, the average number of nearest neighbour Pd atoms sur-

rounding each silicon atom was estimated. They concluded that a 

Si atom is predominantly surrounded by six Pd atoms forming a trig-

onal prism which is very close to that found in the crystalline 

compound Pd 3Si. In the liquid alloy with the same concentration, 

the G(r) function shows a shallow hump instead of the distinct sub-
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peak at 2.42 A, which might suggest the existence of the chemical 

short range order in the liquid structure. Noteworthy is that a 

small tail extends toward the lower radial distance, '2.2 A, most 

likely arising from Si-Si neighbouring, and that it is absent in 

the amorphous alloy. This fact suggests that the possibility of 

a random mixture of Pd and Si atoms in the amorphous structure is 

eliminated as found in the intermetallic crystalline structures, 

Pd3Si and Pd 2Si. 

     The most reliable information on the local coordination of 

the non-metallic atom was obtained by Sadoc and Dixmier12) by re-

cording three independent sets of scattering data, using a combina-

tion of the x-ray and the polarized and unpolarized neutron dif-

fraction from the amorphous Co81P19 alloy. These were analysed to 

give the three separate pair correlation functions, which clearly 

showed phosphorous and cobalt atoms occupying sites with different 

symmetry and geometry. They concluded that surroundings of P atoms 

are similar to those found in the crystalline Ni3P (the structure 

of Co3P has not been reported) and the nearest neighbour P-P cor-

relations are absent. Lamperter et al. 16) obtained the total and 

partial structure factors of an Fe80B20 amorphous alloy by the.x-

ray diffraction and the neutron diffraction using the isotopic sub-

stitution method. The partial G(r) function for the Fe-B correla-

tion showed a very sharp and high first maximun and that for the 

B-B correlation indicated the absence of the close contact of B 

atoms. They also concluded that the short range order in the amor-

phous Fe80B20 alloy is strongly governed by the chemical bonding 

between unlike atoms. The variation of the x-ray atomic scattering
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factors with the wavelength in the region of an absorption band has 

also been used to obtain the partial pair correlation functions for 

the amorphous Ni80P20,13) Fe 82
.5 P 17.531 14) and Fe75B2515) alloys. 

These experiments showed that the environment of metalloid atoms is 

very similar to the findings by Sadoc and Dixmier and Lamperter et 

al. However, the resolution of real-space data is poor as a result 

of termination ripples and broadening, since scattering data are 

restricted to small scattering angles (K
max =7ti10 A-1). 

     The influence of metalloid concentration on the structure was 

investigated for the amorphous (Pd, Ni)-P,9) Ni-P,17) Co-P,18) 

Fe-P,19) Pd-Ge,20) Pd-Sill) and Fe-B11,21) alloys. Over the metal-

loid compositions ranging from 15 at% to 25 ato, the intensity and 

the position of each peak in the S(K) and G(r) functions undergo 

various changes. For instance, the height of the first peak in the 

G(r) function is gradually decreased with increasing the metalloid 

concentration. For the phosphorous atoms containing alloys, al-

though the first subpeak at r2 of the second peak in the G(r) is 

always more intense than the second one at the larger radial dis-

tance,r2', the intensity ratio, Ir2'/Ir2, is decreased with in-

creasing metalloid content as well as the corresponding intensity 

ratio in the S(K) function. From the seemingly similar x-ray dif-

fraction measurements of the amorphous Fe-B alloys with various 

boron contents, Fukunaga et al. 11) and Waseda and ChenZ1) obtained 

quite different conclusions on the appearance of the S(K) and G(r) 

functions. Two diffraction functions obtained by the former are 

shown in Fig.3 (a) and (b) respectively. The intensity of the high 

angle side shoulder on the second halo peak in the S(K) was shown 
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-to increase in the result by the latter , but in that by the former 

it decreased with increasing boron content, as given in (a) of the 

figure 3. These disagreements in the S(K) functions were also re-

flected in the G(r)'s. For most of the metal-metalloid amorphous 

alloys, the G(r) has the characteristic second peak splitting, of 

which the first subpeak at the smaller radial distance, r2, is more 

intense than the second one at r2' as mentioned above. But, Waseda 

and Chen found that the peak height ratio of the second peak dou-

blet in the G(r) was reversed for the amorphous Fe-B alloys with 

the boron content below 20 at%. On the contrary, according to 

Fukunaga et al., the G(r) functions of amorphous Fe-B alloys in 

the composition range 12ti22 at%B showed the "normal" second peak 

splitting and the decrease of the intensity of the second peak 

shoulder at r2' with increasing boron content, which are given in 

Fig.3 (b), as well as those of the Fe-P and other metal-metalloid 

amorphous alloys. Neutron diffraction experiments undertaken on 

an Fe83B17 amorphous alloy by Cowlam et al. 22) and on an Fe80B20 

amorphous one by Lamperter et al. 16) indicated that the second 

peak splitting in the G(r) was "normal", thus confirming the obser-

vation by Fukunaga et al. Dini et al. 23) made a comparison in de-

tail between those two experiments on the structure of Fe-B alloys 

which were in disagreement. They suggested that the discrepancy 

in the S(K) curves could arise through structural differences in 

the samples relating to their history of quenching. However, it 

was not clear what sort of changes were produced by the enhanced 

annealing, i.e. the slow down of cooling rate at the later stage 

of quenching, and thereby the structural relaxation in the twin-

- 14 -



rolled samples. It must be also noted that well resolved pair cor-

relation functions of the several amorphous Pd-Si alloys, one of 

which is shown in Fig.2, displayed a second peak splitting into 

three subpeaks. This fact strongly suggests that not only the 

chemical short range order as mentioned before but also the atomic 

order extending beyond the first neighbour distance may exist in 

the actual amorphous structure. 

1.2.2. Mossbauer spectroscopy 

     M6ssbauer spectroscopy is a useful technique to study the 

small structural units in the amorphous structure, because it can 

detect the electronic structures of a small group of atoms or even 

a single atom through the near neighbour interactions. Tsuei et 

al. 24) were the first to measure the 57Fe Mossbauer spectrum of 

Fe-P-C amorphous alloy. They obtained a broad ferromagnetic six 

line pattern and analysed it with the assumption of disordered 

near-neighbour configurations of iron atoms and an unpreferred spin 

orientation distribution. 

     Fujita et al. 25) showed that in the ferromagnetic Fe-P-C amor-

phous alloys containing 20 at% of metalloids the internal field 

distribution was quite the same as those in the high concentration 

alloys. In solid solution alloys, the magnetic moment and, there-

by, the internal field of a magnetic atom change (usually decrease) 

in proportion to the number of near neighbour foreign atoms. By 

assuming that the short range order in the amorphous structure is 

almost the same as in the crystalline solid solution, the above re-

duction rule of the environmental effect was applied to the analy-
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sis of the internal field distribution in the amorphous Fe-P-C and 

Fe-B alloys with the metalloid concentration between 15 and 20 at% 

by Oshima and Fujita.26) They concluded that in these amorphous 

alloys, the atomic order corresponding to the crystalline polyhe-

drons with the b.c.c.-like near-neighbour configuration is well 

developed in the as quenched state. It was also concluded that, 

by taking the reasonable calculated values of the internal field 

reduction by foreign atom neighbours into consideration, it is 

very difficult to detect the defective structures such as repre-

sented by Bernal's DRP polyhedrons. 

     Mossbauer spectroscopy has exhibited the development of an-

other kind of ordering in the amorphous alloys in certain cases. 

The ferromagnetic Mossbauer pattern from the Fe75B25 alloy showed 

a deviation from the ordinary spectra such that the analysis ac-

cording to the solid solution like short range order was not appli-

cable. Vincze et al. 27) attributed this deviation to the chemical 

short range order structure, and concluded that the structures of 

the amorphous Fe-B alloys with various boron contents are based on 

a locally-distorted off-stoichiometric Fe3B compound. Koshimura 

et al. 28) analysed the Mossbauer spectra of the amorphous Fe83B17 

and Fe82P18 alloys and also concluded taht these alloys contain 

intermetallic compounds of Fe3B and Fe3P respectively. Oshima and 

Fujita,26) however, concluded that the Fe75B25 amorphous alloy con-

tains partly the Fe3B chemical clusters and partly the solid solu-

tion type clusters, and the former disappears when the B concentra-

tion is reduced below 20 at%. It was also concluded that when the 

quenching rate is not fast enough, the Fe3B chemical clusters sur-
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vive in the amorphous alloys with boron less than 20 at%. 

1.2.3 High resolution electron microscopy 

     In parallel with the investigations by diffraction theory and 

technique, the structure of amorphous materials has been studied 

over a decade by the high resolution electron microscopy (HREM), 

since it was expected to yield information of local atomic struc-

ture projected to two dimensions, which would be more direct and 

sometimes more detailed than the diffraction data such as the in-

terference functions S(K) and the pair correlation function G(r), 

which are basically one dimensional in the case of the study of 

halo diffraction patterns. Especially, the high resolution elec-

tron microscopy was supposed to be powerful to provide the exper-

imental evidences for the above mentioned structural order if it 

exists in the amorphous materials. In the very early stage of 

high resolution electron microscopy, the instrumental performance 

of electron microscopy for the lattice image observation was limit-

ed to the tilted beam setting and only the large scale spotty or 

fringy images were observed and interpreted in terms of the micro-

crystalline model. 29) A more careful work30) showed, however, that 

the number and the orientations of the fringes depended on the an-

gle of the tilt illumination, suggesting that they were mainly due 

to an instrumental effect. The fringy images of this kind do not 

occur in recent observations when the incident electron beam is 

aligned parallel to the instrument axis (optical axis) and the ob-

jective aperture is placed with the center coincident with the 

transmitted beam spot. Under this condition, however, some inves-
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Fig. 4 The high resolution axial bright-field image from the as 

quenched thin specimen of amorphous Fe-B alloy. Courtesy by Ichinose 

and Ishida.
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tigators have observed lattice like fringes locally even in the 

as quenched amorphous metallic alloys. For instance, Ishida et 

al. 31) studied the structure of electolytically thinned films of 

the iron, cobalt and paradium based amorphous alloys through the 

bright-field HREM with the axial illumination and observed the lat-

tice like images which varied largely with the alloy compositions, 

quenching method and quenching rate, even though the electron dif-

fraction patterns were typical of amorphous structure. They con-

cluded that the fringes arose from the microcrystalline regions of 

several ten angstroms in diameter. Ichinose and Ishida32) carried 

out the observation of the high resolution axial bright-field im-

ages from the as quenched thin specimens of the amorphous iron 

based alloys, one of which is shown in Fig.4. Some lattice like 

image contrasts of about 10 A in diameter are seen in the micro-

graph. Hirotsu and Akada33) did similar observations on the as 

quenched amorphous Fe84B16 and Pd 77 .5Cu6Si16.5 alloys with the se-

lected values of the defocus distance, which are shown in Fig.5 (a) 

and (b), respectively. The lattice and fringy images with an av-

erage size of 12 A are observed with a spacing of about 2 A and 

four or six-fold symmetry in (a) and with about 1.9 A spacing and 

four-fold symmetry in (b). They explained these images in terms of 

microcrystals with the beam incidences along <001> and <111> of 

the b.c.c. structure in (a) and with that along <100> of the f.c.c. 

one in (b). 

1.2.4 Magnetic measurement and others 

     In the chemical clusters, which is expected to exist in the 
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amorphous alloys, metal atoms and non-metallic atoms have strong 

covalent bonding with each other. The chemical nature of the 

chemical compound cluster can be detected sometimes by measuring 

the physical and chemical properties of the amorphous alloys by 

using various techniques. Takahashi and Koshimura34) measured 

the magnetization of the magnetic amorphous Fe-B, Co-B, Ni-B and 

Fe-P-C alloys against the temperature and from peculiar change of 

the magnetization curves they concluded that the chemical compound 

clusters large enough to exhibit their own magnetic behaviour al-

ready exist in the as quenched structure. Other results obtained 

from the magnetic measurements 35-37) seem to suggest that amorphous 

Fe-B alloys ranging from 12 at%B to 25 at%B have a concentration 

dependence of the structure. 

     Durand et al. 38) carried out the 59Co NMR and bulk magnetic 

measurements with the aim to understand the various contributions 

to the Co hyperfine field in the liquid quenched amorphous Gd-Co 

alloys. From the complex structure appearing in the Co NMR spec-

tra with varying the Co content, they concluded that the composi-

tion dependent crystalline compounds exist in the as quenched amor-

phous alloys. 

     Extended x-ray absorption fine structure (EXAFS) does not suf-

fer from the limitation imposed by low scattering factors for the 

non-metallic atoms inherent in the x-ray scattering and offers the 

most sensitive technique for probing the local coordination around 

the metalloid atom. EXAFS measurements using the K-shell absorp-

tion of the Ge atoms in the amorphous Pd-Ge alloys was carried out 

by Hayes et al. 39) They showed that the average environment of
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  1.3 Various Structural Models 

       The concept of dense random packing (DRP) proposed first by 

  Bernal2) has been widely accepted as a useful one to describe the 

  structure of amorphous metals and alloys as regards the atomic dis-

  ordering. Especially, in recent years, computer simulations have 

  succeeded in reconstructing the "ideal" amorphous structure . The 

  characteristics of computer-generated DRP models , such as the co-

  ordination number, density, interference function and pair corre-

  lation function, were found to be in tolerable agreement with the 

  results of diffraction experiments. Critical reviews of the struc-

  tural models have been given by Finney,40) Waseda ,41) and Chaudhari 

  and Turnbull.42) 

x 

        As mentioned in the last section, many recent experimental 

  evidences strongly suggest that the atomic order and chemical short 

  range order develop beyond the first neighbour distance in the ac-

  tual amorphous structure, which is hardly expected from the DRP 

  models. Taking account of the existence of such atomic ordering 

  in the amorphous structure, Hamada and Fujita3) have proposed the 

  crystalline embryo model, which will be described and rigidly dis-

  cussed in this thesis. For the amorphous alloys, the concentration 

 of which is close to the stoichiometry,the chemical cluster model 

  has been proposed. In this section, various structural models in-

 cluding not only above mentioned models but also the microcrystal-

 line model and the dislocation model are introduced and discussed . 

 1.3.1 Dense random packing model 

       Since Bernal's first proposal of the concept of dense random 
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packing of atoms, which was in order to construct a static model 

of liquid structure, the idea of DRP has suffered various examina-

tions and improvements. The Bernal's model was a favourable one 

as a model for the amorphous structure rather than for the liquid 

structure, because it could not reproduce satisfactorily the pair 

correlation function G(r) of liquid metals but could give the 

splitting of the second peak in the G(r) of amorphous metals and 

alloys. This model structure is represented by arrangements of 

rigid spheres which are dense in the sense that they contain no in-

ternal holes large enough to accommodate another sphere and are 

random in the sense that there are only weak correlations between 

positions of spheres separated by two or more sphere diameters and 

that they apparently contain no recognizable regions of crystal 

like order. 

     The dense random packing of single size hard spheres was es-

tablished either by packing together as densely as possible a large 

number of steel balls or by computer algorithms. In the former 

case, the experiments by Finney43) and Scott and Kilgou44) consisted 

of squeezing and kneading rubber bladders filled with ball bear 

ings, taking precautions to prevent nucleation of periodic arrays 

at the container surface. On the other hand, in the latter case, 

Bennett45) and Adams and Matheson46) began with three spheres in 

the form of an equilateral triangle as an initial cluster. The 

"global" criterion for adding spheres to this initial cluster con -

sisted of enumerating all possible sites for which an added sphere 

would be in hard contact with three spheres already in the cluster 

but would not overlap with any of them. The site nearest the cen-
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tre of the cluster was selected from this list and a sphere was 

added there. The list of possible sites was then updated, adding 

those created by the last sphere and removing those blocked by it. 

The dense random packings were generated by adding individual 

spheres following these criteria. The computer-generated DRP was 

similar to those obtained with steel balls as regards the coordi-

nation number and the splitting of the second peak in the calcu-

lated G(r). However, in the G(r)1s of these DRP models, the in-

tensity ratio of the two components of the split second peak was 

reversed and the relative peak positions, r2/r1 and r2'/r1 were 

larger than those in the G(r)1s of amorphous metals. Sadoc et 

al. 47) and Ichikawa48) employed a modified Bennett's algorithm and 

succeeded in reproducing the "normal" second peak splitting in the 

G(r) and relative peak position r2/r1. In their model assemblies, 

the packing fraction was much lower than that of '0.63 in the be-

fore and close to that of the liquid metals. The DRP models were 

improved and developed by the energy minimization of atoms using 

some assumed interatomic potential functions. Baker et al.,, 49) 

von Heimendahl,50) Connell,51) Yamamoto et al., 52) and Maeda and 

TakeuchiS3) showed that by using the interatomic potentials, like 

the Morse-type or the Lennard-Jones 6-12 potential, the relaxed 

DRP models of one chemical species gave the G(r).'s similar to those 

obtained from the diffraction experiments. In the medelling ex-

periment by Maeda and Takeuchi, the initial atomic coordinates was 

made according to the computer-generated random ones. Heimendahl 

showed that the position r2 of the first component of the split 

second peak in the G(r) was sensitive to the softness of the poten-
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tial, and employed a Morse-type interatomic potential, of which 

the repulsive part is relatively soft compared with that of the 

Lennard-Jones 6-12 potential, in the construction of model struc-

ture. On the other hand, using molecular dynamics technique, the 

low temperature properties and the structure of amorphous state 

have been studied by Hiwatari et al. 54) Rahman et al.,55) 

Kristensen,56) Woodcock et al. ,57) and Tanemura et al. 58) 

     The types of local configurations in the DRP model structures, 

which are probably responsible for the split second maximum, have 

been investigated. Bernal59) reported that his model structure is 

built up using only five different types of polyhedra or "canonical 

holes". Two of these polyhedra, the tetrahedron and the half octa-

hedron, occur in crystalline close packings and one of the remain-

ing three types, the trigonal prism capped with three half octa-

hedra, are the basic unit of the chemical compound clusters, such 

as Fe3B and Pd 3Si, which is described in the last section. 

Finney43) also performed the polyhedron analysis for the Bernal 

model structure and studied the type of Voronoi polyhedra needed 

to build up the dense random packing of hard spheres. These poly-

hedra provide a means for defining the average number of the geo-

metrical neighbours. Baker et al. 49) investigated local atomic 

arrangements in their model in terms of the Voronoi polyhedra and 

found an increase of the 13 atom icosahedral arrangement with the 

relaxation process. Whittaker60) re-examined the cavity analysis 

for the Bernal model of hard spheres in detail and observed the trig-

onal prisms more frequently than the tetragonal dodecahedra. 

Yamamoto and Doyama61) studied the geometrical connections of cav-
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ities in addition to the polyhedron and cavity analysis, and esti-

mated the dislocation density in their DRP model structure. 

     Cargill62) pointed out that the G(r)1s of many amorphous metal-

metalloid alloys, particularly electrodeposited Ni-P alloys, were 

very similar to those obtained by Finney and others for the DRP of 

single sized spheres. For the amorphous alloys, Polk63) suggested 

that the non-metallic element would fill the larger holes inherent 

in the random packing, i.e. polyhedral holes as mentioned above 

and that they could stabilize the amorphous structure. In this 

case, the packing fraction of the DRP model aggregate was favour-

ably increased. However, it is now clear that Polk's original 

evaluation of the fraction of non-metallic atoms which can be ac-

comodated in regular Bernal holes was overestimated. Whittaker60)and 

Yamamoto and Doyama61) also revealed that the distribution of poly-

hedral type differed from the Bernal's estimation and that the 

Bernal polyhedra were distorted and departed significantly from 

their idealized shapes, and they could accomodate only larger atoms. 

     The DRP model calculations of the amorphous structure were 

recently further extended to include the binary alloys of metal-

metal and metal-metalloid systems. Sadoc et al. 47) constructed 

several DRP models consisting of two sizes of hard spheres with 

the constraint that the smaller spheres, representing metalloid 

atoms, were not allowed to occupy adjacent sites. Their computer 

generated binary alloys contained about 300 atoms. The sharpness 

and height of the first maximum in the S(K) functions were deter-

mined by the relatively small size of their model assemblies, but 

the S(K) functions clearly showed the characteristic shoulder on 
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the second peak, particularly for the smaller sphere content of 

15 Boudreaux and Gregor64) constructed models by packing hard 

spheres of two diameters, scaled to simulate Fe and P alloys. The 

building algorithm was a random packing of hard spheres similar to 

that used for monoatomic systems by Bennett with additional con-

straints which ensure chemical homogeneity and the absence of 

nearest-neighbour P-P correlations. The resulting DRP model failed 

to reproduce the observed density and coordination numbers, which 

were higher than those of the model. One of the more remarkable 

properties of the model is the orientational anisotropy of the G(r) 

function. They attempted the energy minimization of above mentioned 

DRP structures for the amorphous Fe-P alloys using the Lennard-

Jones 6-12 potentials for Fe-Fe, Fe-P and P-P pairs. The proper-

ties of the relaxed DRP model structure, such as the coordination 

number, the density, the pair correlation function and the inter-

ference function, were found to be in tolerable agreement with the 

experimental results with a negligibly small orientational anisot-

ropy in the G(r) function. Boudreaux65) and Fujiwara et al . 66) 

also constructed models for the amorphous Fe-B alloys by packing 

spheres of two different sizes. The ratio of the diameter of atoms 

to that of iron atoms was taken to be 0.52, which is smaller than 

the corresponding ratio of 0.72 in the DRP models for the amorphous 

Fe-P alloys by Boudreaux and Gregor and Fujiwara and Ishii.67) 

The building algorithm consisted of a random packing procedure and 

a relaxation using assumed interatomic potentials with a constraint 

which ensures the absence of nearest neighbour B-B correlations . 

The calculated G(r) functions for three compositions: 15, 20 and
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25 at%B obtained by Boudreaux showed a "reversed" second peak split-

ting. In the calculation by Fujiwara et al., the G(r) function for 

an Fe85B15 amorphous alloy was found to have a "reversed" second 

peak splitting as well as the results by Boudreaux. Furthermore, 

they derived approximations to the partial G(r) functions for the 

amorphous Fe83B17 alloy from the combination of x-ray and neutron 

data by Cowlam et al. 22) In their work, the partial G(r) function 

for the Fe-Fe pair showed a "reversed" second peak splitting as was 

anticipated, since the total G(r) function obtained by x-rays had a 

similar feature. However, the results of diffraction experiments, 

especially those by Fukunaga et al., could not be satisfactorily 

reproduced by the above DRP models. The experimental results on 

the structure of the amorphous Fe-B alloys are already described 

in detail in the subsection 1.2.1. 

     A computer-relaxed DRP model was described by Suzuki68) in 

which a model was refined by the simple expedient of moving each 

atom to the centre of the polyhedron formed by its neighbours. 

Even in this case, the calculated G(r) function fitted to the ex-

perimental curves deduced from the neutron scattering measurements 

of the amorphous Pd80Si20 alloy. These computer modelling experi-

ments suggest that any energy minimization algorithm may produce 

the amorphous like structures despite the relatively large uncer-

tainty in the choice of force constants. It should be emphasized 

that energy minimization procedures used for the construction of 

the DRP model structure do not maintain the topology of the origi-

nal structure. Boudreaux65) suggested that the improved represen-

tation of the amorphous structure achieved by the relaxation of
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DRP models was essentially due to the changes in local coordination 

with an increase in the proportion of some relatively well-defined 

molecular units. The DRP models of the amorphous Pd-Si, Fe-P and 

Fe-B alloys were examined in relation to the short range order of 

their atomic structure by Boudreaux and Frost.69) The types and 

numbers of near-neighbour atoms were calculated in detail, from 

which it was argued that a specific coordination was preferred and 

satisfied by a local unit structure around each metalloid atom. 

Furthermore, the local geometry was examined by computer graphic 

methods and it was discovered that the two local geometries domi-

nated the surroundings of metalloid species: the octahedron and 

the trigonal prism. 

     In order to explain the high resolution electron micrographs 

of the amorphous metals and alloys Graczyk and Chaudhari7Q) calcu-

lated the interference image contrast of the dense random packing 

of hard spheres by using the kinematical theory of diffraction. 

With the tilted beam configuration, they showed a snake-type regu-

larity extending over at least 10 A x 10 A of the image. The con-

trast of this type was not seen in the untilted symmetrical beam 

configuration, but, instead, a vague fringy contrast was obtained 

when the spherical aberration constant and the defocus value were 

properly chosen in the calculation. They concluded that this is 

a phase contrast rising from the structural anisotropy in the DRP 

model structure. 

1.3.2 Chemical cluster model 

     The similarity between experimental scattering data for amor-
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phous alloys and for the corresponding crystalline phases as de-

scribed in the section 1.2.1 supports the view that non-metallic 

atoms may exist in the ordered environment rather than in the larger 

holes inherent in the random packings of metal atoms. Especially, 

the nine-fold coordination of metalloid atoms suggests that the atom-

ic arrangement in this ordered region is similar to that observed 

in the corresponding crystalline phases. The crystalline borides, 

phosphides, carbides, suicides, etc. of transition metals, which 

readily form the amorphous alloys of transition metals with non-

metallic elements, have lattices containing a common structural 

unit consisting of a non-metal surrounded by six metal atoms ar-

ranged in a distorted trigonal prism with three further neighbours 

at somewhat larger distances. Furthermore, this structure persists 

over wide range of compositions and radius ratios, which indicates 

that this type of packing is stabilized by the chemical interac-

tions. 

      In an earlier calculation to reproduce the correlation func-

tion for metal-metal pair of the amorphous Fe-Pd-P and Ni-Pd-P al-

loys for the radial distance less than 6 A, i.e. in the region of 

their first three maxima, Maitrepierre71) used the unit cell of 

Pd3P as the basic structure, and took the broadening factors for 

individual peaks and the critical correlation distance as adjust-

able parameters. This approach emphasizes the short range order 

in the amorphous alloys. Gaskell72) constructed a model for the 

amorphous Pd80Si20 alloy based on the random packing of trigonal 

prismatic units. The arrangement of trigonal prisms resembles that 

observed in the cementite, Fe 3C, structure and is also the typical 
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structure of crystal phase formed by the devitrification of the 

amorphous metal-metalloid alloys. The model structure was relaxed 

using a Lennard-Jones 6-12 potential, with some additional con-

straints included to preserve trigonal prismatic coordination. 

The computed G(r) were, then, convoluted with Gaussian broadening 

functions which simulate the effects of thermal vibrations and 

transformation of reciprocal-space data, S(K), over a limited spec-

tral range. The calculated G(r) and S(K) were found to give a 

good representation of the experimental neutron scattering data 

measured to high K value, 30 A-1. However, the fine structure on 

the second peak in the G(r) as described before was not fully re-

produced. 

     Taking account of the similarity of partial pair correlation 

functions between amorphous Fe75P25 alloy and the crystalline Fe3P, 

Kobayashi et al. 73) constructed a computer model according to the 

computer-generated random coordinates and the relaxation. In the 

procedure of the energy minimization of model structure, a non-

spherically symmetric interatomic potential for Fe-P pairs, which 

was assumed to stabilize trigonal prismatic units similar to that 

constituting Fe3P crystal, was employed. The obtained partial 

G(r)'s agreed with the experimental x-ray scattering data, which 

suffered considerable truncation effects in the Fourier transforma-

tion of the S(K) functions. Aur et al. 74) obtained the G(r)'s for 

the amorphous Fe75B25 and Ni50Fe25B25 alloys using those of Fe3B 

and Ni3B crystal in a similar way by Maitrepierre. The calculated 

G(r) functions, each peak of which was broadened by a Gaussian 

function, exhibited a strong similarity to the experimentally ob-
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tained ones by them. 

1.3.3 Microcrystalline model 

     In the earlier stage of modelling experiments, models for 

the amorphous structure were classified as those in which most 

of the atoms are arranged in very small well defined crystals, 

the long range structural periodicity being absent because of 

randomness in orientations of these microcrystals, and the DRP 

models mentioned before. 

     The microcrystalline model was appealing because the most 

prominent peaks in the interference functions for many of the 

amorphous metal-metalloid alloys occurred close to the Bragg peaks 

in diffraction patterns of corresponding crystalline phases. The 

diffraction theory for the structure consisting of smallest crys-

talline aggregates was examined at first by Germer and White. 75) 

Peaks in crystalline scattering patterns can be broadened by small 

crystal sizes, by inhomogeneous strains, and in some cases by high 

densities of stacking faults. The calculation of scattering from 

n identical and randomly oriented small crystals has been based 

on the Debye equation 

                N N 
        I (K) = n ~ I fifj * sin(Krij)/Krij , (1) 

                      i j 

where N is the number of atoms in one microcrystal, K the magni-

tude of the scattering vector, rij the distance between atoms i 

and j, f the atomic scattering factor, and the summation is over 

all atoms in one microcrystal. The interference among scattered
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amplitudes from different microcrystals is neglected, i.e. they 

are assumed to scatter independently. The calculated scattered 

intensity function I(K) and the interference function S(K)(=I(K)/ 

Nnf2) show broadened peaks because of the small crystal size. 

Effects of thermal and static displacements of atoms from their 

equilibrium positions may incorporated in this type of the calcu-

lation by multiplying the intensity distribution of the model by 

a Debye-Waller damping factor exp(-<u2>K2) and adding a monotonic-

ally increasing background term 1-exp(-<u 2>K2). Dixmier et al. 76) 

and Cargill17) carried out such microcrystalline model calculations 

by assuming f.c.c. or h.c.p. microcrystals for the structure of 

the electrodeposited Ni-P amorphous alloy and could not obtain the 

agreement with the experimental S(K) function. However, the S(K) 

f functions calculated in this way were useful in establishing the 

microcrystalline nature of some evaporated films. Wagner et al.77) 

showed a similarity between the calculated S(K) for 125 atom f.c.c. 

microcrystals and experimentally obtained S(K) for the Ag48Cu52 

film of 1 um thickness deposited on a silica substrate cooled to 

liquid nitrogen temperature. In this case, the comparisons with 

the experiments indicated that for crystal sizes large enough to 

yield the sharpness in the first peak of the experimental S(K), 

the subsequent peaks in the model S(K) were too sharp and too in-

tense. 

     The validity of the Debye equation method for calculating the 

microcrystalline model I(K)'s and S(K)'s might be questioned be-

cause possible interference effects among scattered amplitudes 

from different microcrystals are neglected. The numerical calcu-
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lations by Betts and Bienenstock78) indicated that the intercrystal 

interference terms were significantly smaller than the intracrystal 

terms in all but the small-angle region, under the assumption of no 

correlations between orientations of neighbouring microcrystals. 

In this respect, Galeener and Rodoni79) did the calculations in-

cluding orientational correlations and showed that microcrystals 

separated from one another by small-angle grain boundaries produced 

the scattering patterns similar to those of larger and independ-

ently scattering microcrystals. Cargill17) also examined the ef-

fects of the strain distribution on the S(K) function of the micro-

crystalline model by taking the Gaussian strain distribution to 

the breadth at half-maximum of a resolved Bragg peak into consider-

ation. Cargill also investigated the effects of stacking faults 

on the S(K) function. However these approaches for testing hypo-

thetical microcrystalline structural model did not improve the 

qualitative agreement with the experimental data. It is unclear 

which combinations of size, strain and crystal structure are phys-

ically resonable. 

     Potential problems with microcrystalline structural models 

for amorphous metal-metalloid alloys also arise because measure-

ments indicate that these alloys have densities within two percent 

of corresponding crystalline phases. Large-angle grain boundaries 

are expected to decrease the density of polycrystalline solids be-

cause of the finite core sizes of atoms and the restrictions placed 

on atoms in boundary regions by structural order of the crystalline 

grains. Approximate calculations to improve the density deficit 

associated with large-angle grain boundaries are inconsistent with
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crystal sizes deduced from the application of the Scherrer parti-

cle size broadening equation to scattering patterns of these amor-

phous alloys. 

      Some calculations to reproduce high resolution electron images 

of amorphous Si and SiO2 were carried out by using the microcryst-

alline models. Howie et al. 80) calculated the dark-field and off-

set bright-field electron micrographs of the microcrystalline model 

and of the random-network model for the amorphous 5102 based on the 

kinematical theory of diffraction. The experimental observation 

of bright spots of larger than 10 A in diameter in dark-field and 

of lattice fringes in interference micrographs were well explained 

by the microcrystalline model but not by the random-network model. 

Cochran81) carried out a similar calculation for the random-network 

model of the amorphous Si, and found that the random-network model 

accounted qualitatively for many of what were observed in electron 

micrographs except those obtained by Howie et al. using the offset 

bright-field condition, which appeared to require the presence of 

small crystallites. Krivanek and Howie82) computed the kinematical 

electron microscope images from the Polk continuous random-network 

model and a polycrystalline cluster model under the condition of 

the tilt illumination. Dark-field images of both models showed 

qualitatively similar speckle patterns. Fringes appeared in bright-

field images from the polycrystalline model when the thickness was 

smaller than 40 A, but they disappeared in thicker samples because 

of the overlap effect and were totally not found in the Polk-model 

images. When the thickness exceed 50 A, their calculation did not 

predict any noticeable difference in the image from different mod-
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els nor did it explain the observation of fringes from such speci-

mens. 

1.3.4 Dislocation model 

     There have been considerable discussions on the melting phe-

nomena associated with the spontaneous generation of dislocations. 

The dislocation model of liquid state by Cotterill et al. 83) gives 

a liquid like pair correlation function when the dislocation den-

sity reaches a certain high value of about 3 X1014 cm-2, in which 

dislocations are separated about three atomic distances from each 

other. In this case, the second maximum split in the G(r) of the 

f.c.c. structure is reproduced as the dislocation density is in-

creased. 

     Suzuki84) proposed the dislocation model on the process of 

formation of amorphous metals. He attributed the rapid increase 

of the viscosity of supercooled liquids and the stability of the 

amorphous metals to the interaction between solute atoms and dis-

locations as well as the dissociation of dislocations into partials 

accompanied by stacking faults, multiple twins, etc. On the other 

hand, Ninomiya 85) calculated the S(K) function by assuming that 

the structure was composed of randomly orientated microcrystals 

which contain a dislocation in each crystal. Interference among 

scattering amplitudes from the domains separated from each other 

by the dislocation was found to make the first peak of the diffrac-

tion pattern sharp and intense and to change the shape of the sec-

ond peak. In this respect, he showed that when a 60° dislocation 

or screw dislocation is introduced, an octahedron inherent in the 
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close-packed crystalline structure is transformed into a tetragonal 

dodecahedron or trigonal prism, which are observed in Bernal's 

dense random packing structure. Koizumi and Ninomiya86) also con-

structed the dislocation model of the amorphous structure, in which 

many screw dislocations were introduced in a f.c.c. lattice in or-

der to produce local disordered structure and destroy its long 

range order. The final atomic positions were obtained by the re-

laxation of the dislocated structure using the Morse type inter-

atomic potential. For the dislocation density of 1.1 x1015 cm-2 

or 4.3 x1014 cm-2, the calculated G(r) function was found to be in 

good agreement with the experiments. From the geometrical analy-

sis, they showed the global connectivity of particular types of 

non-crystalline polyhedra inherent in the DRP model structure. 

However, it seems to be very difficult to identify a dislocation 

in such dislocated and relaxed model structure, since dislocations 

are separated by only a few atomic distances. 

1.3.5 Crystalline embryo model 

     Many recent experimental results as mentioned in the section 

1.2 suggest that in the amorphous structure atomic ordering is de-

veloped to a considerable extent possibly far beyond the first nei-

ghbour atomic distance. As was first pointed by Frenke1,87) the 

liquid structure may have a local order which could be regarded as 

the quasi-crystalline structure. Accordingly, the short range and 

further range order found in the amorphous structure is considered 

as a growing and frozen inheritance from supercooling liquid, while 

disorder or randomness is a reducing and frozen property inherited
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from the same parent. 

     In order to describe the well developed ordering in the amor-

phous structure, Fujita88) has proposed a thermodynamical theory 

and calculation on the quasi-crystalline liquid and its solidifi-

cation of pure matals and stoichiometric binary alloys. In his 

theory, it is assumed in the first place that the Gibbs' free ener-

gy of the hypothetical perfectly disordered liquid state can be 

lowered by the development of quasi-crystalline ordering. In a 

quasi-crystalline cluster consisting of i atoms, enthalpy and en-

tropy will be reduced by e and ~ per atom respectively and, in ad-

dition, the entropy of mixing of clusters and unclustered atoms 

will appear. The free energy changes will be, then, as a rough 

approximation, 

          DG = -ni(e-T~)-kBTln (N(N--nini) !+n)n! , (2) 

where N is the total number of atoms, n that of clusters, and kB 

the Boltzmann constant. More precise expression given by the same 

author 89) with an improvement of the configurational entropy term, 

corresponding to the last one in the above equation, is 

         AG = -C[e(i)-T~(i))+RT[ 1n C + (1-C)ln (l-C) + C(1-=1)] , (3) 

where C is the total fraction of the clustered atoms, ~ the number 

of shape diversity of a cluster and R the gas constant. e(i) and 

Vi(i), depending on the size i, are expressed by per mol. From the 

free energy minimum condition concerning the variable, n, i.e. 

aAG/an =0, at a fixed cluster size, the relation between T and C 
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(=ni/N) are obtained depending on the cluster size, i, by using 

the assumed values of e and q for copper, for instance. The 

changes of the average cluster size, i, with temperature is also 

evaluated from the free energy minimum condition, (BLG/ai) n =0. 

In Fig.6 is.shown a C-i-T diagram calculated from the above simul-

taneous energy minimum conditions, where full lines correspond to 

the equilibrium concentration of quasi-crystalline clusters at fix-

ed cluster sizes. Clusters smaller than i =8 would be insignifi-

cant as the quasi-crystalline state, while those larger than i =100 

would not appear significantly since they could exceed the critical 

size of nucleus for the crystallization from liquid or solidifica-

tion. In this respect, the quasi-crystalline clusters in super-

cooled liquid may be called as the "crystalline embryos". This 

word has been generally employed to represent the ordered cluster 

in the amorphous structure in the present author's later papers 

and in the present article. It can be seen from the figure that 

the smaller the quasi-crystalline clusters the higher their con-

centration at high temperatures. For instance, the clusters with 

i =8 are predominant and no large clusters appreciably appear at 

the melting point, T
m. When the liquid is supercooled, larger 

clusters gradually appear and increase as the temperature is low-

ered, and ultimately the larger ones exceed the smaller ones in 

number near the critical temperature, Tq. The optimum cluster size 

must vary with temperature as shown in the figure by a broken line 

on the curved surface made by the above full lines and also given 

as a projected curve, i*, on the i-T plane. The same behaviour is 

expected for the chemical clusters. By the rapid quenching from 
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the melt, the quasi-crystalline and/or chemical compound clusters 

will grow up in the number and size during the short time of super-

cooling before the glass temperature, Tg, is reached. On the other 

hand, at around Tg atomic jumps necessary for the growth of the 

clusters will be largely suppressed and, at the same time, all 

atomic movements will be frozen, resulting in the formation of 

the amorphous structure with a considerably high degree of order. 

In this case, the average cluster size will be unable to grow fast 

enough to follow the equilibrium size, i,but become smaller as an 

iq curve in the figure shows. The larger the clusters, the longer 

will be the time needed to grow. Therefore, large quasi-crystalline 

aggregates such as i =100 would not be expected but a great number 

of the intermediate size clusters from i =10 to i =40 would appear, 

giving rise to the medium range order in the amorphous structure. 

     Taking such high degree of atomic orderings into consideration, 

Hamada and Fujita3~ have proposed the crystalline embryo model for 

the structure of amorphous metals and alloys and, as a more real-

istic structural model, constructed an assembly of atoms consisting 

of the crystalline embryos and the disordered boundary region co-

existing and continuously and smoothly connected each other. The 

before mentioned fact that Mossbauer spectra of Fe-P-C and Fe-B 

amorphous alloys were successfully analysed by assuming the b.c.c.-

like near neighbour configurations suggests that the basic struc-

ture of the embryos in these alloys would be of the b.c.c. crystal 

form. This seems to be in good agreement with experimental fact 

that, in the very early stage of crystallization of the iron-based 

amorphous alloys containing iron exceeding the chemical compound
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compositions, the smallest crystallites first observed by any ex-

perimental technique are the b.c.c. a-iron particles. The crystal-

line embryo model satisfactorily reproduces the diffraction func-

tions and the high resolution electron images from the medium range 

order in the disordered structure, which will be described and dis-

cussed in this thesis.
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2. CRYSTALLINE EMBRYO MODEL

      There exist much evidences of high degree of ordering in the 

amorphous state in various experimental results, as described in 

the section 1.2. In this section, first the origin of structural 

ordering in the amorphous alloys exemplified by those made by rapid 

quenching from the melt is considered. One might argue that the 

idea of the structure consisting of smallest crystalline aggregates 

would collapse when subjected to the examination by the diffraction 

theory, as mentioned in the microcrystalline model. However, it 

is shown in the second place that an important correction to the 

microcrystalline diffraction theory is necessary and according to 

.that a completely different conclusion can be drawn. In the follow-

ing parts of this chapter.,.the construction and the improvement of 

the crystalline embryo model, which contains both the crystalline 

embryos and disordered boundary regions coexisting and continuously 

connected each other, is described.
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2.1 Basic Concept of Crystalline Embryo Model

2.1.1 Origin of crystalline embryos 

     The rapid quenching from the melt seems to be the most effici-

ent method to produce the amorphous alloys. This method gives us 

an intuitive picture that the structural disorder in the amorphous 

structure is simply inherited from the molten state or the liquid 

structure. However, the degree of order in the former is undoubted-

ly higher than in the latter, as mentioned in the section 1.2. In 

this respect, Fujita88,89) has proposed a statistical thermodynam-

ical theory of the medium range order. Hamada and Fujita3) have 

also proposed the crystalline embryo model for the structure of 

amorphous metals and alloys. To begin with, the process of the 

rapid quenching from the melt and the nature of the frozen-in dis-

ordered or ordered structure are carefully examined in this subsec-

tion. 

     Let us first consider anything like the average volume of the 

constituent atoms of the alloy to be produced as an amorphous mate-

rial. Thermodynamically the most suitable quantity for that purpose 

is probably the free volume, Vf, which means the statistical average 

volume in which each atom can vibrate and move around. In Fig.7 is 

shown the free volume as a function of the temperature. When an 

alloy is in the crystalline state, the volume increases nearly lin-

early with the temperature increase, exhibiting a nearly constant 

thermal expansion. When it reaches the melting temperature, Tm, it 

suddenly becomes unstable and transforms to the liquid state, where 

a large volume expansion,Vh, appears in addition to the amount, V
c, 
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rising from the thermal expansion of the crystal lattice. This 

excess volume can be regarded as the expanded range of atomic vib-

ration due to the relaxed potential formed in the average in the 

disordered liquid structure or as the total volume of holes formed 

in the liquid, although in the liquid state V
c and Vh are not al-

ways distinguishable from each other. Differing from the atomic 

vacancies in crystals, the atomic holes in liquid must be diffused, 

deformable and moving around almost continuously, exchanging their 

positions with atoms, that is, being commonly possessed by atoms 

and fully covered by the range of atomic vibration. The latter 

point of view is no other than that of the hole theory of liquid. 

The thermal expansion coefficient of liquid is larger than that of 

solid, because the ratio of increase of disorder with increasing 

temperature in liquid is much larger than in solid, or in other 

words, formation of vacancies in liquid is much easier than in sol-

id. When liquid is cooled, it will be more or less supercooled 

below Tm, during which crystalline nuclei will be formed from some 

embryos mentioned before and grow to complete the crystallization . 

Sometimes it is possible to keep the supercooled state at a temper-

ature, Ts, far below Tm before the crystal nucleation starts. 

Takagi90) made the supercooled state of bismuth and took the elec-

tron diffraction halo patterns. In Fig.8 are shown the interfer-

ence functions of this supercooled liquid Bi at 383 K, the liquid 

Bi at 573 K given by Waseda et al. 91) and the amorphous Bi film at 

4.2 K given by Hamada et al. .. 92) which was made by vacuum deposition 

on the cold substrate kept at liquid helium temperature. A small 

hump at K =2.7 A-1 in the S(K) function of liquid is enhanced and
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becomes a distinct shoulder of the first halo peak in the super-

cooled state. This clearly shows that, as the temperature of liq-

uid is lowered as in the supercooled state, ordering of a high de-

gree will proceed in the structure in parallel with a large reduc-

tion of the free volume which is shown in Fig.7. 

     When the liquid is not slowly cooled but rapidly quenched far 

down to a low temperature with a cooling rate as high as 10 5-6 K/s, 

the time for crystal nucleation will not be enough and a frozen 

state, in which the viscosity is so high that the atomic vibrations 

do not induce the atomic jumps, position exchanges and structural 

relaxations, will be achieved at a certain temperature, Tg, which 

may be called the glass point. Below Tg, the supercooled disorder-

ed state will be immobilized, and atomic vibrations will resemble 

those in the crystalline solid rather than in liquid. This means 

that the thermal expansion coefficient of such a frozen state must 

be not far from that of crystal irrespective of a considerably 

large free volume, as are shown in the figure. This frozen state 

is no other than the amorphous state. The excess free volume of 

the amorphous state is smaller than that of liquid, but is still 

far larger than that of crystal. In the liquid structure, the two 

kinds of free volume, Vc and Vh, are completely mingled and can 

not be differenciated, but in the amorphous state V
c is not quite 

different from that of crystal and almost all the volume Vh is al-

ready excluded from the range of atomic vibration, representing 

only static holes or interstices in the disordered structure. 

This should, therefore, be called the "dead free volume". 

     The above picture of the process of formation of amorphous 
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state by rapid quenching from the melt naturally leads us to the 

conclusion that ordering in the atomic arrangements may exist as 

small clusters already in the liquid structure. But, such quasi-

crystalline clusters must be different from the real crystallites 

in the sense that the former are of sub-critical size and dynamic-

al, appearing and disappearing with a relaxation time of the order 

of 10-6-10 sec.") Frenkel87) described such a fluctuating order-

ed state as in the above and called it the "cybotactic structure" 

following Stew art.93) As the temperature of the liquid is lowered, 

their number, average size and lifetime will increase as shown in 

Fig.6 and the degree of disorder and, accordingly, the free volume 

will decrease, as are predicted in Fig.7. By the rapid quenching 

from the melt, the quasi-crystalline clusters will be frozen as 

the static crystalline embryos together with the disordered region 

and will ultimately compose the amorphous structure. The degree 

of order or disorder frozen in the amorphous structure will largely 

depends on the rate of cooling, and, therefore, many free volume 

vs temperature curves should probably be drawn as in the figure. 

     Nold et al. 94) did the x-ray diffraction experiments on two 

molten Fe90B10 and Fe83B17 alloys at about 50°C above their melt-

ing points and found that the second maximum of the interference 

functions S(K) had a small shoulder in both cases, which has been 

considered to be characteristic of only the amorphous metals. As 

mentioned in the sebsection 1.2.1, the G(r) function of the liquid 

Pd80Si20 alloy showed a shallow hump at the smaller K value beside 

the first maximum instead of a distinct subpeak in the amorphous 

state, the latter being attributed to the chemical order of crys-
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talline Pd3Si type. These facts including the case of the super-

cooled liquid Bi could be connected with the quasi-crystalline 

clusters existing in the liquid and supercooled liquid state. 

      Computer simulation of the process of supercooling by means 

of molecular dynamics technique was carried out by Hsu and Rahman95) 

and Tanemura et al.,, S8) and they concluded that in certain cases 

ordered clusters with b.c.c.-like and f.c.c.-like atomic arrange-

ments appeared in the supercooled state and continued to grow in 

a short time to engulf the entire system. This looks to be in ac-

cordance with the above picture of the crystalline embryo formation. 

2.1.2 Diffraction from a microcrystallite 

      In the microcrystalline model so far treated, an amorphous 

state is considered to be an assembly of extremely small crystal-

lites, which have no correlation of orientations and interference 

between each other. By analysing the diffraction patterns of the, 

amorphous iron and nickel films condensed on the cold substrate 

kept at the liquid helium temperature, Ichikawa7) obtained the in-

terference functions, S(K), and compared them with the calculated 

S(K) functions of various microcrystalline models. He assumed 

that the interference function was fully represented by that of a 

microcrystallite, as above mentioned, and no correlation with its 

surroundings existed. The main features of the experimental dif-

fraction intensity curves were not reproduced by the calculation, 

even if a heavy structural disorder was introduced into the pair 

correlation function by the Gaussian broadening of each radial 

shell.
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     The S(K) function for an assembly of single element atoms is 

given by using Eq.(l) in the form, 

        S (K) = I (K) /Nf2 

                    1 sin(Kri_)                                              ( )            - 1 + N i~j Krij 4 

where N is the number of atoms in the assembly, K the magnitude of 

the scattering vector, rij the distance between atoms i and j, and 

the summation is over all atom pairs in the aggregate. Generally, 

as the size of the crystalline aggregate is decreased, the inter-

ference function gradually loses its sharpness and the interference 

peaks become broader. In Fig.9(a) is shown the S(K) function cal-

culated using the Eq.(4) on a b.c.c. microcrystallite composed of 

° 35 atoms. The lattice parameter is chosen as 2.8665 A which cor-

responds to a-iron at 20°C. The S(K) function is considerably dif-

fuse due to the reduced interference effect among the small number 

of atoms in the microcrystallite. The peak positions of the first 

and second maxima correspond to the (110) and (211) reflections 

from the ordinary large size crystals respectively, while the in-

tensity maxima corresponding to the (200), (220) and (222) reflec-

tions are almost missing. 

     Once a (112) twin, which is familiar in fine particles of a-

iron96) is introduced into this microcrystallite, the S(K) func-

tion becomes more diffuse owing to the break down of the normal 

crystalline periodicity at the twin interface. Nevertheless, as 

shown in Fig.9(b), more remarkable change is that the interference 

intensity rises up around K= 6.2 A-1, at which a high angle should-
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er of the second halo peak is usually observed in the diffraction 

patterns of amorphous materials. Atoms in one side of the twin 

interface have a special relation in the configuration with those 

in the other side, which is different from the b.c.c. crystalline 

periodicity. This makes particular phase differences and inevita-

bly changes the S(K) function around K =6.2 A-1. In the applica-

tion of the microcrystalline diffraction theory to the amorphous 

materials, improvement of the calculation similar to the above mod-

ification by twinning seems to be indispensable, since no isolated 

microcrystallites or crystalline embryos exist in the amorphous 

structure but they are always jointed together through the disor-

dered boundary regions. Atoms in the boundary regions unavoidably 

break the crystalline periodicity which is kept within the embryos, 

and it will lead to essential changes in the G(r) function and the 

S(K) function of the microcrystalline model. Results of actual 

calculations will be shown later. It might be worth of pointing 

out that the smaller the size of embryos the larger the number of 

adhereing boundary atoms and consequently the microcrystalline dif-

fraction theory, which does't take the boundary atoms into account, 

will become more useless.
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2.2 Model Construction for Amorphous Iron and Nickel

     In the last subsection, we have shown that the S(K) function 

of a b.c.c. microcrystallite is modified by introducing a twin 

boundary. This strongly suggests that as a realistic model an 

assembly of atoms consisting of the crystalline embryos and the 

boundary regions connecting them could be constructed to reproduce 

the characteristic diffraction intensity distribution of the amor-

phous metals. In this section, we will show how such embryos are 

packed together and the boudary layer atoms are arranged to form 

a rigid and compact amorphous structure. 

      The b.c.c. or f.c.c. crystalline embryo model is schematically 

represented in Fig.10. As the simplest case, the three-dimensional 

assemblies each composed of 397 or 677 atoms of single element, 

corresponding to iron or nickel respectively, are constructed by 

computer. The b.c.c. or f.c.c. structure is chosen for the crys-

talline embryos, which are represented by circled regions (A and 

B) in the figure. Surrounding each embryo is the disordered bound-

ary regions, which are shaded in the same figure (C.). As mentioned 

in the subsection 1.3.5, from the thermodynamical consideration 

and calculation of quasi-crystalline liquid and its solidification, 

Fujita88'89) suggested that a great number of the intermediate size 

clusters from 10 to 40 in number of atoms may exist in the as 

quenched amorphous alloys. Therefore, embryos in the model struc-

ture would have the size of the same order as his prediction. In 

the calculation, the embryos have a nearly spherical shape, con-

taining the same number of atoms of about 50, and have no correla-

tion in orientations with each other. They are separated by one
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or two atomic distance; in which boundary atoms are packed closely. 

In the actual process of constructing the amorphous structure, at-

oms with a given diameter are at first distributed at random in 

the overall volume according to the computer-generated random co-

ordinates provided that any two atoms do not interpenetrate each 

other, until the system has a certain packing fraction. Then,atoms 

of embryos are put into the system replacing the overlapped atoms 

already existed. The packing fraction in the calculated models is 

chosen from 0.66 to 0.70, which is a little lower than that of the 

b.c.c. or f.c.c. structure and yet higher than that of their liquid 

state. In order to connect neighbouring embryos as smooth and as 

tight as possible, atoms both in the boundary regions (C) and in 

the outer part of embryos (B) are relaxed by using an interatomic 

potential. For the b.c.c. embryo model Pak-Doyama potential of 

a-iron97) is employed and for the f.c.c. embryo model is an inter-

atomic potential presented by Huntington.98) As a result of relax-

ation, the displacements from the initial positions of atoms close 

to the surface of each embryo, i.e. the transition regions, are 

sometimes of the order of the interatomic distance, but those of 

the atoms near the core of each embryo are lower than 0.1 A. The 

projections of positions of half of atoms belonging to a b.c.c. 

embryo core and its surrounding transition region after the re-

laxation onto (110), (111) and (112) planes are calculated and 

shown in Fig.ll (a), (b) and (c) respectively. The projected po-

sitions of atoms are represented by circles, triangles and quadran-

gles according to the differences in the atom positions along the 

direction of projection, in which shaded ones correspond to core
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atoms. It is found in these figures that many atoms in the tran-

sition region lie nearly on their original positions before the 

relaxation, confirming the above mentioned fact. So that, the num-

ber of atoms belonging to the embryos is reduced to about a half 

of that before the relaxation. The ratio between the number of 

atoms in the embryos and that in the disordered boundary region is 

about 1:3.7 for the b.c.c. crystalline embryo model and 1:4.5 for 

the f.c.c. crystalline embryo model. 

      In order to see the connection of atoms in a b.c.c. embryo 

and its surrounding disordered region, the distribution of poten-

tial energy of each atom and reduced hydrostatic pressure on it 

are calculated by using the same interatomic potential employed in 

the relaxation process and are shown in Fig.l2 (a) and (b) respect-

ively. The potential energy of the centre atom in the embryo core 

has almost the same value of large crystal. As the radial distance 

from the centre atom position is increased, the potential energy 

of each atom becomes greater with a large dispersion. On the other 

hand, the reduced hydrostatic pressure on the centre atom of the 

core is nearly 0 kbar and the pressure on each atom gradually be-

comes scattered with increasing the radial distance from the centre 

atom. Kiritani and Hamada99) calculated the distribution of hydro-

static pressure on each atom in the DRP model structure by using 

the same potential, and showed that it ranges from -200 kbar to 

+200 kbar, which agrees with the pressure distribution in the dis-

ordered regions in the embryo model. These results indicate that 

atoms both in the embryo and the disordered boundary region are 

continuously and smoothly connected. 
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2.3 Model Construction for Amorphous Fe-B Alloys

     Three crystalline embryo models are constructed by computer, 

simulating the structures of the amorphous Fe100 -xBx alloys (for 

x =14, 20 and 25). The algorithm for the simulations is almost 

the same as that employed for modelling of one-component amorphous 

structure. 

     The before mentioned fact that the Mossbauer spectra of amor-

phous Fe-B alloys were successfully analysed by assuming the b.c.c.-

like near neighbour configurations suggests that the basic struc-

ture of the embryos in these alloys would be of the b.c.c. cystal 

form. 26) It is also confirmed that the interference function cal-

culated from the b.c.c. crystalline embryo model is in good agree-

ment with so far obtained experimental ones for various amorphous 

metals and alloys, as described later. Therefore, in the present 

models, the b.c.c. structure is chosen for the crystalline embryos. 

For the case of the amorphous Fe-25at%B alloy, the chemical com-

pound cluster of crystalline Fe3B type is added in the model as a 

basic structural unit of the crystalline embryo in accordance with 

the experimental results. 16,26,27,28) 

     A schematic view of the crystalline embryo model is given in 

Fig.13. The embryos of the b.c.c. structure represented by circled 

regions (A and B) in the figure have a nearly spherical shape, in-

itially containing the same number of atoms of about 60, and have 

no correlation in orientations with each other. The lattice para-

meter of the b.c.c. embryo is chosen as 2.8665 A which is the same 

value as that in the b.c.c. embryo model of single element case. 

The distance between the centres of neighbouring embryos is taken 

                                60 -



4) 

0

0 

E 

w

tn 
N 

m LO 
N 

U, 

0 
0 0 

E 

Q

     ~
_- o 

  mm 
     (0 0 

    LL LL 

     u~ cn 
    =3 :3 
   0 0 
     _C -C 

     C DL 
L -

   0 0 

  E E 
  Q Q

0

v

zt

m

A

ILI /

P
U

i

Q

I

~ Ll

/-11
P/~ TI

  U) 
z 
0 

          U) Ln 
    U 0 

    0 U 

 CI-1 0 0 

  N N -r-4 

E 

 r-1 0 r-1 0 
  N f•+ r-4 U 
 10 0 cd 

  O U +1 r-i 
          V) Cd 
     0 ?. U 

O                            

- N 

E N .~ U 
 0 +~ 

     m a) 
- a~ LH 

      +•) 0 4J 
  •r1 

 ,-4 
Q ~ Q 

 cd 0 
 +- •rl 

 CU) bA 

 U 0 0 
       r-1 • r-I 
       r•i . 

~ Cd 
 ++ O k a 

 Ck LJ I +-) >, 4-) 
 O N •ri it 

         N Cd W 
 3 rd ~' T3 M 

 •rO, CCdd Ski w 
      C) - m 

 -N 
 •r s.' rC3 •r~i 

 +3 ^ +. CD r-1 
 cd d iN r4 
          .. 0) cd 
     .. 1q - 4) 

 U 0 ~. 
v) N 4-

        >CN •-4 U 
       44 -

 M }t, ~ C}.1 
             (1) 0 
    O U -

      o +. U) 
 bO r-1 k fr  

• r-1 4) 4-~ • • C)

- 61 -



to be about 16 A. Surrounding each embryo is the disordered bound-

ary regions, which are shaded (C) in the figure. Atoms are distrib-

uted densely and randomly according to the computer-generated ran-

dom coordinates in this regions. For the amorphous Fe75B25 alloy, 

small clusters of trigonal prisms containing six Fe atoms in a 

nearest neighbour and three further Fe atoms at somewhat larger 

distances around a centre boron atom are distributed in the disor-

dered boundary regions. These chemical embryos are represented by 

triangles (D) in the same figure. In the calculations, three-

dimensional assemblies composed of about 800 hard spheres of the 

two different diameters are constructed by computer under the pe-

riodic boundary condition. The spheres of different sizes repre-

sent the atoms of different types, i.e.iron and boron. Experiment-

al evidences in many other metal-metalloid amorphous alloys have 

eliminated the possibility of perfectly random distribution of met-

al and metalloid atoms and showed that metalloid atoms are not in 

contact. Lamperter et al. 16) also confirmed above mentioned fact 

in the amorphous Fe80B20 alloy. Other computer modelling experi-

ments for amorphous Fe-B alloys also adopted this condition. 65,66) 

Therefore, in the present model, boron atoms are scattered so as 

not to contact with each other and embeded interstitially or sub-

stitutionally in the outer part of the b.c.c. type embryos (B in 

Fig.13) and disordered boundary regions. The density of each model 

is fitted to the experimental value measured by Fukunaga et al. 11) 

     In order to connect embryos with the disordered boundary re-

gions as smooth as possible, iron and boron atoms both in the outer 

part of embryos (B in Fig.13) and in the disordered regions (C) are
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relaxed by using three kinds of assumed interatomic potentials. 

In this case, atoms belonging to the inner part of embryos are kept 

unrelaxed. Otherwise, the embryo cores are not able to retain the 

b.c.c. structure, since an interatomic potential with a soft core 

repulsive term as given below is employed. When the harder repul-

sive term such as of the Lennard- Jones potential is used, the em-

bryos are more persistent. Therefore, the unstable character of 

the embryo cores exhibited in this calculation is presumably not 

essential. In addition, it is not always clear whether the cohe-

sive energy of the metal-metalloid amorphous alloy is adequately 

represented by a sum of pair-wise interatomic interactions, which 

does not take account of directional bonding characters of metal-

metalloid and metal-metal pairs. Nevertheless, computer modelling 

experiments suggest that any energy minimization algorithm may pro-

duce a dense and isotropic arrangement of atoms, despite the rela-

tively large diversity in the choice of force constants. In the 

case of the model construction for the amorphous iron, the Pak-

Doyama potential 97) for a-iron, of which the repulsive part is re-

latively soft compared with that of the Lennard-Jones 6-12 power 

potential, is employed, leading to variability in the near-neighbour 

atomic distances which could remove to a considerable extent the 

difficulty in the dense packing of atoms. Therefore, a modified 

Morse-type pair potential, which is as soft as the Pak-Doyama po-

tential and has been used by Heimendahl50) and Fujiwara et al.,, 67) 

is employed as follows. 

          fi(r) = e{exp(-2a(r-r0))-2exp(-a(r-r0))}'T(z), (5)
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                                 1 z<0 

          with T(z) _ -z4 + 4z3 - 4z2 + 1 0 < z < 1 (6) 

                                 0 z>1 

where Z=(r-r0)/(r
c-r0), a=1.69 and rc/r0=1.34. The value of rc/r0 

is rather arbitrary and adjusted to that of the Pak-Doyama poten-

tial used in the previous calculation. The truncation function 

T(z) satisfies the requirement that the potential and its first 

derivative continuously vanish at the truncation point rc. Thus 

obtained truncated Morse-type potential cp(r) becomes quite similar 

to the Pak-Doyama potential by choosing appropriate values of the 

position r0 and the depth of potential minimum c. The parameters 

for the interatomic potentials used to describe the amorphous Fe-B 

alloys are determined as follows. The x-ray scattering is gener-

ally dominated by the contribution from the heavier metallic ele-

ments. It is considered that the first peak position in the pair 

correlation function corresponds to the position of the Fe-Fe in-

teraction potential minimum. According to the results by Fukunaga 

et al. 11) r is set at 2.57 A for the model of the amorphous 
             OFe-Fe 

Fe86B14 alloy and for that of amorphous Fe80B20 and Fe7SB25 alloys 

is at 2.58 A. Other two parameters, r O
Fe-B and r OB-B , are taken 

from the crystal structure data on the Fe3B as 2.05 A and 3.14 A 

respectively. The latter indicates the absence of nearest-neighbour 

B-B correlations. Lamperter et al. 16) showed that the nearest-

neighbour distance for the Fe-B pair in the amorphous Fe80B20 al-

loy is 2.14 A. We also calculated the interference and pair cor-

relation function using this value and compared them with those in 

the case of the average Fe-B spacing of 2.05 A. The results of 
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the calculations employing the two different parameters will be 

compared later. The depth of the potential minimum for the Fe-Fe 

pair, 6Fe-Fe' is 0.51 eV, which was derived from the cohesive en-

ergy of a-iron (Fujiwara et al. 66)). The interaction strengths 

for the Fe-B pair and the B-B pair are more complicated. 

Boudreaux65) argued the effect of the choice of these parameters 

and conluded that the metal-metalloid interaction strength should 

be greater than that of the metal-metal interaction, which satis-

fies chemical requirements. In the present studies, several runs 

of computation have been tried to clarify the effect of these para-

meters on the pair correlation functions and EFe -B and EB-B are 

finally determined to be 0.55 eV and 0.05 eV respectively. Thus 

obtained truncated Morse-type pair potentials are shown in Fig.14.
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2.4 Model Structure for the Calculation of High Resolution

     Electron Images 

     The axial bright-field images are calculated for the crystal-

line embryo model of the amorphous Fe86B14 alloy, of which the 

schematic view is given in Fig.15. The embryo cores with the b.c.c. 

structure represented by circled regions (A) have no correlation 

in orientations with each other. Surrounding each embryo is the 

disordered regions (C), which is shaded in the figure. Atoms are 

distributed densely and randomly according to the computer-generated 

random coordinates in this regions. In order to connect embryo 

cores with the disordered regions as smooth as possible, iron and 

boron atoms both in the outer part of embryos (B) and in the disor-

dered regions (C) are relaxed by using three kinds of the Morse-

type interatomic potentials. Therefore, the atomic positions of 

the outer part of embryos more or less deviate from those of the 

b.c.c. structure. The mean distance between the centres of neigh-

bouring embryos is about 16 A. The b.c.c. embryo cores (A) do not 

contain boron atoms and their lattice parameter is 2.8665 A corres-

ponding to that of a-iron. The S(K) and the G(r) of the model 

structure well reproduce the diffraction experiment as described 

in the next chapter, when the number of iron atoms belonging to 

the embryo core is taken as 15. The cluster of this size contains 

the first and the second b.c.c. neighbour shell for the central 

iron atom. The model assembly used in the image contrast calcula-

tion is a sphere of 20 Ain diameter in which a single b.c.c. embryo 

is placed in the centre. This embryo together with its outer part 

is expected to contribute to the lattice image when it is near the 
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Bragg position. Furthermore, in order to examine the overlap ef-

fects between two crystalline embryos and the change of the lattice 

image with the thickness increase of the specimen, the calculation 

is done on two different spherical assemblies stacked one over the 

other. Since the atomic scattering factor of boron atoms is rela-

tively small as compared with that of iron atoms, the contribution 

of boron to the image formation is neglected. Accordingly, the 

calculations are carried on the scattering by about 330 iron atoms 

in a spherical aggregate and about 660 iron atoms in two spherical 

ones. 

     For the purpose of comparison with the embryo model, calcula-

tions are also made on the DRP model, in which iron and boron atoms 

are distributed at random in the overall volume according to the 

computer-generated random coordinates, provided that the probabil-

ity of boron-boron neighbouring is excluded, until the system has 

the same composition and the density as the embryo model. Then, 

the atoms are relaxed by using the same interatomic potentials as 

in the embryo model. The DRP model thus obtained is quite similar 

to those employed by other investigators to explain the diffraction 

functions, S(K) and G(r), of amorphous alloys.
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3. CALCULATION OF X-RAY DIFFRACTION FROM EMBRYO MODEL

      In the last chapter, model assemblies of single element for 

the amorphous iron and nickel and, as a more realistic structural 

model, model aggregates for the amorphous Fe-B alloys are const-

ructed by computer based on the concept of crystalline embryos. 

These model assemblies contain both the crystalline embryos and 

the disordered regions coexisting and continuously connected each 

other. In this chapter, the interference function and the pair 

correlation function of these embryo models are calculated and 

compared with the experiments. 

     In the single element case, the analysis of the crystalline 

embryo model gives that the embryos and their surrounding and at-

taching atoms which form the disordered boundary region can play 

essential roles to reproduce the characteristic diffraction func-

tions of amorphous metals and alloys. However, without the metal-

loid atom, the packing structure of the disordered regions is not 

necessarily realistic and the crystalline periodicity in the embryo 

is stronger than that expected from the real structure, giving rise 

to disagreements in the peak profiles, ratios and positions in the 

diffraction functions with the experiments. On the other hand, in 

the x-ray diffraction measurements, the magnitude of the scattering 

vector, K,is inevitably limited at around 17 A-1 in the reciprocal 

space, which brings about a poor resolution of the G(r) function . 

Therefore, the effect of the truncation of the S(K) function on the 

G(r) function is examined. Then, by taking account of the effect 

of truncation and applying a new correction method, two diffraction 

functions are recalculated from the computer models for amorphous 
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Fe-B alloys based on the concept of the medium range order rising 

from crystalline embryos. Finally, it is concluded that two func-

tions are in good agreement with the experiments, when the embryo 

size is taken to be as small as 10 A in diameter, which corresponds 

to some twenty atoms cluster including a part of the transition 

region.
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3.1 Deduction of S(K) and G(r) Functions

      After the construction of the amorphous structure based on the 

concept of crystalline embryos as mentioned before, the pair corre-

lation function and its Fourier transform, i.e. the interference 

function, are calculated. Using the radial distribution function 

of atoms as a function of the radial distance r, RDF(r), the pair 

correlation function is written in the form, 

         G(r) = RDF(r)/4Trr2p0, (7) 

where p0 is the number density of atoms in the model structure. 

     The relation between the pair correlation function for a macro-

scopically isotropic material containing atoms of only one chemical 

species and the coherent x-ray scattering by such a material was 

derived by Zernike and Prins100) and has been discussed subsequent-

ly by many authors. The coherently scattered intensity from N 

identical atoms in an irradiated volume can be expressed in the 

Fraunhofer approximation in terms of K =k' -k as 

         I(K) = j i f. (K)fi(K) exp(-iK• (rl -r.)) 

            = Nf(K)f*(K) + j 
lEJfj (K)fi(K) exp(-iK• (rl-r.)), (8) 

where k and k' are the incident and scattered wave vectors, K the 

scattering vector, f(K) the x-ray atomic scattering factor for the 

atomic species being considered, rj the position of the jth atom, 

and the summation is over all atom pairs in it. This I(K) does 

not include the x-ray intensity incoherently scattered in Compton 

process and neglects the multiple scattering effects. 
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     It is usually assumed that the amorphous structure is macro-

scopically homogeneous and isotropic, and described by the pair 

correlation function G(r) which depends only on r =Ir1 -ri 1. Omit-

ting the zero angle scattering, which occurs at extremely small an-

gle for an irradiated volume of macroscopic size, the equation (8) 

can be rewritten in the form by using the G(r), 

        I(K) =NIf(K) 12(1 +4nrp0J r2(G(r)-l)sin(Kr) dr). (9) 

0 The interference function S(K) is defined as 

         S (K) = I (K) 
            N f (K) 12 

              = 1 + 4nrp0J r2 (G (r) -l) sin (Kr) dr. (10) 
                                                00 

0 This is essentially the same as Eq.(l) and employed as the basic 

formula for the computer calculation of the crystalline embryo mod-

el as well as other models. 

     In a binary alloy, the total pair correlation function G(r) 

and the total interference function S(K) are expressed using the 

partial pair correlation function Gij (r) and the partial interfer-

ence function S..(K) respectively as follows, 

          G(r) =wiiGii(r) +w..G.. (r) + 2w..Gi. (r) (11) 

and 

            S(K) =w..S..(K) +w..S..(K) +2w..S..(K) (12)
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0 

with 

         wig = x i x i fife /(Z xkfk) 2 , (13) 
k 

where xi and fi are respectively the atomic fraction and the x-ray 

atomic scattering factor for an atom of type i. In the present 

simulation, the K dependence of the weighing factor wiJ is ignored 

but, instead, the averaged value of each wiJ over the range of K 

from 0 to 10 A-1 is used in Eqs. (11) and (12). For instance, in 

the calculation of the model of the amorphous Fe75B25 alloy, the 

weighing factor wFeFe is given as 0.883 and the corresponding fac-

tor for the Fe-B correlation is taken as about eight times smaller 

than that.
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3.2 S(K) and G(r) Functions of Embryo Model of Single Element

     The pair correlation function for b.c.c. crystalline embryo 

model is shown in Fig.16(a).. The lattice parameter of b.c.c. struc-

ture of the embryo is the same as the value used in Fig.9. In this 

model calculation, outer 36 atoms of each embryo containing 51 at-

oms are relaxed with the surronding boundary atoms by using the Pak-

Doyama potential. Accordingly, each embryo core retaining the 

b.c.c. structure consists of only 15 iron atoms. The calculated 

G(r) function does not always fit the curves obtained from the dif-

fraction data as regards the shape of the second peak. In this re-

spect, as mentioned in the subsection 1.2.1, Waseda and Chen21) 

showed that the G(r) functions of amorphous Fe-B alloys with boron 

content below 20 at% had the "reversed" second peak splitting in 

spite of the "normal" splitting in the second halo peak in the S(K) 

functions. On the other hand, the S(K) function derived from the 

G(r) function, which is shown in Fig.17(a), well agrees with so far 

obtained experimental curves of various amorphous metals and alloys, 

although relative positions and intensities of halo peaks are still 

slightly different from experimental ones. It is worthy of noting 

that the shoulder on the high angle side of the second halo peak 

in the S(K) function, which does not appear in the case of an iso-

lated b.c.c. microcrystallite as in Fig.9(a), is clearly seen. In 

order to find the effect of local environments on the conformation 

of the S(K) function, embryo core atoms, the atoms in the transi-

tion regions and the disordered boundary atoms in the vicinity 

of the embryos are taken as the centres and the radial distribution 

around them is examined. In this case, the transition region is 
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  divided into two parts, i.e. inner and outer ones, the former being 

  closer to the core than the latter, by taking account of the fact 

  that the displacements from the initial positions of atoms after 

  the relaxation is much less in the former than in the latter. The 

  partial G(r) functions calculated from partial RDF's are, then, 

  Fourier transformed to obtain the S(K) functions, which are shown 

  in Fig.18(a), (b), (c) and (d) respectively. The partial S(K)Is 

  given in (b), (c) and (d) of the figure exhibit the characteristic 

  features of diffraction intensity distribution of amorphous metals, 

  especially the splitting of the second halo peak. The profiles of 

  the second halo peaks in the above S(K)'s give the better agreement 

 with the experimental ones than that in Fig.17(a), and this suggests 

  that the shoulder of the second halo peak arises from the interfer-

  ence between the atoms in the embryos and those in the disordered 

  boundary regions. On the other hand, the first halo peak in Fig. 

  18(d) is lower than that in Fig.17(a), suggesting that a degree of 

  atomic order higher than that existing in the simple dense random 

 packing structure in the boundary regions is necessary to reproduce 

  the experimentally obtained values of the peak height of the first 

  halo peak. Actually, when the atoms in the embryo cores are ex-

  tracted and subjected to the same procedure as in the above, the 

 S(K) function given in Fig.18(a) shows the first halo peak sharp 

  enough to be compared with the experimental data, but, instead, 

 no splitting is observed in the second halo peak, as expected in 

  the case of simple isolated microcrystalline model. The above re-

 sult not only emphasizes that the microcrystalline diffraction the-

 ory, which does not take the boundary layer atoms into account, is 
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  not applicable to the amorphous materials, but also strongly sug-

  gests that the boundary layers, which intervene between and connect 

  the neighbouring embryos, play important roles in the diffraction 

  phenomena, especially affecting the second halo peak of the inter-

  ference function. 

        In the dislocation model of amorphous structure by Koizumi and 

  Ninomiya,86) the height and the full width at half maximum of the 

  first halo peak of the interference function agree with the experi-

  mental results. In the present model, there is no correlations 

  in orientations between the embryos and neighbouring embryos are 

  linked together through the atoms in the disordered boundary re-

  gions. Although the fundamental concept and assumptions of the embryo 

  model structure are different from those of the dislocation model, 

  the height and the full width at half maximum of the first halo 

  peak in the former are nearly the same as those in the latter. 

  This agreement between the two models probably arises from the 

  lattice periodicity kept in the confined regions with a certain 

  volume, which are no other than the lattice domains separated by 

  dislocations in the dislocation model and yet are the core parts 

  of the embryos in the present model. 

       The effect of the basic structure on the diffraction phenomena 

  in the present model is readily seen in Fig.16(b), in which the 

  G(r) function for the f.c.c. crystalline embryo model is shown. 

  Each embryo contains 55 atoms and its outer 36 atoms are relaxed 

  together with the boundary atoms. Each embryo core with the f.c.c. 

  structure consists of 19 nickel atoms. The lattice parameter of 

  f.c.c. structure of the embryos is taken as 3.5241 A corresponding 
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to nickel at 20°C. Other conditions for calculation are the same 

as the before mentioned b.c.c. case. Although the correlation 

function is in fairly good agreement with that calculated from 

the experimental data, the considerably high first peak suggests 

that the f.c.c. crystalline periodicity persistently remains in 

the model structure after the relaxation. The S(K) function shown 

in Fig.17(b) does not fit the experimental curves obtained by the 

x-ray diffraction specially as regards the shape of the second 

halo peak. In this respect, total G(r) functions with high real-

space resolution of the amorphous Pd-Si alloys displayed definitely 

a second peak splitting into three subpeaks,10,11) as mentioned 

the subsection 1.2.1. 

     Another important factor in the modelling of amorphous struc-

ture, which would strongly influence the diffraction phenomena, is 

introduction of metalloid atoms into the structure. Without the 

metalloid atoms, the packing structure of the boundary regions 

would not necessarily be realistic and the crystalline periodicity 

in the embryos would be stronger than that expected from the real 

structure, presumably giving rise to disagreements in the peak 

profiles, ratios, and positions in the correlation function with 

the experiments. Improvement of the modelling and calculation by 

taking account of the metalloid atoms are described and discussed 

in the following sections 3.3 and 3.4.
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3.3 Consideration on the Correspondence between Diffraction

      Pattern and Structural Model 

      In the neutron diffraction, the nuclear scattering amplitude 

and the incoherent scattering contribution to the total intensity 

distribution are constant even for the scattering vector larger 

than 20 A-1. Suzuki et al.10) obtained the interference functions 

and the corresponding radial distribution functions and pair cor-

relation functions for several amorphous Pd-Si alloys by means of 

the time-of-flight neutron technique. Scattering was measured 

over a wide range of K values up to 30 A-1, and a well resolved 

pair correlation function showing a distinct separation between 

two first neighbour peaks, which are associated with Pd-Si and 

Pd-Pd distance respectively, was obtained. In the case of x-ray 

diffraction, the atomic scattering factor is remarkably reduced 

and the incoherent contribution to the scattered intensity, i.e. 

the Compton scattering, becomes greater, as the K value is in-

creased. Accordingly, even when the most careful precautions are 

taken in the measurements, x-ray scattering data are restricted 

to relatively small scattering angles (K
max =15ti17 A-1), so that 

the resolution in the real-space data is poor as a result of ter-

mination ripples and broadening. Using the interference function 

S(K) derived from the measured diffraction intensity distribution, 

the pair correlation function G(r) is given in the form, 

K         G(r) = 1 + 2 J max K(S(K)-l)sin(Kr)dK. (14) 
                   2~ rp0 0
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where K
max is the truncation value of the scattering vector. When, 

K
max is infinite, the Eq.(14) is exactly an inverse Fourier trans-

form of Eq.(10). However, in the actual experimental analyses, the 

Kmax truncation is unavoidable as mentioned before, and the ob-

tained pair correlation function strongly depends upon its value 

as the following example shows. In Fig.19, the original pair cor-

relations calculated from the crystalline embryo model of the amor-

phous Fe86B14 alloy using Eq.(7) are shown by small dots. Some 

characteristic peaks below 5 A corresponding to the b.c.c. struc-

ture of the embryos are seen, but over raidal distances greater 

than 15 A, the pair correlations become almost unity with negligi-

bly small fluctuations, indicating the absence of appreciable spa-

tial variations of the number density of atoms. Accordingly, the 

intensity distribution in reciprocal space calculated by using Eq. 

(10) over a range from r=0 to r=15 A may satisfactorily describes 

the interference function of the model structure, which will be 

shown later in this section. In order to clarify the effect of 

termination, the pair correlation functions obtained by truncating 

the Fourier transformation at two different values of K
max in Eq. 

(14) are shown in the same figure. In the case of Kmax = 30 A-1, 

the original pair correlations are approximately followed, as dash-

ed line shows. Especially an asymmetry appears in the first max-

imum with a shallow hump at about 2.87 A corresponding to the sec-

ond nearest neighbour distance in the b.c.c. structure. Some small 

humps on the second peak also arise from the b.c.c. structure of 

the embryos, as readily identified from the original pair correla-

tion data represented by the dots. When the truncation is done at 
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K
max =15 A-1, the. fine structures in the line profile for Kmax = 30 

A-1 disappear with slight reductions of the first and the second 

peak height, although the basic features of the curve is preserved, 

as the full line in the figure shows. The single first peak in 

this case has a large tail extending toward r z3.2 A, enveloping 

the above mentioned 2.87 A suppeak, and the second peak exhibits 

two components, of which the outer one at r .4.7 A has a greater 

amplitude than the inner one at 4.1 A. These features are quite 

similar to those already found in the previous calculation for the 

b.c.c. embryo model of single element corresponding to the hypo-

thetical amorphous structure of pure iron. Noteworthy are the 

shape of the second peak and a small hump at r z2.05 A: The form-

er presents the "reversed" peak splitting in accordance with the 

experimental result by Waseda and Chen,21) and the latter arises 

from the Fe-B correlations. Suzuki et al. 10) confirmed that the 

resolution of the pair correlation function is progressively im-

proved by increasing the Kmax value in the Fourier transformation 

of the interference function experimentally obtained for the amor-

phous Pd-Si alloys. For example, when the truncation was made at 

Kmax 25 A-1, the radial distribution function had the second peak 

split into three suppeaks in contrast to two suppeaks for Kmax 

10 A-1, which is shown in Fig.2. The above examples of the theo-

retical calculation for an amorphous Fe-B alloy and the experiment-

al analysis for an amorphous Pd-Si alloy clearly indicate that the 

truncation in the Fourier transformation of interference function 

severely controls the quality and spatial resolution of the corre-

lation function and, therefore, to compare a G(r) experimentally 
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obtained by the truncated Fourier transformation with a small Kmax' 

shch as 15 A-1, with a model G(r) is sometimes inadequate. This 

means that the plausibility of the model is not always guaranteed 

by the direct comparison between the experimentally obtained G(r) 

and the model G(r) which is not subjected to the truncation effect. 

     In order to make the more reasonable comparison with the ex-

perimental data, a new process of Fourier transformations, which 

takes account of the truncation effect, is applied to the struc-

tural model, as illustrated in Fig.20. The process of the left 

hand side in the diagram shows the normal experimental procedure 

to obtain the S(K) and G(r) from the diffraction intensity distri-

bution, in which the truncated Fourier transformation, Eq.(14), is 

operated between S(K) and G(r). In the x-ray diffraction experi-

ments for the amorphous Fe-B alloys, K
max is about 15 A-1, as in-

dicated on the left hand side in Fig.20. On the other hand, in the 

computer modelling experiment, the pair correlation function is 

derived from the radial distribution function by using Eq.(7). 

It should be noted that thus obtained pair correlation function 

does not correspond to the experimental one subjected to the trun-

cation effect as discussed above. It is, therefore, necessary to 

derive the pair correlation function of the model through the 

process equivalent to that used in the analysis of the x-ray dif-

fraction data, and the first comparison must be between the two 

interference functions thus obtained from the experiment and the 

model with the truncation.at 15 A described before. In the second 

place, then, the truncation at Kmax - 15 A-1 must be done in the 

inverse transformation, Eq.(14), to obtain the pair correlation
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which can be exactly compared with the experimental one, as illust-

rated on the right hand side in Fig.20. It is concluded that the 

above process of iteration of Fourier transformation is necessary 

for the meaningful comparison between the experimental results and 

the model calculation. Actually, this method is successfully ap-

plied to the crystalline embryo model as will be shown in the fol-

lowing section.
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3.4 S(K) and G(r) Functions of Embryo Model for Amorphous Fe-B

     Alloys 

     Three kinds of model assemblies of atoms consisting of the 

b.c.c. type embryos and the disordered boundary regions connecting 

them are constructed to simulate the amorphous Fe 86B14' Fe80B20 

and Fe75BZ5 alloys. The lattice parameter of the embryos is taken 

to be the before mentioned value, 2.8665 A. The embryos are near-

ly spherical, containing 59 atoms, and in order to have the smooth 

and tight connections between the atoms in the structure, the 

boundary and the surface atoms of the embryos are relaxed by using 

the assumed interatomic potentials, as described in the section 2.3. 

In the course of the relaxation process, in which the atoms belong-

ing to the embryo cores of various sizes are kept unrelaxed for the 

reason already mentioned in section 2.3, total interference func-

tions as defined by Eq.(12) are examined, as given in Fig.21, to 

determine which embryo size is most probable for reproducing the 

experimentally obtained ones. It is worthy of noting that the 

shoulder on the high angle side of the second halo peak, which does 

not appear in the case of the isolated b.c.c. microcrystallites, 

is clearly seen, even when each embryo composed of 51 atoms retains 

the b.c.c. structure. This was satisfactorily discussed in a pre-

vious section, particularly with respect to the role of boundary 

layer atoms intervening between and connecting the neighbouring 

embryos. A small hump around K= 7 A-1 and a large one around K= 

8.25 A-1 in the line profile correspond to (310) and (321) reflec-

tions from the ordinary b.c.c. crystals respectively, inevitably 

appearing on account of the large size of the embryos. Another 
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tiny hump appearing at around K =7.9 A-1 does not arise from any 

crystal plane reflection. As the size of the embryos is reduced 

through the relaxation process, the intensity of each halo peak is 

slightly decreased and the humps as described above become obscure 

owing to the lowering of the crystalline periodicity in the embryos. 

The hump at K= 8.25 A-1 persistently remains even in the case of 

the embryo composed of 27 atoms, but it diffuses into the third 

halo peak together with the smallest hump at K =7.9 A-1 when the 

number of atoms in each embryo is decreased to 15, as shown in the 

bottom of Fig.-21. Noteworthy is that, in this case, the total in-

terference function agrees well with the experimental ones, espe-

cially those by Waseda and Chen.21) A similar tendency can be seen 

in the total pair correlation function, as shown in Fig.22. When 

each embryo contains 51 atoms, the total pair correlation function 

shows the asymmetric first maximum with a tail extending beyond r 

z 2.9A and many other small humps. Some of them arise from the em-

bryos of the b.c.c. structure as well as those in the total inter-

ference function of the same embryo size. For instance, the tail 

around 2.9 A corresponds to the second nearest neighbour distance 

of the b.c.c. structure, as described before. A small hump around 

2.05 A observed in Fig.22 comes from the Fe-B correlations. 

Boudreaux65) observed a small peak at a distance 1.5 times larger 

than the iron atom diameters between the first and second nearest 

neighbour shells in his models for the amorphous Fe-B alloys. He 

attributed this distance to the colinear arrangement of Fe-B-Fe in 

the amorphous structure. A small hump around 3.5 A in the total 

pair correlation functions in Fig.22 seems to accord with the pro-
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posal by Boudreaux. As the size of the embryos is lowered, the 

correlation function becomes more diffuse and the small humps in 

the profile become unclear. It can be readily known that the total 

pair correlation function represented by the full curve in Fig.19 

is the same as that given in the middle of Fig.22. When the number 

of atoms in each embryo is reduced to 15, the total pair correla-

tion function agrees well with that obtained from the diffraction 

data measured for the amorphous Fe84B16 alloy by Waseda and Chen 

especially as regards the shape of the second peak. In this case, 

about 40 outer atoms of each embryo having the b.c.c. structure 

are relaxed with surrounding boundary atoms by using assumed in-

c teratomic potentials. After the relaxation, the displacements 

from the initial positions of atoms in the transition regions 

are sometimes of the order of the interatomic distances. The ratio 

of the number of atoms in the embryo cores, that in the transition 

regions ., and that in the disordered boundary regions is about 

1:2:6. The atomic arrangement in the boundary regions is peculiar, 

and the effect of the embryos' structure on their surroundings will 

be discussed later in connection with the role of metalloid atoms. 

      In order to clarify the correlations of arrangement between 

like and unlike atoms in the model structure for the amorphous 

Fe86B14 alloy, total and partial pair correlation functions are 

calculated and shown in Fig.23. It can be seen from the figure 

that the partial pair correlation function for Fe-Fe pairs is chief-

ly responsible for determining the profile of the total one. A 

small hump at the forward edge of the first peak in the total pair 

correlation function corresponds to the contribution from. Fe-B
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pairs. In the partial pair correlation function for B-B pairs, a 

broad maximum appears around 3.10 A. This B-B pair distance is 

much larger than the averaged diameter of the boron atom, about 

1.5 A, in the present model structure, reflecting the fact that 

the boron atoms are put in the model structure separately not to 

have the close contact in parallel with the results of the experi-

mental analysis on the P-.P and Si-Si pair distances in other amor-

phous alloys. Since the weighing factor wBB is below 0.001 in the 

case of the Fe86B14 alloy, the contribution of B-B pairs to the 

total pair correlation function is too small to be observed. In 

the previous calculation on the b.c.c. embryo model for amorphous 

iron, the peak height ratio of the second peak doublet in the pair 

correlation function is of the reversed type, which appears also 

in the partial correlation function for Fe-Fe pairs in Fig.23. 

Boudreaux65) and Fujiwara et al. 66) constructed other models for 

the amorphous Fe85B15 alloy based on the concept of the relaxed 

DRP of spheres and concluded that the profiles of their reduced 

radial distribution functions gave the good reproduction of the 

characteristic features observed in the amorphous Fe B alloy. 21)                                               84 16 

Their models as well as the embryo model gave the reversed subpeak 

height ratio of the second peak splitting in the pair correlation 

function. This agreement between the two and our model probably 

arises from the smallness of the size of boron atoms, which strong-

ly influence the packing structure of iron atoms, as will be men-

tioned later. It must be noted that the pair correlation function 

of the embryo model for the amorphous Fe86B14 alloy shows the best 

agreement with that experimentally obtained, when the embryo size 
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is around 10 A in diameter corresponding to the 15 core atoms clus-

ter. This fact clearly shows that the embryo model, which takes 

the medium range order into account, is fully applicable to de-

scribe the amorphous structure. 

     In order to see the effect of the boron concentration, the 

total pair correlation functions are calculated for the embryo 

models with the compositions, Fe100 -xBx (x=14, 20 and 25), as re-

spectively shown in Fig.24. The number of core atoms belonging 

to each b.c.c. embryo is taken to be 15 for the three models. 

The ratio of the number of atoms in the cores, that in the transi-

tion regions and that in the disordered boundary regions is about 

1:2:6 for the Fe86B14 and Fe80B20 alloy, and about 1:2:6.5:1.5 for 

the Fe75B25 alloy, where the last figures in the latter mean the 

number of atoms in the chemical embryos of the crystalline Fe3B 

type. As the concentration of boron is increased, the intensity 

of a peak corresponding to the contribution from Fe-B pairs rises 

up at 2.05 A. The pair correlation functions for the amorphous 

Fe80B20 and Fe75B25 alloy have a "reversed" second peak splitting, 

which does not agree with so far obtained experimental results. 11,21) 

This disagreement was seen also in the relaxed DRP models with 20 

and 25 at%B by Boudreaux.65) An improvement of the calculation to 

have the "normal" second peak splitting for the high boron concen-

tration case will be shown later in this section. 

     In Fig.25 are shown the total interference functions corre-

sponding respectively to the correlation functions in Fig.24. 

They exhibit the characteristic features of diffraction intensity 

distribution of the amorphous Fe-B alloys, especially the smallness 
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  of the second peak shoulder. In the interference function for the 

  amorphous Fe86B14 alloy, the peak profile, relative positions and 

  intensities of halo peaks well agree with the experimental re-

  sults. 21) However, disagreements with experiments, regarding the 

  first peak intensity and the second peak shoulder, appear as the 

  boron content is increased: The first peak heights of the amorphous 

  Fe80B20 and Fe75B25 alloy are slightly lower than those observed 

  by the experiments, 11,21) and, in the case of the Fe 75 B 25 alloy, 

  the second halo peak becomes broader and its shoulder is almost 

 missing. 

       The crystalline embryo model so far treated are constructed 

  by assuming the average Fe-B spacing to be 2.05 A. Recently, 

  Lamperter et al. 16) obtained the total and partial structure fac-

  tors of the amorphous Fe80B20 alloy by the x-ray and neutron dif-

 fraction using the isotopic substitution method and derived the 

 partial reduced radial distribution functions. The partial corre-

  lation function for Fe-B pairs showed a very sharp and high first 

 maximum at r=2.14 A, which reflected a well defined Fe-B distance. 

 Therefore, the improvement of the model calculation by introducing 

  this measured value into the average Fe-B spacing, rO
Fe-B, is nec-

 essary, and this leads to essential changes in the interference 

 function and the pair correlation function as the following fig-

 ures show. 

       In Fig.26 are shown the total pair correlation functions of 

 the crystalline embryo models relaxed by setting the value of 

 rOF
e-B in Eq.(5) at 2.14 A. In the calculation, other parameters, 

 rOF
e-Fe' rOB-B' e and a, are not altered. Alloy concentrations, 
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densities and the number of atoms belonging to each embryo are the 

same as in the before mentioned case. As a result of the calcula-

tion, a small hump around 2.05 A, which is seen in every total 

pair correlation function in Fig.24, disappears and no splitting 

is observed in the first peak. The contribution from Fe-B correla-

tions lies around 2.14 A, which will be shown later. Furthermore, 

it is clearly seen from the figure that the second peak splitting 

is changed from "reversed" to "normal" for three kinds of amorphous 

Fe-B alloys. Except for the first peak height, the peak profiles, 

ratios and positions in the correlation functions are in good a-

greements with the experiments by Fukunaga et al. 11) which are 

given in the upper right hand side in the figure and in Fig.3(b). 

The total pair correlation function of the DRP model for the Fe86 

B14 alloy is also calculated and represented by a broken line in 

the same figure. In the DRP model, atoms are distributed at ran-

dom in the overall volume according to the computer-generated ran-

dom coordinates, until the system has the same concentration and 

density as the embryo model. Then, the atoms are relaxed by using 

the same interatomic potentials as in the embryo model. The total 

pair correlation function of the DRP model is similar to that of 

the embryo model. It is worthy of note that the heights of the 

first peak of the two functions are equally too high as compared 

with those experimentally obtained. This arises probably form the 

assumed interatomic potentials employed in the relaxation process. 

Similar disagreement with experiment existed in Boudreaux's calcu-

lation. 65) 

     The total interference functions corresponding to the total 
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pair correlation functions in Fig.26 are shown in Fig.27. The in-

terference functions exhibit the characteristic features of dif-

fraction intensity distribution of the amorphous Fe-B alloys, es-

pecially the splitting of the second halo peak. As the boron con-

centration is increased, the intensity of the first halo peak and 

of the shoulder of the second one is decreased. These results 

well agree with the experiments by Fukunaga et al., although the 

first peak height for the anorphous Fe75B25 alloy is low enough 

to be compared with them. The total interference function of the 

DRP model for the amorphous Fe86B14 alloy is given by a broken 

line. Small differences between two models are seen in relative 

positions and intensities of halo peaks. The interference func-

tion of the embryo model gives the better agreement with the ex-

perimental one by Fukunaga et al., which is shown in the upper 

right hand side in the figure and in Fig.3(a), than that of the 

DRP model, especially as regards the intensity of the first halo 

peak and of the shoulder in the second halo one. 

     The effect of the average distance of Fe-B pairs on the cor-

relation function in the present model is readily seen in Fig.28, 

in which total and partial pair correlation functions for the amor-

phous Fe86B14 alloy are shown. In the partial correlation function 

for Fe-B pairs, the first maximum appears around 2.14 A, which con-

tributes the intensity distribution at the forward edge of the 

first peak in the total one. It must be noted that the peak height 

ratio of the second peak doublet in the partial correlation func-

tion for Fe-Fe pairs is of the normal type, which differs in both 

cases of the previous calculation of the b.c.c. embryo model for 
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the amorphous iron and the present one as in Fig.23. 

it is concluded that the shape of the second peak in 

correlation function depends critically on the size 

in the model alloy.

  Therefore, 

 the total 

of boron atoms
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4. CALCULATION OF HIGH RESOLUTION ELECTRON IMAGE FROM CRYSTALLINE

   EMBRYO 

     Recently, the structure of very thin films of amorphous mate-

rials has been intensively studied through the HREM with the axial 

illumination, and the lattice like images spreading over the ranges 

of the order of 10 A are often observed in the bright-field images 

even in the as quenched samples. 31-33) These lattice like images 

could arise from the crystalline embryo surrounded by the disorder-

ed region, as described by our model. As mentioned in the last 

chapter, the calculated diffraction functions are in good agreement 

with the experiments, when the embryo size is taken to be as small 

as 10 A in diameter corresponding to some twenty atoms cluster, 

which includes a part of transition region, and it is cojicluded 

that the quasi-crystalline clusters of this size most probably ex-

ist in the real amorphous structure. 

     The interpretation of high resolution electron micrographs of 

amorphous materials is a substantial problem. In fact, it is very 

difficult to conclude the presence or absence of ordered regions 

in the amorphous materials, unless the experimentally obtained im-

ages are exactly compared with the calculated ones from various 

structural models. Therefore, in order to compare with the above 

experimental results and confirm the existence of the medium range 

order in the amorphous structure, the computer calculation of the 

contrast of high resolution electron micrographs from the very thin 

film of iron based amorphous alloy is carried out by using the em-

bryo model and the kinematical theory of electron diffraction. 

When an appropriate value of the spherical aberration constant and 
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the amount of defocus are chosen, the lattice-like fringes or dots 

contrast with the spacings of about 2 A and the diameter of the or-

der of 10 A are well reproduced by the calculation. Variations, 

overlapping, and appearance frequency of the images are also calcu-

lated and compared with the experimental results.
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4.1 Kinematical Theory of Electron Diffraction

     The kinematical approximation is valid for the calculation of 

electron images of very thin amorphous films. 811101) The computa-

tions are carried out according to the procedure already described 

by Howie et al. 80) and Howie.101) 

     When the incident electron wave exp(ik•r) falls on a thin 

specimen containing.N-atoms at the positions rj and produces the 

scattered wave with the wave vector k', the two wave vectors are 

related with the scattering vector K as 

                                                  (15)            k' = k +K. 

The total scattered wave amplitude Ts(r) at a point r is, in the 

single scattering, given by 

            (r) =ia 2 E Z f.(K)•exp(iK•(r -r.) - iY(0 ,)), (16)            s 4
Tr j K J J k 

with TrLfek' 2 TrCs8k14 Y (-ek ' + 2 A : (17) 

where a is the wavelength of electrons and fj(K) is the atomic 

scattering amplitude. The summation over j is on the N-atoms at 

the positions r. in the model structure. The summation over K is 

on a two-dimensional grid of points within the objective aperture 

and AK is the unit cell area of this grid. The effects of the de-

focus value Af and the spherical aberration constant of the objec-

tive lens C
s are described by the phase shift y which depends on 

the scattering angle 0k' which the scattered wave vector k' makes 

with the optical axis. For the bright-field images, the scattered 
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waves interfere with the transmitted waves, the amplitude of which 

is taken to be unity, and the phase shift between the directly 

transmitted waves and the scattered waves modulated by defocusing 

and aberrations lead to the phase contrast. Under the condition 

of axial illumination, the bright-field image intensity IB(r) from 

a thin specimen is given in the form, 

         IB (r) = (1 + TS (r) 122 . (18) 

As k' in Eq.(1S) lies nearly parallel to k or the optical axis, Kz 

is almost zero and t s(r) in Eq.(16) is relatively insensitive to 
the z-coordinates of all the atoms within the specimen. Therefore, 

the images obtained are essentially two-dimensional projections of 

the structure. 

     The calculated interference function, S(K), of the embryo mod-

el for the amorphous Fe86B14 alloy showed the high first maximum 

at K =3.1 A-1 and the full width at half maximum (FWHM) value of 

0.5 A-1 (where K= 47rsin(6k,/2)/a), which are in good agreement 

with the experiment.11) The round aperture with a radius in the 

reciprocal-space equal to 3.9 A-1 and concentric with the optical 

axis(axial illumination) is chosen, and, therefore, the entire first 

halo intensity distribution contributes the interference image con-

trast. The wavelength A is taken to be 0.0251 A (for 200kV elec-

trons). The dimensions, kx and ky, of the unit cell of the grid 
within the object aperture are taken to be 0.06 A-1. Then, Ak and 

AAK/47r2 in Eq. (16) are 3.6 x l0-3 (A-1) 2 and 2.29 x 10-6 A-1 respec-

tively. Since the coefficient of the scattered wave amplitude is 

very small, the bright-field intensity becomes
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          IB (r) = 1 + T* (r) +'Y5 (r) . (19) 

      In the present calculation, the values of parameters, Cs and 

if, in Eq.(17) are chosen as follows in accordance with the actual 

experimental conditions: C
s =1mm and Af = -500 ti -1500 A. In fact, 

the appearance of axial interference images of amorphous materials 

is very sensitive to the defocus distance, as the transfer function 

exp(-iy(6k,)) in Eq.(16) shows.102) Especially, the dominant term 

in Eq.(19) is the sing function, of which oscillations can result 

in the reversal or suppression of particular ranges of spatial fre-

quency in the image. It is obvious that the strongest contrast in 

the image is obtained with sing=±1, as will be more precisely dis-

cussed later. 

     The diffracted intensity I(K) at any point in the reciprocal-

space is given by the equation (8), which is already shown in sec-

tion 3.1. The equation (8) can be rewritten in the form, 

           I (K) 2 = 1 + N exp (-iK• (rl - r~)) , (20)           N jf (K) I J 1:14i 

In the analysis of amorphous structure in the diffraction experi-

ments, it is usually assumed that the specimen structure is suf-

ficiently homogeneous and isotropic and described by the pair cor-

relation function G(r) which depends only on r = Irl -rj1. If the 

diffracted intensity is isotropic as well, I(K)/N)f(K)j 2 in Eq.(20) 

becomes the interference function S(K) as shown in Eq.(10) and the 

electron image contrast of the amorphous structure will be flatten-

ed giving rise to a structureless white micrograph image even in 

                                   - 110 -



the high resolution electron microscopy. However, the model assem-

bly used in this study is composed of a small number of atoms, cor-

responding to a thin film case, and, in addition, contains a very 

small diffracting b.c.c. cluster surrounded by the DRP structure 

region, as is mentioned in the section 2.4. Therefore, the aniso-

tropic scattering will take place and the diffracted intensity dis-

tribution calculated from I(K)/N+f(K)l2 in Eq.(20) is expected to 

be inhomogeneous, exhibiting the fine structure of the amorphous 

thin specimen. 

     At the center of atomic assemblies of 20 A in diameter ex-

tracted from the embryo model structure, a b.c.c. like cluster ex-

ists surrounded by the DRP structure. In the present calculations 

under the axial illumination, a round aperture is placed symmetri-

cally on the optical axis, covering the direct beam spot and the 

whole first halo diffraction ring. When the incident beam is taken 

to be along the [001] axis of the b.c.c. embryo, four {llO} dif-

fraction spots symmetrically lie in the first halo ring. Therefore, 

the embryo could contribute to the interference image and produce 

a lattice image. In the next section, the calculated high resolu-

tion image contrasts with the beam incidence along the z-axis of 

the b.c.c. embryo will be shown in the first place. Then, the 

changes of the image are examined by rotating the assembly about 

the [010] and the [110] axis of the embryo. The interference image 

in the case of the total thickness of 40A is also calculated by using 

the two overlapping embryos where the crystal axes of them is not 

coincident with each other.
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4.2 Image with Beam Incidence along Z-axis of B.C.C. Embryo

     When the incident beam is along the z-axis of the b.c.c. em-

bryo, the diffraction from the {110} lattice planes with a spacing 

of 2.03 A will take place and contribute to the image contrast. 

The appearance of the axial bright-field image is a sensitive func-

tion of the defocus distance, Af, as mentioned before, since the 

oscillations of the transfer function result in the suppression of 

particular ranges of spatial frequency in the image. The defocus 

value is first taken as -500 A which is derived from the equation 

(C5)1)1/2 corresponding to the Scherzer defocus. The bright-field 
image contrasts thus calculated for two different assemblies with 

different embryo core sizes, one with 15 atoms and the other 51 

atoms, are shown in Fig.29 and Fig.30 respectively. The b.c.c. 

structure of the latter extends to the fourth neighbour shell from 

the central atom. The isointensity contours are represented by 

full lines and dotted lines, the former representing the intensi-

ties above the unity, IB =1, and the latter below that. The IB = 1 

contours are left out. The dimensions in the x- and y-range of the 

image are 20 x20 A. Two-dimensional projection of the model assem-

bly consisting of an embryo and disordered region is within the 

circle of 20 A in diameter. Near the centres of the both contour 

maps, the projected positions of the embryo core atoms are shown 

by 9 and 21 circles, respectively, with broken lines. No lattice 

like image contrast appears in the central part of both figures, 

but two sets of high-intensity fringe contrasts perpendicular with 

each other are clearly seen outside of the projection of the model 

assembly. Their directions are nearly parallel to {1l0} planes of 
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Fig. 29 The axial bright-field image calculated from the model assem-

bly, which contains an embryo with 15 atoms b.c.c. core, with the 

beam incidence along z-axis of embryo and with Af=- 500 A. Iso-

intensity contours are represented by full lines, IB>1, and dotted 

lines, IB<1, and dimensions of the image are 20x20 A. Two-dimension-

al projection of the model aggregate is within the circle of 20 A in 

diameter and projected positions of core atoms are shown by 9 circles 

with broken lines. 
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Fig. 30 The axial bright-field image calculated from the model assem-

bly containing an embryo with 51 atoms core, projected positions of 

which are shown by 21 circles with broken lines. Isointensity con-

tours and conditions in the calculation are just the same as those 

in Fig.29. 

                                   - 114 -



the embryos and their spatial periodicity is about 2 A, which is 

very close to the {110} lattice spacing of the b.c.c. embryo. The 

regularity and the contrast of the fringes are more pronounced in 

the case of the 51 atoms core. 

     In the above illumination condition, it is easily imagined 

that the {110} diffraction effect will occur at the embryo core, 

and the interference between the diffracted and transmitted waves 

will bring about the two sets of the lattice fringes parallel to 

{110} in the image contrast. Further calculations are carried out 

to see the appearance of fringy contrasts far outside of these mi-

crographs, and it is found that the fringe spacings range from U2.1 

A to til.7 A, which are around the value, 2.03 A, of the {110} spac-

ing of b.c.c. The reciprocal values multiplied by 27 of them almost 

correspond to the K values within the aperture, where the contrast 

transfer function, siny, becomes ti±l as will be shown later. Super-

position of the phase contrasts formed by these different K values 

and the {110} lattice periodicity in the b.c.c. embryo gives the 

fringe contrasts just corresponding to those in the calculated im-

age contrast maps. It is, therefore, concluded that the fringe 

contrasts are the modulated and displaced {110} lattice fringes 

from the embryo and that the value, -500 A, of Af is not the opti-

mum defocus distance to cancel out the phase shift rising from the 

spherical aberration, Cs = 1 mm, in the given aperture configuration. 

It is noteworthy that the appearance of the fringe contrasts is 

essentially the same between the 15 and 51 atoms embryo cases, al-

though the fringes of the latter case is clearer. In order to see 

the effect of the very smallest embryos on the high resolution 
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image contrast, we employ the 15 atoms embryo in the calculation 

hereafter. The 51 atoms embryo seems to be too large to be a gen-

eral one, since it has been found in the previous chapter that the 

15 atoms embryo model well reproduces the experimentally obtained 

S(K) and G(r) functions while the 51 atoms model reproduces some 

traces of crystalline nature in S(K) and G(r). 

     In order to identify the effect of the crystalline embryo on 

the image contrast formation, the axial bright-field image from the 

DRP model structure constructed according to computer-generated 

random coordinates is calculated with the same aperture configura-

tion and the same values of C and ff as in the before. The DRP 
s 

assembly is a sphere containing about 330 iron atoms. The calcu-

lated isointensity image contours are shown in Fig.31 with the same 

manner and the same magnification as in Fig.29 and Fig.30. The im-

age contrasts are observed all over the picture as well as in the 

embryo model, but the lattice-like fringe contrasts are not seen 

in accordance with the lack of the crystalline periodicity in the 

DRP structure. 

     As already shown in the above figures and mentioned, when the 

value of the defocus distance, Of, is chosen as -500 A, the calcu-

lated bright-field image contrasts appear beyond the area of the xy 

projection of the model structure. Under the optimum defocus con-

dition, however, the calculated interference image contrasts should 

essentially coincide with the projection of the model structure. 

Therefore, in order to determine the optimum defocus value, the 

contrast transfer function sing, which dominantly affects the cal-

culated image contrasts as mentioned in the section 4.1, is exam-
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Fig. 31 

structure 

the same

The axial bright-field image calculated from 

 with txf=-500 A. The isointensity contours 

manner and the same magnification as in Fig.

 the DRP model 

are shown with 

29 and Fig.30.
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fined by varying the value of iif. In general, when the sing func-

tion is made nearly ±1 at the K value of a spatial periodicity by 

choosing a particular value of Af, this periodicity in the object 

structure will be strongly imaged. In Fig.32 are given the siny 

functions for two different defocus values, -500 A and -1500 A. 

In the case of the Scherzer defocus, Af =-500 A, the sing function 

has the value of %-1 in a wide range of K from till A-1 to ti2.3 A-1 

as the broken line shows. But, in the range between K-&2.8 A-1 

and Kz 3.5 A-l, in which the first halo peak in the S(K) function 

occurs, the siny function is oscillatory and only with seven K val-

ues, 2.75, 3.07, 3.28, 3.47, 3.61, 3.74 and 3.86 A-l, it becomes 

±1. The fringy centrastsobserved in Fig.29 and Fig.30 are produced 

by the superposition of the phase contrasts formed by the recipro-

cal values near these K's and the {110} lattice periodicity, as 

mentioned before. On the other hand, in the case of Af =-1500 A, 

the siny function is nearly -1 in a relatively narrow range of K 

values from '2.7 A-1 to '3.4 A-1, as the full line shows, which 

covers almost the essential part of the first halo peak. The K 

values within this range together with the {110} lattice periodi-

city will produce the {110} lattice fringe contrast, the spacing 

of which is just the same as the {110} lattice one, in the centre 

part of the contour map. Furthermore, the intersection of them is 

expected to give the image contrasts corresponding to individual 

atoms belonging to the embryo core. 

     In order to obtain the lattice image corresponding to the 

projections of the embryo core atoms, the axial interference micro-

graph is calculated for the same embryo model as in Fig.29 with the
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defocus value, Of =-1500 A, and is shown in Fig.33. The aperture 

configuration, the direction of the beam incidence and the size 

of the picture are just the same as in the before. On the image, 

the contours with the intensities higher than IB =1 are shown in 

full lines and the lower-value ones than IB = 1 in dashed lines. 

The increment of the isointensity contour values is the same as 

in the figures so far presented. It can be seen from the figure 

that the higher contrasts appear like dots concentrated in the cen-

tre part of the contour map and they are gradually reduced with 

the distance from the centre. -The calculated contrasts are ob-

served over nearly the same region as the projection of the assem-

bly, i.e. within a circle of 20 A in diameter, and are quite weak 

in its outside, which is considerably different from the appear-

ance in Fig.29. It must be noted that the configuration and the 

geometry of high intensity dots contrast appearing in the centre 

part of the picture just correspond to those of atoms in the (001) 

plane of the b.c.c. structure. This fact is easily confirmed by 

comparing them with the nine circles represented by the broken 

lines in Fig.29, which are the projections of the embryo core atoms. 

It is, therefore, concluded that the dots contrasts in the centre 

correspond to the (001) lattice image of the b.c.c. embryo and 

that the defocus value, Af =-1500 A, is the optimum one for the 

aperture configuration and the spherical aberration constant, Cs 

= lmm , employed in the present calculation. It is also worthy of 

noting that the lattice image contrasts are seen spreading out-of 

the square region of about 10 x10 A, although the projection of 

the embryo core is restricted to the square one of at most 7 x7 A
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Fig. 33 The axial bright-field image 

model as in Fig.29 with if=-1500 A. 

dence and the size of the picture are 

Contours with IB>1 are represented by 

dashed lines and their intervals are

calculated

The

from

direction of

the

the

same

beam

embryo

inci-

 just the same as in Figs.29-31. 

 full lines and those with IB<1 

also the same as in Figs.29-31.
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as shown in Fig.29. In the embryo model, the atomic arrangements 

of the outer part of each embryo (B in Fig.15) follow the b.c.c. 

structure to some extent, making a smooth connection between the 

embryo core and the outer disordered region. The size of the em-

bryo (A and B in Fig.15) is about 10 A in diameter. Accordingly, 

the spreading of the lattice image might be rising from the outer 

transitional part of the embryo. On the other hand, since the 

image formation of the b.c.c. embryo core is based on the super-

position of the diffracted waves from the atoms, the diffusing out 

of the lattice image might also be due to the diffraction effect. 

     In order to distinguish the embryo model from the DRP model 

in the calculated micrograph and to find the correspondence between 

the embryo and the lattice image in the experiments, the axial in-

terference image of the DRP model is recalculated with the defocus 

distance if =-1500 A for the same scattering geometry and the same 

value of C
s as before. The resultant image is given in Fig.34. 

The dimensions of the picture are 12 x20 A and its centre coincides 

with that of the figure 33. The isointensity contour values and 

their intervals are just the same as in Fig.33. It is readily seen 

in the calculated image that the high intensity dots contrasts, 

which is scarcely observed in the case of Lf =-500 A, appear, and 

the regularity in the configuration of them and fringe contrasts 

arising from the "crystal-like" alignment of atoms are missing. 

This feature is also observed in Fig.33 as the background noise in 

the area corresponding to the disordered region around the embryo. 

On the other hand, comparison between Fig.31 and Fig.34 shows that 

the value of the defocus distance essentially controls the image 
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Fig. 34 

model as 

12x20 A 

contour

 The axial bright-field image 

 in Fig.31 with Af=-1500 A. D 

and its centre coincides with 

values and their intervals are

calculated from the same DRP 

imensions of the picture are 

that of Fig-33. Isointensity 

 just the same as in Fig.33.
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formation for the DRP model as well as for the embryo model, in 

which the iamge contrasts corresponding to individual atoms of the 

embryo core are produced. With this respect, it is considered 

that dots contrast in the figure could intrinsically coincide with 

the projected atom positions of the DRP structure. Actually, the 

correspondence between the contour map of Fig.34 and the map of 

projection of atom positions is fairly good.
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4.3 Change of Lattice Image with Rotation of Model Assembly

      In the actual experiment, the electron beam falls on the amor-

phous thin film at various angles against the axes of the ordered 

regions contained in it. The lattice fringes and/or the lattice 

image essentially appear only for the beam incidence along the re-

stricted range of orientations of the b.c.c. embryo. The increase 

of the angle between the optical axis and the z-axis of the embryo 

will inevitably change the (001) lattice image, and at a particular 

angle, the calculated image will become so disturbed that it will 

be similar to that of the DRP model structure. Once the range of 

finding the lattice fringes and/or the lattice image is determined 

on the stereographic projection by the above process of rotation 

of the beam incidence, the content of the embryos, i.e. the medium 

range order regions, in the actual amorphous thin films could be 

quantitatively estimated 

     In this section, the changes in the axial bright-field image 

contrasts are examined by rotating the model assembly relative to 

the incident beam direction in two ways. One is around the [110] 

axis of the b.c.c. embryo and the other is around the [010] axis. 

Generally, the rotation of the large crystal gives rise to unavoid-

able changes in the diffraction patterns. In the former, the inten-

sities of (110) and (110) diffraction spots decrease rapidly as a 

function of the rotation angle, e[ll0]' while the (110) and (110) 

spots persistently remain. On the contrary, all these diffraction 

spots suddenly disappear with the latter rotation, 8[010]. The 

assembly of the embryo model so far treated consists of a b.c.c. 

embryo and its surrounding disordered region of the DRP structure. 
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Therefore, the behaviour of diffraction spots with the rotaion of 

the model aggregate can be found among the diffracted intensity 

distribution, i.e. the first halo ring. It is easily conceivable 

that the (001) lattice image will be altered to the (110) lattice 

fringes when the assembly is rotated around the [110] axis of the 

b.c.c. embryo, and it will disappear with the rotation around the 

[010] axis, leaving only the image contrast characteristic of the 

DRP structure. Noteworthy is that the number of atoms belonging 

to the embryo core is as small as 15. This means that the {110} 

diffraction spots are considerably diffuse due to the reduced in-

terference effect and have the three-dimensionally expanded inten-

sity distribution in the reciprocal space. Therefore, the Ewald 

sphere will persistently intersect the swollen {110} diffraction 

spots, even if the z-axis of the b.c.c. embryo deviates from the 

optical axis to a large extent. This fact not only indicates that 

the (001) lattice image contrasts are gradually reduced with the 

rotation, but also suggests that its behaviour will be quantita-

tively explained in terms of the diffracted intensity from the em-

bryo as a function of B [llo] or e [010]. 

     The changes of the diffracted intensity from the b.c.c. embryo 

with the rotation of the model aggregate are examined by calculat-

ing the I(K)/Nlf(k)l2 using Eq.(20). Especially, the maximum values 

of the (110) reflection intensity changing with the rotations in 

the above two ways, which are shown in Fig.35, will be a good meas-

ure for the reduction of the lattice image contrast. The symbols, 

[110] and [010], in the figure indicate the axes, around which the 

model assembly is rotated. The height, Imax - 3.3, represented by 
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Fig. 35 The change of maximum value of (110) reflection intensity 

from the b.c.c. embryo with the rotation of model aggregate. The 

Imax curves, given by (a), are for the assembly containing a 15 atoms 

core cluster and those by (b) are for 51 atoms core cluster. The 

symbols, [110] and [010], indicate the axes of the embryo core, 

around which the model assembly is rotated by the angle 0.
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the broken line corresponds to that of the first maximum of the 

S(K) function. The calculations are carried out for two kinds of 

aggregates of the embryo model. The curves of Imax' given by (a) 

in the figure, are for the aggregate containing a 15 atoms b.c.c. 

cluster and those by (b) are for a 51 atoms cluster, the calculated 

image of which is shown in Fig.30. The height of I
max at 0 = 0° in 

the former is lower than that of the latter, because of the smaller 

embryo size. On the other hand, the decay of Imax of the former 

with .the rotation angle is slower than that of the latter, not 

reaching the first maximum value in the S(K) even when the aggre-

gate is rotated by 15°. This must be compared with the latter's 

values of I
max, which become 3.3 at 0 = 9° and 15° in the case of 

[110] and [010] rotations respectively. This behaviour indicates 

that the (110) diffraction spot in the former is much more diffuse 

owing to the reduced interference effect among the smaller number 

of correlated atoms resulting in the lower value of I
max (6= 0°) 

and more persistent intersection of the Ewald sphere with the dif-

fuse (110) reciprocal lattice spot. In fact, the extension along 

[001] of the (110) diffraction spot is three times larger than 

that in the latter, provided that its spread in the reciprocal 

space is proportional to 27r/w[001], where w[001] is the dimension 
of the [001] stackings of embryo core atoms and 2rr/w[001] in the 

former in nearly 2.2 A-1. From the geometrical analysis, the max-

imum value of the rotation angle, 0[010] below which the Ewald 

sphere intersects noticeably with the expanded (110) diffracted in-

tensity distribution, is greater than that of 0[110]' Accordingly, 

the Imax value in the [010] rotation decreases more slowly with 0

- 128 -



than in the [110] rotation, as the figure shows. The above result 

of analysis strongly suggests that the lattice image as shown in 

Fig.33 will persistently remain in the calculated image contrast 

for considerably high values of 6, while its dimensions and cor-

respondence with the projection of core atoms are gradually reduced 

with the rotation of the assembly. On the other hand, it is not 

always clear whether or not the lattice image is still visible when 

the I
max is only a few times greater than the spatially averaged 

value, 3.3. This is because the b.c.c. embryo core of 15 atoms is 

surrounded by the disordered region and by the rotation structural 

signals from the embryo of this size on the image will gradually 

fall into the background noise characteristic of the DRP structure. 

Accordingly, the axial bright-field images are calculated for vari-

ous values of e greater than 8°, and are shown in the following 

figures. 

     In Fig.36 are two examples of the axial interference images 

for the assembly, with a 15 atoms b.c.c. cluster rotated around 

its [110] axis by 0 = 10° ((a)) and by 0 =15' ((b)) respectively. 

The setting values of C
s and Af are 1 mm and -1500 A respectively, 

which are the same as in Fig.33 and Fig.34. The dimensions of the 

figures are just the same as those in Fig.34 and their centres coin-

cide with that of the projection of the b.c.c. embryo. When the 

rotation angle is taken to be 10°, the dots arrangement correspond-

ing to the embryo core atoms projections is slightly distorted and 

observed in a smaller area than that in Fig.33. Nevertheless, the 

area of finding the lattice image is still a little larger than 

that of the projection of core atoms. The [110] rotation up to 
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15° leads to a drastic change in the calculated image, as is given 

in the figure (b) where only three fringy spacings parallel to 

[110] of the b.c.c. embryo are seen in the centre part. The peri-

odicity of the fringes is kept to be about 2 A, as in Fig.33, which 

is very close to the {110} lattice spacing. Since the direction 

of the fringes is perpendicular to the rotation axis and their 

spacings are not changed, it is concluded that the fringy contrast 

is no other than the lattice fringe arising from the b.c.c. embryo. 

Compared with the image in the figure (a), the dots in the lattice 

fringes are weaker and their correspondence to the atom positions 

in the embryo core is poorer. 

     The effect of the rotation around the [010] axis of the embryo 

core on the calculated image of the same model as in Fig.36 is 

readily seen in Fig.37, in which (a) and (b) correspond to 0 =9, 

and 0 =12° respectively. In this case, the (110), (110), (110) 

and (110) reflections from the b.c.c. embryo deviate from the 

Bragg condition at the same time with rotation. Therefore, the 

disintegration of the lattice image will be faster than in the 

case of [110] rotation and {110} fringes are not expected. Actu-

ally, the dots arrangement is partially visible even in the figure 

(a) with 0 =9' but more irregular than that in Fig.36(a), and in 

the figure (b), which has the rotation, 0 =12', the lattice image 

is not recognized and the appearance of the dots contrast is very 

similar to that of the DRP model structure in Fig.34. No fringy 

contrasts are seen in Fig.37.
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4.4 Image Contrast from a Thick Specimen Containing Two Embryos

      Since the model assemblies so far studied have the thickness 

of 20 A, the calculation ie extended to the case of thicker speci-

mens which would be more similar to the actual experimental condi-

tions. Therefore, the interference image from the model assembly 

of the total thickness of 40 A is examined by stacking up two dif-

ferent spherical aggregates one over the other. The direction of 

the beam incidence is chosen to be along [001] of the b.c.c. embryo 

contained in one of these two aggregates. Since the kinematical 

approximation gives the image contrast by single scattering from 

individual atoms, the calculated lattice image will persistently 

remain against the increase of the thickness of the model assembly. 

When a DRP aggregate is stacked on that of the embryo model, it is 

easily imagined that the lattice image will be not largely per-

turbed by the background noise from the DRP structure. In the 

case of stacking of two different embryo model aggregates, more 

complicated changes are expected: When the z-axes and the atomic 

projection of the two embryos almost coincide, the lattice image 

will not be altered, and, when the z-axis of the second embryo de-

viates from the Bragg condition to a large extent, the resultant 

lattice image will be quite the same as in the above case of the 

DRP aggregate, since the second embryo does not contribute to the 

lattice image formation. The latter case is shown in Fig.37(b). 

The most striking effect arises from the stacked two embryos with 

unoverlapping atomic projections and yet producing the lattice im-

age contrasts. simultaneously. This is easily achieved by introduc-

ing a lateral displacement between the two aggregates by keeping 
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their z-axes parallel with each other. In this case, the positions 

and the intensities of dots contrast will be gradually changed with 

increasing the displacement. For instance, the lattice image will 

disappear, when the displacement is taken to be a/2•[100], where a 

is the lattice parameter. The rotation around the z-axis between 

the two model aggregates will bring about a similar effects. As 

an example, the image contrast of two stacking model assemblies 

each containing an embryo is calculated by inclining the (010) 

plane of one embryo by 9° and rotating it around its z-axis by 40°. 

The effect of inclination by 9° to the lattice image contrast for-

mation is already shown in Fig.37 (a), and the resultant interfer-

ence image exhibits a slightly deformed (001) lattice image rising 

from the uninclined embryo. From the above consideration of the 

effect of the film thickness, the inclination of [001] axis of the 

embryo, and the image overlapping of the embryos, the ultimate vis-

ibility and probability of the lattice and fringe contrasts of the 

medium range order regions in the actual amorphous alloys will be 

discussed in the following chapter.
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5. DISCUSSION AND CONCLUSIONS

5.1 General Discussion on Crystalline Embryo Model

     Since Bernal's23 first static model of the dense random struc-

ture, a number of structural models for amorphous metals and alloys 

based on the concept of the DRP have been proposed and the results 

of many x-ray diffraction experiments seem to have been satisfacto-

rily explained. However, some newer experimental results strongly 

suggest that the chemical short range order or even farther range 

atomic order extending beyond the first neighbour distance may ex-

ist in the actual amorphous structure, which is hardly expected 

from the DRP models. Similar short range or even farther range 

ordering has been found in the liquid structure of Pd-Si and Fe-B 

alloys by the neutron diffraction 10,11,94) and also in the super-

cooled liquid structure, for instance, in supercooled Bi by elec-

tron diffraction. 90) 

     From the thermodynamical consideration and calculation, 

Fujita28,29) concluded that the short range and medium range order 

may exist already in the liquid structure as the quasi-crystalline 

clusters with sub-critical size and dynamically fluctuating, of 

which the number, the average size and lifetime will increase as 

the liquid is supercooled. By the rapid quenching from the melt, 

they will be frozen as the static crystalline embryos together with 

the disordered region and ultimately compose the amorphous struc-

ture. It was suggested that a great number of the intermediate 

size clusters including atoms from 10 to 40 in number would appear, 

giving rise to the medium range order in the amorphous structure. 
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Taking such high degree of atomic ordering into consideration, the 

present author and Fujita3) have proposed a simple and possible 

structural model of amorphous metals and alloys, which is named 

the crystalline embryo model, consisting of the crystalline embryos 

and the disordered boundary region which coexist and continuously 

and smoothly connect to each other. They also constructed the mod-

el assemblies for amorphous Fe-B alloys, assuming that the b.c.c. 

embryos and the chemical clusters of Fe3B type coexist in the dense 

disordered structure in accordance with the Mossbauer experiment 

by Oshima and Fujita.26) Thus obtained crystalline embryo model 

satisfactorily reproduces the diffraction functions and the high 

resolution electron images from the medium range order clusters in 

the disordered structure, when the embryo size is taken to be as 

small as 10 A in diameter, which corresponds to some twenty atoms 

cluster including a part of the transition region. Therefore, 

it is concluded that the quasi-crystalline clusters of this size 

most probably exist in the real amorphous structure. 

     The DRP model has succeeded in the reproduction of the S(K) 

and G(r) functions of the amorphous metals of single element. 

However, many investigators showed that amorphous pure metals films 

obtained by the vapour condensation always contain gaseous atoms or 

metalloid atoms to a large- extent, which seems to be indispensable 

to hold the amorphous structure. This fact implies that the dense 

random packing of identical spheres does not always lead to a real-

istic amorphous structure. Moreover, throughout the investigations 

concerning such diffraction functions, mostly done by computer cal-

culations, it has been realized that the dense random packing of
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spheres does not necessarily give a desirable intensity distribu-

tion in S(K) function in the case of binary amorphous alloys, es-

pecially as regards the height of the first halo peak. This re-

flects that the actual amorphous alloys have a degree of order in 

the atomic arrangements higher than that in the DRP model. Graczyk 

and Chaudhari70) calculated the axial interference images of the 

DRP model structure by using the kinematical approximation and in-

troducing the contrast transfer function. The calculated image 

showed a vague fringy contrast in a certain case, the spacings of 

which are much greater than the crystalline interplaner ones . They 

ascribed the fringy contrast to the structural anisotropy in the 

DRP model structure. Since the dots contrast in the image from 

the DRP model structure appears as in the figure 34, corresponding 

to the density fluctuations on the projected plane of atoms, their 

result must be a rare case and it can scarcely be expected to ob-

tain the lattice like fringe contrast from the DRP structure. 

It is worthy of note that in the HREM the image contrast from the 

perfectly random structure will be flattened with the increasing 

film thickness, giving rise to a structureless "whiteout" micro-

graph. Therefore, the DRP model, which does not take the medium 

range order into consideration, can not satisfactorily describe 

the observed lattice and fringy images from the amorphous struc-

ture. 

     Taking account of only the chemical short range order, the 

chemical cluster model has been proposed for the amorphous alloys 

containing metalloid atoms close to the crystalline chemical com-

pound compositions. Gaskell72) constructed a model for the amor-
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phous Pd80Si20 alloy based on the random packing of trigonal prism-

atic units. The structure was relaxed using a Lennard-Jones 6-12 

potential, with some additional constraints included to preserve 

trigonal prismatic coordination. The computed G(r) was, then, con-

voluted with Gaussian broadening functions which simulate the ef-

fects of thermal vibrations and transformation of reciprocal-space 

data, S(K), over a limited spectral range. The calculated G(r) 

and S(K) were found to give a good representation of the experimen-

tal neutron scattering data measured up to high K value, 30 A-1. 

However, the fine structure in the second peak in the G(r) was not 

fully reproduced. Moreover, it is still questionable whether the 

density of thus obtained chemical cluster model fits to the exper-

imental one. Kobayashi et al. 73) also constructed a model struc-

ture of the amorphous Fe75P25 alloy. The building algorithm con-

sisted of a random packing procedure ensuring the agreement of its 

packing. fraction with the experiment and a relaxation using a non-

spherically symmetric interatomic potential for Fe-P pairs, which 

was assumed to stabilize a trigonal prismatic unit similar to that 

found in the crystalline Fe 3P. However, it has not been clarified 

to what extent chemical ordering in these model aggregates after 

the relaxation remains or develops. 

     One approach for reproducing the absence of long range order 

in the amorphous structure can be described in terms of microcrys-

talline model, in which the S(K) function is fully represented by 

that of a microcrystallite and no correlations with its surround-

ings exist. Although the calculated S(K) function by using Eq.(1) 

exhibits the diffuse peaks because of the small crystal size, the
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peak profiles, ratios and positions in it does not fit the experi-

mental ones. In order to improve the model S(K) function, effects 

of thermal and static displacements of atoms from their equilibrium 

positions are incorporated into its each peak by multiplying the 

Gaussian broadening function. However, since no isolated microcrys-

tallites exist in the amorphous structure but they are always joint-

ed together through the grain boundary, the S(K) function of a mi-

crocrystallite will be modified by the intercrystalline interference 

effect. In this respect, it is shown and fully discussed in the 

subsection 2.1.2 that the microcrystalline diffraction theory is 

not applicable to the amorphous materials. 

     A fairly different approach to understand the amorphous struc-

ture was made by Koizumi and Ninomiya,86) who constructed a dislo-

cation model of the amorphous structure, in which many screw dis-

locations were introduced in a f.c.c. lattice in order to produce 

local disordered structure and destroy its long range order. The 

final atomic positions were obtained by the relaxation of the dis-

located structure using the Morse-type interatomic potential. For 

the dislocation density of 1.1 x1015 cm-2 or 4.3 x1014 cm-2, the 

calculated pair correlation function was found to be in good agree-

ment with the experiments as well as in other models. The corres-

pondence between their and the present models could be given by 

an interpretation such that the embryo regions, where the lattice 

structure is relatively well kept, may correspond to the lattice 

domains separated by dislocations. in their model and their disor-

dered dislocation cores may correspond to the boundary regions 

between neighbouring embryos in the present model. This interpretation
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gives us more or less the same size of the embryos or medium range 

ordered regions in the both models. 

     Ninomiya85) has pointed out that many of the Bernal's poly-

hedra can be reproduced by putting dislocations in the closest 

packing crystal structure. In this respect, the DRP polyhedra 

and the crystalline polyhedra, which have been proposed by Fujita88) 

and are found in the core of the crystalline embryos, must be close-

ly connected specially by perfect dislocation core structure and 

half dislocation structure associated with the stacking fault. 

Ashby et al. 1033 have shown that the crystal boundaries of simple 

metals can be described completely and uniquely as nesting stacks 

of eight kinds of the basic polyhedral holes or "canonical holes". 

Since the positions of atoms in the transition regions are strong-

ly affected by the atoms of neighbouring crystalline embryos in the 

present model structure, the connectivity and the conjugate struc-

ture of the transition regions and disordered boundary regions 

could be analysed in terms of the defective crystalline polyhedra. 

     In order to see the packing of atoms in the transition re-

gions, the types of Voronoi polyhedra are studied by using the 

b.c.c. embryo model of single element. These polyhedra provide 

a means not only for defining the average number of geometrical 

neighbours but also for determining the nearest neighbour configu-

ration of each atom. For example, in Fig.38(a) are shown the 

Voronoi polyhedra of the crystalline f.c.c. lattice and non-

crystalline icosahedral arrangement of 13 atoms. Although both 

polyhedra have the same number of faces, N =12, the former is fac-

etted by twelve quadrangles, which is expressed as (0, 12, 0, 0), 
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 Voronoi polyhedra: (a) Voronoi polyhedra 

non-crystalline icosahedral arrangements 

changes of Voronoi polyhedra produced by 

. lattice.

 of 

of 

the

 the f.c.c. 

13 atoms, 

distortion

Table I The types of Voronoi polyhedra appearing for each 

the transition regions, which are classified according to 

number of facets from N=12 to N=14.

atom 

the

in

N Voronoi polyhedra

12 (0 ,4,4,4) (0,4,6,2) (0,6,4,2)

13 (0 ,5,2,6) (0,5,4,4) (0,6,4,3)

14 (0 ,6,2,6) (0,5,4,5) (0,6,4,4) (0,7 2,5)
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and the latter by twelve pentagons, which is also expressed as 

(0, 0, 12, 0)*. In Fig.38(b) are shown the changes of Voronoi 

polyhedra produced by the distortion of the b.c.c. lattice. The 

Voronoi polyhedron of the b.c.c. lattice is facetted by six quad-

rangles and eight hexagons, i.e. (0, 6, 0, 8) and N = 14, as shown 

in the left hand side of the figure. As the b.c.c. lattice is 

stretched along its z-axis, the shape of the polyhedron is gradual-

ly transformed from (0, 6, 0, 8) to (0, 4, 4, 6), which is shown 

in the middle and the right respectively in the same figure. 

Baker et al.49) investigated local atomic arrangements in their 

DRP model structure in terms of Voronoi polyhedra and found an in-

crease . of the 13 atom icosahedral arrangement with the relaxation 

process. Yamamoto and Doyama61) also showed that the populations 

of non-crystalline polyhedra with the five-edged facets such as 

the (0, 0, 12) type were largely increased with the relaxation, 

while the frequencies of crystalline ones of the (0, 4, 4) type 

were reduced. In the embryo model, many types of Voronoi polyhedra 

reflecting the b.c.c. structure such as the above (0, 4, 4, 6) poly-

hedron appear for each atom in the transition regions and they 

are classified according to the number of facets from N =12 to N =14, 

which is shown in the Table I. The above fact indicates that the 

positions of atoms in the transition . regions are strongly affect-

  The The notation, (p, q, r, s), means that the polyhedron has p tri-

  angular facets, q quadrangular facets, r pentagonal facets and s 

 hexagonal facets. The possibility of appearance of septangular 

  facets . is omitted from the expression. 
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ed by the inner neighbour atoms belonging to the b.c.c. core in 

accordance with the results given in Fig.ll. It must be noted 

that the partial S(K) function obtained from the transition re-

gions shows the characteristic splitting of the second halo peak, 

as given in Fig.18(b) and (c). In the case of the embryo model 

for the amorphous Fe-B alloys, boron atoms are expected to occupy 

either the interstitial-like or substitutional-like sites and more 

or less disturb the crystalline nature in the outer part of the 

embryo. 

     The DRP models of the amorphous Pd-Si, Fe-P and Fe-B alloys 

were examined in relation to the short range order of their atomic 

structure by Boudreaux and Frost. 69) The types and numbers of 

near-neighbour atoms were calculated in detail, from which it was 

argued that a specific coordination was preferred and satisfied by 

a local unit structure around each metalloid atom. Furthermore, 

the local geometry was examined by computer graphic methods and it 

was discovered that the two local geometries dominated the surround-

ings of metalloid species; the octahedron and the trigonal prism. 

In the crystalline embryo model for the amorphous Fe-B alloys, 

these structural features are taken into account in the disordered 

boundary and the transition regions: In the case of the Fe75B25 

amorphous alloy, the Fe3B type chemical order clusters, each con-

sisting of some trigonal prism units, are put in the boundary re-

gions by about 10 % in total fraction in accordance with the re-

sult of the experimental analysis of the Mossbauer spectroscopy. 26) 

Their effect on the diffraction functions will be discussed in the 

next section, but the high resolution image contrast from them is 

not calculated in this thesis. 

                                    - 143 -



5.2 X-ray Diffraction of Amorphous Metals and Alloys Containing

     the Medium Range Order 

     In the sebsection 2.1.2, it is shown that the S(K) function 

of a b.c.c. microcrystallite is considerably changed when a twin 

boundary is introduced. The S(K) function becomes more diffuse 

owing to the break down of the normal crystalline periodicity at 

the twin interface and the interference intensity rises up at a-

round K =6.2 A-1, where a high angle side shoulder of the second 

halo peak is usually observed in the diffraction pattern of amor-

phous metals and alloys. Atoms in one side of the twin interface 

have a special configurational relation with those in other side 

different from the crystalline periodicity,-which makes particular 

phase differences and inevitably changes the S(K) function around 

K =6.2 A-1. This not only emphasizes that the microcrystalline 

diffraction theory, in . which the S(K) function is assumed to be ful-

ly represented by that of an isolated microcrystallite, is not ap-

plicable to the amorphous materials, but also strongly suggests 

that an assembly of atoms consisting of the crystalline embryos 

and the disordered boundary regions. connecting them could give a 

reproduction of the characteristic diffraction intensity distribu-

tion. Actually, the S(K) functions calculated from the b.c.c. em-

bryo model is in good agreement with so far obtained experimental 

ones. When the atoms in the transition regions and the disor-

dered regions in the vicinity of embryos are taken as centres, and 

the radial distribution around them and the partial G(r)'s are ex-

amined, the partial S(K) functions obtained by the Fourier trans-

formation of the parial G(r)'s show the splitting of the second halo 
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peak. Therefore, it is concluded that tolerably sharp intensity 

distribution of the first halo peak is due to the effect of the 

intracrystalline interference in each embryos and the splitting 

of the second halo peak results mainly from that of the interfer-

ence between atoms in the embryos and those in the disordered 

boundary regions. 

     In the case of the f.c.c. embryo model, although the G(r) func-

tion is in fairly good agreement with that calculated from the ex-

perimental data, the considerably high first peak suggests that the 

f.c.c. crystalline periodicity persistently remains in the transi-

tion part around the f.c.c. embryo core consisting of 19 atoms 

after the relaxation. Doi104) made a careful Fourier analysis of 

the first halo peak of the S(K) function to obtain the variation of 

the direct neighbour distance in linear atomic arrangement in the 

amorphous structures. He concluded that there are regularly spaced 

atomic rows of two atomic distances in the amorphous Pt20C80 struc-

ture and suggested the existence of microcrystals constituted of 

13 atoms arranged in regular f.c.c. or h.c.p. lattices. According-

ly, the f.c.c. embryo core size in the present model might be still 

slightly large. Suzuki et al. 10) showed that the appearance of the 

G(r) function strongly depends on the magnitude of maximum scatter-

ing vector,.K
max, which is given in Fig.2. In the case of Kmax 

25 A-1, total radial distribution functions with high real-space 

resolution of the amorphous Pd-Si alloys displayed definitely a 

second peak splitting into three subpeaks,10,11) as mentioned in 

the subsection 1.2.1. In this respect, the calculated S(K) func-

tion of the f.c.c. embryo model reproduces the similar profile in 
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the second maximum. This fact suggests that the medium range or-

der with the f.c.c.-like atomic arrangement may exist in the Pd-Si 

alloys in addition to the chemical short range order of Pd3Si type. 

Actually, Hirotsu and Akada33) have observed regular arrangements 

of dotty contrasts, which could be explained by the f.c.c.-like 

medium range order. 

     In the embryo model of single element, the embryo size suit-

able for the reproduction of experimentally obtained diffraction 

functions can not be fully determined, since the model structure 

is not necessarily realistic in the sense that it does not contain 

metalloid atoms indispensable to hold the amorphous structure, as 

discussed later. However, it is considered from model calculations 

that the core part of the embryo of optimum size contains atoms 

from 10 to 20 in number in accordance with the prediction based on 

the thermodynamical consideration and calculation by Fujita.88,89) It 

should be noted that Koizumi and Ninomiya86) put a large ammount 

of dislocations-into a model crystal so as to produce a disordered 

structure like amorphous materials. It is supposed that such a 

model structure, where dislocations are separated by only about 

three atomic distances, retains the crystalline ordering to a large 

extent around every dislocation core. In this respect, the dislo-

cation structure would not be quite different from the embryos ce-

mented by the disordered boundary region. This interpretation 

gives us more or less the same size of the embryos or medium range 

ordered regions in both models. 

     Early efforts to form amorphous metallic solids involved eva-

poration of metals in vacuum and condensation of their vapours on
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a substrate maintained at low temperature. Problems of contamina-

tion by condensation of residual gaseous atoms together with the 

metal atoms on the cold substrate are severe. Some nominally pure 

metals have been prepared by this technique in the amorphous form, 

although definitive scattering experiments were often not carried 

out and the amorphous nature of the deposited films was sometimes 

deduced only from high residual resistances which decreased abrup-

tly and irreversibly with increasing temperature, the decrease 

being attributed to the crystallization. The crystallization tem-

peratures of nominally pure amorphous films of nickel and cobalt 

were reported to increase with increases of the residual gas press-

ure during evaporation."') According to a low temperature elec-

tron diffraction experiment by Yoshida and Fujita,106) it was shown 

that the structure of amorphous iron films vacuum-deposited on the 

cold substrate was stabilized by the occluded gaseous atoms, mainly 

oxygen atoms. Irrespective of the methods of production, amorphous 

iron films always contain gaseous atoms or metalloid atoms to a 

large extent, which are indispensable to compose the amorphous 

structure. In the b.c.c. embryo model, the S(K) function is in 

agreement with so far obtained experimental curves of various amor-

phous metals and alloys, but relative positions and intensities 

of halo peaks still slightly differ from experimental ones. It is 

also reflected in the G(r) function, which does not always fit the 

curves obtained from the diffraction data. Without the metalloid 

atoms, the packing structure of the disordered regions and the 

transition regions will not necessarily be realistic and the 

crystalline periodicity in the embryos will be stronger than that
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expected from the real structure, which will give rise to disagree-

ments with experiments in the peak profiles, ratios and positions 

in the G(r) function. Actually, when the metalloid atoms are miss-, 

ing, the connectivity and the conjugate structure of the transition 

regions can be analysed in terms of the defective crystalline poly-

hedra and the positions of atoms surrounding each embryo are strong-

ly affected by atoms of the crystalline embryo. Therefore, in or-

der to construct the more realistic boundary layer and embryo 

structures, it is quite necessary to introduce in the structure 

the foreign atoms. They will occupy either the interstitial-like 

or substitutional-like sites and more or less disturb the crystal-

line nature of the amorphous structure. This disturbance is fur-

ther enhanced by the chemical bonding between metallic and metal-

loid atoms. As mentioned in the section 3.4, the modelling and 

calculation for amorphous Fe-B alloys are extensively improved by 

taking account of the boron atoms and the G(r) and S(K) functions 

are successfully compared with those experimentally obtained as 

follows. 

     In the composite type embryo models for the amorphous Fe-B 

alloy the b.c.c. embryos and chemical clusters of Fe3B type coex-

ist surrounded by the disordered regions in accordance with the 

experimental result by Oshima and Fujita.26) In the calculation of 

the diffraction functions, a new process of Fourier transforma-

tions, which takes account of the truncation effect, is successful-

ly applied as described in the section 3.3, and a meaningful com-

parison and good agreement are obtained between the calculated in-

terference and pair correlation function and so far obtained ex-
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perimental ones. Therefore, it is concluded that the crystalline 

embryo model, which takes the medium range order into account, 

satisfactorily describes the amorphous structure. It must be 

pointed out that the effect of the b.c.c. crystalline periodicity 

on the profile of the two functions disappear, when the embryo 

size is taken to be as small as 10 A in diameter corresponding to 

some twenty atoms cluster including a part of the transition re-

gion and the Fourier , transformation is truncated at Kmax =15 A-1 

in accordance with the x-ray. scattering measurements,11.21) as Figs. 

21 and 22 show. It is also noteworthy that the Fe-B distance plays 

an essential role in reproducing the profile of the split second 

peak in the G(r) function, as is described in the section 3.4. 

Further consideration in relation with the chemical state of boron 

stoms in the amorphous structure will be given later. 

     Suzuki et al. 10) showed that the appearance of the radial dis-

tribution function strongly depended on the maginitude of maximum 

wave vector Kmax where the Fourier transformation from the S(K) to 
the G(r) was truncated. They concluded that the value of Kmax =25 

A-1 is necessary to obtain a total correlation function with high 

real-space resolution, which displayed definitely a separation be-

tween-Pd-Si and Pd-Pd partial pair correlationsin the nearest 

neighbour region and a second peak splitting into three suppeaks, 

as shown in Fig.2. As mentioned before, in the x-ray diffraction 

measurements for the amorphous Fe-B alloys, the scattering data 

are limited to relatively small scattering angles (Kmax = l5'l7 A-1), 

which inevitably gives rise to a poor resolution of the pair cor-

relation function. An example is already given by Fig. 19, where a
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 theoretical interference function is Fourier-transformed using Eq. 

 (14) with two values of Kmax, 15 A-1 and 30 A-1, respectively, and 

 it is comfirmed that the truncation of the S(K) severely controls 

 the quality and spatial resolution of the G(r). This indicates 

 that the plausibility of the model is not always guaranteed by the 

 direct comparison between the experimentally obtained G(r) and the 

 model G(r) which is not subjected to the truncation effect, as dis-

 cussed in the section 3.3. In order to make the more meaningful 

 comparison with the experiments, therefore, a new process of Fourier 

 transformations, which is equivalent to that employed in the analy-

 sis of the experimental x-ray diffraction data, is successfully ap-

 plied in the present thesis to the crystalline embryo model for the 

 amorphous Fe-B alloys. In the G(r) function of the crystalline em-

 bryo model for the amorphous Fe86B14 alloy, some small peaks aris-

 ing from the b.c.c. structure of the 27 atom embryos are seen in the 

 second peak in the case of K
max = 30 A-1, as shown in Fig.19. This 

 phenomenon resembles to the variation of the shape of the second 

 peak of G(r) depending on the Kmax value in the experiment by 

 Suzuki et al. Therefore, it is concluded that to discuss satisfac-

 torily the structure of the amorphous Fe-B alloys, especially re-

 garding the medium range order, the high K value measurements of 

 scattering intensity distribution are quite necessary. 

      Boudreaux65) and,Fujiwara et al. 66) constructed models for the 

 amorphous Fe-B alloys based on the concept of the relaxed DRP of 

 spheres. In their modelling experiments, the ratio of the diameter 

 of boron atoms to that of iron atoms was taken to be 0.52, which is 

 smaller than 0.59 which corresponds to rOF
e-B = 2.05 A in the present 
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study. When these ratios are employed, the peak height ratio of 

the second peak doublet in the G(r) is of the reversed type both 

in the embryo model and the relaxed DRP model for the amorphous 

Fe-B alloys with 14 to 25 at%B. In this respect, the G(r)1s for 

the amorphous Fe80B20 and Fe75B25 alloy do not fit the experimen-

tally obtained,curves.11,21) According to the result by Fukunaga 

et al., 11) the G(r) showed the "normal" second peak splitting even 

for boron concentrations of less than 20 at% (Fig.3(b)) contrary 

to that by Waseda and Chen,21) as mentioned in the first chapter 

of the present thesis. A neutron diffraction measurement on the 

amorphous Fe83B17 alloy by Cowlam et al. 22) confirmed the observa-

tion in the above. Recently, Lamperter et al. 16) showed that the 

average Fe-B spacing was 2.14 A in the structure of the amorphous 

Fe80B20 alloy. The average distance, 2.05 A, employed before is 

taken from the crystal structure data on the Fe3B and does not 

necessarily correspond to the realistic one in the amorphous struc-

ture of the Fe-B alloy. Therefore, the improvement of the model 

calculation is carried out by introducing the above measured value 

into rO
Fe-B provided that the average Fe-B spacing has the same 

value for the Fe100 -xBx (x=14, 20 and 25) alloys. As a result of 

the calculation, as shown in Figs.26 and 27, the second peak split-

ting in the pair correlation functions for three alloys is drasti-

cally changed from "reversed" to "normal", which is in accordance 

with the x-ray and neutron data. 11,16,22) In this case of r                                                                               O
Fe-B 
  2.14 A, the ratio of the diameter of boron atoms to that of iron 

atoms is 0.66. The normal type splitting, regarding the shape of 

the second peak, was also observed in the relaxed DRP model for 
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the amorphous Fe-P alloy by Boudreaux65) and Fujiwara and Ishii,67) 

in which the ratio of phospher diameter to iron diameter was taken 

to be 0.72. The above results of the model calculations for the 

amorphous Fe-P and Fe-B alloys clearly indicate that the shape of 

the second peak in the G(r) is strongly influenced by the average 

distance between metal and metalloid atoms. Dini et al. 23) made a 

comparison between two independent x-ray determinations 11,21) of 

the structure of the amorphous Fe-B alloy which were in disagree-

ment, specially regarding the shape of the second peak of the G(r). 

They suggested that some of the disagreements in the S(K) curves 

could arise through structural differences in the samples, which 

were related to their state of quench. However, it was not con-

cluded what sort of changes were produced by the enhanced anneal-

ing and thereby the structural relaxation in the twin-rolled sam-

ples. The present result suggests that two values of the average 

Fe-B spacing, rOF
e-B' would correspond to the structural differ-

ences in the amorphous Fe-B alloy with boron content below 20 at%. 

This might also indicate the difference of the degree of chemical 

bonding between iron and boron atoms in the actual amorphous struc-

ture including the boundary regions and chemical embryos.
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5.3 High Resolution Electron Image from the Medium Range Order

        In parallel with diffraction experiments, the structure of 

  amorphous materials has been studied by the HREM, which could pro-

  vide more direct and detailed information of the local atomic struc-

  tures than the statistically averaged data such as the S(K) and 

  G(r) functions. 

        Some investigators observed the lattice like fringes or dots 

  of about 10 A in diameter locally even in the as quenched amorphous 

  materials under the condition of axial illumination. This results 

  seem to be in good agreement with the prediction of the crystalline 

  embryos surrounded by the disordered regions in the amorphous struc-

  ture and with the model calculation of the high resolution electron 

  image contrast from the thin film of an iron based amorphous alloy. 

  When the defocus distance is chosen as -1500 A and the spherical 

  aberration constant as 1 mm in the calculation, the lattice like 

  fringes and dots with the spacings of about 2 A and the diameter 

  of about 10 A are well reproduced, as mentioned and discussed in 

  the chapter 4. 

       In the kinematical approximation used in the present calcula-

  tion, the image contrast formation is based on the interference 

  between the directly transmitted waves and the scattered ones, and 

  the phase shift between them is inevitably modulated by the aberra-

  tion and the defocussing, as Eq.(16) shows. The oscillations of 

  the contrast transfer function, sing, in Eq.(19) result in the re-

  versal or suppresion of particular ranges of spatial frequency in 

  the image. Generally, the defocus distance, Af, is chosen so as 

  to make the sing function around ±1 at'K values corresponding to 

                                     - 153 -



 the spatial periodicities to be reproduced in the image and to 

 cancel the phase shift arising from the spherical aberration in 

 the given aperture configuration. In the present calculation, 

 when the value of Af is taken to be -1500 A with C
s =1 mm, the 

 sing function is nearly -1 in the range of K values covering al-

 most the essential part of the first halo peak as Fig.32 shows. 

 In this case, the calculated axial bright-field image contrast 

 from the model assembly shows the (001) lattice image contrast 

 in the centre part of the contour map, which is given in Fig.33. 

 This is quite different from the appearance of the modulated and 

 displaced {110} lattice fringe contrast in the case of Af =-500 A, 

 which is shown in Fig.29 and Fig.30. In order to obtain the op-

 timum defocus distance in the actual observation, an example of 

 which is shown in Fig.5(a), Hirotsu and Akada33) carried out a one 

 dimensional calculation of the image contrast from a b.c.c. micro-

 crystal of 173 iron atoms embeded in some amorphous structure, tak-

 ing account of the defocus distance, the beam divergence and the 

 chromatic aberration. From one dimensional intensity distribution, 

 they concluded that the best image will be obtained under the de-

 focus values, -1500 A and -1660 A with C
s = 1.2 mm and X =0.0251 A. 

 However, according to the consideration on the siny-K relation, 

 the real optimum defocus distance in this case is -1820 A. This 

 means that for the observation of small ordered regions in the 

 amorphous structure, the optimum condition for the lattice image 

 contrast has a certain allowance because of the divergence of nec-

 essary K values enveloped by the first halo peak. In this respect, 

 the selection of Af =-1500 A with C
s = 1 mm seems to be satisfactory 
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enough to obtain the best lattice image contrast of the embryo. 

      The size of the b.c.c. embryo employed in the present model 

calculation agrees with that used to explain the diffraction data 

and the calculated lattice image shows a good agreement with the 

HREM observations. Since the appearance probability of the lat-

tice image depends upon the size of the embryo, as Fig.35 shows, 

we may again employ the above embryo size, 10 A in diameter, to 

evaluate the amount of the medium range order clusters from their 

image appearance frequency. In Fig.39 is given a stereographic 

triangle of a (001) projection of a cubic crystal. When the beam 

incidence is along [001] of the b.c.c. embryo, the lattice image 

with four-fold symmetry appears as in Fig.33, and, when it is along 

[111], the six-fold image will appear. As discussed in the section 

4.3, the (001) lattice image is retained up to 8=10° and 13° in the 

rotations of the aggregate around the [010] and [110] axes of the 

embryo respectively, as shown in the figure. The visibility of the 

{111} lattice image around the [111] pole would be more or less the 

same as above. Thus, the appearance ranges of the these images are 

enclosed with the dotted lines. Since the lines, [001]-[111] and 

[111]-[101], correspond to the {110} plane, the {110} fringe image 

always appears when the incident beam lies on these lines, as shown 

in Fig.36(b), except the regions around the above two poles, where 

the lattice image remains. The persistency of appearance of the 

{110} fringe image may occur also on the both sides of the two 

{llO} lines and their boundary of visibility must be linked with 

those of the {001} and {111} lattice image. Therefore, the appear-

ance range of the lattice and fringy images is given in the stereo-

graphic triangle as the shaded rim bands of the width of about 6°. 
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When the beam incidence is in the unshaded part of the triangle, 

no lattice and fringy images will be observed. From the area ratio 

of the shaded and unshaded, the probability to observe the ordered 

regions is estimated to be about 50 % provided that no texture ex-

ists in the distribution of the embryo axes. Another necessary 

consideration for the probability of observation is that the image 

contrasts from the ordered regions will be distorted and reduced by 

the overlapping effect and the thickness effect as mentioned before. 

In the present model calculations to explain the diffraction data 

and the high resolution electron microscope images, the mean dis-

tance between the centres of the embryos and the diameter of their 

images are about 16 A and 10 A respectively. Therefore, the image 

overlapping would take place to some extent in actual cases and the 

probability of observation would be reduced further. 

     The images from the ordered. regions observed in the as quenched 

amorphous specimens usually have a little larger size than the cal-

culated one from the embryo model and, at the same time, are dis-

torted. 33) Wang et al. 107) showed by the x-ray diffraction that 

the a-iron particles in the Fe83B17 alloy after the crystallization 

under a pressure of 50 kbar contains boron as interstitial atoms, 

while Ray and Hasegawa108) concluded from their experiments the pre-

dominant dissolution up to 12 at% of boron atoms on the substitu-

tional sites of the b.c.c. lattice in the metastable a-iron. These 

results seem to suggest that boron atoms could occupy either inter-

stitial sites or substitutional ones even in the embryos. Intro-

duction of lattice defects such as a twin as well as metalloid atoms 

inevitably brings about the distortion of the b.c.c. lattice. It 

must be noted that the S(K) function of a microcrystallite becomes 
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more diffuse owing to the break down of the normal crystalline 

periodicity at the twin interface, as mentioned in the subsection 

2.1.2. Accordingly, if lattice defects and/or boron atoms are in-

troduced in the embryo cores, the lattice image contrast will be 

distorted. The image distortion would also arise from the overlap 

effect from the surrounding disordered atoms. As for the size of 

the lattice image a little larger than that by the model calcula-

tion, the actual size distribution of the ordered clusters, the size 

changes according to the differences in the cooling rate from the 

melt, and/or the diffusing out of the periodic image rising from 

the essential nature of diffraction must be taken into considera-

tion and carefully examined. 

     The present calculation gives the basis of the interpretation 

and analysis of the high resolution electron microscope images of 

medium range order clusters in the amorphous materials. It seems 

to be necessary to calculate further on the lattice images from 

other kinds of embryos than the b.c.c. one, including the chemical 

medium range order clusters, and the effect of multiple scattering 

of electrons on the image formation. On the other hand, more HREM 

experiments, for instance, identification of the embryo lattice 

structure and observation of the variation of the lattice images by 

changing the quenching speed and by annealing at low temperature to 

induce structural relaxation or incipient crystallization, 109) seem 

to be required.
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5.4 Conclusions 

(1) Some newer experimental results strongly suggest that the chemi-

cal short range order or even farther range atomic order extending 

beyond the first neighbour distance may exist in the actual amor-

phous structure, which is hardly expected from the DRP models. By 

taking account of such atomic orderings, a simple and possible struc-

tural model of amorphous metals and alloys based on the concept of 

crystalline embryos is proposed. 

(2) The model assembly of atoms containing the crystalline embryos 

and the disordered regions coexisting and continuously connected 

each other is constructed, and the G(r) and S(K) functions are cal-

culated. Semiquantitative agreements between the calculation and 

experimental results are obtained. The atoms in the boundary re-

gions break the crystalline periodicity, so that the combined in-

tracrystalline and exocrystalline interference give the S(K) and 

G(r) functions essentially different from those of the microcrystal-

line model. 

(3) As a more realistic model, the composite type assemblies for 

the amorphous Fe-B alloys containing the b.c.c. embryos and chemical 

clusters of Fe3B type are constructed. In accordance with the argu-

ments from experimental results, boron atoms are scattered so as not 

to contact with each other and embeded interstitially or substitution-

ally in the outer parts of the embryos and disordered regions, and 

a new process of the Fourier transformation, which takes account of 

the truncation effect, is employed. The obtained functions are in
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excellent agreement with the experiments, when the embryo is 

taken to be as small as 10 A in diameter containing some twenty at-

oms in the core and the transition region of the cluster. 

(4) The truncation in the Fourier transformation of the S(K) func-

tion severely controls the quality and spatial resolution of the G(r) 

function. Therefore, it is concluded that for more precise and sat-

isfactory discussion. on the structure of amorphous metals and alloys, 

the high K value measurements of the scattering intensity distribu-

tion are quite necessary. 

(5) Recent high resolution electron microscopy (HREM) of amorphous 

alloys has revealed that the lattice like fringy and dotty contrasts 

of about 10 A in diameter frequently appear in the as quenched sam-

ples, strongly suggesting the medium range order in accordance with 

the author's prediction and diffraction calculation. The model cal-

culation of the high resolution electron image .contrast from the 

amorphous thin film is carried out by using the embryo model and 

the kinematical theory of electron diffraction. When the defocus 

distance is chosen as -1500 A and the spherical aberration constant 

as 1 mm, the lattice fringe and dot contrasts are well reproduced. 

Therefore, it is concluded that the medium range order of this size 

most probably exist in the actual amorphous structure. The consist-

ency and the validity of the crystalline embryo model are concluded. 

A precise discussion on the selection of suitable defocus distances, 

especially concerning the amorphous structure, is also presented. 

(6) The range of finding the lattice fringes and/or the lattice 

images is determined on the stereographic projection by the process 
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of rotation of the beam incidence, and the probability to observe 

the ordered regions in the actual amorphous thin films is estimated 

to be about 50 % provided that no texture exists in the distribution 

of the embryo axes. From the consideration on the effect of the 

film thickness and the image overlapping of the embryos, the ulti-

mate frequency of appearance of the lattice fringes and dotty cont-

rasts from the medium range order regions is evaluated too. 

(7) At present, the images from the ordered regions observed in the 

as quenched amorphous specimens are different from experiment to 

experiment. It is suggested that the actual size distribution of 

the ordered clusters, the size changes according to the differences 

in the cooling rate from the melt, and/or the diffusing out of the 

periodic image rising from the essential nature of diffraction must 

be carefully examined. 

(8) More HREM experiments, for instance, identification of the em-

bryo lattice structure and observation of the variation of the lat-

tice images by changing the quenching speed and by annealing at low 

temperature to induce structural relaxation or incipient crystalli-

zation, are proposed. At the same time, further calculations on 

the lattice images from other kinds of embryos than b.c.c. one, in-

cluding the chemical medium range order clusters, and the effect of 

multiple scattering of electrons on the image formation are encour-

aged.

- 161 -



ACKNOWLEDGEMENTS

     The author would like to express his gratitudes to Prof. F. E. 

Fujita of Osaka University for continuous guidance and encourage-

ments throughout the course of this study. Hearty thanks are also 

due to Profs. R. Oshima and S. Nasu of Osaka University and Prof. 

M. Kiritani of Hokkaido University for their valuable discussions 

and comments, and to Dr. H. Yamanaka of Osaka Prefectural Industri-

al Research Institute for giving a chance to study at Osaka Univer-

sity. 

     A large part of the computer calculations was done by ACOS-

700S and -S900 computer of the Crystallographic Research Center, 

Osaka University by their kind permission. The high resolution 

electron micrographs in the text are kindly offered by Dr. Y. Hirotsu 

of The Technological University of Nagaoka and Dr. H. Ichinose of 

Tokyo University. His thanks are also due to Miss. T. Ukawa, 

Messrs. K. Nunogaki, K. Niwase, I. Tanaka, K. Makino and T. Nakayasu 

for their helps in the calculations and in writing this thesis.

- 162 -



REFERENCES

1) 

2) 

3)

4) 

5) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

13)

P. Duwez, R. H. Williams and W. Klement: J. Appl. Phys. 31 , 

(1960) 36. 

J. D. Bernal: Nature 183 (1959) 141. 

J. D. Bernal: Nature 185 (1960) 68. 

J. D. Bernal and J. Mason: Nature 188 (1960) 910. 

T. Hamada and F. E. Fujita: Jpn. J. Appl. Phys. 21 (1982) 981. 

T. Hamada and F. E. Fujita: Proc. 4th Int'l Conf, Rapidly 

Quenched Metals, eds. T. Masumoto and K. Suzuki (Sendai: The 
Japan Institute of Metals) vol.I (1982) 319. 

T. Hamada and F. E. Fujita: Jpn. J. Appl. Phys. 24 (1985) to be 

published. 

T. Hamada and F. E. Fujita: Jpn. J. Appl. Phys. to be submitted. 

G. S. Cargill DI: Solid State Physics, eds. F. Seitz, D. Turnbull 

and H. Ehrenreich (New York: Academic Press, 1975) vol.30, 227. 

P. H. Gaskell: J. Phys. C 12 (1979) 4337. 

H. S. Chen: Rep. Prog. Phys. 43 (1980) 353. -

T. Ichikawa: Phys. Stat. Sol. (a) 19 (1973) 707. 

Y. Waseda and M. Ohtani: Phys. Stat. Sol. (b) 62 (1974) 535. 

J. Dixmier and P. Duwez: J. Appl. Phys. 44 (1973) 1189. 

 K. Suzuki, T. Fukunaga, M. Misawa and T. Masumoto: Mater. Sci. 

Eng. 23 (1976) 215. 

 K. Suzuki, T. Fukunaga, M. Misawa and T. Masumoto: Sci. Rep. 

RITU A 26 (1976) 1. 

 T. Fukunaga, M. Misawa, K. Fukamichi, T. Masumoto and K. Suzuki: 

Proc. 3rd Int'l Conf. Rapidly Quenched Metals, ed. B. Cantor 

 (London: The Metals Society) vol.11 (1978) 325. 

J. F. Sadoc and J. Dixmier: Mater. Sci. Eng. 23 (1976) 187. 

J. F. Sadoc and J. Dixmier: The Structure of Non-Crystalline 

Materials, ed. P. H. Gaskell (London: Taylor & Fransis, 1977) 

85. 

Y. Waseda, T. Masumoto and S. Tamaki: Inst. Phys. Conf.. eds. 

                               - 163 -



14) 

15) 

16) 

17) 

18) 

19) 

20) 

21) 

22) 

23) 

24) 

25) 

26)

R. Evans and D. A. Greenwood (Bristol: The Institute of Physics, 

1977) Ser.30, 268. 

Y. Waseda, H. Okazaki and T. Masumoto: The Structure of Non-

Crystalline Materials, ed. P. H. Gaskell (London: Taylor & 

Fransis, 1977) 95. 

Y. Waseda: Proc. 3rd Int'l Conf. Rapidly Quenched Metals, ed. 

B. Cantor (London: The Metals Society) vol.II (1978) 352. 

P. Lamperter, W. Sperl, E. Nold, G. Rainer-Harbach and S. Steeb: 

Proc. 4th Int'l Conf. Rapidly Quenched Metals, eds. T. Masumoto 

and K. Suzuki (Sendai: The Japan Institute of Metals) vol.I 

(1982) 343. 

G. S. Cargill Ill: J. Appl. Phys. 41 (1970) 12. 

G. S. Cargill DI and R. W. Cochrane: J. de. Physique 35 (1974) 

C4-269. 

J. Logan: Phys. Stat. Sol. (a) 32 (1975) 361. 

N. Hayashi, T. Fukunaga, M. Ueno and K. Suzuki: Proc. 4th Int'l 

Conf. Rapidly Quenched Metals, eds. T. Masumoto and K. Suzuki 

(Sendai: The Japan Institute of Metals) vol.I (1982) 355. 

Y. Waseda and H. S. Chen: Phys. Stat. Sol. (a) 49 (1978) 387. 

N. Cowlam, M. Sakata and H. A. Davies: J. Phys. F 9 (1979) L203. 

K. Dini, N. Cowlam and H. A. Davies: J. Phys. F 12 (1982) 1553. 

C. C. Tsuei, G. Longworth and S.'C. H. Lin: Phys. Rev. 170 

(1968) 603. 

C. C. Tsuei and H. Lilienthal: Phys. Rev. B 13 (1976) 489. 

F. E. Fujita, T. Masumoto, M. Kitaguchi and M. Ura: Jpn. J. Appl. 

Phys. 16 (1977) 1731. 

F. E. Fujita: J. de Physique, Colloq. C2 Suppl. N°2 40 (1979) 

C2-120. 

R. Oshima and F. E. Fujita: J. de Physique, Colloq. C2 Suppl. 

N°2 40 (1979) C2-132. 

R. Oshima and F. E. Fujita: Jpn. J. Appl. Phys. 20 (1981) 1. 

                          164 -



27)

28)

29) 

30) 

31)

32) 

33) 

34) 

35)

36) 

37) 

38)

I. Vincze, D. S. Boudreaux and M. Tagze: Phys. Rev. B 19 (1979) 

4896. 

T. Kemeny, I. Vincze, B. Fogarassy and S. Arajs: Phys. Rev. B 

20 (1979) 476. 

I. Vincze and F. van der Woude: J. Non-Cryst. Solids 42 (1980) 

499. 

M. Koshimura, Y. Abe, M. Takahashi, S. Inawashiro and S. Katsura: 

Proc. 4th Int'l Conf. Rapidly Quenched Metals, eds. T. Masumoto 

and K. Suzuki (Sendai: The Japan Institute of Metals) vol.11 

(1982) 1113. 

M. L. Rudee and A. Howie: Phil. Mag. 25 (1972) 1001. 

S. R. Herd and P. Chaudhari: Phys. Stat. Sol. (a) _26 (1974) 627. 

Y. Ishida, H. Ichinose, H. Shimada and H. Kojima: Proc. 4th 

Int'l Conf. Rapidly Quenched Metals, eds. T. Masumoto and 

K. Suzuki (Sendai: The Japan Institute of Metals) vol.I (1982) 

421. 

H. Ichinose and Y. Ishida: Trans. JIM 24 (1983) 405. 

Y. Hirotsu and R. Akada: Jpn. J. Appl. Phys. 23 (1984) L479. 

Y. Hirotsu and R. Akada: Abstract of annual meeting of Japan 

Institute of Metals (1984) 495. 

M. Takahashi and M. Koshimura: Proc. 4th Int'l Conf. Rapidly 

Quenched Metals, eds. T. Masumoto and K. Suzuki (Sendai: The 

Japan Institute of Metals) vol.I1(1982) 1061. 

K. Fukamichi, M. kikuchi, S. Arakawa and T. Masumoto: Solid St. 

Commun. 23 (1977) 955. 

H. Hiroyoshi, K. Fukamichi, M. Kikuchi, A. Hoshi and T. Masumoto: 

Phys. Lett. 65A (1978) 163. 

R. Hasegawa and R. Ray: J. Appl. Phys. 49 (1978) 4174. 

F. E. Luborsky, H. H. Liebermann, J. J. Becker and J. L. Walter: 

Proc. 3rd Int'l Conf. Rapidly Quenched Metals, ed. B. Cantor 

(London: The Metals Society) vol.11 (1978) 188. 

P. Panissod, D. Aliaga Guerra, A. Amamou, J. Durand, W. L. 

Johnson, W. L. Carter and S. J. Poon: Phys. Rev. Lett. 44 (1980) 

1465. 

                               - 165 -



39) 

40) 

41) 

42) 

43) 

44) 

45) 

46) 

47) 

48) 

49) 

50) 

51) 

52) 

53) 

54) 

55) 

56) 

57) 

58)

T. Mizoguchi, J. I. Budnick, P. Panissod, J. Durand and H. J. 

Glntherodt: Proc. 4th Int'l Conf. Rapidly Quenched Metals, eds. 

T. Masumoto and K. Suzuki (Sendai: The Japan Institute of Metals) 

vol.11 (1982) 1149. 

T. M. Hayes, J. W. Allen, J. Tauc, B. C. Giessen and J. J. Hauser: 

Phys. Rev. Lett. 40 (1978) 1282. 

J. L. Finney: Nature 266 (1977) 309. 

Y. Waseda: J. Solid St. Phys. 12 (1977) 181. 

P. Chaudhari and D. Turnbull: Science 199 (1978) 11. 

J. L. Finney: Proc. Roy. Soc. London A319 (1970) 479, 495. 

G. D. Scott and D. M. Kilgour: J. Phys. D .2 (1969) 863. 

C. H. Bennett: J. Appl. Phys. 43 (1972) 2727. 

D. J. Adams and A. J. Matherson: J. Chem. Phys. 56 (1972) 1989. 

Jy F, Sadoc, J. Dixmier and A. Guinier: J. Non-Cryst. Solids 

12 (1973) 46. 

T. Ichikawa: Phys. Stat. Sol. (a) 29 (1975) 293. 

J. A. Baker, M. R. Hoare and J. L. Finney: Nature 257 (1975) 120. 

L. von Heimendahl: J. Phys. F 5 (1975) L141. 

G. A. N. Connell: Solid St. Commun. 16 (1975) 109. 

R. Yamamoto, H. Matsuoka and M. Doyama: Phys. Lett. A64 (1978) 

457. 

K. Maeda and S. Takeuchi: J. Phys. F 8 (1978) L283. 

Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita and A. Ueda: Prog. 

Theor. Phys. 52 (1974) 1105. 

A. Rahman, M. J. Mandell and J. P. Mctague: J. Chem. Phys. 64 

(1976) 1564. 

W. D. Kristensen: J. Non-Cryst. Solids 21 (1976) 303. 

L. V. Woodcock, C. A. Angell and P. Cheeseman: J. Chem. Phys. 

65 (1976) 1565. 

M. Tanemura, Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita and 

                                - 166 -



59) 

60) 

61) 

62) 

63) 

64) 

65) 

66) 

67) 

68) 

69) 

70) 

71) 

72) 

73) 

74) 

75) 

76)

A. Ueda: Prog. Theor. Phys. 58 (1977) 1079. 

J. D. Bernal: Proc. Roy. Soc. London A280 (1964) 299. 

E. J. W. Whittaker: J. Non-Cryst. Solids 28 (1978) 293. 

R. Yamamoto and M. Doyama: J. Phys. F 9 (1979) 617. 

G. S. Cargill III: J. Appl. Phys. 41 (1970) 2249. 

D. E. Polk: Scr. Met. 4 (1970) 117. 

D. E. Polk: Acta Met. 20 (1972) 485. 

D. S. Boudreaux and J. M. Gregor: J. Appl. Phys. 48 (1977) 152, 

5057. 

D. S. Boudreaux: Phys. Rev. B 18 (1978) 4039. 

T. Fujiwara, H. S. Chen and Y. Waseda: J. Phys. F 11 (1981) 1327. 

T. Fujiwara and Y. Ishii: J. Phys. F 10 (1980) 1901. 

K. Suzuki: Proc. Sympo. Amoph. Met., Suppl. Sci. Rep. RITU A 

(1978) 1. 

D. S. Boudreaux and H. J. Frost: Phys. Rev. B 23 (1981) 1506. 

J. F. Graczyk and P. Chaudhari: Phys. Stat. Sol. (b) 75 (1976) 

593. 

P. L. Maitrepierre: J. Appl. Phys. 40 (1963) 4826. 

P. H. Gaskell: Proc. 3rd Int'l Conf. Rapidly Quenched Metals, 

ed. B. Cantor (London: The Metals Society) vol.I1 (1978) 277. 

P. H. Gaskell: J. Non-Cryst. Solids 32 (1979) 207. 

S. Kobayashi, K. Maeda and S. Takeuchi: Jpn. J. Appl. Phys. 19 

(1980) 1033. 

S. Aur, T. Egami and I. Vincze: Proc. 4th Int'l Conf. Rapidly 

Quenched Metals, eds. T. Masumoto and K. Suzuki (Sendai: The 
Japan Institute of Metals) vol.I (1982) 351. 

L. H. Germer and A. H. White: Phys. Rev. 60 (1941) 447. 

J. Dixmier, K. Doi and A. Guinier: Physics of Non-Crystalline 

Solids, ed. J. A. Prins ( Amsterdam: North-Holland Publ., 1965) 

67. 

                               - 167 -



77) 

78) 

79) 

80) 

81) 

82) 

83)

84) 

85) 

86) 

87) 

88)

89) 

90) 

91)

C. N. J. Wagner, T. B. Light, N. C. Halder and W. E. Lukens: 

J. Appl. Phys. 39 (1968) 3690. 

F. Betts and A. Bienenstock: J. Appl. Phys. 43 (1972) 4591. 

F. L. Galeener and M. M. Rodoni: Amorphous and Liquid Semicon-

ductors, eds. J. Stuke and W. Brenig (London: Taylor & Francis, 

1974) 101. 

A. Howie, 0. L. Krivanek and M. L. Rudee: Phil. Mag. 27 (1973) 

235. 

W. Cochran: Phys. Rev. B 8 (1973) 623. 

0. L. Krivanek and A. Howie: J. Appl. Cryst. 8 (1975) 213. 

E. J. Jensen, W. D. Kristensen and R. M. J. Cotterill: Phil. 

Mag. 27 (1973) 623. 

W. D. Kristensen, E. H. Jensen and R. M. J. Cotterill: Phil. 

Mag. 30 (1974) 229, 245. 

H. Suzuki: Proc. 4th Int'l Conf. Rapidly Quenched Metals, eds. 

T. Masumoto and K. Suzuki (Sendai: The Japan Institute of Metals) 

vol.I (1982) 225. 

T. Ninomiya: The Structure of Non-Crystalline Materials, ed. 

P. H. Gaskell (London: Taylor & Francis, 1977) 45. 

H. Koizumi and T. Ninomiya: J. Phys. Soc. Jpn. 49 (1980) 1022. 

J. Frenkel: Kinetic Theory of Liquids (New York: Dover, 1946) 

96, 303. 

F. E. Fujita: Proc. Sympo. Amorph. ,et., Suppl. Sci. Rep. RITU 

A 28 (1980) 1. 

F. E. Fujita: Proc. 4th Int'l Conf. Rapidly Quenched Metals, eds. 

T. Masumoto and K. Suzuki (Sendai: The Japan Institute of Metals) 

vol.I (1982) 301. 

F. E. Fujita: Proc. 5th Int'l Conf. Rapidly Quenched Metals 

(Wurzburg, 1984) in press. 

M. Takagi: J. Phys. Soc. Jpn. 11 (1956) 396. 

Y. Waseda, F. Takahashi and K. Suzuki: Sci. Rep. RITU A 23 (1972) 

127. 

                               - 168 -



92) 

93) 

94) 

95) 

96) 

97) 

98) 

99) 

100) 

101) 

102) 

103) 

104) 

105) 

106) 

107) 

108) 

109)

T. Hamada, K. Yamakawa and F. E. Fujita: J. Phys. F 11 (1981) 

657. 

G. W. Stewart: Phys. Rev. 35 (1930) 726. 

G. W. Stewart: Phys. Rev. 37 (1931) 9. 

E. Nold, G. Rainer-Harbach, P. Lamperter and S. Steeb: 

Z. Naturforsch. 38a (1983) 325. 

C. S. Hsu and A. Rahman: J. Chem. Phys. 70 (1979) 5234. 

Y. Fukano: Jpn. J. Appl. Phys. 13 (1974) 1001. 

H. M. Pak and M. Doyama: J. Fac. Eng. Univ. Tokyo B 30 (1969) 111. 

H. B. Huntington: Solid State Physics, eds. F. Seitz and D. 

Turnbull (New York: Academic Press, 1958) vol.7, 274. 

M. Kiritani and T. Hamada: Proc. 4th Int'l Conf. Rapidly Quenched 

Metals, eds. T. Masumoto and K. Suzuki (Sendai: The Japan 

Institute of Metals) vol.I (1982) 583. 

 F. Zernike and J. A. Prins: Z. Phys. 41 (1927) 184. 

 A. Howie: J. Non-Cryst. Solids 31 (1978) 41. 

 K. J. Hanssen: Adv. in Optical and Electron Micr., eds. Cosslett 

 and Barer, 4 (1974) 1. 

 M. F. Ashby, F. Spaepen and S. Williams: Acta Met. 26 (1978) 

 1647. 

 K. Doi: J. Appl. Cryst. 9 (1976) 382. 

 M. R. Bennett and J. G. Wright: Phys. Stat. Sol. (a) 13 (1972) 

 135. 

 N. Yoshida and F. E. Fujita: J. Phys. F 2 (1972) 1009. 

 W.-K. Wang, H. Iwasaki and K. Fukamichi: J. Mater. Sci. 15 

 (1980) 2701. 

 R. Ray and R. Hasegawa: Solid St. Commun. 27 (1978) 471. 

 Y. Katao, M. Kiritani and F. E. Fujita: J. Mater. Sci. 19 (1984) 

 3375. 

                                -169-


	090@00001.pdf
	090@00002.pdf
	090@00003.pdf
	090@00004.pdf
	090@00005.pdf
	090@00006.pdf
	090@00007.pdf
	090@00008.pdf
	090@00009.pdf
	090@00010.pdf
	090@00011.pdf
	090@00012.pdf
	090@00013.pdf
	090@00014.pdf
	090@00015.pdf
	090@00016.pdf
	090@00017.pdf
	090@00018.pdf
	090@00019.pdf
	090@00020.pdf
	090@00021.pdf
	090@00022.pdf
	090@00023.pdf
	090@00024.pdf
	090@00025.pdf
	090@00026.pdf
	090@00027.pdf
	090@00028.pdf
	090@00029.pdf
	090@00030.pdf
	090@00031.pdf
	090@00032.pdf
	090@00033.pdf
	090@00034.pdf
	090@00035.pdf
	090@00036.pdf
	090@00037.pdf
	090@00038.pdf
	090@00039.pdf
	090@00040.pdf
	090@00041.pdf
	090@00042.pdf
	090@00043.pdf
	090@00044.pdf
	090@00045.pdf
	090@00046.pdf
	090@00047.pdf
	090@00048.pdf
	090@00049.pdf
	090@00050.pdf
	090@00051.pdf
	090@00052.pdf
	090@00053.pdf
	090@00054.pdf
	090@00055.pdf
	090@00056.pdf
	090@00057.pdf
	090@00058.pdf
	090@00059.pdf
	090@00060.pdf
	090@00061.pdf
	090@00062.pdf
	090@00063.pdf
	090@00064.pdf
	090@00065.pdf
	090@00066.pdf
	090@00067.pdf
	090@00068.pdf
	090@00069.pdf
	090@00070.pdf
	090@00071.pdf
	090@00072.pdf
	090@00073.pdf
	090@00074.pdf
	090@00075.pdf
	090@00076.pdf
	090@00077.pdf
	090@00078.pdf
	090@00079.pdf
	090@00080.pdf
	090@00081.pdf
	090@00082.pdf
	090@00083.pdf
	090@00084.pdf
	090@00085.pdf
	090@00086.pdf
	090@00087.pdf
	090@00088.pdf
	090@00089.pdf
	090@00090.pdf
	090@00091.pdf
	090@00092.pdf
	090@00093.pdf
	090@00094.pdf
	090@00095.pdf
	090@00096.pdf
	090@00097.pdf
	090@00098.pdf
	090@00099.pdf
	090@00100.pdf
	090@00101.pdf
	090@00102.pdf
	090@00103.pdf
	090@00104.pdf
	090@00105.pdf
	090@00106.pdf
	090@00107.pdf
	090@00108.pdf
	090@00109.pdf
	090@00110.pdf
	090@00111.pdf
	090@00112.pdf
	090@00113.pdf
	090@00114.pdf
	090@00115.pdf
	090@00116.pdf
	090@00117.pdf
	090@00118.pdf
	090@00119.pdf
	090@00120.pdf
	090@00121.pdf
	090@00122.pdf
	090@00123.pdf
	090@00124.pdf
	090@00125.pdf
	090@00126.pdf
	090@00127.pdf
	090@00128.pdf
	090@00129.pdf
	090@00130.pdf
	090@00131.pdf
	090@00132.pdf
	090@00133.pdf
	090@00134.pdf
	090@00135.pdf
	090@00136.pdf
	090@00137.pdf
	090@00138.pdf
	090@00139.pdf
	090@00140.pdf
	090@00141.pdf
	090@00142.pdf
	090@00143.pdf
	090@00144.pdf
	090@00145.pdf
	090@00146.pdf
	090@00147.pdf
	090@00148.pdf
	090@00149.pdf
	090@00150.pdf
	090@00151.pdf
	090@00152.pdf
	090@00153.pdf
	090@00154.pdf
	090@00155.pdf
	090@00156.pdf
	090@00157.pdf
	090@00158.pdf
	090@00159.pdf
	090@00160.pdf
	090@00161.pdf
	090@00162.pdf
	090@00163.pdf
	090@00164.pdf
	090@00165.pdf
	090@00166.pdf
	090@00167.pdf
	090@00168.pdf
	090@00169.pdf
	090@00170.pdf
	090@00171.pdf
	090@00172.pdf
	090@00173.pdf
	090@00174.pdf
	090@00175.pdf



