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Preface

     Xn modern turbomachinery such as axial flow compressors or turbines,

thin airfoils of high aspect ratio are often used owing to the demand of

high speed performance and minimization of engine weight. High speed

operation lowers the critical flutter frequency and the adoption of thin

and high aspect ratio airfoils lowers the natural frequency of the blades.
These tendencies make the cascade bladesi easy to oscillate. Along with the

growth of the aircraft in its size and speed the frequent service has

made the noise problems around airport a serious soeial problem. From the

viewpoint of engineering theseproblems can be seen as the unsteady flow

problems of airfoil cascades, and intensive researches have been reported

on this problem nowadays.

     J.S.M.E. founded the Research and Study Division of Unsteady Cascade

Problems composed of the authorities of the problerns in Japan and The

Report of Research and Study on Unsteady Cascade Problems was published

on March 1976, in which broad and precise reviews of many recent papers

are contained.

     Most of the unsteady cascade theories are two dimensional inviscid

and linear theories and can be classified into the following three classes

from the method applied.

  (1) Vortex formulation

       A lift in uniform flow corresponds to a vortex and in case the lift

   fluctuates, free vortices are shed so as to maintain the circulation

   of the entire flow region constant. The flow field can be represented

   by a bound vortex at the application point of the external force and

   vortices which flow downstream with the mainstream velocity.

  (2) Acceleration potentiai formulation

       The fluctuating lifts generate fluctuating doublets in the pressure
                                         :                                                                         '   field. Since the pressure is continuous across the shed-off vortex

   sheets the pressure field can be represented by the bound doublets only

   at the point of force application. This makes the analysis simple

   cornpared to the vortex formulation.

  (3) Actuator disk formulation

       By representing the cascade by an actuator disk on the assumption

   of infinitestimal chord length and blade spacing, the flows upstream

   and downstream of it can be easily found. The flows are coupled

   together by appropriate conditions in which the finiteness of the chord

   and the blade spacing can be taken into account approximately.



Most of the theories adopting the formulations (1) or (2) are solved

by singular point procedure. In spite of the virtue of the simplicity,

the formulation (3) is no't in frequent use nowadays with the develop-

ment of the finite pitch theories by the formulation (1) or (2).

unsteady theories considering the viscous effects are few. One group

of them are isolated airfoil theories of boundary layer approach, having

much interests on the trailing edge problems. Those analyses are very

cornplicated in its nature and are applicable to restricted flow conditions.

Another group i$ numerical ones owing much to the developments of computer.

     The first chapter bf this reportshows the analytical method of

unsteady forces on cascades by applying the acceleration potential method

combined with conformal mapping method. The fluid is assumed to be

incompressible and inviscid. Transient flows are treated as well as many

types of oscillating flows.

     In the second chapter the effects of the fluid viscosity are taken

into account. Rigorous elementary solutions of linearized Navier-Stokes

equation are given on the assumption of small amplitude of osctllation..

Firstiy they are applied to isolated oscillating airfoil and the effects

of the viscosity on unsteady forces are elucidated. Secondly they are

applied to cascade. The dissipating sinusoidal gusts are also given to

satisfy the basic equations, and the lift and the drag response of the

cascade blades to the gusts are given as weU as the unsteady forces on

the oscillating blades.

     In the last chapter, the viscosity and the compressibility are

considered simultaneously. Firstly, an actuator disk theory is developed

for viscous compressible fluid, in which the three dimensionality effects
are also taken into accoun' t. Secondly, a finite pitch theory is given

on the basis of the actuator disk theory.,The singularities of the

elementary solutions are analytically shown to agree with those for

inviscid or incompressible limits given in the preceding chapterS.

     The results of these three chapters agree with each other in spite

of the different methods applied. All of the numerical caluculations

are made to get the unsteady forces on the blades since the entire flow

fields can be easily calculated after getting the force distributions.
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Chapter l Znviscid Flow

1.1 Sinusoidal gusts of equal phase

1.1.1 Zntroduction

    . The blades of a turbomaschine are subjected to unsteady forces arising

from the relative mogion of adjacent blade rows. These unsteady forces have

important effects on fluttering of blades, noise generation, fatigue

failures of blades and, in case of hydraulic maschines, on the cavitation
                   'characteristics. •
     Karman & Sears [1] first suggested to use the prevailing vortex
theory for the analysis of the unsteady flow around airfoils. Sears [2]

investigated the unsteady forces on a single airfoil in a sinusoidal

travelling gust in which the velocity purterbation is normal to the

undisturbed flow. Utilizing the results of this work, Kemp & Sears [3]

analyzed the potential flow effects of adjacent blade rows, and the lift

fluctuation of the blades due to the viscous wakes shed from an upstream

blade row. [4] The results of these analyses are valid only for cascades

with !ow soltdity because they are based on the single airfoil theory.

Whitehead [5] studied the fluctuating forces on a blade in cascade when

the blades are in a sinusoidal gust, together with the lift fluctuation

on the oscillating blades. Ohashi [6] analyzed the lift fluctuation on the

blades of a non-staggered cascade, using vortex theory in combination with

a eonformal mapping method. For staggered cascades he showed the way to

apply his results for non-staggered eascades considering the ratio of

circulation around a blade of staggered cascade to that around a blade
of non-staggered cascade. Schorr & Reddy [7] treated the flowofsinusoidal

gusts through cascades and showed numerical results solving approximately

the integraZ equations for the determination of vortex distribution.

     All the analyses mentioned above treated the velocity fluctuation

normal to the relative flow direction. Horlock [8] analyzed thefluctuating

lift on a single airfoil with an angle of attack due to a longitudinal

(i.e., parallel to the undisturbed flow) gust. Applying his results to a

viscous wake interaction problem, he found that those two fluctuating

lifts produced by gusts parallel to and normal to the reiative flow

direction are, for the mpst part, opposite in sign and tend to cancel each

other, then he presented the designing method to reduce the lift

fluctuation to the minimum. Nauman & Yeh [9] considered the effectof

                                        '
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eamber on lift fluctuation arising from longitudinal velocity fluctuation.

     This chapter presents an analysis of fluctuating lift on the flat

plate airfoils in cascade produced by gusts parallel to and normal to the

undisturbed flow direction, introducing a conformal mapping method for

acceleration potential which makes the analysis clearer than the

conventional analysis of the velocity field as was shown by M.A.Biot[12]
for the.:case of single oscillating airfQil. The analysis in this section

is confined to the case, in whieh the phase angle of the velocity

fluctuation is the s.ame for all the bZades. In actual machines the blade

numbers of stator and rotor are usually different, but the results of this

section will be useful as an approximation, beeause the difference ofblade

numbers between stator and rotor is usually small in actuall. machines.
             '            '                                                            '

1.1.2 Fundermental equations
                                              '     In the Euler's equations (1),(2), we assume the fluid is incompressible.
               '          b,.vz . .. -}gV3sx . if3 e,sVx --f 8iP+; az d,

                     '          g,V3.y.{D;;?f.th+v,gDLStY,t';=-fS"-a, (2)

we'divide the velocity Vx7 , VT} into stationary components Us , Vs and

non-stationary components M" , ZZdr .

                   '                                           '                        '     vx= Usr "d (3) Vu= VstV4 (4)
F.urthermore we write,

     Vs=Vt ctS (5) Vs=trS (6)
where Utd , VAr , Lts, Z/rs (( V" . If we neglect the small quantities of

higher order, the Euler's equations may be written as follows.

  (e, der tv aO.L4`) . [o-b, ("d' cks) . Vs ,)7""t Vd ))Ja`)

                          '                       .(uoa."s)= ax 1 (,)
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   (De'Ttt"7.UD`).tld).[J-aat(lla'Zlsr)tLZsaO,,2tdtuda).LtS)

                          .( v- ta.VS ) = A3 (s)

Then the acceleration dZz , Cls may be ,divided into three components.

   Oa.:t!d.vt)zad=a.d (g)'tttVal-t-vt).trolaAtid (io)

            Eill(upt•pts>f vs:]Vptd + vd {}/Ys---- a.ds (ii)

            a-D--u(v4'Vs)f as i};V/d + ud a`2tSSVS =pt;ds (i2)

    uos2t-!i"S.a.s (i3) u))--Y-S---a7s (i4)

where,

       az= zazd r a7dg t azs , aa = atid f alas f acrs

The aeceleration components axd, au4 are due to the non--stationary

purterbating velocity lld , Zlra , components esxs, ays are due to L/s ,

 Zlts , and axdg ,auds are due to both stationary components Us, Usr

and non-stationary ones tptd , 22Ar . Since we are interested in non-

stationary components only, we take the aeeeleration components except

the stationary components into account.

l.1.3 Acceleration potential
     We consider the acceleration potential Åëd defined as aepd/OZ=ata ,

  e)(PA!ez-= tluo( for the acceleration components dud, c?gec and the

acceleration potential (Pas defined as ()`Åë?ds!02=0xds,c)4?ds/eg=AadS

for the acceleration components drxds , Crblds . Then the equation of continuity

gives l72 ipd =O . Let us consider the function 4e4 defined by the

equations; jVd !ou; apea , -- avaloz = aad , then the function
satisfies the equation 17" ?}ed=O. The complex potential rnaybe constructed

-3-



in terms of the above mentioned functions Åë4 , 2Ir4 as follows

             W4= epd t2Ztrct (15)
Then the function Wa is analytic so long as the Euler's equations and

the continuity equation are satisfied. This fact is remarkable in contrast

with the fact that tlje complex potentiat in a velocity field is analytic

only for irrotational flow. For this reason, the acceleration potential

method can be the most powerful meaning for the analysis of rotational

flow such as the non-stationary flow around blades where the shed-off

vortices exist. On the other hand, the acceleration potential Åëds does not

satisfy the Laplacian equation, sowe must use Eqg..(11),(12) direetly as

the fundermental equations. Between the fluctuating pressure 7b and the

acceleration potential eA , ipds we have the following relation.
                     '

              P= --S(ipdftpdS> ' , . (16)

1.1.4 Sinusoidal gusts

     Consider a cascade of chordlength C (= 2 ), blade spacing t
stagger aS in the Z -plane as shown in Fig.O at the comrnencement.

the cascade,we assume the gusts, in which the velocities Zi7- , Z17cr at

are given as follows ( for the n-th blade )
     For sinusoidal gusts inZ -dtreetion
          v.= -u . a. e.s.p "w(?- -2it'-fillZ51ie!ootdnr> )

          Vu =o ,
     For sinusoidal gusts in Il -direction ,

          tZz =. Z7'vr, ..,,i, (j,,., (T.-. Z""):l'aA]-')'N ))

Where we assume LAo(<V , ZJro<<V , and V means the velocity of

main flow with an angle of attaek tB • (Fig.i)

 '
For

)=-Do

(l7)

(18)

the
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1.1.5 Conformal mapping
''

 Both the singular point method and the conformal mapping method are
applicable for the determination of the acceleration potential for an

unsteady flow. We take the latter method, in which the blade surfacesare

mapped.to a unit circle in tl -plane. The mapping function is;

   'z=(ihg)[e-"eo7 22,-' : r,' eir2p7 Sti-il gi.. }S-i ) (ig)

where
           Zibrtd --' taJn t• buKE (ig-i)
                           '                                                      s      g.=7/r!t-ooDstzbuJZ-'-wh',ct rKz2-&Zail'E:li5{gl!-- (ig-2)

                                                  '                                                         t
The mapping constants Oe and 2 are determined by Eqs.(19-1),(19-2). By
using Eq.(19), the cascade in the Z -plane shown in Fig.O at the

commencement is mapped to a unit eirele whose center is at the origin of
the ir5 -plane. The locations z=!rbo in the2•-plane are mapped to the

points t-eE in the a -plane respectively, and the leading and the
trailing deges ,4 , B are mapped to the points t'- e2ct(A',B') in the

 4 -plane (Fig.2). In the latter part of this section, we will represent
the complex aceeleration potential in the Z -plane as a function of 4 .

1.1.6 Acceleration potential ipd due to non-stationary accelefation

      components azd , aud.
    The non-stationary acceleration potential 9Pd due to the components

axd , C2gol may be determined independently of stationary velocity

components. ,i.1.6.1 Boundary condition on the blade surface

  A) In case of sinusoidal gusts in --direetion

From iEqs.(8),(11), we obtain

      vrz=Urcts."d '• (20) Vl=21TstZrd (21)

Here we divide the unsteady veloeity components l,Cd , Udr into two parts

as follows. For the O-th blade, for example,
                                                         '                                '
    (I) Udt= or, eh,lbfJ'to(("-' S)), ZZdrt =O (22)
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(Il)
b(d2= bea- t(e e,s-lp t!rj`o(T- i}))) e,nyda = bEtrt

(23)

As the acceleration for the flow (I) equals zero everywhere, it derives

no aceeleration potential. So in order to get the pressure field it is

sufficient to take only the velocity field (1!) into account. The boundary

condition may be written; '

             vru =-5Vz (24)
                   '                      ,
Also the stationary components satisfy the boundary condition;

ZJ'Ts = - tB ( E)' d• 'ctts) (25)

The boundary
Eqs. (24), (25)

eondition for non-stationary components may be derived from
 as follodes.

vrd = -B ezd (26)

By using 'pt "9 . , Zldr2 ,, Eq.(26) may be written as

' Vrpt2

The

-- B(
accelerations

ad2 . ao op {i to a- 5>] )

azd , agd may be written with Lld2 , brd2

(27)

as;

The

ti za

   a7d

boundary

= e"d2

= azsrd2

/or +

/ci)T .

condition for

V O"d? /az

axd ,

v avd2 /px

acrd is;

(28)

(29)

avd = -- sazd (30)

The unsteady quantities oscillate harmoniously with the same angular
velocity aL) . They may be written ; czet2= 6rZ/}t2 ea`OT, ltd2= zTZttz ea`"? ,

 axd=d'1'zd ej`Ot , aad -- a'-tiaeje"T and so on. The quantities b-c-d2, ZiFd2,

  b'tzd , a-'zd are complex ones with respect to j , and independent

On time ' ?' .
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Then Eqs.(28),(29) give

      a.a =jto ad2 . vaa-dz/px (31)
                     - --b      a'-7d = jo Va2 + VaVd2 /ez (32)
   '
The flow infinitely upstream of the cascade is given by Eq.(17), which
results in ' L-iCi2= ilat2=o at x=-OO '. Considering this condition, we

rnay integrate Eqs.(31),(32) as follows.

                   '     u--d2(z. ti); (t/v ') eep c-d'eo xZcr)J[ill a'-xd (s, 7) ejWjd} (33)

     ZEd2 (z, u> = (tZu ) eiyp C-d`boZ!U >J(l i:(jr6M (s.u) eJcoSU, dg (34)

                                                 --.- ---The boundary condition (27) is then written with ata , a7d ;
                               '                     '  (i!v)e-iS"Zf-Z.a7d(s,o)eiStjdj .(plu)e'-JS`ZJ.:a-th' r;,o)e}St}ds

          +s u, e-d'StZ to (.1 -<z.c- i) (3s)

                                                '
For -'IS2 S; 1 , Eq.(30) may be used for the caluculation of Eq.(35),

which results in;

                                   '
    Je-.i (a-gd(s,o) .P a--pt (s, o)JejSe}d}t s a. u'-- =o (36)

Equation (36) is the boundary condition of the velocity described in

acceleration, and sufficient for any location on the blade surface to

suffice the boundary eondition, under the eondition (30). Though we
confind our attention to the O-th blade, it is easily understood that Eq.-

(36)is the only velocity-boundary-condition for arbitrary n-th blade if we

regard the periodicity along the cascade axis.

   B) :n case of sinusoidal gusts in .y -direction •
We also divide the unsteady veloeity eomponents "d , V7d into

                         '  (I) bRd,=o , V7dt= vro e--1) i'j`o(T-'v-'U-)) . (37)

  (II) ad2=ad , Vd2= Vd- V. e.kP ijo((N- g)) , (38)

                              '
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Since the acceleration is zero for the flow (!), it is suffieient to take

the velocity fieid (!T) into account. The boundary conditions are;

   For the velocity

              '
      ZJrd2 +s ad2 + VTo e4`p Zj eo (T- S! )] =0 , -1 S •Z S1 (3g)

   For the aceeleration

         aud=-6qxd ) --I SZ 5/ (4o)
The aeceleration may be written with LId2 , ltd2 as;

       dz4 = 0ptd2 /O t- -+ V 0ad2 Za.z (41)

       aud =)Vd2 1ar +Ua6trdz /ox (42)
                                       'The equations (41) and (42) are the same as Eqs.(31),(32), which lead to

Eqs.(33),(34). Then the boundary eondition (39) may be written;

   ci/u> epd'SaJ.S'a"-ad(},o)eJSe}dg t (6!u) e-d'S"J-;a-xd(},o)g'Seis

                 +v. e-}StZ.o , -/s.zs/ (43)

Substitution of Eq.(40) into Eq.(43) yields

       S:de t di-Jd (}, o> .B a--.4 (s. o)3 e d' St SAs t v. O = o (44)

1.1.6.2 Singularity of acceleration potential at the leading edge

     In the flow around the flat-plate--blades whieh satisfies Kutta-

Joukowsky{s condition at the trailing edge, the velocity at the leading

edge becomes infinity. Since the velocity field is singular at the leading

edge, the acceleration with respect to time may be Regleeted eompared with
          'the acceleration with respect to space. Hence near the leading edge,

                                                    '                                                   '
                                    .        a---pt =jip'-d /?Z =VactdZ/0Z (45)

-8-



        "--yd =-a'tt-{;pt 1)z = V02rd2/)X (46)

                   --As the velocities Lt"2 , Ztdz beeome zero at Z;-'OO ,the flow
               --. p-.represented by ad2 , Zlrd2 is thought to be irrotational. Considering

this and the equation of eontinuity, we obtain

                    .                                      '        )'ip-4 /au =v e"d2 /aa (47)

        0iiJF./Ou =•-V)Vd2/)V (4s)
Hence,

            - t--           (1ut+LEiZzar = V( ad2 -•e Vrd2) (4g)

Equation (49) shows that the complex acceleration potential isproportional

to the conjugate complex velocity near a singular point. In general, the
complex velocity of the flow around a sharp edge at Z=-1 maybewritten

                                           -.L           Ua2 -2 ifa2 = k, (Z.1) 2 (so)
                                                                       '
where Kt is a constant. Using the mapping function (l9) we may transform
the region in the vicinity of tbe leading edge ( Z='/ ), Z-- -tt reie ,

(r<(1 ,osSS2n) into the region in the 4 -plane,

      4= -eid t r'erp iZ(e'+ ct t ;itrz2 )), (r'<( l. 0.(-e"-<. Irt)

So Eq.(19) may be written in the vicinity of the leading edge ( Fig.3 )

                                        :          Z - = K2 e•v? 1- 2( ct . 7r Z2 )) (6t e2d)2 (si)

where ICr2 is a constant. Then the compiex acceleration potential in the

vicinity of the leading edge may be written;

     g-hot + 2 ZiedT = U Kt ki22 e4,tp Z'Z (ctt7ti12 )-7 (c t eDct .) -' (s2)

That is, the acceleration potentiaZ has singularity of 1-st order ( order
of 4-1 ) at the leading edge.

                                  -9-



1.l.6.4 Acceleration eomplex potential

     The boundary conditions on the blade surface are shown by the same

equations (30) and (32), for sinusoidal gusts in z and y direction
respectively. Therefore the boundary condition for eomplex acceleration

potential is expressed by

                 '                          '          ig 4)A - Vttpc2m.Åë25. .,' -lsz<-/ . (s3)

!n order to get the complex acceleration potential function [10],[11],

which has a singular point of Z--st order at the leading edge, and whose
                                  'imaginary part with respect to iL is eonstant on the blade surface in
the n -plane.

                             '                      '      'Vv'(4>= l(4- eict >/( ag . e2of> (s4)

Then the eomplex acceleration potential may be written ;

       iZ7dc4)= (it ZB>A w'(ag> (ss)
                                                      '                     '                                   '
where A is a constant, which is real with,respect to .Z , and complex
with respect to i . writing the real and imaginary part of ii7bt with
             .respect to L with (2d , ZPrd respectively, we obtain ;

      6Åëd - zPra = -.(1t 32> A lma3I P(T(4>) (s6)

                                                    'which satisfies the boundary condition (53) on the blade surfaee. The
                                                      'complex acceleration potential iVar defined by Eq.(55) also satisfies all

the other conditions. The condition at the leading edge ( singularity of

1-st order ) is evidently satisfied, as the function W(4> is defined
by Eq•(54)• The complex acceleration potential ftTd satisfies also the

Kutta-Joukowski's condition, for the aceeleration potential should have a

singular point at the trailing edge as stated in section 1.1.6.3, if the

flow turning the trailing edge exists. The condition whieh should be
satisfied at Z---C>O,namely, WdnO at l=-OO, Will be adjusted later, by
sub tract ing the value of Wd at Z=- 00 ( 4a -eS ) from Eq. (55). The

constant A cannot be evaluated from the boundary conditions above

mentioned, but from those of veloeity, i.e., from Eqs(36) and (44),the
value of A can be decided. The upper limit of integration in Eqs.(36),

-10-



(44) i.e. the point Z---i should be eonsidered exceptionally, since it is
a singular point of acceleration potential. Eqs.(33),(44) may be written
for -- DO <X<-t

    a--d2 cz) = (1/v) e-J'Se2r

      ,rsÅë-A. (x) - ad (-oo)} e}Sti-- u'se J.;. ip'.- (i) - Åë-a" (-pa)} g'5"d)s ] (s7)

                       '
    Yd?(z) = clzv) e-d' kZ
                      ,      x t{ ipA (z) -- iiat7 c-Do)}e}SeZ- ,}'.srtJl-t,,/, EEar rs) -geieo.>i eiS"jLdg ] (ss)

Equation (49) is valid in the vicinity of the leading edge.,Hence, for
  o < 8 (< t we obtain

   "'-d2 (-t+8)= L-(-d2 (-t-8) --- fdid (-I-S) -- ipd rVt8))/V (sg)

                                      '    id2(•-1+s) = Vd2 (-t-s)- [liidr (-1-s) -- ;iiil (-/+s)]/Cr (6o)

Substituting Eqs.(59),(60) in Eqs.(57),(58) we obtain the velocity on the

leading edge

  '   fid2 c--l.o> n (/1v) ejStx

                                       -t-o ,      (iep. (-ito) - di, ,-po)} e-iSt.- js. S.. sÅë-d' (;)- ip.("oo)ieS.e}](61)

    'v-d2 (--t+o) =-( t/u > ejSt.

                                     -I-o     Cl ut. (-t.o) '- ii7d (-oo)} e"iSt•- istJ- .:{V4(s) - 4i.i (-oo)) eiStd}g] (62)

Then the boundary conditions (36),(44) will become

        '  tS ii74 t-oo) - s('J'bd (-oo)2 - S ipd (-tto) -BÅë-4 (-i.o)? -7 e'-iSC t i st x

  J ;6-08 ii}a (s> - Bc'A-"d (;)}- YljE4} (-oo) - K3(7;a (-oo)}JejS"}ds . BLteV =o (63)

  tf i\id} c-oo>- gi 4;a (-ov ).S- - 3 aijd (-i -t-D) - B s'A-d (".t.o) .l• ) e'd' S' + d' st x

                                -11-



    S--.t.'08 2il4r(p --gs-2'd(pf - {ii?A (-ev) -- i3 ad (". oQ)}JejStdSS •t- u7oV=o (64)

Equation (55) gives

   . ig -B Ei>d = (/. B2> A- .Tmag E L-t-J (4 >J

where the terms of higher order than iBZ may be neglected. Then from Eqs.

(63),(64), the value of A becomes

    For sinusoidal gusts in Z -direction

      --- -      A= 5aoux
       ( { Jmas iV (-tr6) - Jruai i7"ee) } e-iS-t-u'StJ-'-,/."iO!iMezr W-(rp -Z he7fi"(-bo)}ejSat}IZ(-6/s)

    For sinusoidal gusts in .y -direction

       .       A-- V7oDx

                                      'l-o        ffly w--(-+o) - J]Aov M(-co) S e'i`-n a' stJ- atut2g N-cg) -l.v wSc-oo)?gSsig l-t(66)

                            A. "VLet us assume the constants Ax , A7 defined as follows;
    for sinusoidal gusts in X -direction

         - eL         i4=BC,tbV Ax (67)
    for sinusoidal gusts ih Y --direction

         - .v     .A= V7eb' A7 (68)
Then the acceleration potential Åëa will be

    for sinusoidal gusts in X -direction
                                                 t -4     , gbd = B"o iT Arx i Zizae i7(z) - sDeca7 iVcx)j ed"` (6g)

   for sinusoidal gusts in Y -direetion

      Åëd `' VeUA'"7iklza2 "(z)-6bug iltx)JeiWT (70)

                   '
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1.1.7 Acceleration potential (bds due to crossed acceleration
                                                           '      components aras , ards .

     Unsteady veloeity components CZa , VAr were determined in the
previous section by Eqs.(22),(23),(33) and (34). To begin with, we will

determine the stattonary velocity components.

1.1.7.Z Stationary velocity components ' pts , Vs
                                        '     The boundary condition on the blade surfaee may be given by Eq.(25),

where the term Bus may be neglected, since Bas(<PZT. Then Eg.(25) maybe

wrltten;

              Vs= --PV (71)
                    '                                                            '
The complex conjugate velocity Slls satisfying Eq.(71) may be written;

                                 '     S?s = us-t Vs S As Z iV tx)- W"' c- oe)) (72)

where i- t-'1(2) is given by Eq.(54) on the 4-plane. The constant ns is

given by

                                                                      '         As = BV/ Jpmas [ Ii7 (o) -- iZT (- ov )J (73)

It is easily seen that Eq•(72) satisfies Eq.(71), stnce j7ntf Wcr) remains

constant on the blade surface. Equation (72) also satisfies the condition

at z =- oo , where pts , Vs should vanish.

1.1.7.2 Aceeleration poten'tial St?bts

     The stationary components tZs , Vs may be considered to be
irrotational as above. But the non-stationary components ptd ', ZtA are

rotational. If we put

        J "g lay = a trs lo .x . Dord !b :; = ebnyx/o v t- cc.)d

into Eq.(11), we obtain

      azds = b/Jx ( ad-cts) + O/ ex( cr4' Vs ) t Vs ald (74)

-13--



where wa is the vorticity of the non-stationary velocity components.

Integrating Eq.(74) under the condition (Pds=o at .) =-Do, we get

        ipds= ad•"s t vd•vs +J-: vscod dx (75)

The second and third term in the right hand side of Eq.(75) have no effect

on the resultant forges on the blade. It is apparent that the term erd•Vs

have the same value on up and down surfaces of the blades, and the

integrand bes•Wd of the third term is continuous across the blade
surface. So the acceleration potential components related to the term

 Vd,Vs and Vs•CCU have the same value on up and down surface of the blade,

which implies that they have no effect on the resultant forces on the

blades. For brevity we wilZ consider only the component ad•Us . The

stationary velocity Lts is given by Eq.(72) and the non-stationary

velocity "d may be written
    for sinusoidal gusts in Z -direction

         ud= (tt BA'V. z) a. op iito(r- trX)j (76)
                            '                                    '

    for sinusoidal gusts in y -direction

          ad= ero A""7 Z eop iito((h-i>J (77)

where

       T . ifa? arct>- Ji}.tc E7(-oo)]ejS`Z-a`oLf-2t]zaedi(s)-Z}te,0il7(-ec)J(e}Sed}s(7s)

Consequently, the acceleration potential component' responsible to the

resultant forces is

    for sinusoidal gusts in Z -direction

        edg'3ereZ7:lk.:il.:Ww---(i))-.itu7-.7-O.O.>>ii eisepi2to(r-S!>j (7g)

    for sinusoidal gusts in 1i -direction

                          nv i w- rr ) -- dir- po )J •-.
                                              A7Z e,vp id'a)(r- Sf>] (80)         9Pds ta B Vro b xuai i )vre) -- iv(-oe>T

-14-



where we have neglected the smailer quantities of order S2 . If we

compare the crossed acceleration potential Åëas given by Eq.(80) for

sinusoidal gusts in Y -direction with the unsteady accelerationpotential

  (Pd given by Eq.(70), it will be seen that the crossed acceleration
potential (Pds , which is an order of BUToZT , may be neglected as it is

small quantity of higher order in comparison with the unsteady acceleration
potential Åëd , whlch is an order of ,2/7oZT . For the case of sinusoidal

gusts in .X -direetion we must retain both of those two components given

by Eqs.(69),(70) sir}ce they are the same order of t9eleZ7 . In the actuai

machines, following Horlock [8], the value of B"e will be comparable
order as the valtie of Vo if the angle between the blade and the direction

of the wakes from the upstrearn blades is small. That is the reason why we

retain the components of order BtZe for the case of sinusoidal gusts in

 z -direction. In concZusion we will consider next acceleration potential

components relating to,unsteady forces on the blades.

    for sinusoidal gusts in X -direction

           ip= Åë4 (81)                                    tt                                      '                                             '
    for sinusoidal gusts in y -direction

           Åë= Åëd+ÅëdS (82)

1.1.8 Unsteady pressure distribution on the blade
                                                      '                          '     The unsteady pressure distribution responsible to unsteady

    for sinusoidal gusts in X -direction

      ib = - Rp a.U IA""x t id'StZ/l,,7 t"(e) -- ll7r-ov)).ZI ' Z2e]7te'L-')cr)- "c-oo))

   for sinusoidal gusts in Y-direction

      p= --BzJ7oZT 2S7r 2,,.e filrcx)- iifc-oo>) edto.?

forces is,

eilo`-
(83)

(84)

-- 15-



1.1.9 Lift fluctuation

     lntegrating the pressure distribution given

the lift fluctuation b per unit length of span.
fluctuating lift eb will be defined as;

    For sinusoidal gusts in ( --direction

          Cb = L, / f ,tpB ao u(c!2 ) et"'rJ

    For sÅ}nusoidal gusts in Y -direction

          Cb = IJ / tf tr. U (e12 ) eJw `k j

                                  '

by Eqs.(83),(84),

 Coeffieient of
we get

(85)

(86)

1.1.10 Comparison with Sears' results

     Most of the analyses treating unsteady flows around airfoils are

based on the vortex theories in the velocity field. Those theories are

also linearized by the assumption of shed-off vortices and give equivalent

result as the present theory. In this section will be introdueed the
Sears function S(se)in order to show the equivalence with the vortex

theory. From Eqs.(6Z) and (62)

    A"'7 -- 1Sjaa2 -jt}2S.e,ca2. 1..pt, " Rz`Le -2.::l..d /..... Ye-j`t

       - Jst J--a s je2ae {ti Si;llee:,, /..s- Jet.s2 -it;ilrigll..e",iot. /.... }ejSt} ]'i (s7)

Representing the integral term by

     jr E .Sli.'.5ieha2 {'itL!211e.ki'dcl 1..s -- Zble-liE/Silei,d. 1.....}edSt}b(3

we can get for r=o , g= reZZ

     T-S..-16'( ,"iliZl - .ei'..,' )ei`"}d} (ss)

Eqs.(19.1),(19.2) give
     '     '            '                               r--i-eE.. .htt!it!!-!Zi!-Gl!( f     e2tt . eg
                           ) r.l-eE - ,ai"kSlat-D}     eE -l
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                                                        FThen Eq.(88) will be
                                                       /t
     tA= J,po( t!aIZgCcX.'-',)i - eg) e-d'SeXd.ir

In case g-O
             th     J= J, r ilir!7f-', --, ) e-iS`Zd.

        = J,po7iSSt SSeZdz tJ,poEft?USeZ - f, OOe-estx..

                                  '                       ,        r ' 'Ko cj st ) r k, ( d' st ) -- .e -i"8e/ i•s.

Since

      Jeute f'.'21,g)..-. -t, Je2`x•{2-Z-SIl, ..-,

Eq.(87) can be written

                                                 '         ,4'N7' '--. tl' -ist fXT6cist) -t- k"t (ise>j J-i

From Eqs.(82) and (84)

       p.-- fe.o eaco`- (t-z>!rt+x> A'N'r

       4 --- 2 tr f v, v ei tor S ito ( ko (a' st> . k, (i st )) 5"i

which agrees with the follbwing result by Sears.

       k= 27fUv, 8(st)
        S( st ) = S d' St C ko (i st ) r ic, (d' st ))> '-'

=0

(89)

(90)

(91)

(92)

(93)

1.1.11 Computational results

     The coefficients of fluctuating lift

X -direction are shown in Figs.4-6. The

Horlock's result [8] for isolated airfoil

  Cb for sinusoidal gusts

chained line in Fig.4 shows

. As the solidity increases,

in

 the

-17-



fluctuating lift diminishes to 112 tv 113 times as large as that for a

single airfoil. The magnitude of fluctuating lift diminishes fairly
quickly as St increases in the range of the small values of JSt (= O.O.v

O.4 ), where the phase angle delays at first and then advances in the case

of low solidity cascade. Those phenomena eannot be seen for cascades of

ordinary solidity. The lift increases as the stagger increases if the
blade pitch is kept constant. In any casie, the pararneters of blade

arrangement do not have so much effect on the phase angle of fluctuating

lift as on the magnitude. The coefficients of fluctuating lift for

sinusoidal gusts in ,Y-direction are shown in Fig.7,v9. The chained line

in Fig.7 shows the result by Sears [2]. The effects of parameters of blade

arrangement on the fluctuating lifts show a similar tendency to that in
 X-direction. We have a good agreement with Schorr & Reddyls results [7]

for lifts on a blade of a cascade produced by gusts in y-direction as

shown i'nFig.10. The induced velocity Ctd2on the blade surface presented by

Eq.(57) is shown in Figs.ll-13. They are normalized by BLZe for

sinusoidal gusts in X --direction, by vo for gusts in y •-direction. It is

one of the advantages of the present method that we can get accurate

velocity distribution in comparison with the singular point method.

1.1.12 Conclusion

     :t was shown that the analysis in the acceleration field in combination

with the conformal mapping method is very brief even for the case of a

cascade. The parameters of blade arrangement affect considerably the

fluctuating lift, suggesting that these effects should be taken into

account in estimating the fluctuating aerodynamic forces due to viscous or

potential interaction of eascades.

-l8-
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1.2 Sinusoidal gusts of different phase

1.2.1 rntroduction

     In the preceding section we have analized the acceleration field of

eascades subjected to sinusoidal gusts in Z and ,>t -direction by means
of acceleration potential method combined with conformal mapping method.

It was assumed that ghe phase of the guSts are all the same for eachblade

of the cascade. !n case of viscous wake interaction problems the

purterbations are in the same phase only if the blade spacings of the

cascades in front and after are the same. But the blade numbers of the

stator and the rotor are ususlly different and the phase of the

purterbations are different for each blade. This section presents the

analysis of unsteady lifts on the cascade blades subjected ,to sinusoidal

gusts by using the acceleration potential method in combination with

conformal mapping method., in case the phase of the purterbation is

different for each blades. It is assumed that the fluid is inviscid and

incompressible and the purterbations are small compared to stationary

amounts.

1.2.2 Sinusoidal gusts

     Though the phase angle of the purterbations is usually different on

each blades, it can be assumed that the phase of the purterbations are

the same on every 7n blades, since in actual machines the phase is the

same at least on every blade numbers of the cascade. For brevity we assume

following sinusoidal gusts whieh have the phase difference of 2Zlon
between adjacent blades and flow through the cascade with an angle of

                         'attack 5 .
    For sinusoidal gusts in z-direction
         v. = u . ", eapijto(T- 2zgtAin!tain -8 )] eesMd'

                                                                 (1)

    For sinusoidal gusts in Y -direction

     •.' . •', '' ' .' h. •.'.
         v.=v
         tt7s Zro e•s"p Ziw(r- Mtv.KL;"at )je2-7 -.P,Mi (2)
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where on is an arbitrary integer, d' the imaginary unit with respect
to time and it is assumed that Ue, V7e(< 'Z7 and iB(<i . (Fig.1)

1.2.3 Conformal mapping

     In the preceding section is assumed that the purterbations have the
same phase on each blades. Henee all thd blades could be mapped to single

unit circle on which the acceleration potential is given. In this place

the blades are mappgd to 771 unit circles and on each the acceleration

potential is.given so as to be considered the phase difference of the

purterbations. Though the mapping function which Tnaps the blades to

concentric circles is available for OM;2 , we will introduce a mapping

function which may be used for arbitrary integer o71 . The cascade on Z

-plane which has the chordlength C--2 , blade spacing t , staggering
angle r as shown in Fig.2 should be mapped to 072 unit cireles

arranged around the origin of 2 -plane. (Fig.3) Far upstream (z=-Oe ) in

Z-plane is mapped to the origin in l -plane and far downstream (.z;too)
in Z -plane to infinity (Z = OO ) in 4 -plane. The displacement of on
pitches along the cascade axis in Z -plane corresponds to one turning

around the origin in IS -plane. To get the mapping function the analytic

complex function IITr= 3 representing the through flow is related to the

flow around the unit circles with a source and a vortex at the origin of

tt -plane. The strengths 1' and a of the vortex and the source
respeetively are decided so that the variation of the complex potential

during the progression of wt -pitches along the cascade axis equals to

that during one turn around the origin in 4 -plane. Hence ,

                         '
      u/zn )( e.27) = SZ34 eZr

where i7=7tZt . Vortices and sources are then placed at the images of the

origin with respect to each unit circle in order to make the unit circles

stream lines. The unit circles are numbered O,1,"'',m-1 forconvenience.

If it were not for other unit circles, the arrangement of a logarithmic
singularity of strength (o7il2Pe'2r at the image l, of the origin with
respect to the unit circle O and that of strength-Conl2g)e-Xat the center

 42 of the unit circle O makes the circumference of the unit circle O a

stream line. In the same manner the singularities should be put at the

image of the origin and at the center of other unit circles. The

-25-



singularities in each unit circle thus arranged disturb the boundary

conditions on other unit circles, for instance, the singularities in the

unit circle O disturb the boundary conditions on the unit circles IN m--1.

To compensate this disturbance the logarithmic singularities of strength
 renlzg> eit and -(en/2g)e-`'2tshould be placed at the images 2t,. I.,•••, 4,(,.-,)

and 42t. 4pt. ••••.42t,t,.oof the singularities in other unit circles 1-v m-1

with respect to the unit ctrcle O. Those manipulations should be done for

other unit circles 1 m-1. Those singularities disturb the boundary

conditions again and the same adjustment should be repeated. The locations
                       ,   Zd,b.e) .... of the singularities are given as follows. The location

4a,b,c.",k is assumed to be knewn. Then the image 4A,b,c"•k,2of the location
        2pt, ga,b.-..keF- in the unit circle a with respect to the unit circle O is

     ! 44be..,keesel - az /•/ 4abe-•e -- al/=/

              2!*i    -<t"E!hs,,:k-s2!::-Atlm2i nye a.L) -- (tzabc-•le2-AZ)
     t 4q bc ."k eiitCZ - Ait - /4abe -• h2 -- a2 1

and hence,

                                  2LVZ '
    4Abe•-k2=ai''z51:ilft:ilLSil:.bc".heee;ptsx aaL.,/2 (3)

wh'ere

      ;, = (Ar llza .> ,4 , 42 =6L (3.1)

The complex progression 44bc... can be caluculated from the initial value

(3-1) and the asymptotic equation (15). Those give the locations of the

singularities in the unit circle O and the,. ilit}njca, tions of the singularities

                      are given by g.bc.., eO"` . Equating the complexin the unit circle "
potential thus given in 4 --plane and the complex potential iV=2 of the

through flow on Z -plane, we get the following mapping function.

                                                                2r"7 t                                              en      z = z. t (o"e"/?g>274 .(en/2g) .2"L., ZTe-2Xbj 44if.' eemeTi

            .,"2".','feieze}-Sti-SIg-ill:iii--,,,,,W,..x,,1$."i'ie'2V•d{7Sif,',S,t.eell.i!'"/r

              on-t 2Lon,           'i,`ei'bi ,`.--,{iZ".tk"-z•""'' '"'')P7 (4"

                '

                                  -26-



The distancle a of the centers of the unit circles from the origin was

decided by trial so that the unit circles are mapped to a cascade of
chord length Cv2 in Z -plane by the rnapping function (16). The pararell

displacement Ze is decided so as to get the eorrespondence of unit
circle O with the blbde on -tSXS/ , 7so on Z -plane. The series on

the righthand side of Eq.(16) converges because #,st•-h -k 42st."k

converges to zero geprnetrically as the adjustment is repeated. The

convergence is better for larger 4 , i.e., for larger blade spaeing.
For instance the eqyality X,cts..= Z;2ab-• is attained to five figures by eight

repitition for ael-.st and by five repitition for a=2•S in case pmt2 .

1.2.4 Acceleration eomplex potential ,
     The boundary condition for acceleration complex potential on the

blade surface is reduced both for sinusoidal gusts in z and or -direction

to,

              pgd -- zl•rct tsc,t-dx. (s)

As shown in the preceding section the acceleration complex potential
have a singularity of order 4"i at the leading edge in the mapping plane.

In order to get the acceleration complex potential which has the

singularity at the leading edge and which satisfies theboundary conditions
, we will define a complex potential iZr(6) which have the singularity of

order 4-' at the leading edge and have constant imaginary part with
respect to imaginary unit 2 on'the blade surfaces, and moreover thevalues
                                                 Lrr,on the blade surfaces dif' fers only by the factor eMt between adjacent

blade surfaces. In the first place doublets of momentum ."on whose axis
is directed peripherally at the leading edges /lq; in l5 -plane. Those

doublets suffice the boundary condition on their own circles but disturbs

that on other unit circles. Those disturbanees are adjusted by putting

doublets at the images with respect to each unit eiecle so as to make•

the imaginary part constant on each unit cirele. The location of the
Å}mages of the doublet at the leading edge ( ai t e2P' ) of the unit

circle O with respeet to unit eircles tnv e""I are represented by
  4!, 4.', 4J',•••• 4pt'-i respectively. Moreover the locations of the images

of the doublets at 4i with respect to unit circle Z arewritten as
    4i.t . In this manner the boundary conditions on the unit circles
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are adjusted by putting doublets at the images one after another.

Iocations of the doublets are

     g.' = a2 . eLp'

                                     .zJrm ,     4h .-. Azell"i!MX t' tgi,"--af,2i,g-pntz`12
                                               ( ,n }l. 2.•••) ma-1 )

                                          pte,     :'.,b,c,..,k,e = a2 efil/feZ .i fb.`.'i',h .-aa,4'et.r-'-'e"z

                                          'll grgtrenag+thb 'Ababi.e' 'o'f tkhei2doubiet at z'Abe is,

                                        '

                  '            Ae=1

     Ao7 = A, /i4r.'- aZ eiil'i"/ J2 ". h2. .-. o77.i

    Aab-- k, e = Aab-• k /1 4'a bc ", k - al e`ilngel 12 ( aib. bs e, `-•,kt2 )

                                             4'a,b.e is,The axial direction Dabe of the doublet at

 • le= rs'+ 7/lr/2

     g," = 2 Arg (aleilY"Z -- g.' ) - (;iTtg.)
                                            "n 1, 2) `") 077 '-1

                                  2"e,     9za,6.c, •-•• k),2 = 2Ah7 (ade iiid`- 4T.'bE..,.k )

                      - ('n " ea sc ->h) ( a" 6, b" e) -)k "2 )

Then the complex potential i7r4) can be expressed as follows.

    jiT(4) = 'z"--' ,a. x 'z""i (A, e2& e2S";'/(4-tK e2--',.-"t))

              m=D a=O
             "' /•2--it' i-"2.'-o' bl. (' ,4a,b eleab e`llioj;;/ ( g - gabe2.".V'i))

            t '2' i--' z--"'ka ii!","b(A.t,, elS"beelli"4Z/(4- 4a6. ei;l";"12) ) ... , .z]

             Astt b--O C.O
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 (8)

 (9)

 (10)

 (11)
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 (13)

 (14)
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                    O-,,-l
where the notation bZ.b b\a designates the summation except for b=a .

From the relation

                                                2n",
       ji7 ( tffont n2. cr-, 7. ootc", r) = i7( x. y) eM U a6)

the constants /U" will be,
 '
                    • 2Te7,            i".= eptd (i7)
                                                        '
                                             '
The complex potential i7(4) is doubly eomplex with respect to imaginary

units L and t . The notations i:z ,-ro"i , 1}i ,za2 are used to

express the real and the imaginary part with respeet to imaginary units
 l and } .The acceleration complex potentiaZ Wrt may,be expressed,
          '

           w"'d (g) = (/+ Bi)A liT(4) (ls)

Then the arguments in section 1.1.6.4 are valid unaltered and the

acceleration potential can be represented by Eqs.(69) and (70) in section

Ll.6.4.

1.2.5 Crossed acceleration potential components
     By simply replacing the complex conjugate velocity S?s given by

Eq.(72) in section 1.1.7 with the following representation we can get the

erossed acceleration potential components.

         s?. = As 17Cr?e') - W'- '(- tb )) (lg)
                                 '                           t ttt               tt t                                          :where jir'r4) is given by Eq.(15) with ,txe,=1. The constant As is,

       As= BV/ .Tm2 f iV't4)' iV?x=-eo)) (2o)

Then the crossed accrleration potential is,

    for sinusoidal gusts in X-direction

                       '      9t?ds= 5""'Lr .Tll`i, ffWiiriX,',i'll-!ld/,rr--e,b,,>;J ejP(r- Z'v't"";t> e2,.n7pti (2o
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    for sinusoidal gusts in y -direction

        ipds =BvroZ7 fi7 z ki fi.-ii',I'?, '- iji,',`iO.o..>ll ,ija)tr-;ISZ2!`A"')eV'"'t (,,)

1.2.6 Pressure fluctuation

     The pressure fluctuation relating to the lift fluctuation is,

    for sinusoidal gusts in x -direction

       P . -- fsu.b tA'". k2 ("(.,- P(-po))

            t'gk; ( pti)- t-L-)( eo).)/.z ,,k( Ivr2., -• va ',....) >} e-iS' t TecPWT (23)

    for sinusoidal gusts in Y -direction

                                '
                                               1 .-        fo . -r if.v A'V7 ke; ("--,.) - it,.po)) e r`O` (24)

        '

The lift fluctuation is given by the integraton of the pressure ',
distribution. The fluctuating lift coefficient Cu is defined by Eqs.
(85) and (86) in section 1.1.9.

1.2.7 Numerical examples
   A) Sinusoidal gusts in z -direction
Figs.4tv6 show the fluctu'ating lift coefficients Cb for '"?=2 ( in case
the phase of the gust differs by 1'"t between adjacent blades ). The broken

line in Fig.4 is given by Horlock[2] for isolated airfoil, which is near

our results for large blade spacing. The lift fluctuation is smaller for

finer blade spacing, which is the same tendency as for onnl . For finer

blade spacing cascades the lift coefficient stretches upwards from the
value for w=o in case o"il , but goes once downwards in case 7),.2 as for

the case of isolated airfoil. Fig.7 shows the effects of the phase .
difference for fixed cascade geometry ( r=3oO , g=2•O ). It can be seen

that the phase difference enlarges the lift fluctuation and the effect

is more remarkable for smaller frequency.
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   B) Sinusoidal gusts in y -direction

The fluctuating lift coefficient is shown in Figs.8tvlO. For 7nrl the

cascade effect works so as to enlarge the lift fluctuation, while it works

contrary for i777=2 . This effect is more remarkable for smaller frequency.

The broken line in Fig.8 shows the result for isolated airfoil [3]. In Fig.

11 can be seen the effects of the phase difference for fixed cascade geometry.

The effect is the same as for sinusoidal gusts in 2r--direetion. By the

way, it has been checked that we can get the same result for on.1 as the

preceding section by putting ,an=l in Eq•(17).

l.2.8 Conclusion

     It has been shown that we

account the phase difference of

for the case of the same phase,

and a complex potential.

can
 the

 by

analyze the lift fluctuation taking in

 gusts in entirely the same manner as

only introducing anewmapping function
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1.3 Applications to several flows

1.3.1 Introduction

     In the preceding sections we restricted our attention to the

sinusoidal gusts, whieh had relatively simple boundary condition of
acceleration potenti41 on the blade surfaces. This section treats the case

of Kemp-type upwash, blade oscillation and transient flows in the same

method. It is assumgd that the fluid is inviscid and imcompressible, and

that the disturbances are again in the same phase on each blade .

1.3.2 Kemp-type upwash

      Though the boundary conditions for acceleration on the blade

surfaces are utterly slmple forsinusoidal gusts but they are not so simple

in general. To show the way to treat general cases we wi!1 consider Kemp-

type upwash in the first place. This flow was Firstly treated by Kepap &

Sears [1] as the elementary velocity component induced by adjacent blade

rows when they studied the potential interaction problem. The flow is

characterized by the velocity disturbance on the blade surface;

                                                                       '
        VrA= vr, e.s-lp ti(•w7-- ieAzIV)) . (1) '
where do is real and i" is complex( i"= cftJ'k ). The case pteo
corresponds to the case of translatory oscillation of the blades, and the

case ,a"at to sinusoidal gusts. It is assumed that the disturbance
has no phase difference between adjacent blades and that the blades have

no stationary lifts. The acceleration on the blade is,

        a7d;9.etu,s).Sie ,

             = d` (a7 -- ,a> vre e}(to`--AXIV) , (2)

where V- designates the mainstream velocity. Hence, the boundary

condition for the imaginary part ?7' of the complex acceleration

potential may be written for ,"vO

      2x = -J a7d dz
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    = 1' c ,sde,... fi. -D-j ,F.S.bK`'. ]xzrveegZ(a•oiili•x-}ia;•`ilSx)ea`"`'` (3)

The acceleration potential gb is given as the real part of the
analytical complex function iir whose imaginary part ?v` satisfies

the boundary condition (3) and has finite value at zs-oo. The cascade

shown in Fig.O at the commencement is mapped to a unit circle in l -plane

shown in Fig.2 in section 1.1. by the mapping function represented by Eq.
(19) in section 1.1. The acceleration complex potential Z7 is given in
 4 -plane. In the first place are given the complex functions i[r, -'" 9t?,t

 itK , i-J'2=gb2tX4'72 whose imaginary parts ZPtr and ?va2 satisfy

                                  '       zrc=efZ ceo TSz , 4s =eVEXab vSz ' (4)

Putting higher order singularities at the origin of 4 -plane, we have

               po       i7 os, = .'2-l (,4 o".z .I B4et,2 >/4e (t,p,=J. 2) (5)
              e=t

The constants Ata,2 , Bn,2 can be given as the Fourier coefficients
of the imaginary parts V.. on the blade surface. [2]

      A,',tz, } =-(,h)J.2nf s3iX;:,z5..z1,,2M2,,,

      gl`. } =-K f.2"f e.6'a.l `,2,.,D, #: } cee ee ds

where 9 denotes the deviation angle on the unit circle and z denotes
the corresponding location on the blade surface in 2 -plane. Ifwe define

      w--.;z( g- e;ot)/ (gt eict) = Åë. ft Z. (6)

a"d w-.. .... sAk w.t 1(s..5` fi" , '-J)"j saS.to x2 •Zl

                 xu7eU(iU,-,i ia2).} edeoT (7)

the acceleration complex potential iZr satisfies the boundary condition

on the blade surface. The constant Ak is real with respect to i and
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will be fixed from the velocity boundary conditions. The term Ale ICrc

represents the singularity at the leading edge and has constant imaginary

part which represents the constant terrn in Eq.(3). Next let us determine

the value of Ak from the velocity boundary condition on the blade
surface. Integrating Eq.(2) we can express the velocity purterbation as

                                    '                                              '    '
        ptd -.-. ci! v)•e'iSeZ S-;pa( a7c}L7) eJ'S`}dj . (s)

                                                              '
where ,St= 20Jii; (, c=.? ; chordlength). The velocity purterbation on

the blade surface is giVen by (1) and equating with (8) gives theboundary

condition ;

     f-l' 4"-7 (l.o)eJSe)d} . tr.oe-J'-gtr`K` , (g)
                            tt
                   s-where 4i = ditiYedeO`. Integrating Eq.(9) by parts taking advantage of

the relation aor=--)V!oz and considering the singularity of qLce at the

leading edge , we find
                                           '
   Ak = z,ny.b' z'e-j`vL'-Z` -- ((sT{ei)llii-, -- t ) -- ,i sTi{i;il::3-:. :)l KU('- eec,-c-t)

     r serc-co))e'd'S' r ist J. -.i'O( ptt cg> -• tllt;(-oo)>eiS"}d;] -i /(-rc (-t) r 41. (.- oo ))

                    -l.o ,     x e-iSt tistS,.(2F2(g)"-4b)(--oo))etStd);SjD x t(-?tee(-o . 9.(-oe))

                    -l-o      A e-j St .jse J. v. ( 2VE (;)- ?Pe(-oD>)) eiSe)`-t ; (io)

The fluctuating pressure jb is given by

   p=-soÅë =-- JoRL i'AkiCTc r fe,-f"St`Åí..a.-i.)-d'tpm.hk.jL

                xvti. (", -} W2 >) eito C' (11)

The fluctuating lift is known through the integration of the pressure

distribution. Normal velocity fluctuations have been treated above, which

correspond to sinusoidal gusts in J -direction in the precedingsections

Considering the crossed components of the acceleration potential we can

treat the Kemp-type upwash in X --direction. That is,thepararellvelocity

.
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disturbanee

                                                                    '       v. . v' + "oei(of-i`X/V), v7 =o (i2)

inflows the cascade with stationary angle of attack B . The unsteady

component can be treated in the same way as the above analysis and the
crossed component cap be treated in the' similar way as shown forsinusoidal

gusts in Jy -direction in the previous sections. The pressure fluctuation

related to unsteady forces is,

                       ,      Jlo = '" .f f ,4 kz ft2 ( iCT7ecz) --' i7c (- oo )) -- i3 "o U' iE}L f (iTi (z)

          - fiT, (- oo) ) -- i ( it2 (z) - th2 c- eh) ) -} tp a.U e - S'-"Z

                                                      -5          j(l,; ("e cr)- il7c (- t)o) >/ (]in2 ( ii7c ro) '- IVIe (-- oo> ) ) e di to` (13)

                      '

where Akz=--JSY/OAk and the constant i4k is gi'ven by Eq.(10). By

putting i"=e,) we can see the results shown by Eq.(11),(13) agree with
those by Eq.(81),(82) in section 1.1,the results for sinusoidal gusts

in x and y-direetion respectiveiy. By taking ,i4=)o we can get the
results which agree with those for the translatory oscillation of the

bl•ades shown in the next section.

1.3.3 Translatory oscillation of the blades

      ( uniformly oscillating flow )

     Though we can analyze the unsteady lifts on the blades under

translatory oscillation or on the blades in uniformly oscillating flow as

the limiting case ,X,tvO of above mentioned Kemp-type upwash. We can show

another way without Fourier series. The velocity disturbance on the blade

surface is

              l,ny4=VT. ejWr ' (14)

The acceleration due to the disturbance is,

                            i-. ,•            Aiat=ieL) U7e eatot (15)
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Henee, the boundary condition for the imaginary part 21,- of the acceleration

complex potential will be,

                       l .-        u,,-;jco ub eato`•x t (,ot.dte. (16)

We will introduce the following complex potential W-' 3 whose imaginary
part ?pt3r satisfies Y3=Z on the blade surfaces.

    w--3 = (2 1g) Z7 ((et e-E) !( 4- e'E)J = gb. t- z eLr3 (i7)

                       ,         '
Considering the singularity at the leading edge, we may write

                                     - ..     w=A' wc +jeo ao "3 eetot , (ls)
The acceleration complex potential 1if satisfies the singularity at the

leading edge and the boundary condition (16) on the blade surface. The

boundary condition on the blade surface for velocity is given by putting

  7"=O in Eq.(9) and be written,

      3as a--7 (},o) ejStS"} = v. o" e-d'Se (ig)

The strength of the leading edge singularity A' is decided from Eqs.

(18) and (19) as

     A' -- - vr, v- e-iSt i1-itSteiSVrzR3r(--,)- eP3;bc-oo)) e-}S"-}stJ 'ase( 4t,r,s)

          - ui3r (-oo))diSt }a x } ) x (( ?}E(-,)- 4te(-oo)) e"d'Se-istJ--.-2 ze. (g)

                                                             '          --- 21-r.(-D.>)eiS"}d})-l . (2o)

The pressure fluctuation on the blade surface is

      lb = - J' iihL f A' ( e'v"< cz) - i(ic (- oo))

                   t d' st vroV( wN3 (x) -- fo3 (-- DQ))] eitoF (21)
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In case that the mainstream velocity oscillates around mean value

sinusoidally with time ( uniformly oscillating flow in x -direction ) ,

the boundary conditions on the blade surfaces are similar to that for

translatory oscillatton of the blades. We can analyze the lift fluctuation

due to the flow by considering the crossed component of acceleration
potential and by making use of the complex potential jV3 . The result is

summerized as follows. When the unsteadY flow of

           yx=Vt ecoeitot" (22)
inflows to the cascade with an angle of attack P , the corresponding
pressure distribution relating to the unsteady forces is

     7t) = - .f) I' itig( abc (z> - iue (- oo ))Al t J' s tt. zr st

           pt ( b-c23rx> -' lb3(•-oo))} t t3 eioZ]' RtL S L'-v'crz)-' jl5e(-cto).}

           / Z-omi S abcco)- W"eC-po)} ) eitot-
                                                                  (23)

where Ai =-(56te/ao) A' (24)
                              'Comparing Eqs.(12) with (22) we see that they agree by letting iexeo in

Kemp-type upwash in z -direction.

1.3.4 Rotational oscillati'on

     Consider the case that the blades

of attack p .

                           s-                6 = ". eetot

around zero lift angle of attack. The

surfaces is

                        .              v.a-xP s VxB .

and putting l2rz= - u'tad 2 Yy'

oscillate rotationally with angle

                             (25)

boundary condition on the blade

 V?

Vd gives,

(26)
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                                      -•-            l,td= -• (Z7-.d' cvz) Be eato` (27)
                  '
Hence the boundary condition on the blade surface is,

                                           s --         btyd=-i`o (2Vti`or) VBe e"`O` (2s)

Therefore the imaginary part of the acceleration complex potential should

satisfy the followi4g relation on the blade surface.

       i?v' =}StVs.`2u.2 -22St2 V"Boz2 t da,.op. (2g)

The complex potential to satisfy the first term on the right hand side of

Eq.(29) is given by Eq.(l7). The method of putting higher order

singularities at the origin in 4 -plane can be used to get the potential
function to satisfy the second term of Eq.(29). That is,

                oo •        iV4 = ,:ii] (,44,2 -t-d B4,2 )/41Z = gb4 tz va (3o)
               2=t

where
                              2Z           A4,. = •- (l 17c ) J.                                 x? ALL.2ede

           B4,2 '-- c/!7ir) 5.2re x2 ac2gds

Considering the singularity at the leading edge, we can write the

aeceleration complex potential as follows.

    -iJ= A" w-c+2iSt V?Boji73 -si Se2,P2B. iV'( (3i)
                               '
The velocity boundary condition is reduced from Eqs.(18) and (29) to,

     -lte   J... ard G. o) eiSt Sd} . -(t-i ,st ) u2 s. e-iSt (32)

which determine the constant A't as follows.

   A't k- V2 B. ta-ist) e-d' St -- 2i St i c zt{sr c-o - V3 t- oo)) e-iSt
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           "-o  -. j st J. . ( 2k3 (s) -- ?V3 (- pa) ) ej St)d 3 } t 2L St" l( V4 c-,> - zse4 (- oo))

   xe-d'St -- d'st S--ts"( Zlt4(}) -.?t{4r (-ec)) eiS')d}IJx f(2vac.,).- 27{.r(bpo) ) e"-a'St (33)

   ' -jto J-. (4te(s> -- 21Ec-oo> >eiStY ds )-t
Then the pressure fluctuation will be ,

      7b = -- s' maL t,t5"S pmc(z> - jVcc--oo)} .2i)Se tr?B. { w-s(z>

          .- iil3(..)} .- st• s.) v2B. f N. (z) -- w4(•-oo)}) eiwe (34)

As can be seen from the examples above, the boundary condition for the

imaginary part of the complex acceleration potential on the blade surface

is determined from assumed velocity disturbance and the acceleration
eomplex potential is given as the sum of the term A'IVc whieh represents

the singularity at the leading edge and the term i7mu (tn7=itv4 ) to

satisfy the boundary condition for V . The complex potential iV," may

generally be given by putting higher order singularities at the origin of
 l) -plane as shown by Eqsr(5) or (30). In case the normal velocity

purterbation is given the crossed components of the acceleration potential

can be neglected as a higher order small quantity. But for pararell

veloeity purterbations, the crossed acceleration components are of the

same order as the unsteady components and have to be taken into account.
The magnitude A of the singularity is determined by the velocity

boundary condition afterwards.

1.3.5 Transient flows

     The unsteady flows treated so far are all cyclic flows. Transient

flows are treated in this section. It has been treated by Wagner [3],

Klissner [4], and Karman & Sears [5] for the case of isolated airfoil. This

section is intended to get the lift response on caseade bZades by applying

conformal mapping rnethod to acceleration potential method as is used for

oscillating flows.
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     Consider the case when the free vortex sheet inflows to cascade as

shown in Fig.1. The velocity disturbance due to the vortex sheet can be

separated into two components on the blade surface as follows.

          Vrz = V' , Zi;7y --. V7e (S` (UF '- •2 -l> (3s)

          vTx . U. "e 6( V7 -'X--' 1>. Uy ---O (36)
                       '
where <S' designates the step function defined by
            '

                ,,z)-I2 :.'8'

Zn the first place is considered the step gust in or -direction given by

Eq.(35). For brevity the angle of attack is considered to be zero. The

velocity llrA induced by the blade cancells the velocity disturbance and

hence,
                                tt                                                    ttttt

              v4=-- vb8(Ur --Z-1) (37)

on the blade surface. Then the aeceleration on the blade surface is,

         A7d = aVdr 1b7 t Z7 022rd /o2
                                                               '

              .-bv. S( ut'--x-1)+VVe S(Ur- 2r -'i) =o (3s)

                '

'where d(S'(x)ldz=8tx) and 8t2r) is the Dirac's 5' function. Then the
boundary condition for V'" is,
                                '                                         :

          zÅë=-J G7 dx ; (Zfndt• (3g)

and the acceleration complex potential which satisfies the singularity at

the leading edge and the boundary condition (39) will be,

      tt

            w"-' '-' A7s (r) ii77c (4o)
where Ars(t-) is a real function of time ?' . The function '
cannot be determined from the boundary condition for acceleration but from
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velocity boundary condition. In case of oscillating flows the velocity

components are related to acceleration through Eq.(8) and sinilar relations

can be given through integration of Eq.(38) for general flows.

    va (x,t>= 7 (x- ut-)t fS aor (r, C. Ur>d("jc..-u" (4i)

   '
where 7 is an arbitrary function of x-Ut- which designates the
velocity disturbance flowing down with the mainstream velocity and may be

written 7(x.v?-)=VotP(ut'-r-t> in this ease. Since the gust has not reached the

leading edge for T<o ' ,i.e., Vd=O for TsLO ,Eq.(41) withEq.(40)
is reduced to

   vrd (x)T)='(JIJ(,47s (r') a)$xc/..c.utt >oeri]e. ...ufi ' (42)

The induced velocity (42) vanishes at 2=-oo since aat!kelz..o.=o. From Eqs.

(42) and (47) the velocity boundary eondition on the blade surface may be

written for -tS2Sl , 710

    - uTo (s( zrr-x-t) ;- (J.T(t4rs (ro o`Mtli!/z. c.v(-t >dc"')c..t-or (43)

By the way, by putting cly=t-Zyejtor in the second terrn in Eq.(41) and by

assuming that infinite time has passed since the oscillation began, we can

get Eq.(8). Eq.(43) is regarded as the integral equation for ,b7s(e') and

by solving it numerically the unknown function Arsa> can be known. The

right hand side of Eq.(43) may be deformed as follows.

          s     - i' .f,` (A7s crt) gitli?C Iz.ctur, )dt'Jc. x.ve

     = -- (i/v) J,.lirsr( Ars (-Ertl'i;t-Z- .7) Di).-Y?c I." )d.2*

                                     '

Let us consider the case -l<2-Ur<J(</ . Since 4r.=an4t. on bladesurface

the right hand side of Eq.(43) equals to zero and since P7--X-1<o the left

hand side of Eq.(43) also equals to zero. Therefore Eq.(43) is satisfied

regardless of the value of Ays .Next is considered the case z-Vr<-l
 <z<t • Since esl•t}PZc =o for 2 >-t , Eq. (43) may be written

     VTo= (i!v) Sz-.i.;rO( A7s (`l:}'K2}.T)o`2.'SCtSeC'lx* )otz* . (44)
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Eq.(44) may be integrated by parts taking into account the singularity

of 2}"e at the leading edge,

   zi7o = o1v) f A7s r;L/i;Zl:'V`-2') ( 4c.7 (-t.o) - 2?L<er (-oo ))

                 -t-6       •- (t!u) Jl,,,-ve A7's (-Ei'iS-X -e)( ?)tier(x") - 4E;(-oo>>dx*} ,(4s)

                                     '
                                     'and is reduced by putting z-D'r= -1-A and -31Sl-!:'LO =Jf

                              '                  elv    ii7o = -ct!v)Jl. A'Ss ()t) (4cc(vy-i•--o)-zec.r "i.e))elL.Jt (46)

Equation (46) should be satisfied for all A>O . The value of Ziee can
be known approximately for o(2*<(1 by considering the singularity of 2Zer

at the leading edge. For O<.x"<kI

                                    it      ZItc (-t-x*) ;lt 2!S Z*-2- 4.vv 2vtZ; z*-i (47)

where
               2 ata"4Z'E e`-o ec ceD ct (tbu;2:io( + buk3s )
        b

Since Zlre

     UVo
   -- -     2rb -

The right hand

value of

 Ji.A/v ,

The constant

        za =

from which

       AYs

        Z (2 eeo2 2d -4 eeD2 2E ctn Pd . Ce7a2 42 tt>

    c-tto)=o , Eq.(46) may be written for

        4/v i       -Il, Ais (7) (n-o.y                             )-2 dor

        side of Eq.(48) should be a constant regardless
   Alv ((1 and by putting /4 Ys (L7) = d2 .)r -21 we see that

Aysty)(D-by)-Z"'dy = Åív f.' x-f(t-x)h2td,z = vf,t '-t{-stG`)l" ,,2

>

        a is given by

       ' vur, 77r(t>
              ==r Rf       ' 2 /i;               T7r(th)

      ,,,--10Iijil,ren9,,7t41X`,i.',j:.gi'

     (48)

of the
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                           Ve C•-t) Ab '
where

    bn 27ber--t)=SS.4n21e. c-i.vn)db = 2!rb ffv (so-i)

and

                   bn    AYsro>d,o=S.f,(-2ef"bere-7tlli,C..{))!Z7Ji-22)dJt=-2Ur:b"'e!.it.(;).)!rvJXrD (50-2)

  '

The value of A7's is known from Eq.(50) and by integration the value of

 . Ays is known. Fluctuating pressure then be written as follows.

        p; -s?<i= -- sp A7s cPe (sl)
                        '
In case that the step gust in z -direction inflows to the cascade with an
angle of attack B , the unsteady compofient of the accelerationpotential

can be known in the same way as for step gust in y -direction. Considering

the crossed acceleration potential component we can get the pressure

fluctuation on the blade surface as follows.

       b= -- Jp (Axs (r) gb. tBa.er ill;,r.X))i ?gtC,`i.O.O>) 6(z-vr>) (s2)

where
         Axs cr) = (6 qel :ZSro > Ays (o

                                -46•-

                        z17u;oT 7(t>
                  =-T 7,,,s) vrbl/T (4g)          A7s (7>

The value of i47sty> can be known numerically for general value of .)t.

By putting blif=,mAzs , Y=tnAA in Eq.(46) and applying trapesoidal
formula, we have
       zr ur, = -- 1!" A'ys (e7 as ) va c-i - (tm- a7) pbA) AA

               07=1

where tm21)2)"")0ti •and oo=1,2)`"') en .When the value of A7is(J)()

for y=tnbA are known,
                            on-l     , - -vvr. cl -- .E.. Afs (on64) Åë(-"1-(on-t7,)A4)A4



   B) Uniform ramp flows

     Consider the case that the normal velocity disturbance rarnps uniformly

in the entire flow region. ( Fig.2 ) The boundary conditions on the blade

surface are,

     for 7<O
              VxzlTy =O . il=o
     for ?>O
        VJxN = T! 7, , AL7 :SaiL9rU)' + ut)xVYr =tlr, , llP"= --J7aL2dz -- -zlT; •fcfbut.

Therefore the acceleration complex potential iiT is written as follows.

          IV= A7e'We '- O!T,)VVr3 (54)
where A72 is a real function of 7 . rn case 7> tNt , et7r = t,

  cpty .D . zlN= mu and hence

              " ---.              W= A72 Wc (56)
The function A7k is determined by the velocity boundary eondition

the same manner as for step gust. The velocity boundary condition on the

blade surface is

     for o<?< 7,
                    -      ( 7! 7, ) = - f S','( A7e (ro ;gi.gFe/.z.c.vt, ' (t/T,) ob"l-:5" 1z-- c.bTtJt )d r,]e.-. z-v7.(56)

     for T>?
         / = - i' .(.?'(A7z(T')get /z=dt.ifT,-(t!r,))"i.StG3/x.drzrTt)dTTt)e=.z-vt-

          - f-<;, A72 (r') illiil?i lx= c.zrrt dvt ] c..-.vr (s7)

putting T,=2!lt 2!-X+r and considering the values of 4{cr and iT3

we ean rewrite Eqs.(56) and (57) as foZlows.

     for xtl-Ur>Vrt
     (z-pr+i)!e --: Jl,,,:tv,( t47? ( ;llll"Z+tr)));.S.tZCI... - (t/r,)ta.`P3rl.. ) et.r* (ss)

     for ztl-Ue<O(ht
                      -t        1 = •- cl1v) fS..v?. (,4r2 (,3{ :;Z tT) ggf/C1 ,pt, >dx*

                          .. (ilr,) J.Z.'..V,S'-") ili}lillgl.. d;c* (sg)

in
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By partially integratin Eqs.(58) and (59) considering the singularity at

the leading edge, we get •
     for A<v('s,•
                                        '
      '       -soL:-s-sz}-f9-:-!(es ,) ?P5 >)=S,dirrAlt'ec7)(4ce(by-'/-4)-4ee(-,))d7 (6o)

     for A>U"rt •                     -.
      opve (t7s(vtnio)(P3r(tn))=J,DiAU7ttc.y)(ti2(u7-t-D)-g.(•-t))c,eL,>t (6i)

Equations (60) and (61) can be solved numerically in the similar way as
for Eq.(46). After getting A7'e(y) we can get A72(7) by numerical

integration under A7e(o)=O. Then the pressure is given by

     for T< rt .                         '

         •lb .-f) (A7le (r) 96e - (tlTt) 9b3) (62)

     for ?>(s,

          "Ib; -- f' A7z tr) (Pe (63)

Next let us consider the flow of unÅ}form ramp in z -direction in whieh

the chordwise velocity ramps uniformly and the mainstream has an angle of

attack P . The unsteady component can be given in the sarne way as for
uniform ramp in Y -direction, andeonsidering the crossed component we get

the following results.

     for T<T,
         p= -J7 lrAze(t") Åë)c a) - (tlrt) 9Ps(x) tBP' ( Åëe rz>

               -- Åë. (-. oo>) /( 21rc (x)" 27F t" oo )) '( T/ 7, )) (64)

       ttt

     for 7>tNt
                   '

         jb = -- Jo fAzz (r) qbc(z) tt3 zF SIIi,rlii ,ÅëREe,ri[lg3 ] (65)

                                                      '                                                                    'where Axe = -6 AyR (r)
                                            '
               '
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1.3.6 Numerical results

     The lift coefficients for Kemp-type upwash are shown in Figs.3,4.
The lift coefficients are defined by Cb= LJ!RBCtoV(e12)elto( ( Kemp-type

upwash in X -direction ) and by c4.L, lfurou(e/2)eieVr (Kemp-type
upwash in y -direction ), where Ls is the unsteady lift. The fat lines

in the figures show the results for uniformly oscillating flow ( iex=o )
and sinusoidal gust g ,M=co ). They agree with the results of section 1.1

or the results in section 1.3.3. ( Figs.5,6 ) In Figs.5,6 are shown the

coefficients for unlformly oscillating flow in z and Jr -direction. The

lift coefficients are defined by the same equations as forKemp-type upwash.

In Fig.6 is shown the result by Karman & Sears for isolated airfoil. Fig.7

shows the lift coefficient for rotating oscillation of the blades. The lift
coefficient is defined as Cb ; LZJe3e ZT2(e/2)ei`Ot The results by Karman

& Sears for isolated airfoil are plotted in the figure. The lift responces

to step gusts in )c and .7 -direction are shown in Figs.8,9. The lift
                      'coefficien ts are defined by Cb = L, /JpB eto U' (elz) or Cb =6/ j) ure V (e l2) for

gusts in Z and Y -direction respectively. It is seen that the lift grows

to stationary value earlier for finer cascades. The broken line in Fig.9

shows the results by Karrnan & Sears for isolated airfoil. Lift responces

to uniform ramp flows are shown in Figs.10 and 11. The definitions of lift

coefficients are the same as for step gusts. In Fig.12 can be seen the

effect of ramping time ?t . !t can be seen the lift development in 7>tNt

is affected little by t'"i in case Zit,<aV. At the instant 7.o the lift

grows to finite value suddenly and then grows uniformly till t"-- rt . After

growing to the peak value the lift falls down to finite value at 7n(", .

After Wagner [3] , in case of isolated airfoil and in the limit of t"teo ,

the lift grows impulsively to infinite at the instant T=o and then falls

to half of the stationary value, and thenafter uniformly grows to
stationary value. According to Fig.11 the lift force at 7(b is greater
for smaller value of Vrri but falls deeper at ?=cS, and the lift growth

after ?=?t is not affected by U--t", so much. Lift response for finer
cascades are shown for ZTri:O,2 . For finer eascade, the lift variation is

concentrated to acceleration period (o(r<("t ) and the lift falls to nearly

the stationary value at r=(-t . Zn Fig.10 is shown the lift response for

uniform ramp flows in y -direction, which have similar tendency as for

uniform ramp in X -direction. In any case it can be said that the lift

responce is much quicker for finer cascades than for isolated airfoil.
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1.3.7 Conelusion
     It has been shown that we can easily analyze the unsteady flows

through cascades by applying acceleration potential method in combination

with conformal mapping method. By introducing the potential function of

higher order singularities we can treat oscillatory flows of arbitrary

velocity disturbance at the blade surfaces. Moreover the method is applied
to several transient .flows and the cascade effects on the lift responce

were elucidated.

References
[1] Kemp &

[2] Durand,

[3] Wagner,

[4] Ktissner

[5] Karman

in section 1.3

Sears, J. Aern. Sci. 20-10 585 (1953)

 Aerodynamic Theory vol.II div.E

 Ztschr. angew. Math. und Mech.(l925)

 Z.Flugtech u. Motorluftschif 22 (1931)

& Sears J.Aern.Sci. 5-10 379 (1938)

-50-



   U

ve ts
'

'

x

'

I

v.,Vr
L

u,,Ve

x-

Fig.! Step gusts

x-UT

Vx,Vr

'

CL
   .Ys30
q-2.e

,

       '---ny-`t-ny-'

     '

Vs,Vy

-
1.-

- ---

Ti

Fig.2 Vniforrn

{O, 3)

raMP
CL

flows

Y.3O'
q#2.o

rmag

14

r

:mag
25

20

15

1

C3.0)Z,

  t
  pt

(e,e

(O,1)i
CODOI,O)

Cl,O)

c46)

<
t.

'

t
s

-5

-

ts

'

-15 -10

  C3,2).
  t- -.--   l  -  - -     '    t
   '

t
1

t

11b;l
41(1,J).

.- r.-

 --t' /
 --"--
N ..-1-V.

.NO<SN.

eca,r2)

/

- l
l

-

       1       1      -     l    -    1   1  - - -tt-     /   / //   '  Cl,2) ..::
   -e-'  ' ' t-

I.;.-.;;---.•.

  ---    -- -li     s-       s-.         -"-

'

-

'
'

 N 'e.
"1)N N Ns

l
1 o,3)

--l

SW-',

  '

CIO)

}2

IO

e

6

4t

i
ti

lt

x
N

   /   '  ' t/--  -'"'N
(3,3) /

N

 .6 .4 -2 ,
      (3J) ,s

`" S'`<.:-.'

.L.--m-,;;i"/'2

            {O. 2) ,
   {e,e)ec,.,) /
(e,ool,e)/ 1/
    --   -l   St=5 1- .       //",e)/ . ",l)..-
xa ,/.J.g ig(1•.}l V2)

   N x l NNXN"xsL.l-...:.i x(lk2aeai

  :O sN IS    NX  N      "sXx       NX NX        NNN NX NN NX NxNxx XNxN"

  xNs,

   IN   k Å~/l

      N

2o letal

--- /t'  -tgl

 / C21S ,

x Xf   / -o   lt     '  '    '    '    l .15
    '   t /'(2,3) ,U

    .20

 '
/li

li
vi>/

?"x

nXix
IN
IN
T}lllt•/

N
x
--

N

 '
rll
71

II  1
/

N)lx

h.

Is
 i 1

 i
'

'

-e
'

l

-e

-1o

•liSis<i,INNX.,6.x

,

1
,

'

t

NN  N

   /K
  1
NN/

 N

N

10

Fig.3 Kemp-type upwash
in x -direction

Fig.4 Kemp-type upwash
in J -direction

-51-



18

16

14

12

10

8

6

4

2

!mag Y t3 O' CL

o

     q.1,o
    ,., !/5/•9.

    1/
 2.0,i St .4.9-
25 / .;""'
 l/ p.l"

   '// 3.0  e t.."  1 t' tt- t .x?    e/
  /
 . 2.0      .D-'

l
'i

'l.

t

:

t -

:x.-

:

o'

O.1

l
.-o-

.---- o-

  1.0
Ii.i."}-lizX-

Reat

CL

18

16

14

12

10

8

2

6

4

2

- 4 6 8 s-. 12

  Y.3oo
:rnag

o

q.o.1

1.0

1.5

2.0

2,5

l
:

t

/

1

1

'
'
'

`

,

-

'
f

1

s

/

1

l St=5.0

-- q=o
  : Karman

14.0

l 3.o

/ 2.0

>

1.0

,8

.6

.4

"&-ggg!zsSe

tT-:`
Reat

2 4
.2 '-

.6

lmag

22

20

18

16

14

12

10

6

6

4

2

o

Fig.5

q:o,1

1,O

1.St

zot

2,5

Fig.7

'
l

l

'

'

'

l

'

t

t

1

'

1

'
'

'

'

'

f
1
T

'

'

of f
'T

Uniformly oscillating
flow in Z -direction

     CL
stss.o

    Y.30'

  " Karmana Sears
     qtO
4,O

3.0

2.0

CL

t2

10

8

6

4

   .Ya30

Fig.6 Uniformly
flow in 7

oscillating
 -direction

1,O

No,8

O.6

 O.4
  o.2 O Reat

2

o

q=o.1

1.0

:.5

z.o

2.5

 2 U6
Rotational oscillation
of the blades

  N
e::Z-Ls.N

   `

1

Fig.8 Step

2

gusts

3

in x -direction

4 Ur

-52-



CL
L Y=3O'
6

5 --- KartnangSeers ;q:o

q=o.t -..-.
4

"
-----t-.--

tnt"ntt- nt

3 .e-t to
tMridi

l.5
.2

2.0

2

1

,

o ' 2 3 4U

CL

12

10

8

6

4

2

Fig.9 Step

    .Y.30
U;.O,2

gusts in 7-

  q= o.1

direction

o

CL

1.0

25

       5

Fig.10 Uniform

   Y=3oe

  10

ramp flows

" 15 20 UT
 in z -direction

:4

UT,=O.2

o.4

1,O

---• Karrnan2Sears

A-entd

;q=o
q=o.t

3

1

2 2.0

2S.

'

o 5 10 t5 20

Fig.ll Uniform

,

ramp flows

  --S3-

             or

in 7 -direetion



Chapter 2 Incompressible Viscous Flow

2.1 Elementary solutions and applications to isolated airfoils

2.1.1 Introduction
    .There is awealth of literature on the analysis of unsteady forces on

the flat plate airfoils executing small oscillation in inviscid fluid. On

the other hand, for the purpose of getting the insight into the viseous

effeets of stationary flow, Oseen's approximation has been adopted by

several authors, for example, Bairstow (1923), Piercy & Winny (1933),

Zmai (i954), Tamada & Miyagi (1962), because of the simplicity that the

total flow field can be treated by a single fundermental equation for the

full Reynolds number range. Xn order to estimate the viseous flow effects
on the flow around oscillating flat plates, Oseen's approximation has

been adopted by Chu (1962) and Shen & Crimi (1965). However, both of them

are not exact because the former doesn't take into aceount the viscous

dissipation of the shed-off vortices entirely, and the latter neglects that

of vortices flowing down on the flat piate. Recently, as an extension of the

trailing edge problems, Brown & Daniels (1975) analyzed the flow around a

oscillating flat plate by restricting themselves to the case of large

Reynolds number, large Strouhal number and small oscillation amplitude.

Their solution is based on the idea of dividing the Blasius boundary layer

into several sublayers near the trailing edge and matching the solutions of
the equations appropriate to each subdivision. The author believe that Oseen's

approximation is still an useful tool for the study of the viscous effect

on the unsteady flow around oseillating flat plates by virtue of its

simplicity that a single linear equation is applied to the entire flow

field. Zn this section the rigorous elementary solutions of the .
fundermental equations are introduced at first, and then applied to the '

problem of plunging motion of a flat plate airfoil and oscillationparallel

to itself.

2.1.2 Fundermental equations
     The equation of motion and the equation of continuity for the

ineompressible two dimensional flow are linearized on the assumption of

small purterbation as follows.

     g,-"-+crt)."-'--e-it).brx.v(:31.IIftSiu",> '(i)
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        }Åë.vtb.v=-sol,?u.?(ge).e..g2fx) (,)

         )"               bU                   =O (3)        D-t-'bZ

where U , p , fo , Å~ ahd )" are the main stream velocity,
kinetic viscisity, st.atic pressure, mass'  force in e and .)t direction

respectively. Apparently X=Y=O everywhere except the blade surface.

Eliminating L( and b" from Eqs.(1) and (3) one obtains

            '        ,-,-([ll.I:,.t5Ve)={}.jlXttb3V ,,,

The condition >C'= 'T'=O everywhere except the blade surface leads to

          getz + i lue. =o (s)
We introduce the stream function 1ijVb defined as

       ut=av/)y . v= -- (b9lt'laz) (6)

Then, Eqs.(1) and (2) may be written

        a')-7Stti4'fu'Sl.ile'-p(i]I.g'}.;?luiZ.>}=-.--'-,2.">

       --s713iliteV.vaQ.E9i"-p(2.IY.r.etign7.>}..-fi)a?i?

Putting

     g\,t .v,a.se'-- p(,b.)Y,- S})t/;) -- `a . ,P!R= 1) (7)

the above equations are written as

        )G )p ba )p       ;7 =- 5r. , r. ='i-7 (8)
Equation (8) expresses the Cauehy-Riemann relation and implies that Pfi(a

is an analytic function of 2=ztC7 , where i=vC7 . The flow of a
source of strength g8ex)'Se7) at the origin of x-y plane satisfies

the following equation.
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where

 zeo

  s2;q
  az
s
and

'ge7V. ,

 designates
  tooJr. . str>d7=i .

scr) s (7)

the Dirac's S function
 Introducing the velocity

defined as

potential

 8tz)=o for

9 defined as

             u -'-- 0 9 /ox , y, = e9 1) 7

we can write the above equation as follows.

                                '         ge.. tg:7#;, =z s(x) S(p (g)

Now, supposing a sourse of strength g8t-)8(p/A at the origin and a sink of

strength -IStz)St7>ln -- jillF, (gS(x)Se)f)!A)•n at (•o ,-A ) and

by Zetting z5 eo , one obtains from Eq.(9) the following relation.

            )29 )29 -            5i.ES2 . )x -g8cx>d--dtr38ci)]

Above equation represents the flow induced by a doublet at the origin of

x-y plane. Putting geeP and g" r. , the above equation is reduced
to Eq.(4) with XnO, T=YbS(z>X(?f) . That is, as shown by Larnb, the rnass

force exerted in a flow field corresponds to a doublet in the pressure
field. rn other words, the exertion of the concentrated mass force Yo at

the origin in Y direction in a f!ow field produees a doubletof intensity

   Yo in Y direction at the origin in the pre$sure field. This pressure

field may be written as,

                         Z. Yo
            7+ÅíG =                                                                  (10)
                       ?7 C2 +ÅíY)

2.l.3 Velocity field relating to the fluctuating lift
     Assume a bound vortex of strength n at the origin of x-L)t plane at

time T=O . According to the Helmholtz's theorem the free vortex of

strength - 7 appears at that instance and conveeted downstream with
the free stream velocity ZT . rn case of viscous fluid, the free vortex
begins to dissipate as soon as it is produeed. The velocity field induced

by the bound vortex and the dissipating free vortex is given by
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         "= Y 21Yr2 ' i.liÅÄkxb,? " -- e'4-.t Cra) } o, ,..>

                                           '                                       .UL? (1!)         v= P- S.i?li:r2 . 2b3if}3ftZrV')o - e-4vr } a(T>

             'where r'= z'+72 ,ril'(z-vr>'.V2 and 6rr) designates the step function

defined as C(r);O for lr<O and (S'eT)=1 for T>o . The function
is related to the Dirac's 8 function as

            d6(r) '/'d,r = 8(t-)
            '
The flow field given by Eq.(11) satisfies the equation of continuity and

the corresponding pressure field may be caluculated as follows. Considering

                         '    gfdi;.glr.vil.ga-p(,a,fk2y.f}ltf.)--tei41X,Yccr) (i2)

  pttDS-=gi9.vpa.Scr-le(Si?:{f.i]ZYV.>-(-if15f!i;V,,t"tr,Vi42>o(T) (i3)

we can get the following equation from Eq.(7).

                    -. ZPU' (S"(T) (14)          P.Åíe                    bu 2Z ztdg

                                              '
Equation (14) represents a doublet in y direction at the origin in the
pressure field. This implies that the velocity field given by Eq.(ll)

represents the flow field inwhich the concentrated force r=f7V is exerted

at the moment T;O and then kept unchanged thereafter. If we considered
only the bound vortex at the origin of x-g plane, and not the shedding

vortex, the corresponding pressure field would become, in the sarne way,

           ?t2e = `l7nif{ S(tv 2e7 (z.s7)t x.S.`•\ } (is)

The first terrn in the above equation, narnely a vortex at the origin,does

not appear in Eq.(10) and it violates the dynamie condition. The shedding

vortex plays the role to cancel this unreasonable vortex in the pressure
field, and the above argurnent gives another way of proof of Helmholtz's
                                                                   - ..`vortex theorem. Consider a harmoniously oscillating bound vortex 7edeOt

( a designates the imaginary unit with respect to time ) at the origin.
                                                               ttThen the pressure field will become
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        iptL e = 'J.7.' U' 5 j`o 2a7 (r+ .i cr)+ ..i .,7 }e a`Vt (i6)

    '
and hence one must consider the harmonious shedding of free vortices for

this case also. Now we assume a bound vortex at x=xt whose strength
oscillate harmoniously with time 7 .
                                  '

              7= 7, (z,> eitordZl (17)
                                '
The strength of the bound vortex varies (diti'ldT)br during the time

interval A7 . Then the free vortex shed during the period b7 spreads
between z, and ZttVof. So the free vorticity distribution E per

unit length becomes ,
                                             t t-         ;;it!flv?' =-sV ,, E=-`S`:"`)(z,)eato`

                      '

The free vortex shed from Zt at time 7'- (S-X,>IV reaches at x=S

at the instance )=(5 . Hence the distribution E of this free vortex

at z=} is,
                      '     sdx, = - -S'i 7,(x,) ejto(rpt eZ')dx, . .•SÅÄw 7.,.,) e"J`L']SiX'eieo7d., (ls)

  '
Taking into account the dissipation of the vorticity during the period

 (s.x,>lv needed to flow down from X=Z, to Xal ,one gets
the velocity at any point ( x) if ) in the flow field by the free

vortiees Ed} at z=; as follows.
      tv = '.--E':Lir2 { i -- e?y?(-- 4fut )]dg

      tr=-S.$t2"?>i2--e•,?(-trv,}9.,))]d} (i9)

      v?= (x-s>2 + u2

                                       '
On the other hand, the velocity at ( x) U ) induced by the bound vortex
of strength 7btx,)dZi is,

       b(= 72I"n(W eiW7 -i41, dz, , v'=- 2't"Orr`b)eibO? Zr',Z'dt, (2o)

The velocity induced by the above mentioned bound vortex has discontinuity
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across the blade surface or on ( Zt.0 ), which is not allowed for

viscous fluid because of the coherence charactristics. To cancel the

velocity gap is suitable the following velocity field.

       tz . - liOiZ'> ejeo? IB eZi(Z--') k, rBr) iit otxt

                                                                  (21)
      v = 221SIn ') eatot-.[6 ek(Z'X')k, (6") XiX' - it en(Z-X'>k. (Br) )dz,

where k" VC 14p , `B 2= i?L? t (d eo /v ) = jE2t? +t r2 th Cv/ cr) and Ko , ki

designates the second kind modified Bessel functions of O--th and 1-storder

respectively. The velocity field (21) satisfies the continuity equation and

the substitution into Eq.(7) gives Q=O and correspondingly P=O .
That is, the velocity field given by Eq.(21) represents oneof theelementary

solution satisfying Oseen's equations and makes no disturbance in the

pressure field. Since k,(pr) is approximated by ilysr) for small Br ,
the velocity gap of the order t/r in the velocity field (20) may be

canceled by the superposition of the velocity field (21). The sum of the

velocity fields (20) and (21) yields the velocity field of Oseenlet in 7

-direction extended for oscillating flow. Both velocity fields (19) of

free vortex and (20),(21) of Oseenlet gives bt=O on 2t=O . Hence the

induced velocity on the flat plate located on the Z axis -1-(.ZSI is

evidently normal to the blade surface and is given as fol!ows.

             tN      v' = 2en'co`ZZ .i-:- 7orxt)f{z-tx, -• B e Rt(Z-l')ns>io(x-.r, ) K, (p/z-z,t)j

                                  . klL e k(X-W ke rB l ar-xt 1.) )dZt

                tJ-I JI.l z{s tC`' etW']S-X'7.rz,)lt - e-4;'!Z'Bl:S`(;-zt))i2dgdx,]] (22)

The first term on the right hand side of the above equation is the velocity

due to unsteady Oseenlet, and the second term td the free vortices. The
bound vorticity distribution 7o(-z,>is decided so that the tnduced velocity

given by Eq.(22) becomes identical with the normal velocity of the ..

oscillating airfoil. Then the total lift on the airfoiis will be
evaluated, for the sake of Eq.(14), as follows.

            4=fcrtSI 13(x,>dx,JeJber (23)
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In case of the steady flow around an airfoil set with a small angle of

attack ct in the uniform velocity V , the boundary condition on
the airfoil may be approximated by giving norrnal velocity -dZ7 on the

plane 7=O and -ISZSt . The steady vortex distribution Yrxt)relating
to the steady lift is given, by the following well known formula.

    '    '   v=-dU =- tt S-1 rez,) (t-z, - ft ek(Z-Z'),a.stn (z-z,) k, (ktx-z,j)3

                      + kek(Z-Z') k, (ft lz-x,t>) dx, (24)

Steady lift Z will be,

           Z= Rv S-I 2r"tx,)dxt (2s)
                                     '
By letting LO-)O in Eq.(23) one obtains Eq.(24), whence the quasi-steady

lift calculated from Eq.(23) coincides with the steady lift.

2.1.4 Velocity field relating to fluctuating drag

     To begin with is considered the steady drag on the airfoil set at

( g=O , -tS2t f:.t ) in the uniform velocity V . The pressure field
of the coneentrated force X=Xo 8(x)SC?) in x-direction at the •
origin is verified to be expressed by a doublet of strength Xo in t
-direction in completely same manner as was previously shown for the force

in Y -direction.

                           Xo            7'2e'- 2n,(zrzg) , (26)
The velocity field of the Oseenlet in Z -direction will be given;

      Lt=21n t{ 3" d R2 ekZ k, (Br)}iZ7 - 2e ekt *,(p r))

                                                                  (27)      u= .i i iI -- lt ekX k, rp r) }") , r'= pe '. 7?

                                       '

It is easily shown that the velocity field given by Eq.(27) satisfies the

equation of continuity, and the substitution of Eq.(27) in Eq.(7) gives

             ?.ie=-.X2L-nt.-..,]> (2s)
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The normal velocity Zl' vanishes on 21=0 , hence the boundary condition
for normal velocity on the airfoil is automatieally satisfied. The allign-

ment of the Oseenlet given by Eq.(27) on the airfoil surface induces the

parallel velocity on the airfoil surface given as follows.

     a = 2TSf L,t SaJ ) f{ x-tz, - it e& ('R' -X' )jo jpao (z-z, > k, c &tJe -z,i) 3

                          .- kek(7-'t') ko(Je,tt-z,t)jdZt (2g)

The induced parallel vel'ocity b( must cancel the uniform velocity ZT.
For the sake of the vanishing velocity on the blade surface, by letting
  tx =-V in Eq.(29) one is ready to caluculate the Oseenlet distribution

    f(xt) , and the steady drag D results as follows.

               b= fuJ.' 2(zt)dz, (3o)

Next we proceed to the problem of the fluctuating drag. Consider a doublet

in Z -direction originated at the origin at (S=p and convected
downstream with the uniform velocity U experiencing dissipation due
to fluid viscosity. Such a flow field can be given by differentiating with

respect to Y the velocity field of the dissipating free vortex shown by,
the Eq.(11). The resulting veloeities of dissipating free doublet of

strength o7i become as follows.
      '     .. -fi"'.' ( (Z'VrT.)2- 7?jo- e-ti'f`'? ) . 2ir ir?> e-`P't:`-?J of(T)

                                                                  (31)     U= l}.Z' (z'" 0T)7 -' ii}iZ (, - e-4""`i) -.S, -Y-.'e-`'-"t:'L? J otr>

Substitution in Eq.(7) yields

      gvO .--- -,'M. -] i.i4j2 s(r) . g//i" ---k -21,4,ii'!ii!SF, , s(r)

and hence

                     <tn s          ?+2e=2za )f..t7 S(`N) (32)
Equation (32) implies that the velocity field given by Eq.(31) represents
the flow field to which the concentrated force X=fonSto is applied.
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Consider a fluctuating doublet of pressure field whose strength m varies

sinusoidally, i.e.,

                               t -b               t77o = t>77b ( z, > e dW` dz,

The duration of this doublet of strength 77? during 6tS in the
pressure field result.s in the shedding oirt of doublets of total strength

  777A? which is spread over the interval dS=Zr4t- . The strength of the

free doublet per uniF length is, therefore,

                   A= tnil O' (33)
Since the free doublet on .Z=S at time ? shed from r"t, should
have left the point .tr;2, at time 7-(}--zt>!v , the strength A ofthe
free doublet should be,

     td$ = on. (z,> e iloCr' S!tZ'2.t z, ot; . o". a,) e'-iW {;Z23 iufdx, ot } (34)

Considering the viscous dissipation during the time interval (S-zt>ZU to

travel from Zi to $ with the velocity U ,one obtains
the velocity at ( U) Z) 7 ) due to the free doublet spread over the
interval d$ at z=g given above as follows.
                                                              ra v"      " = -- 22n (L!Z'!1!::-;'- Il)""- 7?i 1 - e-4p(r2--g,)} . ..(Y..w -gS/ e-4iJ"7Fg>]d}

     ?,r= - 2'A-n(T-}>Zf`i}tZ {t - e"`Vl7f"?'>] "' 2v(?".t,) i!212E`"`pt'ISiltx"JTds(3s)

                          '
         r2 ---. (x- l >2 . 72

On the airfoil surface 7=O and -tSZSi , the norrnal velocity
vanishes and, by integrating the contribution of all the free doublet,

which corresponds to the pressure doublet distributed over the airfoil

surfaee -ISZSl , one gets the following parallel velocity.

     b( = {};l:'`Or(.f-l f.fX?-- o".cx,> r.ls).{iv e'4ua.(s-xJ"?j iiW{iii' yz,) (36)

Equating the induced velocity b( in Eq.(36) with the x-component
of the airfoil oscillation velocity, the basis is given to evaluate the
pressure doublet distribution 077e(z,) . The fluctuating drag Z) on the
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blade is,

                   p. fuej'torl,i on• .(z,)dz, (37)

rt could be easily seen by compareing Eq.(22) with Eq.(24) that the quasi-

steady lift in the limit of dt-J-O coincides with the steady lift obtaind
directly from the ind.ependent formulatioh. Zn case of fluctuating drag,

though rather cumbersome, the coincidence of quasisteady drag with steady

drag can be also verlfied as mentioned in appendix. The same line of

manipulation leads to th'e following alternative forTn of Eq.(36),
     u = .2eni to` i J-1 ,t -- o7?. cz,) fI .z lRr, - i(3 e k(Z"k' )" )pm (z-z,) x 7t tB /z--z,i )]

                             - it eG(X'-Z')kT. (BIz-ztt))dZt , (3s)

        - J-: f.?O xl} tiW e-j"ab17"o".(z,)s,- e-41i!,SfllSs-xt)'2} A}dz, ]

                      'which is parallel to Eq.(22). The first term in Eq.(38) is due to Oseenlet

in z -direction extended to unsteady flow and the second term corresponds

to the shed-off vortex for lift fluctuation. They do not satisfy the

continuity eondition separately but do in ensemble.

2.1.5 Relation between free doublet and free vortex

     Different way of deduction of fluctuating forces have been utilized in

the preceding sections, namely, a eombination of bound vortex and free

vortex for lift, and only free travelling doublet for drag. Here will be

described the identity of these two different way of explanation. In the
first place, it will be shdwn that it is possible to discuss the lift

fluctuation only with free doublet as is dgne for drag fluctuation. To make
the discussion simple, we will show only f6r inviscid case here, though it'

is not so Zaborious work to take the viscous dissipation into account. The

complex potential of a doublet shed from the origin with the velocity D'

at raD will be given by "
                 .t,m S(r)             W= 2n (z-v`- .z7 (39)
The pressure field relating to the velocity field of Eq.(39) is obtained
                                                                  'by substituting Eq.(39) into Eq.(7).
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                Pt ,,'e=`.`iY S(r) ..'z7 (40)

which implies that the concentrated force of magnitude JO'77?8(t') was

applied in Y -direction at the origin. That is, the momentum of the

applied force is proportional to the strength of the shed off doublet.

Hence if the strength 777 of the pressure doublet at the origin
oscillates sinusoidally with time, i.e.,

               7"= o77. eJW`- (4i)
the strength of the free doublet A(S,T) at tr-S at time 7 will
be caluculated by considering the time interval from x=o to Rr=} with
velocity 0 ,i.e.,

            2=(t777b!U> eico(r-i) (42)

The velocity at (]tt ,O) induced by the doublet on id} at Rr=lj will
be,

          zt = 'Sltt ?i.ilfk-s,-}>2 = 23Ills cx,ls). eiwt'-i> (43)

                                                        '
The total induced velocity due to entire doublet distribution shed from

the pressure doublet at the origin will be given by integrating Eq.(43);

          v= 2nCnu70 ettot- Jopo(z9--ilV>St. dg

Integration by parts gives

         v.= 2eei eiturl- y' .J.paS-tu ijuSif.,,.sds) (44)

Next consider the model of the combination of bound vortex and shed-off

vortex. The induced velocity at ( Jut , 0 ) and at time 7 by the free

vortex on d; at 2f=$ is, by putting p;o , zt=o ,x=z, and
 Jr bo in Eqs.(18) and (l9).
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Integrating above induced velocity over entire free vortex distribytion and
considering the induced velocity of the bound vortex 7D eitur at the origin,

  we obtain the velocity at ( X, , 0 ) at time 7 as,

       v.•.Z.'eiwTf-Å}.{iW-S,Oqe-jWitt.sds) (4s)

!l]wo equations (44) and (45) are identical exeept for the factor V7e/'me .

This identity is attributed to the fact that we could integrate the free

doublet taking advanrage of the relation that the differentiation of the

free vortex in Z -direction results in free doublet in 2t -direction. The

interchangeability of these two way of caluculation to evaluate the velocity

field is easily verified to be extended to entire flow field, and not only

on the blade surface, if .the relation between doublet and free doublet and

free vortex are skillfuZly taken into account. As for the case of drag

fluctuation, doublet in X-direction is given by differentiation of vortex

in Y -direction and hence the relation cannot be used to the integration

of free doublet in 2 -direction over the wake region. This is the reason
why we may use only the free doublet model for the fluctuating dragproblem"

2.1.6 Oscillation of airfoils parallel to the uniform velocity

     Consider the oscillation of flat plate airfoils of chordlength 2, set
paraliel to the uniform velocity br . In case of Oseen's approximation, as

shown by Shen & Crimi (1965), the boundary condition on the airfoils should

be adjusted not on the instantaneous position of the airfoils but on gro,
    -1s )r S1 , i.e., ori the average position of the oscillating ,

airfoil. Consider the oscillation of flat plate airfoil whose velocity is

given by

  ( norrnal oscillation )

                                        - --            pt=o , u= zir. eiau (46)
                                                          '
       '
  ( parallel oscillation ) ••
                                   '                      - t-             et=a.erW` , br=o (47)

where ao , Vo are aonstants.
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2.1.6.1 Normal oscillation

     Since a=O on the airfoil surfaee, we have only to consider
Oseenlet in Y -direction and shed off vortices. Distribution of the
Oseenlet 7Z(z,) will be decided from Eqs.(22),(46) to suffice

          '     zlo = tl {ILI - !'.'(zt)({ zlz, '- i3 ek(Z-Z ),apm (z-Rr,) k(, (Blx-ev)]

                   ' t Meft(Z'2') k, rp lz--zti) )di,
                                                                (48)             .x,' f.7a.I} -:IWi e-iwi}Z>zc.,>s,-e-4pP,-(i2-i;)'>d}dz,

on -) -< ZSt ,where 1'o(xt) should be assumed to have the form

                                      •pt         7b (z,) = An Zbu.9 + B.e,)tse" 'r' E AmiQ•tkLo7s, (4g)
                                          t))7= t

where 2rte--deeP and 0-<PS:i;t' . The singularities of ITX(zt) at
the leading and trailing edges ( singularity of S-2t where S designates

the distance from the leading or trailing edge ) will be confirmed in the

same manner as adopted by Shen & Crimi. Differentiating both of Eq.(48)

with respect to x we find

      -tl 8Y)S -.!2i!:S-X..s>a; = 5, (z> . <fa(z) (so)

where
     5, (z ) = 2f e, S- i 7Z (z,> I a"- i} ). t .g' e} . eft `Z';>{ (,et?.B2) kb tfi ix-sD

               -26k iai}m (z-;) Srt (filz-s1) t .'L rs2 lt (B/i- ge); )dg

and
      52`z>= d-d-z VJI.I f.702.ft ciz..v ("- S}W>

                           ,.jL:Zt V(z .>2
                    x(e-dWV 7/ cz,)St- e-4"(                                                -zt ) } ]d; dZt

The )b preceding the integral signifies that th Cauehy's principal

value is to be taken. Then ft(1) , Scz) are both bounded over the

integral -JS2rS2 . According to Muskhelishvili (1946), the inverse of

such Cauchy prineipal value integral equation should have the form

     77 (z> n cl, S(t-z>l(t-Z)}f+ cta l(ttz)1(1'z)} 2Z t $(x)
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                     g (t ) --- s ( -1 ) = o

Letting R=)Do in Eq.(48), we have the same equation as Shen & Crimi and

see that their model is eorrect in the limit it} ') 00 . The behavior of the

coefficients Ao and Be as RL goes to infinity have been fully
examined by Shen & Crimi, according to whom Bo 'j>O as /e goo . Hence

we know that the singularity at the trailing edge vanishes and the Kutta-
Joukowski condition is satisfied in the limit of G')OQ . Numerical

caluculations have been carried out by truncating the series of Eq.(49)

at a finite number and adjusting the velocity by Eq.(48) at the same

number of the points on the airfoils as the number of the unknowns in Eq.
(49). Then the fluctuating lift be}`OT becomes

                                                            '            LJ = ,fP U- .f-I !;tx,) dZ, = 7t-JbU Z,,7. (A. -t- JB. t- e' ) (sl)

The fluctuating lift coefficient ez. is defined by

           C"= Jo z7 Sl, (el2) = '7rCAo.Bo t .'`S!'> (s2)

where e is the chord length of the airfoil and supposed C=2 in the
                                                                           'present section. As previously mentioned the quasisteady flow coincides

with the steady flow of small angle of attack oe= -- V7elcr . Then the

quasisteady lift coefficient wiU be,

           (r6,Lv.o = J.v.ole".WZ,Ozl2> =7rt (Ae-t-Bot .a.'> (s3)

The steady lift coefficient is defined as L/(SfV2C> and equals to

      2rrct for velt-Oo while Cb,w"o tends to 2/Z as
    k-) t)o , which implies that the quasisteady lift gives correct

steady lift.

2.1.6.2 Parallel oscillation

     Since ZJb.0 on the airfoil surface we have only to distribute
the oseenlet in J( -direction over the airfoil surface. Distributionofthe

Oseenlet 7" (x,) will be decided from Eq.(38),(47) to suffice on

  -I SZSI ,
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         bt. ta .-nL- ti S..', -on (zt>2t{ z!z, -B ek(Z-'r' )tofit7 r2-2t> tc7, av2-.2ki)s

                               - Re&(X-Z') `ele rB t.t -zt 1)) dXt (s4)

                   '                - J-,' J.? S.i- SStoe-'2`c'{;Z.;,,,.,)s,-e-l(`i--it "]ds...]

    '
ln the same way as th.e plunging oseillation the distribution                                                               pm (2t) iS

assumed to have the form

                                 . DO           pm tzt)F' Ao'(eit E9 t Be tzLa9 t .4'.", Aon ia-`;A'nS (ss)

              'coefficients i4o , Bo , i4t" are caluculated by meansofEq.(54).
The singularities at the leading and trailing edges were assumed to be the

same as for the normal oscillation from the same reason. The magnitude of
the fluetuating drag DejOr becomes
                                    '                           '
          71)= fOS-I en(z,)dxt = 7rt (Ae r B.t e' >Jp i7 ", (56)

Fluctuating drag coefficient Cp is defined as

         Cp ; P/Ror.Ucel2) e`FVr= 7, (ADt B.t 2A') (s7)

2.1.7 Discussion of numerical results
                                                     '
     Numerical calucuiations have been carried out for the two cases of

oscillation mentioned in the previous section. Fig.1 shows the dependence

of the quasisteady lift and drag ( lift and drag for ca=O ) on the
Reynolds number. The broken line in the figure shows the asynptotic
solution for steady drag Dtoeo given by Miyagi (1964)• It •
demonstrates that the accuracy of the numerical caluculation is
satisfactory. References for eb is not shown in the figure for the
following reason. The steady Oseen flow around an airfoil set with an angle
of attack oe tends toaseparated flow in the limit JilL')ep and

hence the value of the lift will be a half of that caluculated from

unseparated inviscid flow. This occurs when the boundary conditions are

applied exactly on the airfoil surface, not on v--o , -tSZSi .
Since we have applied the boundary eonditions
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           "to .o '-U lhv "o =- ct U'- (58)
                                           'on Y=o , -JSZSt instead on the exact position of the airfoil,
our model approaches the unseparated model of inviscid flow in the limit
    RL -i, t>o . Henee applying the boundary conditions (59) on 7=o and
   -/-<. 7(Sl , we obtained the lift eoefficient Cb,w.o which correctly
approaches inviscid unseparated value in the limit k-)OO . Fig.(2) shows

the fluctuating lift coefficient eb on flat plate airfoils executing
plunging motion. Reynolds number k and Strouhal number St are
defined as follows.

           2e = 'v"'C /(4 b> , St=we /(2cr) ' (sg)

It is seen that the viscosity of the fluid have the effects to increase

lift fluctuation. This tendency conflicts with the results of the multi-
layered boundary layer theory of Brown & Daniels (1975). The theory is

va!id for sufficiently large Reynolds number and states that the Kutta-
Joukowski condition is satisfied Å}n the limit ft7DO . According to
this theory the fluid outside the small region of order ft-21 near the

trailing edge doesn't follow the rapid oscillation of airfoils. In case

that the Reynolds number is finite, the vicinity region works so as to

permit the shift of the apparent stagnation point of the outer inviscid

flow from the trailing edge in the direction to diminish the resultant

lift. While, within Oseen's approximation, the singularity of the trailing

edge is determined not from the physical condition but from the mathemati-

cal condition. The physical interpretation of this condition seems to claim

that the infinite pressure difference acros,s the blade surface in the

immediate neighbourhood of the trailing edge is required to prohibit the flow

turning the trailing edge. Hence the incr.ease of the lift fluctuation due

to viscosity in the present caluculation is likely to attributed to the

increase of virtual mass attached to the vibrating flat plate. The present
paper is intended to clarify the viscous effect using Oseen's approximation

which has the fundamental advantage of simplicity that onZy one type of

approximation is applied uniformly for the entire flow region. However,

this simplicity resulted in the unreasonable fZow model near the trailing

edge. Nevertheless, since the theory .of Brown & Daniels is restricted to

the case of large Reynolds number and large Strouhal number, and since
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Oseen's approximation is rnore appropriate than the boundary layer

approximation for small Reynolds number, one may conclude that the

viscosity works so as to increase the lift fluctuation below certain

Reynolds number. Fig.(3) shows the fluctuating drag coefficient. Drag

diminishes as the Reynolds number increases. The phase angle of the drag

proceeds by 714 than the phase angle of the oscillating velocity
of the plates in the Jimit t5?t7 OO . This phenomena can be seen in the

case of the oscillation of infinite plates parallel to itself in infinite
fluid otherwise at rgst. This means that, as ,gt increase, the flow

near the flat plate tend's to that near the infinite plate except in the

vicinity of the both edges. This fact is easily understood if we consider

that the thickness of the surface effects diminishes as Se increases.

2.1.8 Conclusion
                      '
     Elernentary solutions for unsteady lift and unsteady drag were

introduced in velocity and pressure fields on the basis of Oseen's

approximation. The elementary solution in the velocity field is expressed

by a combination of an Oseenlet in .Y -direction and dissipating shed off

vortices for fluctuating lift and dissipating shed off doublets for

fluctuating drag. Secondly, by means of these elementary solutions the

unsteady forces on the oscillating flat plate airfoil was calueulated.
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             Appendix; Quasisteady drag and steady drag

Taking the limit CVSO in Eq.(36) we have
     pt=2riff..iJ.?"tmo(zi)7-i.L'i;-s-. :).--e-'tpa,sixi)?}d}dzt

       =J.1.I.-L, (z,>,tz, ' (A)
Introducing the function -Z) (z,) to Eq.(29)

                      ,
            '                                   '           "= Jl-I r. (zt)d•zi (B)
and putting Me(X`)= Scz,) , let us .show

              Z,(xt) = l2 (th)

The case Z>Zt will be described for the brevity, the entirely
similar way of verification being valid also for .2 (.Z) . Applying the

formula for Bessel funetion;

               2r,"t- = 22- J.OOe'2'S-(T'""i)o2-"-t,do

for l= k(z-z,) , onso or i we have

         ko r R1 z-- z,1) = it f.OO s e"2k `X- Z' ) (" ' T-i- )do

         ki (atZ-Z,l)= 2Z J, ac tp'-t', e-2& `Z-Z')(Y'i )dn

After transforrnation '7? = (S-z,)/(X-JCt) Eq.(B) becornes

       2--2 (z,) = 2gnCZ')I 2rl/, - 7it' e'eL (Z--Z')v(.fl'd}- IJi,-(Ti'ZIFfB-,qiz?

                                       '
                xev) f-2@/(}-zt)t -<I';il;i.- t'i')1)dy] (c)

For' the while, Eq.(A) will be by partial integration

     Ji(z,> = !I3ft`Z'> [.i.-z, t f.90 (,.-is>? (s,-2swt}-zi) )

                                                    '
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..,iift•g(X•>t,il.s:.,
' ] -' ?l.:ix e-ts {il'2zt'" 1.oo

,

        &<lj)2
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-4"e ft(z'-x')
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st}-2ij)tte.if.Y} ]dS

Comparing Eq.(E)

and hence it is

steady drag.

 with (D)
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we
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see
 the

that Tt (x,) -' i; (x, >

 quasisteady drag

if g(x,)= pme(z,)
coincides with the

'
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2.2 Applications to cascade

2.2.1 Zntroduction

     ln the last section were analized the forces on a flat plate airfoil

by introducing elementary solutions of lineariized Navier-Stokes equations

in which the inertia terms are linearlized on the assumption of small

amplitude of oscillatg'on. This section is intended to apply the method to

cascade problem. By the way the cascade blades of a turbomachine are

subjected to unsteady forces d??)to interaetion with visaous wakes from

upstream cascades. Kemp & Sears analyzed the unsteady forces by represent-

ing viscous wakes by inviscid sinusoidal gusts. The sinusoidal gusts that

satisfy linearlized Navier-Stokes equation are given in this paper and the

lift response to the gusts and the lift fluctuation due to translatory

oscillation of the blades are numerically calculated. The fluid is

assumed to be ineompressible and flat-plate cascades with no steady lifts

are considered.

2.2.2 Elementary solutions
     Consider the case that fluctuating concentrated forees

                    jwr /, (1) reito`' (2)                 Ze .
in z and y direction respectively are applied at the origin.
The velocity fields induced by the unsteady forces that satisfy the

elementary equations are
   due to )heJ'WT •
     "- -.--'-. edto" [ l. -Rf ekZ k, (BR) .J.7- eW) e'f" f.

                     . t, - e'Tk-e'-"?}d}] =.- 2xX ed'toTk"r(x,v

     zT = 212 edWr (;$, . Re&Z! ko(sR) -- zBI•-i} kt (p?>] --JT,07-stut) (3)

                 .e--5'r ii/)Ii.Zft -- e-5}'i}i2} bi}) g ..l ei"' 1(5r(x.w
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              --  due to 7eato`

     u= -- sj,ll. e iW"t-- -jll;. t RUeRW(f 'igl,} 'i"}- kfirBR) f ko(F3R)]-J.100(-`21'01>

                                                            '                  xe-StuS Zi.Ssi-e"?kT?';dg) ="- j,? eala'r ku'g(z,7)

     v =- 2-'.-S eiWrt S. -Bl eivt k, (3R>.J,co(.- sto) .-ge ty,. (4)

                         '                             k.tE!ti        . , 'x5i- e-T} }d}) =- .Tji3 ei`Vr ktt'f<z,7)
                                                 twhere k= Z]' 12P , 6= SR2t (i co lv )2} a-' , B?-- z'. 7?
   2,?= (x-})2t 72 and ko and kf designates second kind
modified Bessel functions of O-th and 1-st order.

2.2.3 Superposition of ' elementary solutions

     Equations (3) and (4) are velocity fields due to concentrated forces

at xao , y=o .The velocity disturbances at(z , :I )
induced by unsteady forces recx,)ei'"ctei`V`' . g.(x,)eiNdet'"ron the blade

surfaces Z= X,' on a , 7= -onb ( d= tia`;. r , 6= eaen X, pm -- -pa.

 •.ss,--t,o, l, --•2oo , -Isxtsl ) of the cascade of blade spaeing t ,
stagger t , chordlength e=2 rnay be written as follows.

     " (z, 7 ) = t/St4Wr Jl-l i tr'ro (x,> s ,,\,.!1.. k.'t ( x-x, - i",a, 7 -• on 6 > e `i`'- ct}

                       "oo               . g.(z,)i.2-L.-. k"'g (z-z,-e"a, 7-o"b)ei"""} ) (s)

      vcz, 7)= .eni TS-I t fe cz,)3 .'.)"-oo--.Ku'r(z-z#-onza. 7--ou6) ejud}

                        " oo               r 2o (zi ) J .2'-. -. kec'z ( z- 2h - on4, 7- pm b ) e thA ct } )

where the constant ct designates the phase difference of the
                                                               ioscillation between adjacent blades. For convenience the kernels kar
  kAz , kticr- , ktsig are divided into potentiaZ parts kdrp ,
  (v!rp , kdsp , k"gp and viscous parts ka'va , k"rtr , k.'go
  k`;et, • That is,

                                                 '         kdrp --- - 71R2 .istJ,OOe-iS'}(71 i?-?>ds

'

'
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                                ou           kcr'erp x zlR2 - istJ.                                 e--iSe} (z. }>lRta dj

           kdgp= ka'rp . K`igpz kdrp
      ka'te = 6 (7lj?)ekX kt (3R) - 2st Jl.`"'e-iS"}(7/A?,?>e-gfl }

     ku'ro = Beil"Zke ('pR) -B( u!,?) k, asR) fiseJl.O"e-jSt)(x-v!,?.ee-2kf9'2dS

     ttrct'gtr -. - iaeiVtYk-B' t-Z kt rBR) t KocBMjtJ'St.S.O"e-iS"},;?",'.S e-f}t f'[lts

     k'o:gv = --p ,-?i e' ki ,tr,t3sR) eisL JI.O"e-iS"S c ;l,e,2) e-Pfi:'?das

and

         k""' = ka "p t ku'rv , Ke" = klv}p t ke'tu

        k"2 = Ka'gp . k'gtr , k"gs kigpr k5ge
where St= cJe!(21T). In the limiting case 2}-i)t)O , i.e., for inviscid

flow the viscous parts vanish and the flow is represented by potential

parts only. The potential parts can be superposed in the direction of
cascade axis by the following relation. [2]

      tT.ry. ,f.M'd=i7,r,,`eS`,te'I', CZAL2C i7Z 1pt.iO.), ,,,

The infinite series;

       H.,.,J, =- .tL?1. i.-(,X.'.On,.q.) ,e74ilil ,,, (7)

       kiy(7'g>='.tLilto-7iz'IIS[IYL71illl!i'sif,.a)2b+)(;-4112)e' (8)

can be expressed as foilows.

    for of ;O
      H7rz, 7> = - 2-it-- f a .t ti b evp Sj ('i"t -d) ( '- AZ.t/rb7 >} x e.Qzc (-- 7zr.7iV'glg"trU>

                ' a -'ib &"P Si ( 'tt - ct > ( ' i-'i"' blf >i pme (- 7r .X-'eb•'h} )]
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                                           '       Hytz,v = - II!L} i 4#b e•yp h(ft-a)(-aZ.'iib7); mu (-`T;i!l.W}b >

                  - .-'db et,,ft7 Sint -ec)('- l--'t•6i )} (ze•a2e(-7ii ftliiSI!., ,U)J

   for or =O
                     '                                    lt    ' Hxe7.y)=-':'St'` fa.'i6 det r-Z ?iii.;fl?}b) ta-'i6 det('- Ti t/ll.IFÅílt6Y))

      "i(x,7)=--itPtA.i.•bcvt(-':iZrtJ)6V)--A-'ibcet(-7irtr:.FtlXli6V)]

Then the potential parts are written

                         +oo
       kavp rx-zt. 7) e.jl.l.. I kq'rp (x-zt-o7)d!, 7- o7,b> ek'tct)

                                                      '                                eo •         = - A7 r7•-x,,7) . u'St S.,e'iSt(S-'L)H7 c2-). 7)d} (g)

                         '-oo
      ie eh rp ( y- t, ) 7 > E ..4, .z),, l' ,( lu'isip ( r -- .z, - o),a , ;1 - o" 6 ) e i"'` cr' )

         = Hx ( 7-- z, , 7 ) -- i st S21]C'e -i S' t}-Zk) . a- s. }> ds (io)

                       tpm                       -' t      Zra g p rz- z, ) 7 ) E,.4-.,(kru'gp(x-•zt-e"a, 7-o"6)et`"al)= ko-rpt7-xt.p(n)

                   t po
      kcrgpez-z,. ?)s .2-.-.( k5gp(x-M-pma) 7- ta6) ei"of)= - ktcvp (--M, tr ) (12)

Next let us consider about the superpoSition of the viscous parts. The

viscous parts contain the Bessel function or exponential functions and

all of them converge fairly' quickly for usual blade spacing and Reynolds

number. Then the following infinite series can be approximated by cutting

off at finite terms accurately.

                    +po   ka rtt (z- x. 7) =- ,,t.L-. ( Ka 'r tt (z-zt-o"ta. 7-7"b)e ptd) a3)

                   t pa   kero (x-2,, 7) =- .2".-'-. f kttgb (7- x,-pma, 7-onb)e ju olj ,(!4)

                    t oo   ka2b (7- x, ) 7) .- .tL-., I k"' gv (7 -z, -pm a, 7 -4n b) e ju "j (is)

                    t oo
  X'thg v- ()r -.t,)7)E ,2.'-'.--,. f l(tl•gLr (y--x, --m,a2 ?•- o"6)eci""dJ (16)
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By the superposition of elementary solutions in the direction of cascade

axis finite velocity is induced infinitely upstream of the cascade. That

is,

                                  -- xt b 1 (a 2. k2 > ct p o           xf!ltll.r:po Hx(XJ 7)"i o cr-o

           ,.Jec..v'-. A7 (., 7). i 7Va 'o! (a)'b2) ofct;eo

and the infinite integra•ls in Eqs.(9) (12) oscillate. This is because the

shed off vortices induce finite velocity at t;-Oo , and we must subtract

uniform velocity from entire flow field to cancel the induced velocity at

infinitely upstream of the cascades. The induced velocities due to viscous

part diminishes exponentially at z=-oQ even for of=o and we have
only to take the velocity components induced by potential part into

aecount. Then the veloeity disturbance will be written as follows.

    • --   "r x, 7 ) = 2-err"" LI i Yo (x, )f k" tp (z.z,. 7> - k" rp (- pa, a > t ka to ( z- z,, y) }

                t g, tz, > i ka sp ( z-- x,.7) ' Ka g" (- to) 7) t tE bug e(z-x,. u)} ] (17)

      '              1-   v.tx, 7 ) = tent`O`LI I Ye (7t)l korp (7-x,. 7> - kuip (-oo. 7 ) r koro(7-x,.cr )} '

             t fo (zt)f Kolp a-z,, 7) -kasp(-oD. ti)t keztra-.z,.7)]] (18)

                                           '                                '

2.2.4 Sinusoidal gusts
                                                    '                                         :     ln this section will be given the sinusoidal dissipating gusts that'm

satisfy the fundermental equations ( Equations (1) and (2) in section 2•l)

and approach to inviscid sinusoidal gllsts by letting R.po . Consider the

flow given by
        '

        " ; ". e iE} eA (X- d'U) e t"'r

        u= vr. eiE7e7L(X-d'Jx) eievr (lg)

                         '
where ot = ttu. )" . Substitution of Eq.(l9) to the continuity equation
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 .glve

               ".At v. (iE b- Ad>=O (2o)

Putting p)o , >(=o and T=o in Eq.(1) in section 2.l and substituting

Eq.(19) into the equation, we have the same equation shown below from
either the first or t.he second of Eq.(19).

          j'ou t TJ 7 = v 2 7t2t ( }E - ,,t•2 )2j

                    '                 'from which . '
     A = Rt /(t+ d?> + js ot /( t. ot e)
                                                    '                                                                     (21)
             -,- f ,(l? 1e+ata) -t- }sot!ct.4a)}2-- (E2.t- 2J' P•Sd )1(u`t•e.)

                                                            '
The sinusoidal gust (19) satisfies the elementary Equations (1) and (2) in

section 2.l as far as the constants "o , Zlro and 2 are selected
to fulfill Eqs.(20) and (21). Next consider the ease of ie>OO . Then Eq.

(21) will be,(

                                               /t
                   ( with + sign in front of the squareroot )

                 2kl(ttda) t iSt
    A=                  ( with - sÅ}gn in front of the squareroot ) (22)

                    -jst

We should discard the plus sign in Eq.(22) because A-toO as flL-OO which

is not the case of our interest. Then we will take only the minus sign in
Eq.(21) thereafter. Equation (19) then will be for ?e .Oo

       pt = "o e•n) aito i?"S{x-(•dts'-S'. >i])I
                                                                     (23)
       Lh = YTo e•,ib Ir 2w lt -- Sl 5 z- (d .,s-Åí-. );}) )

which is the inviscid sinusoidal gust having constant phase on the line•
    Jl - (d t- E/t,st )7= buX. . The angle S made by the direction
of the gust ( the direction of equiphase line ) and 7 axis is given by

                                                    '              S= Zh.4-'(1Ib"Åë al' -,- E!St) (24)
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Equation (23) can be written on the line Jtr" il'`"=6;7tn2t. as

         ut = "o e 2` e4,7b S jco ( t' + SU!tu )}

                                                                     (25)
         u; Zir. enc emp Sito(th .s7/ co )}

from which it can be .seen that the distuicbances of constant amplitudes

    Lz,eAC and VroeAC are transmitted with the velocity a)ls
downwards along the line. ( see Fig.1 ) We can get the following relation

by considering Eq.(20) '

   L,c!u' :- ptolu7o = C,let --iE>l,ll n 'U=-,-L )'` 't' S!,8e = bu8 (26)

                                                                        '
  '                                                            '
which means that the direction of the velocity disturbanee coincides with

the direction of the eqiuphase line given by Eq.(24). In the last place

let us verify that the direction of the equiphasb line of the gusts

coincides with the direction of the wakes from the upstream moving blades.

Consider the velocity triangle for upstream moving blades shown in Fig.2,
where [7- is the mainstream velocity, 17 the velocity of the
upstream blades and la-1 is the relative velocity with respect to the

moving blades. The wakes are considered to extend in the direction of the

relative velocity IVV . From the velocity triangle we can get

            7 = V cLD 8 1 iQ,L. (X-- S)

The n-th order angular frequency Wo7 can be written with the blade
spacing Xi of the upstre'am cascade,

            won = 2noo / ( tr! cr)

and from Eq.(25)

             - tu on /E = 17- an 7N

Then

      •S"/E = .-:}l,,',',/,U,'.' ,,,,;)'"'"'z;Ii `uO2'" = `2,i,,..',S ', ,ll!9,.ll
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and

       zbu xtE!st = tut+ ,b[,Ili22XS-y8) = zbuA s (27)

                                       '
which is the same as Eq.(24). That is, the direetion 8 of the

sinusoidal gusts given by Eq.(19) coincides with the direction of the

relative veZocity to the moving blades, and with the direction of the

veloeity fluctuation. Hence it is expected that the sinusoidal dissipating

gust (19) can represent the wakes from the upstream moving blades.

2.2.6 Numerical calueuZations

     Unsteady lifts on translatory oscillating blades of the cascades and

on the cascade blades in the sinusoidal dissipating gusts are ealuculated

by singular point method. By equating the velocity disturbance given by

Eqs.(17),(18) with;

     for translatory oseillation of the blades

             a tx,o > =o
                                , . ( -1 -( x S l > (28)
              V C7) O ) = v'r, e orWt

     for sinusoidal gusts
              t-t (x,D ) = - bco (f? 7L'tr e tso(S
                                                 (--tS X E{ t)                                         ,. (29)              v( z) o> = - ifo e 2X eicoc

so that the boundary condition on the blade surface is fulfilled, we get

the simultaneous integral equations for the unknown functions )torz,) and

  i7. tz,) . Though for inviscid flows the lifts vanish at the trailing

edge due to Kutta's eondition but for viscous flows the 1Å}ft and drag
                                           2distributions have singularity of order S-2 ( S ; distance from the
trailing edge ) at the trailing edge as well at the leading edge. And it

has been pointed out in [3] that the coefficient of the term representing
the singularity approaches to zero by letting iteoo and this can be
numerically ascertained. Then representing ro(Zi) and i7o(z,) by Glauert

series with a term representing the singularity at the trailing edge and

applying Eqs.(28),(29) on several points corresponding to the number of
the terms of theseries, we get a set of simultaneous,linear equations for

Glauertcoefficients and by solving it we find the foree distributions. The

numerical integrations of Eqs.(17),(18) were made by the trigonometrical
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formula except near the logarithmic singularity caused by the term kptB/p)

in Eqs.(3),(4), whieh was integrated analytical!y. As the value gf the
integrands vary largely near the singularities for large Åíz , it was

necessary to drop the pitch of the numerical integration near the

singularities to save the computing time.

2.2.7 Numerical results
     The c6efficientsoffluctuating lift Cb and drag Cp are
defined as fqllows.

                cb = L,/(fRor u7o (z•) . (3o)
                                                 '

                CD ----' D! (l fs o' t.s"7, e) (3i)

where b and D are the fluctuating lift and drag respectively.
Tn the case of isolated airfoil the drag fluctuation is not produced by up

and down oscillation only, but in case of cascades the velocity

fluctuations parallel to the blade surface are indueed by the lift

fluctuations on the blades other than the reference blade and the drag

fluctuates to cancel the parallel velocity disturbance on the blade. We have

the next relation between the phase difference ct of the sinusoidal

gusts among adjacent blades and the constant E relating to the period
in th' e direction of the cascade axis.

         pt = St eep V t 2rc 'M

The arbitrary integer M is selected to be zero in the present
calculations. The eascade geometry is fixed to :=zrt" and 1'=30e of

flat pZate blades of chordlength C =2 and the Glauert series is cut
off at 5-th term.We could neglect the effects of the blades farther than

the adjacent blades in the calculations of the viscous parts for the
present cascade geometry and Reynolds number, and the series in Eqs.(13),

(16) were cut off at pm=i . The fluctuating lift and drag coefficients
due to the translatory oscillation of the blades are shown in Figs.3NIO.
Comparisons with the inviscid results by the accele' ration potential method

in chapter 1 are made for oe=O and o(=iT . It is seen that the lift
coefficient for k--!03 is very near to the inviscid value.
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For any phase difference the fluid viscosity enlarges the amplitude of the

lift fluctuation and has not so much effects on the phase of the lift

fluctuation. Strictly speaking the lift and drag distributions have

singularities at the trailing edge, but actually the effects of the
singularities are small even for k=tO as shown in Fig.5 and the term

representing the trailing edge singularitY is neglected throughout the
present calculations.. The lift coefficibnts have an unified tendency

that Cb i J' po as Steoo for any phase difference but the trace pattern

of the drag coefficient as the variation of St differs largely by the
                   'phase difference OC . This is because the normal velocity fluctuation

is mainly affected by the lifts of the reference blade itself and the

effects of the virtual mass are apparent for lift fluctuation, but the

parallel velocity Eluctuation is mainly due to the lifts on ,the blades

other than the reference blade and henee the drag fluctuation is largely
affected by the phase difference of the oscillation. As a matter of course

the drag fluctuation tends to zero in the inviscid limit. Fluctuating lift

and drag coefficients for dissipating sinusoidal gusts are shown in Figs.

11'v18. Inviscid results by the method in Chapter 1 are shown in Figs.11

and 13. The fluid viscosity enlarges the amplitude of lift fluctuation and

affects the phase diffeEence little as for the case of blade oscillation.
The effects of the viscosity is remarkable for large t5?t for every
                                                                       'phase difference O( . This is because the dissipation rate of the gusts
is larger for larger St and the normal velocity is larger on the
upstream half of the blade chord. The lift fluctuation for ft=10 is larger

for larger value of or which is again considered to be because of
larger damping rate of the gusts for larger O( . In case oe*O the angle
made by the isophase line and the blade surface tends to zero and the

parallel velocity fluetuation will have a large value for small St . In

order to cancel the large parallel velocity, large drag force works on the'
blade correspondingly to the value of ft . , which affect the

lift fluctuation. For this reason the lift fluetuation is largely affected
by the fluid viscosity in the limit Se')O. The drag coefficient CP tends

to infinity in the limit St')O for the reason above mentioned. The phase
of the drag coefficient leads with the increase of St , which is the sarne

tendency for lift. The amplitude of the drag fluetuation is larger for
larger value of or and tends to zero as ft"po.
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2.2.,8 Conclusion

     Viscous effects on the fluetuating lift and drag have been analyzed

for the translatory oscillation of the blades and sinusoidal dissipating

gusts on the basis of the linearized Navier-Stokes equations. It is found

that the viscosity have an effect to enlarge the amplitude of the lift

fluctuation but little effect on the phase of the lift. The drag fluctu-
ations due to the up and down oscillation' of the blades are also analyzed.
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Chapter 3 Compressible Viscous Flow

                        '
3.1 Actuator disk theory

3.1.1 lntroduction
      The unsteady capcades theories may'be assorted into two groups; one

is ,finite pitch theory and the other is aetuator disk theory. In case of

compressible flows the resonance phenomena, which is caused by the finite-

ness of the propagation velocity of the disturbance, is expected to be

largely affected by the viseosity of the fluid. The finite pitch theory

eonsidering simultaniously compressibility and viscosity will be consider-

ably complex one. This section gives an analysis of the viseous effects on

the fluctuating lifts of three dimensional subsonic cascades by rneans of .

the actuator disk theory in which the pitch and the chordlength of the

cascade are assumed to be infinitely .smal!.

3.1.2 Basie equations

     Let us assume that the pitch and the ehordlength of the cascade are

infinitely small and the cascade extends on .)t-? plane. We select x axis.

in-the direction of cascade axis and g axis in the span direction,as shown

in Fig.1. The cascade is assumed to be non-staggered and to have no steady
lift. The velocity is given by ( ITta , Zr' ,zU` ), the pressure by db

tfoe and the density by etfe ,where V', P. and fo arethevelocity,
pressure and density of the uniform flow respectively. The purterbations
are assumed to be small cotapared to the uniform quantities, i.e., U , V,
   tu << V' , 7b(< Po , .J)(<S?o and so on. Then the unsteady Navier-
                                           :Stokes equation is linearized as; •
               '
     ,e,U .v ),.ta --t, 7rwhp .] fp(:il.IYtt'J".t?)'Y?)

                          tpr/+ c') srad (de V) (D

where ne- (X2 Y,Z) is the extemal force, iZh("2 V) eU') the .
velocity purterbation, r the time, !cK the viseosity, p=.xyZJ?.
the kinetie viscosity, -1 the bulk viscosity and e'•= Jl12tX. The ratio

   Ci is assumed to be -2/3 so that the pressure is given as the average
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of the principal stresses ( Stokes' approximation ). Though for the case

of compressible viscous flow the viscosity varies as the temperature varies,

we assume that the viscosity is constant and that the flow is isoentropic

because we assume the small purterbating velocity and temperature. Externa!

force JN[ is assumed to act only on the cascade plane ( t=o ) and
to be given as follows.

                                               '                    .        7i = (1 /f. ) 1'S"-F- eet•tp (? red' (tni + .,r /S + E3/S >) • 8rz) (2)

where J-e-r (x-- , F, ?>' is the amplitude of the external force, l' the

imaginary unit( aN ), oo the number of the oscillations and
   S the wave length in or direetion. If all the blades vibrates
with the same phase , AS=OO . The quantity ,Sl.$ is the wave length

in the span direetion and E=o for the ease of two-dimensional flow.
The function 8(x> is the impulse function defined as 8(z)=o
for Jlf PO and J..EIO";(2)d2r =1 . The continuity equation is

linearized as follows.

    of!or . f, ( aa! ax . )er/)7 t aw/b2 > f U (af/ax> =o (3)

Zsoentropic condition is,

        (1 t pl po )= (/ t f/ f. )k

so that

                                                         '         Plf =M( pe!]?o>= ao2 (4)
where K is the ratio of specific heats, ao is the sound velocity
in the uniform flow. Equation (3) with Eq.(4) inay be written as follows.

    f. (aalaz + Jttle7 tDblI DB >=-(tlab2>(aP /D t- t U Dp le x > (5)

       '
3.1.3 Pressure fields in up and dounstream regions of the cascade
     Differentiating the Z, v,B components of Eq.(1) with ilr=0
in Z , 7 , B diregtion respeetively and then sumning them and using
Eq.(5), we have the following equation.
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                                               '      t(a-e.ij.2.:jUii.ta-)gi?2)tSl213fZ!:.C/)"(tP2ta27:2..D-att;)()-a-,ro.i.)

                   -di, (sit . bbd. )2 ) p -- o (6)

    '
Equation (6) is the b.asic equhtion for the pressure fields in up and down-

stream regions of the cascade. We assume the pressure as follows.

          T.= 2-.- A2 e6`tb Z2,-,a' (opt t 71s t S"!s >) e,7p (2tr dL X/s ) (7)

                 .-b
                                '
Putting Eq.(7) in Eq.(6) we have
                                                       '
     (2nc2tci>liEIO")ct2 t t2rrd' detet>liEl"k - M,a t / ) cri2

                 - No2 12d'k .2r, t2tci> /'ftÅí"j or,i

         t1-?tTt (2tc') {E2k 7- k2) t"s2 -(tt E2).o (8)

where the dimensionless numbers are defined as Rt = u'-Slv ( Reynolds
number ), k=Sg7/U ( reduced frequency ), Moi Ulao ( Mach number )

with the characteristic length S (wave length in the direction of the
cascade axis ) and characteristic velocity VP . The three roots ct,, a2 ,

  C>t3 of Eq.(8) are complex ones, one of which have positive real part
and the others negative real parts, and then are assumed kde(ctt)>0 ,
     RLa.e(ot2)(o , Zlza.0 (o(3)<a where j(iblzS7(ct) means the real part

of (Y .Then the pressure should be sumedwith ,J=1 for J(<o and
with ,c`---2)3 for X>o in Eq.(7) in order that the pressure fluctuation

is finite at infinitely up'and downstream of the cascade.

                                   '
3.1.4 Velocity field in up and downstream regions of the eascade
     Putting Eq.(5) in Eq.(1) with ,F"-'-'O , we have

     tt,tr t v ta.U" -- vr,a.29 . t91Y/Y + l}flS/f) - - fl--". 2md (p).

                a.2Vf. (/'c'> 7r"al (tttP r Va`).-P) (g)

The right hand side of Eq.(9) is known with Eq.(7). Then we assume the

particular solutions of Eq.(9) as follows.
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   bt = 2 Bz
       A-..

   u-g Dx
   ta. 2; L`

    '
where i"
for Z)O .
we have

            '   Bx ="             roo

In the same manner the

     ,. A;   D.. - ---
              ?oO

   jZ7.• = E Dx

Next, let us assume

as follows.

  '
  '
     a=(CD

     z,n =(E2

    2u- =(62

Then all of the

to,

    t 2 Tt l 7Eit ) igL2 .ti

so the constants Bt

   &i -- ( 21z. / (r i,i ) i i

where Pt is assumed

e•,lb f2nd' (optfWs tEB/S >j evs.yp (2ect.' x!s)

e-s-
p 1 7nt' ( t7, t . Jrls t EB !S > j ekp (2 fi or` .2 /s )

e•,•p f2nJ' to7t d- ,7/s + E3!S)J eJ.lp l2ncy:z ls)

   denotes the surnmation with Z=l for Z<O and

Putting the first of Eqs.(10) in the 2' eomponent

     ' A .' c>ei [ 1 t 2,-L (1 t et )(Mo2/ Rz )(oe2 t d' fe f J' ))

ctL

 y
  t

. }k

 and

- (2 re 1, ie, ) [ori ?

 ? components of

'-  (1+Ee))

 Eq.(9) give

   (10)

kt  = .2, 3

of Eq.(9),

   (ll)

      agt2ncttc)(M!it)(dk)
                                                (12)         ctA` t 2h - (2re/Rv>(di2-(J+Åí2))

                                                (13)

     the general solution of Eq.(9) ( solution for t>=O )

1 f?. b' ) op i2 tT J' ( tn " -t- Jl /s -t- E!' 8!s )) op (2 lrB L .) 1 S )

/PoV) e,Åëp (2ie,S (77nt tfls t 21/s)J eap (2nBixZs ) (14)

 / f?. b > e•rp (2R} (mtr t 7/s -t-Sels>J op (2za62xls >

  three components of Eq.(9):with Jb=O will be reduced

       Bi -- ile - (2 tT llE} >(tt Åí`) =O (ls)

        are

-t

to be

1t4

 .glven

(2re1 il, >2(ltÅí?) t 4i (2/',-lk,) le )

with plus sign in front of the
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sign and B? with minus sign. Then Xlz`k-2(B,))0 and Åíaal2(62)<O ,

so ,c:=/ for Z<O and z:=? for z>D should be taken,in Eqs.
(14) so that the velocity purterbation is finite in far up and downstream

of the caseade. The complex velocity purterbation is given as the sum of

the particular solution (10) and the general solution (14). The particular

solution given by Eq.(iO) satisfies the continuity equation (5). The reason

is Eqs.(10) tv (13) ar.e given so as to sa'tisfy the equation of motion (1)

and the pressure equation (6) whieh is given by eZiminating the velocities

from Eq.(1) and the continuity equation (5). Therefore the general solution

given by Eqs.(14) should satisfy the continuity equation for itself.

Substitution of Eq.(14) into Eq.(5) with IP=O gives

          ,8L C'z t J' h-"i t d'fG2 =o (Z=t,2) (17)

3.Z.5 lhatching equations

     Now the velocity and pressure fields have been decided separately in

up and downstream regions of the cascade except for several constants.
                       'These constants will be deeided by matching the flows across the cascade
         'surface as follows. Firstly let us integrate the equation of motion (1)

from Zn-O to 2;tD . Considering the fact that the integration
of the impulse funetion 8(z) gives the step function (5N(x) defined

as Ctv=o for Z'(o and Scz))1 for Z)O ,we have,
                      '     tr fa}n-fi-", fp] . i, x'- e•s7p f2nti cootf7/s t2B!s)) tpY,`>.9"]

                  tv(ttct)1t)2tctt)70t2s)tkW}

                                     .:     IT/ Lrl = f--;i, S e-`tib bnitcntdf-, t!s tEe!s )] .vY,M.! rv(t+coJ' .iJg"} (i8)

     O- S La} = jl.T B'- e.•p212nd'co7tr.71stEz/s>7.pSllS/'} -t-p(ttc')/)dee"}

                  '

where the notation { S()t)} : fc+b> - S(.o) has been used. Equation

(18) is considered to be the momentum equation in Z,Y and B direction.

Secondly, the following relations are given through thesame manipulation

on the integrals of Eq.(l) with respect to X .
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            O =p(2rct)lu 3, o= pI u} . 0 = Pf zu"2 (i9)
                      '
ln the same manner, the continuity equation (5) gives

        f.{a} =-cu/a.2 )f p} (2o)
                     -.
Sinee we consider only the lift force

                                                 N                     '             xV-•--O • (21) 2=0 (22)
                                 '

The velocity component which is normal to the blade surface at the

trailing edge should be given as ,
                                                         '
          l7- = ll". e•ttlp I2/Tl(e7Z t- :llStStlS)] (23)

            '
                                          'whieh may be considered to be the vibrating velocity of the blades. The
constants Bi , A-X and iE>Z can be expressed with AL by Eqs.

(11) .v (13). The unknowns are Ai ( Zzltv3 ), e.' , Eh' , DX
( ,e' =1)2 ), X'-" , 7 and 2'i-? .These twelve constants can be

decided by making use of the two equations of Eqs.(17), three of Eqs.(l8),

three of Eqs.(19), and Eqs.(20),(21),(22) and (23). Then the fluctuating

lift coefficient may be defined as follows.

             Cb= Y, !(foUvo) . (24)
                                                    '

          '
3.1.6 For the case of inviscid flovif

     As a particular case, we will consider the case of inviscid flow

( P )D' ). In the first place is considered the two dimensional flow

( E = O ). Then Eq.(8) reduces to the quadratic equation

     (i- Mo?> ola2 + (2i fqo2 ke ) ctx t (kO Mo2 -t) =o

whieh results in
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                   d' Mb2k t 1-Mo? t le2ft,Z

        O(1 '-"' 1- M,. (2s)
where 1=1 when the upper sign in front of the squareroot is taken and
  .(; =2 when the lower one is taken. The constants A3 , B3 and D3
vanish and Eqs.(11) and (12) become

                                   '
                     AL D('x
        Bx -- -                                                                     (26)
                    p,a ctt . }k

       D4 = - fo u-' ct2 'd le

Moreover Eq.(15) is reduced to a linear equation and,

                                                            '         B. =- jk (2s)
                                '

The general solution of the velocity fluctuation vanish in 2r<t) and the
constants Ci and EJ are zero. Equation (17) rnay be written

          '         E2 =}152 C2 - (29)
Next the matching equations are considered. The constants BZ and PX

being expressed in A; and E2 in C2 ,the unknowns will be
counted five (i.e., A, , A2, C2 , X , T ). As Eq.(19) is
inevitably satisfied, the matching equations are counted five, that is,
two equations of Eqs.(18) and Eqs.(20),(21) and (23), and are sufficient

to settle the five unknowns. !ntroducing the expression of the velocity
and pressure, we get from Eq.(20)

                                           :         C2 = •-- f,O(B, -- B,) -- f-<,2 (A,-A,) (3o)

Putting V=O in the expressions of velocity and pressure in Eq.(18)
and using Eqs.(26) 'v (30) give

                     '          x"- d-- (/-H.Z)(A2-- At) (31)
                                                       '

          N'r' = s((x?) A. - 8(d,) A, (32)
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where

            S(ctt ) = J' ( Mo?-J ) or2 •- 2 M.2 fe

(A) Resonance frequency
                                           '
     At the resonanee frequency the aerodynamic damping force ( i.e.,
fluctuating lift ) will be zero for finite velocity amplitude at the

outlet of the caseade. Then from Eqs.(2Z) and (24) at resonance frequency

          tt                "          N•= Y-o'

which results

            A2 = t4bt

and from Eq.(32)

           Y . }( M.2 -D (otr2 -• ot', ) A, = O

Hence, at resonance CYa ; O!s and

                                            '  • k= vE7:7J2;/Mb (33)
which agrees with the resonance frequency so far known [l]. That is, the

pressure purterbation at the origin at )--0 spreads within the circle

  (z-ZJr)? t- JfZr a,2 (S2 at time 7 . Therefore the propaga-
ting velocity a of the ' purterbation in the direetion of the cascade

axis is

          za = ylt = ae v/T:li7

Putting "=a!S ,we

         k= Soo /u =

which agrees with Eq.(33).

positive ( subresonance ),

the pressure purterbation

 have

a /v = /7:7il;; /

 When the value in the

 the constants ort ,
is eut-off far upstream

Mo'

squareroot of Eq.(25) is

 ot2 are complex and
 or downstream of the
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cascade. Ithen it is negative ( superresonance ), the constants ct, , ty2

are imaginary and the pressure purterbation propagates to infinitely

upstream and downstream of the cascade. !t is seen from Eq.(28) that Bz

is imaginary and the velocity purterbation does not die away, which means

the free vorticity from the cascade fills the region downstream of the

cascade. On the other hand, for the case.of viscous fluid, the constants

   ct., , &' have•non-zero real parts and hence the velocity purter-
bation dies away infinitely upstream or downstream of the cascade. For the

three dimensional flgw the resonanee frequency will be,
                         ,          le =' ! (tt E2 )( l- t'do2 ) / Mo

(B) Two dimensional incompressible flow ( Me=O, E'=o ', 2z=Oo )
     For imeompressible flow OC;=tl and from Eqs.(31),(32)
                                        '
                     '          Å~"- .- (A,-A,) , 7= i(A2 -t- A,) ..

            '
constants t4} , A? are,

                                            '        A, = A2 = (f. o- ur.) ir j -- k1(i. ik>) -t (34)

Therefore,

                                                               '         c. = 9 /(fo Z7 Vo)= 2J' /t a' '- (a'. t/k )-') (3s)

which agrees with the results given by D.S.Whitehead [2].
(C) Three dimensional incomPressible flow ( t`do=0 , E40 , Zi=bo )

     In this case the lift coefficient is fpund to be
                                           '         '                             '
                '                  ? vlt"' E2 (t 'tb k? t' E2>
         eb = (i+ 2k2 . 2E2.>!-r {i-, . 2k . (36)

which agrees with the result given through the integration of yhe elemen-

tary solution for unsteady lifts for three dimensional incompressible flow

[3]. In this section we have seen that the proeedure of the present

analysis leads to the results so far given for the case of inviscid Åílow.
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3.1.7 For the case of infinitely large Reynolds number

     In the preceding seetion we have examined the case of perfectly

inviscid flow. rn this place we will study the ease of the infinitely

large Reynolds number for viscous fluid. For brevity two dimensional case

( 2 =O ) is considered. The roots of Eq.(8) will be for
     '    '
       of i,2 a 1 u' kMba t /- Mpt - lea H.a' )1 (t -- H,e )

                                         , (37)
       of3 = -- o- Mb2 ) RR / (2 za (2ter> M,a )

                       ,                                  '            'and C>t3gOo as )eU)C)O . The roots of Eq.(l5) are

                                        '      B, -- kl, 1(2 7t) , B2= -afe •

and B,•)PO as i(}eOO .Among the eonstants in the expression of
velocity and pressure, A3, g3 , D3 and (ri are order of t!k and
others are order of 2tO . Vsing Eq.(19) and putting Eq.(7),(10) and (14)

in Eq. (20), we get

        ( --t.?/ veL )( -- AJ t A2 t A3 )=O

Hence, i4i; iL)2 . From the first equation of Eqs.(19),

      uliet>(- B, . B2 t B3 i Ct rt- C2 >=o

and using Eqs.(11) and (12) we have

                          '
        c2 = B, - B? =- fi>t (-sX,-21!Ii i7..'•k - s i.i!2i;ir ) (3g)

            '                        'Equation (23) is reduced to

          D2 t R3 t d'rs2 d2 = 'vTo

and by putting Eqs.(11) and (39) in the above equatÅ}on we have;

                            ,      z,'o= fii( :.cr;i•k' - .,,[ll'i•k )
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                   A, }( /t le t) 1-Mb2- kZ M.Z - k
               =Ro ZJ' lt fea (40)
From the second of Eq.(19) we get

      (I!k) C- IE), t il). -h E>s - ti B, e, t i B. d? ) = o

                                  '                                       '

whieh give
      '
             2z •Ai (tt k2>(ol. -- oC,)
       el " k '77,i-u'ct, ct. ..u•k(of.+of,>-k2

          -. 2T UTo 2(/+ k2> 1- M.2- k2M,e (41)
          d- R ,i (t +2 k2) z- Mo2- fe2 M,e •- le? :
The seeond of Eq.(18) is

  Onll&>( D, ctt •- jE]l. ct2 - D3 ot'3 . J' (t+c'>(B, --• R. -- B3 >

      --"-- . J' et (6,?+ t+ ei )-ut c2 (Bi. ttei)7= F /rf. b)

which will be for kooo

      9 ! (fo u> = (2z/ Q) i p,2 ei

!n case of 2iDOO , the term VYaV/OZ] contributes most to the lift

fluctuation among the terms of the second of Eq.(18). !t is because
     /Je-!ex;-s>oo though ll?O as Rt-)oo .FromEqs.(40) and (41)
we have

                         '
                                1- Mi " k? He2        cts. ?(lt k2) (42)
                (1. 2 k2) l- M,2- le) H.Z fj le
                            'rn referenee [3] the fluctuating lift coefficient ek is given by

integrating along Y axis the elementary solution for unsteady concentrated

lifts in subsonic fZow and the result agrees with Eq.(42). Equation (42)

is also given by putting V=0 at first and then using the procedure
shown in the preceding section. Resonance frequency is given by putting

    eb =o in Eq.(42).
            k = JT-7:--"MgEMa2 1 M.
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which agrees with Eq.(33). Putting Mo=O in Eq.(42) give

          C.= 2(lt k2>/ (l +2te2tik) (43)

which agrees with Eqs.(35) and (36) with E=O • Both byEq.(42)
and by Eq.(43), C` -p2 for k-)O , i.e., for infinitely small reduced
frequency. On the other hand, e6-)/ fot kDeo ,i.e., for infinitely

Zarge frequency or for the case that all the blades vibrates in the same
phase. That is, the value of the lift coefficient ek is not affected by
the compressibility of the fluid in the limit of k-)o or le-poo .
Equation (42) is for 1'- i.ee2-k2/Ute2>P i.e., for subresonance.

For /--Moe--k2iLloZ(D i.e., for superresonance

                 ?(/t kz) k2M.2 + M,2 --l
          e. =                                                                  (44)
                 (/t te2> kZMoZrHea-1 tk

which implies that eL is real for superresonance.

3.1.8 Zn case of viscous fluid

     For inviscid flow we have seen the results of the present analyses
                                                                        '
agree with those so far given. Zn this section will be examined the effects

of the viscosity. For brevity, the case E=o and Moeo is considered.
Th en B3 so , D3 -)D , B3 d3 -) -(nt2n> Po UUro /(2 "e) and 71>3 ct3 =) o .

Considering these behaviours of the unknowns and from Eqs.(19) and (20) we
see that A3--)O as MoDO .The second of Eqs.(l8) is reduced to

        9 = (?re /,ez ) (2. et) (D,r D2 >

               . (2nu'1,e, >(( B,2 et -B.2 e2>. (ttcr) Ce, - cz )) (4s)

The constants et and Cz are found to be

      C, = R, V' 2•,7o [- 2 (t- J' 52 C2 > /( i+ jk ) . d' B2 C? ) / J' B,

      C2 = P. U V. f2 /( /.dk) t2jk g, /( i+ d'k))

                  / ( 2u' B? (/tJ'k) +2B, - 2kPt F3? /(itu' le ) -- j,e,)
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and jE)t , D2 are

            tiD, = C u' B, d. - 1 )( 1- tle )/(I.ale )

            D. = 1- j62 d,

Then the fluctuating .lift coefficient CLs will be known from Eq.(45).
By letting k"poo we have

                   '
                                           '         c, .> - (R.O •Zt,)9!A3,) C2 .)-(S>U VTo >/(i1B?)

                                 '                                                          '         Di, D2 --)o
                           '
and the lift coeffieient will be

    Cb = ( f. U v. >"' 1( 21ri !BL )( p,2 C, - 3: C2 )= Sfi d' k12a . I (46)

         '
As in case of infinitely large Reynolds number, the term p/aV/)2']is

predominant in Eq.(18). Equation (46) shows that Cbs/TuKDO as le-s,oo,

whieh is thought to be the effeet of the apparent mass added by the
viseosity of the fluid. In case of )C?=D , we get

  . cJ = e, = --- 47tlrtlk , P,- 292 •--D

and hence

        c. =2 IK 172/ G,2 +/ (47)

3.1.10 Numerical results
     Fluctuating lift coefficient Cb is shown in Figs.2'u6. In Fig.

2'v4 the effect of compressibility can be seen. The dash-dot lines in the

figures show the results for inviscid flow ( Eqs.(42),(43) ), to which the
viseous results converge as 2z -) eX> . The effect of viseosity is

remarkable at large reduced frequency and near the resonance frequency.

:n case of viscous fluid, the lift coeffieient have finite value at

resonance frequency. Fig.5 shows the behaviour of eb at large
frequency. Lift coeffieient eb tends to 1 as k->Do for inviscid
                                                                       '                                                       '
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flow but to vrTlx Do for viscous flow. From Figs.2,6 and 7 can be seen

the effect of the three--dimensionality. It deminishes Cb in small
frequency range but inereases near the resonance frequency. In Figs.8,9

the amplitudes of fluctuating velocity and pressure are given. For /i i'

subresonance ( Fig.8 ) the pressure fiuctuation is cut off up and down-

stream of the cascade and the effects of the viscosity is.notsoremarkable.
The velocity purterba.tion due to shed of,f vortices does not die away for

inviscid flow and the effeet of the viscous damping is remarkable in this
region. In case of superresonance ( Fig. 9 ) the pressure and the velocity
fluctuations ,are transmitted to up and downstream for JQtOO but die down

for finite Reynolds number. The viscosity effects remarkably the pressure

and velocity fluctuations both in up and downstream regions.

                                                            t

3.1.11 Conclusion
                       '                                '     The effect of viseosity on unsteady lifts of three dimensional

subsonie cascade was investigated by means of actuator disk method. The

application limits due to the method are, 1. The pitch and the chordlength

of the easeade are small. 2. The phase difference of the purterbations
between adjacent blades shou!d be small. 3. The reduced frequency based
on the ehordlength (2reMC/V , c ; chordlength ) should be small.
                                                                          'Among the effects of the viscosity, the viscous dissipation of the shedoff

vortices and the friction in the direction of cascade axis are considered,

but not the friction in the direction of the mainstream ( skin friction
on the blade surfa' ee ) beeause of the infinitely small chordlength. The
results given tend to the inviscid solutions by letting k-po and are

rigorous solutions of linearlized unsteady Navier-Stokes equation. In spite

of these limitations, authors believe that the results express the effects

of the viscosity qualitatively so far as the unsteady lifts are concerned.
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3.2 Finite pitch cascade theory

3.2.1 !ntroduction

      ln the last section was developed a subsonic viscous unsteady

actdator disk theory in order to analyze the effeets of the viscisity

on the lift fluctuations on unsteady subsonic eascade blades based on the

linearlized Navier-Stokes equation, in which the blade spacing and the

chordlength are assumed to be infinitely small. This seetion is intended to

take the finiteness of t'he blade spacing and the chordlength into account.

In order to take the finiteness of the blade spacing and the chordlength
into account there can be another way such as an extension to a semÅ}ectuator disk

theory adopted by Tanida et. al. [1] but we employed the method of expanding

the external forces represented by a series of S functions into

Fourier series and then applying the actuator disk theory to each term of

the series by taking advantage of the mathematical strictness of the

actuator disk theory that the coupling equations of the flow fields in

front and after the actuator plane are directly lead from the fudamental

equations. The singularities in the flowfield thus given agree with those

so far given for inviscid or incompressible flow. The advantages of the

present method are; 1. The elementary solutions are given in a form of a
series and the infinite integration of the shed-off vortices necessary in'

phe usual vortex method is avoided. 2. The numerical calculations of
Fourier integral ( infinite integration containing some singularities )

necessary for the method applying Fourier transformation [2],[3] is

avoided. 3. [the effects of the viscosity is easiiy taken into aceount

compared to the acceleration potential method. Therefore it seems that the

present method can give a powerful calculation method even for

compressible viscous flow compared to other method. It is assumed that

the caseade is non-staggered and have no stationary lift.

3.2.2 Aetuator disk solutions

     Consider a flowfield around a row of concentrated external forces
  b.ej`"r located on the il axis with pitch t' as shown in Fig.1, where

the main stream velocity U' is directed in the direction of 7 axis,
and d' is the imaginary unit vCT with respect to time, w the
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angular velocity of oseillation, 7 the time. Then the external force
can be written as
                              •t-Do
        F -= iil"l bo eiof S(z) {.2'"L'.-,. S( ff2't(7-- o7t))]

                          tDo          -- '2riO ejPt E(z>(i.v,, e j>"}'7> H

                                     'or
                                     '            too

        Ji •'-.4..-. Fm (i)
        Fm = (be !t > e j>" li"7 sct) e iw r= T. e ju 'ax-'6 7 s(.) e i'w" (2)

The flowfield due to the distributed external force 1'-`h ,can be givenby

putting

     AS = t!t77 . k = Soo*/ ZT = CSe /(2 rem) . ft"n US/V = 2ft t/77

in the last section, where kS and "pt are expressed by ilL , oo

respectively in the last seetion. The reduced frequency ASt and the

Reynolds number k are defined by

     st= tu e!o u> , i}= VC I" v) (3)
taking half chordlength C/2 =t as the reference length. Then the

pressure field and the velocity field can be given as follows.

   for x<o
       7b =. At JÅíe ((-)i) es`le7 (2re ctt 2rIS >

        " -•-- B, Se ((-, a) eap (2 7T q, z /s ) r e, /rf. u) $e (r, 7) op (ptBt2 IS)(4)

        v- = D, fe ( r, u) e.s-p (pm oft Zls ) t Et l( R. er) 8e (r. a) e4ee are B, .)r /s)

   for Z>o
    c• ', P -'-- ;r:-i-}.,3 A2 J'e ( c') ;if ) op (2 ,Tr cxz t/s >

        a "2t.,,, Bz Fe(r. J) e47p (2naru x!s) t C2/(fob) JFe(n}) op lenB, zls)

        V).4'."'..,,PA' fe(D3) e4v) (2nctz2!s.) t EY(foZr) 5e(a pt e,cp c2n!g2jris) (5)

  ffe =- e•s`p onty/s>eavt"
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where the eonstants cti are the roots of the follcuing cubic
equation and it is assumed that RaZ rcr,)70 , ZliAX?tct2>(0 and Rute(d3xo.

   2 z(2 tct > (Ao21 ,eLb or2 3 t kni t2 teO (,`'tS/)Ci*> fe -- iLt,i . t S ctt

      -- "iS2ik t2ret2..cr)l&* ; ct: +Bk?-2ni ietct)iS M.i --l] =0 (6)

where Ci is the ratio of the bulk viscosity 2 to the viscosity
  ," and is assumed'C'=Al,a=-2/3 . The constants B; are given by

      sz=(/(E"!4n)liz it 16TazRi"+sTtt'k/Ri* f (7)

The thirteen constants in Eqs.(4),(5) are given by the folZowing

simultanious linear equations.

     (2tc"> ,I" Ba ct? 't' BR ot3 - Bt cttj t (CztS2 - et lt3t)/J`?e U

                             ,                          tu(t.c')(P. t D3 •- P, ) =o

       2n     ' z--z-xt7E>2 Of2 t P3 o(3 ' Ptd, . (F2P? -EtBt )/f. tr .7 = rol( foU>

      B2 t B3 - B, t (ez - et >/J?e zr =o

                                                                (8)
      D2 + D3 -- l)i + (E2 -- St)/P,O=o

      At = A? . t`53
       B, --- -t/ll,4 .e,`.\ '. f,f`l,t.\,)]{ililei!.,2,l//>Ea,'2;tJ' d2) , ,.,.,,,

       Din-f,Av2raitÅ}!;-l!itf-lrE.2init.t.(ii(kft.)/cmaii.C-t)k>,Lt=t.2,3

      Fx'=J' BI Ci ,X=i)2
The velocity components represented by Bi and Dk' are irrotational

arid affect the pressure field, and the eomponents represented by Cl and

  bt are rotational and do not affect the pressure field.
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3.2.3 Inviscid and incompressible flow
     The flowfield due to the external force Fe7 will be for kobo and

   R.oo ;

   for Z<O
       p. = -- g' Yo eb77 (2nJ' -2- v eep c2ngz)eia't

        U"= f-t 2c,di ak) eop (?nd' -t"7) e•,7b (2nioox)e`i`ot (g)

        th " -ii.lii'u 2(1kle) op (2nJ'Eon?) es7p(2nlMz>e,-vr

        Z>o .   for
                       -t t        P. =-f ro e•,p ona -7-'-t 7) e"`p (--2vl"z>eiW`

                                                '        Ltm•=,gef/tftt.jk)ev)(--2nl`"rz.>.k-.2R-'.tenp(-2Stz)feop(ptuii;4jr)eiW'N(io)

        btnt=f.Yi{t-,-ik)op(--2niooz>+ka.le,2eij)(-jstz)ie,7p(2fid'son7>e(i'Wi

where le=2"Snlr'
l-

tn' t . The velocity field is composed of only the irrotational

eomponent for Z<O and the first term of Eq.(10-l) and (10-2) are ir-
rotational and the second rotational for X>o . The rotational component
in z>o vanish in the limit St =)o and is c6nsidered to represent

the shed--off vorttces from the bound vortices due to the fluctuating lift.
Equations (9) and (10) are the flowfield due to the external force F" and
                           rco                           -. .- ,the flowfield due to F =2 -m can be given by the superposition of
                          "=.poEqs.(9) and (10). Let us consider the pressure field due to the external
force --h . Assuning that the pressure fluctuation is zero at Z=-cb , we

get the following pressure field.
                                             oo     p - -- t'ec.-,fg re evip32rzi("fx)"j-.2-.', f-2i re e,7pS2-t-re('-i7'?.",,.S.J

       =--}7.!-2d2'Z\utT.'t,t,i.l12t.;n7t:etwc.,, e}tor (u)

Equation (11) can be further deformed to

            " oo      fo=.:.l-1"..-tO:ii,-S{7il{i-sit(7-t.t)? eito? (i2)

which means that the pressure field can be given as the velocity
potential of a doublet series of strength 4o=t rb distributed on x

axis with the spacing t . This can be easily understood if we eonsider
that the pressure field due to a single concentrated force is represented

                                                                     '
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by the velocity potential of a doublet at the Zift point whose strength

equals to the strength of the external force. Next will be considered the

velocity field. The irrotationa! component of the velocity field is,

  for X<o
     . . ji,;{}. tt.O.O.f ;t,iR21il?, .}i") 'eep (2v(iOfr"zJ) e•yp (2ni -ZZ 7)) e-'r

      . ii.Iii .til.!-. g fj}e7(os>J I.41s,k• k e•pp (2n{?'z) erlhp (2ni {}! u )) e twr

       .ttPtid'-/7rskii2e,gdo}T7.{7y. ejue (i3)

     v = -fik.u .S-.-'oo.. ;7tf;;i[S. •k) e•,•p (2"?'x > e•,-p (2ni M6 7 ) e 2eor

      = - fi:,t!tb tr.T. if /-ik e.yp (an9'x ) e4Fp (2na' von 7 )j e i`"r

                       pm.cr        'ji.II3v 2"- /.2ie'yex.t,.-en.ta. eycr e`PWT

     =-t,uo.d".tt,fte7(i-?ee!,F.2-trty.eg2x)..`h'!iptt.&.Eco.,e:'"tii.Iil"7.ie.en'Mig'iP)ept

         k.J t- e\2z .. (14)
        -roU 2-- l-2eexcz.g7.e}2x et"'`'
  .for z>o
   "=f.XvO.'2t)..(s`iftlllil,-jÅíM>)e•,p?(-?n2on'x)evp(2ni3u)]eia)r

     = R.YuO .2X.pt-. i .L' mi}'"(mu ttlb;SIkk e,pR(-)tr gex) e,pR (2nd'37))ej'tDT

      . 'fi-'ptiv-Si;:.S?;Zli;i3FIZ:Iir2e-gz..f.2i,he-,yereicoD as)

    u. pivO t-'.'O"..1.(,'-ak) e-yp (-?n 9'7) e.-p (2ni l" 7)]e-"i

      T st).u tt.po..f S' 7f-I-eil,le•k e•w (-2nV'x) e.,,} (2ni -,E!? tr )) e i•eor

                        2-?.2Z         'geY3Sdw.2.7xE?7.ee2zeiWr
      .ri.igfvS(j-.t,S!t.eii(,-?iSlrth2Titif+e-2t-"2x).,`i'gs.tt.tL.,e,',",'qi`,.2,,l.,l/'..iop}ir'MJ.iwT

          +t.i -l- l.2;'y'.e,bontS7tey,. eiwr (16)
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As shown by the second terms of Eqs.(13) (16), the irrotational components

have the singularities of a row of bound vortices. The logarithmic
singularlity shown by the first terrns of Eqs.(14) andzl(16) is written for

  y=o as;
                             '       jii,li,•ift SfS' b7,tr)=.--'-n f2S }St L:sixt (i7)

                                       '

which is caused by the finiteness of the strength of the free vortices at

the shedding point. The rotational component reveals itself in the region

   Z>o and is written,
                                '    e` = }I,l}u t-e'O., lei 5 e,•? (2ni ,22 7)- e,ttp (.nJ' 1'F";)}eiw(t--itrT)

      =ft'.Xleb.tL?. T(.2I9iS(t.S?,). eyp(2ni-ton7)e2w(r-i})

      ..- f,trui' tstEt e-!I!t{'-eiit-)ii]. e'"Sia etco(r--cXr) (is)

     v' - f,X,', t'O.O-, S 7i7•$tT.2, 2 ccp (2neO' a) tt}eiw(r-i7i)

      .-- p,// t-2vst e-ti`{'-;a->ts+. e-St7 e,i..(r-s) (ig)

which show that the rotational components of the disturbance flow down with

the main flow velocity U . From Eq.(18) we get

   "(a=o) -- a(7st)= fi-.}12'u d'tSt eito(TS)= f.4vo a•s, e(k"("v-Z) (2o)

        '
which show that the shed-off vortices after cascades are represented by the

rotational component.
                                .:It has been shown that the finite pitch solution can be correctly given by'

the superposition of the actuator disk solutions. The flowfield can be

represented by convergent serieses of order t!mt after sorting out the

singularities involved.

3.2 .4

Mo;

 Inviscid compressible flow
The flow field due to the external force Fnt will be for i{1=OO and

o,
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  for z<O

              '    7Epoo S - Z7=i/!IIii:;i =7is- t.t;2c e.t) e.ip (2n} il? p e.gtb onzOF'ct,.t )e "Dr

    aoo=jEi.II3tl?-")S\l2kÅíiS:l;ISiiS::kktMZt'-t,,si(k.i.'t,)(g"ilM,.(le#,)e-ep(2niif"u)opc2vi"at,)r)ei`'T(2i)

    U7"= J-zk,u ."?d' jk,',}" t,,,(k,.i) t'-"'M:,(Oi..,') e•,ep(2nJ'l`" tr)e,tp(2nlO'cr,x)ed"'T

  for X>o
                  ,
    7bm= ""7/ {llha#i3- IIs(le.t) e•stp (2ni i`":,y• ) e•,ep (2nv"'cv.z) e "cot

    btoo " t,ve' 2"': ,•'kk"-i.',',,".2sc,.l'>' ,-'.e,,..,) e4-jp (2itJ'iO'7)enLp(27rigect2x>ei"o'

                                       , (22)          + tll!tl le ,k.i e-? (2 nJ' -ge- 7) ,erp (-i st z ) e a•cD e

    Zi"n =JEi.igrv 't J•A- ,-}M,,,ki.t) ,l't-.tM..i2,.,) et,t•2 oRd'1`i":'g> op(2nf'"ct,.2r>eiwr

         'f tr/ 'ile;SIII;'i e•,"R (2rti-2'7>e-s-p(-•,ps,)t)e,itcDF

where
          a(i=--.ai-ltLMeE.!-l!L:.tifi2f{!:.!MeVCiMoZ>(tk2Mo>".fglez

                  1-Mo2
               ' k Mo2 - ( t"Mi )( t ""'k?MbZ) -He( k?P
          d2 =                   /- Mo;
Equations (21) and (22) are for e7>P , and the flow for 07<o can be

given by putting 7)-e,-t7) , 77-7 , roe-ro and c7ron---Vm in Eqs.(21)

and (22). The flowfield for F ' is known by the superposition of Eqs.
(21) and (22) as follows.

  for .)r<o
   p = -- flsl5ihl.fl.f )F7il.ilii$ i.,2(k ,t>eo"p(2reEIPct,x>- vuatd7t -i i]r)eop(2,?'ii l}i;r)] evp onj:?cr)e.iWr .

        -e'!oJi7iÅÄ;g.pt7:.-;E:ii;ZSIIIielllll`I-lli}ik,.e2'-'-2s--:,'ili,ge,r.!4il:..rr;..esUn?,.,,et`er

   ,,.f.nu,tr..O.O-it'f!zs!tm>[;,Iiilll\I3illlli."JiJiili("ei;iri'>!F7,iii:iii:ii.E e,i>(2nIZite(tz)

                -- if l :; enp (2v?'Jiilk>) e•,Fp (2trt 9u) eu;we
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       '   k -L  ' fbv 2vt7:'i i3

       tco
y)-

$.s.z-.'-.S

      ---Lt   -(1

     Jh l

                       e dkve    i - 2 evpSerF.,e.7 abt2rr7 . e.pSsi,-"Y

    fik t ii - M,2( le +t t-/ il; ,Il(lei,+t) enp (2n i-t---M ict, .x >

t.,.ile rkz> tei,ijp (2E"t-'"ih5.id>) ewp (2nt' -t"'7) e2uae

           2T .2Z       1- eT17 iii ,-

L' 2irL-;t .a..:.,2LT

                        e iwti--2,e-.p(flil,iji";ig)(kDUt7+eqr:Yt?rli)

jt2"l2tSSt2ti7(l-2e2-ttrJ-7--iX"ge..ptt7.ef"`t/f:ttS2e)

..,,p YO'(-2!L,ttta>}top59'7'(J-;---:zXut-27)3 ],i,itur

(23)

     -foU 2

         t     h-L    '- f.V 2Mny:

          pa     .fgh! fi!St 2

         o7=•t
for nc)o
      tpa p=-ils:"O.2-'.b.

          os   x (2•,`'R

     ro t!lo
 "'-e'-eb.4.-.2

   - J/-Met

         '    th -L-   +f.u 2vr7':p?

    - X. ,i!tESt

f

           / -2 ee5Ycr.H"faD"V . opSger.-}

          e-tSt(,' tX) - e-S"? e tw( r- au )

    fob2 i-. 'e-tSt

Lr=' lt-

.]!hutt..tjo!l;(}k-ii-M.(kv,>fii.l::i7k7tt.t s,\k2t/ e'v2(27t-"ttcr2z)

 -( -, -- tt ltiSskk ii iliz;2 ,) e-vp (2mtM'Jitif;;ri}, ) jr e-yp (2rrd' il? g > e t"'r

              pa(tgusvpat2>

    f7=7,l!lil[i:lil7sCN,2cait)e,ep(2rrtLooid)x)'-ililiiiil!)e,`p(2rtZ-mi2ilEZi..))

  (2ni-w)eitoT-4'jiiiliiii-7:.-ilillllliillliliil;i(;IS3}iipgx'2.,pllftia-,--,,,x.,ma/ctoi;..liyv7,;,}ei""'

    -i-f'21!7e'S("')Z:j'kkk- i-. ;ii.il:',Z.IllS> ,-i..(k,.,) e,`p (2"ei"tct2•2 )

-----l--- ev,,p (2m'-ton' fui ) ] e,,p (2fii if"-' u) ei'`"r

             i 5,s-,a-zi ia"'U7 e,Pcer

'

t

t.`L' {ci`,S

2
    T=1
  yo est
t fo o. V

                                 e JkJlfoV '  2--  / - 2 e•n> S-Sgerk,-,,, Scbo t"7 . e.p S--:,2R",iilill}}

iE,jBStt"Iu'-9it27(i-2e-?S-2'-"J'-i-'-:i{XtSetDl'tr-7.e-FpS--evrii;,}>

   , 2p es ..rrm(--N -2 )>+ -thtiP(ny3L ei`DT.n)}J

(24)

 pt ( -211til). on

e-tSt(t-l) +
-a)
e-St3

l - e-tSt
e tw(r- iX )
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The serieS terms in Eqs.(23),(24) are eonvergent with 9(l!o72) at least

and have no si.ngularity. The pressure field has the singularity of the

differential of the potential of vortices ( i.e., doublets ) scaled
down by the factor J7:;HToZ in x direction. The velocity field has

singularities of the bound vortex row scaled down by the factor J7:FC: in

 .z direction and the logarithmic singularitirs due to shed-off vortices.
Zt can be seen that t.he strength of the Shed--off vortices eomposed of the

rotational components is the same as for incompressible flow. These

singularities agree with those given through the Fourier transformation

method [4].

3.2.5 :ncompressible viscous flow

     As is shown in the preceding sections the singularities of the

flow field can be known from the behaviour of the coefficients in Eqs.(4)

and (5) in the limit of 77 -) DO . That is, the singularities of order
   tlX are produced from the constant terms at 77-)tX) , the logarith-
nic singularities or velocitY gaps from the terms having the coefficients

of order tlm . Though it is not so cumbersome to get the full representa-

tions of the coefficients in case HosO , we will show only the asympto-

tic form for "Doo , which is sufficient for the separation of the

singularities.

            '                         '         A ; A2 = -- g To . 9c i/ e72>

          B, = ( Yo !Ro U)(} 1? + k !2 > "t 9(l/•7,t>

          B. = ( Yb 1 eo U>( a' /2 -- le !2 > . 9 (t!,7 )2>

          D, = ( r, / Po O)(- //2 t ik/? ) t 9 (l/ t77)>

          1!)2 =( Yo/Rb U>(l!2 t J'k12>t 9(i!o72> (2s)

          e, = Yo (-i/2 -• k /2 > t 9u/oo z>

           C2 = ro (-i l2 + kl2 ) . 9(t!oo2)

           E, = Ye Ct12 -- J'k!2 t ,e,"/sR) . {i)(ll`n2)

           Z;2 = Yo (-l12 -- jk!2 t- k'/2pirL > +S cllo72.)

           o!t ;l , oc2= •- l. t3, = lt Ri"/`t tT ) t(32 = -'1 t it*1 `4 z
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        t2 1-• 2eecZezD }T7 t ege2Z
            'where Atoo should be taken for .2rco ,and A"
coefficients of the series in Eq.(26) are of order of

terrn has no singularity. The second term represents the

doublet row on y axis, which is identical with that for

The viscous effects on the pressure field are contained

term.

(B) Velocity field

    " .2-"O"jo 7tn (t")t fftr'Y e•s•p (2nle"'p,3 x) t B,: eyti (-2nil"L"tx,)

       07r."o

  ' ,f}r =,.tA?.I-Oe,. [ J?fli'? e7,-p (2R SP',(s,,t", z ) t Pt,Y eo-tb (•-.2n-',"'/zt);] e

Representing the coefficients for n-th order harmonics as ,4t?' for

example and considering the behaviours of the coefficients for o7oco ,

we can separate the singularities as follows.
(A) Pressure field

          foo   IP = ,.;-)'.....,iOl'"('")(At,'"2 h'.4t;o) ehep (2ni -i-IP-7) esp (-2ir Ct2'Z"/,.)) eiwT

   '

          !y.sctetVZ!a.d"sw7 ,h
ed`D` (26)

for Z)D . The
t!oo2 and so the

 singularity of a

 inviseid flow.

 in the series

)e2"iE"7 e itoT

2trJ'-2-7

     erv
(27)
i

The parallel velocity a
&M=tt,-"klYr for t)tl-)oo ,

      encp S2nÅí Z' B,x} =-

     = es,t 52rt i` 2'x}(t.

Therefore for tn")CX) and

     f?Sli '" n7t" (t" > exp (2Ri T"'

for Z<D is considered first. Since

e-yp J2it ?'z} • ev"2 5 k•xS

it•X> = e2.2 l2n?'ZS t ft•Z eJFP52n

                  .2"O swe can wnte

7) e•s-p (2n '-t"' 6,M x)

lil2t.t•}
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                f B,'"re irt" (t" ) e•vp (2ni EO'V> e•s`f) (2n {l'"ÅÄ '2r )

      = i'e,•z • R.ev'O' res•" cm>bysip (2nJ' 1?Z 7> e.vtt) (2iz ?' z)

            t ( R.Ci O' + B, "' > e ;p" oe, ) qtR (2 ni -i'll 7 ) a-p (se t" 'x )

The first term in the'  above equation tends to zero as ;r=)0 and the

.coefficient of the second term is of order t!o72 . Hence it can be

coneluded that the firsb of Eqs.(27) has no singuiarity for 2ee .
The sarne arguments as above are valid for.V)P and it can be shown that the

para!lel velocity LZ has no singu!arity for t70 . Next let us consider
the nOrrnal velocity ll . For u(o and tz/(cl,we can write,

       f.E6" e-v? (2ni i";' 7 > et•yf) (2n l'2' ,`3,o' ()

                  t P,M e,-P (2rrd' -f- ?' 7 ) enP (2n {'t' X )

     = k•z• es? (2rri ;on7) e,,p (2n 2oo't)

               t ( RitM . D, ca .) ey•p (2ni Z! 7) e-svp (2nll'"iiJ( )

The first term tends to zero as ZeP and this term constructs no

singularity at Zso . Considering that

                      Yo it t     R.t'"ioo t 7E>,"' uR,v 41T ,-,7 t 9(t!t772)

we can write

    tt.-O.O..(e.E,',"t Dtca > eoLp (2red' "3' 7> eo•?(2n'-t"'x)

   = f.rOut • .-k->-. tT.:7s.sk 7i., ey2 (nv'37> eog2 c2tr#oo'x).fk;MEu

   =-ttS2vlO•4.R2•ee7c/-2e}'Xc,bf"7.e2-t"'2z>.fbu,b

Therefore the normal velocity V can be represented for 7=o and ZpO as

        vz-f.4i fl.l b;szi '5dy'ta

                              '                               '
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The logarithmic singularity thus separated coincides with that of unsteady

Oseenlet for isolated unsteady lift. It can be shown that the same

singularity exists for .2 20 • The second of Eqs.(27) ean therefore be

written as,

    e.t .-. .tLIP. ( IS.lilt'2ca e-,e? (2if I;oo's,,"2 z.) t ( phr -- R.TOut 4f,} ,.l., )

                                   '                                         '
                                         '                          x eo(? (--2n i;'Lttzl>) e"`p (2rtd' •i-}1 ?) e i'"O?

                                                  '    -t-Jil,Ieut4--'Q-,zri--z7d--2e-2irntz2,.i}LD)r,le-il72txtL.).,t,t"i'-:.z;lil I)lfljElfzzie2,"ggi?'X,.(':vD,))M";.7.itv7(2s)

As examined above, there exists only the logarithmic singularity corres-

ponding to that of Oseenlet, which is due to the terms of orderag/8Z in
the rotational' eomponent represented by Et and b- i in Eqs.(4) and (5).The

irrotational components have the stngularity of the bound vortex row as

for inviscid flow, which is eanceled by the same singularity involved in

the rotational component. The shed-off vortices dissipate at the instant

of shedding and there cannot be seen the velocity gap or the logarithmic

singularity due to the shed-off vortices for inviscid flow. Zn this way

the irrotational components of the actuator disk solution correspond to

the inviscid part of the elementary solution and the rotational components

to .the shed-off vortiees and Oseenlet given in Chapter 2. The eoefficients
of the actuator disk solutions are expanded with respect to k and ftS

for the purpose of the separation of the Singularities. Zn order to get

the convergence, the residual series after the separation of the singular-
ities should be summed over to the term in which k and •jE}* are

sufficiently srnalZ. That is3 the number IV of the cutting off should be
    N>> gret and ">>2k•St or IV should be taken proportional to

the values of t , 8t and jEle .'Hence, in order to represent
a large Reynolds number flows, the series should be taken to very high

harmonics. Physically speaking, this is because high harmonics are needed

in order to represent the large velocity gradient of high Reynolds number

flow near the application point of the external force.
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3.2

and

the

of

tic

.6 Compressible viscous flow
  For inviscid or incompressible flows, the coefficient A3 vanishes

 the coefficients of the actuator disk solutions can be represented in

 elosed fomn. But for eompressible and viscous flows, the representation

the coefficients would be complicated and we will show only the asympto-

 representations for oo')oo .

                             '       A,"g ro ?rre(Ilc;> k4.. . At2 RrZt 9(e"3)

        A)= 2'St' Ye 27r(z,Uit)H.) ' A2zBt" t 9(k"3)

        A3=-d' Yo sfftzsSs-iiz --etel> r.t,2 t A32 let"2 +e(it*3>

        B, = ft-,-)[} (j12 . B,, ft*) t 9ck.2)

        B? = )f.E(}l? t Bu k') t 9(k*t)

        B3 = liii.ligf B33 k`3 + E>(ers

        D, =t.i (-t/2 . P" Re') t 9c er2>

        D. = R-.ts12-u O/2 t p., e,") t e( k+z)

               Vo -/        D3 =foU 4z2 (2tct>2 K,2 i(1'2t9( er3) (2g)

        Ct = Yo (-J !2 t c" ke' ) t 9 (,e,, 2)

                                        '        e2 = Yo (--j12 t e., ieL*) t 9(n*2>

        E, -'h Yo (t!2 t Eo kZL') t 9(it*?)

        E2 = Yb (-i/2 r E;t jElf> . 9(ieL*2)

                       it* :         o(t= / 'tb '2i-iti-Zi;E75r2t t)

bJ"IZzre)

of2 =

of3 =

6, =

-I t

-}le -

1'
 B"r

 D,t t

 4n(2rct)
     /Xti-7S-;E;s--7?ny•t,sjEX*

k` 14z

 Ctt --- o

   6-,, =

  ) 52=

) Bzit
Pai t h-u

-1

ezl

Io

t k*!4n

=o
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The pressure field does not have the singularity of doublets which was

found for inviscid or incompressible flows. It can be written

as;

   for x<O
       7b z tt.D.O. ri4 too. -s,i-fX8;smT k,[ll,)M.. ."ll.3 i t > e-,-e (2ni "i'}!- 7 )e`iwr

                 t r. R e-2iz(i-ti>- e-g
            -- 2C2+ ci> M.2 1 .. e•-2E etfr"' `'

                   '

       75 =.,tkl?,,(A2oo' A3"' " .2td,'(iO.c&,)tM.a ,,i!.ll, >e•yR(?,,d'fZif)eihlv

            .. 2ton.e e,Je)ie Hi e-2" i'i ii i,rc e-g e ti to ,s ' '

The coefficients of the serises in Eqs.(30) are of order of tle72 and the

series • are continuous aeross 7=O , but thesecond termofEqs.(30) makes

the pressure gap of ;

                               '
          Ptp ' P-b = r2.te\P) ftit.. e(iWr (31)

actoss 7=o . The pressure difference approaches infinityin case Mv-)o
or R-) oo . rn case of .zFo , the pressure components relating to ,4t

and A2 are continuous across Y=o since o(,st and cr2o-1 as tcatveo

and the series converge geometrically. ,
SinCe Oei--7-it (t'2fSlt 7rro2SevM" ) , the pressure component

relating to A3 can be written;

   p=t:.-`"..(A3Me,tp(27raiJ17i'-2>ti,ii`eSIV3fiij?mit.e4)tM.2o,{.ll/2"7pS-(J'St'(2.2,l?M.2>Z}]

                                     x es? (2ni voo 7) e i.eor

      -. ?:tiik}iigSLi3.c,re>tM.. e-?nli'.'.S2'..,e"'t2 ...i,s-(J•s,.(,i,,e>2M..)7}e,"or (32)

The fÅ}rst term of Eq.(32) is convergent and continuous across YrO but

the second term produces the pressure gap of
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         p.o ' P.o = 7i+kcZtX)OE,2 enLPS-(iS6' l2.2el9)} M.2)z}e2`Vi (33)

In case of ft -) po or Hb DO the coefficient of the exponential
and the coefficient of Z in the exponent tend to infinity and hence the

pressure difference would be infinite at zso and then decrease
exponentially in the .downstream. It can be seen that the integral of the

pressure differenee equals to the lift in case tSt=O . The reason of the

pressure gap on the plane where no external force is applied will be

explained below. Consider the velocity components lrs corresponding to
  7E)3 . The n-th order component Zi3rca can be written for "toQ;

         Zi3r" = 'b R,Xzr' na(2.&i2M,2 ".V.i eap (2ni{Zlg)e.ppS-(a'Seft,i,4>za,)zj

                            ' xeiw"
and therefore the velocity component Zt3 is continuous across .Y=o .

Differentiating the above equation with Jt , we have;

     ;s?;;'yU;"=-ii.lg•S=ii,:igl{lliE?i..,k,;2t,.,,...O.O,eA,p(?nt'--i;-2g>eotibs-(jst.,,,,,.2,,k...)t}

                                                          - th                                                      X ectteot
and therefore

    a)ycr3=.tkrJon2?p3onff.MuO-s,:iZISS"m2t2.k.L,ZJg..2..oo.,>eneponi!7))

                   x e•"p S-(istt o.i,(;kM,. >zl ed}a)r

        - f.Yvo (22,cl}i.tM,. e-irei'St2,.e'2Vl eeLp s- (istrc.i,g}M..)zj eiwr

Hence,

                              '
   rt)ya3).. -- (1;a\7di>-, - fi3 ,,`.,1,}')2.t... epR s-(J•s,t,,,2,,4}.,.)zfeitoi (34)

Applying the isoentropic equation (•Eq.:(4) in section 3.1 ) on the linear-

lized Navier-Stokes equation (Eq.(1) in section 3.1 ), we have,

                           '
  S,`'"tIJ':SI.*U-v(t?.ilSlrst';V,>---3S.SP.t?,R.<itc'>:.ftD7(31ctre+u7t?b.)(35)

whieh is parallel to Eq.(9) in section 3.1 and dre is the sound velocity
in undisturbed flow. The quantities of OUIa`- ,eV!oz andDti/e2z are
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continuous across ,7=O and the int,egrals pf them from ef=-O to 7=tD
 are zero. Zntegrating each term of Eq.(35) fromg=-O to g=tO , we have;

     .pA (.-`i7L{`U);- #.' ,f4p- 4h"-',. ette')(tt, bP . U'sbsr.6p) )

where the notation dS(7>.= l(to) - F(Lo) is used. Applying
                  ttEq.(33) on the right hand side of above equation, we have;

     4 (?)uU)= R,Xv' e.4.&j2eiv,2 ey7pS-"(ist+ ,.ill},-,t)x}edla'"

                         ,
which agrees with Eq.(34). That is, the pressure discontinuity on 7;o ,

   u >o is canceled by the discontinuity of velocity gradient and the

elementary equations are satisfied. Next we can get the following pressure

equation by eliminating the velocities from the linearlized Navier-Stokes

equation, the equation of continuity and isentropic equation, which is

parallel to Eq.(6) in section 3.1.

   pt(..).2.te7i.>.(2i,e')'(;si.ZlrtD72.)(tt,tzrt")-Av-'-.t(e-2--,.v-')rll;)?LZIfo

                                         '                                     ox                              =fo :;S (36)
where )f' is the mass force in .7 direction and represented by

   1?o )' n do 8(x) 8c, ) in this case. Then the right hand
side of Eq.(36) is 6. 8(x)8'(i) • In case Re;OO and Me$O ,
we have no pressure gap in Z(O and have that given by Eq.(33) in
    Z>0 . In order to examine the singularities of each term of Eq.(36)

at the origin, we may represent the pressure difference in the vicinity

of the origin as,

                   2k r.t         bP = (2tc,) M.. 6Cz)

from which

        ?b - 2k r.t        a'--1-'--7Iti;Zi17Ste, ,2 8ca) 0rx>

and
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      (?a'.f')V aby2. 'o tQ p = roc 8(a') 8(z>= bo S(u') Srz>

That is, the singularity of the concentrated external force can be

represented by the second term of Eq.(36) owing to the pressure difference
at Z)D . In ease of Aat;OO or Mo=O the external force is represen-
ted by the first .term of Eq.(36) owihg to the singularity of doublet

in the pressure field. The first term of Eq.(36) is due to the pressure

,term of Navier-Stokes equation, the second to viscous terms and the third
to inertia terms. Therefore it ean be said that in case of iQ=DO or Mo=o

the external concentrated force is sustained by the pressure force and

hence the singularity of doublet appears in the pressure field, and in
case of a"OO and IVtol=D ,by viseous force and hence no
singularity appears in the pressure field. In case of Mo=o even for
  kipa , the viscous terms do not affect the pressure field and hence

the external force is sustained by the pressure force, which results in

the doublet singularity in the pressure field.

     Compareing Eq.(29) with (25), we can see that the same singularity as

for incompressible flows appear in the •velocity field. That is, the
singularity due to the velocity components Bt.2 is canceled by that due

to C,.2 and hence the parallel velocity a can be represented by a .
convergent series if we sum up the series after adding those two components.

The component relating to B3 has no singularity since B3-u{Palo72).

The logarithmic singularity can be separated from the velocity components
due to Dt,2 , E'i,2 and the normal velocity can be written as follows

after separation of the singularity.

          t co     btr =.tL-. f ,2-' B.E'i"e•,ep (pt {2'"L'rsi 7),t fi-- D2one`Fp (-en C't'or.oox )

                                                                   L                ..--.-...                     tttt                1.         - i.nit (a,rB,,)iof. e-,ppept {'i+ltz,)tl7 e-lt) (2itti- ?- y) eito'

         + ;i,ISvt (D,, r Et,) Zlt b - .e7r (t-?,e-' S`",zi&.. 21n7. e-t2`n2?,)

            -.tL., 2,77e(-`l:"/?IZ)/ eeD il4nT; )ept -,(37)

where the summation should be taken with l=i by 2N ,with 2=/
                                                      kby 2' for Jt <o , and with L=2 by 2'- , wi th e=2,3 by

  2- for Z)o.
   L
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In conclusion,

there appears

incompressible

is similar to

 if the fluid is sirnultaniously viscous and compressible,

no such singularity in the pressure field as can be seen for

 or inviseid flow, but the singularity of the velocity field

that for incompressible flow.

3.2.7 Numerical examples

     In the last sections we have separated the singu!arities out of the

elementary solutions and expressed the residual by aonvergent series of
                       ,order l/o?2 •. The series can be evaluated numerically by cutting off the

series at finite terrns corresponding to the accuracy expected. Present

caleulations have been made by eutting off the terms smaller than o.DS'

percent of the sum of the series, summing 800 terms at most.i The external
force bo is assumed to distribute on the chord ( 'l-< )rSt ), in

order to take the finiteness of the chordlength into account. The distri-
                                                  'bution bo has the singularity of (-(trzxt-z)J"5 at the leading and
the trailing edges as well for incompressible flow. Then assuming the lift

distribution by Glauert series reinforced by the terrn representing the

trailing edge singularity and determining the Glauert coefficients from

the boundary conditions on the blade surface, we can get the lift distri-

bution on the blades. We have to take care to cancel the uniform induced

velocity at infinitely upstream of the cascade by the calculation of the

induced velocity. The numerical calculations have been made for up and

down oscillation of the blades and for dissipating sinusoidal gusts.

The dissipating gusts ean be represented by the rotational component (
relating to C2 , E2 in Eq.(5) ) of the downstream actuator disk

solutions, that are independent on the pressure field and hence on the

lhach number. The elementary solutions givep in the last sections are

eonstructed for cy'=o . The analyses for al=?n!M ( M ; integer ) cari
be made by arranging the elementary soiutions for l'= Mt" with the spacing

 t) on )t axis with the phase difference oe . For general values of
 of , it seems to be necessary to represent the external force 1 with

Fourier integral in stead of Fourier series, as made by Namba [5] for

inviseid flow. The irrotational component of the elementary solution has
finite parallel velocity on the blade surfaces except for ctaO. rt , and the

drag fluctuations should be taken.into account in order to caneel the

parallel velocity. The effects of the drag fluctuation on the lift fluctu--

ation is considered to be small in case the unsteady flow assumed has no
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parallel velocity disturbance on the blade surface or in case of high

Reynolds number flow. For this reason the drag fluctuation has been entire-

ly neglected in the present calculations. A cascade of flat plate blades

of chordlength C=2 ,blade spacing t ,stagger O and without
steady lift is considered. Fig.2 shows the fluctuating lift coefficient

for up and down oscillation of the blades in ineompressible flow. The lift

coefficient Cb is defined as ' Cb =' b/(f VeU(e!2)ei'"r) ,where

   V. is the amplitude of the oscillating velocity of the blades.

Comparisons are made in the figure with the results by acceleration

potential method for inviscid flow and with the results given by using the

elementary solutions for ineompressible viscous flow. It can be seen that

the present.analysis gives reasonable results for incompressible flow.

Figs 3 and 4 show the results for inviscid compressible flow. Comparisons
with the results by D.S.Whitehead [3] have been made in Fig.3 for blade

oscillation and it can be seen that the results are satisfactory. The

fluctuating lift coefficient for dissipating sinusoidal gusts is defined

by the same equation as for blade oscillation, in whieh l2ro is assumed to

be the normal velocity fluctuation at the midchord ( t=0 ) of the
blades. The trace pattern of Cb with the parameter St resembles

to that by actuator disk theory, which suggests that the actuator disk
theory can give a reasonable qualita' tive results. Figs.5 and 6 show the
results for Mb"O and klbe . It can be seen that the lift fluctu-
ation has finite value at resonanee frequency in case it"PO , and that

the inviscid solution can be given by letting QDpa for viscous flow.

3.2.8 Conclusion '
     An analytical method of finite pitch subsonic viscous and unsteady
lifts on cascade blades is given on the basis of actuator disk theory.

The elementary solutions are represented by convergent series after

separation of the singularities. It has been eertified that the results

agree with those so far given for inviscid or incompressible flow by

numerical calculations.
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