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Convexity properties of generalized moment maps

By Yasufumi Nitta

Abstract. In this paper, we consider generalized moment maps for Hamil-
tonian actions on H-twisted generalized complex manifolds introduced by Lin and
Tolman [15]. The main purpose of this paper is to show convexity and connected-
ness properties for generalized moment maps. We study Hamiltonian torus actions
on compact H-twisted generalized complex manifolds and prove that all components
of the generalized moment map are Bott-Morse functions. Based on this, we shall
show that the generalized moment maps have a convex image and connected fibers.
Furthermore, by applying the arguments of Lerman, Meinrenken, Tolman, and Wood-
ward [13] we extend our results to the case of Hamiltonian actions of general compact
Lie groups on H-twisted generalized complex orbifolds.

1. Introduction

The notion of H-twisted generalized complex structures was introduced by Hitchin
[9] inspired by physical motivations. It provides us with a unifying framework for both
complex and symplectic geometry and with a useful geometric language for understanding
some recent development in string theory. The associated notion of H-twisted generalized
Kähler structures was introduced by Gualtieri [8], showing that this notion is essentially
equivalent to that of bihermitian structures. This equivalence was first observed by
physicists in their study [5] of a super-symmetric nonlinear sigma model.

For Hamiltonian group actions on manifolds, moment maps are a very useful tool
in geometry. In generalized complex geometry, Lin and Tolman studied the notions of
Hamiltonian actions and generalized moment maps for actions of compact Lie groups
on H-twisted generalized complex manifolds [15], and established a reduction theorem.
In the present paper we study the convexity properties of generalized moment maps for
Hamiltonian actions. Both convexity and connectedness for moment maps in symplectic
geometry were studied by Atiyah [1] and Guillemin-Sternberg [7] in the case of torus
actions on compact symplectic manifolds. We here consider Hamiltonian torus actions
on compact connected H-twisted generalized complex manifolds and prove such convexity
and connectedness for generalized moment maps (cf. Sections 2 and 3).

Theorem A. Let an m-dimensional torus Tm act on a compact connected H-
twisted generalized complex manifold (M,J ) in a Hamiltonian way with a generalized
moment map µ : M → t∗ and a moment one form α ∈ Ω1(M ; t∗). Then

1. the levels of µ are connected,
2. the image of µ is convex, and
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3. the fixed points of the action form a finite union of connected generalized complex
submanifolds C1, · · · , CN :

Fix(Tm) =
N∪

i=1

Ci.

On each component the generalized moment map µ attains a constant: µ(Ci) =
{ai}, and the image of µ is the convex hull of the images a1, · · · , aN of the fixed
points, that is,

µ(M) =

{
N∑

i=1

λiai |
N∑

i=1

λi = 1, λi ≥ 0

}
.

For the proof of the theorem, we need to show that all components of the generalized
moment map are Bott-Morse functions, that is, the function µξ : M → R is a Bott-Morse
function for all ξ ∈ t (cf. Proposition 3.9). This is crucial in the proof, and is obtained by
the maximum principle for pseudoholomorphic functions on almost complex manifolds.

In the latter part of this paper, we shall extend our results to the case of gen-
eral compact Lie group actions on H-twisted generalized complex orbifolds under the
assumption of weak nondegeneracy (cf. Definition 4.1) for generalized moment maps,
where weak nondegeneracy is always the case for compact orbifolds. Recall that the
non-abelian convexity theorem in symplectic geometry was proved by Kirwan [11] and
Lerman-Meinrenken-Tolman-Woodward [13]. A subset ∆ of a vector space V is polyhe-
dral if it is an intersection of finitely many closed half-spaces, and is locally polyhedral if
for each point p ∈ ∆ there exist a neighborhood U of p in V and a polyhedral set P in
V such that U ∩ ∆ = U ∩ P . Then we obtain:

Theorem B. Let (M,J ) be a connected H-twisted generalized complex orbifold
with a Hamiltonian action of a compact connected Lie group G, a proper generalized
moment map µ : M → g∗, and a moment one form α ∈ Ω1(M ; g∗). Suppose that the
generalized moment map µ has weak nondegeneracy.

1. Let t∗+ be a closed Weyl chamber for the Lie group considered as a subset of g∗.
The moment set ∆ = µ(M) ∩ t∗+ is a convex locally polyhedral set. In particular,
if M is compact then ∆ is a convex polytope.

2. The levels of µ are connected.

Let us explain the real meaning of the convexity property for generalized moment
maps. In general, an H-twisted generalized complex structure is of an intermediate type,
i.e., it is neither a complex structure nor a symplectic structure. Then the manifold is
locally fibered over a complex base space such that symplectic structures appear in the
fiber directions. The generalized moment map is thought of as a “relative version” of the
ordinary moment map. Now our theorems on generalized moment maps show not only
the convexity of the image of each fiber but also the convexity of the global image of the
generalized moment maps (cf. Section 4.4).
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This paper is organized as follows. In section 2 we briefly review the theory of
generalized complex structures and generalized Kähler structures. Furthermore we in-
troduce generalized complex submanifolds of H-twisted generalized complex manifolds
in the sense of Ben-Bassat and Boyarchenko [2]. In section 3 we consider the notion of
generalized moment maps [15] for Hamiltonian actions on H-twisted generalized complex
manifolds and prove that all components of the generalized moment map are Bott-Morse
functions. After that we shall give a proof of Theorem A. Finally in the last section, we
give a proof of Theorem B. Our proof follows that of the non-abelian convexity and con-
nectedness properties in symplectic geometry by Lerman-Meinrenken-Tolman-Woodward
in [13]. To complete our proof, we need an additional constraint “weak nondegeneracy”
for generalized moment maps and a generalized complex geometry analogue of the cross-
section theorem in [13] (cf. Theorem 4.9).

2. Generalized complex structures

We recall the basic theory of generalized complex structures; see [8] for the details.
Throughout this paper, we assume that all manifolds and orbifolds are connected.

2.1. Generalized complex structures
Given a closed differential 3-form H on an n-dimensional manifold M , we define the

H-twisted Courant bracket of sections of the direct sum TM ⊕ T ∗M of the tangent and
cotangent bundles by

[X + α, Y + β]H = [X,Y ] + LXβ − LY α − 1
2
d (β(X) − α(Y )) + iY iXH,

where LX denotes the Lie derivative along a vector field X. The vector bundle TM⊕T ∗M

is also endowed with a natural inner product of signature (n, n):

⟨X + α, Y + β⟩ =
1
2
(β(X) + α(Y )).

Definition 2.1. Let M be a manifold and H be a closed 3-form on M . A general-
ized almost complex structure on M is a complex structure J on the bundle TM ⊕T ∗M

which preserves the natural inner product. If sections of the
√
−1-eigenspace L of J is

closed under the H-twisted Courant bracket, then J is called an H-twisted generalized
complex structure of M . If H = 0, we call it simply a generalized complex structure.

An H-twisted generalized complex structure J can be fully described in terms of
its

√
−1-eigenbundle L, which is a maximal isotropic subbundle of (TM ⊕ T ∗M) ⊗ C

satisfying L ∩ L̄ = {0} and to be closed under the H-twisted Courant bracket. For the
natural projection π : (TM ⊕T ∗M)⊗C → TM ⊗C, the codimension of π(L) in TM ⊗C
is called the type of J and written by type(J ).

Example 2.2 (Complex structures (type n)). Let J be a complex structure
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on an n-dimensional complex manifold M . Consider the endomorphism

JJ =

(
J 0
0 −J∗

)
,

where the matrix is written with respect to the direct sum TM ⊕ T ∗M . Then JJ is
a generalized complex structure of type n on M ; the

√
−1-eigenspace of JJ is LJ =

T1,0M ⊕ T 0,1M , where T1,0M is the
√
−1-eigenspace of J .

Example 2.3 (Symplectic structures (type 0)). Let M be a symplectic
manifold with a symplectic structure ω, viewed as a skew-symmetric isomorphism ω :
TM → T ∗M via the interior product X 7→ iXω. Consider the endomorphism

Jω =

(
0 −ω−1

ω 0

)
.

Then Jω is a generalized complex structure on M of type 0; the
√
−1-eigenspace of Jω

is given by

Lω = {X −
√
−1iXω | X ∈ TM ⊗ C}.

Example 2.4 (B-field shift). Let (M,J ) be an H-twisted generalized complex
manifold and B ∈ Ω2(M) be a closed 2-form on M . Then the endomorphism

JB =

(
1 0
B 1

)
J

(
1 0

−B 1

)

is also an H-twisted generalized complex structure. It is called the B-field shift of J .
The type of JB coincides with that of J . Indeed, the

√
−1 eigenspace LB of JB can be

written as

LB = {X + α + iXB | X + α ∈ L},

where L is the
√
−1 eigenspace of J .

Next we describe the notions of H-twisted generalized complex structures from the
view point of differential forms. For the details, see [8]. Let (M,J ) be a 2n-dimensional
H-twisted generalized complex manifold with its

√
−1-eigenspace L. Recall that the

exterior algebra ∧•T ∗M carries a natural spin representation for the metric bundle TM⊕
T ∗M ; the Clifford action of X + α ∈ TM ⊕ T ∗M on φ ∈ ∧•T ∗M is given by

(X + α) · φ = iXφ + α ∧ φ.

The annihilator K of L by the spin representation forms a complex line subbundle of the
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complex spinors ∧•T ∗M ⊗ C. We call K the canonical line bundle of J :

K = {φ ∈ ∧•T ∗M ⊗ C | (X + α) · φ = 0 (∀X + α ∈ L)}.

Then the
√
−1-eigenspace L can also be viewed as an annihilator of K.

Conversely, for a complex spinor φ ∈ ∧•T ∗M ⊗C, consider Lφ the annihilator of φ:

Lφ = {X + α ∈ (TM ⊕ T ∗M) ⊗ C | (X + α) · φ = 0}.

Then the subspace Lφ ⊂ (TM⊕T ∗M)⊗C is always isotropic. If Lφ is maximal isotropic,
φ is called a complex pure spinor. A necessary and sufficient condition that φ is pure
can be described as follows. We call a complex differential k-form Ω to be decomposable
if it has the algebraic form Ω = θ1 ∧ · · · ∧ θk at each point, where θ1, · · · , θk are linearly
independent complex 1-forms. Then the spinor φ is pure if and only if it can be written
locally as

φ = eB+
√
−1ω ∧ Ω,

where B and ω are real 2-forms and Ω is a complex decomposable k-form. The condition
Lφ ∩ L̄φ = {0} is equivalent to an additional constraint on φ:

ω2(n−k) ∧ Ω ∧ Ω̄ ̸= 0.

A complex pure spinor φ which satisfies the condition above is said to be nondegenerate.
If a complex differential form φ ∈ Ω•⊗C is a nondegenerate complex pure spinor at every
point on M , then we have (TM ⊕ T ∗M) ⊗ C = Lφ ⊕ L̄φ, and Lφ defines a generalized
almost complex structure on M . For each point, the integer k defined above coincides
with the type of the generalized almost complex structure. The canonical line bundle is
generated by the complex pure spinor φ.

Finally as shown in [8], the involutivity of Lφ under the Courant bracket is equivalent
to the condition that there exist a section X + α of (TM ⊕ T ∗M) ⊗ C such that

dφ + H ∧ φ = (X + α) · φ.

2.2. Generalized Kähler structures
We briefly review the notion of H-twisted generalized Kähler structures.

Definition 2.5. Let M be a manifold and H a closed 3-form on M . An H-twisted
generalized Kähler structure on M is a pair of commuting H-twisted generalized complex
structures (J1,J2) so that G = −J1J2 is a positive definite metric, that is, G2 = id, G
preserves the natural inner product and G(X + α,X + α) := ⟨G(X + α), X + α⟩ > 0 for
all non-zero X + α ∈ TM ⊕ T ∗M .

Example 2.6. Let (M, g, J) be a Kähler manifold and ω = gJ be the Kähler form.
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As seen in the examples above, J and ω induce generalized complex structures JJ and
Jω respectively. Moreover, we see that JJ commutes with Jω, and

G = −JJJω =

(
0 g−1

g 0

)

is a positive definite metric on TM ⊕ T ∗M . Hence (JJ ,Jω) is a generalized Kähler
structure on M .

Example 2.7. Let (J1,J2) be an H-twisted generalized Kähler structure, and B

be a closed 2-form on M . Then ((J1)B , (J2)B) is also an H-twisted generalized Kähler
structure. It is called the B-field shift of (J1,J2).

In [8], a characterization of H-twisted generalized Kähler structures was given in
terms of Hermitian geometry, which is represented below.

Theorem 2.8 (M. Gualtieri, [8]). For each H-twisted generalized Kähler struc-
ture (J1,J2), there exists a uniquely determined 2-form b, a Riemannian metric g and
two orthogonal complex structures J± such that

J1,2 =
1
2

(
1 0
b 1

)(
J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(J∗
+ ± J∗

−)

)(
1 0
−b 1

)
,

where ω± = gJ± with the condition

dc
−ω− = −dc

+ω+ = H + db. (1)

Conversely, any quadruple (g, b, J±) satisfying the condition (1) defines an H-twisted
generalized Kähler structure.

Not every H-twisted generalized complex manifold admits an H-twisted generalized
Kähler structure. However, the following lemma claims that every H-twisted generalized
complex manifold always admits a “generalized almost Kähler structure”. This is a
generalized complex geometry analogue of the fact that a symplectic manifold admits an
almost complex structure which is compatible with the symplectic structure.

Lemma 2.9. Let (M,J ) be an H-twisted generalized complex manifold. Then there
exists a generalized almost complex structure J ′ which is compatible with J , that is, J ′

is a generalized almost complex structure which commutes with J , and G = −JJ ′ is a
positive definite metric.

Proof. Choose a Riemannian metric g on M and put

G̃ =

(
0 g−1

g 0

)
.
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Then G̃ is a positive definite metric on TM ⊕ T ∗M . Define a symplectic structure W on
TM ⊕ T ∗M by

W(X + α, Y + β) = ⟨J (X + α), Y + β⟩.

Since G̃ and W are nondegenerate, there exists an endomorphism A on TM⊕T ∗M which
satisfies

W(X + α, Y + β) = G̃(A(X + α), Y + β)

for all X +α, Y +β ∈ TM ⊕T ∗M . The endomorphism A is skew-symmetric with respect
to the positive definite metric G̃ because W = G̃A is an alternating 2-form on TM⊕T ∗M .
Let A∗ be the adjoint operator of A with respect to G̃. Since A is invertible, AA∗ = −A2

is symmetric and positive, that is, (AA∗)∗ = AA∗ and

G̃(AA∗(X + α), X + α) > 0

for all non-zero X + α ∈ TM ⊕ T ∗M . Hence we can define
√
AA∗ the square root of

AA∗. Here
√
AA∗ is also symmetric and positive definite.

Let J ′ be an endomorphism on TM ⊕ T ∗M defined by

J ′ = (
√
AA∗)−1A.

Since A commutes with
√
AA∗, J ′ commutes with both A and

√
AA∗. Hence we obtain

(J ′)2 = −id. By the definition of A, we have AJ = −JA−1 and hence J commutes
with

√
AA∗. In particular, we see that J ′ commutes with J . Moreover, since J ′ is

orthogonal with respect to G̃, we can check easily that J ′ is orthogonal with respect to
the natural inner product on TM ⊕ T ∗M . Hence J ′ is a generalized almost complex
structure on M which commutes with J . Finally G := −JJ ′ is a positive definite metric
on TM ⊕ T ∗M since G = G̃

√
AA∗. This completes the proof. ¤

If J ′ is a generalized almost complex structure which is compatible with an H-
twisted generalized complex structure J , then we can apply the argument of Gualtieri in
[8] and construct a 2-form b, a Riemannian metric g and two orthogonal almost complex
structures J± which satisfy the equation

J =
1
2

(
1 0
b 1

)(
J+ + J− −(ω−1

+ − ω−1
− )

ω+ − ω− −(J∗
+ + J∗

−)

)(
1 0
−b 1

)
. (2)

In general, J+ and J− may not be integrable.

2.3. Generalized complex submanifolds
Here we introduce the notion of generalized complex submanifolds in the sense of

Ben-Bassat and Boyarchenko in [2]. Let i : S → M be a submanifold of an H-twisted
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generalized complex manifold (M,J ). For each p ∈ S, define a subspace (LS)p ⊂
(TpS ⊕ T ∗

p S) ⊗ C by

(LS)p = {X + i∗α ∈ (TpS ⊕ T ∗
p S) ⊗ C | X + α ∈ Lp},

where L is the
√
−1-eigenspace of J . Clearly (LS)p is an isotropic subspace of (TpS ⊕

T ∗
p S) ⊗ C. Furthermore it is easy to see that dimC(LS)p = dim S and hence (LS)p is a

maximal isotropic subspace. However, the distribution LS := ∪p∈S(LS)p may not be a
subbundle of (TS⊕T ∗S)⊗C in general. We refer the reader to [4] for a detailed discussion
in the case of submanifolds of Dirac manifolds. In particular, Courant’s arguments
can be easily adapted to give a necessary condition under which LS is a subbundle of
(TS ⊕ T ∗S) ⊗ C (cf. [4], Theorem 3.1.1), and to prove that if LS is a subbundle and L

is integrable, then so is LS (cf. [4], Corollary 3.1.4).

Definition 2.10 (Ben-Bassat, Boyarchenko, [2]). We say that S is a gener-
alized complex submanifold of M if LS is a subbundle of (TS ⊕ T ∗S) ⊗ C and satisfies
that LS ∩ L̄S = {0}.

If i : S → M is a generalized complex submanifold of an H-twisted generalized
complex manifold (M,J ), then LS gives an i∗H-twisted generalized complex structure
on S.

Example 2.11. Let S be a complex submanifold of a complex manifold (M,J).
Note that S has a natural complex structure induced by J . Then we have

LS = T1,0S ⊕ T 0,1S,

which is of course a subbundle of (TS ⊕ T ∗S) ⊗ C and satisfies LS ∩ L̄S = {0}. Hence
S is a generalized complex submanifold of (M,JJ). The induced generalized complex
structure of S is the natural generalized complex structure which is induced by the
complex structure of S.

Example 2.12. Let i : S → M be a symplectic submanifold of a symplectic man-
ifold (M,ω). Then for the generalized complex structure Jω induced by the symplectic
structure ω, we have

LS = {X −
√
−1iX(i∗ω) | X ∈ TS ⊗ C},

which coincides with the
√
−1-eigenspace of the generalized complex structure Ji∗ω in-

duced by the symplectic structure i∗ω. In particular S is a generalized complex subman-
ifold of (M,Jω).

Example 2.13. Let S be a Lagrangian submanifold of a symplectic manifold
(M,ω). Then we can see easily that LS = TS ⊗ C and hence LS is a maximal isotropic
subbundle of (TS ⊕ T ∗S) ⊗ C. However, since it is clear that LS ∩ L̄S = TS ⊗ C ̸= {0},
the submanifold S is not a generalized complex submanifold.
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In general, it may not be easy to determine if a given submanifold is a generalized
complex submanifold. Here we give a simple sufficient condition.

Proposition 2.14. Let (M,J ) be an H-twisted generalized complex manifold, and
J ′ be a generalized almost complex structure of M which is compatible with J . We denote
(g, b, J±) the corresponding quadruple. If i : S → M is an almost complex submanifold
of M with respect to both J+ and J−, then S is a generalized complex submanifold of
(M,J ).

Proof. Let T±
1,0M ⊂ TM ⊗ C be the

√
−1-eigenspace of J±. Then we can check easily

that L is given by

L = {X + (b + g)(X) | X ∈ T+
1,0M} ⊕ {Y + (b − g)(Y ) | Y ∈ T−

1,0M}.

Hence for a given almost complex submanifold S, the subspace LS can be written as

LS = {X + i∗(b + g)(X) | X ∈ T+
1,0S} ⊕ {Y + i∗(b − g)(Y ) | Y ∈ T−

1,0S},

where T±
1,0S is the

√
−1-eigenspace of the restriction of J± to S. In particular, LS is a

subbundle of (TS⊕T ∗S)⊗C. In addition if (X+i∗(b+g)(X))+(Y +i∗(b−g)(Y )) ∈ LS∩L̄S

for X ∈ T+
1,0S and Y ∈ T−

1,0S, then we see that (X + (b + g)(X)) + (Y + (b − g)(Y )) ∈
L ∩ L̄ = {0}. Thus we obtain X = Y = 0, and hence LS ∩ L̄S = {0}. This proves the
proposition. ¤

Remark 2.15. If M is an orbifold and H is a closed 3-form on M , we can define
the notions of H-twisted generalized complex structures of M in usual way. The detailed
description is as follows. A definition of orbifolds can be seen in [18] for example. Let
M be an orbifold and (Vi, Gi, πi)i∈I be a local uniformizing system of M . A generalized
almost complex structure J of M is a family of endomorphisms {Ji : TVi ⊕ T ∗Vi →
TVi ⊕ T ∗Vi}i∈I such that Ji is a generalized almost complex structure on Vi for each
i ∈ I and they are equivariant under the local group actions and compatible with respect
to the injections. If each Ji is integrable with respect to H-twisted Courant brackets,
then J is called to be integrable and we call it a H-twisted generalized complex structure
of an orbifold M .

In the case that (M,J ) is an H-twisted generalized complex orbifold, we can describe
the same notions in section 2, and the assertions in section 2 still hold in the language
of orbifolds.

3. Hamiltonian actions and generalized moment maps

3.1. Hamiltonian actions on H-twisted generalized complex manifolds
In this section we recall the definition of Hamiltonian actions on H-twisted general-

ized complex manifolds given by Lin and Tolman in [15].

Definition 3.1 (Y. Lin and S. Tolman, [15]). Let a compact Lie group G with
its Lie algebra g act on an H-twisted generalized complex manifold (M,J ) preserving
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J , where H ∈ Ω3(M) is a G-invariant closed 3-form. The action of G is said to be
Hamiltonian if there exists a G-equivariant smooth function µ : M → g∗, called the
generalized moment map, and a g∗-valued one form α ∈ Ω1(M ; g∗), called the moment
one form, such that

1. ξM −
√
−1(dµξ +

√
−1αξ) lies in L for all ξ ∈ g, where ξM denotes the induced

vector field on M , and
2. iξM

H = dαξ for all ξ ∈ g.

Since L is an isotropic subbundle, we have

⟨
ξM −

√
−1(dµξ +

√
−1αξ), ξM −

√
−1(dµξ +

√
−1αξ)

⟩
= 0

and hence ιξM
αξ = ιξM

dµξ = 0 for each ξ ∈ g.

Example 3.2. Let a compact Lie group G act on a symplectic manifold (M,ω)
preserving the symplectic structure ω, and µ : M → g∗ be an usual moment map, that
is, µ is G-equivariant and iξM ω = dµξ for all ξ ∈ g. Then G also preserves Jω, µ is also
a generalized moment map, and α = 0 is a moment one form for this action. Hence the
G-action on (M,Jω) is Hamiltonian.

Example 3.3. Let (M,J) be a complex manifold and G act on (M,JJ) in a
Hamiltonian way. Then G also preserves the original complex structure J . Since LJ =
T1,0M ⊕ T 0,1M and ξM ∈ π(LJ), we have ξM = 0 for all ξ ∈ g. Thus if G is connected,
the G-action on M must be trivial.

Example 3.4. Let G act on an H-twisted generalized complex manifold (M,J )
with a generalized moment map µ : M → g∗ and a moment one form α ∈ Ω1(M ; g∗).
If B ∈ Ω2(M)G is closed, then G acts on M preserving the B-field shift of J with
generalized moment map µ and moment one form α′, where (α′)ξ = αξ + iξM

B for all
ξ ∈ g.

By the definition, we can treat the notion of generalized moment maps as a gener-
alization of the notion of moment maps in symplectic geometry. Generalized moment
maps are studied by Lin and Tolman in [15]. In their paper, they showed that a reduc-
tion theorem for Hamiltonian actions of compact Lie groups on H-twisted generalized
complex manifold holds. We shall use this fact later. Note that since iξM H = dαξ and
ιξM αξ = 0 for each ξ ∈ g, we can see H + α as an equivariantly closed form.

Lemma 3.5 (Y. Lin, S. Tolman, [15]). Let a compact Lie group G act freely on
a manifold M . Let H be an invariant closed 3-form and α be an equivariant mapping
from g to Ω1(M). Fix a connection θ ∈ Ω(M ; g). Then if H + α is equivariantly closed,
there exists a natural form Γ ∈ Ω2(M)G such that iξM

Γ = αξ for all ξ ∈ g. In particular,
H + α + dGΓ ∈ Ω3(M) ⊂ ΩG(M), where ΩG(M) is the set of equivariant differential
forms of M and dG denotes the equivariant exterior differential, is closed and basic and
so descends to a closed form H̃ ∈ Ω3(M/G) such that the cohomology class [H̃] is the
image of [H + α] under the Kirwan map.
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Theorem 3.6 (Y. Lin, S. Tolman, [15]). Let a compact Lie group G act on an
H-twisted generalized complex manifold (M,J ) in a Hamiltonian way with a generalized
moment map µ : M → g∗ and a moment one form α ∈ Ω1(M ; g∗). Let Oa be a
coadjoint orbit through a ∈ g∗ so that G acts freely on µ−1(Oa). Given a connection
on µ−1(Oa), the twisted generalized complex quotient Ma = µ−1(Oa)/G inherits an H̃-
twisted generalized complex structure J̃ , where H̃ is defined as in Lemma 3.5. Up to
B-field shift, J̃ is independent of the choice of connection. Finally, for each p ∈ Oa,

type(J̃ )[p] = type(J )p.

In the case that (M,J ) is an H-twisted generalized complex orbifold, we can define
the notion of Hamiltonian actions of a compact Lie group on (M,J ) in usual way. In
this case, the reduction theorem still holds in the language of orbifolds. The detailed
statement is as follows. Let a compact Lie group G act on an H-twisted generalized
complex orbifold (M,J ) in a Hamiltonian way with a generalized moment map µ : M →
g∗ and a moment one form α ∈ Ω1(M ; g∗). For a coadjoint orbit Oa through a ∈ g∗,
suppose that the G-action on µ−1(Oa) is locally free. Given a connection on µ−1(Oa),
the twisted generalized complex quotient Ma = µ−1(Oa)/G is an orbifold and inherits
an H̃-twisted generalized complex structure J̃ , where H̃ is defined as in Lemma 3.5. Up
to B-field shift, J̃ is independent of the choice of connection and the type is preserved.

Before we begin a proof of Theorem A, we shall prove a remarkable fact of generalized
moment maps. At first we prove the following lemmata.

Lemma 3.7. Let a compact Lie group G act on an H-twisted generalized com-
plex manifold (M,J ) preserving J . Then there exists a G-invariant generalized almost
complex structure which is compatible with J .

Proof. Choose a G-invariant Riemannian metric g on M and put

G =

(
0 g−1

g 0

)
.

Then G is a G-invariant positive definite metric on TM ⊕ T ∗M . Let A be an endomor-
phism on TM ⊕ T ∗M defined by A = G−1J . Since G and J are G-invariant, A is also
G-invariant. Now if we define

J ′ = (
√
AA∗)−1A,

then J ′ is a generalized almost complex structure on M which is compatible with J .
Furthermore since A is G-invariant, J ′ is also G-invariant. This completes the proof. ¤

Lemma 3.8. Let an m-dimensional torus Tm act on an H-twisted generalized com-
plex manifold (M,J ) in a Hamiltonian way with a generalized moment map µ and a
moment one form α. Then for an arbitrary subtorus G ⊂ Tm the fixed point set of
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G-action

Fix(G) = {p ∈ M | θ · p = p (∀θ ∈ G)}

is a generalized complex submanifold of (M,J ).

Proof. Choose a G-invariant generalized almost complex structure J ′ which is compatible
with J . Then there exists a Riemannian metric g, a 2-form b, and two orthogonal almost
complex structures J± which satisfies the equation (2). Since J and J ′ are G-invariant,
g and J± are also G-invariant. For each p ∈ Fix(G) and θ ∈ G, the differential of the
action of θ at p

(θ∗)p : TpM → TpM

preserves the almost complex structures J±. In addition, since G-action preserves the
metric g, the exponential mapping expp : TpM → M with respect to the metric g is
equivariant, that is,

expp((θ∗)pX) = θ · expp X

for any θ ∈ G and X ∈ TpM . This concludes that the fixed point of the action of θ near
p corresponds to the fixed point of (θ∗)p on TpM by the exponential mapping, that is,

TpFix(G) =
∩
θ∈G

ker(1 − (θ∗)p).

Since J± commutes with the endomorphism (θ∗)p, the eigenspace with eigenvalue 1 of
(θ∗)p is invariant under J±, and hence an almost complex subspace. In particular we
see that Fix(G) is a generalized complex submanifold of (M,J ) by applying Proposition
2.14. ¤

Now we consider a Hamiltonian Tm-action on a compact H-twisted generalized
complex manifold (M,J ) with a generalized moment map µ : M → g and a moment one
form α ∈ Ω1(M ; g∗), and examine the functions µξ : M → R for all ξ ∈ g. The following
proposition shows that these are Bott-Morse functions with even indices and coindices.
This is crucial to prove the connectedness of fibers of the generalized moment map. In
our proof, the maximum principle for pseudoholomorphic functions on almost complex
manifolds plays a central role. The maximum principle for pseudoholomorphic functions
on almost complex manifolds is provided by the work of Boothby-Kobayashi-Wang in
[3].

Proposition 3.9. Let an m-dimensional torus Tm act on a compact H-twisted
generalized complex manifold (M,J ) in a Hamiltonian way with a generalized moment
map µ : M → t∗ and a moment one form α ∈ Ω1(M ; t∗). Then µξ is a Bott-Morse
function with even index and coindex for all ξ ∈ t.
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Proof. For each ξ ∈ t, we denote T ξ the subtorus of Tm generated by ξ. First we shall
prove that the critical set

Crit(µξ) = {p ∈ M | (dµξ)p = 0}

coincides with the fixed point set of T ξ-action Fix(T ξ). Choose a Tm-invariant general-
ized almost complex structure J ′ which is compatible with J . Then J can be written
in the form of the equation (2) for the corresponding quadruple (g, b, J±). Note that the
metric g and orthogonal almost complex structures J± are all Tm-invariant.

Since ξM −
√
−1(dµξ +

√
−1αξ) ∈ L by the definition of Hamiltonian actions,

(dµξ)p = 0 implies p ∈ Fix(T ξ). In particular we obtain Crit(µξ) ⊂ Fix(T ξ). On
the other hand, since Fix(T ξ) = {p ∈ M | (ξM )p = 0}, we see that αξ +

√
−1dµξ ∈ L̄

on Fix(T ξ). Hence there exists a complex vector field X on M which satisfies that
αξ +

√
−1dµξ = g(X) and X ∈ T+

0,1M ∩ T−
0,1M on Fix(T ξ) because the

√
−1-eigenspace

L can be written by

L = {X + (b + g)(X) | X ∈ T+
1,0M} ⊕ {Y + (b − g)(Y ) | Y ∈ T−

1,0M}.

Since the almost complex structures J± are orthogonal with respect to the metric g,
we see that αξ +

√
−1dµξ is a holomorphic 1-form on Fix(T ξ). Moreover, since αξ is

a closed 1-form on Fix(T ξ), we can view the function µξ locally as an imaginary part
of a pseudoholomorphic function on an almost complex manifold (Fix(T ξ), J±). By
applying the maximum principle and compactness of Fix(Tm), we see that µξ is constant
on each connected component of Fix(T ξ). Moreover the gradient of µξ with respect to
the metric g is tangent to Fix(T ξ) because g and µξ are T ξ-invariant. This shows that
Fix(T ξ) ⊂ Crit(µξ), and hence we obtain Crit(µξ) = Fix(T ξ). In particular, Crit(µξ) is
a generalized complex submanifold of M .

To prove that the function µξ is a Bott-Morse function, we shall calculate the Hessian
∇2µξ of µξ on Crit(µξ). Since ξM −

√
−1(dµξ +

√
−1αξ) ∈ L for each ξ ∈ g, we have

J (ξM −
√
−1(dµξ +

√
−1αξ)) =

√
−1(ξM −

√
−1(dµξ +

√
−1αξ)). (3)

In addition, by using the equation (2) for the H-twisted generalized complex structure
J , for the natural projection π : (TM ⊕ T ∗M) ⊗ C → TM ⊗ C we obtain the following
equation;

π(J (ξM −
√
−1(dµ +

√
−1αξ)))

=
1
2

(
(J+ + J−)(ξM ) − (ω−1

+ − ω−1
+ )(−b(ξM ) −

√
−1(dµξ +

√
−1αξ))

)
. (4)

By combining the equations (3) and (4), we see that the induced vector field ξM can be
written as

ξM =
1
2

(
ω−1

+ (dµξ) − ω−1
− (dµξ)

)
. (5)
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Let ∇ be the Riemannian connection with respect to the metric g. Then by an easy
calculation we have the following equality for ξ±M := ω−1

± (dµξ) = −J±g−1(dµξ);

g(∇2µξ(Y ), Z) = g((∇Y J±)ξ±M , Z) + g(J±(∇Y ξ±M ), Z). (6)

Since the vector field ξ±M vanishes on Crit(µξ), the equation (6) shows that

(∇2µξ)p(Yp) = J±(∇Ypξ±M ) (7)

for each p ∈ Crit(µξ) and Yp ∈ TpM . Let (Lξ)p be an endomorphism on TpM defined by
(Lξ)p(Y ) := [ξM , Y ]p = −∇YpξM . Then by the equation (5) and (7), we see that (Lξ)p

can be written as

(Lξ)p = −1
2
(J+ − J−)(∇2µξ)p. (8)

Now we shall prove TpCrit(µξ) = ker(∇2µξ)p. Since each connected component
Crit(µξ) is a submanifold of M , it is clear that TpCrit(µξ) ⊂ ker(∇2µξ)p. Therefore we
may only show that ker(∇2µξ)p ⊂ TpCrit(µξ). At first we have ker(∇2µξ)p ⊂ ker(Lξ)p

by the equation (8). If we identify (Lξ)p with a vector field on TpM , the one parameter
family of diffeomorphisms {(exp tξ∗)p}t∈R on TpM coincides with {exp t(Lξ)p}t∈R. Hence
ker(Lξ)p coincides with the fixed point set of {(exp tξ∗)p}t∈R. Therefore we have

ker(∇2µξ)p ⊂ TpCrit(µξ),

and this shows that TpCrit(µξ) = ker(∇2µξ)p. In particular, we see that µξ is a Bott-
Morse function.

Finally, we shall show that the function µξ has even index and coindex. By equation
(7), we see that

g((∇2µξ)p(J±Y ), Z) = g((∇2µξ)pZ, J±Y ) = g(J±(∇Zξ±M ), J±Y ) = g(∇Zξ±M , Y )

for each p ∈ Crit(µξ) and Y,Z ∈ TpM . Since ξM = 1
2 (ξ+

M − ξ−M ) and ξM is a Killing
vector field, we obtain

g((∇2µξ)p(J+ − J−)(Y ), Z) = g(∇Z(ξ+
M − ξ−M ), Y ) = 2g(∇ZξM , Y )

= −2g(∇Y ξM , Z) = −g(∇Y (ξ+
M − ξ−M ), Z)

= g((J+ − J−)(∇2µξ)p(Y ), Z).

Hence we see that (∇2µξ)p commutes with J+−J− for all p ∈ Crit(µξ). Now we define a
differential 2-form by g(J+−J−). Then since g is positive definite and J+−J− commutes
with (∇2µξ)p, J+ − J− preserves each eigenspace of (∇2µξ)p and hence g(J+ − J−) is
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nondegenerate on each non-zero eigenspace of (∇2µξ)p. Thus each non-zero eigenspace of
(∇2µξ)p is even dimensional, in particular the index and coindex of the critical manifold
are even. ¤

Remark 3.10. The compactness assumption here is essential. If M is noncompact,
then a generalized moment map can not be seen a Bott-Morse function in general. Indeed,
if we consider a trivial torus action on a complex manifold (M,J), then the imaginary
part of an arbitrary holomorphic function is a generalized moment map for this action.
(See also Remark 4.12.)

3.2. A proof of Theorem A
In this section we shall prove Theorem A. This proof involves induction over m =

dimTm. Consider the statements:

Am : “the level sets of µ are connected, for any Tm-action”, and

Bm : “the image of µ is convex, for any Tm-action”.

At first we see that A1 holds by Proposition 3.9 and the fact that level sets of a Bott-
Morse function on a connected compact manifold are connected if the critical manifolds
have index and coindex ̸= 1 (see [17] for example). The claim B1 holds clearly because
in R connectedness is equivalent to convexity.

Now we prove Am−1 ⇒ Bm. Choose a matrix A ∈ Zm ⊗ Zm−1 of maximal rank.
If we identify A with a linear mapping A : Rm−1 → Rm and Tm with Rm/Zm, then A

induces an action of Tm−1 on M by

θ : p 7→ (Aθ) · p,

for θ ∈ Tm−1 and p ∈ M . The Tm−1-action is a Hamiltonian action with a generalized
moment map µA(p) := Atµ(p) and a moment one form αξ

A := αAξ, where At denotes the
transpose of A.

Given any a ∈ µA(M) and p0 ∈ µ−1
A (a), we have the fiber of µA by

µ−1
A (a) = {p ∈ M | µ(p) − µ(p0) ∈ ker At}.

By the assumption Am−1, µ−1
A (a) is connected. Therefore, for each p0, p1 ∈ µ−1

A (a), if
we connect p0 to p1 by a continuous path pt in µ−1

A (a) we obtain a path µ(pt)−µ(p0) in
ker At. Since At is surjective, kerAt is 1-dimensional. Hence µ(pt) must go through any
convex combination of µ(p0) and µ(p1), which shows that any point on the line segment
from µ(p0) to µ(p1) must be in µ(M).

Any p0, p1 ∈ M with µ(p0) ̸= µ(p1) can be approximated arbitrarily closely by
points p′0 and p′1 with µ(p′1)−µ(p′0) ∈ kerAt for some matrix A ∈ Zm⊗Zm−1 of maximal
rank. By the argument above, we see that the line segment from µ(p′0) to µ(p′1) must be
in µ(M). By taking limits p′0 → p0, and p′1 → p1 we can conclude that µ(M) is convex.
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Next we prove Am−1 ⇒ Am. By identifying t with Rm, we can express the gen-
eralized moment map by µ = (µ1, · · · , µm). We call the generalized moment map µ

to be effective if the 1-forms dµ1, · · · , dµm are linearly independent. Note that p ∈ M

is a regular point of µ if and only if (dµ1)p, · · · , (dµm)p are linearly independent. If
the generalized moment map µ is not effective, the action reduces to a Hamiltonian
action of an (m − 1)-dimensional subtorus. Indeed, If µ is not effective, there exists
c = (c1, · · · , cm) ∈ Rm \ {0} such that

∑m
i=1 cidµi = 0. Hence if we denote the canonical

basis of t ∼= Rm by ξ1, · · · , ξn, then we have

m∑
i=1

ci

(
(ξi)M + αi

)
=

m∑
i=1

ci

(
(ξi)M −

√
−1(dµi +

√
−1αi)

)
∈ L,

where α = (α1, · · · , αm). Since
∑m

i=1 ci ((ξi)M + αi) is real and L ∩ L̄ = {0}, we obtain∑m
i=1 ci(ξi)M =

∑m
i=1 ciαi = 0. Now consider a vector ξ =

∑m
i=1 ciξi ∈ t. By the same

argument in the earlier part of the proof of Proposition 3.9, we see that Crit(µξ) =
Fix(T ξ) and hence the function µξ is constant along M because ξM = 0. For the
simplicity, we may assume ξ1, · · · , ξm−1, ξ are linearly independent. Then the Tm−1-
action generated by ξ1, · · · , ξm−1 is a Hamiltonian action with a generalized moment
map µ′ = (µ1, · · · , µm−1) and a moment one form α′ = (α1, · · · , αm−1). Hence in this
case the connectedness of fibers of µ follows from that of the reduced generalized moment
map µ′. Hence we may assume that µ is effective. Then for each ξ ∈ t \ {0}, µξ is not
a constant function, and the critical manifold Crit(µξ) is an even dimensional proper
submanifold. Now consider the union of critical manifolds

C = ∪η∈t\{0}Crit(µη).

We claim that the union C is indeed a countable union of even dimensional proper sub-
manifolds. To see this, recall that the critical points of µη are the fixed points of the
action of the subtorus T η ⊂ Tm and form an even dimensional proper submanifold. Since
the fixed point set decreases as the torus increases it suffices to consider 1-dimensional
subtorus or, equivalently, integer vectors η. This shows the assertion about C. In par-
ticular, M \ C is a dense subset of M . In addition, since the condition p ∈ M \ C is
equivalent to the condition that (dµ1)1, · · · , (dµm)p are linearly independent, we obtain
M \ C is open dense subset of M .

Lemma 3.11. The set of regular values of µ in µ(M) is a dense subset of µ(M).

Proof. For each a = µ(p) ∈ µ(M), there exists a sequence {pi}∞i=1 ⊂ M \C which satisfies
that limi→∞ pi = p. Since pi is a regular point of µ, µ(M) contains a neighborhood of
µ(pi) by implicit function theorem. Moreover there exists a regular value ai ∈ t∗ which
is sufficiently close to µ(pi) and µ−1(ai) ̸= ϕ by Sard’s theorem. Hence the sequence
{ai}∞i=1 approximates a. ¤

By a similar argument, we see that the set of a = (a1, · · · , am) ∈ t∗ that
(a1, · · · , am−1) is a regular value of (µ1, · · · , µm−1) in µ(M) is also a dense subset
of µ(M). Hence, by continuity, to prove that µ−1(a) is connected for every a =
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(a1, · · · , am) ∈ t∗, it suffics to prove that µ−1(a) is connected whenever (a1, · · · , am−1)
is a regular value for the reduced generalized moment map (µ1, · · · , µm−1). By the
induction hypothesis, the submanifold

Q = ∩m−1
i=1 µ−1

i (ai)

is connected for a regular value (a1, · · · , am−1) of (µ1, · · · , µm−1). To complete the proof,
we need the following lemma.

Lemma 3.12. If (a1, · · · , am−1) is a regular value for (µ1, · · · , µm−1), the function
µm : Q → R is a Bott-Morse function of even index and coindex.

Proof. By the hypothesis, Q is a 2n − (m − 1) dimensional connected submanifold
of M . For each p ∈ Q, the subspace W of the cotangent space T ∗

p M generated by
(dµ1)p, · · · , (dµm−1)p is (m− 1) dimensional because p is regular. Therefore the tangent
space TpQ of Q coincides with the annihilator of W ;

TpQ = {X ∈ TpM | α(X) = 0 (∀α ∈ W )}.

Hence we see that p ∈ Q is a critical point of µm : Q → R if and only if there exists real
numbers c1, · · · , cm−1 such that

m−1∑
i=1

ci(dµi)p + (dµm)p = 0.

This means that p is a critical point of the function µξ : M → R, where ξ =
(c1, · · · , cm−1, 1) ∈ t. By Proposition 3.9, µξ is a Bott-Morse function with even in-
dex and coindex. Furthermore, by Lemma 3.8 and the fact Crit(µξ) = Fix(T ξ), the
critical set Crit(µξ) is a finite union of generalized complex submanifolds. Now we shall
prove the critical manifold Crit(µξ) intersects Q transversally at p, that is,

TpM = TpCrit(µξ) + TpQ.

For a subspace S ⊂ TpM , we denote by S0 ⊂ T ∗
p M the annihilator of S;

S0 = {α ∈ T ∗
p M | α(X) = 0 (∀X ∈ S)}.

Then since (TpQ)0 = W , we obtain

(TpCrit(µξ) + TpQ)0 = (TpCrit(µξ))0 ∩ (TpQ)0 = (TpCrit(µξ))0 ∩ W.

Hence the critical manifold Crit(µξ) intersects Q transversally at p if and only
if (TpCrit(µξ))0 ∩ W = {0}. Thus we may only show that the differentials
(dµ1)p, · · · , (dµm−1)p remain linearly independent when restricted to the subspace
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TpCrit(µξ). Consider the vector fields ξ+
1 , · · · , ξ+

m−1 on M defined by

dµi = ω+(ξ+
i ), i = 1, · · · ,m − 1.

Since ω+ = gJ+, the vector field ξ+
i can be written as ξ+

i = −J+g−1(dµi). The Tm-
invariance of the function µi implies

(θ∗)pg
−1(dµi)p = g−1((θ−1)∗dµi)p = g−1(d((θ−1)∗µi))p = g−1(dµi)p

for each θ ∈ T ξ. In particular, we see that the vector field g−1(dµi) is tangent to
Crit(µξ) because TpCrit(µξ) = TpFix(T ξ) =

∩
θ∈T ξ ker(1 − (θ∗)p). Moreover, since the

critical manifold Crit(µξ) is an almost complex submanifold of (M,J+), the vector filed
ξ+
i = −J+g−1(dµi) is also tangent to Crit(µξ). On the other hand, (ξ+

1 )p, · · · , (ξ+
m−1)p

are linearly independent on TpM because p is regular. Hence they are also linearly
independent on TpCrit(µξ). Since the 2-form ω+ is still nondegenerate when it is
restricted to Crit(µξ), the 1-forms (dµ1)p, · · · , (dµm−1)p are linearly independent on
T ∗

p Crit(µξ) and hence Crit(µξ) intersects Q transversally as claimed. In particular, the
critical set Crit(µm|Q) of µm : Q → R is a finite union of submanifolds of Q because
Crit(µm|Q) = Crit(µξ) ∩ Q.

For each X ∈ TpM which is orthogonal to TpCrit(µξ), we have

(dµi)p(X) = gp(g−1(dµi), X) = 0

for i = 1, · · · ,m− 1. This implies that the orthogonal complement (TpCrit(µξ))⊥ of the
subspace TpCrit(µξ) is contained in TpQ. Hence the Hessian of µξ at p is nondegenerate
on TpQ ∩ (TpCrit(µξ))⊥ = (TpCrit(µξ))⊥ with even index and coindex. In other words,
Crit(µξ) ∩ Q is the critical manifold of µξ|Q of even index and coindex. The same holds
for µm|Q since it only differs from µξ by the constant

∑m−1
i=1 ciai. Thus we have proved

that the function µm : Q → R is a Bott-Morse function with even index and coindex. ¤

By applying Lemma 3.12, if (a1, · · · , am−1) is a regular value for (µ1, · · · , µm−1),
then the level set µ−1

m (am) ∩ Q = µ−1(a) is connected. This shows that Am−1 ⇒ Am.
Finally, we shall prove the third claim, that is, the image of the generalized moment

map µ is the convex hull of the images of the fixed points of the action. By Lemma 3.8,
the fixed point set Fix(Tm) of the action decomposes into finitely many even dimensional
connected submanifolds C1, · · · , CN of M . The generalized moment map µ is constant
on each of these sets because Ci ⊂ Crit(µξ) for i = 1, · · · , N and any ξ ∈ t. Hence there
exists a1, · · · , aN ∈ t∗ such that

µ(Ci) = {ai}, i = 1, · · · , N.

By what we have proved so far the convex hull of the points a1, · · · , aN is contained in
µ(M). Conversely, let a ∈ t∗ be a point which is not in the convex hull of a1, · · · , aN .
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Then there exists a vector ξ ∈ t with rationally independent components such that

ai(ξ) < a(ξ), i = 1, · · · , N.

Since the components of ξ are rationally independent, we have Crit(µξ) = Fix(Tm).
Hence the function µξ : M → R attains its maximum on one of the sets C1, · · · , CN .
This implies

sup
p∈M

µξ(p) < a(ξ),

and hence a ̸∈ µ(M). This shows that µ(M) is the convex hull of the points a1, · · · , aN

and Theorem A is proved.

Remark 3.13. By applying the same arguments of our proof and Theorem 5.1
in [14], Theorem A still holds in the case that M is a compact connected H-twisted
generalized complex orbifold. In this case, all connected components C1, · · · , CN of the
critical set are connected generalized complex suborbifolds.

4. Non-abelian convexity and connectedness properties

The purpose of this section is to give a proof of Theorem B. Our proof is a simple
generalization of the argument of Lerman, Meinrenken, Tolman and Woodward in [13]
to generalized complex geometry.

4.1. Weak nondegeneracy of generalized moment maps
In this subsection, we introduce an additional property “weak nondegeneracy” for

generalized moment maps, which always holds for compact cases.

Definition 4.1. We say that a generalized moment map µ : M → g∗ has weak
nondegeneracy if the following equality holds for all ξ ∈ g;

Crit(µξ) = Fix(T ξ).

Example 4.2. Let a compact Lie group G act on a symplectic manifold (M,ω) in
a Hamiltonian way with a moment map µ : M → g∗. Then the G-action on (M,Jω) is
Hamiltonian with a generalized moment map µ and a moment one form α = 0. In this
case, the generalized moment map µ has weak nondegeneracy. Indeed, since dµξ = ιξM ω

for each ξ ∈ g, it follows that ξM = 0 if and only if dµξ = 0.

Example 4.3. Consider the trivial action of a compact torus Tm on a complex
manifold (M,J). Then by identifying the Lie algebra t with Rm, each holomorphic map
h = (h1, · · · , hm) : M → Cm defines a generalized moment map µ = Im h and a moment
one form α = d(Re h) = (d(Re h1), · · · , d(Re hm)) for the Tm-action, where Re h (resp.
Im h) denotes the real part (resp. the imaginary part) of h. In this case, µ has weak
nondegeneracy if and only if h is locally constant, because ξM reduces to 0 for all ξ ∈ t.
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By the former part of the proof of Proposition 3.9, we see that a generalized moment
map for compact manifolds always has weak nondegeneracy. Moreover, the latter part of
the proof of Proposition 3.9 tells us that, for noncompact manifolds, a generalized moment
map having weak nondegeneracy is nondegenerate in the sense of abstract moment maps
in Ginzburg-Guillemin-Karshon [6].

Remark 4.4. Let a compact Lie group G act on an H-twisted generalized complex
orbifold (M,J ) in a Hamiltonian way with a generalized moment map µ : M → g∗ and
a moment one form α ∈ Ω1(M ; g∗). If µ has weak nondegeneracy, as in the case of
symplectic orbifolds, the image of the differential of the generalized moment map at a
point p ∈ M is the annihilator of the corresponding isotropy Lie algebra gp. In particular,
we see that the following conditions are equivalent:

1. p ∈ M is a regular point of µ.
2. gp = {0}.
3. The G-action at p is locally free.

We prove the assertion here. Let T̃pM denote the uniformized tangent space of M at p.
For each ξ ∈ g, weak nondegeneracy condition of the generalized moment map implies
that (dµξ)p = 0 if and only if (ξM )p = 0. Since

(µ∗)p(X)(ξ) = (dµξ)p(X) (9)

for each X ∈ T̃pM , we have (µ∗)p(X)(ξ) = 0 for all ξ ∈ gp. This shows that the image
of (µ∗)p is contained in the annihilator (gp)0. On the other hand, the equation (9)
implies that X ∈ ker(µ∗)p if and only if (dµξ)p(X) = 0 for all ξ ∈ g. Hence we obtain
the equation ker(µ∗)p = (Dµ)0p, where (Dµ)p is the subspace of T̃ ∗

p M generated by the
differentials (dµξ)p for all ξ ∈ g and (Dµ)0p ⊂ TpM is its annihilator. In addition, since
dim(Dµ)p = dim g − dim gp by weak nondegeneracy condition, we have dimker(µ∗)p =
dim M − (dim g − dim gp). Hence we have

dim(µ∗)p(T̃pM) = dim g − dim gp = dim(gp)0

and so (µ∗)p(T̃pM) = (gp)0. This shows the assertion. In particular, the generalized
moment map has constant rank on the principal stratum Mprin, an open dense subset of
M defined to be the intersection of the set of the points of principal orbit type with the
set of smooth points of M . (See [6] for the definition of the principal orbit type.)

4.2. Generalized complex cuts
In view of symplectic geometry, we introduce the notion of generalized complex cut-

ting. Let (M,J ) be an H-twisted generalized complex orbifold which admits a Hamil-
tonian circle action with a generalized moment map µ : M → R and a moment one form
α ∈ Ω1(M). We assume that the generalized moment map µ has weak nondegeneracy.
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For a regular value ε ∈ R of the generalized moment map, consider the disjoint union

M[ε,+∞) = µ−1((ε, +∞)) ∪ Mε

obtained from the orbifold with boundary µ−1([ε,+∞)) by collapsing the boundary under
the circle action. Then the disjoint union M[ε,+∞) admits a natural structure of a twisted
generalized complex orbifold. To see this, consider the product M × C of the orbifold
with a complex plane. It has a natural product H-twisted generalized complex structure:

JM×C =

(
J 0
0 Jω

)
,

where Jω is the natural generalized complex structure on C induced by the standard
symplectic structure ω = (

√
−1/2)dz ∧ dz̄. The function ν : M × C → R given by

ν(p, z) = µ(p) − (1/2)|z|2 is a generalized moment map for the diagonal action of the
circle, and the pull back of the moment one form α by the natural projection from M ×C
to M is a moment one form. Since µ has weak nondegeneracy, so does ν. The point
ε ∈ R is a regular value of ν if and only if it is a regular value of µ. Moreover, the map

{p ∈ M | µ(p) ≥ ε} → ν−1(ε), p 7→ (p,
√

µ(p) − ε)

induces a homeomorphism from M[ε,+∞) to the reduced space ν−1(ε)/S1. By weak
nondegeneracy of the generalized moment map ν, we see that the reduced space admits
a natural H̃-twisted generalized complex structure. In particular, M[ε,+∞) also admits
a twisted generalized complex structure which is induced by the H̃-twisted generalized
complex structure on the orbifold ν−1(ε)/S1.

Definition 4.5. We call the twisted generalized complex orbifold M[ε,+∞) the
generalized complex cut of M with respect to the ray [ε,+∞).

The construction can be generalized to general torus actions as follows. Consider a
Hamiltonian action of an m-dimensional torus Tm on an H-twisted generalized complex
orbifold (M,J ) with a generalized moment map µ : M → t∗ and a moment one form
α ∈ Ω1(M ; t∗). We assume that the generalized moment map µ has weak nondegeneracy.
Let l ⊂ t denote the integral lattice. Choose N vectors vj ∈ l, j = 1, · · · , N . The
endomorphism

JM×CN =

(
J 0
0 Jω

)

is an H-twisted generalized complex structure on an orbifold M × CN , where Jω is
the natural generalized complex structure on CN induced by the standard symplectic
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structure ω = (
√
−1/2)

∑N
i=1 dzi∧dz̄i. The map ν : M×CN → RN with j-th component

νj(p, z) = ⟨µ(p), vj⟩ −
1
2
|zj |2

is a generalized moment map for the action of TN on M × CN induced by the Lie
algebra homomorphism RN → t, ej 7→ vj , where {e1, · · · , eN} is the standard basis of
RN . The RN -valued 1-form β with j-th component βj(p, z) = ⟨α(p), vj⟩ is a moment one
form. Because of weak nondegeneracy of µ, the generalized moment map ν also has weak
nondegeneracy. For each b = (b1, · · · , bN ) ∈ RN , we define a convex rational polyhedral
set

P = {x ∈ t∗ | ⟨x, vj⟩ ≥ bj , j = 1, · · · , N}.

The generalized complex cut of M with respect to a rational polyhedral set P is the
reduction of M × CN at b. We denote it by MP . If b is a regular value of ν, then MP

is a twisted generalized complex orbifold by Remark 4.4. Note that regular values are
generic by Sard’s theorem. Furthermore if P is a compact polytope, then the fact that P

is generic implies that P is simple, that is, the number of codimension one faces meeting
at a given vertex is the same as the dimension of P .

A topological description of the cut space is given by the following result. This is
a generalization of Proposition 2.4 in [13] to generalized complex geometry and we can
apply their proof of the theorem by replacing moment maps with generalized moment
maps.

Proposition 4.6. Let an m-dimensional torus Tm act on an H-twisted generalized
complex orbifold (M,J ) effectively and in a Hamiltonian way with a generalized moment
map µ : M → t∗ and a moment one form α ∈ Ω1(M ; t∗). Suppose that the generalized
moment map µ has weak nondegeneracy. Consider a generic rational polyhedral set
P ⊂ t∗ and the set of all open faces FP . Then the topological space M̃P defined by

M̃P =
∪

F∈FP

µ−1(F )/TF ,

where TF ⊂ Tm is the subtorus of Tm perpendicular to F , coincides with the generalized
complex cut of M with respect to P . In particular, M̃P is an H-twisted generalized
complex orbifold with a natural Hamiltonian action of the torus Tm. Moreover, the map
µP : M̃P → t∗ induced by the restriction µ|µ−1(P ) is a generalized moment map, and the
descending of the restriction α|µ−1(P ) of the moment one form is a moment one form for
this action. Consequently,

1. the cut space M̃P is connected if and only if µ−1(P ) is connected;
2. the fibers of µP are connected if and only if fibers of µ|µ−1(P ) are connected;
3. M̃P is compact if and only if µ−1(P ) is compact.

Using the technique of generalized complex cuts, we can extend Theorem A to
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the case that M is a noncompact orbifold and the generalized moment map has weak
nondegeneracy. The proof is the same with the proof of Theorem 4.3 in [13], except one
must use the generalized complex cuts.

Theorem 4.7. Let an m-dimensional torus Tm act on a connected H-twisted
generalized complex orbifold (M,J ) in a Hamiltonian way with a generalized moment
map µ : M → t∗ and a moment one form α ∈ Ω1(M ; t∗). If µ is proper as a map into a
convex open set U ⊂ t∗ and has weak nondegeneracy, then

1. the image of µ is convex,
2. each fiber of µ is connected, and
3. if for every compact set K ⊂ t∗, the list of isotropy algebras for the Tm-action

on µ−1(K) is finite, then the image µ(M) is the intersection of U with a rational
locally polyhedral set.

4.3. The cross-section theorem
Here we recall the notion of slices for group actions and prove a generalized complex

geometry analogue of the cross-section theorem in symplectic geometry.

Definition 4.8. Suppose that a group G acts on an orbifold M . Given p ∈ M

with isotropy group Gp, a suborbifold U ⊂ M containing p is called a slice at p if U is
Gp-invariant, G · U is a neighborhood of p, and the map

G ×Gp U → G · U, [a, u] 7→ a · u

is an isomorphism.

Consider the coadjoint action of a connected compact Lie group G on g∗. For each
x ∈ g∗, there is a unique largest open subset Ux ⊂ g∗x ⊂ g∗ which is a slice at x. We call
Ux the natural slice at x for the coadjoint action. A detailed construction can be seen in
[13].

Theorem 4.9 (Cross-section). Let a compact connected Lie group G act on an
H-twisted generalized complex orbifold (M,J ) in a Hamiltonian way with a generalized
moment map µ : M → g∗ and a moment one form α ∈ Ω1(M ; g∗). Consider the natural
slice U at x ∈ g∗ for the coadjoint action. Then the cross-section R = µ−1(U) is a
Gx-invariant generalized complex suborbifold of M , where Gx is the isotropy group of
x. Furthermore the Gx-action on R is Hamiltonian with a generalized moment map
µR := µ|R and a moment one form α|R, the restriction of α to R.

We shall give a proof of Theorem 4.9 below. First note that since the slice U is
Gx-invariant and the generalized moment map µ is equivariant, the cross-section R =
µ−1(U) is also Gx-invariant. By definition of the slice, coadjoint orbits intersect U

transversally. Since the generalized moment map is equivariant, it is transversal to U

as well. Hence the cross-section is a suborbifold of M . We need to show that the
cross-section R is a generalized complex suborbifold of M . We shall show that (LR)r ⊂
(T̃rR⊕ T̃ ∗

r R)⊗C defines an i∗H-twisted generalized complex structure of R, where T̃rR
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is the uniformized tangent space of R at r ∈ R. Then we can see easily that R is a
generalized complex suborbifold. Consider a local representative φ of L. If the pull back
(i∗φ)r is a nondegenerate complex pure spinor, then it is a local representative of LR

and hence LR defines an i∗H-twisted generalized complex structure. Hence we may only
show that the pull back (i∗φ)r is a nondegenerate complex pure spinor of R below.

Since φr is a nondegenerate complex pure spinor, there exists a decomposable com-
plex k-form Ω ∈ ∧kT̃ ∗

r M ⊗ C and a complex 2-form B +
√
−1ω ∈ ∧2T̃ ∗

r M ⊗ C such
that

φr = exp(B +
√
−1ω) ∧ Ω.

The 2-form ω is nondegenerate on the 2(n − k)-dimensional subspace

Sr = {X ∈ T̃rM | iX(Ω ∧ Ω̄) = 0}.

Moreover, we claim that it satisfies that for each ξ ∈ g, i(ξM )r
ω = (dµξ)r on Sr. Indeed,

since ιξM
φr−

√
−1(dµξ +

√
−1αξ)∧φr = 0 by the definition of generalized moment maps,

we have ιξM
Ω = 0 and hence

ιξM
(B +

√
−1ω) ∧ Ω =

√
−1(dµξ +

√
−1αξ) ∧ Ω.

If we write Ω = θ1 ∧ · · · ∧ θk by some 1-forms θ1, · · · , θk ∈ T̃ ∗
r M ⊗ C, the vectors

θ1, · · · , θk, θ̄1, · · · , θ̄k are linearly independent because the complex pure spinor φr =
exp(B +

√
−1ω) ∧ Ω is nondegenerate. This implies that ιXΩ = 0 and

ιξM
(B +

√
−1ω)(X) ∧ Ω =

√
−1(dµξ +

√
−1αξ)(X) ∧ Ω

for each X ∈ Sr. Hence we obtain i(ξM )r
ω(X) = (dµξ)r(X) for each ξ ∈ g and X ∈ Sr.

This shows the claim.
Consider the complex form on ∧•T̃ ∗

r R ⊗ C defined by

(i∗φ)r = exp(i∗B +
√
−1i∗ω) ∧ i∗Ω.

To prove that (i∗φ)r is a nondegenerate complex pure spinor, we need to show the
following statements:

1. i∗Ω ∧ i∗Ω̄ ̸= 0, in particular i∗Ω ̸= 0.
2. i∗ω is nondegenerate on the subspace Sr(R) = {X ∈ T̃rR | iX(i∗Ω ∧ i∗Ω̄) = 0}.

We first show the claim 1. For the Lie algebra g of G, gx denotes the Lie algebra
of the stabilizer of x ∈ g∗. Then there exists a Gx-invariant subspace m such that
g = gx ⊕ m. For y = µ(r), the uniformized tangent space T̃yU is just the annihilator
of m. Consider the subspace mM (r) = {(ξM )r | ξ ∈ m}. Note that mM (r) ⊂ Sr and
dim mM (r) = dim m. Now we show the following lemmata.
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Lemma 4.10. The subspace mM (r) is a symplectic vector space with respect to the
2-form ω and is perpendicular to Sr ∩ T̃rR.

Proof. First observe that for ξ ∈ m and X ∈ Sr ∩ T̃rR,

ω((ξM )r, X) = ((µ∗)r(X))(ξ) = 0

since (µ∗)r(X) ∈ TyU = m◦. Hence mM (r) is perpendicular to Sr ∩ T̃rR with respect to
the 2-form ω.

Now we show that the subspace mM (r) is a symplectic vector space. Since for
ξ, η ∈ m,

ω((ξM )r, (ηM )r) = ((µ∗)r(ηM ))(ξ) = (ad∗(η)µ(r))(ξ) = −y([ξ, η]),

mM (r) is symplectic if and only if ad∗(m)y is a symplectic subspace of the tangent space
Ty(G · y) of the coadjoint orbit G · y. Since Gx · y ⊂ U and since m = (TyU)◦, for each
ξ ∈ m and η ∈ gx we have

y([ξ, η]) = ad∗(η)(y)ξ = 0,

that is, Ty(Gx · y) and ad∗(m)y are symplectically perpendicular in Ty(G · y). Hence it
remains to show that the orbit Gx · y is a symplectic submanifold of the coadjoint orbit
G · y because Ty(G · y) = Ty(Gx · y)⊕ ad∗(m)y. Since the natural projection pr : g∗ → g∗x
is Gx-equivariant, we have pr(Gx · y) = Gx · pr(y). By the definition of the symplectic
forms on a coadjoint orbit the restriction of the symplectic form of G · y to Gx · y is just
the pull-back by pr of the symplectic form of the Gx coadjoint orbit Gx · pr(y). Hence
Gx · y is a symplectic submanifold of G · y, and this proves the lemma. ¤

Lemma 4.11. The uniformized tangent space T̃rM can be decomposed into the
following direct sum:

T̃rM = T̃rR ⊕ mM (r).

Proof. If X ∈ T̃rR ∩ mM (r), then X is perpendicular to mM (r) with respect to ω by
Lemma 4.10. Since ω is nondegenerate on mM (r), we have X = 0 and hence T̃rR ∩
mM (r) = {0}. Furthermore, since dimR = dimM − dim m, we see that dim T̃rM =
dim T̃rR + dimmM (r), and obtain the decomposition T̃rM = T̃rR ⊕ mM (r). ¤

The decomposition induces the decomposition of Sr;

Sr = (Sr ∩ T̃rR) ⊕ mM (r),

because mM (r) is contained in Sr. Hence we have the dimension

dim Sr ∩ T̃rR = dim T̃rR − 2k.
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This shows that we can choose a basis of T̃rM ⊗ C;

e1, · · · , ea, u1, · · · , u2k, v1, · · · , v2(n−k)−a,

where a = dim Sr ∩ T̃rR, {e1, · · · , ea} is a basis of Sr ∩ T̃rR, {e1, · · · , ea, u1, · · · , u2k} is
a basis of T̃rR and {v1, · · · , v2(n−k)−a} is a basis of mM (r). Since ei, vj ∈ Sr, we have
iei(Ω∧ Ω̄) = ivj (Ω∧ Ω̄) = 0. Hence we see that Ω∧ Ω̄(u1, · · · , u2k) ̸= 0 because Ω∧ Ω̄ ̸= 0
on T̃rM . This shows that i∗Ω ∧ i∗Ω̄ ̸= 0, and hence we have proved the claim 1.

Now we prove the claim 2. We can check easily that Sr ∩ T̃rR ⊂ Sr(R). Since
i∗Ω ∧ i∗Ω̄ ̸= 0, we have

dim(Sr ∩ T̃rR) = dim Sr(R) = dim R − 2k.

Hence we obtain the equation Sr ∩ T̃rR = Sr(R). Now take a vector X ∈ Sr(R) which is
perpendicular to Sr(R) with respect to ω, that is, ω(X,Y ) = 0 for any Y ∈ Sr(R). Then
since ω(X, (ξM )r) = 0 for any ξ ∈ m, we see that ω(X,Y ) = 0 for any Y ∈ Sr. Since ω is
nondegenerate on Sr, we have X = 0 and hence ω is also nondegenerate on Sr(R). This
proves the claim 2.

By the claims 1 and 2, we see that (i∗φ)r is a nondegenerate complex pure spinor
and that R is a generalized complex suborbifold of M . Finally, it is clear that the
Gx-action on R preserves the induced i∗H-twisted generalized complex structure and is
Hamiltonian with a generalized moment map µR = µ|R and the moment one form i∗α.
This completes the proof of Theorem 4.9.

4.4. A proof of Theorem B
By Remark 4.4 and Theorem 4.9, we can extend Theorem 3.1 in Lerman-Meinrenken-

Tolman-Woodward [13] to generalized complex geometry, and we see that there is a
unique open face σ of the Weyl chamber t∗+ such that

1. µ(M) ∩ σ is dense in µ(M) ∩ t∗+,
2. the preimage Y = µ−1(σ) is a connected T -invariant generalized complex sub-

orbifold of M , and the restriction µY = µ|Y and the pull back of α to Y are a
generalized moment map and a moment one form for the action of the maximal
torus T , and

3. the set G · Y is dense in M .

(See the proof of Theorem 3.1 in [13].) Since µ is proper, the restriction µY : Y → t∗

is proper as a map into the open convex set σ. By Theorem 4.7, the image µ(Y ) is
convex and is the intersection of σ with a locally polyhedral set P , that is, µ(Y ) = σ∩P .
Therefore we have µ(M)∩t∗+ = µ(Y ). Since the closure of a convex set is also convex, the
moment set µ(M)∩ t∗+ is convex. Moreover, since µ(M)∩ t∗+ = σ ∩ P = σ̄∩P , µ(M)∩ t∗+
is a locally polyhedral set. Thus we have proved the first assertion. Now we shall show
that the fiber µ−1(x) is connected for all x ∈ g∗. We may assume x ∈ t∗+. Since the
fiber of µ|Y is connected, the fiber of the restriction µ|G·Y is also connected. Observe
that since µ−1(G · x)/G = µ−1(x)/Gx and the groups G and Gx are connected, the
connectedness of µ−1(x) is equivalent to that of µ−1(G · x). To prove the connectedness
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of µ−1(G · x), it is suffices to show that for any convex open neighborhood B of x in
t∗+, the closure of the open set µ−1(G · (B ∩ t∗+)) is connected. By the condition 3 of
the open face σ, the intersection µ−1(G · (B ∩ t∗+)) ∩ G · Y = G · µ−1(B ∩ σ) is dense in
µ−1(G · (B ∩ t∗+)) and hence also dense in its closure. Since B ∩ σ ∩ µ(M) is convex and
µ−1(y) is connected for each y ∈ σ, the set G · µ−1(B ∩ σ) is connected and therefore its
closure is also connected. This completes the proof of Theorem B.

Remark 4.12. In noncompact cases, the assumption of weak nondegeneracy is
essential for the convexity property. For instance, consider the trivial action of 3-
dimensional compact torus G = T 3 on a complex manifold M = C with the standard
complex structure J and a holomorphic map h : M → C3 defined by

h(z) = (
√
−1z, z, z2).

Then by identifying the Lie algebra t with R3, we see that the action is a Hamiltonian
action on a generalized complex manifold (M,JJ) with a generalized moment map

µ = Im h = (x, y, 2xy)

and a moment one form

α = d(Re h) = (−dy, dx, 2xdx − 2ydy),

where z = x +
√
−1y. Since the natural identification id : M → R2 is proper, the

generalized moment map µ : M → R3 is also proper. In addition, µ does not have weak
nondegeneracy because for ξ = (1, 0, 0) ∈ t, we have dµξ = dx and hence Crit(µξ) = ϕ.
(Note that Fix(T ξ) = M for all ξ ∈ t since the G-action is trivial.) In this case, the
convexity property of the generalized moment map does not hold. Indeed, the image
of the generalized moment map µ is just the graph of the function of two variables
f(x, y) = 2xy.

4.5. Concluding remarks
A concept of generalized complex structures arises naturally when we consider a

deformation of symplectic structures. Then we can consider a Hamiltonian action on a
generalized complex manifold as a family of Hamiltonian actions of symplectic manifolds.
We shall give a simple example below.

Let CP2 be a 2-dimensional complex projective space with the homogeneous coordi-
nates [z0 : z1 : z2], and ωF.S. the Fubini-Study metric on CP2. For each w = (w1, w2) ∈
C∗ × C∗ we define a projective transformation Tw ∈ PGL(3, C) by

Tw([z0 : z1 : z2]) = [z0 : |w1|z1 : |w2|z2].

Then we have a deformation of the Fubini-Study metric T ∗
wωF.S.. Consider the T 2-action
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on CP2 defined by

(θ1, θ2) · [z0 : z1 : z2] = [z0 : θ1z1 : θ2z2]

for all (θ1, θ2) ∈ T 2. Since the transformation Tw commutes with the T 2-action, the
action on a symplectic manifold (CP2, T ∗

wωF.S.) is Hamiltonian with a moment map

µw([z0 : z1 : z2]) = − 1
2|z|2

(|w1| · |z1|2, |w2| · |z2|2).

By symplectic convexity theorem, we see that the image ∆w of the moment map µw is the
convex hull of {(0, 0), (−|w1|/2, 0), (0,−|w2|/2)}, which is of course a compact polytope.

Here we have obtained a family of Hamiltonian actions on symplectic manifolds. By
considering a generalized complex structure, we can treat them at once. Consider the
product M = (C∗)2×CP2 of an algebraic torus with a projective space. Since the 2-form
T ∗

wωF.S. is a symplectic form of CP2 for each w ∈ (C∗)2, we can define a complex pure
spinor φ on M by

φ = dw1 ∧ dw2 ∧ exp
√
−1T ∗

wωF.S..

Furthermore, since the complex pure spinor φ is nondegenerate, it defines a generalized
complex structure Jφ on M .

Now consider a T 2-action on a generalized complex manifold (M,Jφ) defined by
lifting the T 2-action on CP2 to M ;

(θ1, θ2) · (w, [z0 : z1 : z2]) = (w, [z0 : θ1z1 : θ2z2]),

for each (θ1, θ2) ∈ T 2. The T 2-action on (M,Jφ) is Hamiltonian with a generalized
moment map

µ(w, [z0 : z1 : z2]) = µw([z0 : z1 : z2])

and a moment one form α = 0. The image ∆ of the generalized moment map µ is a
convex polyhedral set,

∆ = {(x, y) ∈ R2 | x ≤ 0, y ≤ 0}.

When we restrict the T 2-action to the fiber Mw = {w} × CP2 ∼= CP2, the action on Mw

is equivalent to the Hamiltonian T 2-action on CP2 and the generalized moment map µ

restricted to Mw coincides with the moment map µw. This shows that we can think
of the Hamiltonian T 2-action on a generalized complex manifold (M,Jφ) as a family of
Hamiltonian T 2-actions on symplectic manifolds (CP2, T ∗

wωF.S.). Then the image ∆ of
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the generalized moment map µ coincides with the union of ∆w;

∆ = ∪w∈(C∗)2∆w.

Here we see that not only each ∆w is convex, but the union ∆ is also convex. Note that
∆ is not compact although ∆w is a compact polytope for each w ∈ (C∗)2.
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