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Preface

In modern turbomachinery such as axial flow compressors or turbines,
thin airfoils of high aspect ratio are often used owing to the demand of
high speed performance and minimization of engine weight. High speed
operation lowers the critical flutter frequency and the adoption of thin
and high aspect ratio airfoils lowers the natural frequency of the blades.
These tendencies make the cascade blades easy to oscillate. Along with the
growth of the aircraft : in its size and speed the frequent service has
made the noise problems around airport a serious social problem. From the
viewpoint of engineéringtheseproblems can be seen as the unsteady flow
problems of airfoil cascades, and intensive researches have been reported
on this problem nowadays.

J.S.M.E. founded the Research and Study Division of Unsteady Cascade
Problems composed of the authorities of the problems in Japan and The
Report of Research and Study on Unsteady Cascade Problems was published
on March 1976, in which broad and precise reviews of many recent papers
are contained.

Most of the unsteady cascade theories are two dimensional inviscid
and linear theories and can be classified into the following three classes
from the method applied.

(1) Vortex formulation

A 1lift in uniform flow corresponds to a vortex and in case the 1lift
fluctuates, free vortices are shed so as to maintain the circulation
of the entire flow region constant. The flow field can be represented
by a bound vortex at the application point of the external force and
vortices which flow downstream with the mainstream velocity.
(2) Acceleration potential formulation

The fluctuating lifts generate fluctuating doublets in the pressure
field. Since the pressure is continuous>across the shed-off vortex
sheets the pressure field can be represented by the bound doublets only
at the point of force application. This makes the analysis simple
compared to the vortex formulation.
(3) Actuator disk formulation

By representing the cascade by an actuator disk on the assumption
of infinitestimal chord length and blade spacing, the flows upstream
and downstream of it can be easily found. The flows are coupled
together by appropriate conditions in which the finiteness of the chord

and the blade spacing can be taken into account approximately.



Most of the theories adopting the formulations (1) or (2) are solved

by singular point procedure. In spite of the virtue of the simplicity,

the formulation (3) is not in frequent use nowadays with the develop-
ment of the finite pitch theories by the formulation (1) or (2).

Unsteady theories considering the viscous effects are few. One group

of them are isolated airfoil theories of boundary layer approach, having
much interests on the trailing edge problems. Those analyses are very
complicated in its nature and are applicable to restricted flow conditions.
Another group is numerical ones owing much to the developments of computer.

The first chapter o0f this report shows the analytical method of
unsteady forces on cascades by applying the acceleration potential method
combined with conformal mapping method. The fluid is assumed to be
incompressible and inviscid. Transient flows are treated as well as many
types of oscillating flows.

In the second chapter the effects of the fluid viscosity are taken
into account. Rigorous elementary solutions of linearized Navier-Stokes
equation are given on the assumption of small amplitude of oscillation.
Firstly they are applied to isolated oscillating airfoil and the effects
of the viscosity on unsteady forces are elucidated. Secondly they are
applied to cascade. The dissipating sinusoidal gusts are also given to
satisfy the basic equations, and the 1ift and the drag response of the
cascade blades to the gusts are given as well as the unsteady forces on
the oscillating blades.

In the last chapter, the viscosity and the compressibility are
considered simultaneously. Firstly, an actuator disk theory is developed
for viscous compressible fluid, in which the three dimensionality effects
are also taken into account. Secondly, a finite pitch theory is given
on the basis of the actuator disk theory. The singularities of the
elementary solutions are analytically shown to agree with those for
inviscid or incompressible limits given in the preceding chapters.

The results of these three chapters agree with each other in spite
of the different methods applied. All of the numerical caluculations
are made to get the unsteady forces on the blades since the entire flow

fields can be easily calculated after getting the force distributions.



Fig.0 Cascade geometry
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Chapter 1 Inviscid Flow
1.1 Sinusoidal gusts of equal phase

1.1.1 Introduction

The blades of a turbomaschine are subjected to unsteady forces arising
from the relative motion of adjacent blade rows. These unsteady forces have
important effects on fluttering of blades, noise generation, fatigue
failures of blades and, in case of hydraulic maschines, on the cavitation
characteristics. .

Karman & Sears [1] first suggested to use the prevailing vortex
theory for the analysis of the unsteady flow around airfoils. Sears [2]
investigated the unsteady forces on a single airfoil in a sinusoidal
travelling gust in which the velocity purterbation is normal to the
undisturbed flow. Utilizing the results of this work, Kemp & Sears [3]
analyzed the potential flow effects of adjacent blade rows, and the 1lift
fluctuation of the blades due to the viscous wakes shed from an upstream
blade row. [4] The results of these analyses are valid only for cascades
with low solidity because they are based on the single airfoil theory.
Whitehead [5] studied the fluctuating forces on a blade in cascade when
the blades are in a sinusoidal gust, together with the 1ift fluctuation
on the oscillating blades. Ohashi [6] analyzed the 1lift fluctuation on the
blades of a non-staggered cascade, using vortex theory in combination with
a conformal mapping method. For staggered cascades he showed the way to
apply his results for non-staggered cascades considering the ratio of
circulation around a blade of staggered cascade to that around a blade
of non-staggered cascade. Schorr & Reddy [7] treated the flow of sinusoidal
gusts through cascades and showed numerical results solving approximately
the integral equations for the determination of vortex distribution.

All the analyses mentioned above treated the velocity fluctuation
normal to the relative flow direction. Horlock [8] analyzed the fluctuating
lift on a single airfoil with an angle of attack due to a longitudinal
(i.e., parallel to the undisturbed flow) gust. Applying his results to a
viscous wake interaction problem, he found that those two fluctuating
lifts produced by gusts parallel to and normal to the relative flow
direction are, for the most part, opposite in sign and tend to cancel each
other, then he presented the designing method to reduce the lift

fluctuation to the minimum. Nauman & Yeh [9] considered the effect of



camber on 1lift fluctuation arising from longitudinal velocity fluctuation.
This chapter presents an analysis of fluctuating 1ift on the flat
plate airfoils in cascade produced by gusts parallel to and normal to the
undisturbed flow direction, introducing a conformal mapping method for
acceleration potential which makes the analysis clearer than the
conventional analysis of the velocity field as was shown by M.A.Biot[12]
for the case of single oscillating airféil. The analysis in this section
is confined to the case, in which the phase angle of the velocity
fluctuation is the same for all the blades. In actual machines the blade
numbers of stator aﬁd rotor are usually different, but the results of this
section will be useful as an approximation, because the difference of blade

numbers between stator and rotor is usually small in actual machines.

1.1.2 Fundermental equations

In the Euler’s equations (1), (2), we assume the fluid is incompressible.

) > Vs AVx _ _ I 2P
%Fz*”*'if*"vaa‘faz e @
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We: divide the velocity Vx s U} into stationary components Z% s -Dg and

non-stationary components Ya , U4 .

Ux = Ust Ud 3) vy= Vs + U %)
Eurthermore we write,

Us=TUrt Ug (5) Vs = Us (6)

where Ua , VUa , Us , Us <« U . If we neglect the small quantities of

higher order, the Euler’s equations may be written as follows.

3 Ud o U 2. 2Ud oY
(37 7 a—i") [az(““'u‘g) TU&a; fw'ag],
dUs N\
*(.Ua_f = Ax (7)
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@ Us =
‘f‘(v_é;g>- Ay (8)

Then the acceleration A , d; may be divided into three components.

U,
Q-g'ld-r Ué*d

Y 224 = G @ 2+ p2F= g QO
55 ( Un- b“s) + U}j)—;'ld + U %%‘3= Azas (ii)
a—‘;-(v;.'?/&%- MS%‘? + Ud%? = Agds (12)

U = aas (13) U255 = ays (14)

where,

Oz= Aza + Oxdg T Azs 5 d] = dad + ﬂzdg + daos

The acceleration components x4 , a,d are due to the non-stationary
purterbating velocity Ud , Ya , components g , aZS are due to WUg ,
Vs > and Qzas » “ads are due to both stationary components Mg , Vs

and non-stationary ones Ud , V4 . Since we are interested in non-
stationary components only,' we take the acceleration components except

the stationary components into account.

1.1.3 Acceleration potential
We consider the acceleration potential P4 defined as 9Po/o% =l2a R
OPa/34y= Agd for the acceleration components dxd , Ay and the
acceleration potential Pas defined as OPus /az=ﬁ243’ <>¢ds/ag= Qagas
for the acceleration components dzds , 6?,43 . Then the equation of continuity
gives 72 Pa =0 . Let us consider the function &% defined by the
equations; o¥a/py= Axd s —Walox = a?"' , then the function

satisfies the equation P” @4=0. The complex potential may be constructed



in terms of the above mentioned functions @4 , ¥ as follows

Wa = Pat iU (15)

Then the function Wi is analytic so long as the Euler’s equations and

the continuity equation are satisfied. This fact is remarkable in contrast
with the fact that the complex potential in a velocity field is anmalytic
only for irrotational flow. For this reason, the acceleration potential
method can be the most powerful meaning for the analysis of rotational
flow such as the noﬁ—stationary flow around blades where the shed-off
vortices exist. On the other hand, the acceleration potential Pas does not
satisfy the Laplacian equation, sowe must use Egs. (11),(12) directly as
the fundermental equations. Between the fluctuating pressure P and the

acceleration potential @4 , ®as we have the following relation.

70-_-—;"(494 + Pds ) . (16)

1.1.4 Sinusoidal gusts

Consider a cascade of chordlength (¢ ( = 2 ), blade spacing ¢ ,
stagger Y in the Z -plane as shown in Fig.0 at the commencement. For
the cascade,we assume the gusts, in which the velocities Yz , 2/‘5 at x=-00
are given as follows ( for the n-th blade )

For sinusoidal gusts in X ~direction
— M —_— Z" ’)?t Q(\/”x
Vz = U*‘Mo@VrP[Jw((""*“‘—‘U )J

For sinusoidal gusts in ?-—direction _

Ux

\!

U ,
-t ALY 18
U;,o;?[d‘w('(—-zlnv )] (18)

Where we assume WU , Z)‘a((U , and U means the velocity of the

Uy

main flow with an angle of attack lQ . (Fig.1l)



1.1.5 Conformal mapping

| Both the singular point method and the conformal mapping method are
applicable for the determination of the acceleration potential for an
unsteady flow. We take the latter method, in which the blade surfaces are
mapped to a unit circle in & -plane. The mapping function is;

' iy g

ei_ 5 l; (19)
where
Tand = tam ¥ - Tank & (19-1)
Z = T/t = coo §° M ¥ &A«, Aion X (19-2)

ﬁE Rk &

The mapping constants & and £ are determined by Egs.(19-1),(19-2). B
using Eq. (19), the cascade in the . -plane shown in Fig.0 at the
commencement is mapped‘ to a unit circle whose center is at the origin of
the 5 -plane. The locations 2=X o in the 'Z -plane are mapped to the
points t+ef in the L, —-plane respectively, and the leading and the
trailing deges A , B are mapped to the points F e’:“( A’,B’) in the
5 -plane (Fig.2). In the latter part of this section, we will represent

the complex acceleration potential in the Z -plane as a function of 5

1.1.6 Acceleration potential Pa due to non-stationary accelefation
components dzg4 » Ayd -

The non-stationary acceleration potential @a due to the components
Axd , agd may be determined independently of stationary velocity
components.
1.1.6.1 Boundary condition on the blade surface

A) In case of sinusoidal gusts in -direction

From Eqs. (8),(11), we obtain
= Ur Us + Uad - (20) Uy= Us + U (21)

Here we divide the unsteady velocity components Mdda , Ua into two parts

as follows. For the 0O-th blade, for example,

. X
(1) Day = U espl jo (=721, Va =0 (22)



) X
ID sz = Us— U ep [jeo (T~ 50T, vaz = 2 23
As the acceleration for the flow (I) equals zero everywhere, it derives
no acceleration potential. So in order to get the pressure field it is

sufficient to take only the velocity field (II) into account. The boundary

condition may be written;
vy = - B Ux (24)
Also the stationary components satisfy the boundary condition;

U%=—(S(U+~Ms) (25)

The boundary condition for non-stationary components may be derived from
Egs. (24), (25) as follows.

VUa = — B Ud (26)
By using ‘dd2 - s Va> > Eq.(26) may be written as
Vaz = - B8 L Usz + Uo espf jwcT-FD} ] @7
The accelerations MHzd s dgd may be written with /42 s, Vg2 as;
fza = U4z /57 + T dUdaz [ ox (28)
Aya = oPaz /oT + U 2¥Vaz /ox (29)
The boundary condition for (dya , aﬁd is;
Aga = ~ B Azd (30)
The unsteady quantities oscillate harmoniously with the same angular
velocity « . They may be written ; (a2 = Ugz e ot s Jaz = Uxz ed®t |
Oxd = Zi-zd Cé‘*’“ s dga= a.gd ©4°C and so on. The quantities Udz , Vuz,

Zxd s sz are complex ones with respect to d' , and independent

on time ¢ .



Then Egs. (28),(29) give

dza = gw -dez 1 U Udz / >x (31)
Qya = 4w Uz + T oUaz/3x (32)

The flow infinitely upstream of the cascade is given by Eq. (17), which
results in (42 = 5:42 =0 at x=-0° . Considering this condition, we

may integrate Egs.(31),(32) as follows.

A
U

—_— ’ . \ x — J‘w
Uaz(x, 9> = (1/D)D @“‘P(’d“’x/U)_w Qxd (3,4 € Az (33)

— . x S
Uaz (X, 4> = Cl/p> wp(—,,wk/v)f Qgat (5.4 el®T dg (34)
- 00 :
The boundary condition (27) is then written with Zm ’ a,,« 5
. x _ : e o (X
—1 856X —rSex [F = '
(110 EBF [ T 3,006%a5 (319> €0 Tz, 00083

-J'StZ _

T B U C 0 (-1£X<S 1) (35)

For =/ S X< /| | Eq.(30) may be used for the caluculation of Eq. (35),

which results in;
-l — .
J layacz,00 +Bazacs,00]eUs + gu.0 =0 GO

Equation (36) is the boundary condition of the velocity described in
acceleration, and sufficient for any location on the blade surface to

suffice the boundary condition, under the condition (30). Though we

confind our attention to the O-th blade, it is easily understood that Eq.-

(36)is the only velocity-boundary-condition for arbitrary n-th blade if we

regard the periodicity along the cascade axis.
B) In case of sinusoidal gusts in Y -direction

We also divide the unsteady velocity components [d , U4 into

| : x
D va=0 , Un= Vsewp Ljo(r-35>] (37)
ID) Uz = Ud , Vaz= Va- Usesp [jw(r- 5] (38)



Since the acceleration is zero for the flow (I), it is sufficient to take
the velocity field (II) into account. The boundary conditions are;

For the velocity

Uaz + B Udz +%Wf)w<7’§33=0, -lsxs/ (39)

For the acceleration
dyd = - BAzd R -1 £ x =/ (40)
The acceleration may be written with uu} s a2 as;

Aza = QUA2 /9T + [T U4z [ X (41)
Agd = oVd2 [or + U oVaz /5 x (42)

The equations (41) and (42) are the same as Eqgs. (31),(32), which lead to
Egs. (33), (34). Then the boundary condition (39) may be written;

. x _ . . x _ .
(1r> eV | Tracsoei s + o) €7 [ Hugod®,

Yy 4 .
e ¢ 20 , ~l1<x =] (43)

Substitution of Eq. (40) into Eq. (43) yields

3

§ 7 L aga 3,00 *RAza ¢5,00] el v 0 =0

1.1.6.2 Singularity of acceleration potential at the leading edge

In the flow around the flat-plate~blades which satisfies Kutta-
Joukowsky’s condition at the trailing edge, the velocity at the leading
edge becomes infinity. Since the velocity field is singular at the leading
edge, the acceleration with respect to time may be neglected compared with

the acceleration with respect to space. Hence near the leading edge,

OQea = OPa /0x = U olaz /ox (45)



Egd = - 9-4’-5« /ox = D’afdz/ax

(46)
As the velocities

become zero at

Uaz > Uiz X=-00 , the flow

» Uz 1s thought to be irrotational. Considering
this and the equation of continuity, we obtain

represented by Zl—alz

P /oY =T oUdz /oY (47)
OFu /o9 == U Va2 /59 (48)

Hence,
P+ LUz = U ( daz - < Vaz ) (49)

Equation (49) shows that the complex acceleration potential is proportional
to the conjugate complex velocity near a singular point. In general, the
complex velocity of the flow around a sharp edge at Z=

-~/ may be written

-1

Uaz - < Uz = K (Z2+ 1) 2 (50)

where K, is a constant. Using the mapping function (19) we may transform

the region in the vicinity of the leading edge ( B=-/), Z
(re«i

==+ e,
» 0$9<2%) into the region in the Z -plane,

L=-€% 4 plesp[i(8'+ & +7/2)], (reci, 0<®'sT)

So Eq. (19) may be written in the vicinity of the leading edge ( Fig.3 )

Ztl = K w[-z(dfﬁ/z)](é+e'3°‘)z (51)
where K2

is a constant. Then the complex acceleration potential in the
vicinity of the leading edge may be written;

_ 4 o\ -
Fat i = DKk ewp[icarn/zd] cor @)™ (5

That is, the acceleration potential has singularity of l-st order ( order
of 5_’ ) at the leading edge.



1.1.6.4 Acceleration complex potential

The boundary conditions on the blade surface are shown by the same
equations (30) and (32), for sinusoidal gusts in 2z and y direction
respectively. Therefore the boundary condition for complex acceleration

potential is expressed by

B Pa ~ Wi = CGmat. , -1sx<l (53)

In order to get the complex acceleration potential function [10],[11],
which has a singular point of l-st order at the leading edge, and whose
imaginary part with respect to ,t'. is constant on the blade surface in

the & -plane.

W)= A(G-e)Y/ (BE1+ ec<t) (54)

Then the complex acceleration potential may be written ;

Wa(gd= (1 + AB)A WE)D (55)

where A 1is a constant, which is real with respect to £ ,» and complex
with respect to J— . Writing the real and imaginary part of Wd with
respect to A with P4 , Wa respectively, we obtain ;

BPa - Wa = =1t B A Dmag[ W] (56)

which satisfies the boundary condition (53) on the blade surface. The
complex acceleration potential Wx defined by Eq.(55) also satisfies all
the other conditions. The condition at the leading edge ( singularity of
1-st order ) is evidently satisfied, as th:e function W ¢z ) is defined
by Eq.(54). The complex acceleration potential Wa satisfies also the
Rutta-Joukowski’s condition, for the acceleration potential should have a
singular point at the trailing edge as stated in section 1.1.6.3, if the
flow turning the traiiing edge exists. The condition which should be
satisfied at X=-09, namely, Wd =0 at z=-2, will be adjusted later, by
subtracting the value of Wx at x=- ( 5= -€f ) from Eq.(55). The
constant A cannot be evaluated from the boundary conditions above
mentioned, but from those of velocity, i.e., from Eqs(36) and (44),the

value of A can be decided. The upper limit of integration in Egs. (36),

=-10-



(44) i.e. the point Xx=-/ should be considered exceptionally, since it is
a singular point of acceleration potential. Eqs.(33),(44) may be written
for =~00<x<-/

Tazcz> = clrp) e 65

y 4 .
_ ~ iSex - - S
x[{ By x> = ‘7’4('“’)} err- J&f_‘{fd 3> - Buc-o}é é‘%g I sn)

Tastz> = /T €%
_ - : . * = 5 Sed
x [{ 45 x> ~ 2@(-00)}6*8% J’&J_oi a0y~ Hic-o0o] et d;] (58)

Equation (49) is valid in the vicinity of the leading edge. Hence, for
0 < §K | we obtain

Tz (-1+8) = Uz -1-§> = [ @ ¢-1-8) = P “1+5)1/T (59)

Tz (-1+8) = Uyz (-1-8) = LW cop-5> - ¥ac-1+5>] /T (60)

Substituting Egs. (59),(60) in Eqgs.(57),(58) we obtain the velocity on the
leading edge

Uaz (~1+0) = CI1/T) 8"&'*
-1-0 .

[§Pacivod - Bu -2} €4 JStj po FPAE> = <'Té’(""’)jé’sféJ(61)

-5212 (<1+0) ==C1/ T D éJStx

- e _ .
[ % ro) - P00y} €45 J:Stiw{?/ﬁ(g) - %(_w>}d5§§] (62)

Then the boundary conditions (36),(44) will become

[ %00~ BPuc-0} = § Fcmivoy - 8Pac-1+03} T € 4% 4 ;54
-0 — — - e N
Jow L1¥a > — B8R}~ { ¥ o0 “43%(-”)}]@35&%45 *BuUTU =0 (63)

{Bcood- BPac-03F = 3 % (=10 - BPu—1+0)} T SESE + j5e x

-11-



—]-0 _ - _ _ ‘g
j_m [ Fcr> ~BPaci)>T ~ { Hac-00) ~ B Pa <003} € ’§§+00U=o (64)
Equation (55) gives
W - 8Pa = (ITBD A Imag [W(g>]

where the terms of higher order than ’32 may be neglected. Then from Egs.
(63),(64), the value of A becomes

For sinusoidal gusts in X -direction
Z - ‘8 upv x
~/

-— q _,-o \
[ Imag W -1+8) = Imag We-od}e i J Stj Dil?oai Wes)» -%W@bo)}éJSj? o)
- 65

For sinusoidal gusts in Y -direction

A= VaDx

sl—a

[{g W eteor = Tog B> § €V o g B -Luag et T (e6)

L (9"
Let us assume the constants Ax , Ay defined as follows;

for sinusoidal gusts in X -direction

— .

A= BuU Az (67)
for sinusoidal gusts in Y -direction

- — o~

A = w0 Ay (68)

Then the acceleration potential @4 will be

for sinusoidal gusts in X -direction

Pt = BuoT Az [ Boal Wex) — B Lmag Wex> ] ed® (69)
for sinusoidal gusts in Y -direction
Ba = Vs UA’} [ Read D(z)-lglfm} W(z)] ei""r (70)

-12-



1.1.7 Acceleration potential @As due to crossed acceleration
components Odxds , Qyds .
Unsteady velocity components Ua , Uy were determined in the
previous section by Egs.(22),(23),(33) and (34). To begin with, we will

determine the stationary velocity components.

1.1.7.1 Stationary velocity components 'ty , Vs
The boundary condition on the blade surface may be given by Eq. (25),
where the term pBuUs; may be neglected, since AuUsgBU. Then Eq.(25) may be

written;
Us= -BUD (71)
The complex conjugate velocity Sig satisfying Eq.(71) may be written;

e = Us— 2 Us = As L Wez> - We-o00d] (72)

where W (x> is given by Eq.(54) on the 5% -plane. The constant As is

given by
As = RU/ Jmag [ Weos> = We-oo>] (73)

It is easily seen that Eq.(72) satisfies Eq.(71), since Imaj Wex) remains
constant on the blade surface. Equation (72) also satisfies the condition

at y=-00 , where Ws , Us should vanish.

1.1.7.2 Acceleration potential ¢ug
The stationary components s , 23 may be considered to be
irrotational as above. But the non—statioriary components /a4 -, ;i are

rotational. If we put

QU /Y = AWB/ox , dUd/ayg = IVx/ax t+ g

into Eq.(11l), we obtain

Azds = /9% ( Uad-UsD + @/ ax ( Ua VUs) + Vs wy (74)

-13-



where (a 1is the vorticity of the non-stationary velocity components.

Integrating Eq. (74) under the condition @ye¢ =0 at Xx=-00, we get

X
Pdas = Ua Ug + Vg Us + ioo Vs Wa dx (75)

The second and third term in the right hand side of Eq.(75) have no effect
on the resultant forces on the blade. It is apparent that the term 2 Us
have the same value on up and down surfaces of the blades, and the
integrand Yz -wWd of the third term is continuous across the blade
surface. So the acceleration potential components related to the term

VarUs and Us Wi have the same value on up and down surface of the blade,
which implies that they have no effect on the resultant forces on the
blades. For brevity we will consider only the component iy Ug . The
stationary velocity ¢ dis given by Eq.(72) and the non-stationary
velocity U4 may be written

for sinusoidal gusts in X —direction
Ud = (1+ BAxL) Uoesp [ ju(r-70] (76)

for sinusoidal gusts in Yy —direction
Ua = Us Ay I wf}w(«‘—‘gﬂ 77

where
—~ } SeX z — 1Se3
I = [feat Ua)—MW(—w)]ed —d‘wj fwwfg)“ww&m)]@ a3 (78)
- 00 .

Consequently, the acceleration potential component'responsible to the
resultant forces is '

for sinusoidal gusts in X -direction

Bl I Wcz> - We-v0>
Imag i co> - We-00>]

Pae = BUT esp Ljwlr-Fo] (79)

for sinusoidal gusts in v —~direction

Bocl SWezs- We-003]
Pas = pUeD Imag & Wcos -We-00>] Ay

I exp [J“’”" §>j (80)

~14-



where we have neglected the smaller quantities of order g? . If we
compare the crossed acceleration potential @as given by Eq. (80) for
sinusoidal gusts in Y -direction with the unsteady acceleration potential

¢4 given by Eq.(70), it will be seen that the crossed acceleration
potential @gs , which is an order of B¥eU , may be neglected as it is
small quantity of higher order in comparison with the unsteady acceleration
potential @4 , which is an order of 20U . For the case of sinusoidal
gusts in X -direction we must retain both of those two components given
by Egs. (69),(70) since they are the same order of Qu,U . In the actual
machines, following.Horlock [8], the value of BUo, will be comparable
order as the value of 2, if the angle between the blade and the direction
of the wakes from the upstream blades is small. That is the reason why we
retain the components of order BU. for the case of sinusoidal gusts in

X =-direction. In conclusion we will consider next acceleration potential
components relating tovunsteady forces on the blades.

for sinusoidal gusts in X -direction
@ = Pd (81)
for sinusoidal gusts in y -direction

@ = Pa + Pds (82)

1.1.8 Unsteady pressure distribution on the blade
The unsteady pressure distribution responsible to unsteady forces is,

for sinusoidal gusts in X -direction

b= ~pBUT [A: + €05 Ly [Po> =~ We-3] ] Roall (0> - Weeom ] €47 g5

for sinusoidal gusts in Y -direction

b=—fulU By Real { Wex> - We-005] €6°F (84)
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1.1.9 Lift fluctuation

Integrating the pressure distribution given by Egs. (83),(84), we get
the 1ift fluctuation [/, per unit length of span. Coefficient of
fluctuating 1lift (. will be defined as;

For sinusoidal gusts in X ~direction
Co= L/[pRUT(c/2) et J (85)

For sinusoidal gusts in Y -direction

Co = L/ fpwlcel2) €] (86)

1.1.10 Comparison with Sears’ results

Most of the analyses treating unsteady flows around airfoils are
based on the vortex theories in the velocity field. Those theories are
also linearized by the assumption of shed-off vortices and give equivalent
result as the present theory. In this section will be introduced the
Sears function S¢s¢)in order to show the equivalence with the vortex

theory. From Eqgs. (61) and (62)

e - e -8z
= [ 4 Real z;+e~°‘[ 2oy~ Rl Fron [ S ETY

—~ old Y . -
— 48z j.w 4 Raakl 5-¢€ : /z=§~ M_E__‘?_‘.“ / oo }eds“—; :[ (87)

Lt+e~ Zt+ed
Representing the integral term by

- [-esd ed ' Se§
I Ej-oo}ﬂdwlx"s Mc-re«-"”’m}e& A%

we can get for =0 s L= r‘e"-'7c

-/

y-1 ~ eé es+/ 'Se§
= - et 4 88
I~ j' ( r+{( - eg e - .) E ( )

Egs. (19.1),(19.2) give

i+ el r-1- et _ aind { g (x-1f
et >+l - ef AR § 8 exef

~16-



Then Eq. (88) will be

o, a3 gexenp Cgex
I = f, ( PPy el ) e ¢° 4x

In case {0

00 x+ !
j /-———“ | ) €dgtzdx

e
= —_— ¢ r
~J/ s ax * z’ J[ €
=  Ks c¢;S¢) t Ki¢jSe) - 6-‘}."&/ 48 (89)
Since
G- © < z_e.“,cl
. . = M =0
L+ @<t | X=~00 ) E+eid | xy
Eq. (87) can be written
~ . , , ~/
Ay = [ —JSt {k6645t> + K CJSt)} J (90)
From Eqs. (82) and (84)
p = PUO L fadd \/(/—z)/(1+x)‘ 2'7 (91)

s . =1
L = 2T P U U et 3§30 (Kgjses + Ercise3) (92)

which agrees with the following result by Sears.

L= 2P U Vs S (88)

-
S(St)z {J‘St, (ko(d‘S\f)T' t‘p(d'St)D} (93)

1.1.11 Computational results
The coefficients of fluctuating 1lift Cu for sinusoidal gusts in
X =-direction are shown in Figs.4-6. The chained line in Fig.4 shows

Horlock’s result [8] for isolated airfoil. As the solidity increases, the
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fluctuating 1ift diminishes to 1/2 ~ 1/3 times as large as that for a
single airfoil. The magnitude of fluctuating 1lift diminishes fairly
quickly as J¢ increases in the range of the small values of S¢ ( = 0.0~
0.4 ), where the phase angle delays at first and then advances in the case
of low solidity cascade. Those phenomena cannot be seen for cascades of
ordinary solidity. The lift increases as the stagger increases if the
blade pitch is kept constant. In any case, the parameters of blade
arrangement do not have so much effect on the phase angle of fluctuating
1lift as on the magnitude. The coefficients of fluctuating lift for
sinusoidal gusts in.)’—direction are shown in Fig.7~9. The chained line
in Fig.7 shows the result by Sears [2]. The effects of parameters of blade
arrangement on the fluctuating lifts show a similar tendency to that in

X -direction. We have a good agreement with Schorr & Reddy’s results [7]
for lifts on a blade of a cascade produced by gusts in y -direction as
shown in Fig.10. The induced velocity WUg20n the blade surface presented by
Eq. (57) is shown in Figs.l1-13. They are normalized by BUo for
sinusoidal gusts in X -direction, by Ve for gusts in y ~direction. It is
one of the advantages of the present method that we can get accurate

velocity distribution in comparison with the singular point method.

1.1.12 Conclusion

It was shown that the analysis in the acceleration field in combination
with the conformal mapping method is very brief even for the case of a
cascade. The parameters of blade arrangement affect considerably the
fluctuating 1lift, suggesting that these effects should be taken into
account in estimating the fluctuating aerodynamic forces due to viscous or

potential interaction of cascades.
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1.2 Sinusoidal gusts of different phase

1.2.1 Introduction

In the preceding section we have analized the acceleration field of
cascades subjected to sinusoidal gusts in Z and J ~direction by means
of acceleration potential method combined with conformal mapping method.
It was assumed that the phase of the gusts are all the same for eachblade
of the cascade. In case of viscous wake interaction problems the
purterbations are in the same phase only if the blade spacings of the
cascades in front aﬁd after are the same. But the blade numbers of the
stator and the rotor are ususlly different and the phase of the
purterbations are different for each blade. This section presents the
analysis of unsteady lifts on the cascade blades subjected to sinusoidal
gusts by using the acceleration potential method in combination with
conformal mapping method., in case the phase of the purterbation is
different for each blades. It is assumed that the fluid is inviscid and
incompressible and the purterbations are small compared to stationary

amounts.

1.2.2 Sinusoidal gusts

Though the phase angle of the purterbations is usually different on
each blades, it can be assumed that the phase of the purterbations are
the same on every 77 blades, since in actual machines the phase is the
same at least on every blade numbers of the cascade. For brevity we assume
following sinusoidal gusts which have the phase difference of 2%T/m
between adjacent blades and flow through the cascade with an angle of
attack £ .

For sinusoidal gusts in x -direction

b ' 2rn .
Ve = U + & up[aw(l--ﬂ——-——)] emn ¢
1
Uy =0
For sinusoidal gusts in ) —direction
Uz = U
. 7 (2)
vy = U,,«%p[;w(r— ‘"tv_'a"'“ )Jenf
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where m is an arbitrary integer, J the imaginary unit with respect

to time and it is assumed that U, & U and A« . (Fig.1)

1.2.3 Conformal mapping

In the preceding section is assumed that the purterbations have the
same phase on each blades. Hence all the blades could be mapped to single
unit circle on which the acceleration potential is given. In this place
the blades are mapped to M unit circles and on each the acceleration
potential is given éo as to be considered the phase difference of the
purterbations. Though the mapping function which maps the blades to
concentric circles is available for m=2 , we will introduce a mapping
function which may be used for arbitrary integer 97 . The cascade on Z
-plane which has the chordlength ¢=2 , blade spacing ¢ , staggering
angle Y as shown in Fig.2 should be mapped to 7 unit circles
arranged around the origin of % -plane. (Fig.3) Far upstream (Xx=-& ) in
Z -plane is mapped to the origin in 2% -plane and far downstream (x=+00)
in Z -plane to infinity ( £ = 00 ) in 7 -plane. The displacement of
pitches along the cascade axis in Z -plane corresponds to one turning
around the origin in X% -plane. To get the mapping function the analytic
complex function W= 23X representing the through flow is related to the
flow around the unit circles with a source and a vortex at the origin of
5 -plane. The strengths 7 and & of the vortex and the source
respectively are decided so that the variation of the complex potential
during the progression of ™ -pitches along the cascade axis equals to

that during one turn around the origin in & -plane. Hence ,

(172X @+ LiFP) = % <:”~"’A

where f=7Z/T . Vortices and sources are then placed at the images of the
origin with respect to each unit circle in order to make the unit circles
stream lines. The unit circles are numbered 0,1, ,m-1 for convenience.
If it were not for other unit circles, the arrangement of a logarithmic
singularity of strength (7/2§) e+¥ at the image 5, of the origin with
respect to the unit circle 0 and that of strength—(m/zg)e"‘rat the center
L2 of the unit circle O makes the circumference of the unit circle 0 a
stream line. In the same manner the singularities should be put at the

image of the origin and at the center of other unit circles. The
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singularities in each unit circle thus arranged disturb the boundary
conditions on other unit circles, for instance, the singularities in the
unit circle 0 disturb the boundary conditions on the unit circles 1~ m-1.
To compensate this disturbance the logarithmic singularities of strength
(m/z3) ei*" and -(-'m/zg)e_“rshould be placed at the images &u, L, , &m0
and Zz, Gz, - ,62m-»p0f the singularities in other unit circles l~m-1
with respect to the unit circle 0. Those manipulations should be done for
other unit circles 1 m-1. Those singularities disturb the boundary
conditions again and the same adjustment should be repeated. The locations
Sa,b, C, e of the singularities are given as follows. The location

Loa,b,c,.k is assumed to be knoewn. Then the image La,p,c-4,20f the location
Zd,b,...)kezﬁu"' in the unit circle £ with respect to the unit circle 0 is
found from

m‘. ’
/ Bapeh €M _ ai ] | Babewo - ail =1

af , .
(Labe-b em* - adl ) - ( Babc--bg — Ar D
Fie Al
,gdbc...k ew* _acl | Babe kg ~ az l

and hence,

7Tl ,
Lave..xe = ar + Labe... b et - as o
/ﬁabc...k e%{d. - a. /2
where
Z; = (Ar ’/A),(: N :2 - a,(.. (3.1)

The complex progression & spc.. can be caluculated from the initial value
(3-1) and the asymptotic eduation (15). Those give the locations of the
singularities in the unit circle O and the locations of the singularities
in the unit circle 7 are given by [,e.. ez"l"g‘: . Equating the complex
potential thus given in 5 -plane and the complex potential W=2 of the

through flow on Z -plane, we get the following mapping function.

2N
- I e M
A Zo + (me“’/28)0lyE T (m/28) ,%;, fe* iz, oFE
2 levuyb-tae®i 3
+ e 4, “his€m” e+ 5- Glste
S=1 f 5- ﬁzse"' t=! ’Q} L= Bise e"'"
S (eity, E- Lispuenmt
+ 2 (et by - Listu CF e (4)
us! 5 - Gistu ei_’:_,;_ )} Jﬂ
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The distance A& of the centers of the unit circles from the origin was
decided by trial so that the unit circles are mapped to a cascade of

chord length (=2 in <Z -plane by the mapping function (16). The pararell
displacement Zo is decided so as to get the correspondence of unit
circle 0 with the blade on -/1sx</ J=¢ on Z -plane. The series on
the right hand side of Eq.(16) converges because List--p = Lage-p
converges to zero geometrically as the adjustment is repeated. The
convergence is better for larger a4 , i.e., for larger blade spacing.

For instance the equality £ 4.2 Lzap.- is attained to five figures by eight

repitition for 4=t.¢ and by five repitition for 4:-2% in case »:2 .

1.2.4 Acceleration complex potential
The boundary condition for acceleration complex potential on the
blade surface is reduced both for sinusoidal gusts in x and ¥y -direction

to,

BPa — Wa = Coal. (5)

As shown in the preceding section the acceleration complex potential
have a singularity of order 57 at the leading edge in the mapping plane.
In order to get the acceleration complex potential which has the |
singularity at the leading edge and which satisfies the boundary conditions
, we will define a complex potential W¢§) which have the singularity of
order £~ at the leading edge and have constant imaginary part with
respect to imaginary unit 2 on the blade surfaces, and moreover the values
on the blade surfaces differs only by the factor 9%5} between adjacent
blade surfaces. In the first place doublets of momentum _«m whose axis
is directed peripherally at the leading édges An in L -plane. Those
doublets suffice the boundary condition on their own circles but disturbs
that on other unit circles. Those disturbances are adjusted by putting
doublets at the images with respect to each unit ciecle so as to make.
the imaginary part constant on each unit circle. The location of the
images of the doublet at the leading edge ( 4. + ol ) of the unit
circle 0 with respect to unit circles 1~ m=| are represented by

S 4 , By, ;;; respectively. Moreover the locations of the images
of the doublets at [} with respect to unit circle £ are written as

4L¢ . In this manner the boundary conditions on the unit circles
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are adjusted by putting doublets at the images one after another. The

locations of the doublets are

go’ = Al + C"'t"

2Kn / 7 Z‘T’;""l—'
4,," = al: e—ﬁ_‘. + l;o as e ] (’n=1»2)"
1 8] -ai e¥PL 2
M0
! 288, ‘abeh AL CM
ﬁa)b}(_)‘..k,e = ﬂi enm” + j?bc .4 e .
! Bayeh ~ AL €™ |
where a$b , b¥C, .. p 34
The strength Aape of the doublet at » E’abc. is,
Ao =] v
' 209
An = Ao / 1 £~ ai e¥*)? N= L2 m-l

, 2L
Aab-p, o = Aab-k JNEspe p— ai em <12 (atb, b¥c, - k¥l )

The axial direction ®,pe of the doublet at g:a,b,c is,

i}

B A+ /2

M

1220

LY,
Bab,c, kbl = 2Arg (2™ - Blip )

T (7t Babe b ) ( atb, bte,sk#e)

S,m=1)

, 2
zAr](me'"‘—z;’,’)— (7T+9.) D=2, me]

Then the complex potential W(8) can be expressed as follows.

= ] LM' ’ 207,
s = 2 um 4 2 (AaeBem ) (5-5l eW)]

T2 2:ob¢arr“a.b eibab o=/ (B~ Eape™ )]

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

st ! 1Bape 2. 2,
r2 2 bmgc*bmauﬁ e” /(‘;‘5;Ac€"’ 5 ] ﬂ (15)

a=c| b=0 c=0
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where the notation b% b¥a designates the summation except for b=a .
=0
From the relation

277,
W (xrmtawmd, Yrolcer) = Wx, g en ¢ (16)

the constants M, will be,

R L
Mo = e d (17)
The complex potential W(g)> is doubly complex with respect to imaginary
units & and ¢ . The notations &. s dm2 faé‘ . L"i are used to

express the real and the imaginary part with respect to imaginary units

4 and ; . The acceleration complex potential Wy may. be expressed,

Wacg) = (I1+8.> A Wee) (18)

Then the arguments in section 1.1.6.4 are valid unaltered and the
acceleration potential can be represented by Eqs. (69) and (70) in section
1.1.6.4.

1.2.5 Crossed acceleration potential components
By simply replacing the complex conjugate velocity _Qs given by
Eq. (72) in section 1.1.7 with the following representation we can get the

crossed acceleration potential components.
- =/ ]
Rs = AsTWeg) - Wemwd (19)
where W’tZ) is given by Eq. (15) with j;lm=l . The constant Ag is,
/ —/
As = AU/ Im, f Wogs - N(z:»m)] (20)

Then the crossed accrleration potential is,
for sinusoidal gusts in X -direction
L 1) . Z-ptall. 2nm .
o 2. [Weo N(—’”] edu(r—- 5 ) e ¢ (21)
Im; [Who>— Tll_/(‘m)]

Pas = fue
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for sinusoidal gusts in ¥y -direction

= UZ,U I’q\' I
Pas = B Y TnilWier - Wie-ow]

1.2.6 Pressure fluctuation
The pressure fluctuation relating to the 1lift fluctuation is,

for sinusoidal gusts in X -direction

p = - pBUT [Ax R (Wo> - Weoor)
iR ( B> Blwn ) T (Wls = Doy DFE T e o)
for sinusoidal gusfs in Yy -direction
= = fU0 "i:v Bes (x> ~ Weo0d) eret (24)

The 1lift fluctuation is given by the integraton of the pressure
distribution. The fluctuating 1ift coefficient Cu 1is defined by Egs.
(85) and (86) in section 1.1.09.

1.2.7 Numerical examples

A) Sinusoidal gusts in X -direction
Figs.4~6 show the fluctuating lift coefficients (. for m=2 ( in case
the phase of the gust differs by X between adjacent blades ). The broken
line in Fig.4 is given by Horlock[2] for isolated airfoil, which is near
our results for large blade spacing. The lift fluctuation is smaller for
finer blade spacing, which is the same tendency as for m=/ . For finer
blade spacing cascades the 1lift coefficient stretches upwards from the
value for w=0 in case m=/ , but goes once downwards in case m-2 as for
the case of isolated airfoil. Fig.7 shows the effects of the phase
difference for fixed cascade geometry ( V=30° , Z=2.0 ). It can be seen
that the phase difference enlarges the lift fluctuation and the effect

is more remarkable for smaller frequency.
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B) Sinusoidal gusts in ¥ -direction
The fluctuating 1ift coefficient is shown in Figs.8~ 10. For mm=/ the
cascade effect works so as to enlarge the 1lift fluctuation, while it works
contrary for a=2 . This effect is more remarkable for smaller frequency.
The broken line in Fig.8 shows the result for isolated airfoil [3]. In Fig.
11 can be seen the effects of the phase difference for fixed cascade geometry.
The effect is the same as for sinusoidal gusts in X -direction. By the
way, it has been checked that we can get the same result for m=/ as the

preceding section by putting u.=/ in Eq. (17).

1.2.8 Conclusion

It has been shown that we can analyze the 1lift fluctuation taking in
account the phase difference of the gusts in entirely the same manner as
for the case of the same phase, by only introducing anew mapping function

and a complex potential.
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1.3 Applications to several flows

1.3.1 Introduction

In the preceding sections we restricted our attention to the
sinusoidal gusts, which had relatively simple boundary condition of
acceleration potential on the blade surfaces. This section treats the case
of Kemp-type upwash, blade oscillation and transient flows in the same
method. It is assumed that the fluid is inviscid and imcompressible, and

that the disturbances ate again in the same phase on each blade .

1.3.2 Kemp~type upwash

Though the boundary conditions for acceleration on the blade
surfaces are utterly simple for sinusoidal gusts but they are not so simple
in general. To show thé way to treat general cases we will consider Kemp-
type upwash in the first place. This flow was Firstly treated by Kemp &
Sears [1] as the elementary velocity component induced by adjacent blade
rows when they studied the potential interaction problem. The flow is

characterized by the velocity disturbance on the blade surface;

Va = Vi ewp [ j(@T- pux /D] 0

where w is real and a is complex ( M = Frj4A ). The case u=o
corresponds to the case of translatory oscillation of the blades, and the
case M= w to sinusoidal gusts. It is assumed that the disturbance
has no phase difference between adjacent blades and that the blades have

no stationary lifts. The acceleration on the blade is,
v &
ﬂ]d = ;if s Uaz

Vwi— ux/U)
= 3 (- U ed
4 ( D o 2)

where U designates the mainstream velocity. Hence, the boundary

condition for the imaginary part ¥~ of the complex acceleration

potential may be written for u+0

w:-ja,ddz
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The acceleration potential o] is given as the real part of the
analytical complex function W  whose imaginary part ¥~ satisfies
the boundary condition (3) and has finite value at x=-t0. The cascade
shown in Fig.0 at th(_a commencement is mapped to a unit circle in Z -plane
shown in Fig.2 in section 1.1. by the mapping function represented by Eq.
(19) in section 1.1. The acceleration complex potential W is given in
L -plane. In the first place are given the complex functions W, = @+

AW W2=P2+ i ¥ whose imaginary parts 2; and %4 satisfy

A
P 3= e el fx )

Putting higher order singularities at the origin of &L -plane, we have

o
im = 2 (Ama + < Bme D/5° (m=1,2) (5)

N
it
-

The constants Am,e , Bm,e can be given as the Fourier coefficients

of the imaginary parts %, on the blade surface. [2]

"
U
Az } - _(,/T)J { € ZMU }MﬂQd&
Az z ev
Bz } f z{e:zc“’ } co 08 de
Baa e v* /.L.-fz

where @ denotes the deviation angle on the unit circle and x denotes

the corresponding location on the blade sﬁrface in 2 -plane. If we define

= l(E-ed))(BE+e®) = r W (6)
and
_ Je R
JAp We t I(Eﬁ_z") JWJ
xUZU(D,-JWz)} e §wf (7

the acceleration complex potential W  satisfies the boundary condition

on the blade surface. The constant Ag is real with respect to . and
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will be fixed from the velocity boundary conditions. The term Ap W
represents the singularity at the leading edge and has constant imaginary
part which represents the constant term in Eq. (3). Next let us determine
the value of Ak from the velocity boundary condition on the blade

surface. Integrating Eq.(2) we can express the velocity purterbation as

. X ' ¥y
Y = C 1/ D) e~d5¢% 5_004]6'7) ed ;45 (8)
where ,S¢ = zﬂv‘q ( ¢ =2 ; chordlength). The velocity purterbation on

the blade surface is given by (1) and equating with (8) gives the boundary
condition ;

f-' T o) el = nU 9T '
oo Yy P c g = YU & 9)

where Ay = E,e’w' . Integrating Eq. (9) by parts taking advantage of
the relation Qy=-2¥/5x and considering the singularity of % at the

leading edge , we find

o o g :
Ap= 20D [ e ¢ —[(5%—/)—&?%2—]"[{(“%’(—:)

~l-o

F o> )4 o J&.im(%g)—‘{{c—oo))e"s’il;}—j P =-S5 e-T Beo0>d

)

x @ 5 .,.J'g.,,j_m(?#Sc;)—zl’sc—oo))ef‘&zf;}.]D x [(—?itc—:) + Heood)

~l-o
@5t o JISb_J;W gy We-oo2) €3 45 (10)
The fluctuating pressure p is given by
w§
P=-¢p =- £\ [AeWe r ;(ff,.ﬁz _/)"J‘ﬁ";—z}
x U (W - W2)] @#F (11)

The fluctuating 1ift is known through the integration of the pressure
distribution. Normal velocity fluctuations have been treated above, which
correspond to sinusoidal gusts in Yy -direction in the preceding sections.
Considering the crossed components of the acceleration potential we can

treat the Kemp-type upwash in X -direction. That is, the pararell velocity
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disturbance

s
Y = T+ U@ dTTHETI b (12)

inflows the cascade with stationary angle of attack 8 . The unsteady
component can be treated in the same way as the above analysis and the
crossed component can be treated in the similar way as shown for sinusoidal
gusts in y —-direction in the previous sections. The pressure fluctuation

related to unsteady forces is,

P = - P [ Aex Bl (Weezy = Wec-003) = gUoU Kl f (Wicx)

AL

—_ ﬁn(_OO) D) - J (RL(I)'" E&{-Dﬂ):)} T‘ﬂ U, 0 63_-é?'2

oz (e Wc‘ ¢-03)/ Iy (Weto> = Wecw03 ) ] € d®" (13)

where Azz=‘“%g°Ak and the constant Ak is given by Eq.(10). By
putting M=« we can see the results shown by Eq.(1l),(13) agree with
those by Eq. (81),(82) in section 1l.1,the results for sinusoidal gusts
in x and Yy -direction respectively. By taking u-» 0 we can get the
results which agree with those for the translatory oscillation of the

blades shown in the next section.

1.3.3 Translatory oscillation of the blades
( uniformly oscillating flow )

Though we can analyze the unsteady lifts on the blades under
translatory oscillation or on the blades in uniformly oscillating flow as
the limiting case 20 of above mentioned Kemp-type upwash. We can show
another way without Fourier series. The velocity disturbance on the blade

surface is
Ux = Vo €d® (14)
The acceleration due to the disturbance is,

Aya = jo Vo €97 (15)
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Hence, the boundary condition for the imaginary part ¥ of the acceleration

complex potential will be,

Y= juw U €8x  + Comet. (16)

We will introduce the following complex potential W3 whose imaginary

part 3 satisfies ¥3=x on the blade surfaces.

. \ ~& - 3 ] - ]

We= (M) bg[(EreD/(B-€70] = & +4i¥, (17)
Considering the singularity at the leading edge, we may write

W = A’ We + jw Uo Ws e it : (18)
The acceleration complex potential W  satisfies the singularity at the
leading edge and the boundary condition (16) on the blade surface. The
boundary condition on the blade surface for velocity is given by putting

M=0 in Eq.(9) and be written,

-1 _ \ -5
(o 3y 5,00 CJS’SA; - w0 e!" (19)

The strength of the leading edge singularity A’ is decided from Egs.
(18) and (19) as

i , ‘S 0 . -l-0
A= - T ¢S 1= §-Se e feals s - Weemd) © ‘§c-JStf_D°( Yiepy

e . ~-o
- P> ettty F1x[¢ 7/’5{—/)- Yedd e "SC—J'KJ_W( Hacy)

- Yoy gy 17 (20)

The pressure fluctuation on the blade surface is

b= - PRt [ A (Weexd> - We(-t03)

+48¢ UVaU ( W3 ¢x) — ﬁg(hm))‘]edlw? o1
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In case that the main stream velocity oscillates around mean value
sinusoidally with time ( uniformly oscillating flow in x -direction ) ,
the boundary conditions on the blade surfaces are similar to that for
translatory oscillation of the blades. We can analyze the lift fluctuation
due to the flow by considering the crossed component of acceleration
potential and by making use of the complex potential W3 . The result is

summerized as follows. When the unsteady flow of
vx = U+ U, et (22)

inflows to the cascade with an angle of attack g8 » the corresponding

pressure distribution relating to the unsteady forces is

p=-F I f‘;{(ﬁc(z) - ﬁc(‘-WJ)"’; + J'A“"U‘%

x (Wiex> — W3 (—ooD)} t BUeU Rl § Weex>~ Wec-00>F

/ Im:d Weco>= Wet-20) } ] edt o

where Az = -(BUclUo) A’ (24)
Comparing Egs.(12) with (22) we see that they agree by letting _u»e in

Kemp-type upwash in x -direction.

1.3.4 Rotational oscillation
Consider the case that the blades oscillate rotationally with angle
of attack B -

B = Boet™ (25)

around zero lift angle of attack. The boundary condition on the blade

surfaces is

and putting YJx= Otud , Vz= la gives,
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U= - (T +jwx ) B ed 27
Hence the boundary condition on the blade surface is,

Ayd = = jw (20 t jwZx) Upo Xl (28)

Therefore the imaginary part of the acceleration complex potential should

satisfy the following relation on the blade surface.

¥ o= jSeD.20x = 3 8E DB X+ Cenor. (29)

The complex potential to satisfy the first term on the right hand side of
Eq. (29) is given by Eq.(17). The method of putting higher order
singularities at the origin in X -plane can be used to get the potential

function to satisfy the second term of Eq.(29). That is,

©
We = 5 (Aue +4Bue /8% = @4 + 14 (30)
2=

—~—

where

2"

Ag,e = — (I/75)L x? awwlb do
2T

Ba,e = /7)) L X2 2ol P AB

Considering the singularity at the leading edge, we can write the

acceleration complex potential as follows.

W= A We+2,SeU°8,W; -5 SED*B, We (31)

The velocity boundary condition is reduced from Egs. (18) and (29) to,

=iro

>y ' . — -4 32
0 Gya (3,00 e‘s“gdg = -(1-785>U0% 8 et ? (32

which determine the constant A" as follows.

A= D Bo £ci-§Sed eS8 _2i8e f ¢ Wyeors - Yic-00)) €4St
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-0 ' Se¥ L o2
- jStJ_oo (W55 = ¥re-00d €87005 |+ 282 {(Wacer3~ ¥ -00))

-0 . g
xe 45t - d'stj—oo( Wiey>- o (-000) e*"i;},]x £ty Lpmood ) S (33
-0 .
- e [ Wy - Yec-md > @ iStE a3 77!

Then the pressure fluctuation will be

p=-f Kl [A'/} Weez) - ch—oo)} *24‘;5} U’zﬁ,, {0_\73(2)

W sl
- ﬁg(-m)} —J-LS:UZBD { Wg x> = Wec-00)} ] er®! 30

As can be seen from the examples above, the boundary condition for the
imaginary part of the complex acceleration potential on the blade surface
is determined from assumed velocity disturbance and the acceleration
complex potential is given as the sum of the term A-Wec which represents
the singularity at the leading edge and the term Wm (m=1~4 ) to
satisfy the boundary condition for ¥~ . The complex potential W, may
generally be given by putting higher order singularities at the origin of

L, -plane as shown by Eqs.(5) or (30). In case the normal velocity
purterbation is given the crossed components of the acceleration potential
can be neglected as a higher order small quantity. But for pararell
velocity purterbations, the crossed acceleration components are of the
same order as the unsteady components and have to be taken into account.
The magnitude A of the singularity is determined by the velocity

boundary condition afterwards.

1.3.5 Transient flows

The unsteady flows treated so far are all cyclic flows. Transient
flows are treated in this section. It has been treated by Wagner [3],
Kissner [4], and Karman & Sears [5] for the case of isolated airfoil. This
section is intended to get the lift response on cascade blades by applying
conformal mapping method to acceleration potential method as is used for

oscillating flows.
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A) Step gusts
Consider the case when the free vortex sheet inflows to cascade as
shown in Fig.l. The velocity disturbance due to the vortex sheet can be

separated into two components on the blade surface as follows.

Ve = U 5 Uy = Vo O (Tr-XxX ~1) (35)
Ux = U+ UOG(UI—_I"‘/)) Uy=0 (36)
where ¢ , desighates the step function defined by
/ X >0
x> = {
o X0

In the first place is considered the step gust in Y -direction given by
Eq. (35). For brevity the angle of attack is considered to be zero. The

velocity V4 induced by the blade cancells the velocity disturbance and

hence,
Ua = — Vel (TT - X =1 (37)
on the blade surface. Then the acceleration on the blade surface is,

Ayd = oVal o7 T U Vi /sx

= Ty, $(Or-x=1) +0 0 §(0r-x-1) =0 (38)

where A8 /dx =§(x) and §¢x) is the Dirac’s § function. Then the

boundary condition for ¥ is,

¥ = —'J a] dx = Conetk. (39)

and the acceleration complex potential which satisfies the singularity at

the leading edge and the boundary condition (39) will be,

W= Ays (£ We (40)

where Ays (r) is a real function of time a . The function

cannot be determined from the boundary condition for acceleration but from
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velocity boundary condition. In case of oscillating flows the velocity
components are related to acceleration through Eq.(8) and similar relations

can be given through integration of Eq.(38) for general flows.

r 41
Va(x,T) = ?(z—Ur)'r[‘(ay <T»C*UT>"“]C=Z_U; (41)
where j is an arbitrary function of r-TF which designates the
velocity disturbance flowing down with the mainstream velocity and may be
written ¢y-pry=%§(@rx-1) in this case. Since the gust has not reached the
leading edge for 7T<o0 ' , i.e., Vaz0 for Tg0 , Eq.(41) with Eq. (40)

is reduced to

T
Va (x,7) = —[L(Ays <r')i.€——%/z=c*m, )d?’]c__ vDr (42)

The induced velocity (42) vanishes at X=-20 since ggclk_w: 0 . From Egs.
(42) and (47) the velocity boundary condition on the blade surface may be
written for -l Xx<] | T20

T
Ve G (Tr-x-1) ="~ [L (Ays ct’) 3}%/1= CrO0 >d?/]c=z~5r (43)
By the way, by putting ﬂy:iy €4’  in the second term in Eq. (41) and by
assuming that infinite time has passed since the oscillation began, we can
get Eq. (8). Eq. (43) is regarded as the integral equation for Ays(7) and
by solving it numerically the unknown function Ays(r) can be known. The

right hand side of Eq. (43) may be deformed as follows.
T
- [L (Ays (1) %f;lz.cmr/ )"'T’]C_._ x-0F

x g
= - (1/7) jl_m( Ays (Z55 +T) &0 [1e Dax

Let us consider the case -/<Z-U7r<{x</| . Since ¥;=Gmst, on blade surface
the right hand side of Eq. (43) equals to zero and since [r-X-J(o the left
hand side of Eq.(43) also equals to zero. Therefore Eq.(43) is satisfied
regardless of the value of Ays . Next is considered the case Xx-07 ¢-!

¢x<! . Since g_;’f::o for x>~/ , Eq.(43) may be written

~1+o
> 2%
Vo = Wv)f gr Ays (BE T ) 5% [ 4 ) dz* (44)
Z2-0(
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Eq. (44) may be integrated by parts taking into account the singularity

of % at the leading edge,
Ve= (177D § Ays (LEEET ) (e cirod = Fec-003)

~{-o

’ ¥_ - _
- (1/0) jx—vr Ays (%—t)(%(x*) ?IJc'c-oo>)dz*} 45)
and is reduced by putting xX-0C=~]-4 and _Zf..___..'%’*'o =y
2% , '
Vo = -U/U)L Ays ¢y) (Fe (Dy-1—ad- 4z (-1v0d) 3y (46)

Equation (46) should be satisfied for all 4 >6 . The value of 4. can
be known approximately for ¢¢x¥x| by considering the singularity of ¥

at the leading edge. For o0 c¢x¥*«/

-4 -4
Wi —)-x¥) = |+ 2y X" 2 &~ 2z x* 2 (47)
where
b= 2 cak’s cwd coa (ado + Tank’s )
Z(2c0?20 -4 cnkas an20 +CRREE 1)
Since %7 (~j+06)=0 » Eq.(46) may be written for
Vo L
_ 0¥ _ ’ - T2 48
20 ), Ap o (emDy ) 4y (48)

The right hand side of Eq. (48) should be a constant regardless of the
value of 4/p<</ and by putting A;S (= a]‘é we see that

-‘72

4/v -4 a ! - i
S, Amp 0-Tyy Ay = JT f,, X 20U=x) Polx = f%r 77_5)

The constant A is given by

UU-O ’7(0 ‘/—5_—

A = = 2
25 z_,(1/2)

from which

Y _ U Yo /—?I) T
Ays 9> = "2 T T

/2
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_ s Ten
Ayscyy =~ I

U‘\ (49)
Taiszy 7

The value of Ays(y) can be known numerically for general value of y.
By putting A/p = maa » Y=med in Eq.(46) and applying trapesoidal

formula, we have

m .
DUs = ~ 2 Ays (m25) Yo (=1~ (m-m)Das) an
"n=1

where 7n=l,2,‘~, 0o and MN=),2,", M . When the value of Ayg{])

for :/ =mod are knOWn
- _.2_ A s('noo) - a
Al mosy = —T2o =2 A7 K clommenres o)
Wec-1) 24
where
- L2

44 %r—:)—;fo % -1-Uoddo = 2/f [22 (50-1)
and

A,S(O a0 = 2 U'U'o /(I) F

fsosa0 = 1[0 /5y ay - - Z5 X 60

%9) ‘

The value of Ajk is known from Eq. (50) and by integration the value of

Ayg is known. Fluctuating pressure then be written as follows.
‘P: —'f¢=—fA]S‘ ¢c (51)

In case that the step gust in X -direction inflows to the cascade with an
angle of attack A , the unsteady compoﬁent of the acceleration potential
can be known in the same way as for step gust in y —direction. Considering
the crossed acceleration potential component we can get the pressure

fluctuation on the blade surface as follows.

Pe (x> — Pcc-00)

Ccx-Ur) (52)
YEcx) - Yec-00) )

Pz==-F (Axs () P + BUT

where

Azs ct) = (BUe/ Vs) Ays (TD
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B) Uniform ramp flows
Consider the case that the normal velocity disturbance ramps uniformly
in the entire flow region. ( Fig.2 ) The boundary conditions on the blade

surface are,

for T<oO
Ux = Yy =0 > W=o0
for T>o0
— - v 2 Y5
Uy = T/06 , &y =§7-"+ D’;‘;’ =/n , %”'='fa/-dz="z/?;*4fmt.

Therefore the acceleration complex potential W  is written as follows.

W= Aye -We — Ci/7) W (54)

where Ay,e is a real function of ¢ . In case T> =1,

Ay =0 ) P = Comadt and hence
W = Aye Wc (56)

The function Ays is determined by the velocity boundary condition in
the same manner as for step gust. The velocity boundary condition on the
blade surface is

for 0<TK (;
T 29z ¥
(T/T) =- [_(o(ﬁye «a) azc/ =Crpy ~ U100 53 IZ’C*Ut/>dp]c‘=z-U7(56)
for T>70

T |
/] = - [L (Aye (T7) %/Zﬁf-rvc"‘('/n)aaéﬁlz=dr’()'r/)dvjd=2:"BT

T
- [-[17 Aye (T) L P, 1 dl"] Ca2-TT (57)
Putting T’ = Z%‘.—Z + T and considering the values of ¥/ and ¥j

we can rewrite Eqs.(56) and (57) as follows.
for XxX+/-Ur>00hL

(x-DT+1d/T = L: (Aye (——— +*)é-%/ o (//n)fz"ﬁ/z* ) dxk  (58)
for Xx+1-0C< U0G
/= =-C1/D) [jx—-’ (Aye (%Zrt‘)-a-‘@,z*)dz*
— (1T jﬂmm 28] Az (59)
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By partially integratin Eqs.(58) and (59) considering the singularity at
the leading edge, we get

for AL TG
0 =~ (B> - B-1-0)) /o

- I [} — - - -
(l - o Ay&(/)(zluc. (UJ / d) zpé( l) >d] (60)

for A>UTh

/o
Tt - (Y5@n-1-0)~Gera) - [°
: 7 : - A;w ¢y) ($ecTy-1-0>- Hot-13) Ay (61)
[/]

Equations (60) and (61) can be solved numerically in the similar way as
for Eq. (46). After getting Aje ¢y) we can get Aye(y) by numerical
integration under Ayew)=0. Then the pressure is given by

for T<¢ O

P = -f (Ayé (r)Pe - «r/n) ¢z 0 (62)

~/
v
'}

for

= - f A be (63)

Next let us consider the flow of uniform ramp in X -direction in which
the chordwise velocity ramps uniformly and the mainstream has an angle of
attack B . The unsteady component can be given in the same way as for

uniform ramp in Y -direction, and considering the crossed component we get
the following results.

for TG

= -f [Aze o> beexy — /0D Prex) T80 ( Pocx)

- Pec-0)) [ ( Facxs~ Yic-005)( T/?,)j (64)

for T>§

= =P [ Aze (D) Pecxy + pU —Fecx> = Pe -0 (65)
70 f * ¢ 8 Yecxy - Yzr-00) J

where Axe = =B Aye (T
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1.3.6 Numerical results

The 1ift coefficients for Kemp-type upwash are shown in Figs.3,4.
The 1ift coefficients are defined by (o = L/ PRUU ¢/2) ei®l ( Kemp-type
upwash in X -direction ) and by (¢, =¢ /P es2) es*T ( Kemp-type
upwash in Y -direction ), where /L 1is the unsteady lift. The fat lines
in the figures show the results for uniformly oscillating flow ( w=0 )
and sinusoidal gust ( M =w ). They agree with the results of sectionl.l
or the results in section 1.3.3. ( Figs.5,6 ) In Figs.5,6 are shown the
coefficients for uniformly oscillating flow in X and Yy -direction. The
1ift coefficients afe defined by the same equations as for Kemp-type upwash.
In Fig.6 is shown the result by Karman & Sears for isolated airfoil. Fig.7
shows the 1lift coefficient for rotating oscillation of the blades. The lift
coefficient is defined as Cu= L/ LB T3(cl2) e*f“'ﬁ. The results by Karman
& Sears for isolated airfoil are plotted in the figure. The 1lift responces
to step gusts in X and Y -direction are shown in Figs.8,9. The 1lift
coefficients are defined by ¢, = L,/f,gu,,zr(c/z) or Co=b/pUnller2) for
gusts in X and Y -direction respectively. It is seen that the 1lift grows
to stationary value earlier for finer cascades. The broken line in Fig.9
shows the results by Karman & Sears for isolated airfoil. Lift responces
to uniform ramp flows are shown in Figs.10 and 11. The definitions of 1ift
coefficients are the same as for step gusts. In Fig.1l2 can be seen the
effect of ramping time ¢, . It can be seen the 1lift development in 7>
is affected little by ¢ in case Uhi¢at. At the instant =0 the lift
grows to finite value suddenly and then grows uniformly till 7=7, . After
growing to the peak value the 1lift falls down to finite value at 7=7, .
After Wagner [3] , in case of isolated airfoil and in the limit of #»0 ,
the 1lift grows impulsively to infinite at the instant T=0 and then falls
to half of the stationary value, and thenafter uniformly grows to
stationary value. According to Fig.1ll the‘lift force at << is greater
for smaller value of UT, but falls deeper at r=& and the 1lift growth
after T=7, 1is not affected by UG so much. Lift response for finer
cascades are shown for Ufi=0.2 . For finer cascade, the lift variation is
concentrated to acceleration period (4<¢T< & ) and the 1ift falls tonearly
the stationary value at (=¢; . In Fig.1l0 is shown the 1lift response for
uniform ramp flows in y -direction, which have similar tendency as for
uniform ramp in X -direction. In any case it can be said that the 1lift

responce is much quicker for finer cascades than for isolated airfoil.
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1.3.7 Conclusion

It has been shown that we can easily analyze the unsteady flows
through cascades by applying acceleration potential method in combination
with conformal mapping method. By introducing the potential function of
higher order singularities we can treat oscillatory flows of arbitrary
velocity disturbance at the blade surfaces. Moreover the method is applied
to several transient flows and the cascade effects on the lift responce

were elucidated.

References in section 1.3

[1] Kemp & Sears, J. Aern. Sci. 20-10 585 (1953)
[2] Durand, Aerodynamic Theory vol.II div.E

[3] Wagner, Ztschr. angew. Math. und Mech. (1925)
[4] Kussner Z.Flugtech u. Motorluftschif 22 (1931)
[5] Karman & Sears J.Aern.Sci. 5-10 379 (1938)

-50-



_— ,
X
Avivy
_— U,, Ve
X-Ur
Fig.l Step gusts
+_ A vlle
1
Vi, Vy
L T
l/ .(I-)
I
/
Fig.2 Uniform ramp flows
C, Imag
) Ye30® 1% o
C. . Imag 0., 920 (0001.0)
Y.30 25 2 o
9220 =5 ///
20 &8 0 (;,o)/' i
, ll, -
7/ a !
15 o, y // 1
(omn,oﬂs/h 3 i 7
{1.0) 4 6 y Y;
0, g
< T ol
Ny e
// // AN
3,00 /i
Q)

Fig.3 Kemp-type upwash Fig.4 Kemp-type upwash
in x -direction in y -direction

-51-



C.

Y=30°
Imag Ya30 C. Imag
18 ‘BL Q.01
0.1
101, stes0
16} ato o | 16+ /
= ===q=0
i 151/
1.5 4 4l S . Karman
14+ /7 ! 20| & Sears
% ' 40
2.0,/ St./,.g_“ . sl S
12 i 25 L/ ’(",/ ' /
I/ /,
5 | & 10k
10 / ’// 3.0—_1_ 0 / /30
8t /‘/ ///‘ 8t
// /
6F /,’ 2._9___ _ 6l { 2.0
P - Tl ,r’
1/’ - 1/
4} & ot A
[ Y 1 * I -
2F 0 g R B TN 2t -
o GO L T ‘—6-\ ’,a -1~
b G0 G SRR T - o
b= "‘i“ﬁ;‘ Xﬂ Real HH
0 2 4 6 8 N2 0 2
Fig.5 Uniformly oscillating Fig.6 Uniformly oscillating
flow in X -direction flow in 3 —direction
q=z0.1
lmag Sta50
10/ .
/ Y30
22
. 18 x« Karman ¢ Sears
‘// 9=0 C
2 o ' Y30
2,0/ i 12
18 /| |/
25
/ /
16+ il
! 3.0
14 A
7/
/ /|
124 /
10 |
/(zo
8 ’
6t £
40 3 I3 -
o Fig.8 Step gusts in x-direction
i W
471 1 o
1717 | ™\o02 0 Real
) 2

Fig.7 Rotational oscillation
of the blades

-52~



C.

of ! 2 3 4 Ut

Fig.9 Step gusts in y-direction

Y-30°

Ce
12 9z 0.1
8
6 1.0

| —

- 15
“1 1.0

i 25
2
0 5 10 ¢ 15 20 Ut

Fig.10 Uniform ramp flows inx -direction

C. ¥=30"
[ ———Karman £ Sears : Q=0

q=01

of _ 5 10 15 20 Ut

Fig.1ll Uniform ramp flows in y-direction

=53~



Chapter 2 Incompressible Viscous Flow
2.1 Elementary solutions and applications to isolated airfoils

2.1.1 Introduction

" There is awealth of literature on the analysis of unsteady forces on
the flat plate airfoils executing small oscillation in inviscid fluid. On
the other hand, for the purpose of getting the insight into the viscous
effects of stationary flow, Oseen’s approximation has been adopted by
several authors, for example, Bairstow (1923), Piercy & Winny (1933),
Imai (1954), Tamada & Miyagi (1962), because of the simplicity that the
total flow field can be treated by a single fundermental equation for the
full Reynolds number range. In order to estimate the viscous flow effects
on the flow around oscillating flat plates, Oseen’s approximation has
been adopted by Chu (1962) and Shen & Crimi (1965). However, both of them
are not exact because the former doesn’t take into account the viscous
dissipation of the shed-off vortices entirely, and the latter neglects that
of vortices flowing down on the flat plate. Recently, as an extension of the
trailing edge problems, Brown & Daniels (1975) analyzed the flow around a
oscillating flat plate by restricting themselves to the case of large
Reynolds number, large Strouhal number and small oscillation amplitude.
Their solution is based on the idea of dividing the Blasius boundary layer
into several sublayers near the trailing edge and matching the solutions of
the equations appropriate to each subdivision. The author believe that Oseen’s
approximation is still an useful tool for the study of the viscous effect
on the unsteady flow around oscillating flat plates by virtue of its
simplicity that a single linear equation is applied to the entire flow
field. In this section the rigorous elementary solutions of the
fundermental equations are introduced at first, and then applied to the
problem of plunging motion of a flat plate airfoil and oscillation parallel
to itself.

2.1.2 Fundermental equations
The equation of motion and the equation of continuity for the
incompressible two dimensional flow are linearized on the assumption of

small purterbation as follows.

u ) 'Y :
—3%‘1-0'5;;:—?3'?‘)1-)( 7'1)(3&2,(',(—'-';?2) (1)
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PYs 20 _ _ 1 3b Qv U
5‘:+Uﬁ=-faafp(azz+)zz) (2)
5 v3g =o (3)

where U , p , 70 , X and T are the main stream velocity,
kinetic viscisity, static pressure, mass force in x and y direction
respectively. Apparently X =Y=0 everywhere except the blade surface.
Eliminating U and U from Eqs.(1l) and (3) one obtains

2p _db 2% . ¥
' gz: LYY aaz > = aZ + Z ()

The condition X = Y=0 everywhere except the blade surface leads to

> -
’a?zl: T =0 ()

We introduce the stream function ¥ defined as
= oY /Y Vs - (a¥/%) (6)

Then, Eqs.(l) and (2) may be written

SRR -Tle - R SU IR -4
—%5”*73 (5 212)}:-;4—;299
Putting
2t 7 _,,(gzt’,.gyb.-@ N 7
the above equations are written as
2@ 2P 26 _ 2P (8)

2y T oz > x Y

Equation (8) expresses the Cauchy-Riemann relation and implies that Pr@
is an analytic function of 2 = Xx+<y , where (=// . The flow of a
source of strength gé’(z)' é’c]) at the origin of y-y plane satisfies

the following equation.
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where § designates the Dirac’s § function defined as dvx) =0 for

+00
X *0 and f” Sex>dx=1. Introducing the velocity potential ¥ defined as

u=0P/ox , V= 3P/o4

we can write the above equation as follows.

i}

4
—g;% + —5;32 g Sex) SC]) (9
Now, supposing a sourse of strength ZJ’/I)&])/A at the origin and a sink of
strength - 78> Sgs/a — 5?/-(25‘(:)8‘(])/4)-‘4 at (-0 ,-4 ) and
by letting A -»0 , one obtains from Eq.(9) the following relation.

—g—z}: _,__g_za%’ = Zé’(z);—?-}é’c])}

Above equation represents the flow induced by a doublet at the origin of
x-Y plane. Putting P->p and 7= Y, , the above equation is reduced
to Eq. (4) with X=0, Y=1.88¢y) . That is, as shown by Lamb, the mass
force exerted in a flow field corresponds to a doublet in the pressure
field. In other words, the exertion of the concentrated mass force Yo at
the origin in Y direction in a flow field produces a doublet of intensity

Yo in Y direction at the origin in the pressure field. This pressure
field may be written as,

A:, YO

(A = ——
[ 27 (X+ay) (10)

2.1.3 Velocity field relating to the fluctuating lift

Assume a bound vortex of strength r at the origin of x-y plane at
time T=0 . According to the Helmholtz’s theorem the free vortex of
strength - ]’ appears at that instance and convected downstream with
the free stream velocity U . In case of viscous fluid, the free vortex
begins to dissipate as soon as it is produced. The velocity field induced

by the bound vortex and the dissipating free vortex is given by
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- ot
u= )ty - 1 - e RTY ) 6

7ex-0t) (11)

_rez
U= }—3%.—; +opir (1 — e T L o)

2
where r’=x’+Yy? , Y= (x-0r)+Y? and 0 ¢r) designates the step function
defined as §(T)=0 for ¢<O and ¢ =) for T>0 . The function

is related to the Dirac’s & function as

A6y [/ 4T = &)
The flow field given by Eq.(11) satisfies the equation of continuity and

the corresponding pressure field may be caluculated as follows. Considering

the relations

u | u _PUxg¢
24 :‘g';: Tvgig —-P(az 1'3%2)" ré Ger) (12)

J
_ 28 0+ p gl - "‘(azZ*BJ’) ('znrz*Tr4>€“) (13)

we can get the following equation from Eq. (7).

= A‘.?U §w (14)

P+ L@ 2T zviy

Equation (14) represents a doublet in Yy direction at the origin in the
pressure field. This implies that the velocity field given by Eq. (11)
represents the flow field in which the concentrated force Y=pPU is exerted
at the moment T=0 and then kept unchanged thereafter. If we considered
only the bound vortex at the origin of x-g plane, and not the shedding

vortex, the corresponding pressure field would become, in the same way,

Pt+i@ =~'277IU'; () beg (X+2y) + —;g%;—} (15)

The first term in the above equation, namely a vortex at the origin, does
not appear in Eq.(10) and it violates the dynamic condition. The shedding
vortex plays the role to cancel this unreasonable vortex in the pressure
field, and the above argument gives another way of proof of Helmholtz’s
vortex theorem. Consider a harmoniously oscillating bound vortex /763”?
( d designates the imaginary unit with respect to time ) at the origin.

Then the pressure field will become
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Ptia == 56“’ eaj(zn.;)*'——————“.;l { eewl (16)

and hence one must consider the harmonious shedding of free vortices for
this case also. Now we assume a bound vortex at X=X whose strength

oscillate harmoniously with time ¢ .
F= P i dy (17)

The strength of the bound vortex varies (dF/4ar) ot during the time
interval A¢ . Then the free vortex shed during the period 4¢ spreads
between X, and X,+T47 . So the free vorticity distribution & per

unit length becomes

" Lo
g - ev . e Rl
r v
The free vortex shed from ¢ at time 77— (5-x/U reaches at Xx=}

at the instance [=¢ . Hence the distribution § of this free vortex

at X =3 is,

Jw Jw(r—%-z') 4w ~jo% P (18)
Sdx, = — T Foex,) @ A%, = — 75 Focz)) € e dz,

Taking into account the dissipation of the vorticity during the period
(3-2,0/U needed to flow down from X=2, to x=3 » one gets
the velocity at any point ( x., 4 ) in the flow field by the free
vortices &d§ at x=32 as follows.

4= i W(wmr%)}di
v=-550 00 - e (- 4»(; z,))}df

b2= (x-3* + 72

(19)

On the other hand, the velocity at ( X, § ) induced by the bound vortex

of strength Totx,> 4% is,

X
U = ;ZN(Z:) e&w( _l dz, , U= - Z/;Tw)e,w( x - 'd 2 (20)

The velocity induced by the above mentioned bound vortex has discontinuity
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across the blade surface or on ( x, , ¢ ), which is not allowed for
viscous fluid because of the coherence charactristics. To cancel the

velocity gap is suitable the following velocity field.

5 -x;)
u= ___723,;“ esw? g ™ ki ipr) ¥ dx,
(21)
’ rad b £ ___—z ( )
y = Baw e,wz.[ﬁe&(z,nh(ﬁr)xr " ,aez_ z-% Kocgr) Jdx,

2n

where Re=UC/av | B e Ri+(jw/n) = RE+§(2Bw/T) and Ko, ki
designates the second kind modified Bessel functions of 0-th and l-st order
respectively. The velocity field (21) satisfies the continuity equation and
the substitution into Eq.(7) gives @=0 and correspondingly P =0
That is, the velocity field given by Eq. (21) represents one of the elementary
solution satisfying Oseen’s equations and makes no disturbance in the
pressure field. Since kicgr) is approximated by //B@r) for small gr |,
the velocity gap of the order //r in the velocity field (20) may be
canceled by the superposition of the velocity field (21). The sum of the
velocity fields (20) and (21) yields the velocity field of Oseenlet in Y
~direction extended for oscillating flow. Both velocity fields (19) of
free vortex and (20),(21) of Oseenlet gives ¢z0 on Y=o . Hence the
induced velocity on the flat piate located on the X axis -/<£Xx</ is

evidently normal to the blade surface and is given as follows.

it -X
e a [ [Tl {xt, -8R agncey ki (prz-znd}

rBe ﬁatz-z,)ka (ﬂ/z_x,,)]dz,
3 U (x-3)? (22)
"j L x- ‘f’JwU Jotz?!— € 4“3-1:)}:);411]

The first term on the right hand side of the above equation is the velocity
due to unsteady Oseenlet, and the second term to the free vortices. The
bound vorticity distribution lo¢zyis decided so that the induced velocity
given by Eq. (22) becomes identical with the normal velocity of the
oscillating airfoil. Then the total 1lift on the airfoils will be
evaluated, for the sake of Eq.(14), as follows.

{ Y
L= fU[j_' 72(11)42/] er‘ (23)
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In case of the steady flow around an airfoil set with a small angle of
attack o in the uniform velocity U , the boundary condition on
the airfoil may be approximated by giving normal velocity -o ¥ on the
plane J=0 and -/£X<! . The steady vortex distribution Y¢relating

to the steady 1lift is given, by the following well known formula.

R (X=21D

! )
Uv==-alU 3"2'—;51; Yo7z, - R € Aagm (x -2 K;c&lz—zn)}

v ReREE miz->] A% (24)

—

Steady lift 4L will be,
. !
L= pU §, Tanax (25)

By letting w-0 1in Eq.(23) one obtains Eq.(24), whence the quasi-steady
1ift calculated from Eq.(23) coincides with the steady 1lift.

2.1.4 Velocity field relating to fluctuating drag

To begin with is considered the steady drag on the airfoil set at
( J=o0 s =1Sx < ) in the uniform velocity U . The pressure field
of the concentrated force X =Xo §ex> ng) in X -direction at the
origin is verified to be expressed by a doublet of stremngth Xo in Xx
~direction in completely same manner as was previously shown for the force

in Y -direction.

Xo
P+4@= xizeig) (26)
The velocity field of the Oseenlet in X —~direction will be given;
1 x x
u:;i— [ 17 - R e®* Kicgr> by - Peek Kocgry ]
(27)

V:z_?f[{?"‘&eﬂxk.(@r)}—g] L rtextey?

It is easily shown that the velocity field given by Eq.(27) satisfies the

equation of continuity, and the substitution of Eq.(27) in Eq.(7) gives

?_“:Q=_ZF__ (28)

2RA(X+YD
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The normal velocity UV vanishes on J=0 , hence the boundary condition
for normal velocity on the airfoil is automatically satisfied. The allign-
ment of the Oseenlet given by Eq.(27) on the airfoil surface induces the

parallel velocity on the airfoil surface given as follows.

' e )
u = E;z—j_' Z(z.) [7( 1.’7, - k& €ﬁ(zx>,o;m (x-x,) Ki (&(z—:c,l)}

Re (X=%1) Ko (&IZ—X,I)]JZ: (29)

-Re

The induced parallel velocity U must cancel the uniform velocity U .
For the sake of the vanishing velocity on the blade surface, by letting

u=-U in Eq. (29) one is ready to caluculate the Oseenlet distribution

9(x1> , and the steady drag D  results as follows.
_ !
D = ij' z(z,)dzi (30)

Next we proceed to the problem of the fluctuating drag. Consider a doublet
in X -direction originated at the origin at [=¢ and convected

downstream with the uniform velocity U experiencing dissipation due
to fluid viscosity. Such a flow field can be given by differentiating with
respect to Y the velocity field of the dissipating free vortex shown by

the Eq.(11). The resulting velocities of dissipating free doublet of

strength m become as follows.
2 2
om ¢ (x-0t) - g%} O W AT _
= -zr [ re (1= €T 757 55 e JG“)
, : (31)
m TS 4 e ™ ] 6w
?f:;,-z-(x D’c)f r4.(/—€ ) Sui F2 ¢

Substitution in Eq. (7) yields

@ m x-7?
Q—-z—--z';{ e S'(«‘)

2@ _ Mmx
Y , 5K TRvE T

and hence

I _
?1—»(3—’2‘7—[7—;‘-—3 §erd (32)

Equation (32) implies that the velocity field given by Eq. (31) represents
the flow field to which the concentrated force X= Pmfea) is applied.
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Consider a fluctuating doublet of pressure field whose strength m varies

sinusoidally, i.e.,

m= mecz > e 4z

The duration of this doublet of strength m during s7 in the
pressure field results in the shedding out of doublets of total strength
mar which is spread over the interval 4§=0Usf . The strength of the

free doublet per unit length is, therefore,
A=m/ U (33)

Since the free doublet on Z=3 at time ¢ shed from x-=x should
have left the point X=%, at time 7¢-($-z,)/U , the strength A of the
free doublet should be,

J""("‘%:&) ol s
Ady = mo (2, & Az dy = Macm) e e dx,d; (34)

Considering the viscous dissipation during the time interval ¢3-x>/U0 to
travel from x to Y with the velocity U , one obtains

the velocity at ( X, ¥, ¢ ) due to the free doublet spread over the

interval 43 at x=¢% given above as follows.
(x- i)- 7 I dck U iy "437,;;3
we- % [EF=), - ePFD} e g e T4
2’0 _ro
2 29 A V(EX - & =
v -sED[5 - ok '>} r zu(;—z.) ¥ € (51)]‘@(35)

V2= (x-3>*+ g2

On the airfoil surface J=0 and —-le x| , the normal velocity
vanishes and, by integrating the contribution of all the free doublet,
which corresponds to the pressure doublet distributed over the airfoil

surface -/ X</ , one gets the following parallel velocity.

e&“" oz 5_'
u = j f e f)"{/— e IR Y e T aydz ] (36)

Equating the induced velocity &« in Eq.(36) with the  x -component
of the airfoil oscillation velocity, the basis is given to evaluate the

pressure doublet distribution 7. ¢z,) . The fluctuating drag D on the
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blade is,

T |
D = fU er‘ i' Oﬂa(z;)dzl (37)

It could be easily seen by compareing Eq.(22) with Eq. (24) that the quasi-
steady lift in the limit of w-=»0 coincides with the steady lift obtaind
directly from the independent formulation. In case of fluctuating drag,
though rather cumbersome, the coincidence of quasisteady drag with steady
drag can be also verified as mentioned in appendix. The same line of
manipulation leads tb the following alternative form of Eq. (36),

Fec-2)

ey '
U= }er“ fo_, ""’""l’fzr 3z -Re wgm (x-x> ki (B17-7)

- B EE(I-ZA) Ko (8[2’-211)]41, : (38)
L ‘o . §24 U x-3)°%
UL L L ~dv(3-
- j—r o x>y U € "o Moz f 1~ e 3 z,)} A;dr;j
which is parallel to Eq. (22). The first term in Eq.(38) is due to Oseenlet
in X -direction extended to unsteady flow and the second term corresponds
to the shed-off vortex for 1lift fluctuation. They do not satisfy the

continuity condition separately but do in ensemble.

2.1.5 Relation between free doublet and free vortex

Different way of deduction of fluctuating forces have been utilized in
the preceding sections, namely, a combination of bound vortex and free
vortex for 1lift, and only free travelling doublet for drag. Here will be
described the identity of these two different way of explanation. In the
first place, it will be shown that it is possible to discuss the lift
fluctuation only with free doublet as is done for drag fluctuation. To make
the discussion simple, we will show only fbr inviscid case here, though it
is not so laborious work to take the viscous dissipation into account. The

complex potential of a doublet shed from the origin with the velocity Ir

at (=0 will be given by
im 6 crd
W= 31 (zZ-0r) +4Y (39)

The pressure field relating to the velocity field of Eq.(39) is obtained
by substituting Eq.(39) into Eq. (7).
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Pt.o@ =52 5 3743 (40)

which implies that the concentrated force of magnitude f7 8§ was
applied in Y -direction at the origin. That is, the momentum of the
applied force is proportional to the strength of the shed off doublet.
Hence if the strength_ m of the pressure doublet at the origin

oscillates sinusoidally with time, i.e.,

m= m, e’ (41)

the strength of the free doublet A¢3,7) at Z-3 at time ¢ will
be caluculated by considering the time interval from Xx=0 to x=§ with
velocity U ,i.e.,

J:w(T‘-’gi)

A= (MetU) & (42)

The velocity at ( % , 0 ) induced by the doublet on A5 at x=% will
be,

A 43 . _me ! )'w(r—-b;.-)
V = 3x (z,-3>° 210 <x-3» € (43)

The total induced velocity due to entire doublet distribution shed from

the pressure doublet at the origin will be given by integrating Eq. (43);

00 i
e eer'wrj -Xadd
0

V= 370 (z-102 4%

Integration by parts gives

o .2
- =22 Wt A w ST _ ! (44)
y“— 21U er ['_Z *jo%“_e X,—_?,di-j

Next consider the model of the combination of bound vortex and shed-off
vortex. The induced velocity at ( X, , 0 ) and at time © by the free
vortex on A3 at X=3 is, by putting p=0 , Y =0 , x=2 and

y=0 in Egs. (18) and (19).
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Integrating above induced velocity over entire free vortex distribution and
considering the induced velocity of the bound vortex B e4°T at the origin,

we obtain the velocity at ( X%, , O ) at time ¢ as,
ATy ! i® & —,,w-g- !
v=3x &M [-% +t5 | e g4t J (45)

Two equations (44) and (45) are identica}l except for the factor UL/, .
This identity is attributed to the fact that we could integrate the free
doublet taking advantage of the relation that the differentiation of the
free vortex in X —direction results in free doublet in ¥ -direction. The
interchangeability of these two way of caluculation to evaluate the velocity
field is easily verified to be extended to entire flow field, and not only
on the blade surface, if the relation between doublet and free doublet and
free vortex are skillfully taken into account. As for the case of drag
fluctuation, doublet in X -direction is given by differentiation of vortex
in Y ~direction and hence the relation cannot be used to the integration
of free doublet in X -direction over the wake region. This is the reason

why we may use only the free doublet model for the fluctuating drag problem.

2.1.6 Oscillation of airfoils parallel to the uniform velocity

Consider the oscillation of flat plate airfoils of chordlength 2, set
parallel to the uniform velocity U . In case of Oseen’s approximation, as
shown by Shen & Crimi (1965), the boundary condition on the airfoils should
be adjusted not on the instantaneous position of the airfoils but on g=0>

-1s x </ , i.e., on the average position of the oscillating

airfoil. Consider the oscillation of flat plate airfoil whose velocity is
given by »

( normal oscillation )

U=o , v= U et (46)

( parallel oscillation )

u=uw, e . y=o 47)

where Uo , P are constants.
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2,1.6.1 Normal oscillation
Since u=0 on the airfoil surface, we have only to consider
Oseenlet in Y -direction and shed off vortices. Distribution of the

Oseenlet Joez;y will be decided from Egs. (22),(46) to suffice

| / ‘L _ Blx-7) )
.yo = 5’7 Jf_’ - E(x') [{ Z‘Z' - ﬁ e &?/n (2’-—2’,) kl(B’z zl/)]
4
+ G e&(z ) ko (ﬁ /Z—Xll) ]dzl
(48)
4
] (2] ) ﬁ) " \wZ:Zp _ D_(Z";)
— (5%
tJo Jo T T €7 Bandi-e #I pagaz
on ~)S xXx<£ | s where Jo¢x:) should be assumed to have the form
: co
lo cz,> = A, D\M}Q + B,cat;a + 2 ,Amwm& (49)
m=
where X;=-c08 and 0OLOL | The singularities of Jac¢x) at

the leading and trailing edges ( singularity of AS‘"ZJ" where ,§ designates
the distance from the leading or trailing edge ) will be confirmed in the
same manner as adopted by Shen & Crimi. Differentiating both of Eq. (48)
with respect to x we find '

- 7% YJ'(_I, }E:‘(;Ddi = Ficx> + Fac (50)

where

/ =1 Re z-3) : p2
$ix> = 5wk ), Baol a5 TZ1 T BT pie p2 o g123D)

~ 28R agm(z-5) Ki(B1x-31D T 1 g2k cpizifJag

and
A e ! jw
2
I _ gt
=i ETIYZ 25
X[GJ v z(z,)fl—e ')}jd;dzl
The YD preceding the integral signifies that th Cauchy’s principal
value is to be taken. Then fx> , facz> are both bounded over the

integral -/ X <) . According to Muskhelishvili (1946), the inverse of

such Cauchy principal value integral equation should have the form

L d
T3 ez> = ofy 3~/ 420 F + oz JIrXI/(1-EIFE + Lexd
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Jer> = f(—l) =0

Letting A —>2° in Eq. (48), we have the same equation as Shen & Crimi and
see that their model is correct in the limit £ % ., The behavior of the
coefficients Ao and Bo as R goes to infinity have been fully
examined by Shen & Crimi, according to whom &Ko >0 as & 20 ., Hence
we know that the sing}llarity at the trailing edge vanishes and the Kutta-
Joukowski condition is satisfied in the limit of /& —>00 . Numerical
caluculations have been carried out by truncating the series of Eq. (49)
at a finite number and adjusting the velocity by Eq. (48) at the same
number of thé points on the airfoils as the number of the unknowns in Eq.
(49). Then the fluctuating lift 4 & fwt becomes

, .
L= fU'f_, lotzydx) = WPUUs (Aot Bo t 2) (51)

The fluctuating lift coefficient Cu is defined by
= 2 (52)

Cu = = X (Aot Bo + 5')

PO Ve (c/2)

where c is the chord length of the airfoil and supposed C=2 in the
present section. As previously mentioned the quasisteady flow coincides
with the steady flow of small angle of attack o=~ U2/ . Then the

quasisteady lift coefficient will be,

L wro = X (Aot Bo t ﬁ,) (53)

Coywo PO (/2 2

The steady lift coefficient is defined as 4L /(}LfUJC‘) and equals to
2mrod for Moo while Co, w>0 tends to 2% as
B> o0 , which implies that the quasisteady lift gives correct

steady lift.

2.1.6.2 Parallel oscillation
Since =0 on the airfoil surface we have only to distribute
the oseenlet in X -direction over the airfoil surface. Distribution of the
Oseenlet m 2, will be decided from Eq. (38),(47) to suffice on
~1sx< s
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)
Uo = i# Ej—’n Mz fzr Y—"z -8 & WG (x=X1) ki (Bl2-za)}

~Z1)

] oo ! 'w . ,i:):! ~ZT-(»Z‘ 2
“L % 2Z-3 %: e Jwvwcz,)f/—e 4”?‘1'5}04;‘@2:,]

In the same way as the plunging oscillation the distribution m(z) is

assumed to have the form

oo
: 2 & ‘
mixi> = Arct L + Bolams T 2 Amaiam8 55
Coefficients Ao , Bo Am are caluculated by means of Eq. (54).

The singularities at the leading and trailing edges were assumed to be the

same as for the normal oscillation from the same reason. The magnitude of

the fluctuating drag P ea'“’r becomes
! . Ar
P = fo_"m(z,M!x, =T (Ao + Baf;)fvuo (56)
Fluctuating drag coefficient Cp is defined as
Cop= D/ pusUcerz) @il = T (Aot Bot £') (57)

2.1.7 Discussion of numerical results

Numerical caluculations have been carried out for the two cases of
oscillation mentioned in the previous section. Fig.l shows the dependence
of the quasisteady 1lift and drag ( 1ift and drag for @ =0 ) on the
Reynolds number. The broken line in the fiéure shows the asymptotic
solution for steady drag Pw-o given by Miyagi (1964). It
demonstrates that the accuracy of the numerical caluculation is
satisfactory. References for Cu is not shown in the figure for the
following reason. The steady Oseen flow around an airfoil set with an angle
of attack o tends to a separated flow in the limit A>22 and
hence the value of the lift will be a half of that caluculated from
unseparated inviscid flow. This occurs when the boundary conditions are
applied exactly on the airfoil surface, not on q=0 , —ls x| .

Since we have applied the boundary conditions
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»uw-,a = - U UU"D =- U (58)

on J=o0 s, —J& X< instead on the exact position of the airfoil,
our model approaches the unseparated model of inviscid flow in the limit
& —» 00 . Hence applying the boundary conditions (59) on j=0 and
—-/sx <] , we obtained the 1lift coefficient (u,w-»o which correctly
approaches inviscid unseparated value in the limit &->00 , Fig.(2) shows
the fluctuating lift coefficient Cu on flat plate airfoils executing
plunging motion. Reyﬁolds number &  and Strouhal number St are

defined as follows.
Po = UC/any Se = wC [(20) " (59)

It is seen that the viscosity of the fluid have the effects to increase
1lift fluctuation. This tendency conflicts with the results of the multi-
layered boundary layer theory of Brown & Daniels (1975). The theory is
valid for sufficiently large Reynolds number and states that the Kutta-
Joukowski condition is satisfied in the limit £ > 00 . According to
this theory the fluid outside the small region of order i;‘$ near the
trailing edge doesn’t follow the rapid oscillation of airfoils. In case
that the Reynolds number is finite, the vicinity region works so as to
permit the shift of the apparent stagnation point of the outer inviscid
flow from the trailing edge in the direction to diminish the resultant
1ift. While, within Oseen’s approximation, the singularity of the trailing
edge is determined not from the physical condition but from the mathemati-
cal condition. The physical interpretation of this condition seems to claim
that the infinite pressure difference across the blade surface in the
immediate neighbourhood of the trailing edge.is required to prohibit the flow
turning the trailing edge. Hence the increase of the lift fluctuation due
to viscosity in the present caluculation is likely to attributed to the
increase of virtual mass attached to the vibrating flat plate. The present
paper is intended to clarify the viscous effect using Oseen’s approximation
which has the fundamental advantage of simplicity that only one type of
approximation is applied uniformly for the entire flow region. However,
this simplicity resulted in the unreasonable flow model near the trailing
edge. Nevertheless, since the theory of Brown & Daniels is restricted to

the case of large Reynolds number and large Strouhal number, and since



Oseen’s approximation is more appropriate than the boundary layer
approximation for small Reynolds number, one may conclude that the
viscosity works so as to increase the 1lift fluctuation below certain
Reynolds number. Fig.(3) shows the fluctuating drag coefficient. Drag
diminishes as the Reynolds number increases. The phase angle of the drag
proceeds by /4 than the phase angle of the oscillating velocity
of the plates in the limit A& % . This phenomena can be seen in the
case of the oscillation of infinite plates parallel to itself in infinite
fluid otherwise at rest. This means that, as St increase, the flow
near the flat plate tends to that near the infinite plate except in the
vicinity of the both edges. This fact is easily understood if we consider

that the thickness of the surface effects diminishes as St increases.

2.1.8 Conclusion ,

Elementary solutions for unsteady lift and unsteady drag were
introduced in velocity and pressure fields on the basis of Oseen’s
approximation. The elementary solution in the velocity field is expressed
by a combination of an Oseenlet in Y -direction and dissipating shed off
vortices for fluctuating 1lift and dissipating shed off doublets for
fluctuating drag. Secondly, by means of these elementary solutions the

unsteady forces on the oscillating flat plate airfoil was caluculated.
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Appendix; Quasisteady drag and steady drag

Taking the limit w=0 in Eq. (36) we have
B (x-3)2

| 0o
! YIS
U= E’ELL. - Mo (%) Tz-5)2 41 - e 26 Z) g dy dx
'——.
='f Ly ¢z;ydz, (4)
-1
Introducing the function T2 exy) to Eq. (29)
{
wu = j_' I, ¢x)) 4% (B)
and putting 7,¢X%) = fcz) » let us show

I,(x,) = Iz ()

The case X > will be described for the brevity, the entirely
similar way of verification being valid also for Xx<¢2x . Applying the

formula for Bessel function;

oo -i(o)-r-’-) o
1 ey

Emc2) = AN

for Z= k(x-z) » mm=0 or | we have

00

—?(Z“‘Z,) (")1‘ ;)'?L)

!
Ko ¢ BIx-2]) =3’f 7 € Py

o

| ® B, 2
kl(&/z—zll):éj 77__.262(22')((7.'.??)4

o .
After transformation M =2 (-2 / (x-x) Eq.(B) becomes

- fexny

R _Rx-z) (%, x,-X
2 € -(x/?—z,‘(g-z.)zf

xewp [-B1 -z Z2 a1 ] ©

For the while, Eq.(A) will be by partial integration

oo &(.Z-;_)e
Mo (X ] R —2(3-
I)(Z’p) = 2;5 > [ x -2 T jx, (x-3>% g 205-2) -—7
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_&_(ﬁ)" oo po R _ 2
»m,(z.) ) -5 — 1 K ) 2082 (3-2)
= [z-z, + ) “3x¢€ 2 3= /z, 7 §-% 2 }g—z, - (;—z,)zf
_Refxp?
X e 2 5‘1/ dg J (D)

o( I)J T, 2_& Relx Zu)j (E\Z' (E_z' )W[ &5(§ Z')*(Z Zl);]d;

Comparing Eq. (E) with (D) we see that Iixp=I.(x) if j{z.>=’ma(1-)
and hence it is veryfied that the quasisteady drag coincides with the

steady drag.
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2.2 Applications to cascade

2.2.1 Introduction

In the last section were analized the forces on a flat plate airfoil
by introducing elementary solutions of linearlized Navier-Stokes equations
in which the inertia terms are linearlized on the assumption of small
amplitude of oscillation. This section is intended to apply the method to
cascade problem. By the way the cascade blades of a turbomachine are
subjected to unsteady forces due to interaction with viscous wakes from
upstream cascades. Kémp & Searé'gnalyzed the unsteady forces by represent-
ing viscous wakes by inviscid sinusoidal gusts. The sinusoidal gusts that
satisfy linearlized Navier-Stokes equation are given in this paper and the
lift response to the gusts and the 1ift fluctuation due to translatory
oscillation of the blades are numerically calculated. The fluid is
assumed to be incompressible and flat-plate cascades with no steady lifts

are considered.

2.2.2 Elementary solutions

Consider the case that fluctuating concentrated forces
? e l‘wT : (1) | X_e,'m (2)

in x and y direction respectively are applied at the origin.
The velocity fields induced by the unsteady forces that satisfy the
elementary equations are

due to s ed*

r o &z i -3
u=_}—”-edwr[%—ﬁ'ge ki (BRD *L(—#w)e v %
-gs_g,—? A ’
x {l — e~2 3 }d;] = 2—7}-; edw‘ Kur (x, y)
Y Wt 4L 1724 8 Z o w )
Vo= ‘z—n“ed [Fz T Be fko(ﬁ'(’)"z'kh(ﬁF)} "j; (—%)
. #2
wl 3-x &L Y wt
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due to j e e

I 24 oo,
u=-sE el [-Z we™[ LT KR e@R} - [ )
"%’Q;Z r-z /
x€e —751— ?}dgj ne’w‘ Kug(m;)

v=-5% €Y [;P B% Kigryr [ (-8) e =
& £
S xfi-e 3 }d?] c’:’f“" k:rf(:r,;()
where K =0/2» , B=}Ia2+()w/v>2} , BTzt y?
R/z.-_- ():*-i)a'f' 72 and Ko and kE,

designates second kind
modified Bessel functions of 0-th and l-st order.

2.2.3 Superposition of ‘elementary solutions

Equations (3) and (4) are velocity fields due to concentrated forces
at x=0 , y=0

. The velocity disturbances at (( x , %)
induced by unsteady forces JYocm) €i"*ei’ Z(x:)e’ #Ton the blade
surfaces 2X=2x s J=-mb ( Aa=laml | b=len? , m=-00,

=, 0, 0, e, 00 s =] S XS] ) of the cascade of blade spacing t.
stagger ¥ , chordlength (=2

b
may be written as follows

ea“"
U Y= 31

J I Vocxy { L kur (x-Zi=ma, f-mb) eJ’““}
-1 m=-00

o , .

+ Z cz,)f”%.:m Kuz (2-%)-ma, j—rmee/’M} ] (5)
U(z.y)"""mj’ [ o> d < 2» K"‘”z = "”"‘)7”"5)614“4}

+0o
T uz,))”.’Za_ Kug(z—xwfma,;-fmb)ef'” ]

where the constant

o4 designates the phase difference of the
oscillation between adjacent blades. For convenience the kernels Eor s
k&g s ko s /(y’g are divided into potential parts Kupp
Ko'yp > ’*’“’SP , Kﬁ,gp and viscous parts kurr s Kvre s Kige s
/(,,’.?,, . That is,
Kirp =

oo R
~ Y/R* * J:Stjo e ¢ ¢ g/ R4k
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o e N
Kipp = ZI/R* - jSef, e 8% (x-55/ R 43

kuigp = karp > Kige = Kurp

_BRS
2

’ v -4
Kivo = 5(;;/?)‘9&1 KicgR) - ‘;Stfo eds";(;;/k'")e 3_«1?

. oo . _‘2. 2
Koo = Be® kogry ~B xR bR r,chfa e xy>/p7 0 2 3& 4

’ y X o S5 . ék/z
Kago- = - ,&Cﬂz}’gf KicgRl + Ko(ﬁk)}-rd‘StLet *§%§ e * T a3

<

, ' o~ 2R
Kogr =~48 ;gem/:;/,sk) +¢‘Snfo 53¢ FrR)e s ¥ a3
and

’ ’
Kur' = f‘fa;*p"" Eurov 5 f(u;” = ’(mrp T ru,ru'

Kuy = ke + bugy , kog = Kigp t Kigr
where Sz = we/(20) . In the limiting case Lo 00

flow the viscous parts vanish and the flow is represented by potential

, 1.e., for inviscid

parts only. The potential parts can be superposed in the direction of

cascade axis by the following relation. [2]

t__m eJ‘Md Wej(ﬂ.—d) CRRC ;Z-Z (o *0)
2‘ +m = ©
ame-vo X x ot WA (ot =0)
The infinite series;
» _ +Zo° - (x-ma) e (N
(X § = me-00 (X-m& )+ (7"”"")2
+00 Jandt .
Flycx, g4) = 2 i ®

mi-wo (Z-ma)i+ (f-amb)F
can be expressed as follows.
for o %0

! . __xtid Xt
My =-EL aoge o §§ a0 (= Z2[3 )5 remee(-75558)

! ' x-54 X~43
t a-4b %;J(WWU(—ﬁ ﬁme’(_n—a—}b )J
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Hytx, 9> = = [a+;b&‘f’/l(’t aI(- df )}W‘( a”b>
! . x-3 4 x-4
- g o $i O (=300 fanee (- EHE ]
for =0 _
e 1 o XtiYy -
qu,g)="_§'fa-r¢‘b ot (- 22550t Ac"t( Ta ;b)j

% x-
cot (- ’Z‘l—‘t"[> D ~mat(*7a‘:ﬁ)]

-y
Hynyr=~3% [m b
Then the potential parts are written
+00 ,
- ol
Kurp (x=Xi5 ¥ ) Ean2:~w [ Kurp (-2 -ma, - mb) e J
oo
. -, Seed-2)
= = Hyrx-x, 4> + JStLIC’ ) Hycx-§, )43 (9
o
kl!‘rp (x~-2,, ‘J) Erer.—DO[ ky/rb(7~z,—wa,y—7"b)emdj

. ) St(; -2)
s Haxcx-2:, 9y — 486 g€’ Hx -3, $>4%  (10)

+00

Fugp (2~%, 9) EMZ:ZW[Ku/gp (X-2)-ma, 7_,”,5)6/"‘“'] = kosp (2,0 (11)

’ pweot
Krgptx-x, y)= 2._005 Kogpcxx-ma, -wbd€ J= = fiyp vz, ) (12)
Next let us consider about the superposition of the viscous parts. The
viscous parts contain the Bessel function or exponential functions and
all of them converge fairly quickly for usual blade spacing and Reynolds
number. Then the following infinite series can be approximated by cutting

off at finite terms accurately.

+00

Kuypr(zx-2,4) = 2 [ Kuro (x-x-ma, J””b)e‘wdj (13)

) = me-to

+Do

Koero (x-x, ) = Z-» { kw‘o (r-Xx,-ma, j—»mb)é’)”'"dj (14)
t_w .

Kuge (-2, ;1).—:,,.,Z I Kugu (x-2,—m3&, }-mb) e M ] (15)
= , .

Kegov (x-2,4) = ’%,_w ! Kogoy (x-X-ma, g-mb ) e ] (16)
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By the superposition of elementary solutions in the direction of cascade

axis finite velocity is induced infinitely upstream of the cascade. That

is,

-7b / (a* b2 ot =0

L Hxcx, y) = }
x-»-00 0 po
: wa | Ca*+ b2 o =0

)

ﬂbv'v H (X )= ;

X»-> % d o o * O

and the infinite integrals in Egs.(9) (12) oscillate. This is because the
shed off vortices induce finite velocity at z=-¢¢ , and we must subtract
uniform velocity from entire flow field to cancel the induced velocity at
infinitely upstream of the cascades. The induced velocities due to viscous
part diminishes exponentially at =-0c even for o =0 and we have
only to take the velocity components induced by potential part into

account. Then the velocity disturbance will be written as follows.

et !
Urx, 4) = o f_,{ Votz.)ﬂ’arp 22, 4> = Kuyp(-o00, g) t Kutvcz-z,, ¥) }

r o x> | kagp cx=%,3) — Kugp (- Dt bgrera, ) 1 (17)
e |
vy T L, [ Yo (z,)fkarp(z-x., 9>~ bvspc-o0, 7T Koro(x-x,y )} ,

+ ,,(z,){ ffulp -z, 3) -k(,zup -c0, g3 T L’azu(z—z,,g)}] (18)

2.2.4 Sinusoidal gusts
In this section will be given the sinﬁsoidal dissipating gusts that-
satisfy the fundermental equations ( Equations (1) and (2) in section 2.1)

and approach to inviscid sinusoidal gusts by letting Re—=2¢ . Consider the

flow given by

u = Moe".é} ez(x—al-y) ed‘,«m‘
(19)

T

v U e;ez eqcz—d-]) e

where o = taw ¥ . Substitution of Eq.(19) to the continuity equation
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give
UeA + Ui (4€ = AAD =0 (20)

Putting p=0 , ¥=0 and Y=0 in Eq.(1l) in section 2.1 and substituting
Eq. (19) into the equation, we have the same equation shown below from

either the first or the second of Eq.(19).
jw t DA = pdats (js-4A)*f
from which |

A= R/Ci+d?> + 384 [(i+d?)
r [§ R/craz) + J 2/ Cra®) } o (8% 2f Re Se D/ Civat?)

(21)

The sinusoidal gust (19) satisfies the elementary Equations (1) and (2) in
section 2.1 as far as the constants e , Us and A are selected

to fulfill Egs.(20) and (21). Next consider the case of f&=>00 . Then Eq.

(21) will be,

( with + sign in front of thé squareroot )
2R/ C+adz) + 4S5
A= ( with - sign in front of the squareroot ) (22)
- 4 8¢
We should discard the plus sign in Eq. (22) because A-»+0 as £»® which

is not the case of our interest. Then we will take only the minus sign in

Eq. (21) thereafter. Equation (19) then will be for Pe > 00

u= s ewp [ jwlt-gix-cary > 5}1]
(23)

Vo= Vo ep [jwli ~gbx-cdrErg}d]

which is the inviscid sinusoidal gust having constant phase on the line.
X = (At $/8e D = Comak, . The angle §  made by the direction

of the gust ( the direction of equiphase line ) and ¥ axis is given by

S:m"’(wb’“-ré'/ft) (24)
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Equation (23) can be written on the line X - J-d=Ghet. as

U= e €2¢ esp ; g (T + EF/w )‘}
(25)

U= Us @ﬂceﬁbgjwff -r-Sj/oo)j

from which it can be seen that the disturbances of constant amplitudes
U, © AC and U, @2  are transmitted with the velocity w/&
downwards along the line. ( see Fig.l ) We can get the following relation

by considering Eq.(ZO)
WU = Ue/Uo = (AA=JEX/A = Tam ¥ + £/8¢ = Tand (26)

which means that the direction of the velocity disturbance coincides with
the direction of the eqiuphase line given by Eq.(24). In the last place
let us verify that the direction of the equiphase line of the gusts
coincides with the direction of the wakes from the upstream moving blades.
Consider the velocity triangle for upstream moving blades shown in Fig.2,
where U is the mainstream velocity, V the velocity of the
upstream blades and W is the relative wvelocity with respect to the
moving blades. The wakes are considered to extend in the direction of the

relative velocity W . From the velocity triangle we can get

The n-th order angular frequency can be written with the blade

spacing ¥’ of the upstream cascade,

Wo = 20m ) (Cr/ V)

and from Eq. (25)

—wn/ 8 = Ve
Then
Ist/é': wn /T “= -*’gcuor: Q,Ds-CoOf
~wn [ (Ten?) U A (£~ )
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and

A ¢ Y-8)

Taw ¥+ 3185 = Gad v LB = Taa d @7

which is the same as Eq.(24). That is, the directiom ) of the
sinusoidal gusts given by Eq. (19) coincides with the direction of the
relative velocity to the moving blades, and with the direction of the
velocity fluctuation. Hence it is expected that the sinusoidal dissipating

gust (19) can represent the wakes from the upstream moving blades.

2.2.6 Numerical caluculations

Unsteady lifts on translatory oscillating blades of the cascades and
on the cascade blades in the sinusoidal dissipating gusts are caluculated
by singular point method. By equating the velocity disturbance given by
Eqs. (17),(18) with;

for tramslatory oscillation of the blades

mw(x,o > =0

ot (-1sx< 1) (28)
Uv(x,0) = vredt
for sinusoidal gusts
> ..
Wix, 0= = Uo €3F @ 8

~1& X =<
Aot ¢ ) (29)
y(x,o0>=~th < e

so that the boundary condition on the blade surface is fulfilled, we get
the simultaneous integral equations for the unknown functions Yorz,) and
io(z,) . Though for inviscid flows the 1lifts vanish at the trailing
edge due to Kutta’s condition but for viscous flows the lift and drag
distributions have singularity of order ,9‘5 ( & ; distance from the-
trailing edge ) at the trailing edge as well at the leading edge. And it
has been pointed out in [3] that the coefficient of the term representing
the singularity approaches to zero by letting /& =2 and this can be
numerically ascertained. Then representing ¥»(Z;) and Jo (x:) by Glauert
series with a term representing the singularity at the trailing edge and
applying Egs. (28),(29) on several points corresponding to the number of
the terms of the series, we get a set of simultaneous linear equations for
Glauertcoefficients and by solving it we find the force distributions. The

numerical integrations of Eqs.(17),(18) were made by the trigonometrical
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formula except near the logarithmic singularity caused by the term Koigp)
in Egs.(3),(4), which was integrated analytically. As the value of the
integrands vary largely near the singularities for large Ke s it was
necessary to drop the pitch of the numerical integration near the

singularities to save the computing time.

2.2.7 Numerical results
The coefficients of fluctuating lift Cu and drag Cp are
defined as follows.

Co = 4/ (Lpovnc) (30)
¢ob = D/ (£ POUC) (31)
where L and D are the fluctuating lift and drag respectively.

In the case of isolated airfoil the drag fluctuation is not produced by up
and down oscillation only, but in case of cascades the velocity
fluctuations parallel to the blade surface are induced by the lift
fluctuations on the blades other than the reference blade and the drag
fluctuates to cancel the parallel velocity disturbance on the blade. We have
the next relation between the phase difference & of the sinusoidal |
gusts among adjacent blades and the constant g relating to the period

in the direction of the cascade axis.

oA =St co¥ + 2K M

The arbitrary integer M is selected to be zero in the present
calculations. The cascade geometry is fixed to Z=n and 7=30° of
flat plate blades of chordlength ¢ =2 and the Glauert series is cut
off at 5-th term.We could neglect the effects of the blades farther than
the adjacent blades in the calculations of the viscous parts for the
present cascade geometry and Reynolds number, and the series in Eqgs. (13),
(16) were cut off at =) . The fluctuating 1ift and drag coefficients
due to the translatory oscillation of the blades are shown in Figs.3~10.
Comparisons with the inviscid results by the acceleration potential method
in chapter 1 are made for o/=0 and =% . It is seen that the lift

coefficient for & /0% is very near to the inviscid value.
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For any phase difference the fluid viscosity enlarges the amplitude of the
1ift fluctuation and has not so much effects on the phase of the 1lift
fluctuation. Strictly speaking the 1lift and drag distributions have
singularities at the trailing edge, but actually the effects of the
singularities are small even for 4 =/0 as shown in Fig.5 and the term
representing the trailing edge singularity is neglected throughout the
present calculations. The 1lift coefficients have an unified tendency

that (L j0® as Ne>® for any phase difference but the trace pattern
of the drag coefficient as the variation of ¢ differs largely by the
phase difference o . This is because the normal velocity fluctuation

is mainly affected by the lifts of the reference blade itself and the
effects of the virtual mass are apparent for 1ift fluctuation, but the
parallel velocity fluctuation is mainly due to the 1lifts on .the blades
other than the reference blade and hence the drag fluctuation is largely
affected by the phase difference of the oscillation. As a matter of course
the drag fluctuation tends to zero in the inviscid limit. Fluctuating 1lift
and drag coefficients for dissipating sinusoidal gusts are shown in Figs.
11 ~18. Inviscid results by the method in Chapter 1 are shown in Figs.ll
and 13. The fluid viscosity enlarges the amplitude of 1ift fluctuation and
affects the phase difference little as for the case of blade oscillation.
The effects of the viscosity is remarkable for large &% for every
phase difference & . This is because the dissipation rate of the gusté
is larger for larger St and the normal velocity is larger on the
upstream half of the blade chord. The lift fluctuation for f&=/0 is larger
for larger value of o which is again considered to be because of
larger damping rate of the gusts for larger & . In case &*¢© the angle
made by the isophase line and the blade surface tends to zero and the
parallel velocity fluctuation will have a large value for small Jz . In
order to cancel the large parallel velocit&, large drag force works on the
blade correspondingly to the value of Ko , which affect the

1ift fluctuation. For this reason the 1lift fluctuation is largely affected
by the fluid viscosity in the limit >0 , The drag coefficient Cp tends
to infinity in the limit Je—=>0 for the reason above mentioned. The phase
of the drag coefficient leads with the increase of St , which is the same
tendency for lift. The amplitude of the drag fluctuation is larger for

larger value of & and tends to zero as Lo,
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2.2.8 Conclusion

Viscous effects on the fluctuating lift and drag have been analyzed
for the tramslatory oscillation of the blades and sinusoidal dissipating
gusts on the basis of the linearized Navier-Stokes equations. It is found
that the viscosity have an effect to enlarge the amplitude of the 1lift
fluctuation but little effect on the phase of the 1lift. The drag fluctu-

ations due to the up and down oscillation of the blades are also analyzed.

Refereces in section 2.2

[1] Kemp & Sears J. Aern. Sci. Vol.20, No.10, 585-597 (1953)
[2] D.S.Whitehead, A.R.C. R & M , No3386 (1962)

[3] Shen,S.F., Crimi,P. J.F.M. 23 585 (1965)

~-84—



Fig.l Sinusoidal gusts
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Chapter 3 Compressible Viscous Flow

3.1 Actuator disk theory

3.1.1 Introduction

The unsteady cascades theories may be assorted into two groups; one
is finite pitch theory and the other is actuator disk theory. In case of
compressible flows the resonance phenomena, which is caused by the finite-~
ness of the propagation velocity of the disturbance, is expected to be
largely affected by the viscosity of the fluid. The finite pitch theory
considering simultaniously compressibility and viscosity will be consider-
ably complex one. This section gives an analysis of the viscous effects omn
the fluctuating lifts of three dimensional subsonic cascades by means of .
the actuator disk theory in which the pitch and the chordlength of the

cascade are assumed to be infinitely small.

3.1.2 Basic equatiomns
Let us assume that the pitch and the chordlength of the cascade are

infinitely small and the cascade extends on y-2 plane. We select X axis
in -the direction of cascade axis and £ axis in the span direction as shown
in Fig.l. The cascade is assumed to be non-staggered and to have no steady
lift. The velocity is given by ( U+« , ¥ , w ), the pressure by +
+ P. and the density by f+f, , where U , p, and f, are thevelocity,
pressure and density of the uniform flow respectively. The purterbations
are assumed to be small compared to the uniform quantities, i.e., & , &,

w<«<U , p<p , fK fo and so on. Then the unsteady Navier-

Stokes equation is linearized as;

Py v _ 7 v,y v

r P+ c’) Jred (A V) (1)

where Fox, Y, 2) is the external force, ¥ (&, U, W) the
velocity purterbation, C the time, A the viscosity, »=u/g
the kinetic viscosity, A the bulk viscosity and ¢’=3/M . The ratio

¢’ 1is assumed to be -2/3 so that the pressure is given as the average
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of the principal stresses ( Stokes’ approximation ). Though for the case
of compressible viscous flow the viscosity varies as the temperature varies,
we assume that the viscosity is constant and that the flow is isoentropic
because we assume the small purterbating velocity and temperature. External
force F is assumed to act only on the cascade plane ( x =¢© ) and

to be given as follows.

F o= (1/0) Fewp [2mj(mi+ /S + 23/80] - §exy ()

where 77:- (X, F, ? ) is the amplitude of the external force, 4 the

imaginary unit ( = y-/ ), ¢] the number of the oscillations and
A the wave length in J direction. If all the blades vibrates

with the same phase , J=0 . The quantity /5 1is the wave length
in the span direction and 5=0¢0 for the case of two-dimensional flow.
The function $¢x> is the impulse function defined as §x =0

for X #%0O and f_:» Jodydz = | . The continuity equation is

linearized as follows.
3F/oF + fo(au/ax,.gw/ayraw/ae)rU(af/ax)=0 (3)
Isoentropic condition is,
(1 + P/ pod= (1t f/fo)K
so that

‘fJ/f =K(Po/fo> = ﬂoz (4

where X is the ratio of specific heéts, ds is the sound velocity

in the uniform flow. Equation (3) with Eq. (4) may be written as follows.

fo (UfoX + U 3y +3W/323) == (1/af) (P /ot + Udplox ) ()

3.1.3 Pressure fields in up and dounstream regions of the cascade
Differentiating the 2, 4, 2 components of Eq. (1) with F=0
in 2, 7 , 2 direction respectively and then summing them and using

Eq. (5), we have the following equationm.
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2 2 2 (2+c/)u 2 9 2
(O e 3 300 G (E e EDGR o)

) = 2
L (s +052) 1 p =0 (6)

Equation (6) is the basic equétion for the pressure fields in up and down-

stream regions of the cascade. We assume the pressure as follows.
P = 2 Y W[Z’Tj (mZ t+ y/5 +S£/S)Je4p (2moltix/s ) (7)

Putting Eq.(7) in Eq. (6) we have
2
[2n¢2 +c’)€-’ Jag + (214 (2+C’)%°2k - Mt )] oyl
- M5 [2a‘k *2W(2+C") ’—th o

T)—-ZITJ, (21‘6’) k Tkzj f'To -~ (11+8%)=0 ®

where the dimensionless numbers are defined as g = JS/p ( Reynolds
number ), K =5%/U ( reduced frequency ), M, = U/A, ( Mach number )
with the characteristic length ( wave length in the direction of the
cascade axis ) and characteristic velocity [ . The three roots ¢, , X2 ,
o/3 of Eq.(8) are complex ones, one of which have positive real part |
and the others negative real parts, and then are assumed Leal (04) > O s
B_d (o2)<CO 5 Bl (A3)<? where M(o() means the real part
of O/ . Then the pressure should be summed with =/ for Xx<oO0 and
with 4=2,3 for X >0 in Eq.(7) in order that the pressure fluctuation

is finite at infinitely up and downstream of the cascade.

3.1.4 Velocity field in up and downstream regions of the cascade

Putting Eq.(5) in Eq.(1l) with #£=0 , we have

oV . — oW QU _F¥ My L g
5t TUS Vi Tip T * 55 ) B FrACPOT
, 2b 2b
aag (1T gl (5 0% ) 9)

The right hand side of Eq.(9) is known with Eq.(7). Then we assume the

particular solutions of Eq.(9) as follows.
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W=D B oewplanj (mtryis +52/S>] esp(2MAiX/S)

? Di ewp [2nj (Mt + y/St $2/5)] esp (2not: 2/ §)

U =
(10)
w2 Foesplarj(nt+)/s+52/8) Jesplenaix/s)
where %_—' denotes the summation with .=/ for 2<o© and 4.=23

for x>0 . Putting the first of Eqs.(10) in the 2 component of Eq. (9),

we have |
A ol 1 2mre ) (ME/RI(ALt Rt S)]
B = -foD of + jh - (2 IR [i® - ()+52)]) ()
In the same mamner the Y and Z components of Eq.(9) give
D o= - Al g T AMCUrC ) (MR f ol = kD
~ foU o+ jh = (2R i~ (1+s2) ] (s
Foo= & D | (13)

Next, let us assume the general solution of Eq.(9) ( solution for p=o )

as follows.

u=0C1HpT0) @wp[znd‘trnr+]/s +52/s )] exp (2rBix /S )

Vo= (E2/BT ) ewp [215 (ni + g/s+ 82/5)] enp (2mBiX /S D (14)

1

(G:/pT)esp2rf(nt+y/S+52/s)] esp (20822 (5 )

Then all of the three components of Eq.(9) ‘with ‘p=0 will be reduced

to,

(/R Be® + Bi — jb ~ (2WIRDIrE2) =0 (15)

So the constants (. are

RBe = (B/aw )] 1 z/ )+ 4 (2R/RDUTS) e (2n/RDk ] (16

where ﬁ, is assumed to be given with plus sign in front of the root
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sign and B> with minus sign. Then Keal (3,)20 and Real (82)<0

!

so L=/ for X<o0 and (=2 for x>0 should be taken in Egs.

s

(14) so that the velocity purterbation is finite in far up and downstream
of the cascade. The complex velocity purterbation is given as the sum of
the particular solution (10) and the general solution (14). The particular
solution given by Eq.(10) satisfies the continuity equation (5). The reason
is Egs.(10) ~ (13) are given so as to satisfy the equation of motion (1)
and the pressure equation (6) which is given by eliminating the velocities
from Eq. (1) and the continuity equation (5). Therefore the general solution
given by Egs. (14) should satisfy the continuity equation for itself.
Substitution of Eq.(14) into Eq.(5) with p =0 gives

Bi Co v JEL + 4j&GL =0 (4 =1,2) (17)

3.1.5 Matching equations

Now the velocity and pressure fields have been decided separately in
up and downstream regions of the cascade except for several constants.
These constants will be decided by matching the flows across the cascade
surface as follows. Firstly let us integrate the equation of motion (1) _
from X =2-0 to X =+0 . Considering the fact that the integration
of the impulse function §(z) gives the step function 0 ¢x) defined

as §exy=0 for x<co and G¢xy =1 for x>0 , we have ,

U/“i‘:"}%f/f’f +)T’:-)?&‘I'f[2ﬂd:(mt+]/8-r28/s’)]T—p{};—‘/

TP(I*C’))?%‘*;)‘?*};}

~ ‘ (18)
oiv) = }': Y esp [am) (t+y/s vrs2/s)] v0 {£E} ru(1+c/)j%€‘}

T -4 3 . w

D Jwh=7F 2enplanjintryls +s2/s)]+0J5%8 § +vUrc 3]
where the notation { ;S-(z)§ = {0y — §<~o) has been used. Equation
(18) is considered to be the momentum equation in X , § and Z direction.

Secondly, the following relations are given through the same manipulation

on the integrals of Eq.(l) with respect to X .
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0 =v(2re){u}, o=vrivy , 9 =r{fw] (19)

In the same manner, the continuity equation (5) gives

L}

folul - (U/a:){p} (20)

Since we consider only the 1lift force
X =0 : (21) Z =0 (22)

The velocity component which is normal to the blade surface at the

trailing edge should be given as

U o= U, esp [ZITJZ (mT + 4/S ‘I-SZ/S‘)] (23)

which may be considered to be the vibrating velocity of the blades. The
constants B s Fi and P. can be expressed with A< by Egs.
(11) ~ (13). The unknowns are A. ( L =/~3 ), Co , Es , B.
( L o= 1, 2 ), 5(- . )—’ and ;7— . These twelve constants can be
decided by making use of the two equations of Eqs.(17), three of Egs. (18),
three of Egs. (19), and Eqs. (20),(21),(22) and (23). Then the fluctuating

lift coefficient may be defined as follows.

Co = Y /(LU Vo) | (24)

3.1.6 For the case of inviscid flow
As a particular case, we will consider the case of inviscid flow

( v =0 ). In the first place is considered the two dimensional flow

¢ &

o) ). Then Eq. (8) reduces to the quadratic equation

(1= MY ol + (25 Rt + (R M = 1) =0

which results in
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J Mk r/ I = MS r PHE
o = — (25)
= 4

where 4 =/ when the upper sign in front of the squareroot is taken and
4 =2 when the lower one is taken. The constants A3 , &F3; and P

vanish and Eqs. (11) and (12) become

B = _ Al . (26)
" RU ol vk
Y S & @D
folU ol ""d.k
Moreover Eq. (15) is reduced to a linear equation and,
B: = - 4k (28)

The general solution of the velocity fluctuation vanish in X<© and the

constants () and £, are zero. Equation (17) may be written
Es = 4Bz C2 . (29)

Next the matching equations are considered. The constants EB: and P
being expressed in A< and F> in (> , the unknowns will be
counted five ( i.e., Ay , Az, &, X , Y ). As Eq.(19) is
inevitably satisfied, the matching equations are counted five, that is,
two equations of Eqs.(18) and Eqs. (20),(21) and (23), and are sufficient
to settle the five unknowns. Introducing the expression of the velocity

and pressure, we get from Eq. (20)

C: = — FU (B2~ By) - = (Az‘A;) (30)

Putting UV =0 in the expressions of velocity and pressure in Eq. (18)

and using Eqs. (26) ~ (30) give
X = (I1~H&) (A2~ A) (31)

Y = g(o) Az~ F@) A (32)
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where

FCa) = J M -1 ol = 2 MR

(A) Resonance frequency '
At the resonance frequency the aerodynamic damping force ( i.e.,
fluctuating 1ift ) will be zero for finite velocity amplitude at the

outlet of the cascade. Then from Eqs.(21) and (24) at resonance frequency
X=Y=o0
which results
Az = A
and from Eq. (32)

?— (;(H:’—I)(O/z“o(f> A =0

Hence, at resonance ofa = o) and
F = ¢ |- M8 / Ms (33)

which agrees with the resonance frequency so far known [1]. That is, the

pressure purterbation at the origin at =0 spreads within the circle
(x~0¢) + ¥2 = G % at time ¢ . Therefore the propaga-

ting velocity a of the purterbation in the direction of the cascade

axis is

J/t = Ao |/ 1~ H5

IS
I

Putting n = als k, we have

b = SmIT = a/T = [J1-HF [ Mo

which agrees with Eq.(33). When the value in the squareroot of Eq.(25) is
positive ( subresonance ), the constants o , O are complex and

the pressure purterbation is cut-off far upstream or downstream of the
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cascade. When it is negative ( superresonance ), the constants o\ , o2
are imaginary and the pressure purterbation propagates to infinitely
upstream and downstream of the cascade. It is seen from Eq.(28) that @
is imaginary and the velocity purterbation does not die away, which means
the free vorticity from the cascade fills‘the region downstream of the
cascade. On the other hand, for the case of viscous fluid, the constants
&< s B+ have.non-zero real parté and hence the velocity purter-

bation dies away infinitely upstream or downstream of the cascade. For the

three dimensional flow the resonance frequency will be,

k :l‘/(l'f‘ 22>(’—Hoz) / Ho

(B) Two dimensional incompressible flow ( Me=0, &=0 ', k=00 )
For imcompressible flow ¢2Xx] and from Egs. (31),(32)

X = (A=A , (= jeAzr A

Constants A1 , A2 are,

=1
A, = Az = (ﬁvm)[(;—k/(wr,;k)] (34)
Therefore,
Co = Y/ (U2 =2{/Tj-Cj+1/£)'] (35

which agrees with the results given by D.S.Whitehead [2].
(C) Three dimensional incomi)ressible flow ( Hoe=C , S0 Lo =00 )
In this case the 1lift coefficient is ﬁound to be
R 2/ 1+ 8% (1 + kT §7) (36)
LI =
(1+ 287+ 252 )[1+5% + jk

which agrees with the result given through the integration of the elemen-

tary solution for unsteady lifts for three dimensional incompressible flow
{3]. In this section we have seen that the procedure of the present

analysis leads to the results so far given for the case of inviscid flow.
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3.1.7 For the case of infinitely large Reynolds number

In the preceding section we have examined the case of perfectly
inviscid flow. In this place we will study the case of the infinitely
large Reynolds number for viscous fluid. For brevity two dimensional case

( £ =0 ) is considered. The roots of Eq.(8) will be for

otz = T jerE )1 -rt ki T C(1=HE)
(37)
0/3 = —([~H02>E2/[27z(21.cr)”°2]

and {3 —> 00 as B oo . The roots of Eq.(15) are
8)222/(27c) ) 132':"&'/?

and B,» 00 as 00 | Among the constants in the expression of
velocity and pressure, A; , 33 s 5‘)3 and C, are order of I//g and
others are order of R&° . Using Eq. (19) and putting Eq. (7),(10) and (14)
in Eq. (20), we get

(HE/ R)(~-By +hA2 T Az ) =0
Hence, A= Az . From the first equation of Egs. (19),
(I1/7R)(-Bi+ Bz+B3=C + C, )=0

and using Eqs. (11) and (12) we have

. A o o2
Cz2 = B} B? foU ( o[,_',d’k - O(z'ré‘-k ) (39)

Equation (23) is reduced to

D: t 793 + J‘/32 C’Z = Vo

and by putting Egs.(11) and (39) in the above equation we have;

Uo =

A k2= ¢ o k )
fo. v $" T'jk <X,+-fk
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LA iR pRE -k
}DOU /"'kz

From the second of Eq.(19) we get

(40)

(1/R) (=Pt B>+ Py = §8C + B2 )=o0

which give

2 A1 (1t k) (dz-o))

C’:
R BT oo k(oo ) - B

L2 20+ gD 1 - ME - b (D)
B' ‘ "' ‘1 +2k2)//-moz—kzl"7:"é2
The second of Eq.(18) is

(2r/R) [ Dol - Drols — D3y + 4§ C1+C")(B, — B2 - B3y D
- + 4 C (B:z+I+C’)—J‘c2(/g;.,.,.,.c/>7.___F/(ﬁv)
which will be for & =00

Y/ (foU) = (27/R) § B2

In case of K0 , the term p}au/az} contributes most to the 1lift
fluctuation among the terms of the second of Eq.(18). It is because
{aa-/ax;goo though V>0 as f.>00 . From Eqs.(40) and (41)

we have

20t D)) 1 -HE - R
(1+ sz)/_l—Hf—Ie’Hf +i b

In reference [3] the fluctuating 1lift coefficient Cu is given by

1

Co (42)

integrating along Y axis the elementary solution for unsteady concentrated
lifts in subsonic flow and the result agrees with Eq. (42). Equation (42)
is also given by putting VYV =0 at first and then using the procedure
shown in the preceding section. Resonance frequency is given by putting

Co =0 in Eq. (42).
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which agrees with Eq. (33). Putting /Mo =20 in Eq. (42) give

Co = 201182/ (1 RE+jR) (43)

which agrees with Eqs. (35) and (36) with &=0 . Both by Eq. (42)
and by Eq.(43), (C.-»2 for k>0 , i.e., for infinitely small reduced
frequency. On the other hand, Cuo-»/ for k- 00 , i.e., for infinitely
large frequency or for the case that all the blades vibrates in the same
phase. That is, the value of the lift coefficient (, 1is not affected by
the compressibility of the fluid in the limit of £ -0 or k=00

Equation (42) is for /- M,;-k'My'>0 i.e., for subresonance.

For /—MyS~p*HMs<¢0O 1i.e., for superresonance

2 2,0 2~
Co = 204 k2) )k + Mo (44

1+ k2> RPHE+ HE- 1 Tk

which implies that Cu is real for superresonance.

3.1.8 In case of viscous fluid

For inviscid flow we have seen the results of the present analyses ‘
agree with those so far given. In this section will be examined the effects
of the viscosity. For brevity, the case S=zo0 and M,»o0 1is considered.
Then Bid0 , Dy»o , Bods» -(RZI) L TW/(2+¢) and 3oz »0
Considering these behaviours of the unknowns and from Eqs. (19) and (20) we

see that A3—>0 as Me=20 . The second of Egs.(18) is reduced to

'\F = (2R [Re)(2+C) (B/+ P)

+(2FJ‘/R¢)[( /3;2@,—/3226’&)-’- (/fC’)(C;-‘C’z)j (45)

The constants C; and Cz are found to be
G = P UV [201-]8:C)/Ci1+ kD +482C2] / §B

Co = PUUL2/C1+jk) +24k8/C1+5k)]
J [ 2482 (1t k) + (B, ~ 2kBiB2/Cit RD=§B)]
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and P s D2 are

D)= (4Bals= 1) I=4kd/CI+jk)
D2 = /- J‘(32c‘2

Then the fluctuating 1lift coefficient Cu will be known from Eq. (45).
By letting k-acn we have

Cr» - (LU V)G /81D G- (POV/(j182)
i‘)l > DZ - 0

and the 1lift coefficient will be

Co = (Pl V) (2[RI BACr = B3 Ced= [ STk IR+ | (45

As in case of infinitely large Reynolds number, the term L’/3U792]is
predominant in Eq. (18). Equation (46) shows that CL-sjjixDo as p-»00,
which is thought to be the effect of the apparent mass added by the

viscosity of the fluid. In case of k=0 , we get

C) = C> :"471.,‘:/& > pl—ﬁ2=0
and hence
Co = 2 18m/ RE + | 47

3.1.10 Numerical results

Fluctuating 1lift coefficient Co is shown in Figs.2~6. In Fig.
2~ 4 the effect of compressibility can be seen. The dash-dot lines in the
figures show the results for inviscid flow ( Eqs.(42),(43) ), to which the
viscous results converge as A - . The effect of viscosity is
remarkable at large reduced frequency and near the resonance frequency.
In case of viscous fluid, the 1lift coefficient have finite value at
resonance frequency. Fig.5 shows the behaviour of Cu at large

frequency. Lift coefficient (. tends to / as p->20 for inviscid
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flow but to [jx 00  for viscous flow. From Figs.2,6 and 7 can be seen

the effect of the three-dimensionality. It deminishes in small
frequency range but increases near the resonance frequency. In Figs.8,9

the amplitudes of fluctuating velocity and pressure are given. For
subresonance ( Fig.8 ) the pressure fluctuation is cut off up and down-
stream of the cascade and the effects of the viscosity isnnot so remarkable.
The velocity purterbation due to shed off vortices does not die away for
inviscid flow and the effect of the viscous damping is remarkable in this
region, In case of superresonance ( Fig. 9 ) the pressure and the velocity
fluctuations are traﬁsmitted to up and downstream for A 2 but die down
for finite Reynolds number. The viscosity effects remarkably the pressure

and velocity fluctuations both in up and downstream regions.

3.1.11 Conclusion

The effect of viscbsity on unsteady lifts of three dimensional
subsonic cascade was investigated by means of actuator disk method. The
application limits due to the method are, 1. The pitch and the chordlength
of the cascade are small, 2, The phase difference of the purterbations
between adjacent blades should be small. 3. The reduced frequency based
on the chordlength ( 2IMC /U , ¢ ; chordlength ) should be small.
Among the effects of the viscosity, the viscous dissipation of the shedoff
vortices and the friction in the direction of cascade axis are considered,
but not the friction in the direction of the mainstream ( skin friction
on the blade surface ) because of the infinitely small chordlength. The
results given tend to the inviscid solutions by letting #£->% and are
rigorous solutions of linearlized unsteady Navier-Stokes equation. In spite
of these limitations, authors believe that the results express the effects

of the viscosity qualitatively so far as the unsteady lifts are concerned.
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3.2 Finite pitch cascade theory

3.2.1 Introduction

In the last section was developed a subsonic viscous unsteady
actuator disk theory in order to analyze the effects of the viscisity
on the 1ift fluctuations on unsteady subsonic cascade blades based on the
linearlized Navier-Stokes equation, in which the blade spacing and the
chordlength are assumed to be infinitely small. This section is intended to
take the finiteness of the blade spacing and the chordlength into account.
In order to take the finiteness of the blade spacing and the chordlength
into account there can be another way such as an extension to a semiactuator disk
theory adopted by Tanida et. al. [1] but we employed the method of expanding
the external forces represented by a series of § functions into
Fourier series and then applying the actuator disk theory to each term of
the series by taking advantage of the mathematical strictness of the
actuator disk theory that the coupling equations of the flow fields in
front and after the actuator plane are directly lead from the fudamental
equations. The singularities in the flowfield thus given agree with those
so far given for inviscid or incompressible flow. The advantages of the
present method are; 1. The elementary solutions are given in a form of a
series and the infinite integration of the shed-off vortices necessary in
the usual vortex method is avoided. 2. The numerical calculations of
Fourier integral ( infinite integration containing some singularities )
necessary for the method applying Fourier transformation [2],[3] is
avoided. 3. The effects of the viscosity is easily taken into account
compared to the acceleration potential method. Therefore it seems that the
present method can give a powerful calculation method even for
compressible viscous flow compared to other method. It is assumed that

the cascade is non-staggered and have no stationary lift.

3.2.2 Actuator disk solutions
Consider a flowfield around a row of concentrated external forces
L,,e’lwt located on the ¥ axis with pitch ¢ as shown in Fig.l, where
the main stream velocity U is directed in the direction of ¥ axis,

and d is the imaginary unit /& with respect to time, e« the
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angular velocity of oscillation, ¢ the time. Then the external force

can be written as

+00
2 Lo €4¥ S {;)):_m S(Fcqy-med) f

F =
+00
_ b _wT S Mgy
= 4
o e fax 2 e )
or
t_DO
F=2, Fn W

ynZX T o 28 o
F’” = (Lﬂ/t)erntyé‘(z) el’“":—. Toe,nbyé‘(z)erwl (2)

The flowfield due to the distributed external force En can be given by
putting

S=¢/m , k=ST/UT = tSe/2xmn), 2¥=0S/v =2t /n

in the last section, where &* and 7n¥* are expressed by k s M
respectively in the last section. The reduced frequency S¢ and the

Reynolds number & are defined by

Se = we/c20) &= Uc/cav) (3)

taking half chordlength </2 =/ as the reference length. Then the
pressure field and the velocity field can be given as follows.

for Xx<o
p= A Joctrydewp2radiz/s)
U = Bifectgdewp (28a, /8D +C1/c0) Fe (T3 ewp (208, 215D (4)

U D) fect y)enp(2roix(s ) + E [ foT) Sel Penp (2K8/X/5)

i

for X >0

. ps2 A Tecn g)ewp (2MAIX/S)
o =23

-

u ié . B, fet. gyenp (Ml X/8) + C2/(foD) fe(T g ) enp (2ng,2/S)

va2, Bifery) enp (2hatin/s ) + Fl V) Sect 3) enb (20818 (5)

Je= ewp c2miy/s) edt
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where the constants o @ are the roots of the following cubic

equation and it is assumed that Xal(x) >0 , Feal(a2><0 and Beal(a;><0.

swezrer) (MEIRE) @ + Janj(2te ) (FE/IRO b~ #iv1 fal

- mi {24k v2m2+e )/ RX ol +[5/e’-’z7rd' (zt+c/) %, $ H,‘—/] =0

(6)
where c’ is the ratio of the bulk viscosity A to the viscosity
M and is assumed ‘' ¢’=A/u=-2/3 . The constants 4. are given by

Bo = (R/an)S 1= [1+r 6T Rt r 2TGRIRS ) (7

The thirteen constants in Egs. (4),(5) are given by the following
simultanious linear equatioms.

(2+¢” [820‘2 + Byoy - Bioi J + (C28. —Clpl)/ﬁv
r4UrSI(Par Py-H ) =0

20
—axl Profat Dyocty — P + (Ex82 - E B Y0 ] = Yol pT)

B2t Bz - B, + (Cz2~¢)//HTU =0

(8)

P+ O3 - P, + (E2-E)/D=0
Al = Az + A3

AL old t RAFCDIHA/RID (A e f o)
Bi="R0 o + jb —T/REI (X~ 1) ) 45023

AL 4 r 2T D CHEIRD (4~ kD o
9‘,: - ya —1;2)3

LU gl o+ jh-con/RF) (o= 1) ’
Ei= y8:iC ) #=h2

The velocity components represented by B. and P. are irrotational

and affect the pressure field, and the components represented by (¢
El

and
are rotational and do not affect the pressure field.
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3.2.3 Inviscid and incompressible flow

The flowfield due to the external force F=» will be for AM.,>0 and

&->00 ;
for x<O

pm =~ L Yoewpanj Zy) enp (2n P2 ) I

»

Un = Fo% mw(znf}@]‘)&“ﬁ(zn%)z)ejwt (9)
Un = - 52 —1

PO Zcrriky S (AME D ewp(2nix) et
for x>0

b, ;;--‘{ o esp (27) Zd) esp (2T FX D€

l‘w?

Un = foU {2(:—,/@)5’1’( -2m = 2’) Y e’P(JStZ)}W(ZﬂJ?J)eJ’ '(10)

Un = f’,U 20- ,,tk)e”f’("z”tz)*kﬂ erp (- J&Z)}e"ffz’}v,ﬂe*wl

where k=3§(='m’c} . The velocity field is composed of only the irrotational

component for 2<o© and the first term of Eq.(10-1) and (10-2) are ir-
rotational and the second rotational for X >0 . The rotational component
in x>0 vanish in the limit Se >0 and is considered to represent

the shed-off vortices from the bound vortices due to the fluctuating lift.
Equations (9) and (10) are the flowfield due to the external force A» and
the flowfield due to [F = So Fm can be given by the superposition of
Egs. (9) and (10). Let us co’;1=;;°der the pressure field due to the external
force F . Assuming that the pressure fluctuation is zero at X=- , we

get the following pressure field.

p= pt fo evp §3h¢igrxdmf- 2 [ LoopiFeipom]]
x el
d ZJ et _—} : -w"

Equation (11) can be further deformed to

00
P2 ZL;; z? +7(;i>t)" et ()
7200
which means that the pressure field can be given as the velocity
potential of a doublet series of strength Lo=Z fo distributed on ¥
axis with the spacing ¢ . This can be easily understood if we consider

that the pressure field due to a single concentrated force is represented
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by the velocity potential of a doublet at the lift point whose strength
equals to the strength of the external force. Next will be considered the

velocity field. The irrotational component of the velocity field is,

for X<o
L 5 f—L—ﬂQ)ap (27 2'% Y enp (2mj 2 g )] et™t

u= ﬁ,v,%-,. 2C1+jk)

]

¥4 )
= Pl 2w 2 [,oyn(rn)” k%p(zn%z)epf(znjt §)] e

JJ‘
Yo _¢ 2,;6'6' M'f] ot
e/l 13

too

V= fp 2w 20115k P (2n@'x > enp (2n; 2 g ) € T

f
n -k Aol
B ST A epan ) em (njpg )T
=
I ] |- cE T

fov 2 /—2eégzw§2”h e

CLUP R S2T) .
» (‘Zz's-;'nr*)
Yo . /- e%'[z" (14)
for z:>_afozj : /\2egxca>?€”?*€€"z" eret
_130 ‘ﬁ (n) ml o) ., =
ue 72 3 [T enp(-am ) emp(enjFid ] i
. Yo & o4 k arPx ) (27 ) Jedt
fUZ [ Segrnn) i uf( erp dta'
o N= 00
- By —
v 2 Ze‘tzcwz.-] ¥ e‘t” (15)
0o e
T
. o Pe-
2Mon
Yo i) l“ et LT
T AT 2 Tl + e B2 e
. S 2 ‘2"?(1’1‘:'3)
Yo ¢ t_t %’z -2ax &Szo‘o em
= fov2[ »&j(l -28 y+e? )-f-zn ”Z:I ,n(t%’n-*) Jey“)l
mzz
0 - @t . -
= e !

)
+ L
ﬂ?v 2 / -2e¥2®}_7reilr21
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As shown by the second terms of Egs.(13) (16), the irrotational components
have the singularities of a row of bound vortices. The logarithmic
singularlity shown by the first terms of Egqs.(14) and . (16) is written for

J=0 as;

Yo 4 LSt -
po 2 bplx) ‘2nf°

o i by izl )

which is caused by the finiteness of the strength of the free vortices at
the shedding point. The rotational component reveals itself in the region

X >0 and is written,

. T _k : ' S
uepe 5 e (onj 21 ) enp a2y ) fed D)

=_E§°° (;’,%st)m

exp (27§ ¢ §) e (%)

Yo ﬂf.*st e-t&(/—f)_ e—,s;y . X,
“RU 2 e e (18)
o 2
v=g ”Z} ,zw(zn—-g)ﬂ}ef“’" 7)
_ -4 -
Fo 2 /- e tSe €

which show that the rotational components of the disturbance flow down with
the main flow velocity U . From Eq. (18) we get
. z z
Yo . wlr- ) bo (r-%)
20> = U(g=t) = t ¢ ol
U g=0> (1=t 25 4 St € = gp s e (20)
which show that the shed-off vortices after cascades are represented by the
rotational component.
It has been shown that the finite pitch solution can be correctly given by
the superposition of the actuator disk solutions. The flowfield can be

represented by convergent serieses of order //#* after sorting out the

singularities involved.

3.2.4 Inviscid compressible flow
The flow field due to the external force F» will be for /a=0° and

Mok 0 >
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for x<o

¢ Yo

i [
= oany o (B e angax el
Yo & _ kMt [ 1-HIEND _ ” wr(21)

. esp (2N 72, x
Un= 80 2 ¢ jrr [1omzevn D1~ REEED PENE I e T X e

. ¢ /=M , » s
F‘:% }t ikt [1- niate) [1- i) erp(anj g § ) exp (amg mx) el
for x>0
pn=- _ esp (213 2> exp (2nFonx ) e it

2 1= Mok
- _ﬁ. ¢ JkHa"JI H:(ﬁ/ [}
Un= o' & db-[-rany [1-rewn P (2F 1) erparfa) e i

Yo k.
YRy A P CNF §) e (-jSeX ) it

(22)

P ¢ /—-f«ia2
2 dk VIR W IR

n = S exp (m 2P erp(anFarx Y el

* fv T”I’(”at 1) enp(-jsex)ed

where
o kMt Jo-tEX -k - HMER
' 1 -mng
o kM [U-HE X M) - HEE
) =

/- H
Equations (21) and (22) are for »>eo , and the flow for <o can be
given by putting ¢, >-29 , Y2-¢ , Jo>- 1o and Un=- Uy in Eqgs.(21)
and (22). The flowfield for F =~ is known by the superposition of Egs.
(21) and (22) as follows.
for x<o

22(7))
p= JI’,,%_J =t g~ £ //—H’ erp(r} P ] ewmif et

Yo ! 24 W(%Kﬁé.‘)wb— ol
_ 4l _° X o w3x G
2 Ji-w¢ - 2et/Fm T retc Dot
_ T iy JRgmm) jkHs e 1-HEED ! (2m 2 o, 2 )
U= Pl 2w 2 jerdi-recees - P GTE

- T CTE D ] ew (57 ) e
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) s 25~ L 1 2F
fo _ ¢ 24 erp Seirmt 57 e ot
YRU 2JIHE /-2 epSeRiat and rewpfBinis

= ‘ / 1= H&
oS L[- - ¢ P2 x

Ifi)/
-0 /+,k m—>"’“f’(2’% /'Tv)J erp (2057 7)€"
Yo I ] - eiwﬁ:ﬁ? o fT

foU. 2 /“Z”P(tﬁ,*)ewtz e,o.,( 22')

S 22

f’ov?/— [J* 1”7(’ etm"’m——;;»retme)

Litse S e E s FO b ST g i) 5
2 M m(tscf)’)-’-o(_) y
for x>0
LY e
P:'%g-m[ﬁ%: up(znlz’ ) /{—ﬁ: eyf( r.(fnl )]
2jemp ) T it 28 P

z i ——
exp (24 g 7)6("’ ./—‘71—5 /= 2wpltJ7¢a}”2‘J*e*PhJFn?$

U = _Je = RPN [ JhHY — ) 1Mo ) /
ﬁ’vm-oo 2 a'k'fl-m’(b’ﬂ) J1-#HsEY)

esp ( 2”1”,0'22. )

- T enp (N Fo) ] enp Conj Z g D e

Yo __ ¢ 4%5?@,%@*’7 e §T
0 2JI-FE [~ 2 enpsPirtandy +espd Bty

- o gtse et — et jwir-§
fo ) - etse
/- M (24)
o= ﬁ’ fna—oo2 [,;k J’ Mok} [1~Hs(k+/) f(znz”—"azz)
ik 1 ) =X .m '
(1 ”Fﬁm)%(f”?me)]w(”n 7 et
+ Yo .1 / ’&Pl—?-ﬁ% -
feb 21~ iwﬁ-?ﬁ}?w?’tlwﬂ-%’ﬁfﬁ*}
o 4 ar- X X
zmh & by (1-22n} -5 e o3 » eop |G O
¢_5_ L eupdmB(Fa ) enp by 530} Jei
2 % NnCFEm =4
sy s
YD tSe etSt(/ + e_ t 'w“—_-——>
T Rl 2 ;- et e v
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The series terms in Eqs.(23),(24) are convergent with @ (1/7*) at least
and have no singularity. The pressure field has the singularity of the
differential of the potential of vortices ( i.e., doublets ) scaled
down by the factor Ji-# in x direction. The velocity field has
singularities of the bound vortex row scaled down by the factor jT:;} in
X direction and the logarithmic singularitirs due to shed-off vortices.
It can be seen that the strength of the shed-off vortices composed of the
rotational components is the same as for incompressible flow. These

singularities agree with those given through the Fourier transformation
method [4].

3.2.5 Incompressible viscous flow
As is shown in the preceding sections the singularities of the
flow field can be known from the behaviour of the coefficients in Eqs. (4)
and (5) in the limit of 7 ->00 . That is, the singularities of order
1/x are produced from the constant terms at »7->& , the logarith-
mic singularities or velocity gaps from the terms having the coefficients
of order I/» . Though it is not so cumbersome to get the full representa-
tions of the coefficients in case Mo»0 , we will show only the asympto-
tic form for 7”75 , which is sufficient for the separation of the

singularities.

Af: Aa =-%)3*'9(Um0

B, =(Ye/p0)(4/2+ k(2D v OU/n?D

B, =(Yo/CUX /2 -k/2) + B(l/m?)

D =(V/hDX-1/2+ jk/2) + BU/ID?)

B:= (Y% /6U)1/2+jk/2)+ @ (1/7?) (25)
Cr = Yo(-4/2~-k/2) + OCI/1*)

Co= Yol=¢/l2 +kR[(2)+ 8 C1/M*)

Ev = Yo (1/2-jk/2 + RX/oR ) + ©C1/7?)

Es = Yo (~1/2 —3k/2 + R*/9r ) + O Ul/m?)

oy =1, odaz=-1, Bi=1+ R/ar , B2=-ltR'«n
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Representing the coefficients for n-th order harmonics as A,” for

example and considering the behaviours of the coefficients for m-eo
we can separate the singularities as follows.
(A) Pressure field

b

P = lﬁ’?’"f’")(A., ‘Lr)ayp(zn, 29 esp (-21Zx) ) edT

Mz-0o
Ly 20
2 CtT AmE o
ryTe ”;;rz 57 = ET et (26)
) - 2¢e¢t =§ 0t et?

where  A,” should be taken for Xx¢o6 , and A2" for x>0 . The
coefficients of the series in Eq.(26) are of order of (/%2 and so the
term has no singularity. The second term represents the singularity of a
doublet row on Yy axis, which is identical with that for inviscid flow.

The viscous effects on the pressure field are contained in the series

term.

(B) Velocity field

Too Cora . i
u =,,%_:7mm)[f P ewp (2n'2' 87 x) 1B esp (- zni’l”/z/)]eﬂ’:t ¥ oo

'2_ [ih} (2” ﬁ z)"'ﬂz&r (21t-—/z/)Jeth7 o
Veg ot oo P02 b 2 erp
The parallel velocity U = for X<0 1is considered first. Since

3,'"=|+4-¥' for mow

exp jon@px} = ewp iz erp fiax)
= ewp Jar I § (v Bx) T enponPx) v Rk enpfanilixg

Therefore for M2 and x-—>0 , Wwe can write

ﬁ%’n/a?m(fn) exp (2"1"2_?}1 D exp (21 'tﬁ' 8,7 x)
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+ B,'"/ay/nun) exp (27 tz"i)e/uf('zn!g"z)

01

= Rx g egromesp (0E ) enplon P x)

”m
+ (,o,,cz'; t B” ) ognim) exp(2ny —g—’y)wp(z/rg’&)

The first term in the above equation tends to zero as X=»©0 and the
coefficient of the second term is of order I/m? . Hence it can be
concluded that the first of Eqs. (27) has no singularity for x=»o .

The same arguments as above are valid for x>¢ and it can be shown that the
parallel velocity U has no singularity for xX-»¢ . Next let us consider

the normal velocity Y . For xc<o and /x/<« | , we can write,

”
E 7

oo e (2mi ) emp (2P g7 x>

+ DTexp (2njFq)enp(2nP x)

Rov X enp (215 24) enp (2n P2 )

v (BT ) enpani Py ) erp (27 %)

The first term tends to zero as X0 and this term constructs no
singularity at X-~>o . Considering that
E” ™ o Rt

o TP “Rpan m r ©Oci/m?)

we can write

2 ((’ov * D7) erp (anf F §) erpl2nPx)
g
f,r'g' 4‘% ,,Z.-o, T PTG enp (20 x) + flalte

L\o ’
ﬁ,u’dn 17(/—295 Yeoyg + eT ) + + fnil

Therefore the normal velocity I can be represented for j=0 and X0 as

7 ot Lyix) v funite
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The logarithmic singularity thus separated coincides with that of unsteady
Oseenlet for isolated unsteady lift. It can be shown that the same
singularity exists for X>0 . The second of Eqs.(27) can therefore be

written as,

1-1)0
hz ml I‘.,_.? .._& __i__..
u = [ 7T exp (ﬂr 5,,, z) (P37 - LU 4T i+ )

x enp (-2 ’g”/z/)J enp (2n) Z g) et
Yot A . oo -zwﬁbzl a7,

2, 2N —_ 77
_ _ o IR 27 ~%2Ax! 2€ d 'fwl (28)
fU4ﬂ [l &}(I 2€ wﬁ}re —'»%l ’)’)(09-'-/) J

As examined above, there exists only the logarithmic singularity corres-
ponding to that of Oseenlet, which is due to the terms of order £%#C in
the rotationalhcomponent represented by F, and E, in Eqgs. (4) and (5). The
irrotational components have the singularity of the bound vortex row as
for inviscid flow, which is canceled by the same singularity involved in
the rotational component. The shed-off vortices dissipate at the instant
of shedding and there cannot be seen the velocity gap or the logarithmic
singularity due to the shed-off vortices for inviscid flow. In this way
the irrotational components of the actuator disk solution correspond to
the inviscid part of the elementary solution and the rotational components
to the shed-off vortices and Oseenlet given in Chapter 2. The coefficients
of the actuator disk solutions are expanded with respect to k and &*
for the purpose of the separation of the singularities. 1In order to get
the convergence, the residual series after the separation of the singular-
ities should be summed over to the term in which & and ua* are

sufficiently small. That is, the number A/ of the cutting off should be

N _;:%t and A/»2&Se or AN should be taken proportional to
the values of T ’ St and £ . Hence, in order to represent

a large Reynolds number flows, the series should be taken to very high
harmonics. Physically speaking, this is because high harmonics are needed
in order to represent the large velocity gradient of high Reynolds number

flow near the application point of the external force.
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3.2.6 Compressible viscous flow

For inviscid or incompressible flows, the coefficient A3 vanishes
and the coefficients of the actuator disk solutions can be represented in
the closed form. But for compressible and viscous flows, the representation

of the coefficients would be complicated and we will show only the asympto-
tic representations for 7Mm-=>do |

4 Al x* 7] 3

- - o+f

A= =3 Fo 2T (2> AR T A kT (B*3)
; R 2

_ # 3

A= 3 T AT (2+ D MG t Al o+ B RD
. @’F

As = T4 T Swzres g T As R*: o+ DR

B, = ﬁ% (j72+ Bu B*) + DRt™)

Ba=rmp (j/2 1 Ba &) + B emrd
By = 75 Ba BT+ Dcpr)

B =g (~1/2 + PuR¥) + DR
ﬁz=,§%(//2 T+ Du B+ O (pr?)

- _‘.rf. -/ 2 PR3
D2 20 Gr oy & TOCED (29)

¢, = Yo ("}/2 + Cn RF) + D (R
C: = )’o("d‘/z + Cy RF) + 9(&*2)
EFy = Yo (172 + Eoy R¥) T O (R*)

E2 = Yo (-1/2 + Ea RY) 9(1‘?&*2)
oy = | + ke |

4mw2+c’)
- - R
Y2 = ol TReen
oy = jp - /
3 R T e HE e*

By =) + R*/am ,  B.=-1r &*/an
where, Bur Ch=0 , Byt Cu =0

Dyt Evw = P2y v Ez #0
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The pressure field does not have the singularity of doublets which was

found for inviscid or incompressible flows. It can be written

as;
for x<0
100 .
= S n 4 ro & n __f):?_ Loa
P = 4%% (Ar+ IR(2HCDIHE 7P+ | t >e”‘f’(2"¢ t ?)C’J“"
t 1 R e n-8) . o F s
T o(2+C’ ) HFE ) - ek c
for X >0 (30)
+rDo ,
= 2] -»n ¢ rp& t n -‘.ZZ e
P =¢2_~W(A2 + A,} + 2T (240D H’z P )&yf(),,J z g)erl
ax(r-£) A
t Vo ke e? 3 - et e&“’f
2(5+C ) HE | ek

The coefficients of the serises in Eqgs.(30) are of order of //#2 and the
series . are continuous across =0 , but the second termof Egs. (30) makes

the pressure gap of ;

 tn R -
Pro = P ST e R € & (31)

across J=0 - The pressure difference approaches infinity in case Mo-20
or Je-»00 . In case of 2¥0 , the pressure components relating to A

and A: are continuous across y=o0 since >/ and o3~/ as Imi oo

and the series converge geometrically.

Since o - -,)lf- (J’-é" — 2k D] , the pressure component

2n T Ixizre) ME
relating to A; can be written;

e , :
- sk Jot n 0 2k
p =2 [AepreaT2) v Toresmd s &P S (e et ]
=00

x exp (2”.2_"_)7)6‘»:‘

g
ant . ot

, 2 ke i (32)
(2+C'> M3 J - e2x WS-(;StTm)l’} ed”

The first term of Eq.(32) is convergent and continuous across Y =0 but

the second term produces the pressure gap of
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Pro = Po = %&”;—o:? MP;—(J.SGr /—2:2&,'?‘;)?—)1} ert (33
In case of f—>00 or He >0 the coefficient of the exponential
and the coefficient of X 1n the exponent tend to infinity and hence the
pressure difference would be infinite at x~»o and then decrease
exponentially in the downstream. It can be seen that the integral of the
pressure difference equals to the lift in case S¢=0 . The reason of the
pressure gap on the plane where no external force is applied will be
explained below. Conéider the velocity components 3 corresponding to
D3 . The n~th order component 237 can be written for 7 =>o0e ;

2 2
F:Z?' 7'(’(21-%’)" Mp? 793: ! (ZHJ t J) erp ; ()S‘ (2+c’)"f)z}

: x e’
and therefore the velocity component &3 is continuous across Y =20

%7 = -

Differentiating the above equation with y , we have;

2m_ _ Yo _ 24FE'C m 2 R
9y PO e R iE s O (I E A e (ser 2l x)
x egl
and therefore
+00 2
oy _ S M . Yo 24R°T ' .7
Ayl —,n%woz (21 3 ?s *—ﬂU T2+ ME n2e ) ) esp (2my g 7>]
. 2k .
X &wpf—( Se t e BE Y )Z} el
(! —or-d
Yo 2R*C @m %l) ez”t expl-(,;$ 1-__2_/‘?“ — ) x Sl
T RU (2402 M2 ]~ e 2k 10; 4t 2rc) 2 je"
Hence,

903 Yo 4Rt >R T
- = - - —_— w 3
)*o ( )o 60 (2+cr )’ M3 %f’; (JS“"'(zrc')M.‘)IJL e (34)

Applying the isoentropic equation (- Eq..(4) in section 3.1 ) on the linear-

lized Navier-Stokes equation ( Eq.(l) in section 3.1 ), we have,

Q_g T oY U2 ._L.Q__ ) ob __2b
T + >X p(az: T‘;j)) f a FOC/'f'C);J'(';'(:p‘F é‘;") (35)

which is parallel to Eq.(9) in section 3.1 and &b is the sound velocity
in undisturbed flow. The quantities of V¢ s V/sx and 20%/32x are
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continuous across f =0 and the integrals of them from g=-2 to g=+0

are zero. Integrating each term of Eq.(35) from y=-0 to g=+0 , we have;
P14 2 by
"‘I)A()y>=—fo ZAP—;"’((""CI)(;%&P"‘US%QP)J

where the notation A:P‘/).,: f(-t-O) - f(;o) is used. Applying

Eq. (33) on the right hand side of above equation, we have;

20, . _Yo 4R’ ‘ ok o .
0 (530 = RO Gret g SPITGSer Sadx e

which agrees with Eq. (34). That is, the pressure discontinuity on 4=0
X >0 1is canceled by the discontinuity of velocity gradient and the
elementary equations are satisfied. Next we can get the following pressure
equation by eliminating the velocities from the linearlized Navier-Stokes
equation, the equation of continuity and isentropic equation, which is

parallel to Eq. (6) in section 3.1.

> (2+0)p 5 22 > 1 Ny
[(.»)73*572) (azz 7)(93*5_8_:2)“45(5%*091)2./]19

where T is the mass force in Yy direction and represented by

fo Y = lo Scxd> Se z) in this case. Then the right hand
side of Eq.(36) is bo x> 5”(; b} . In case Re¥™® and Mot 0O ,
we have no pressure gap in Z<0 and have that given by Eq.(33) in

oo . In order to examine the singularities of each term of Eq. (36)
at the origin, we may represent the pressure difference in the vicinity
of the origin as,

2R Vo0

b= (2+C') M 0cx>

from which

b . 2k ?
2y (2+C7 ) M2

Jeyy 6ex)

and
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, 2
‘Qi%—)”i 3%72 - T gg‘ P = Tot Srj) Sy = [JoSCJ/) Sex>
That is, the singularity of the concentrated external force can be
represented by the second term of Eq.(36) owing to the pressure difference
at x>0 . In case of /=00 or Mo=0 the external force is represen-
ted by the first term of Eq.(36) owivhg to the singularity of doublet
in the pressure field. The first term of Eq.(36) is due to the pressure
term of Navier-Stokes equation, the second to viscous terms and the third
to inertia terms. Thérefbre it can be said that in case of &=®or M,=0
the external concentrated force is sustained by the pressure force and
hence the singularity of doublet appears in the pressure field, and in
case of A3 and HMo+0 , by viscous force and hence no
singularity appears in the pressure field. In case of M=o even for
Yo » the viscous terms do not affect the pressure field and hence
the external force is sﬁstained by the pressure force, which results in
the doublet singularity in the pressure field.

Compareing Eq. (29) with (25), we can see that the same singularity as
for incompressible flows appear in the velocity field. That is, the
singularity due to the velocity components Bi,2 1is canceled by that due
to G,2 and hence the parallel velocity « can be represented by a
convergent series if we sum up the series after adding those two components.
The component relating to B; has no singularity since B;~@ci/»).

The logarithmic singularity can be separated from the velocity components
due to Py, , £,,2 and the normal velocity can be written as follows

after separation of the singularity.

too - E.7
U’=2 [2,25" ,D(.?ITL—ﬁ,_z)TQ'Dze*P(znm'o/Lz)

7= -0 ~

2)’ot R
- 70 (Dn"‘tu)/”’_'_’ exp (- z/z ::u)]e»p(ﬂ?,; g) E’M

+Zf%t(8ufgu)fz[/‘,&7(/-— et’z 21?3, e—%’-’zliu)

oo ~2nPrx)
iy r P s
- 2 2e - eaogtﬁw; Je"“" (37)
m=) N(N+I) .
where the summation should be taken with =] by 2 , with g=/
by f‘ for X¢0 , and with j(=> by 5  , with g=33 by
2 for X0 .
Z
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In conclusion, if the fluid is simultaniously viscous and compressible,
there appears no such singularity in the pressure field as can be seen for
incompressible or inviscid flow, but the singularity of the velocity field

is similar to that for incompressible flow.

3.2.7 Numerical examples
In the last sections we have separated the singularities out of the

elementary solutions and expressed the residual by convergent series of
order |/m? .. The series can be evaluated numerically by cutting off the
series at finite terms corresponding to the accuracy expected. Present
calculations have been made by cutting off the terms smaller than o.0¢
percent of the sum of the series, summing 800 terms at most. The external
force [, 1is assumed to distribute on the chord ( -1 X< | ), in
order to take the finiteness of the chordlength into account. The distri-
bution Lo has the singularity of [Lufxx|-z)J'§ at the leading and
the trailing edges as well for incompressible flow. Then assuming the 1lift
distribution by Glauert series reinforced by the term representing the
trailing edge singularity and determining the Glauert coefficients from
the boundary conditions on the blade surface, we can get the lift distri-
bution on the blades. We have to take care to cancel the uniform induced
velocity at infinitely upstream of the cascade by the calculation of the
induced velocity. The numerical calculations have been made for up and
down oscillation of the blades and for dissipating sinusoidal gusts.
The dissipating gusts can be represented by the rotational component (
relating to ¢z , £z in Eq.(5) ) of the downstream actuator disk
solutions, that are indepeﬁdent on the pressure field and hence on the
Mach number. The elementary solutions givep in the last sections are
constructed for o/=0 . The analyses for ' =21/M ( M ; integer ) can
be made by arranging the elementary solutions for #% #¢ with the spacing

T on y'axis with the phase difference o . For general values of

o , it seems to be necessary to represent the external force / with
Fourier integral in stead of Fourier series, as made by Namba [5] for
inviscid flow. The irrotational component of the elementary solution has
finite parallel velocity on the blade surfaces except for &=0,7t , and the
drag fluctuations should be takenAinto account in order to cancel the
parallel velocity. The effects of the drag fluctuation on the 1lift fluctu-

ation is considered to be small in case the unsteady flow assumed has no

~122-



parallel velocity disturbance on the blade surface or in case of high
Reynolds number flow. For this reason the drag fluctuation has been entire-
ly neglected in the present calculations. A cascade of flat plate blades
of chordlength (=2 ,» blade spacing 7 , stagger O and without
steady lift is considered. Fig.2 shows the fluctuating lift coefficient
for up and down oscillation of the blades in incompressible flow. The 1lift
coefficient (o is defined as Cu = L/ (P Ve U(erz)ervt) , where
Y, 1is the amplitude of the oscillating velocity of the blades.
Comparisons are made in the figure with the results by acceleration
potential method for.inviscid flow and with the results given by using the
elementary solutions for incompressible viscous flow. It can be seen that
the present analysis gives reasonable results for incompressible flow.
Figs 3 and 4 show the results for inviscid compressible flow. Comparisons
with the results by D.S.Whitehead [3] have been made in Fig.3 for blade
oscillation and it can be seen that the results are satisfactory. The
fluctuating 1lift coefficient for dissipating sinusoidal gusts is defined
by the same equation as for blade oscillation, in which »» 1is assumed to
be the normal velocity fluctuation at the midchord ( z=¢0 ) of the
blades. The trace pattern of (, with the parameter JS% resembles
to that by actuator disk theory, which suggests that the actuator disk
theory can give a reasonable qualitafive results. Figs.5 and 6 show the
results for Mp %0 and #$P0 . It can be seen that the lift fluctu-
ation has finite value at resonance frequency in case £+00 , and that

the inviscid solution can be given by letting K->0° for viscous flow.

3.2.8 Conclusion

An analytical method of finite pitch subsonic viscous and unsteady
lifts on cascade blades is given on the basis of actuator disk theory.
The elementary solutions are represented by convergent series after
separation of the singularities. It has been certified that the results
agree with those so far given for inviscid or incompressible flow by

numerical calculations.
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